
A Tight Lower Bound for EDGE-DISJOINT PATHS

on Planar DAGs*

Rajesh Chitnis

School of Computer Science, University of Birmingham, UK.
rajeshchitnis@gmail.com

Abstract

Given a graph G and a set T =
{
(si, ti) : 1≤ i≤ k

}
of k pairs, the VERTEX-DISJOINT PATHS (resp.

EDGE-DISJOINT PATHS) problems asks to determine whether there exist pairwise vertex-disjoint
(resp. edge-disjoint) paths P1,P2, . . . ,Pk in G such that Pi connects si to ti for each 1≤ i≤ k. Unlike
their undirected counterparts which are FPT (parameterized by k) from Graph Minor theory, both the
edge-disjoint and vertex-disjoint versions in directed graphs were shown by Fortune et al. (TCS ’80)
to be NP-hard for k = 2. This strong hardness for DISJOINT PATHS on general directed graphs led to
the study of parameterized complexity on special graph classes, e.g., when the underlying undirected
graph is planar. For VERTEX-DISJOINT PATHS on planar directed graphs, Schrijver (SICOMP
’94) designed an nO(k) time algorithm which was later improved upon by Cygan et al. (FOCS ’13)

who designed an FPT algorithm running in 22O(k2) · nO(1) time. To the best of our knowledge, the
parameterized complexity of EDGE-DISJOINT PATHS on planar1 directed graphs is unknown.

We resolve this gap by showing that EDGE-DISJOINT PATHS is W[1]-hard parameterized
by the number k of terminal pairs, even when the input graph is a planar directed acyclic graph
(DAG). This answers a question of Slivkins (ESA ’03, SIDMA ’10). Moreover, under the Exponential
Time Hypothesis (ETH), we show that there is no f (k) ·no(k) algorithm for EDGE-DISJOINT PATHS
on planar DAGs, where k is the number of terminal pairs, n is the number of vertices and f is
any computable function. Our hardness holds even if both the maximum in-degree and maximum
out-degree of the graph are at most 2.

We now place our result in the context of previously known algorithms and hardness for EDGE-
DISJOINT PATHS on special classes of directed graphs:

• Implications for EDGE-DISJOINT PATHS on DAGs: Our result shows that the nO(k) al-
gorithm of Fortune et al. (TCS ’80) for EDGE-DISJOINT PATHS on DAGs is asymptotically
tight, even if we add an extra restriction of planarity. The previous best lower bound (also under
ETH) for EDGE-DISJOINT PATHS on DAGs was f (k) ·no(k/ logk) by Amiri et al. (MFCS ’16,
IPL ’19) which improved upon the f (k) · no(

√
k) lower bound implicit in Slivkins (ESA ’03,

SIDMA ’10).
• Implications for EDGE-DISJOINT PATHS on planar directed graphs: As a special case of

our result, we obtain that EDGE-DISJOINT PATHS on planar directed graphs is W[1]-hard
parameterized by the number k of terminal pairs. This answers a question of Cygan et al.
(FOCS ’13) and Schrijver (pp. 417-444, Building Bridges II, ’19), and completes the landscape
(see Table 2) of the parameterized complexity status of edge and vertex versions of the DISJOINT
PATHS problem on planar directed and planar undirected graphs.

1 Introduction

The DISJOINT PATHS problem is one of the most fundamental problems in graph theory: given a graph
and a set of k terminal pairs, the question is to determine whether there exists a collection of k pairwise

*A preliminary version of this paper appeared in CIAC 2021.
1A directed graph is planar if its underlying undirected graph is planar.

1

ar
X

iv
:2

10
1.

10
74

2v
1

 [
cs

.D
S]

 2
6

Ja
n

20
21

disjoint paths where each path connects one of the given terminal pairs. There are four natural variants of
this problem depending on whether we consider undirected or directed graphs and the edge-disjoint or
vertex-disjoint requirement. In undirected graphs, the edge-disjoint version is reducible to the vertex-
disjoint version in polynomial time by considering the line graph. In directed graphs, the edge-disjoint
version and vertex-disjoint version are known to be equivalent in terms of designing exact algorithms.
Besides its theoretical importance, the DISJOINT PATHS problem has found applications in VLSI design,
routing, etc. The interested reader is referred to the surveys [20] and [42, Chapter 9] for more details.

The case when the number of terminal pairs k are bounded is of special interest: given a graph with n
vertices and k terminal pairs the goal is to try to design either FPT algorithms, i.e., algorithms whose
running time is f (k) ·nO(1) for some computable function f , or XP algorithms, i.e., algorithms whose
running time is ng(k) for some computable function g. We now discuss some of the known results on
exact2 algorithms for different variants of the DISJOINT PATHS problem before stating our result.

Prior work on exact algorithms for DISJOINT PATHS on undirected graphs:

The NP-hardness for EDGE-DISJOINT PATHS and VERTEX-DISJOINT PATHS on undirected graphs was
shown by Even et al. [16]. Solving the VERTEX-DISJOINT PATHS problem on undirected graphs is
an important subroutine in checking whether a fixed graph H is a minor of a graph G. Hence, a core
algorithmic result of the seminal work of Robertson and Seymour was their FPT algorithm [40] for
VERTEX-DISJOINT PATHS (and hence also EDGE-DISJOINT PATHS) on general undirected graphs which
runs in O(g(k) · n3) time for some function g. The cubic dependence on the input size was improved
to quadratic by Kawarabayashi et al. [28] who designed an algorithm running in O(h(k) ·n2) time for
some function h. Both the functions g and h are quite large (at least quintuple exponential as per [2]).
This naturally led to the search for faster FPT algorithms on planar graphs: Adler et al. [2] designed
an algorithm for VERTEX-DISJOINT PATHS on planar graphs which runs in 22O(k2) · nO(1) time. Very
recently, this was improved to an single-exponential time FPT algorithm which runs in 2O(k2) ·nO(1) time
by Lokshtanov et al. [32].

There are two more variants of the DISJOINT PATHS problem: the half-integral version where each
vertex/edge can belong to at most two paths, and the parity version where the length of each path
is required to respect a given parity (even or odd) condition. FPT algorithms are known for each of
the following versions of VERTEX-DISJOINT PATHS on general undirected graphs: the half-integral
version [24, 31], the half-integral version with parity [25] and finally just the parity version (without
half-integral) [27].

Prior work on exact algorithms for DISJOINT PATHS on directed graphs:

Unlike undirected graphs where both EDGE-DISJOINT PATHS and VERTEX-DISJOINT PATHS are FPT
parameterized by k, the DISJOINT PATHS problem becomes significantly harder for directed graphs:
Fortune et al. [19] showed that both EDGE-DISJOINT PATHS and VERTEX-DISJOINT PATHS on general
directed graphs are NP-hard even for k = 2. For general directed graphs, Giannopoulou et al. [21] recently
designed an XP algorithm for the half-integral version of DISJOINT PATHS: here the goal is to either find
a set of k paths P1,P2, . . . ,Pk such that Pi is an si ti path for each i ∈ [k] and each vertex in the graph
appears in at most two of the paths, or conclude that the given instance has no solution with pairwise
disjoint paths. This algorithm improves upon an older XP algorithm of Kawarabayashi et al. [26] for the
quarter-integral case in general digraphs.

The DISJOINT PATHS problem has also been extensively studied on special subclasses of digraphs:
• DISJOINT PATHS on DAGs: It is easy to show that VERTEX-DISJOINT PATHS and EDGE-

DISJOINT PATHS are equivalent on the class of directed acyclic graphs (DAGs). Fortune et al. [19]

2This paper focuses on exact algorithms for the DISJOINT PATHS problem so we do not discuss here the results regarding
(in)approximability.

2

designed an nO(k) algorithm for EDGE-DISJOINT PATHS on DAGs. Slivkins [44] showed W[1]-
hardness for EDGE-DISJOINT PATHS on DAGs and a f (k) ·no(

√
k) lower bound (for any computable

function f) under the Exponential Time Hypothesis [22, 23] (ETH) follows from that reduction.
Amiri et al. [3]3 improved the lower bound to f (k) ·no(k/ logk) thus showing that the algorithm of
Fortune et al. [19] is almost-tight.

• DISJOINT PATHS on directed planar graphs: Schrijver [41] designed an nO(k) algorithm for
VERTEX-DISJOINT PATHS on directed planar graphs. This was improved upon by Cygan et al. [12]
who designed an FPT algorithm running in 22O(k2) ·nO(1) time. As pointed out by Cygan et al. [12],
their FPT algorithm for VERTEX-DISJOINT PATHS on directed planar graphs does not work for
the EDGE-DISJOINT PATHS problem. The status of parameterized complexity (parameterized by
k) of EDGE-DISJOINT PATHS on directed planar graphs remained an open question. Table 1 gives
a summary of known results for exact algorithms for DISJOINT PATHS on (subclasses of) directed
graphs.

Graph class Problem type Algorithm Lower Bound
General graphs Vertex-disjoint = edge-disjoint ???? NP-hard for k = 2

DAGs Vertex-disjoint = edge-disjoint nO(k) [19]
f (k) ·no(

√
k) [44]

f (k) ·no(k/ logk) [3]
f (k) ·no(k) [this paper]

Planar graphs
Vertex-disjoint

nO(k) [41]
????

22O(k2) ·nO(1) [12]
Edge-disjoint ???? f (k) ·no(k) [this paper]

Planar DAGs
Vertex-disjoint 22O(k2) ·nO(1) [12] ????
Edge-disjoint nO(k) [19] f (k) ·no(k) [this paper]

Table 1: The landscape of parameterized complexity results for DISJOINT PATHS on directed graphs. All lower
bounds are under the Exponential Time Hypothesis (ETH). To the best of our knowledge, the entries marked with
???? have no known non-trivial results.

Our result:

We resolve this open question by showing a slightly stronger result: the EDGE-DISJOINT PATHS problem
is W[1]-hard parameterized by k when the input graph is a planar DAG whose max in-degree and max
out-degree are both at most 2. First we define the EDGE-DISJOINT PATHS problem formally below, and
then state our result:

EDGE-DISJOINT PATHS
Input: A directed graph G = (V,E), and a set T ⊆V ×V of k terminal pairs given by

{
(si, ti) : 1≤

i≤ k
}

.
Question: Do there exist k pairwise edge-disjoint paths P1,P2, . . . ,Pk such that Pi is an si ti path
for each 1≤ i≤ k?
Parameter: k

Theorem 1.1. The EDGE-DISJOINT PATHS problem on planar DAGs is W[1]-hard parameterized by the
number k of terminal pairs. Moreover, under ETH, the EDGE-DISJOINT PATHS problem on planar DAGs
cannot be solved f (k) ·no(k) time where f is any computable function, n is the number of vertices and k
is the number of terminal pairs. The hardness holds even if both the maximum in-degree and maximum
out-degree of the graph are at most 2.

3We note that [3] considers a more general version than DISJOINT PATHS which allows congestion

3

Recall that the Exponential Time Hypothesis (ETH) states that n-variable m-clause 3-SAT cannot be
solved in 2o(n) · (n+m)O(1) time [22, 23]. Prior to our result, only the NP-completeness of EDGE-
DISJOINT PATHS on planar DAGs was known [45]. The reduction used in Theorem 1.1 is heavily
inspired by some known reductions: in particular, the planar DAG structure (Figure 2) is from [6, 7]
and the splitting operation (Figure 3 and Definition 2.4) is from [4, 5]. We view the simplicity of our
reduction as evidence of success of the (now) established methodology of showing W[1]-hardness (and
ETH-based hardness) for planar graph problems using GRID-TILING and its variants.

Placing Theorem 1.1 in the context of prior work:

Theorem 1.1 answers a question of Slivkins [44] regarding the parameterized complexity of EDGE-
DISJOINT PATHS on planar DAGs. As a special case of Theorem 1.1, one obtains that EDGE-DISJOINT

PATHS on planar directed graphs is W[1]-hard parameterized by the number k of terminal pairs: this
answers a question of Cygan et al. [12] and Schrijver [43]. The W[1]-hardness result of Theorem 1.1
completes the landscape (see Table 2) of parameterized complexity of edge-disjoint and vertex-disjoint
versions of the DISJOINT PATHS problem on planar directed and planar undirected graphs. Theorem 1.1
also shows that the nO(k) algorithm of Fortune et al. [19] for EDGE-DISJOINT PATHS on DAGs is
asymptotically optimal, even if we add an extra restriction of planarity to the mix. Theorem 1.1 adds
another problem (EDGE-DISJOINT PATHS on DAGs) to the relatively small list of problems for which it
is provably known that the planar version has the same asymptotic complexity as the problem on general
graphs: the only such other problems we are aware of are [5, 7, 38]. This is in contrast to the fact that for
several problems [1, 14, 17, 18, 29, 30, 33, 34, 36, 38, 39]. the planar version is easier by (roughly) a
square root factor in the exponent as compared to general graphs, and there are lower bounds indicating
that this improvement is essentially the best possible [35].

Graph class Problem type Parameterized Complexity parameterized by k

Planar undirected
Vertex-disjoint

FPT [2, 28, 32, 40]
Edge-disjoint

Planar directed
Vertex-disjoint FPT [12]
Edge-disjoint W[1]-hard [this paper]

Table 2: The landscape of parameterized complexity results for the four different versions (edge-disjoint vs
vertex-disjoint & directed vs undirected) of DISJOINT PATHS on planar graphs.

Organization of the paper:

In Section 2.1 we describe the construction of the instance (G2,T) of EDGE-DISJOINT PATHS. The two
directions of the reduction are shown in Section 2.2 and Section 2.3 respectively. Finally, Section 2.4
contains the proof of Theorem 1.1. We conclude with some open questions in Section 3.

Notation:

All graphs considered in this paper are directed and do not have self-loops or multiple edges. We
use (mostly) standard graph theory notation [15]. The set {1,2,3, . . . ,M} is denoted by [M] for each
M ∈ N. A directed edge (resp. path) from s to t is denoted by s→ t (resp. s t). We use the non-
standard notation (to avoid having to consider different cases in our proofs): s s does not represent
a self-loop but rather is to be viewed as “just staying put” at the vertex s. If A,B ⊆ V (G) then we
say that there is an A B path if and only if there exists two vertices a ∈ A,b ∈ B such that there
is an a b path. For A ⊆ V (G) we define N+

G (A) =
{

x /∈ A : ∃ y ∈ A such that (y,x) ∈ E(G)
}

and
N−G (A) =

{
x /∈ A : ∃ y ∈ A such that (x,y) ∈ E(G)

}
. For A ⊆ V (G) we define G[A] to be the graph

induced on the vertex set A, i.e., G[A] := (A,EA) where EA := E(G)∩ (A×A).

4

2 W[1]-hardness of EDGE-DISJOINT PATHS on Planar DAGs

To obtain W[1]-hardness for EDGE-DISJOINT PATHS on planar DAGs, we reduce from the GRID-TILING-
≤ problem [37] which is defined below:

GRID-TILING-≤
Input: Integers k,N, and a collection S of k2 sets given by

{
Sx,y ⊆ [N]× [N] : 1≤ x,y≤ k

}
.

Question: For each 1≤ x,y≤ k does there exist a pair γx,y ∈ Sx,y such that
• if γx,y = (a,b) and γx+1,y = (a′,b′) then b≤ b′, and
• if γx,y = (a,b) and γx,y+1 = (a′,b′) then a≤ a′

(1,1)
(1,3)
(4,2)

(1,5)
(5,2)
(3,5)

(1,1)
(4,5)
(3,3)

(2,1)
(4,1)

(1,3)
(4,2)

(4,4)
(3,2)

(3,1)
(1,2)
(3,3)

(1,1)
(2,3)

(4,3)
(3,5)

𝑆1,1 𝑆3,1𝑆2,1

𝑆3,2𝑆2,2

𝑆3,3𝑆2,3

𝑆1,2

𝑆1,3

Figure 1: An instance of GRID-TILING-≤ with k = 3,N = 5 and a solution highlighted in red. Note that in a
solution, the second coordinates in a row are non-decreasing as we go from left to right and the first coordinates in
a column are non-decreasing as we go from bottom to top.

Figure 1 gives an illustration of an instance of GRID-TILING-≤ along with a solution. It is known [13,
Theorem 14.30] that GRID-TILING-≤ is W[1]-hard parameterized by k, and under the Exponential Time
Hypothesis (ETH) has no f (k) ·No(k) algorithm for any computable function f . We will exploit this
result by reducing an instance (k,N,S) of GRID-TILING-≤ in poly(N,k) time to an instance (G2,T) of
EDGE-DISJOINT PATHS such that G2 is a planar DAG, number of vertices in G2 is |V (G2)|= O(N2k2)
and number of terminal pairs is |T |= 2k.

Remark 2.1. Our definition of GRID-TILING-≤ above is slightly different than the one given in [13,
Theorem 14.30]: there the constraints are first coordinate of γx,y is ≤ first coordinate of γx+1,y and second
coordinate of γx,y is ≤ second coordinate of γx,y+1. By rotating the axis by 90◦, i.e., swapping the indices,
our version of GRID-TILING-≤ is equivalent to that from [13, Theorem 14.30].

2.1 Construction of the instance (G2,T) of EDGE-DISJOINT PATHS

Consider an instance (N,k,S) of GRID-TILING-≤. We now build an instance (G2,T) of EDGE-DISJOINT

PATHS as follows: first in Section 2.1.1 we describe the construction of an intermediate graph G1
(Figure 2). The splitting operation is defined in Section 2.1.2, and the graph G2 is obtained from G1 by
splitting each (black) grid vertex.

2.1.1 Construction of the graph G1

Given integers k and N, we build a directed graph G1 as follows (refer to Figure 2):
1. Origin: The origin is marked at the bottom left corner of Figure 2. This is defined just so we can

view the naming of the vertices as per the usual X−Y coordinate system: increasing horizontally
towards the right, and vertically towards the top.

2. Grid (black) vertices and edges: For each 1≤ i, j ≤ k we introduce a (directed) N×N grid Gi, j

where the column numbers increase from 1 to N as we go from left to right, and the row numbers
increase from 1 to N as we go from bottom to top. For each 1≤ q, `≤ N the unique vertex which

5

c1

c2

c3

d1

d2

d3

a1 a2 a3

b1 b2 b3

Orig
in

Figure 2: The graph G1 constructed for the input k = 3 and N = 5 via the construction described in Section 2.1.1.
The final graph G2 for the EDGE-DISJOINT PATHS instance is obtained from G1 by the splitting operation
(Definition 2.4) as described in Section 2.1.2.

6

is the intersection of the qth column and `th row of Gi, j is denoted by wq,`
i, j . The vertex set and edge

set of Gi, j is defined formally as:
• V (Gi, j) =

{
wq,`

i, j : 1≤ q, `≤ N
}

• E(Gi, j) =
(⋃

(q,`)∈[N]×[N−1] w
q,`
i, j → wq,`+1

i, j

)
∪
(⋃

(q,`)∈[N−1]×[N] w
q,`
i, j → wq+1,`

i, j

)
All vertices and edges of Gi, j are shown in Figure 2 using black color. Note that each horizontal
edge of the grid Gi, j is oriented to the right, and each vertical edge is oriented towards the top. We
will later (Definition 2.4) modify the grid Gi, j to represent the set Si, j.
For each 1≤ i, j ≤ k we define the set of boundary vertices of the grid Gi, j as follows:

Left(Gi, j) :=
{

w1,`
i, j : ` ∈ [N]

}
; Right(Gi, j) :=

{
wN,`

i, j : ` ∈ [N]
}

Top(Gi, j) :=
{

w`,N
i, j : ` ∈ [N]

}
; Bottom(Gi, j) :=

{
w`,1

i, j : ` ∈ [N]
} (1)

3. Arranging the k2 different N×N grids {Gi, j}1≤i, j≤k into a large k× k grid: We place the grids
Gi, j into a big k× k grid of grids left to right according to growing i and from bottom to top
according to growing j (see the naming of the sets in Figure 1 in blue color). In particular,the grid
G1,1 is at bottom left corner of the construction, the grid Gk,k at the top right corner, and so on.

4. Blue vertices and red edges for horizontal connections: For each (i, j) ∈ [k−1]× [k] we add a
set of vertices H i+1, j

i, j :=
{

hi+1, j
i, j (`) : ` ∈ [N]

}
shown in Figure 2 using blue color. We also add the

following three sets of edges (shown in Figure 2 using red color):
• a directed path of N− 1 edges given by Path(H i+1, j

i, j) :=
{

hi+1, j
i, j (`)→ hi+1, j

i, j (`+ 1) : ` ∈
[N−1]

}
• a directed perfect matching from Right(Gi, j) to H i+1, j

i, j given by

Matching
(
Gi, j,H

i+1, j
i, j

)
:=
{

wN,`
i, j → hi+1, j

i, j (`) : ` ∈ [N]
}

• a directed perfect matching from H i+1, j
i, j to Left(Gi+1, j) given by

Matching
(
H i+1, j

i, j ,Gi+1, j
)

:=
{

hi+1, j
i, j (`)→ w1,`

i+1, j : ` ∈ [N]
}

5. Blue vertices and red edges for vertical connections: For each (i, j) ∈ [k]× [k−1] we add a set
of vertices V i, j+1

i, j :=
{

vi, j+1
i, j (`) : ` ∈ [N]

}
shown in Figure 2 using blue color. We also add the

following three sets of edges (shown in Figure 2 using red color):
• a directed path of N− 1 edges given by Path(V i, j+1

i, j) :=
{

vi, j+1
i, j (`)→ vi, j+1

i, j (`+ 1) : ` ∈
[N−1]

}
• a directed perfect matching from Top(Gi, j) to V i, j+1

i, j given by

Matching
(
Gi, j,V

i, j+1
i, j

)
:=
{

w`,N
i, j → vi, j+1

i, j (`) : ` ∈ [N]
}

• a directed perfect matching from V i, j+1
i, j to Bottom(Gi, j+1) given by

Matching
(
V i, j+1

i, j ,Gi, j+1
)

:=
{

vi, j+1
i, j (`)→ w`,1

i, j+1 : ` ∈ [N]
}

6. Green (terminal) vertices and magenta edges: For each i ∈ [k] we add the following four sets of
(terminal) vertices (shown in Figure 2 using green color)

A :=
{

ai : i ∈ [k]
}

; B :=
{

bi : i ∈ [k]
}

C :=
{

ci : i ∈ [k]
}

; D :=
{

di : i ∈ [k]
} (2)

For each i ∈ [k] we add the edges (shown in Figure 2 using magenta color)

Source(A) :=
{

ai→ w`,1
i,1 : ` ∈ [N]

}
; Sink(B) :=

{
w`,N

i,N → bi : ` ∈ [N]
}

(3)

For each j ∈ [k] we add the edges (shown in Figure 2 using magenta color)

Source(C) :=
{

c j→ w1,`
1, j : ` ∈ [N]

}
; Sink(D) :=

{
wN,`

N, j→ d j : ` ∈ [N]
}

(4)

This completes the construction of the graph G1 (see Figure 2).

Claim 2.2. G1 is a planar DAG

Proof. Figure 2 gives a planar embedding of G1. It is easy to verify from the construction of G1 described
at the start of Section 2.1.1 (see also Figure 2) that G1 is a DAG.

7

wq,`
i, jwest(wq,`

i, j)

east(wq,`
i, j)

south(wq,`
i, j)

north(wq,`
i, j)

Splitting Operation

wq,`
i, j,TR

wq,`
i, j,LB

west(wq,`
i, j)

east(wq,`
i, j)

south(wq,`
i, j)

north(wq,`
i, j)

Figure 3: The splitting operation for the vertex wq,`
i, j when (q, `) /∈ Si, j. The idea behind this splitting is if we want

edge-disjoint paths then we can go either left-to-right or bottom-to-top but not in both directions. On the other
hand, if (q, `) ∈ Si, j then the picture on the right-hand side (after the splitting operation) would look exactly like
that on the left-hand side.

2.1.2 Obtaining the graph G2 from G1 via the splitting operation

Observe (see Figure 2) that every (black) grid vertex in G1 has in-degree two and out-degree two.
Moreover, the two in-neighbors and two out-neighbors do not appear alternately. For each (black) grid
vertex z ∈ G1 we set up the notation:

Definition 2.3. (four neighbors of each grid vertex in G1) For each (black) grid vertex z ∈ G1 we
define the following four vertices

• west(z) is the vertex to the left of z (as seen by the reader) which has an edge incoming into z
• south(z) is the vertex below z (as seen by the reader) which has an edge incoming into z
• east(z) is the vertex to the right of z (as seen by the reader) which has an edge outgoing from z
• north(z) is the vertex above z (as seen by the reader) which has an edge outgoing from z

We now define the splitting operation which allows us to obtain the graph G2 from the graph G1
constructed in Section 2.1.1.

Definition 2.4. (splitting operation) For each i, j ∈ [k] and each q, ` ∈ [N]

• If (q, `) /∈ Si, j, then we split the vertex wq,`
i, j into two distinct vertices wq,`

i, j,LB and wq,`
i, j,TR and add

the edge wq,`
i, j,LB→wq,`

i, j,TR (denoted by the dotted edge in Figure 3). The 4 edges (see Definition 2.3)

incident on wq,`
i, j are now changed as follows (see Figure 3):

– Replace the edge west(wq,`
i, j)→ wq,`

i, j by the edge west(wq,`
i, j)→ wq,`

i, j,LB

– Replace the edge south(wq,`
i, j)→ wq,`

i, j by the edge south(wq,`
i, j)→ wq,`

i, j,LB

– Replace the edge wq,`
i, j → east(wq,`

i, j) by the edge wq,`
i, j,TR→ east(wq,`

i, j)

– Replace the edge wq,`
i, j → north(wq,`

i, j) by the edge wq,`
i, j,TR→ north(wq,`

i, j)

• Otherwise, if (q, `) ∈ Si, j then the vertex wq,`
i, j is not split, and we define wq,`

i, j,LB = wq,`
i, j = wq,`

i, j,TR.

Note that the four edges (Definition 2.3) incident on wq,`
i, j are unchanged.

Remark 2.5. To avoid case distinctions in the forthcoming proof of correctness of the reduction, we will
use the following non-standard notation: the edge s s does not represent a self-loop but rather is to be
viewed as “just staying put” at the vertex s. Note that this does not affect edge-disjointness.

We are now ready to define the graph G2 and the set T of terminal pairs:

Definition 2.6. The graph G2 is obtained by applying the splitting operation (Definition 2.4) to each
(black) grid vertex of G1, i.e., the set of vertices given by

⋃
1≤i, j≤k V (Gi, j). The set of terminal pairs is

T :=
{
(ai,bi) : i ∈ [k]

}
∪
{
(c j,d j) : j ∈ [k]

}
8

Note that in G2 we have
• All vertices in G2 except A∪C have out-degree at most 2
• All vertices in G2 except B∪D have in-degree at most 2

We will later show (see last paragraph in the proof of Theorem 1.1) how to edit G2 such that each vertex
has both in-degree and out-degree at most 2. The next claim shows that G2 is also both planar and acyclic
(like G1).

Claim 2.7. G2 is a planar DAG

Proof. In Claim 2.2, we have shown that G1 is a planar DAG. By Definition 2.6, G2 is obtained from G1
by applying the splitting operation (Definition 2.4) on every (black) grid vertex, i.e., every vertex from
the set

⋃
1≤i, j≤k V (Gi, j).

By Definition 2.3, every vertex of G1 that is split has exactly two in-neighbors and two out-neighbors
in G1. Hence, it is easy to see (Figure 3) that the splitting operation (Definition 2.4) does not destroy
planarity when we construct G2 from G1. Since G1 is a DAG, replacing each split (black) grid vertex w
in G1 by wLB followed by wTR in the topological order of G1 gives a topological order for G2. Hence, G2
is a planar DAG.

We now set up notation for the grids in G2:

Definition 2.8. For each i, j ∈ [k], we define Gsplit
i, j to be the graph obtained by applying the splitting

operation (Definition 2.4) to each vertex of Gi, j. For each i, j ∈ [k] and each q, ` ∈ [N] we define
split(wq,`

i, j) :=
{

wq,`
i, j,LB,w

q,`
i, j,TR

}
.

2.2 Solution for EDGE-DISJOINT PATHS⇒ Solution for GRID-TILING-≤

In this section, we show that if the instance (G2,T) of EDGE-DISJOINT PATHS has a solution then the
instance (k,N,S) of GRID-TILING-≤ also has a solution.

Suppose that the instance (G2,T) of EDGE-DISJOINT PATHS has a solution, i.e., there is a collection
of 2k pairwise edge-disjoint paths

{
P1,P2, . . . ,Pk, Q1,Q2, . . . ,Qk

}
in G2 such that

Pi is an ai bi path ∀ i ∈ [k]

Q j is an c j d j path ∀ j ∈ [k]
(5)

To streamline the arguments of this section, we define the following subsets of vertices of G2:

Definition 2.9. (horizontal & vertical levels)
For each j ∈ [k], we define the following set of vertices:

HORIZONTAL(j) = {c j,d j}∪
(k⋃

i=1

V (Gsplit
i, j)

)
∪
(k−1⋃

i=1

H i+1, j
i, j

)
For each i ∈ [k], we define the following set of vertices:

VERTICAL(i) = {ai,bi}∪
(k⋃

j=1

V (Gsplit
i, j)

)
∪
(k−1⋃

j=1

V i, j+1
i, j

)
From Definition 2.9, it is easy to verify that VERTICAL(i)∩VERTICAL(i′) = /0 = HORIZONTAL(i)∩

HORIZONTAL(i′) for every 1≤ i 6= i′ ≤ k.

Definition 2.10. (boundary vertices in G2) For each 1≤ i, j ≤ k we define the set of boundary vertices
of the grid Gsplit

i, j in the graph G2 as follows:

Left(Gsplit
i, j) :=

{
w1,`

i, j,LB : ` ∈ [N]
}

; Right(Gsplit
i, j) :=

{
wN,`

i, j,TR : ` ∈ [N]
}

Top(Gsplit
i, j) :=

{
w`,N

i, j,TR : ` ∈ [N]
}

; Bottom(Gsplit
i, j) :=

{
w`,1

i, j,LB : ` ∈ [N]
} (6)

9

Lemma 2.11. For each i ∈ [k] the path Pi satisfies the following two structural properties:
• every edge of the path Pi has both end-points in VERTICAL(i)
• Pi contains an Bottom(Gsplit

i, j) Top(Gsplit
i, j) path for each j ∈ [k].

Proof. For this proof, define H1, j
0, j := {c j} and Hk+1, j

k, j := {d j} for each j ∈ [k].
Fix any i∗ ∈ [k]. Note that Pi∗ is an ai∗ bi∗ path and hence starts and ends at a vertex in

VERTICAL(i∗). We now prove the first part of lemma by showing two claims which state that Pi∗

cannot contain any vertex of N+
G2

(
VERTICAL(i∗)

)
and N−G2

(
VERTICAL(i∗)

)
respectively.

Claim 2.12. Pi∗ does not contain any vertex of N+
G2

(
VERTICAL(i∗)

)
.

Proof. The structure of G2 implies that
• N+

G2

(
VERTICAL(i)

)
=
⋃k

j=1 H i+1, j
i, j for each i ∈ [k]

• N+
G2

(⋃k
j=1 H i+1, j

i, j

)
⊆ VERTICAL(i+1) for each 0≤ i≤ k−1

• N+
G2

(⋃k
j=1 Hk+1, j

k, j

)
= /0 since each vertex of D is a sink in G2

Hence, if Pi∗ contains a vertex from N+
G2

(
VERTICAL(i∗)

)
then it cannot ever return back to VERTICAL(i∗)

which contradicts the fact that the last vertex of Pi∗ is bi∗ ∈ VERTICAL(i∗).

Claim 2.13. Pi∗ does not contain any vertex of N−G2

(
VERTICAL(i∗)

)
.

Proof. The structure of G2 implies that
• N−G2

(
VERTICAL(i)

)
=
⋃k

j=1 H i, j
i−1, j for each i ∈ [k]

• N−G2

(⋃k
j=1 H i+1, j

i, j

)
⊆ VERTICAL(i) for each 1≤ i≤ k

• N−G2

(⋃k
j=1 H1, j

0, j

)
= /0 since each vertex of C is a source in G2

Hence, if Pi∗ contains a vertex from N−G2

(
VERTICAL(i∗)

)
then Pi∗ cannot have started at a vertex of

VERTICAL(i∗) which contradicts the fact that the first vertex of Pi∗ is ai∗ ∈ VERTICAL(i∗).

This concludes the proof of the first part of the lemma. We now show the second part of the lemma.
We define V i∗,1

i∗,0 := {ai∗} and V i∗,k+1
i∗,k := {bi∗}. The structure of G2 implies that

• N+
G2[VERTICAL(i∗)]

(
Gsplit

i∗, j

)
=V i∗, j+1

i∗, j and N−G2[VERTICAL(i∗)]

(
Gsplit

i∗, j

)
=V i∗, j

i∗, j−1 for each j ∈ [k]

• N+
G2[VERTICAL(i∗)]

(
V i∗, j+1

i∗, j

)
= Bottom

(
Gsplit

i∗, j+1

)
for each 0≤ j ≤ k−1

• N−G2[VERTICAL(i∗)]

(
V i∗, j+1

i∗, j

)
= Top

(
Gsplit

i∗, j

)
for each 1≤ j ≤ k

These three relations, combined with the first part of the lemma which states that Pi∗ lies within
G2[VERTICAL(i∗)], implies that Pi∗ contains an Bottom(Gsplit

i∗, j) Top(Gsplit
i∗, j) path for each j ∈ [k].

This concludes the proof of Lemma 2.11.

The proof of the next lemma is very similar to that of Lemma 2.11, and we skip repeating the details.

Lemma 2.14. For each j ∈ [k] the path Q j satisfies the following two structural properties:
• every edge of the path Q j has both end-points in HORIZONTAL(j)
• Q j contains an Left(Gsplit

i, j) Right(Gsplit
i, j) path for each i ∈ [k]

Lemma 2.15. For any (i, j)∈ [k]×[k], let P′,Q′ be any Bottom(Gsplit
i, j) Top(Gsplit

i, j), Left(Gsplit
i, j)

Right(Gsplit
i, j) paths in G2 respectively. If P′ and Q′ are edge-disjoint then there exists (µ,δ) ∈ Si, j such

that the vertex wµ,δ
i, j,LB = wµ,δ

i, j = wµ,δ
i, j,TR = belongs to both P′ and Q′

Proof. Let P′′,Q′′ be the paths obtained from P′,Q′ by contracting all the dotted edges on P′,Q′ respect-
ively. By the construction of G2 (Definition 2.6) and the splitting operation (Definition 2.4), it follows that
P′′,Q′′ are Bottom(Gi, j) Top(Gi, j),Left(Gi, j) Right(Gi, j) paths in G1 respectively. Hence, there
exist x1,x2 ∈ [N] such that P′′ is a wx1,1

i, j → wx2,N
i, j path and y1,y2 ∈ [N] such that Q′′ is a w1,y1

i, j → wN,y2
i, j

path. We now show that P′′ and Q′′ must intersect in G1

Claim 2.16. P′′ and Q′′ have a common vertex in G1

10

Proof. For each x∈ [N] such that x1 ≤ x≤ x2 define P′′(x) =
{

y∈ [N] : wx,y
i, j ∈ P′′

}
. For each x∈ [N] such

that x1 ≤ x ≤ x2 define Q′′(x) =
{

y ∈ [N] : wx,y
i, j ∈ Q′′

}
. We will prove the claim by showing that there

exists x∗,y∗ ∈ [N] such that y∗ ∈
(
P′′(x∗)∩Q′′(x∗)

)
. By the orientation of the edges in Gi, j, it follows that

max P′′(z) = min P′′(z+1) and max Q′′(z) = min Q′′(z+1) ∀ x1 ≤ z < x2

If 1≤ u≤ z≤ N then maxP′′(u)≤min P′′(z) and max Q′′(u)≤minQ′′(z)
(7)

By definition of Q′′, we have y1 ∈ Q′′(1) and hence y ≥ y1 ≥ 1 for each y ∈ Q′′(x1). If
(
P′′(x1)∩

Q′′(x1)
)
6= /0 then we are done. Otherwise, we have that min Q′′(x1)>max P′′(x1) since 1∈ P′′(x1). Now

if
(
P′′(x1+1)∩Q′′(x1+1)

)
6= /0 then we are done. Otherwise, we have minQ′′(x1+1)> maxP′′(x1+1)

since minQ′′(x1 +1) = maxQ′′(x1). Continuing this way, we must find an x∗ ∈ N such that x1 ≤ x∗ ≤ x2
and

(
P′′(x∗)∩Q′′(x∗)

)
6= /0: this is because N ∈ P′′(x2) and hence minQ′′(x2)≤ N = maxP′′(x2). Since(

P′′(x∗)∩Q′′(x∗)
)
6= /0 let y∗ ∈

(
P′′(x∗)∩Q′′(x∗)

)
, i.e., the vertex wx∗,y∗

i, j belongs to both P′′ and Q′′.

By Claim 2.16, the paths P′′,Q′′ have a common vertex in G1. Let this vertex be wµ,δ
i, j . Viewing the

paths P′′,Q′′ in G2, i.e., “un-contracting” the dotted edges (Definition 2.4), it follows that both P′ and Q′

share the dotted edge wµ,δ ,LB
i, j → wµ,δ

i, j,TR. Since P′ and Q′ are given to be edge-disjoint, this implies that

the edge wµ,δ ,LB
i, j → wµ,δ

i, j,TR cannot exist in G2, i.e., (µ,δ) ∈ Si, j and the vertex wµ,δ
i, j,LB = wµ,δ

i, j = wµ,δ
i, j,TR

belongs to both P′ and Q′ (recall Definition 2.4). This concludes the proof of Lemma 2.15.

Lemma 2.17. The instance (k,N,S) of GRID-TILING-≤ has a solution.

Proof. Fix any (i, j) ∈ [k]× [k]. By Lemma 2.11, Pi contains an Bottom(Gsplit
i, j) Top(Gsplit

i, j) path
say Pi, j. By Lemma 2.14, Q j contains an Left(Gsplit

i, j) Right(Gsplit
i, j) path say Qi, j. Since Pi

and Q j are edge-disjoint (Equation 5), it follows that the paths Pi, j and Qi, j are also edge-disjoint.
Applying Lemma 2.15 to the paths Pi, j and Qi, j we get that there exists (µi, j,δi, j) ∈ [N]× [N] such that
(µi, j,δi, j) ∈ Si, j and the vertex wµi, j,δi, j

i, j,LB = wµi, j,δi, j
i, j = wµi, j,δi, j

i, j,TR belongs to Pi, j (and hence also to Pi) and Qi, j

(and hence also to Q j).
We now claim that the values

{
(µi, j,δi, j) : (i, j)∈ [k]× [k]

}
form a solution for the instance (k,N,S) of

GRID-TILING-≤. In the last paragraph, we have already shown that (µi, j,δi, j)∈ Si, j for each (i, j)∈ [k]×
[k]. For each (i, j) ∈ [k−1]× [k] both the vertices wµi, j,δi, j

i, j,LB = wµi, j,δi, j
i, j,TR and wµi+1, j,δi+1, j

i+1, j,LB = wµi+1, j,δi+1, j
i+1, j,TR belong

to the path Q j which is contained in G2[HORIZONTAL(j)] (Lemma 2.14). Hence, by the orientation
of the edges in G2, it follows that δi, j ≤ δi+1, j. Similarly, it can be shown that µi, j ≤ µi, j+1 for each
(i, j) ∈ [k]× [k−1].

2.3 Solution for GRID-TILING-≤⇒ Solution for EDGE-DISJOINT PATHS

In this section, we show that if the instance (k,N,S) of GRID-TILING-≤ has a solution then the instance
(G2,T) of EDGE-DISJOINT PATHS also has a solution.

Suppose that the instance (k,N,S) of GRID-TILING-≤ has a solution given by the pairs
{
(αi, j,βi, j) :

i, j ∈ [k]
}

. Hence, we have (
αi, j,βi, j

)
∈ Si, j for each (i, j) ∈ [k]× [k]

αi, j ≤ αi, j+1 for each (i, j) ∈ [k]× [k−1]

βi, j ≤ βi+1, j for each (i, j) ∈ [k−1]× [k]

(8)

Definition 2.18. (row-paths and column-paths in G2) For each (i, j) ∈ [k]× [k] and ` ∈ [N] we define
• RowPath`(G

split
i, j) to be the w1,`

i, j,LB wN,`
i, j,TR path in G2[G

split
i, j] consisting of the following edges

(in order): for each r ∈ [N−1]
– wr,`

i, j,LB→ wr,`
i, j,TR and wr,`

i, j,TR→ wr+1,`
i, j,LB

followed finally by the edge wN,`
i, j,LB→ wN,`

i, j,TR

11

• ColumnPath`(G
split
i, j) to be the w`,1

i, j,LB w`,N
i, j,TR path in G2 consisting of the following edges (in

order): for each r ∈ [N−1]
– w`,r

i, j,LB→ w`,r
i, j,TR and w`,r

i, j,TR→ w`,r+1
i, j,LB

followed finally by the edge w`,N
i, j,LB→ w`,N

i, j,TR

Using the special types of paths from Definition 2.18, we can now show the following lemma:

Lemma 2.19. The instance (G2,T) of EDGE-DISJOINT PATHS has a solution.

Proof. We build a collection of 2k paths P :=
{

R1,R2, . . . ,Rk,T1,T2, . . . ,Tk
}

and show that it forms a
solution for the instance (G2,T) of EDGE-DISJOINT PATHS. First, we describe this collection of paths
below:

- Description of the set of paths {R1,R2, . . . ,Rk} :
For each i ∈ [k], we build the path Ri as follows:

• Start with the edge ai→ wαi,1,1
i,1,LB

• For each j ∈ [k−1] use the wαi, j,1
i, j,LB wαi, j+1,1

i, j+1,LB path obtained by concatenating

– the wαi, j,1
i, j,LB wαi, j,N

i, j,TR path ColumnPathαi, j(G
split
i, j) from Definition 2.18

– the wαi, j,N
i, j,TR wαi, j+1,1

i, j+1,LB path wαi, j,N
i, j,TR→ vi, j+1

i, j (αi, j)→··· · · ·→ vi, j+1
i, j (αi, j+1)→wαi, j+1,1

i, j+1,LB
which exists since Equation 8 implies αi, j ≤ αi, j+1.

• Now, we have reached the vertex wαi,k,1
i,k,LB. Use the wαi,k,1

i,k,LB wαi,k,N
i,k,TR path

ColumnPathαi,k(G
split
i,k) from Definition 2.18 to reach the vertex wαi,k,N

i,k,TR.

• Finally, use the edge wαi,k,N
i,k,TR→ bi to reach bi.

- Description of the set of paths {T1,T2, . . . ,Tk} :
For each j ∈ [k], we build the path Tj as follows:

• Start with the edge c j→ w1,β1, j
1, j,LB

• For each i ∈ [k−1] use the w1,βi, j
i, j,LB w1,βi+1, j

i+1, j,LB path obtained by concatenating

– the w1,βi, j
i, j,LB wN,βi, j

i, j,TR path RowPathβi, j(G
split
i, j) from Definition 2.18

– the wN,βi, j
i, j,TR w1,βi+1, j

i+1, j,LB path wN,βi, j
i, j,TR→ hi+1, j

i, j (βi, j)→ ··· · · ·→ hi+1, j
i, j (βi+1, j)→w1,βi+1, j

i+1, j,LB
which exists since Equation 8 implies βi, j ≤ βi+1, j.

• Now, we have reached the vertex w1,βk, j
k, j,LB. Use the w1,βk, j

k, j,LB wN,βk, j
k, j,TR path

RowPathβk, j(G
split
k, j) from Definition 2.18 to reach the vertex wN,βk, j

k, j,TR.

• Finally, use the edge wN,βk, j
k, j,TR→ d j to reach d j.

By Definition 2.9, it follows that every edge of the path Ri has both endpoints in VERTICAL(i)
for every i ∈ [k]. Since VERTICAL(i)∩VERTICAL(i′) = /0 for every 1 ≤ i 6= i′ 6= k, it follows that the
collection of paths {R1,R2, . . . ,Rk} are pairwise edge-disjoint.

By Definition 2.9, it follows that every edge of the path Tj has both endpoints in HORIZONTAL(j) for
every j ∈ [k]. Since HORIZONTAL(j)∩HORIZONTAL(j′) = /0 for every 1≤ j 6= j′ 6= k, it follows that
the collection of paths {T1,T2, . . . ,Tk} are pairwise edge-disjoint.

Fix any (i, j) ∈ [k]× [k]. We now conclude the proof of this lemma by showing that Ri and Tj are
edge-disjoint. By the construction of G2 (Figure 2 and Figure 3) and definitions of the paths Ri and Tj,
it follows that the only common edge between Ri and Tj could be wαi, j,βi, j

i, j,LB → wαi, j,βi, j
i, j,TR . By Equation 8,

we have that (αi, j,βi, j) ∈ Si, j. Hence, by the splitting operation (Definition 2.4), we have that wαi, j,βi, j
i, j,LB =

wαi, j,βi, j
i, j = wαi, j,βi, j

i, j,TR , i.e., the only possible common edge wαi, j,βi, j
i, j,LB → wαi, j,βi, j

i, j,TR between Ri and Tj is not an
edge in G2. Hence, Ri and Tj are edge-disjoint.

12

2.4 Proof of Theorem 1.1

Finally we are ready to prove our main theorem (Theorem 1.1) which is restated below:

Theorem 1.1. The EDGE-DISJOINT PATHS problem on planar DAGs is W[1]-hard parameterized by the
number k of terminal pairs. Moreover, under ETH, the EDGE-DISJOINT PATHS problem on planar DAGs
cannot be solved f (k) ·no(k) time where f is any computable function, n is the number of vertices and k
is the number of terminal pairs. The hardness holds even if both the maximum in-degree and maximum
out-degree of the graph are at most 2.

Proof. Given an instance (k,N,S) of GRID-TILING-≤, we use the construction from Section 2.1 to build
an instance (G2,T) of EDGE-DISJOINT PATHS such that G2 is a planar DAG (Claim 2.7). It is easy to
see that n = |V (G2)|= O(N2k2) and G2 can be constructed in poly(N,k) time.

It is known [13, Theorem 14.30] that GRID-TILING-≤ is W[1]-hard parameterized by k, and under
ETH cannot be solved in f (k) ·No(k) time for any computable function f . Combining the two directions
from Section 2.2 and Section 2.3, we get a parameterized reduction from GRID-TILING-≤ to an instance
of EDGE-DISJOINT PATHS which is a planar DAG and has |T |= 2k terminal pairs. Hence, it follows
that EDGE-DISJOINT PATHS on planar DAGs is W[1]-hard parameterized by number k of terminal pairs,
and under ETH cannot be solved in f (k) ·no(k) time for any computable function f .

Finally we show how to edit G2, without affecting the correctness of the reduction, so that both the
max out-degree and max in-degree are at most 2. We present the argument for reducing the out-degree:
the argument for reducing the in-degree is analogous. Note that the only vertices in G2 with out-degree
> 2 are A∪C. For each c j ∈C we replace the directed star whose edges are from c j to each vertex of
Left(G1, j) with a directed binary tree whose root is ci, leaves are the set of vertices Left(G1, j) and each
edge is directed away from the root. It is easy to see that in this directed binary tree the set of paths
from c j to the different leaves (i.e.,vertices of Left(G1, j)) are pairwise edge-disjoint, and we have only
increased the number of vertices by O(k) while maintaining both planarity and (directed) acyclicity. We
do a similar transformation for each ai ∈ A. It is easy to see that this editing adds O(k2) new vertices and
takes poly(k) time, and therefore it is still true that n = |V (G2)|= O(N2k2) and G2 can be constructed in
poly(N,k) time.

3 Conclusion & Open Questions

In this paper we have shown that EDGE-DISJOINT PATHS on planar DAGs is W[1]-hard parameterized
by k, and has no f (k) ·no(k) algorithm under the Exponential Time Hypothesis (ETH) for any computable
function f . The hardness holds even if both the maximum in-degree and maximum out-degree of the
graph are at most 2. Our result answers a question of Slivkins [44] regarding the parameterized complexity
of EDGE-DISJOINT PATHS on planar DAGS, and a question of Cygan et al. [12] and Schrijver [43]
regarding the parameterized complexity of EDGE-DISJOINT PATHS on planar directed graphs.

We now propose some open questions related to the complexity of the DISJOINT PATHS problem:
• What is the correct parameterized complexity of EDGE-DISJOINT PATHS on planar graphs para-

meterized by k? Can we design an XP algorithm, or is the problem NP-hard even for k = O(1) like
the general version? Note that to prove the latter result, one would need to have directed cycles
involved in the reduction since there is nO(k) algorithm of Fortune et al. [19] for EDGE-DISJOINT

PATHS on DAGs.
• Is the half-integral version4 of EDGE-DISJOINT PATHS FPT on directed planar graphs or DAGs? It

is easy to see that our W[1]-hardness reduction does not work for this problem.
• Given our W[1]-hardness result, can we obtain FPT (in)approximability results for the EDGE-

DISJOINT PATHS problem on planar DAGs? To the best of our knowledge, there are no known
(non-trivial) FPT (in)approximability results for any variants of the DISJOINT PATHS problem.
This question might be worth considering even for those versions of the DISJOINT PATHS problem

4Each edge can belong to at most two of the paths

13

which are known to be FPT since the running times are astronomical (except maybe [32]). Some
of the recent work [8, 9, 10, 11] on polynomial time (in)approximability of the DISJOINT PATHS

problem might be relevant.

Acknowledgements

We thank the anonymous reviewers of CIAC 2021 for their helpful comments. In particular, one of
the reviewers suggested the strengthening of Theorem 1.1 for the case when the input graph has both
in-degree and out-degree at most 2.

References

[1] Pierre Aboulker, Nick Brettell, Frédéric Havet, Dániel Marx, and Nicolas Trotignon. Coloring
graphs with constraints on connectivity. Journal of Graph Theory, 85(4):814–838, 2017. doi:
10.1002/jgt.22109. URL https://doi.org/10.1002/jgt.22109.

[2] Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh,
and Dimitrios M. Thilikos. Irrelevant vertices for the planar Disjoint Paths Problem. J. Comb.
Theory, Ser. B, 122:815–843, 2017. URL https://doi.org/10.1016/j.jctb.2016.10.001.

[3] Saeed Akhoondian Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Routing with
congestion in acyclic digraphs. Inf. Process. Lett., 151, 2019. URL https://doi.org/10.1016/j.ipl.
2019.105836.

[4] Rajesh Chitnis and Andreas Emil Feldmann. A Tight Lower Bound for Steiner Orientation. In CSR
2018, pages 65–77. URL https://doi.org/10.1007/978-3-319-90530-3 7.

[5] Rajesh Chitnis, Andreas Emil Feldmann, and Ondrej Suchý. A Tight Lower Bound for Planar
Steiner Orientation. Algorithmica, 81(8):3200–3216, 2019. URL https://doi.org/10.1007/
s00453-019-00580-x.

[6] Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Tight Bounds for Planar
Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions). In SODA
2014, pages 1782–1801, 2014. URL https://doi.org/10.1137/1.9781611973402.129.

[7] Rajesh Hemant Chitnis, Andreas Emil Feldmann, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and
Extensions). SIAM J. Comput., 49(2):318–364, 2020. URL https://doi.org/10.1137/18M122371X.

[8] Julia Chuzhoy, David H. K. Kim, and Shi Li. Improved approximation for node-disjoint paths in
planar graphs. In STOC 2016, pages 556–569, . URL https://doi.org/10.1145/2897518.2897538.

[9] Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. New hardness results for routing on disjoint
paths. In STOC 2017, pages 86–99, . URL https://doi.org/10.1145/3055399.3055411.

[10] Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. Almost polynomial hardness of node-disjoint
paths in grids. In STOC 2018, pages 1220–1233, . URL https://doi.org/10.1145/3188745.3188772.

[11] Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. Improved Approximation for Node-Disjoint
Paths in Grids with Sources on the Boundary. In ICALP 2018, volume 107, pages 38:1–38:14, 2018.
URL https://doi.org/10.4230/LIPIcs.ICALP.2018.38.

[12] Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. The Planar Directed k-
Vertex-Disjoint Paths Problem Is Fixed-Parameter Tractable. In FOCS 2013, pages 197–206. URL
https://doi.org/10.1109/FOCS.2013.29.

14

https://doi.org/10.1002/jgt.22109
https://doi.org/10.1016/j.jctb.2016.10.001
https://doi.org/10.1016/j.ipl.2019.105836
https://doi.org/10.1016/j.ipl.2019.105836
https://doi.org/10.1007/978-3-319-90530-3_7
https://doi.org/10.1007/s00453-019-00580-x
https://doi.org/10.1007/s00453-019-00580-x
https://doi.org/10.1137/1.9781611973402.129
https://doi.org/10.1137/18M122371X
https://doi.org/10.1145/2897518.2897538
https://doi.org/10.1145/3055399.3055411
https://doi.org/10.1145/3188745.3188772
https://doi.org/10.4230/LIPIcs.ICALP.2018.38
https://doi.org/10.1109/FOCS.2013.29

[13] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. ISBN 978-3-319-
21274-6. URL https://doi.org/10.1007/978-3-319-21275-3.

[14] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J.
ACM, 52(6):866–893, 2005. URL https://doi.org/10.1145/1101821.1101823.

[15] Reinhard Diestel. Graph Theory, 4th Edition. Volume 173 of Graduate Texts in Mathematics.
Springer, 2012. ISBN 978-3-642-14278-9. URL https://doi.org/10.1007/978-3-662-53622-3.

[16] Shimon Even, Alon Itai, and Adi Shamir. On the Complexity of Timetable and Multi-Commodity
Flow Problems. In FOCS 1975, pages 184–193. URL https://doi.org/10.1109/SFCS.1975.21.

[17] Fedor V. Fomin, Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Subexpo-
nential Algorithms for Rectilinear Steiner Tree and Arborescence Problems. In SoCG 2016, pages
39:1–39:15, . URL https://doi.org/10.4230/LIPIcs.SoCG.2016.39.

[18] Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket
Saurabh. Subexponential Parameterized Algorithms for Planar and Apex-Minor-Free Graphs via
Low Treewidth Pattern Covering. In FOCS 2016, pages 515–524, . URL https://doi.org/10.1109/
FOCS.2016.62.

[19] Steven Fortune, John E. Hopcroft, and James Wyllie. The Directed Subgraph Homeomorphism
Problem. Theor. Comput. Sci., 10:111–121, 1980. URL https://doi.org/10.1016/0304-3975(80)
90009-2.

[20] András Frank. Packing paths, circuits, and cuts - a survey,. In Alexander Schrijver, Laszlo
Lovasz, Bernhard Korte, Hans Jurgen Promel, and R. L. Graham, editors, Paths, Flows and VLSI-
Layouts, volume 148 of LIPIcs, pages 49–100. Springer-Verlag, 1990. ISBN 0387526854. URL
https://dl.acm.org/doi/book/10.5555/574821.

[21] Archontia C. Giannopoulou, Ken-ichi Kawarabayashi, Stephan Kreutzer, and O-joung Kwon. The
canonical directed tree decomposition and its applications to the directed disjoint paths problem.
CoRR, abs/2009.13184, 2020. URL https://arxiv.org/abs/2009.13184.

[22] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst. Sci.,
62(2):367–375, 2001. URL https://doi.org/10.1006/jcss.2000.1727.

[23] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. URL https://doi.org/10.1006/
jcss.2001.1774.

[24] Ken-ichi Kawarabayashi and Bruce A. Reed. A nearly linear time algorithm for the half integral
disjoint paths packing. In SODA 2008, pages 446–454, . URL http://dl.acm.org/citation.cfm?id=
1347082.1347131.

[25] Ken-ichi Kawarabayashi and Bruce A. Reed. A nearly linear time algorithm for the half integral
parity disjoint paths packing problem. In SODA 2009, pages 1183–1192, . URL http://dl.acm.org/
citation.cfm?id=1496770.1496898.

[26] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Stephan Kreutzer. An excluded half-integral grid
theorem for digraphs and the directed disjoint paths problem. In STOC 2014, pages 70–78, . URL
https://doi.org/10.1145/2591796.2591876.

[27] Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The Graph Minor Algorithm with Parity
Conditions. In FOCS 2011, pages 27–36, . URL https://doi.org/10.1109/FOCS.2011.52.

15

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1109/SFCS.1975.21
https://doi.org/10.4230/LIPIcs.SoCG.2016.39
https://doi.org/10.1109/FOCS.2016.62
https://doi.org/10.1109/FOCS.2016.62
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/0304-3975(80)90009-2
https://dl.acm.org/doi/book/10.5555/574821
https://arxiv.org/abs/2009.13184
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
http://dl.acm.org/citation.cfm?id=1347082.1347131
http://dl.acm.org/citation.cfm?id=1347082.1347131
http://dl.acm.org/citation.cfm?id=1496770.1496898
http://dl.acm.org/citation.cfm?id=1496770.1496898
https://doi.org/10.1145/2591796.2591876
https://doi.org/10.1109/FOCS.2011.52

[28] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem in
quadratic time. J. Comb. Theory, Ser. B, 102(2):424–435, 2012. URL https://doi.org/10.1016/j.jctb.
2011.07.004.

[29] Philip N. Klein and Dániel Marx. Solving Planar k-Terminal Cut in O(nc
√

k) Time. In ICALP 2012,
pages 569–580, . URL https://doi.org/10.1007/978-3-642-31594-7 48.

[30] Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for Subset TSP on
planar graphs. In SODA 2014, pages 1812–1830, . URL https://doi.org/10.1137/1.9781611973402.
131.

[31] Jon M. Kleinberg. Decision Algorithms for Unsplittable Flow and the Half-Disjoint Paths Problem.
In STOC 1998, pages 530–539. ACM, 1998. URL https://doi.org/10.1145/276698.276867.

[32] Daniel Lokshtanov, Pranabendu Misra, Michal Pilipczuk, Saket Saurabh, and Meirav Zehavi. An
exponential time parameterized algorithm for planar disjoint paths. In STOC 2020, pages 1307–1316,
. URL https://doi.org/10.1145/3357713.3384250.

[33] Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential Parameterized Odd
Cycle Transversal on Planar Graphs. In FSTTCS 2012, pages 424–434, . URL https://doi.org/10.
4230/LIPIcs.FSTTCS.2012.424.

[34] Dániel Marx. A Tight Lower Bound for Planar Multiway Cut with Fixed Number of Terminals. In
ICALP 2012, pages 677–688. URL https://doi.org/10.1007/978-3-642-31594-7 57.

[35] Dániel Marx. The Square Root Phenomenon in Planar Graphs. In ICALP 2013, volume 7966,
page 28. Springer, 2013. URL https://doi.org/10.1007/978-3-642-39212-2 4.

[36] Dániel Marx and Michal Pilipczuk. Optimal Parameterized Algorithms for Planar Facility Location
Problems Using Voronoi Diagrams. In ESA 2015, pages 865–877. URL https://doi.org/10.1007/
978-3-662-48350-3 72.

[37] Dániel Marx and Anastasios Sidiropoulos. The limited blessing of low dimensionality: when
1− 1/d is the best possible exponent for d-dimensional geometric problems. In SOCG 2014,
page 67. URL https://doi.org/10.1145/2582112.2582124.

[38] Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. On Subexponential Parameterized Algorithms
for Steiner Tree and Directed Subset TSP on Planar Graphs. In FOCS, 2018, pages 474–484. URL
https://doi.org/10.1109/FOCS.2018.00052.

[39] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Subexponential-
Time Parameterized Algorithm for Steiner Tree on Planar Graphs. In STACS 2013, pages 353–364.
URL https://doi.org/10.4230/LIPIcs.STACS.2013.353.

[40] Neil Robertson and Paul D. Seymour. Graph Minors XIII. The Disjoint Paths Problem. J. Comb.
Theory, Ser. B, 63(1):65–110, 1995. URL https://doi.org/10.1006/jctb.1995.1006.

[41] Alexander Schrijver. Finding k Disjoint Paths in a Directed Planar Graph. SIAM J. Comput., 23(4):
780–788, 1994. URL https://doi.org/10.1137/S0097539792224061.

[42] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag, 2003.
ISBN 978-3-540-44389-6. URL https://www.springer.com/gp/book/9783540443896.

[43] Alexander Schrijver. Finding k Partially Disjoint Paths in a Directed Planar Graph. Building
Bridges II. Bolyai Society Mathematical Studies., 28:417–444, 2019. URL https://doi.org/10.1007/
978-3-662-59204-5 13.

16

https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1007/978-3-642-31594-7_48
https://doi.org/10.1137/1.9781611973402.131
https://doi.org/10.1137/1.9781611973402.131
https://doi.org/10.1145/276698.276867
https://doi.org/10.1145/3357713.3384250
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.424
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.424
https://doi.org/10.1007/978-3-642-31594-7_57
https://doi.org/10.1007/978-3-642-39212-2_4
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1145/2582112.2582124
https://doi.org/10.1109/FOCS.2018.00052
https://doi.org/10.4230/LIPIcs.STACS.2013.353
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1137/S0097539792224061
https://www.springer.com/gp/book/9783540443896
https://doi.org/10.1007/978-3-662-59204-5_13
https://doi.org/10.1007/978-3-662-59204-5_13

[44] Aleksandrs Slivkins. Parameterized Tractability of Edge-Disjoint Paths on Directed Acyclic Graphs.
SIAM J. Discret. Math., 24(1):146–157, 2010. URL https://doi.org/10.1137/070697781.

[45] Jens Vygen. NP-completeness of Some Edge-disjoint Paths Problems. Discret. Appl. Math., 61(1):
83–90, 1995. URL https://doi.org/10.1016/0166-218X(93)E0177-Z.

17

https://doi.org/10.1137/070697781
https://doi.org/10.1016/0166-218X(93)E0177-Z

