
ar
X

iv
:2

10
2.

03
72

0v
2 

 [
m

at
h.

C
O

] 
 1

7 
Se

p 
20

21

Ramsey Numbers

for

Non-trivial Berge Cycles

Jiaxi Nie∗ Jacques Verstraëte†
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Abstract

In this paper, we consider an extension of cycle-complete graph Ramsey numbers

to Berge cycles in hypergraphs: for k ≥ 2, a non-trivial Berge k-cycle is a family of sets

e1, e2, . . . , ek such that e1∩e2, e2∩e3, . . . , ek∩e1 has a system of distinct representatives

and e1 ∩ e2 ∩ · · · ∩ ek = ∅. In the case that all the sets ei have size three, let Bk denotes

the family of all non-trivial Berge k-cycles. The Ramsey numbers R(t,Bk) denote the

minimum n such that every n-vertex 3-uniform hypergraph contains either a non-trivial

Berge k-cycle or an independent set of size t. We prove

R(t,B2k) ≤ t
1+ 1

2k−1
+ 4√

log t

and moreover, we show that if a conjecture of Erdős and Simonovits [12] on girth in

graphs is true, then this is tight up to a factor to(1) as t → ∞.
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1 Introduction

Let F be a family of r-graphs and t ≥ 1. The Ramsey numbers R(t,F) denote the minimum

n such that every n-vertex r-graph contains either a hypergraph in F or an independent set

of size t. For k ≥ 2, a Berge k-cycle is a family of sets e1, e2, . . . , ek such that e1 ∩ e2, e2 ∩
e3, . . . , ek ∩ e1 has a system of distinct representatives, and a Berge cycle is non-trivial if

e1∩ e2 ∩ · · ·∩ ek = ∅. Let Br
k denote the family of non-trivial Berge k-cycles all of whose sets

have size r. When r = 2, B2
k = {Ck}, where Ck denotes the graph cycle of length k. In this

paper, we let Bk = B3
k.

It is a notoriously difficult problem to determine even the order of magnitude of R(t, Ck) –

the cycle-complete graph Ramsey numbers. Kim [18] proved R(t, C3) = Ω(t2/ log t), which

gives the order of magnitude of R(t, C3) when combined with the results of Ajtai, Komlós

and Szemerédi [2] and Shearer [30]. The current state-of-the-art results on R(t, C3) are due

to Fiz Pontiveros, Griffiths and Morris [13] and Bohman and Keevash [6], using the random

triangle-free process, which determines R(t, C3) up to a small constant factor.

(
1

4
− o(1))

t2

log t
≤ R(t, C3) ≤ (1 + o(1))

t2

log t
.

The case R(t, C4) is the subject of a notorious conjecture of Erdős [7], where he conjectured

that R(t, C4) = o(t2−ǫ) for some ǫ > 0. The current best upper bounds on R(t, C2k) is

O

(

(

t

log t

)k/(k−1)
)

,

which come from the work of Caro, Li, Rousseau and Zhang [9]. For R(t, C2k+1), the best

upper bound is

O

(

t(k+1)/k

log1/k t

)

due to Sudakov [31]. Recent results using pseudorandom graphs by Mubayi and the second

author [26] give the best lower bounds on cycle-complete graph Ramsey numbers:

R(Ck, n) = Ω

(

t(k−1)/(k−2)

log2/(k−2) t

)

.

In particular, via random block constructions, they show that

R(C5, t) ≥ (1 + o(1))t11/8, R(C7, t) ≥ (1 + o(1))t11/9.
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For k ≥ 3, a loose k-cycle is a non-trivial Berge k-cycle, denoted Cr
k , with sets e1, e2, . . . , ek

of size r such that |e1 ∩ e2| = 1, |e2 ∩ e3| = 1, . . . , |ek ∩ e1| = 1, and for any other pairs of

edges ei,ej , ei∩ ej = ∅. Ramsey type problems for loose cycles in r-graphs have been studied

extensively [4, 10, 11, 14, 16–20, 24, 26]. For r-uniform hypergraphs with r ≥ 3, Kostochka,

Mubayi and the second author [19] proved for all r ≥ 3, there exist constants a, b > 0 such

that
at

3
2

(log t)
3
4

≤ R(t, Cr
3) ≤ bt

3
2 , (1)

The following conjecture was proposed in [19]:

Conjecture I. For r, k ≥ 3,

R(t, Cr
k) = t

k
k−1

+o(1). (2)

The conjecture is true for k = 3 due to (1). It is shown in [28] that R(t, C3
4) ≤ t4/3+o(1).

Méroueh [24] showed R(t, C3
k) = O(t1+1/⌊(k+1)/2⌋) for k ≥ 3 and R(t, Cr

k) = O(t1+1/⌊k/2⌋) for

r ≥ 4 and every odd integers k ≥ 5, improving earlier results of Collier-Cartaino, Graber

and Jiang [10]. Conjecture I motivates our current study of non-trivial Berge k-cycles. In

support of the above conjecture, we prove the following result for non-trivial Berge cycles of

even length:

Theorem 1. For k ≥ 3, and t large enough,

R(t,B2k) ≤ t
2k

2k−1
+ 4√

log t .

Erdős and Simonovits [12] conjectured that there exists an n-vertex graph of girth more

than 2k with Θ(n1+1/k) edges. This notoriously difficult conjecture remains open, except

when k ∈ {2, 3, 5}, largely due to the existence of generalized polygons [3, 32, 33]. Towards

this conjecture, Lazebnik, Ustimenko and Woldar [22] gave the densest known construction,

which has Ω(n1+2/(3k−2)) edges. We prove the following theorem relating this conjecture to

lower bounds on Ramsey numbers for non-trivial Berge cycles:

Theorem 2. Let k ≥ 2, r ≥ 3. Suppose there exists an n-vertex graph of girth more than

2k with cn1+1/k edges for any integer n large enough and some positive constant c. Then for

t large enough and some positive constant ck,r dependent on k and r,

R(t,Br
k) ≥ ck,r

(

t

log t

)
k

k−1

. (3)

This shows that if the Erdős-Simonovits Conjecture is true, then Theorem 1 is tight up to a
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to(1) factor. Indeed, following the proof of Theorem 2, the known construction of Lazebnik,

Ustimenko and Woldar [22] would give a weaker lower bound of Ω((t/ log t)(3k−2)/(3k−4)).

Let Bk be the family of 3-uniform Berge k-cycles without non-triviality. Random graphs

together with the Lovász local lemma give R(t, Bk) ≥ t(2k−2)/(2k−3)−o(1), see [1] for similar

computation. We prove the following theorem, which gives a substantially better lower

bound for B4 if the Erdős-Simonovits Conjecture is true.

Theorem 3. Suppose there exists an n-vertex graph of girth more than 8 with c1n
5/4 edges

for any integer n large enough and some positive constant c1. Then for t large enough and

some positive constant c2,

R(t, B4) ≥
(

c2t√
log t

)16/13

.

In fact, this is also a lower bound for R(t, {B2, B3, B4}). A natural 3-uniform analog of the

Erdős-Simovits conjecture is that there exist n-vertex {B2, B3, . . . , Bk}-free 3-graphs with

n1+1/⌊k/2⌋−o(1) edges. This is true for k = 3 due to Ruzsa and Szemeredi [29]. The proof

of Theorem 3 makes use of the fact that there exist n-vertex {B2, B3, B4}-free 3-graphs

with Ω(n3/2) edges, that is, the conjecture is true for k = 4, which is due to Lazebnik and

the second author [23]. More generally, following the proof of Theorem 3, if the 3-uniform

analog of the Erdős-Simonovits Conjecture is true, then we have R(t, {B2, B3, . . . , B2k}) ≥
t2k

2/(2k2−k−2)−o(1) and R(t, {B2, B3, . . . , B2k+1}) ≥ t2k(k−1)/(2k2−3k−1)−o(1), which are substan-

tially better than the lower bounds obtained by random graphs.

We prove Theorem 1 in Section 5, Theorem 2 in Section 2 and Theorem 3 in Section 3.

Theorem 2 is valid for all values of k ≥ 2 and r ≥ 3, while Theorem 1 only works for even

values of k and r = 3. We believe that Theorem 1 should extend to odd values of k and all

r ≥ 3:

Conjecture II. For all r, k ≥ 3,

R(t,Br
k) ≤ t

k
k−1

+o(1). (4)

Notation and terminology. For a hypergraph H , let V (H) denote the vertex set of

H , v(H) = |V (H)| and let |H| be the number of edges in H . If all edges of H have

size r, we say H is an r-uniform hypergraph, or an r-graph for short. For v ∈ V (H), let

dH(v) = |{e ∈ H : v ∈ e}| be the degree of v in H . We denote the average degree of H by

d(H), denote the minimum degree of H by δ(H), and the maximum degree of H by ∆(H).

For u, v ∈ V (H), let dH(u, v) = |{w : uvw ∈ H}| denote the codegree of the pair {u, v}. An
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independent set in a hypergraph is a set of vertices containing no edge of the hypergraph.

Let α(H) denote the largest size of an independent set in a hypergraph H .

2 Proof of Theorem 2

We will use the following lemma to get a large bipartite subgraph with large minimum degree

and small maximum degree:

Lemma 4. Let k ≥ 3, c > 0, and let G be an n-vertex graph of girth more than 2k with more

than 2cn1+1/k edges. Then there exists a bipartite subgraph G′ of G such that δ(G′) ≥ cn1/k,

∆(G′) ≤ n1/k/ck−1, and v(G′) ≥ ckn.

Proof. A maximum cut of G gives a bipartite subgraph with at least cn1+1/k edges. A

subgraph G′ of this bipartite subgraph of minimum degree at least cn1/k+1 may be obtained

by repeatedly removing vertices of degree at most cn1/k. Let ∆ := ∆(G′) be the maximum

degree of G′, and let v be a vertex of maximum degree, then the number of vertices at

distance k from v is at least ∆ck−1n(k−1)/k, since G has girth larger than 2k. In particular,

∆ck−1n(k−1)/k ≤ n and so ∆ ≤ n1/k/ck−1. The number of vertices in G′ is at least ckn, since

G′ has minimum degree at least cn1/k + 1 and girth larger than 2k.

Let r ≥ 2, a star with vertex set V is an r-graph on V consisting of all edges containing a

fixed vertex of V , i.e., the edge set of a star is {e ⊂ V : |e| = r, v ∈ e} for some vertex v ∈ V .

Let integers d ≥ m and let Sd,m be a d-vertex r-graph consisting of m vertex-disjoint stars

of size ⌊d/m⌋ or ⌈d/m⌉.
Lemma 5. Let integer r ≥ 2, and let integers d ≥ m.The probability that a uniformly chosen

set of s vertices of Sd,m is independent is at most

exp

(

−m(s− rm)

2d

)

.

Proof. Let the vertex sets of these stars be V1, V2, . . . , Vm. The probability that a uniformly

chosen set of si vertices in Vi is independent in Sd,m is at most 1− si/⌈d/m⌉ ≤ 1−msi/2d if

si ≥ r, and is 1 if si < r. Hence, this probability is at most 1−m(si − r)/2d for 0 ≤ si ≤ d.

Therefore a uniformly chosen set I ⊂ Sd,m of s vertices with |I ∩Vi| = si is independent with

probability at most

m
∏

i=1

(

1− m(si − r)

2d

)

≤ exp

(

−
m
∑

i=1

m(si − r)

2d

)

= exp

(

−m(s− rm)

2d

)

.
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Now we are ready to prove Theorem 2.

Proof of Theorem 2. It suffices to show that for n large enough, there exists an n-vertex

Br
k-free r-graph with independence number O(n1− 1

k logn). Let G be an n-vertex graph of

girth more than 2k with 2cn1+1/k edges for some positive constant c. By Lemma 4, there

exists a bipartite subgraph G′ of G with at least N = ckn vertices, minimum degree at least

cn1/k and maximum degree at most n1/k/ck−1. Let X, Y be the parts of this bipartite graph

where |Y | ≥ |X|. Let m = 8 logn/ck. We form an r-graph H with vertex set Y by placing a

random copy of Sd(x),m on the vertex set NG′(x), the neighborhood of x in G′, independently

for each x ∈ X . Since G′ has girth more than 2k, it is straightforward to check that H

does not contain any non-trivial Berge k-cycle. We now compute the expected number of

independent sets of size t = rmn1−1/k/ck+1 in H . Clearly, log t ≥ (1 − 1/k) logn. If H has

no independent set of size t with positive probability, then since v(H) ≥ N/2, we find that

R(t,Br
k) ≥ N/2 ≥ ck

2

(

c2k+1t

8r logn

)
k

k−1

≥ ck,r

(

t

log t

) k
k−1

,

for some positive constant ck,r. This is enough to prove Theorem 2.

For an independent t-set I in H , I ∩ NG′(x) is an independent set in Sd(x),m for all x ∈ X .

Since these events are independent, setting s(x) = |I∩NG′(x)|, and applying Lemma 5 gives:

P(I independent in H) ≤
∏

x∈X
exp

(

−m(s(x)− rm)

2d(x)

)

= exp

(

−
∑

x∈X

ms(x)

2d(x)
+
∑

x∈X

rm2

2d(x)

)

.

For every x ∈ X , cn1/k ≤ d(x) ≤ n1/k/ck−1 and therefore

P(I independent in H) ≤ exp

(

−ck−1m
∑

x∈X s(x)

2n1/k
+

|X|rm2

2cn1/k

)

.

Now
∑

x∈X s(x) is precisely the number of edges of G′ between X and I. Since every vertex in

I has degree at least cn1/k, this number of edges is at least cn1/kt = rmn/ck. Consequently,

using |X| < n/2,

P(I independent in H) ≤ exp

(

−ckmt

2
+

ckmt

4

)

= exp

(

−ckmt

4

)

.
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The expected number of independent sets of size t is at most

(

n

t

)

exp

(

−ckmt

4

)

< exp

(

t logn− ckmt

4

)

= exp (−t log n) .

This is vanishing as n → ∞, and the proof of Theorem 2 is complete.

3 Proof of Theorem 3

Lazebnik and the second author [23] showed that there exist n-vertex B4-free 3-graphs with

(1/6 + o(1))n3/2 triples. More specifically, for n large enough, there exists a linear n-vertex

B4-free 3-graphs Jn with n3/2/10 triples and maximum degree at most n1/2. We want to find

an upper bound for the probability that a random s-set is independent in Jn. We make use

of the following lemma, where we make no effort to optimize the constants.

Lemma 6. Let n, s be integers such that s <
√
n/2. For n large enough, the probability that

a uniformly chosen set of s vertices of Jn is independent is at most

exp

(

−s3 − 216

80n3/2

)

.

When s ≥ √
n/2, the probability is at most 639/640.

Proof. This is trivial when s < 6. When 6 < s <
√
n/2, let X be the uniformly chosen

s-set. For any edge e ∈ E(Jn), let Ae be the event that e ∈ X . Then by inclusion-exclusion

principle, for n large enough, the probability that X is not independent is at least

∑

e∈E(Jn)

P(Ae)−
∑

{e,f}⊂E(Jn)

P(Ae ∧Af )

≥ 1
(

n
s

)

(

n3/2

10

(

n− 3

s− 3

)

− n

(

n1/2

2

)(

n− 5

s− 5

)

−
(

n3/2/10

2

)(

n− 6

s− 6

))

≥ s3

40n3/2

(

1− 4s3

n3/2

)

≥ s3

80n3/2
.

Therefore, for s > 6 and n large enough, the probability that X is independent is at most

1− s3

80n3/2
≤ exp

(

− s3

80n3/2

)

< exp

(

−s3 − 216

80n3/2

)

.
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When s ≥ √
n/2, the probability is at most

1− (
√
n/2)3

80n3/2
=

639

640
.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let G be an n-vertex graph of girth more than 8 with 2c1n
5/4 edges

for some positive constant c1. By Lemma 4, there exists a bipartite subgraph G′ of G with

at least N = c41n vertices, minimum degree at least c1n
1/4 and maximum degree at most

n1/4/c31. Let X , Y be the parts of this bipartite graph where |Y | ≥ |X|. We form a 3-

graph H with vertex set Y by placing a random copy of Jd(x) on the vertex set NG′(x), the

neighborhood of x in G, independently for each x ∈ X . Since G has girth more than 2k, it is

straightforward to check that H does not contain any Berge 4-cycle. Let m = 8c
1/4
1

√
log n,

and let t = mn13/16. Clearly, log t > 13 logn/16. If H has no independent sets of size t with

positive probability, then since v(H) ≥ N/2, we conclude that

R(t, B4) ≥ N/2 ≥ c41
2

(

t

8c
1/4
1

√
log n

)16/13

≥ c2

(

t√
log t

)16/13

,

for some positive constant c2. This is enough to prove Theorem 3.

Let A be a t-set in Y , and let XA = {x ∈ X||NG′(x) ∩ A| ≥
√
t/2}, XA = X\A. We now

evaluate the probability that A is independent in H in two cases.

Case 1: When |XA| < n5/6. Since the induced bipartite subgraph of G′ on XA ∪ A has

girth 8, the number of edges of G′ between XA and A is less than (n5/6)5/4 = n25/24. If A is

independent in H , then NG′(x) ∩ A is also independent in Jd(x) for all x ∈ X . Since these

events are independent, setting s(x) = |NG′(x) ∩A|, and applying Lemma 6 gives

P(A independent in H) ≤
∏

x∈XA

exp

(

−s(x)3 − 216

80d(x)3/2

)

= exp



−
∑

x∈XA

s(x)3

80d(x)3/2
+
∑

x∈XA

27

10d(x)3/2



 .

For every x ∈ X , c1n
1/4 ≤ d(x) ≤ n1/4/c31 and hence together with Jenson’s inequality we
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have

P(A independent in H) ≤ exp

(

−
c
9/2
1

∑

x∈XA
s(x)3

80n3/8
+

27|XA|
10c

3/2
1 n3/8

)

≤ exp

(

−
c
9/2
1 (
∑

x∈XA
s(x))3

80n3/8|XA|2
+

27|XA|
10c

3/2
1 n3/8

)

.

Note that
∑

x∈XA
s(x) is exactly the number of edges of G′ between XA and A, which

is at least tc1n
1/4 − n25/24 = (1 − o(1))c1mn17/16. Also note that |XA| < N/2 = c41n/2.

Consequently,

P(A independent in H) ≤ exp

(

−(1− o(1))m3n13/16

20c
1/2
1

+
27c

5/2
1 n5/8

20

)

< exp

(

−m3n13/16

32c
1/2
1

)

.

Case 2: When |XA| ≥ n5/6. Applying Lemma 6 gives

P(A independent in H) ≤ (639/640)|XA| ≤ exp(−n5/6/640) < exp

(

−m3n13/16

32c
1/2
1

)

.

In both cases we have P(A independent in H) < exp

(

−m3n13/16

32c
1/2
1

)

. Therefore the expected

number of independent sets of size t in H is at most

(

n

t

)

exp

(

−m3n13/16

32c
1/2
1

)

< exp

(

mn13/16 log n− m3n13/16

32c
1/2
1

)

= exp
(

−mn13/16 log n
)

.

This is vanishing as n → ∞, which completes the proof of Theorem 3.

4 Degrees, codegrees and independent sets

We make use of the following elementary lemma, whose proof is a standard probabilistic

argument, included for completeness:

Lemma 7. Let d ≥ 1, and let H be a 3-graph of average degree at most d. Then

α(H) ≥ 2v(H)

3d
1
2

.

9



Proof. Let X be a subset of V (H) whose elements are chosen independently with probability

p = d−1/2. We can get an independent set by deleting a vertex for each edge of H contained

in X . Then the expected size of such independent set is at least

pv(H)− p3|H| = pv(H)− p3dv(H)

3
=

2v(H)

3d
1
2

.

Hence, there must exist an independent set of size at least the desired lower bound, which

completes the proof.

Lemma 8. Let H be a 3-graph on n vertices, and 0 < ǫ < 1/2. Then there exists an induced

subgraph G of H satisfying the following properties:

1. v(G) ≥ n
1− 2

log2(
1
ǫ ) ,

2. ∆(G) ≤ d(G)
ǫ
.

Proof. Let H = G(0). We do the following for i ≥ 0. If ∆(G(i)) ≤ d(G(i))/ǫ, we let G = G(i).

Otherwise, iteratively delete vertices of G(i) with degree at least d(G(i)). Each deleted vertex

will result in the loss of at least d(G(i)) edges. So we can delete at most

|G(i)|
d(G(i))

=
v(G(i)) · d(G(i))

3 · d(G(i))
=

v(G(i))

3
<

v(G(i))

2

vertices in this step. Let G(i+1) be the subgraph induced by the remaining vertices. Then we

have v(G(i+1)) > v(G(i))/2. If ∆(G(i+1)) ≤ d(G(i+1))/ǫ, then we let G = G(i+1). Otherwise,

we have

d(G(i+1)) ≤ ǫ∆(G(i+1)) < ǫd(G(i)).

Let K = 2 log1/ǫ n. We must obtain an induced subgraph G with ∆(G) ≤ d(G)/ǫ after at

most K repetitions. Otherwise, after K repetitions, since the average degree decreases by at

least a factor of ǫ after each repetition, the remaining graph G(K) will have no edge, which

satisfies the condition ∆(G(K)) ≤ d(G(K))/ǫ. Suppose after m ≤ K repetitions we have the

desired induced subgraph G with ∆(G) < d(G)/ǫ. Since the number of vertices decreases

by at most a factor of 2, we also have

v(G) >
n

2m
≥ n

1− 2

log2(
1
ǫ ) .

This completes the proof.
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We use the following slightly weaker version of a lemma due to Méroueh [24]; the lemma is

in fact valid for 3-graphs H with no loose k-cycles:

Lemma 9. Let H be a Bk-free 3-graph. Then there exists a subgraph H∗ of H such that

|H∗| > |H|/(3k2) and each edge of H∗ contains a pair of codegree 1.

Proof. Given a 3-graph G and a pair of vertices x, y, we say that {x, y} is G-light if dG(x, y) <

k. Let G1 = H , and let H1 consist of all edges of G1 containing a G1-light pair, and let

G2 = G1\H1. For i ≥ 2, let Hi consist of all edges of Gi containing a Gi-light pair, and let

Gi+1 = Gi\Hi. Suppose for contradiction that Gk is not empty. Let e1 = {v1, v2, v3} be an

edge in Gk, then by definition, {v2, v3} is not a Gk−1-light pair, and hence, there exists an

edge e2 = {v2, v3, v4} such that v4 6= v1. For 2 ≤ i ≤ k−1, let ei = {vi, vi+1, vi+2} be an edge

in Gk+1−i. By definition, {vi+1, vi+2} is not a Gk−i-light pair, and hence, there exists an edge

ei+1 = {vi+1, vi+2, vi+3} in Gk−i such that vi+3 is distinct from all vj, 1 ≤ j ≤ i. Therefore,

we have a tight path of length k in G1 = H , that is, a hypergraph consisting of k+2 distinct

vertices vi, 1 ≤ i ≤ k + 2, and k edges ei = {vi, vi+1, vi+2}, 1 ≤ i ≤ k. This is also a

non-trivial Berge k-cycle. Indeed, when k is even, {v2, v4, . . . , vk, vk+1, vk−1, . . . , v3} forms a

system of distinct representatives of {e1 ∩ e2, e2 ∩ e4, e4 ∩ e6, . . . , ek−2 ∩ ek, ek ∩ ek−1, ek−1 ∩
ek−3, . . . , e3 ∩ e1}, and when k is odd, {v2, v4, . . . , vk+1, vk, vk−2, . . . , v3} forms a system of

distinct representatives of {e1∩e2, e2∩e4, e4∩e6, . . . , ek−3∩ek−1, ek−1∩ek, ek∩ek−2, . . . , e3∩e1}.
This results in a contradiction, since H is Bk-free. Therefore, Gk must be empty, and hence

H can be partitioned into k − 1 subgraphs Hi, 1 ≤ i ≤ k − 1, such that each Hi consists of

edges containing a Gi-light pair, which is also Hi-light. Let H ′ be a subgraph Hi with the

most edges, then by the pigeonhole principle,

|H ′| > |H|
k

.

Now consider a graph J whose vertex set is the set of 3-edges of H ′, and two 3-edges of

H ′ form an edge of J if they share an H ′-light pair. It is easy to see that J has maximum

degree at most 3k − 6. Then we can greedily take an independent set of J of size at least

v(J)/(3k − 5), and this independent set correspond to a subgraph H∗ of H ′ such that

|H∗| > |H ′|
3k − 5

>
|H|
3k2

,

and each edge of H∗ contains a pair of codegree 1.

11



5 Proof of Theorem 1

A key ingredient of the proof of Theorem 1 is a supersaturation theorem for cycles in graphs:

we make use of the following result proved by Simonovits [8] (see Morris and Saxton [25] for

stronger supersaturation):

Lemma 10. For every n, k ≥ 2, there exist constants γ, b0 > 0 such that for every b ≥ b0,

any n-vertex graph G with at least bn1+1/k edges contains at least γb2kn2 copies of C2k.

We next give a simple lemma which says that if a graph has many cycles of length 2k

containing a fixed edge, then it has many edges.

Lemma 11. Let G be a graph containing m cycles of length 2k, each containing an edge

e ∈ G. Then |G| ≥ m1/(k−1)/2.

Proof. For each cycle C of length 2k containing e, let M(C) be the perfect matching of C

containing e. Fixing a matching M ⊂ G of size k containing e, at most (k − 1)!2k−1 cycles

C have M(C) = M . It follows that the number of distinct matchings M ⊂ G of size k

containing e is at least m/(k − 1)!2k−1, and therefore

(|G| − 1

k − 1

)

≥ m

(k − 1)!2k−1
.

We conclude |G|k−1 ≥ m/2k−1 and therefore |G| ≥ m1/(k−1)/2.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. It suffices to show that for every large enough integer n, an n-vertex

B2k-free 3-graph H contains an independent set of size at least n(2k−1)/(2k)−5/(2
√
logn). By

Lemma 8 with ǫ = exp (−
√

log2 n), we find an induced subgraph H0 of H with n0 vertices,

average degree d0 and maximum degree D0 such that n0 ≥ n1−2/
√

log2 n and D0 < d0/ǫ. By

Lemma 9, there is a subgraph H1 of H0 with at least |H0|/(4k2) edges such that each edge

of H1 contains a pair of codegree 1 in H1. Let χ : V (H1) → {1, 2, 3} be a random 3-coloring

and let H2 consist of all triples in H1 such that the pair of vertices of colors 1 and 2 has

codegree 1 in H1 and the last vertex in the triple has color 3. The probability that an edge

in H1 is also an edge in H2 is at least 1/27, and therefore the expected number of edges in

H2 is at least |H1|/27 ≥ |H0|/(108k2). Fix a coloring so that |H2| ≥ |H0|/(108k2). Consider

the bipartite graph G comprising all pairs of vertices of colors 1 and 2 contained in an edge

of H2. Thus, |G| = |H2| and G has average degree dG ≥ d0/(108k
2). For convenience, let

12



b > 0 be defined by dG = 2bn
1/k
0 so |G| = bn

1+1/k
0 . By Lemma 10, there exist constants

γ, b0 > 0 such that if b > b0, then G must contain at least γb2kn2
0 copies of C2k. Notice that

we must have 1/ǫ > b0 when n is large enough. The proof is split into two cases.

Case 1. b ≥ 1/ǫ. By the pigeonhole principle, there exists an edge e such that the number

of C2k containing e in G is at least

2kγb2kn2
0

|G| = 2kγb2k−1n
1− 1

k
0 .

Let G′ be the union of all 2k-cycles in G containing e. Then by Lemma 11, for some constant

c,

|G′| ≥ cb2+
1

k−1n
1
k
0 =

1

2
cb1+

1
k−1dG ≥ 1

216k2
cǫ−1− 1

k−1d0 > D0

provided n is large enough. Let C be a 2k-cycle in G containing e. Then there exist edges

e1 ∪ {v1}, e2 ∪ {v2}, . . . , e2k ∪ {v2k} in H2 where e1, e2, . . . , e2k ∈ C and v1, v2, . . . , v2k have

color 3. Since H2 is B2k-free, for some vertex z we have v1 = v2 = · · · = v2k = z. Since each

cycle C in G′ contain e, they must have the same z. Now the degree of z in H2 is at least

|G′| > D0, which contradicts the fact that H0 has maximum degree at most D0.

Case 2. b < 1/ǫ. In this case, dG < 2n
1/k
0 /ǫ and so d0 < (216k2/ǫ)n

1/k
0 . By Lemma 7 on H0,

α(H) ≥ α(H0) ≥
2n0

3d
1
2
0

≥ 2

3

(

216k2

ǫ

)− 1
2

n
2k−1
2k

0 ≥ 1

9
√
6k

n
2k−1
2k

− 5k−2

2k
√

log2 n > n
2k−1
2k

− 5
2
√

log n .

Now let n = t
2k

2k−1
+ 4√

log t . Clearly, logn > 2k
2k−1

log t. Hence, an n-vertex B2k-free 3-graph H

contains an independent set of size

n
2k−1
2k

− 5
2
√

log n = t
( 2k
2k−1

+ 4√
log t

)( 2k−1
2k

− 5
2
√

log n
)
> t

provided n is large enough. Therefore, we have R(t,B2k) < t
2k

2k−1
+ 4√

log t .

In fact, by more careful computation, we can obtain a slightly better upper bound R(t,B2k) <

t
2k

2k−1
+ c√

log t , where c > 5k−2
2k−1

·
√

(2k) log 2
2k−1

.

6 Concluding remarks

• Notice that Theorem 2 is valid for odd values of k, we believe that Theorem 1 should

extend to odd values of k. An obstacle to applying the same idea as in the proof for
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even values of k is that we don’t have “good” supersaturation for odd cycles. New

ideas may be required to complete the proof for odd values.

• It seems likely that Theorem 1 can be extended to r-uniform hypergraphs with r ≥ 4,

however when following the proof of Theorem 1, two obstacles arise. The first is that

one requires supersaturation for Berge cycles in r-uniform hypergraphs for r ≥ 3 (in

other words, an r-uniform version of Lemma 8). A second obstacle is that an r-uniform

analog of Lemma 9 is not straightforward: for instance if an edge e in an r-graph is

contained in m Berge cycles of length 2k, then the number of edges may be as low

as m1/(2k−1): take a graph 2k-cycle, and replace one edge with the hyperedge e, and

each other edge with m1/(2k−1) hyperedges. We believe these technical obstacles may

be overcome (some of the ideas in the recent paper of Mubayi and Yepremyan [27] may

apply).
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