
Isomorphism Testing for Graphs Excluding Small Minors

Martin Grohe
RWTH Aachen University

grohe@informatik.rwth-aachen.de

Daniel Neuen
Simon Fraser University

dneuen@sfu.ca

Daniel Wiebking
RWTH Aachen University

wiebking@informatik.rwth-aachen.de

October 26, 2022

Abstract
We prove that there is a graph isomorphism test running in time npolylog(h) on n-vertex

graphs excluding some h-vertex graph as a minor. Previously known bounds were npoly(h)
(Ponomarenko, 1988) and npolylog(n) (Babai, STOC 2016). For the algorithm we combine re-
cent advances in the group-theoretic graph isomorphism machinery with new graph-theoretic
arguments.

1 Introduction

Determining the computational complexity of the Graph Isomorphism Problem (GI) is one of
best-known open problems in theoretical computer science. The problem is obviously in NP,
but neither known to be NP-complete nor known to be solvable in polynomial time. In a recent
breakthrough result, Babai [2] presented a quasipolynomial-time algorithm (i.e., an algorithm
running in time npolylog(n)) deciding isomorphism of two graphs, significantly improving over
the best previous algorithm running in time nO(

√
n/ logn) [4]. For his algorithm, Babai greatly

extends the group-theoretic isomorphism machinery dating back to Luks [21] as well as our
understanding of combinatorial methods like the Weisfeiler-Leman algorithm (see, e.g., [7, 37]).
Still, the question of whether the Graph Isomorphism Problem can be solved in polynomial time
remains wide open.

Polynomial-time algorithms are known for restrictions of the Graph Isomorphism Problem
to several important graph classes (e.g., [10, 11, 14, 16, 19, 21, 23, 29]). In particular, Luks [21]
gave an isomorphism algorithm running in time nO(d) on input graphs of maximum degree d.
Building on Luks’s techniques and refinements due to Miller [24], Ponomarenko [29] designed an
isomorphism test running in time npoly(h) for all graph classes that exclude a fixed graph with
h vertices as a minor. Finally, it was shown that the polynomial-time bound can be pushed to
graph classes excluding a fixed topological subgraph [11].

For the algorithms mentioned above the exponent of the polynomial always depends at least
linearly on the parameter in question. In light of Babai’s quasipolynomial-time algorithm it
seems natural to ask for which parameters these dependencies can be improved to polylogarith-
mic.

In [12] it was shown that Luks’s original isomorphism test for bounded-degree graphs can be
combined with Babai’s group-theoretic techniques. By using a novel normalization technique,
Schweitzer and the first two authors of this paper provided an isomorphism algorithm for graphs
of maximum degree d running in time npolylog(d). Recently, it was shown that the group-theoretic
techniques used for bounded-degree graphs can be extended to isomorphism testing of hyper-
graphs [26]. This key subroutine finally led to an isomorphism test for graphs of Euler genus

1

ar
X

iv
:2

00
4.

07
67

1v
2

 [
cs

.D
S]

 2
4

O
ct

 2
02

2

https://orcid.org/0000-0002-0292-9142
mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0002-4940-0318
mailto:dneuen@sfu.ca
mailto:wiebking@informatik.rwth-aachen.de

g running in time npolylog(g). Another branch of research deals with the question how Babai’s
and Luks’s group-theoretic techniques can be combined with graph decomposition techniques
[38] (see also [13, 32]). This series of papers finally led to an isomorphism test for graphs of
tree-width at most k running in time npolylog(k).

In this work, we assemble the recent advances in the group-theoretic machinery developed in
[12, 26, 38] and combine it with new structural results for graphs with excluded minors. Recall
that a graph H is a minor of a graph G if H is isomorphic to a graph that can be obtained
from a subgraph of G by contracting edges. If H is not a minor of G, we say that G excludes
H as a minor. For example, all planar graphs exclude the complete graph K5 and the complete
bipartite graph K3,3 as a minor, and in fact this characterizes the planar graphs [35]. Other
natural classes of graphs excluding some fixed graph as a minor are classes of bounded genus or
bounded tree-width.

We present a new isomorphism test for graph classes that exclude a fixed graph as a minor,
improving the previously best algorithm for this problem due to Ponomarenko [29] running in
time npoly(h).

Theorem 1.1. There exists an algorithm deciding graph isomorphism in time npolylog(h) on
n-vertex graphs that exclude some h-vertex graph as a minor.

Note that a graph G excludes some h-vertex graph as a minor if and only if G excludes the
complete graph Kh on h vertices as minor. Hence, for the remainder of this work, we restrict
ourselves to the case where the input graphs exclude Kh as minor.

The maximum h such that Kh is a minor of G is known as the Hadwiger number hd(G)
of G. Thus, an equivalent formulation of our result is that we design an isomorphism test for
n-vertex graphs running in time npolylog(hd(G)).

Our proof heavily builds on the recently developed group-theoretic machinery (the depen-
dencies on the main previous results are shown in Figure 1). The main technical contributions
of the present paper are of a graph-theoretic nature. However, we are not using Robertson-
Seymour-style structure theory for graphs with excluded minors [30], as one may expect given
the previous results for graphs of bounded genus and of bounded tree-width. Instead, our results
can be viewed as a structural theory for the automorphism groups of such graphs; we find that
graphs excluding Kh as a minor have an isomorphism-invariant decomposition into pieces whose
automorphism groups are similar to those of bounded-degree graphs (Theorem 5.2 is the precise
statement). This structural result may be of independent interest. The only deeper graph-
theoretic result we use is Kostochka’s and Thomason’s theorem stating that graphs excluding
Kh as a minor have an average degree of O(h

√
log h) [18, 34].

On a high level, our algorithm follows a decomposition strategy. Given two graphs G1 and
G2 excluding Kh as a minor, the goal is to find isomorphism-invariant subsets D1 ⊆ V (G1) and
D2 ⊆ V (G2) such that one can control the interplay between the subsets and its complement
and one can significantly restrict the graph automorphisms on the two subsets. Note that it is
crucial to define the subsets D1 and D2 in an isomorphism-invariant fashion as to not compare
two graphs that are decomposed in structurally different ways. To capture the restrictions on
the automorphism group, we build on the well-known class of Γ̂d-groups, which are groups all
whose composition factors are isomorphic to a subgroup of Sd (the symmetric group on d points).
However, to prove the restrictions on the automorphism group, we mostly use combinatorial and
graph-theoretic arguments.

In particular, the algorithm heavily uses the 2-dimensional Weisfeiler-Leman algorithm, a
standard combinatorial algorithm which computes an isomorphism-invariant coloring of pairs
of vertices. In a lengthy case-by-case analysis depending on the color patterns computed by
the 2-dimensional Weisfeiler-Leman algorithm, we are able to find initial isomorphism-invariant
subsets X1 ⊆ V (G1) and X2 ⊆ V (G2) such that (Aut(Gi))vi [Xi] (the automorphism group of
Gi restricted to Xi after fixing some vertex vi ∈ Xi) forms a Γ̂t-group where t ∈ O(h3 log h).

2

In order to get control of the interplay between the subsets and their complement, we rely on
a closure operator that builds on the notion of t-CR-bounded graphs which were originally intro-
duced by Ponomarenko in [28]1, and have been recently used to obtain an npolylog(g) isomorphism
test for graphs of Euler genus at most g [26]. Intuitively speaking, a graph G is t-CR-bounded
if an initially uniform vertex-coloring χ can be turned into a discrete coloring (i.e., a coloring
where every vertex has its own color) by repeatedly (a) applying the standard Color Refinement
algorithm, and (b) splitting all color classes of size at most t. We define the closure of a set Xi

(with respect to parameter t) to be the set Di of all vertices appearing in a singleton color class
after (i) individualizing all vertices from the set Xi, and (ii) applying the above t-CR procedure.
This operator increases the subsets X1 and X2 in an isomorphism-invariant fashion and leads
to (possibly larger) sets Di := clGit (Xi) ⊇ Xi, i ∈ {1, 2}. A feature of this operator, which in a
basic form was already observed in [36], is that a given Γ̂t-group defined on the initial set Xi

can be extended to a Γ̂t-group defined on the superset Di (see Theorem 3.8). This provides us
a Γ̂t-group on the closure Di (after fixing a point) which allows the use of the group-theoretic
techniques from [12, 26].

The second main feature of the closure operator is that, in a graph G that excludes an
h-vertex graph as a minor, the closure D := clGt (X) of any set X ⊆ V (G) can only stop to
grow at a separator of small size. More precisely, we show that for every vertex set Z of a
connected component of G − D, it holds that |NG(Z)| < h. This key result shows that the
interplay between D and its complement in G is simple and allows for the application of the
group-theoretic decomposition framework from [13, 32, 38].

We remark that our proof strategy is quite different from that used by Ponomarenko [29] in
his isomorphism test for graphs with excluded minors, because we could not improve Miller’s
[24] “tower-of-Γ̂d-groups” technique to meet our quasipolynomial time demands.

Organization of the Paper. After introducing some basic preliminaries in the next section,
we review the recent advances on the group-theoretic isomorphism machinery from [26, 38] in
Section 3. Then, the main two technical theorems are presented in Section 4. Finally, the
complete algorithm is assembled in Section 5.

2 Preliminaries

2.1 Graphs

A graph is a pair G = (V (G), E(G)) consisting of a vertex set V (G) and an edge set E(G) ⊆(
V (G)

2

)
:=
{
{u, v}

∣∣u, v ∈ V (G), u 6= v
}
. All graphs considered in this paper are finite, undirected

and simple (i.e., they contain no loops or multiple edges). For v, w ∈ V , we also write vw as a
shorthand for {v, w}. The neighborhood of v is denoted by NG(v). The degree of v, denoted by
degG(v), is the number of edges incident with v, i.e., degG(v) = |NG(v)|. For X ⊆ V (G), we
define NG(X) :=

(⋃
v∈X N(v)

)
\X. If the graph G is clear from context, we usually omit the

index and simply write N(v), deg(v) and N(X).
We write Kn to denote the complete graph on n vertices. A graph is regular if every vertex

has the same degree. A bipartite graph G = (V1, V2, E) is called (d1, d2)-biregular if all vertices
vi ∈ Vi have degree di for both i ∈ {1, 2}. In this case d1 · |V1| = d2 · |V2| = |E|. By a double
edge counting argument, for each subset S ⊆ Vi, i ∈ {1, 2}, it holds that |S| ·di ≤ |NG(S)| ·d3−i.
A bipartite graph is biregular, if there are d1, d2 ∈ N such that G is (d1, d2)-biregular. Each
biregular graph satisfies the Hall condition, i.e., for all S ⊆ V1 it holds |S| ≤ |NG(S)| (assuming
|V1| ≤ |V2|). Thus, by Hall’s Marriage Theorem, each biregular graph contains a matching of
size min(|V1|, |V2|).

1In [28] t-CR-bounded graphs are referred to as graphs with property Π(0, t).

3

A path of length k from v to w is a sequence of distinct vertices v = u0, u1, . . . , uk = w
such that ui−1ui ∈ E(G) for all i ∈ [k] := {1, . . . , k}. For two sets A,B ⊆ V (G), we denote
by G[A,B] the graph with vertex set A ∪ B and edge set {vw ∈ E(G) | v ∈ A,w ∈ B}. For a
set A ⊆ V (G), we denote by G[A] := G[A,A] the induced subgraph of G on the vertex set A.
Also, we denote by G − A the subgraph induced by the complement of A, that is, the graph
G−A := G[V (G) \A]. A graph H is a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G). A set S ⊆ V (G) is a separator of G if G − S has more connected components
than G. A k-separator of G is a separator of G of size k.

An isomorphism from G to a graph H is a bijection ϕ : V (G)→ V (H) that respects the edge
relation, that is, for all v, w ∈ V (G), it holds that vw ∈ E(G) if and only if ϕ(v)ϕ(w) ∈ E(H).
Two graphs G and H are isomorphic, written G ∼= H, if there is an isomorphism from G to H.
We write ϕ : G ∼= H to denote that ϕ is an isomorphism from G to H. Also, Iso(G,H) denotes
the set of all isomorphisms from G to H. The automorphism group of G is Aut(G) := Iso(G,G).
Observe that, if Iso(G,H) 6= ∅, it holds that Iso(G,H) = Aut(G)ϕ := {γϕ | γ ∈ Aut(G)} for
every isomorphism ϕ ∈ Iso(G,H).

A vertex-colored graph is a tuple (G,χ) where G is a graph and χ : V (G)→ C is a mapping
into some set C of colors, called vertex-coloring. Similarly, an arc-colored graph is a tuple (G,χ),
where G is a graph and χ : {(u, v) | {u, v} ∈ E(G)} → C is a mapping into some color set C,
called arc-coloring. We also consider vertex- and arc-colored graphs (G,χV , χE) where χV is
a vertex-coloring and χE is an arc-coloring. Also, a pair-colored graph is a tuple (G,χ), where
G is a graph and χ : (V (G))2 → C is a mapping into some color set C. Typically, C is chosen
to be an initial segment [n] of the natural numbers. Isomorphisms between vertex-, arc- and
pair-colored graphs have to respect the colors of the vertices, arcs and pairs.

2.2 Graph Minors and Topological Subgraphs

Let G be a graph. A graph H is a minor of G if H can be obtained from G by deleting vertices
and edges of G as well as contracting edges of G. More formally, let B = {B1, . . . , Bh} be a
partition of V (G) such that G[Bi] is connected for all i ∈ [h]. We define G/B to be the graph
with vertex set V (G/B) := B and

E(G/B) := {BB′ | ∃v ∈ B, v′ ∈ B′ : vv′ ∈ E(G)}.

A graph H is a minor of G if there is a partition B = {B1, . . . , Bh} of connected subsets
Bi ⊆ V (G) such that H is isomorphic to a subgraph of G/B. A graph G excludes H as a minor
if H is not a minor of G. The following theorem states the well-known fact that graphs excluding
small minors have bounded average degree. This was observed by Mader before Kostochka and
Thomason independently proved an optimal bound on the average degree.

Theorem 2.1 ([22, 18, 34]). There is an absolute constant a ≥ 1 such that for every h ≥ 1 and
every graph G that excludes Kh as a minor, it holds that

1

|V (G)|
∑

v∈V (G)

degG(v) ≤ ah
√

log h.

A graph H is a topological subgraph of G if H can be obtained from G by deleting edges,
deleting vertices and dissolving degree 2 vertices (which means deleting the vertex and making
its two neighbors adjacent). More formally, we say that H is a topological subgraph of G if a
subdivision of H is a subgraph of G (a subdivision of a graph H is obtained by replacing each
edge of H by a path of length at least 1). Note that every topological subgraph of G is also a
minor of G.

4

2.3 Weisfeiler-Leman Algorithm

The Weisfeiler-Leman algorithm, originally introduced by Weisfeiler and Leman in its 2-dimen-
sional form [37], forms one of the most fundamental subroutines in the context of isomorphism
testing. The algorithm presented in this work builds on the 1-dimensional Weisfeiler-Leman
algorithm, also known as the Color Refinement algorithm, as well as the 2-dimensional Weisfeiler-
Leman algorithm.

Let χ1, χ2 : V k → C be colorings of the k-tuples of vertices of G, where C is some finite set
of colors. We say χ1 refines χ2, denoted χ1 � χ2, if χ1(v̄) = χ1(w̄) implies χ2(v̄) = χ2(w̄) for
all v̄, w̄ ∈ V k. The two colorings χ1 and χ2 are equivalent, denoted χ1 ≡ χ2, if χ1 � χ2 and
χ2 � χ1.

The Color Refinement algorithm (i.e., the 1-dimensional Weisfeiler-Leman algorithm) is a
procedure that, given a graph G, iteratively computes an isomorphism-invariant coloring of the
vertices of G. In this work, we actually require an extension of the Color Refinement algorithm
that apart from vertex-colors also takes arc-colors into account. We describe the mechanisms
of the algorithm in the following. For a vertex- and arc-colored graph (G,χV , χE) we define
χ1
G,0 := χV to be the initial coloring for the algorithm. This coloring is iteratively refined by

defining χ1
G,i+1(v) := (χ1

G,i(v),Mi(v)) where

Mi(v) :=
{{(
χ1
G,i(w), χE(v, w), χE(w, v)

) ∣∣ w ∈ NG(v)
}}

(and {{. . . }} denotes a multiset). By definition, χ1
G,i+1 � χ1

G,i for all i ≥ 0. Thus, there is a
minimal i such that χ1

G,i+1 is equivalent to χ1
G,i. For this value of i we call the coloring χ1

G,i the
stable coloring of G and denote it by χ1

WL[G]. The Color Refinement algorithm takes as input a
vertex- and arc-colored graph (G,χV , χE) and returns (a coloring that is equivalent to) χ1

WL[G].
The procedure can be implemented in time O((m+ n) log n) (see, e.g., [6]).

Next, we define the 2-dimensional Weisfeiler-Leman algorithm. For a vertex-colored graph
(G,χV) let χ2

G,0 : (V (G))2 → C be the coloring where each pair is colored with the isomorphism
type of its underlying ordered subgraph. More formally, χ2

G,0(v1, v2) = χ2
G,0(v′1, v

′
2) if and only

if χV (vi) = χV (v′i) for both i ∈ {1, 2}, v1 = v2 ⇔ v′1 = v′2 and v1v2 ∈ E(G) ⇔ v′1v
′
2 ∈ E(G).

We then recursively define the coloring χ2
G,i obtained after i rounds of the algorithm. Let

χ2
G,i+1(v1, v2) := (χ2

G,i(v1, v2),Mi(v1, v2)) where

Mi(v1, v2) :=
{{(
χ2
G,i(v1, w), χ2

G,i(w, v2)
) ∣∣w ∈ V (G)

}}
.

Again, there is a minimal i such that χ2
G,i+1 is equivalent to χ2

G,i and for this i the coloring
χ2
WL[G] := χ2

G,i is the stable coloring of G.
Note that the algorithm can easily be extended to arc-colored and pair-colored graphs by

modifying the definition of the initial coloring χ2
G,0 accordingly. However, in contrast to the

Color Refinement algorithm, the 2-dimensional Weisfeiler-Leman algorithm is only applied to
vertex-colored graphs throughout this paper.

The 2-dimensional Weisfeiler-Leman algorithm takes as input a (vertex-, arc- or pair-)colored
graph G and returns (a coloring that is equivalent to) χ2

WL[G]. This can be implemented in time
O(n3 log n) (see [17]).

2.4 Group Theory

In this subsection, we introduce the group-theoretic notions required in this work. For a general
background on group theory we refer to [31], whereas background on permutation groups can
be found in [9].

5

Permutation Groups. A permutation group acting on a set Ω is a subgroup Γ ≤ Sym(Ω) of
the symmetric group. The size of the permutation domain Ω is called the degree of Γ. If Ω = [n],
then we also write Sn instead of Sym(Ω). For γ ∈ Γ and α ∈ Ω we denote by αγ the image of α
under the permutation γ. The set αΓ := {αγ | γ ∈ Γ} is the orbit of α.

For α ∈ Ω the group Γα := {γ ∈ Γ | αγ = α} ≤ Γ is the stabilizer of α in Γ. The pointwise
stabilizer of a set A ⊆ Ω is the subgroup Γ(A) := {γ ∈ Γ | ∀α ∈ A : αγ = α}. For A ⊆ Ω and
γ ∈ Γ let Aγ := {αγ | α ∈ A}. The set A is Γ-invariant if Aγ = A for all γ ∈ Γ.

For A ⊆ Ω and a bijection θ : Ω → Ω′ we denote by θ[A] the restriction of θ to the domain
A. For a Γ-invariant set A ⊆ Ω, we denote by Γ[A] := {γ[A] | γ ∈ Γ} the induced action of Γ
on A, i.e., the group obtained from Γ by restricting all permutations to A. More generally, for
every set Λ of bijections with domain Ω, we denote by Λ[A] := {θ[A] | θ ∈ Λ}.

Let Γ ≤ Sym(Ω) and Γ′ ≤ Sym(Ω′). A homomorphism is a mapping ϕ : Γ → Γ′ such that
ϕ(γ)ϕ(δ) = ϕ(γδ) for all γ, δ ∈ Γ. A bijective homomorphism is also called isomorphism. For
γ ∈ Γ we denote by γϕ the ϕ-image of γ. Similarly, for ∆ ≤ Γ, we denote by ∆ϕ the ϕ-image of
∆ (note that ∆ϕ is a subgroup of Γ′).

Algorithms for Permutation Groups. We review some basic facts about algorithms for
permutation groups. For detailed information we refer to [33].

In order to perform computational tasks for permutation groups efficiently the groups are
represented by generating sets of small size. Indeed, most algorithms are based on so-called
strong generating sets, which can be chosen of size quadratic in the size of the permutation
domain of the group and can be computed in polynomial time given an arbitrary generating set
(see, e.g., [33]).

Theorem 2.2 (cf. [33]). Let Γ ≤ Sym(Ω) and let S be a generating set for Γ. Then the following
tasks can be performed in time polynomial in n and |S|:

1. compute the order of Γ,

2. given γ ∈ Sym(Ω), test whether γ ∈ Γ,

3. compute the orbits of Γ, and

4. given A ⊆ Ω, compute a generating set for Γ(A).

Groups with Restricted Composition Factors. In this work, we shall be interested in a
particular subclass of permutation groups, namely groups with restricted composition factors.
Let Γ be a group. A subnormal series is a sequence of subgroups Γ = Γ0 D Γ1 D · · · D Γk = {id}.
The length of the series is k and the groups Γi−1/Γi are the factor groups of the series, i ∈ [k]. A
composition series is a strictly decreasing subnormal series of maximal length. For every finite
group Γ all composition series have the same family (considered as a multiset) of factor groups
(cf. [31]). A composition factor of a finite group Γ is a factor group of a composition series of Γ.

Definition 2.3. For d ≥ 2 let Γ̂d denote the class of all groups Γ for which every composition
factor of Γ is isomorphic to a subgroup of Sd.

We want to stress the fact that there are two similar classes of groups that have been used
in the literature both typically denoted by Γd. One of these is the class introduced by Luks [21]
that we denote by Γ̂d, while the other one used in [3] in particular allows composition factors
that are simple groups of Lie type of bounded dimension.

Lemma 2.4 (Luks [21]). Let Γ ∈ Γ̂d. Then

1. ∆ ∈ Γ̂d for every subgroup ∆ ≤ Γ, and

2. Γϕ ∈ Γ̂d for every homomorphism ϕ : Γ→ ∆.

6

GI in time nO(d) [21]

GI in quasipoly-
nomial time [2]

GI in time npolylog(d) [12]

GI parameterized by
tree-width in FPT [19]

Group-theoretic GI test for
bounded tree-width [13]

Hypergraph Isomor-
phism for Γ̂d-groups [26]

Decompositions with
labeling cosets [32, 38]

This paper

Figure 1: Dependencies between the main results leading to this paper.

3 Group-Theoretic Techniques for Isomorphism Testing

Next, we present several group-theoretic tools in the context of isomorphism testing which are
exploited by our algorithm testing isomorphism for graph classes that exclude a fixed minor.
The dependencies between the main results leading to this paper are shown in Figure 1.

3.1 Hypergraph Isomorphism

Two hypergraphs H1 = (V1, E1) and H2 = (V2, E2) are isomorphic if there is a bijection ϕ : V1 →
V2 such that E ∈ E1 if and only if Eϕ ∈ E2 for all E ∈ 2V1 (where Eϕ := {ϕ(v) | v ∈ E} and 2V1

denotes the power set of V1). We write ϕ : H1
∼= H2 to denote that ϕ is an isomorphism from

H1 to H2. Consistent with previous notation, we denote by Iso(H1,H2) the set of isomorphisms
from H1 to H2. More generally, for Γ ≤ Sym(V1) and a bijection θ : V1 → V2, we define

IsoΓθ(H1,H2) := {ϕ ∈ Γθ | ϕ : H1
∼= H2}.

The set IsoΓθ(H1,H2) is either empty, or it is a coset of AutΓ(H1) := IsoΓ(H1,H1), i.e.,
IsoΓθ(H1,H2) = AutΓ(H1)ϕ where ϕ ∈ IsoΓθ(H1,H2) is an arbitrary isomorphism. As a re-
sult, the set IsoΓθ(H1,H2) can be represented efficiently by a generating set for AutΓ(H1) and
a single isomorphism ϕ ∈ IsoΓθ(H1,H2). In the remainder of this work, all sets of isomorphisms
are represented in this way.

Theorem 3.1 ([26, Theorem 1.1]). Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs and
let Γ ≤ Sym(V1) be a Γ̂d-group and θ : V1 → V2 a bijection. Then IsoΓθ(H1,H2) can be computed
in time (n+m)O((log d)c) for some absolute constant c where n := |V1| and m := |E1|.

3.2 Coset-Labeled Hypergraphs

Actually, for the applications in this paper, the Hypergraph Isomorphism Problem itself turns
out to be insufficient. Instead, we require a generalization of the problem that is, for example,
motivated by graph decomposition approaches to graph isomorphism testing (see, e.g., [13, 38]).
Let G1 and G2 be two graphs and suppose that an algorithm has already computed sets D1 ⊆
V (G1) and D2 ⊆ V (G2) in an isomorphism-invariant way, i.e., each isomorphism from G1 to
G2 also maps D1 to D2. Moreover, assume that G1 − D1 is not connected and let Zi1, . . . , Zi`
be the connected components of Gi −Di (without loss of generality G1 −D1 and G2 −D2 have

7

the same number of connected components, otherwise the graphs are non-isomorphic). Also, let
Sij := NGi(Z

i
j) for all j ∈ [`] and i ∈ {1, 2}. A natural strategy for an algorithm is to recursively

compute representations for Iso(G1[Z1
j1
∪ S1

j1
], G2[Z2

j2
∪ S2

j2
]) for all j1, j2 ∈ [`]. Then, in the

second step, the algorithm needs to compute all isomorphisms ϕ : G1[D1] ∼= G2[D2] such that
there is a bijection σ : [`]→ [`] satisfying

1. (S1
j)ϕ = S2

σ(j), and

2. the restriction ϕ[S1
j] extends to an isomorphism from G1[Z1

j ∪ S1
j] to G2[Z2

σ(j) ∪ S
2
σ(j)] (in

the natural way, i.e., the isomorphism restricted to S1
j equals ϕ[S1

j])

for all j ∈ [`].
Let us first discuss a simplified case where S1

j1
6= S1

j2
for all distinct j1, j2 ∈ [`]. In this

situation the first property naturally translates to an instance of the Hypergraph Isomorphism
Problem (in particular, there is at most one bijection σ for any given bijection ϕ). However, for
the second property, we also need to be able to put restrictions on how two hyperedges can be
mapped to each other. Towards this end, we consider hypergraphs with coset-labeled hyperedges
where each hyperedge is additionally labeled by a coset.

A labeling of a set V is a bijection ρ : V → {1, . . . , |V |}. A labeling coset of a set V is a set
Λ consisting of labelings such that Λ = ∆ρ := {δρ | δ ∈ ∆} for some group ∆ ≤ Sym(V) and
some labeling ρ : V → {1, . . . , |V |}. Observe that each labeling coset ∆ρ can also be written as
ρΘ := {ρθ | θ ∈ Θ} where Θ := ρ−1∆ρ ≤ S|V |.

Definition 3.2 (Coset-Labeled Hypergraph). A coset-labeled hypergraph is a tuple H = (V, E , p)
where V is a finite set of vertices, E ⊆ 2V is a set of hyperedges, and p is a function that associates
with each E ∈ E a pair p(E) = (ρΘ, c) consisting of a labeling coset of E and a natural number
c ∈ N.

Two coset-labeled hypergraphs H1 = (V1, E1, p1) and H2 = (V2, E2, p2) are isomorphic if
there is a bijection ϕ : V1 → V2 such that

1. E ∈ E1 if and only if Eϕ ∈ E2 for all E ∈ 2V1 , and

2. for all E ∈ E1 with p1(E) = (ρ1Θ1, c1) and p2(Eϕ) = (ρ2Θ2, c2) we have c1 = c2 and

ϕ[E]−1ρ1Θ1 = ρ2Θ2. (1)

In this case, ϕ is an isomorphism from H1 to H2, denoted by ϕ : H1
∼= H2. Observe that (1)

is equivalent to c1 = c2, Θ1 = Θ2 and ϕ[E] ∈ ρ1Θ1ρ
−1
2 . For Γ ≤ Sym(V1) and a bijection

θ : V1 → V2 let
IsoΓθ(H1,H2) := {ϕ ∈ Γθ | ϕ : H1

∼= H2}.

Note that, for two coset-labeled hypergraphsH1 andH2, the set of isomorphisms Iso(H1,H2)
forms a coset of Aut(H1) (or Iso(H1,H2) = ∅) and therefore, it again admits a compact represen-
tation. Indeed, this is a crucial feature of the above definition that again allows the application
of group-theoretic techniques.

The next theorem is an immediate consequence of Theorem 3.1 and [25, Theorem 6.6.7]2.

Theorem 3.3. Let H1 = (V1, E1, p1) and H2 = (V2, E2, p2) be two coset-labeled hypergraphs such
that for all E ∈ E1 ∪ E2 it holds |E| ≤ d. Also let Γ ≤ Sym(V1) be a Γ̂d-group and θ : V1 → V2 a
bijection.

Then IsoΓθ(H1,H2) can be computed in time (n+m)O((log d)c) for some absolute constant c
where n := |V1| and m := |E1|.

2In the notation of [25, Theorem 6.6.7], there is a prototype Θ for every pair (Θ, c). We have Θ ∈ Γ̂d since
|E| ≤ d for all E ∈ E1 ∪ E2. Finally, we use Theorem 3.1 to compute the induced coset of IsoΓθ((V1, E1), (V2, E2))
on the set of hyperedges E1.

8

3.3 Multiple-Labeling-Cosets

The theorem above covers the problem discussed in the beginning of the previous subsection
assuming that all separators of the first graph are distinct, i.e., S1

j1
6= S1

j2
for all distinct j1, j2 ∈

[`]. In this subsection, we consider the case in which S1
j1

= S1
j2

for all j1, j2 ∈ [`]. In order to
handle the case of identical separators, we build on a framework considered in [32, 38]. (The
mixed case in which some, but not all, separators coincide can be handled by a mixture of both
techniques.)

Definition 3.4 (Multiple-Labeling-Coset). A multiple-labeling-coset is a tuple X = (V,L, p)
where L = {ρ1Θ1, . . . , ρtΘt} is a set of labeling cosets ρiΘi, i ∈ [t], of the set V and p : L → N
is a function that assigns each labeling coset ρΘ ∈ L a natural number p(ρΘ) = c.

Two multiple-labeling-cosets X1 = (V1, L1, p1) and X2 = (V2, L2, p2) are isomorphic if there
is a bijection ϕ : V1 → V2 such that(

ρΘ ∈ L1 ∧ p1(ρΘ) = c
)

⇐⇒
(
ϕ−1ρΘ ∈ L2 ∧ p2(ϕ−1ρΘ) = c

)
(2)

for all labeling cosets ρΘ of V and all c ∈ N. In this case, ϕ is an isomorphism from X1 to X2,
denoted by ϕ : X1

∼= X2. Observe that (2) is equivalent to |L1| = |L2| and for each ρ1Θ1 ∈ L1

there is a ρ2Θ2 ∈ L2 such that p1(ρ1Θ1) = p2(ρ2Θ2) and Θ1 = Θ2 and ϕ ∈ ρ1Θ1ρ
−1
2 . Let

Iso(X1,X2) := {ϕ : V1 → V2 | ϕ : X1
∼= X2}

Again, the set of isomorphisms Iso(X1,X2) forms a coset of Aut(X1) := Iso(X1,X1) (or
Iso(X1,X2) = ∅) and therefore, it again admits a compact representation. The next theorem is
obtained by a canonization approach building on the canonization framework from [32]. Intu-
itively, a canonical form for a class of objects maps each object in that class to a representative
of its isomorphism class. For background on canonical forms and labelings we refer to [5].

Theorem 3.5 ([38, Theorem 22 and Corollary 35]). Let X = (V,L, p) be a multiple-labeling-
coset. Canonical labelings for X can be computed in time (n + m)O((logn)c) for some absolute
constant c where n := |V | and m := |L|.

Theorem 3.6. Let X1 = (V1, L1, p1) and X2 = (V2, L2, p2) be two multiple-labeling cosets.
Then Iso(X1,X2) can be computed in time (n + m)O((logn)c) for some absolute constant c

where n := |V1| and m := |L1|.

Proof. We compute canonical labelings Λ1,Λ2 for X1,X2, respectively. We compare the canonical
forms X λ1

1 and X λ2
2 for labelings λi ∈ Λi, i ∈ {1, 2} (this can be done in polynomial time as shown

in [38]). We can assume that the canonical forms are equal, otherwise we reject isomorphism.
Then, we return Iso(X1,X2) = Λ1λ

−1
2 .

3.4 Allowing Color Refinement to Split Small Color Classes

In order to be able to apply the decomposition framework outlined above, an algorithm first
needs to compute an isomorphism-invariant subset D ⊆ V (G) such that NG(Z) is sufficiently
small for every connected component Z of the graph G − D. Moreover, the application of
Theorem 3.3 additionally requires a Γ̂d-group that restricts the set of possible automorphisms
for the set D. Both problems are tackled building on the notion of t-CR-bounded graphs. This
class of graphs was originally introduced by Ponomarenko in the late 1980’s [28] and has been
exploited more recently for isomorphism testing of graphs of bounded genus [26] which form an
important subfamily of graph classes excluding a fixed graph as a minor.

Intuitively speaking, a vertex-colored graph (G,χ) is t-CR-bounded, t ∈ N, if it is possible
to obtain a discrete vertex-coloring (a vertex-coloring is discrete if each vertex has a distinct
color) for the graph by iteratively applying the following two operations:

9

• applying the Color Refinement algorithm, and

• picking a color class [v]χ := {w ∈ V (G) | χ(v) = χ(w)} for some vertex v ∈ V (G) where
|[v]χ| ≤ t and individualizing each vertex in that class (every vertex in that color class is
assigned a distinct color).

In this work, we exploit the ideas behind t-CR-bounded graphs to define a closure operator.
Given an initial set X ⊆ V (G), all vertices from X are first individualized before applying
the operators of the t-CR-bounded definition. The closure of the set X (with respect to the
parameter t) then contains all singleton vertices of the resulting coloring. The next definition
formalizes all these concepts. Since we usually deal with vertex- and arc-colored graphs, the
definition is formulated in this general setting.

Definition 3.7. Let (G,χV , χE) be a vertex- and arc-colored graph and X ⊆ V (G). Let (χi)i≥0

be the sequence of vertex-colorings where

χ0(v) :=

{
(v, 1) if v ∈ X
(χV (v), 0) otherwise

,

χ2i+1 := χ1
WL[G,χ2i, χE] and

χ2i+2(v) :=

{
(v, 1) if |[v]χ2i+1 | ≤ t
(χ2i+1(v), 0) otherwise

for all i ≥ 0. Since χi+1 � χi for all i ≥ 0 there is some minimal i∗ such that χi∗ ≡ χi∗+1. We
define

cl
(G,χV ,χE)
t (X) :=

{
v ∈ V (G) |

∣∣[v]χi∗
∣∣ = 1

}
.

For v1, . . . , vk ∈ V (G) we also denote

cl
(G,χV ,χE)
t (v1, . . . , vk) := cl

(G,χV ,χE)
t ({v1, . . . , vk}).

Moreover, the pair (G,X) is t-CR-bounded if cl
(G,χV ,χE)
t (X) = V (G). Finally, the graph G

is t-CR-bounded if (G, ∅) is t-CR-bounded.

For ease of notation, we usually omit the vertex- and arc-colorings and simply write clGt
instead of cl

(G,χV ,χE)
t .

For applications in graph classes with an excluded minor it turns out to be useful to combine
the concept of clGt with the 2-dimensional Weisfeiler-Leman algorithm. More precisely, in order
to increase the scope of the set clGt , information computed by the 2-dimensional Weisfeiler-Leman
algorithm are taken into account. Since the 2-dimensional Weisfeiler-Leman algorithm computes
a pair-coloring, we extend the definition of clGt to pair-colored graphs. For a pair-colored graph
(G,χ) we define cl

(G,χ)
t := cl

(Kn,χ̃)
t where Kn is the complete graph on the same vertex set V (G)

and χ̃(v, w) = (atp(v, w), χ(v, w)) where atp(v, w) = 0 if v = w, atp(v, w) = 1 if vw ∈ E(G),
and atp(v, w) = 2 otherwise. This allows us to take all pair-colors into account for the Color
Refinement algorithm, but also still respect the edges of the input graph G.

It can be shown that for each t-CR-bounded graph G it holds that Aut(G) ∈ Γ̂t. Moreover,
there is an algorithm that, given a graph G, computes a Γ̂t-group Γ ≤ Sym(V (G)) such that
Aut(G) ≤ Γ in time npolylog(t) where n is the number of vertices of G. It is important for our
techniques that this statement generalizes to t-CR-bounded pairs (G,X) for which we already
have a good knowledge of the structure of X in form of a Γ̂t-group Γ ≤ Sym(X) as stated in
the following theorem.

10

Theorem 3.8 ([26, Lemma 5.2]). Let G1, G2 be two graphs and let X1 ⊆ V (G1) and X2 ⊆
V (G2). Also, let Γ ≤ Sym(X1) be a Γ̂t-group and θ : X1 → X2 a bijection. Moreover, let
Di := clGit (Xi) for i ∈ {1, 2} and define

Γ′θ′ := {ϕ ∈ Iso((G1, X1), (G2, X2)) | ϕ[X1] ∈ Γθ}[D1].

Then Γ′ ∈ Γ̂t. Moreover, there is an algorithm computing a Γ̂t-group ∆ ≤ Sym(D1) and a
bijection δ : D1 → D2 such that

Γ′θ′ ⊆ ∆δ

in time nO((log t)c) for some absolute constant c where n := |V (G1)|.

4 Exploiting the Structure of Graphs Excluding a Minor

In the following, we first give a more detailed description of the high-level strategy for building
a faster isomorphism test for graph classes that exclude a fixed minor. In particular, we state
the two main technical theorems which build the groundwork for the isomorphism test.

4.1 The Strategy

The basic idea for our isomorphism test is to follow the decomposition framework outlined in the
previous section. Let G1 and G2 be two connected graphs that exclude Kh as a minor (note that
it is always possible to restrict to connected graphs by considering the connected components of
the input graphs separately). To apply the decomposition framework outlined in the previous
section, we need to compute subsets Di ⊆ V (Gi), i ∈ {1, 2}, such that

(A) the subsets D1, D2 are isomorphism-invariant, i.e., each isomorphism from G1 to G2 maps
D1 to D2,

(B) for each connected component Zi of Gi −Di it holds |NGi(Zi)| < h and,

(C) one can efficiently compute a Γ̂d-group ∆ ≤ Sym(D1) and a bijection δ : D1 → D2 such
that Iso(G1, G2)[D1] ⊆ ∆δ.

In such a setting, the decomposition framework can be applied as follows. For every pair of
connected components Z1

j1
and Z2

j2
ofG1−D1 andG2−D2, respectively, the algorithm recursively

computes the set of isomorphisms from G1[Z1
j1
∪ S1

j1
] to G2[Z2

j2
∪ S2

j2
] where Siji := NGi(Z

i
ji

),
i ∈ {1, 2}. Then, the set of isomorphisms from G1 to G2 can be computed by combining
Theorem 3.6 and 3.3. Recall that Theorem 3.6 handles the case in which S1

j1
= S1

j2
for all

connected components Z1
j1
, Z1

j2
of G1−D1. To achieve the desired running time for this case, we

exploit Property (B). For Theorem 3.3, which handles the case of distinct separators S1
j1
6= S1

j2
,

we require sufficient structural information of the sets D1 and D2. More precisely, we require
Property (C) to ensure the desired time bound.

Now, we turn to the question how to find the sets D1 and D2 satisfying Properties (A),
(B) and (C). The central idea is to build on the closure operator clGit (where t is polynomially
bounded in h). We construct the sets by computing the closure Di := clGit (Xi) for some suitable
initial set Xi. The first key insight is that this process of growing the sets Xi can only be stopped
by separators of small size which ensures Property (B).

Theorem 4.1. Let G be a graph that excludes Kh as a topological subgraph and let X ⊆ V (G).
Let t ≥ 3h3 and define D := clGt (X). Let Z be the vertex set of a connected component of G−D.
Then |NG(Z)| < h.

11

Observe that the theorem addresses graphs that only exclude Kh as a topological subgraph
which is a weaker requirement than excluding Kh as a minor. A proof of this theorem, which
forms the first main technical contribution of this paper, is provided in Subsection 4.2. As
a central tool, it is argued that graphs, for which all color classes under the Color Refinement
algorithm are large, contain large numbers of vertex-disjoint trees with predefined color patterns.
The vertex-disjoint trees then allow for the construction of a topological minor on the vertex set
NG(Z).

In order to ensure Property (C), we need sufficient structural information for the sets Di,
i ∈ {1, 2}. Using Theorem 3.8, we are able to extend structural information in form of a Γ̂d-group
from the sets Xi to the supersets Di ⊇ Xi, i ∈ {1, 2}.

Hence, the main task that remains to be solved is the computation of the initial isomorphism-
invariant sets X1 and X2 as well as suitable restrictions on the set Iso(G1, G2)[X1] = {ϕ[X1] |
ϕ ∈ Iso(G1, G2)}. Ideally, one would like to compute a Γ̂d-group Γ ≤ Sym(X1) and a bijection
θ : X1 → X2 such that Iso(G1, G2)[X1] ⊆ Γθ. But this is not always possible. For example,
for a cycle Cp of length p where p is a prime number, it is only possible to choose X = V (Cp)

(because Cp is vertex-transitive) and Aut(Cp) /∈ Γ̂d for all p > d.
However, we are able to prove that there are isomorphism-invariant sets X1 and X2 such

that, after individualizing a single vertex v1 ∈ X1 and v2 ∈ X2 in each input graph, the set
Iso((G1, v1), (G2, v2))[X1] = {ϕ[X1] | ϕ ∈ Iso(G1, G2), vϕ1 = v2} has the desired structure. This
is achieved by the next theorem which forms the second main technical contribution of this
paper and again relies on the closure operator clGt .

Recall the definition of the constant a from Theorem 2.1. Without loss of generality assume
a ≥ 2.

Theorem 4.2. Let t ≥ a2h3 log h. There is a polynomial-time algorithm that, given a connected
vertex-colored graph G, either correctly concludes that G has a minor isomorphic to Kh or
computes a pair-colored graph (G′, χ′) and a set X ⊆ V (G′) such that

1. X = {v ∈ V (G′) | χ′(v, v) = c} for some color c ∈ {χ′(v, v) | v ∈ V (G′)},

2. X ⊆ cl
(G′,χ′)
t (v) for every v ∈ X, and

3. X ⊆ V (G).

Moreover, the output of the algorithm is isomorphism-invariant with respect to G.

Observe that Property 2 and 3 of the theorem imply that (Aut(G))v[X] ∈ Γ̂t for all v ∈ X
by Theorem 3.8 (by setting X1 = X2 = {v} and Γθ as the singleton set containing the unique
bijection from X1 to X2).

For technical reasons, the theorem actually provides a second graph (G′i, χ
′
i) for both input

graphs Gi. Intuitively speaking, one can think of G′i as an extension of Gi which allows us
to build additional structural information about Gi into the graph structure of G′i. Also, the
algorithm heavily exploits the 2-dimensional Weisfeiler-Leman algorithm leading to pair-colored
graphs.

The remainder of this section is devoted to proving both theorems above. First, Theorem
4.1 is proved in Subsection 4.2 and then Theorem 4.2 is proved in Subsection 4.3. Afterwards,
the complete algorithm is assembled in Section 5.

4.2 Finding Separators of Small Size

In this subsection, we give a proof of Theorem 4.1. Let us start by giving some intuition for
the proof. Let G be a graph and let X ⊆ V (G). Also define D := clGt (X) and let us suppose
for simplicity that G − D is connected with vertex set Z := V (G) \ D. Assume towards a

12

D Zv2

v1

v3

Figure 2: Visualization of the construction of a topological subgraph Kh for h = 3. The figure
shows

(
h
2

)
= 3 vertex-disjoint subgraphsH1, H2, H3 of G[Z] each of which is adjacent to v1, v2, v3.

Note that only the vertices and edges appearing in one the graphs Hj are shown. Indeed, by
assumption, all color classes in Z contain at least 3h3 = 81 vertices. The edges of the color class
graph on Z are visualized by thick, gray connections.

contradiction that |NG(Z)| ≥ h and let us fix h distinct vertices v1, . . . , vh ∈ NG(Z). We
need to show that G contains a topological subgraph isomorphic to Kh. We use the vertices
v1, . . . , vh as the vertices of this topological subgraph, i.e., our task is to find internally vertex-
disjoint paths Pii′ connecting vi and vi′ for all ii′ ∈

(
[h]
2

)
. Actually, we shall achieve a stronger

result by constructing vertex-disjoint, connected subgraphs H1, . . . ,Hr of G−D, where r :=
(
h
2

)
,

such that vi ∈ NG(V (Hj)) for all i ∈ [h] and j ∈ [r], i.e., each subgraph Hj is adjacent to all the
vertices v1, . . . , vh (see Figure 2). Note that each such subgraph Hj can be used to construct
one of the paths Pii′ for ii′ ∈

(
[h]
2

)
.

To construct the subgraphs Hj , we build on the assumption that D = clGt (X) which, by
Definition 3.7, means that there is a vertex-coloring χ of G that is stable with respect to the Color
Refinement algorithm, |[v]χ| = 1 for all v ∈ D, and |[w]χ| > t ≥ 3h3 for all w ∈ Z. Towards this
end, consider the color class graph of (G,χ) on Z, denoted by G[[χ,Z]], which is the graph with
vertex set V (G[[χ,Z]]) := χ(Z) and edge set E(G[[χ,Z]]) := {χ(w1)χ(w2) | w1w2 ∈ E(G[Z])}.
Clearly, G[[χ,Z]] is connected since G[Z] is connected. Since v1, . . . , vh ∈ NG(Z), there are
colors c1, . . . , ch such that vi ∈ NG(χ−1(ci)) for every i ∈ [h], i.e., vi is adjacent to some vertex
contained in the color class corresponding to color ci. Since χ is stable with respect to the Color
Refinement algorithm and |[vi]χ| = 1 by assumption, it actually follows that NG(vi) ⊆ χ−1(ci),
i.e, vi is adjacent to every vertex from the color class corresponding to ci.

Now, let T be a Steiner tree for c1, . . . , ch in G[[χ,Z]], i.e., T is a subtree of G[[χ,Z]] with
leaves exactly c1, . . . , ch (such a tree clearly always exists). We construct the graphs H1, . . . ,Hr

in such a way that each Hj “mimics” the structure of T , i.e., for every color c that is a vertex of
T , the graph Hj contains exactly one vertex with color c, and two vertices with colors c, c′ are
adjacent if and only if cc′ is an edge of T (see Figure 2). Here, we crucially use that all color
classes are sufficiently large which gives us enough “capacity” to fit all the subgraphs Hj into
the desired color classes at the same time.

Before turning to the formal proof of Theorem 4.1, let us briefly comment on the assumption
that G−D is connected which we made for the above argument. If G−D is not connected, it may
happen that color classes are not sufficiently large when restricted to a connected component
Z, since color classes may span over multiple connected components of G−D. However, this is
not a problem since we can consider all these connected components together. Indeed, for our
argument, we do not require that G[Z] is connected, but it suffices that G[[χ,Z]] is connected.

The following lemma reformulates the task of proving Theorem 4.1 as indicated above.
Recall that for a vertex-colored graph (G,χ) and W ⊆ V (G), we define the color class graph

of (G,χ) on W to be the graph G[[χ,W]] with vertex set V (G[[χ,W]]) := χ(W) and edge set
E(G[[χ,W]]) := {χ(w1)χ(w2) | w1w2 ∈ E(G[W])}.

13

Lemma 4.3. Let h ≥ 1. Let G be a graph and V (G) = V1] V2 be a partition of the vertex set
of G. Also let χ be a vertex-coloring of G and suppose that

1. G[[χ, V2]] is connected,

2. |V1| ≥ h and NG(V2) = V1,

3. |[v]χ| = 1 for all v ∈ V1,

4. |[w]χ| ≥ 3h3 for all w ∈ V2, and

5. χ is stable with respect to the Color Refinement algorithm.

Then G has a topological subgraph isomorphic to Kh.

Before showing the lemma, we give a proof for Theorem 4.1 based on Lemma 4.3.

Proof of Theorem 4.1. Let χ be the final vertex-coloring that is stable under the t-CR-bounded
algorithm with respect to the initial set X. Let Z be a connected component of G − D and
assume for sake of contradiction that |NG(Z)| ≥ h. Let V2 := {v ∈ V (G) | χ(v) ∈ χ(Z)} and
V1 := NG(V2) and define H := G[V1 ∪ V2]. We have |V1| ≥ |NG(Z)| ≥ h. Also, |[v]χ| = 1 for all
v ∈ V1 ⊆ D = clGt (X). Moreover, χ|H is stable under the Color Refinement algorithm for the
graph H and H[[χ|H , V2]] is connected since G[Z] is connected. Finally, |[w]χ| > t ≥ 3h3 for
all w ∈ V2 since χ is stable under the t-CR-bounded algorithm and V2 ∩D = ∅. So by Lemma
4.3 the graph H has a topological subgraph isomorphic to Kh. But H is a subgraph of G and
hence, G also has a topological subgraph isomorphic to Kh. This gives a contradiction.

We now turn to proving Lemma 4.3 where we aim to construct a topological subgraph
isomorphic to Kh. The vertices of the topological subgraph are located in the set V1. This
leaves the task to construct disjoint paths between vertices from V1 using the vertices from the
set V2. Actually, as already described above, it turns out to be more convenient to construct a
large number of disjoint trees each of which can be used to obtain a single path connecting two
vertices in V1.

Let G be a graph, let χ : V (G)→ C be a vertex-coloring and let T be a tree with vertex set
V (T) = C. A subgraph H ⊆ G agrees with T if χ|V (H) : H ∼= T , i.e., the coloring χ induces an
isomorphism between H and T . Equivalently, H agrees with T if |V (H)∩χ−1(c)| = 1 for every
c ∈ C and c1c2 ∈ E(T) if and only if H[χ−1(c1), χ−1(c2)] contains an edge for all c1, c2 ∈ C.
Observe that each H ⊆ G that agrees with a tree T is also a tree. Let H1, . . . ,Hk ⊆ G be
k pairwise vertex-disjoint subgraphs that agree with the tree T . For a color c ∈ C we define
Vc(H1, . . . ,Hk) :=

⋃k
i=1 V (Hi) ∩ χ−1(c). Since H1, . . . ,Hk are pairwise vertex-disjoint, it holds

that |Vc(H1, . . . ,Hk)| = k. The extension set for H1, . . . ,Hk and a color c ∈ C is defined as

Wc := Wc(H1, . . . Hk) :=
{
v ∈ χ−1(c)

∣∣∣ there are k + 1 pairwise vertex-disjoint

connected graphs H ′1, . . . ,H
′
k+1

that agree with T such that

Vc(H
′
1, . . . ,H

′
k+1) = Vc(H1, . . . ,Hk) ∪ {v}

}
.

A visualization is also given in Figure 3.
Intuitively speaking, the idea is to construct subgraphs H1, . . . ,Hr that agree with T one

after the other. Suppose we already constructed subgraphs H1, . . . ,Hk for some k < r, and
we aim to construct the next subgraph Hk+1. To do so, we can fix an arbitrary root of T
and construct Hk+1 in a bottom-up fashion starting at the leaves of T . Unfortunately, when
constructing Hk+1 this way, we may get stuck (i.e., it is not possible to extend the partial

14

v1 v2 v3 v4 v5 χ−1(c1)

χ−1(c2)

χ−1(c3) χ−1(c4)

Figure 3: The figure shows three vertex-disjoint subgraphs H1, H2, H3 (in red, blue and green)
that agree with the tree T with node set V (T) = {c1, c2, c3, c4} and edge set E(T) =
{c1c2, c2c3, c2c4}. The extension set for the color c1 is Wc1(H1, H2, H3) = {v3, v5}. Note
that there is a subgraph H4 that agrees with T containing v3 and being vertex-disjoint from
H1, H2, H3. However, to argue that v5 is contained in the extension set, one also has to modify
at least one of the already constructed subgraphs H1, H2, H3.

subgraph Hk+1 any further without using vertices from H1, . . . ,Hk) which forces us to make
changes to the already constructed H1, . . . ,Hk. We formalize this idea by providing, for each
node c of T , a lower bound on the size of the extension set when restricting to the subtree of
T rooted at c. In the end, we obtain that the extension set for the root contains at least one
element and hence, there exist k+ 1 disjoint connected subgraphs H ′1, . . . ,H ′k+1 (which may be
completely different from H1, . . . ,Hk, but this is not a problem for our purposes).

The next lemma serves as an important intermediate step to deal with long induced paths
of T . Indeed, this case is critical since the number of nodes of T of degree 2 may be unbounded.
To be more precise, in our application, the number of leaves of T is bounded by h, and thus, the
number of internal nodes of degree at least 3 is also bounded by h. All color classes in V2 have
size at least 3h3 (which is much larger than r =

(
h
2

)
) which means that, when providing lower

bounds on the size of the extension sets, we can afford some small loss at all internal nodes of
degree at least 3.

In contrast, the number of nodes of degree 2 in T is unbounded, and hence we cannot afford
any loss at those nodes when lower-bounding the size of an extension set. We use the following
lemma to deal with long induced paths of T .

Lemma 4.4. Let G be a graph and let χ : V (G) → C be a vertex-coloring and let P be a path
with vertex set V (P) = C = {c1, . . . , cs} and edge set E(P) = {cici+1 | i ∈ [s − 1]}. Also,
suppose that G[χ−1(ci), χ

−1(ci+1)] is a non-empty biregular graph for every i ∈ [s − 1]. Let
m := minc∈C |χ−1(c)|. Let H1, . . . ,Hk be k pairwise vertex-disjoint path graphs that agree with
P . Let X ⊆ χ−1(c1) \ Vc1(H1, . . . ,Hk) and

WX,cs :=
{
v ∈ χ−1(cs)

∣∣∣ there are k + 1 pairwise vertex-disjoint

path graphs H ′1, . . . ,H
′
k+1 such that

Vc1(H ′1, . . . ,H
′
k+1) = Vc1(H1, . . . ,Hk) ∪ {x} for some x ∈ X

and Vcs(H
′
1, . . . ,H

′
k+1) = Vcs(H1, . . . ,Hk) ∪ {v}

}
.

Then
|WX,cs |
|χ−1(cs)|

≥ |X|
|χ−1(c1)|

− k

m
.

15

χ−1(c1)

χ−1(ci)

χ−1(cs)

...

...

... ...

χ−1(c1)

χ−1(ci)

χ−1(cs)

...

...

... ...

v

Figure 4: The left side shows part of a tree T rooted at cs with a long induced path between cs
and c1. We already constructed three subgraphs H1, H2, H3 that agree with T . The extension
set X for the subtree rooted at c1 is shown in gray. We have v ∈ WX,cs via witnessing paths
shown on the right side. In particular, v is contained in the extension set Wcs for the color cs.

To grasp the meaning of this lemma, it is helpful to think of P as an induced path of T with
c1 being a descendant of cs (see also Figure 4). The set X is the extension set with respect to
the subtree rooted at c1, and we aim to provide a lower bound for the size of the extension set
with respect to the subtree rooted at cs. Towards this end, the lemma provides a lower bound
on the size of WX,cs which is a subset of the desired extension set.

Proof. The proof uses an alternating-paths argument. We split the edges of G into forward and
backward edges and direct all edges accordingly. Let

Efw :=
{

(v, w)
∣∣∣ vw ∈ E(G) \ (

⋃
j∈[k]

E(Hj)), v ∈ χ−1(ci) and

w ∈ χ−1(ci+1) for some i ∈ [s− 1]
}
.

and

Ebw :=
{

(v, w)
∣∣∣ vw ∈ ⋃

j∈[k]

E(Hj), v ∈ χ−1(ci+1) and

w ∈ χ−1(ci) for some i ∈ [s− 1]
}
.

We consider directed paths that start in X ⊆ χ−1(c1) \ Vc1(H1, . . . ,Hk). A path v1, . . . , vt in G
is admissible if

1. v1 ∈ X,

2. (vi, vi+1) ∈ Efw ∪ Ebw, and

3. if (vi, vi+1) ∈ Efw and vi+1 ∈
⋃
j∈[k] V (Hj) then i ≤ t− 2 and (vi+1, vi+2) ∈ Ebw

for all i ∈ [t− 1]. Let

A := {v ∈ V (G) | there is an admissible path v1, . . . , vt such that vt = v}.

For a color c ∈ C let Ac := A ∩ χ−1(c).
Claim 4.1. Acs ⊆WX,cs .

16

u

χ−1(ci+1)

χ−1(ci)

χ−1(ci−1)

(a) The vertex u is incident to two backward edges.
It is isolated in H since both backward edges are
deleted.

u

u′

u′′ χ−1(ci+1)

χ−1(ci)

χ−1(ci−1)

(b) The vertex u is incident to one forward and
one backward edge. It is adjacent to u′ and u′′ in
the graph H.

Figure 5: Visualization for the construction of the graph H in Claim 4.1 for k = 3. The edges
of the graphs H1, H2, H3 are highlighted in blue, red and green. The directed edges of the
admissible path are shown in gray.

Proof. Let v ∈ Acs and let v1, . . . , vt be an admissible path of minimal length t such that v = vt.
Let Hk+1 be the corresponding path graph with V (Hk+1) := {v1, . . . , vt} and E(Hk+1) :=
{vivi+1 | i ∈ [t − 1]}. Consider the graph H with vertex set V (H) :=

⋃
i∈[k+1] V (Hi) and edge

set

E(H) :=

⋃
i∈[k]

E(Hi) \ E(Hk+1)

 ∪
E(Hk+1) \

⋃
i∈[k]

E(Hi)

 .

We claim that H is the disjoint union of (k+1) many graphs H ′1, . . . ,H ′k+1 (and possibly isolated
vertices) that agree with P .

To see this, consider some vertex u ∈ V (H) such that u ∈ χ−1(ci) for some i ∈ {2, . . . , s−1}.
If u is contained in exactly one of the sets V (Hi), i ∈ [k + 1], then it is easy to see that u has
exactly two neighbors in H, one in χ−1(ci−1) and another in χ−1(ci+1). Otherwise, u ∈ V (Hk+1)
and u ∈ V (Hi) for some i ∈ [k] (recall that V (Hi)∩ V (Hj) = ∅ for all distinct i, j ∈ [k]). Then,
on the admissible path v1, . . . , vt, the vertex u is either incident to two backward edges, or
incident to one forward edge and one backward edge. In the former case, u is isolated in H (see
Figure 5a), and in the latter case u has again exactly two neighbors in H, one in χ−1(ci−1) and
another in χ−1(ci+1) (see Figure 5b).

Similarly, it follows that every u ∈ V (H)∩χ−1(c1) has exactly one neighbor in χ−1(c2), and
every u ∈ V (H) ∩ χ−1(cs) has exactly one neighbor in χ−1(cs−1). Overall, it follows that H
is the disjoint union of (k + 1) many graphs H ′1, . . . ,H ′k+1 (and possibly isolated vertices) that
agree with P . In particular, v ∈WX,cs . y

By the claim, it suffices to provide a lower bound on the size of the set Acs . Towards this
end, we analyze the structure of the set A. For j ∈ [k] let wi,j be the unique vertex in the set
V (Hj)∩ χ−1(ci), i ∈ [s]. First observe that, if wi,j ∈ A then also wi′,j ∈ A for all i′ < i since all
vertices wi′,j are reachable with backward edges in Ebw.

We call a vertex b ∈
⋃
j∈[k] V (Hj)\A a blocking vertex if there is a vertex v ∈

⋃
j∈[k] V (Hj)∩A

such that (b, v) ∈ Ebw. In other words, the vertex wi,j is a blocking vertex if wi,j /∈ A and
wi−1,j ∈ A (and therefore wi′,j ∈ A for all i′ < i). Let B be the set of blocking vertices. By
the above observation, |B ∩ V (Hj)| ≤ 1 for all j ∈ [k] (and |B ∩ V (Hj)| = 0 if V (Hj) ∩A = ∅).
Hence, |B| ≤ k. Let ki := |B ∩ χ−1(ci)| be the number of blocking vertices of color ci, i ∈ [s].

Claim 4.2.
|Aci |
|χ−1(ci)|

≥ |Ac1 |
|χ−1(c1)|

− k1 + . . .+ ki
m

for all i ∈ [s].

Proof. The claim is proved by induction on i ∈ [s]. In the base case i = 1, it holds that k1 = 0
which implies the statement.

For the inductive step assume that i ≥ 1. Since G[χ−1(ci), χ
−1(ci+1)] is a non-empty bireg-

ular graph, for each subset S ⊆ χ−1(ci) it holds that |N(S)∩χ−1(ci+1)|
|χ−1(ci+1)| ≥ |S|

|χ−1(ci)| as argued

17

in the preliminaries. We first argue that (N(Aci) ∩ χ−1(ci+1)) ⊆ Aci+1 ∪ B. Let v ∈ Aci
and w ∈ N(Aci) ∩ χ−1(ci+1). If w ∈

⋃
j∈[k] V (Hj) then w ∈ B or w ∈ A. Otherwise

w ∈ V (G) \
⋃
j∈[k] V (Hj) and (v, w) ∈ Efw which means w ∈ A. This shows the inclusion

and therefore

|Aci+1 |
|χ−1(ci+1)|

≥ |N(Aci) ∩ χ−1(ci+1)| − ki+1

|χ−1(ci+1)|
≥ |Aci |
|χ−1(ci)|

− ki+1

m
.

By the induction hypothesis, |Aci |
|χ−1(ci)| ≥

|Ac1 |
|χ−1(c1)| −

k1+...+ki
m . In combination this means

|Aci+1 |
|χ−1(ci+1)|

≥ |Ac1 |
|χ−1(c1)|

− k1 + . . .+ ki + ki+1

m
. y

Now, we can prove the lemma. We already observed in Claim 4.1 that Acs ⊆ WX,cs . More-
over, it holds that X ⊆ Ac1 . Combining this with Claim 4.2, we obtain

|WX,cs |
|χ−1(cs)|

≥ |Acs |
|χ−1(cs)|

≥ |Ac1 |
|χ−1(c1)|

− k

m

≥ |X|
|χ−1(c1)|

− k

m
.

Let T be a tree. We define V≤i(T) := {t ∈ V (T) | deg(t) ≤ i} and V≥i(T) := {t ∈ V (T) |
deg(t) ≥ i}. It is well known that |V≥3(T)| ≤ |V≤1(T)|.

We are now ready to prove the main technical lemma of this section which provides the
desired subgraphs H1, . . . ,Hr.

Lemma 4.5. Let G be a graph, let χ : V (G) → C be a vertex-coloring and let T be a tree with
vertex set V (T) = C. Assume that G[χ−1(c1), χ−1(c2)] is a non-empty biregular graph for every
c1c2 ∈ E(T). Let m := minc∈C |χ−1(c)| and let ` := 2|V≤1(T)|+ |V≥3(T)|.

Then there are (at least) bm` c pairwise vertex-disjoint trees in G that agree with T .

Proof. We show by induction on k that there are at least k pairwise vertex-disjoint trees that
agree with T for all k ≤ bm` c. The base case k = 0 is trivial. For the inductive step assume there
are k < bm` c pairwise vertex-disjoint trees H1, . . . ,Hk ⊆ G that agree with T . From H1, . . . ,Hk

we construct vertex-disjoint trees H ′1, . . . ,H ′k, H
′
k+1 ⊆ G that agree with T .

Towards this end, it suffices to show that there is a color c ∈ C such that the extension set
Wc = Wc(H1, . . . ,Hk) is non-empty. In fact, we show by induction on n := |V (T)| that for all
colors c ∈ C it holds that |Wc|

|χ−1(c)| ≥
m−k(`+d(c))

m where ` := `T := 2|V≤1(T)|+ |V≥3(T)| and

d(c) := dT (c) :=

−2 if degT (c) = 1,

0 if degT (c) = 2,

−1 otherwise
.

First observe that this proves the lemma since k(`+ d(c)) ≤ k` < m, and thus |Wc| > 0 for all
c ∈ C.

Consider the base case |V (T)| = 1 and assume C = {c}. In this case ` = 2, deg(c) = 0
and d(c) = −1. Also, for each vertex v ∈ V (G) \ Vc(H1, . . . ,Hk), the graph Hk+1 := ({v}, ∅) is
vertex-disjoint to H1, . . . ,Hk and agrees with T . Hence, |Wc|

|χ−1(c)| ≥
m−k(2−1)

m = m−k(`+d(c))
m .

For the inductive step assume that |V (T)| ≥ 2 and let c ∈ C. We distinguish two cases
depending on the degree of c in the tree T .

18

Case degT (c) = 1: Let c1, . . . , cs = c be the unique path in T such that c1 6= c is a color with
degT (c1) 6= 2 and degT (ci) = 2 for all i ∈ {2, . . . , s − 1} (see also Figure 4). Consider
the subtree T ′ := T − {c2, . . . , cs} obtained from T by removing all colors in the path
excluding c1. Define m′ := minc∈V (T ′) |χ−1(c)|, `′ := `T ′ and d′(c1) := dT ′(c1). Also define
G′ := G[

⋃
c∈V (T ′) χ

−1(c)] and H ′i := Hi[V (G′)] for i ∈ [k].

If degT (c1) = 3 (and thus degT ′(c1) = 2), then `′ = ` − 3 and d′(c1) = 0 = d(c) + 2.
Otherwise degT (c1) /∈ {2, 3} (and thus degT ′(c1) /∈ {1, 2}) and `′ = 2 = `− 2 and d′(c1) =
−1 = d(c) + 1. In total, `′ + d′(c1) = `+ d(c)− 1.

We define W ′c1 := Wc1(H ′1, . . . ,H
′
k) with respect to G′ and T ′. By the induction hy-

pothesis,
|W ′c1 |
|χ−1(c1)| ≥

m′−k(`′+d′(c1))
m′ ≥ m−k(`+d(c)−1)

m . Now, define T̃ := T [{c1, . . . , cs}],
G̃ := G[

⋃
c∈V (T̃)

χ−1(c)] and H̃i := Hi[V (G̃)] for i ∈ [k]. We apply Lemma 4.4 to G̃, T̃ ,

H̃i, i ∈ [k], and X := W ′c1 . Note that WX,cs ⊆Wcs . Thus,

|Wcs |
|χ−1(cs)|

≥
|WX,cs |
|χ−1(cs)|

≥
|W ′c1 |
|χ−1(c1)|

− k

m

≥ m− k(`+ d(c)− 1)

m
− k

m

=
m− k(`+ d(c))

m

which completes this case.

Case degT (c) ≥ 2: Let Z1, . . . , Zs be the connected components of T − {c}. Note that s =
degT (c). Let Ti := T [Zi ∪ {c}] for all i ∈ [s]. Observe that V (Ti) ∩ V (Tj) = {c} for all
distinct i, j ∈ [s]. Let Gi := G[

⋃
c∈V (Ti)

χ−1(c)] for i ∈ [s]. Let Hi,j := Hj [V (Gi)] for
i ∈ [s] and j ∈ [k]. Note that Hi,j agrees with Ti for all i ∈ [s] and j ∈ [k]. Let Wi,c :=
Wc(Hi,1, . . . ,Hi,k), i ∈ [s], be the extension set with respect to Gi and Ti. Finally, define
mi := minc∈V (Ti) |χ−1(c)|, `i := `Ti and di(c) := dTi(c) be the corresponding parameters
for each Ti, i ∈ [s].

If degT (c) = s = 2, then ` =
∑s

i=1(`i − 2) and d(c) = 0 =
∑s

i=1(di(c) + 2). Otherwise,
degT (c) = s ≥ 3 in which case ` = 1+

∑s
i=1(`i−2) and d(c) = −1 = −1+

∑s
i=1(di(c)+2).

In both cases, `+ d(c) =
∑s

i=1(`i + di(c)).

By the induction hypothesis, |Wi,c|
|χ−1(c)| ≥

mi−k(`i+di(c))
mi

≥ m−k(`i+di(c))
m for all i ∈ [s]. More-

over,
⋂
i∈[s]Wi,c ⊆Wc. Together, this means

|Wc|
|χ−1(c)|

≥

∣∣∣⋂i∈[s]Wi,c

∣∣∣
|χ−1(c)|

≥ 1−
∑
i∈[s]

(
1− |Wi,c|
|χ−1(c)|

)

≥ 1−
∑
i∈[s]

(
1− m− k(`i + di(c))

m

)

=
m− k(`1 + . . .+ `s + d1(c) + . . .+ ds(c))

m

=
m− k(`+ d(c))

m
.

Proof of Lemma 4.3. Consider the graph H := G[[χ, V2]] which is connected. Let v1, . . . , vh ∈ V1

be distinct vertices and let w1, . . . , wh ∈ V2 such that viwi ∈ E(G). Note that [wi]χ ⊆ N(vi)
for all i ∈ [h] since χ is stable with respect to the Color Refinement algorithm. Also define

19

ci = χ(wi). Now let T ⊆ H be a Steiner tree for {c1, . . . , ch}, i.e., a tree that contains all the
vertices c1, . . . , ch and is minimal with respect to the subgraph relation. Hence, T is a tree with
c1, . . . , ch ∈ V (T) and |V≤1(T)| ≤ h. This also implies that |V≥3(T)| ≤ h.

Now let ` := 2|V≤1(T)| + |V≥3(T)| ≤ 3h. We have that m := minc∈V (T) |χ−1(c)| ≥ 3h3.
Also note that G[χ−1(t1), χ−1(t2)] is biregular and non-trivial for all t1t2 ∈ E(T). By Lemma
4.5, there are r := bm` c ≥ h2 pairwise vertex-disjoint trees H1, . . . ,Hr that agree with T . But
this gives a topological subgraph Kh of the graph G. For each unordered pair vivj , i, j ∈ [h],
and each Hp, p ∈ [r], there is a path in the graph Hp from a vertex w′i ∈ [wi]χ ⊆ N(vi) to a
vertex w′j ∈ [wj]χ ⊆ N(vj). Therefore, for each unordered pair vivj , i, j ∈ [h], there is a path
from vi to vj in G and these paths are internally vertex disjoint (since H1, . . . ,Hr are pairwise
vertex-disjoint trees).

4.3 Finding an Initial Color Class

Next, we give a proof for Theorem 4.2. The proof builds on the 2-dimensional Weisfeiler-Leman
algorithm. Towards this end, we first introduce some additional notation.

Let G be a graph and let χ := χ2
WL[G] the coloring computed by the 2-dimensional Weisfeiler-

Leman algorithm. We refer to CV := CV (G,χ) := {χ(v, v) | v ∈ V (G)} as the set of vertex
colors and CE := CE(G,χ) := {χ(v, w) | vw ∈ E(G)} as the set of edge colors. For a vertex color
c ∈ CV (G,χ), we define Vc := Vc(G,χ) := {v ∈ V (G) | χ(v, v) = c} as the set of all vertices with
color c. Similar, for an edge color c ∈ CE(G,χ), we define Ec := Ec(G,χ) := {v1v2 ∈ E(G) |
χ(v1, v2) = c}. Let C ⊆ CE be a set of edge colors. We define the graph G[C] with vertex set

V (G[C]) :=
⋃
c∈C

⋃
e∈Ec

e and E(G[C]) :=
⋃
c∈C

Ec. (3)

Let A1, . . . , A` be the vertex sets of the connected components of G[C]. We also define the
graph G/C as the graph obtained from contracting every set Ai to a single vertex. Formally, we
set

V (G/C) := {{v} | v ∈ V (G) \ V (G[C])} ∪ {A1, . . . , A`} and
E(G/C) := {X1X2 | ∃v1 ∈ X1, v2 ∈ X2 : v1v2 ∈ E(G)}.

(4)

Observe that G/C is a minor of G for every set of edge colors C ⊆ CE . We usually only consider
the case C = {c}, and we write G[c] and G/c instead of G[{c}] and G/{c}.

Lemma 4.6 ([36, Section I]). Let G be a graph and C ⊆ CE be a set of edge colors. Define

(χ/C)(X1, X2) := {{χ(v1, v2) | v1 ∈ X1, v2 ∈ X2}}

for all X1, X2 ∈ V (G/C). Then χ/C is a stable coloring of the graph G/C with respect to the
2-dimensional Weisfeiler-Leman algorithm.

Moreover, for all X1, X2, X
′
1, X

′
2 ∈ V (G/C), either it holds (χ/C)(X1, X2) = (χ/C)(X ′1, X

′
2)

or (χ/C)(X1, X2) ∩ (χ/C)(X ′1, X
′
2) = ∅.

For a more recent reference we also point the reader to [8, Theorem 3.1.11]. As before, if
C = {c}, we write χ/c instead of χ/{c}.

For every edge color c, the endvertices of all c-colored edges have the same vertex colors,
that is, for all edges vw, v′w′ ∈ E(G) with χ(v, w) = χ(v′, w′) = c we have χ(v, v) = χ(v′, v′)
and χ(w,w) = χ(w′, w′). This implies 1 ≤ |CV (G[c], χ)| ≤ 2. We say that G[c] is unicolored if
|CV (G[c], χ)| = 1. Otherwise G[c] is called bicolored.

The basic strategy for the proof of Theorem 4.2 is to color the input graph with the coloring
χ computed by the 2-dimensional Weisfeiler-Leman algorithm. The goal is to find a color class
X = Vd (for some vertex color d) such that X ⊆ cl

(G,χ)
t (v) for every v ∈ X. We prove the

existence of such a color class by a complicated case distinction depending on which types of

20

graphs G[c] occur within the graph G. For example, a simple case is that there is a unicolored
graph G[c] that is connected. Note that G[c] is r-regular for some number r ≥ 1, and r ≤
ah
√

log h by Theorem 2.1. So we can choose X = V (G[c]) since the closure always contains
bounded-degree components (of some edge color) assuming at least one vertex of the component
is individualized.

For the other cases, the proof turns out to be significantly more complicated. Here, we also
need to rely on recursive approaches. A first, simple idea is that in certain cases, we are able to
distinguish between some vertices that receive the same color from the 2-dimensional Weisfeiler-
Leman algorithm. In this case, we update the coloring χ accordingly (in an isomorphism-
invariant way) and restart the entire algorithm using the updated, finer coloring.

A second idea that is used in our algorithm is to consider an edge color c, recursively obtain
a set X ′ for the graph G/c, and then construct the set X from X ′. This approach is actually
the reason why Theorem 4.2 provides a pair-colored graph (G′, χ′): we need to ensure that G/c
is a subgraph of G′ so that properties for the closure can be lifted from G/c to G′.

Let us now dive into the technical details of the proof. The next two lemmas investigate
properties of connected components of bicolored graphs G[c] for an edge color c. In particular,
we show that if G[c] is a bicolored connected graph with vertex color classes Vd1 and Vd2 , then
there is i ∈ {1, 2} such that Vdi ⊆ cl

(G,χ)
t (v) for every v ∈ Vdi . Again, recall the definition of the

constant a from Theorem 2.1.

Lemma 4.7. Let G = (V1, V2, E) be a connected, bipartite graph that excludes Kh as a minor
and define χ := χ2

WL[G]. Suppose that χ(v1, v2) = χ(v′1, v
′
2) for all (v1, v2), (v′1, v

′
2) ∈ V1×V2 with

v1v2, v
′
1v
′
2 ∈ E. Also assume that |V2| > (ah

√
log h) · |V1|. Let

E∗ :=

{
v1v
′
1 ∈

(
V1

2

) ∣∣∣∣ ∃v2 ∈ V2 : v1v2, v
′
1v2 ∈ E(G)

}
.

Then there are colors c1, . . . , cr ∈ χ(V 2
1) such that

1. E∗ =
⋃
i∈[r]Eci where Eci := {w1w2 ∈ V (G)2 | χ(w1, w2) = ci},

2. H := (V1, E
∗) is connected, and

3. Hi is a minor of G for all i ∈ [r] where Hi = (V1, Eci).

Proof. Clearly, H is connected because G is connected. Since χ(v1, v2) = χ(v′1, v
′
2) for all

(v1, v2), (v′1, v
′
2) ∈ V1 × V2 with v1v2, v

′
1v
′
2 ∈ E, it follows that χ(v1, v1) = χ(v′1, v

′
1) for all

v1, v
′
1 ∈ V1, and χ(v2, v2) = χ(v′2, v

′
2) for all v2, v

′
2 ∈ V2. So G is biregular which implies that

deg(v1) · |V1| = |E| = deg(v2) · |V2| for all v1 ∈ V1 and v2 ∈ V2. Since |V2| > |V1| we conclude
that deg(v1) 6= deg(v2), and hence χ(v1, v1) 6= χ(v2, v2) for all v1 ∈ V1 and v2 ∈ V2. All
together, this means that there is some vertex color d ∈ CV such that Vd(G,χ) = V1. Since the
2-dimensional Weisfeiler-Leman algorithm distinguishes pairs of distinct vertices with a common
neighbor from other pairs of vertices, we conclude that there are colors c1, . . . , cr ∈ χ(V 2

1) such
that E∗ =

⋃
i∈[r]Eci .

So fix some i ∈ [r] and consider the bipartite graph B = (V2, Eci , E(B)) where E(B) :=
{(v2, v1v

′
1) | v2 ∈ NG(v1) ∩ NG(v′1)}. By the properties of the 2-dimensional Weisfeiler-Leman

algorithm the graph B is biregular. So it follows from Hall’s Marriage Theorem that B contains
a matching M of size min(|V2|, |Eci |) as explained in the preliminaries.

If |V2| ≥ |Eci | then each pair v1v
′
1 ∈ Eci is matched to a vertex v2 ∈ V2 (i.e., (v2, v1v

′
1) ∈M)

such that v1v2, v
′
1v2 ∈ E(G). It follows that Hi is a minor of G.

Otherwise |V2| < |Eci |. Let Fi ⊆ Eci be those vertices that are matched by the matching
M in the graph B. Then H ′i = (V1, Fi) is a minor of G, and thus it excludes Kh as a minor.
However,

1

|V (H ′i)|
∑

v1∈V (H′i)

degH′i(v1) =
2|Fi|
|V1|

=
2|V2|
|V1|

> 2ah
√

log h

21

which contradicts Theorem 2.1.

Lemma 4.8. Let t ≥ (ah
√

log h)2. Let G = (V1, V2, E) be a connected bipartite graph that
excludes Kh as a minor and define χ := χ2

WL[G]. Suppose that χ(v1, v2) = χ(v′1, v
′
2) for all

(v1, v2), (v′1, v
′
2) ∈ V1×V2 with v1v2, v

′
1v
′
2 ∈ E. Also assume that |V1| ≤ |V2|. Then V1 ⊆ cl

(G,χ)
t (v)

for all v ∈ V1 ∪ V2.

Proof. The graph G is biregular and it holds that deg(v1) · |V1| = deg(v2) · |V2| for all v1 ∈ V1 and
v2 ∈ V2. Hence, deg(v2) ≤ ah

√
log h for all v2 ∈ V2 by Theorem 2.1. This means cl

(G,χ)
t (v)∩V1 6=

∅, because either v ∈ cl
(G,χ)
t (v) ∩ V1 or v ∈ V2 and NG(v) ⊆ cl

(G,χ)
t (v) ∩ V1.

First suppose that |V2| ≤ (ah
√

log h) · |V1|. Then deg(v1) = deg(v2) |V2|
|V1| ≤ t and deg(v2) ≤ t

for all v1 ∈ V1, v2 ∈ V2. It follows that cl
(G,χ)
t (v) = V (G).

So assume that |V2| > ah
√

log h|V1|. By Lemma 4.7, there are colors c1, . . . , cr ∈ χ(V 2
1) such

that

1. Hi excludes Kh as a minor for all i ∈ [r] where Hi = (V1, Eci) and Eci := {v1v2 ∈ V (G)2 |
χ(v1, v2) = ci}, and

2. H = (V1,
⋃
i∈[r]Eci) is connected.

Note for all i ∈ [r], the graph Hi is d-regular for some d, and by Theorem 2.1 we have d ≤
ah
√

log h ≤ t. This implies that V1 ⊆ cl
(G,χ)
t (v1) for all v1 ∈ V1, and since V1 ∩ cl

(G,χ)
t (v) 6= ∅ for

all v ∈ V1 ∪ V2, it follows that V1 ⊆ cl
(G,χ)
t (v).

Let A be the vertex set of a connected component of G[c]. We define a size parameter for
the graph G[c] as

s(c) := min
d∈CV (G[c],χ)

|A ∩ Vd|.

Note that this is well-defined since every two connected components of G[c] are equivalent with
respect to the 2-dimensional Weisfeiler-Leman algorithm (since the 2-dimensional Weisfeiler-
Leman algorithm “detects” components of graphs).

Proof of Theorem 4.2. First observe that t ≥ max{(ah
√

log h)2, ah3, 3h3} (recall that we as-
sumed a ≥ 2). Let χ := χ2

WL[G] be the coloring computed by the 2-dimensional Weisfeiler-Leman
algorithm for the graph G. The algorithm works recursively and essentially distinguishes be-
tween two cases (but for both cases there are several subcases). Also, in some situations, the
algorithm may find an isomorphism-invariant vertex-coloring χV that is strictly finer than the
one induced by χ. In this case, the algorithm is always restarted on the current graph and the
coloring χ is updated accordingly (by running the 2-dimensional Weisfeiler-Leman algorithm on
G with vertex-coloring χV). Note that such a restart can only occur at most n times where n
denotes the number of vertices of G.

The algorithm distinguishes between two cases depending on whether there is an edge color
cE ∈ CE := CE(G,χ) such that s(cE) ≤ ah3 where a is the constant from Theorem 2.1.

In the first case, we assume that such a color exists. We choose an edge color cE ∈ CE such
that s(cE) ≤ ah3 and define F := G/cE (recall Equation (4) for the definition; to ensure that
the color in CE is chosen in an isomorphism-invariant way, the algorithm chooses the smallest
color in CE ⊆ N according to the ordering of natural numbers). The algorithm recursively
computes an isomorphism-invariant graph (F ′, χ′F) and a vertex color cF ∈ CV (F ′, χ′F) that
satisfies Properties 2 and 3 for the input graph F . (If F contains a minor Kh, then G also
contains a minor Kh since F is a minor of G.) If VcF ⊆ V (G), then the algorithm simply returns
(F ′, χ′F) and the color cF .

22

Otherwise, VcF ∩ {A1, . . . , A`} 6= ∅ where A1, . . . , A` are the vertex sets of the connected
components of G[cE]. Let d := argmind∈CV (G,χ),Ai∩Vd 6=∅ |Ai ∩ Vd| for some i ∈ [`]. This means
s(cE) = |Ai ∩ Vd|. The algorithm constructs G′ where

V (G′) := V (F ′)]
⋃

A∈V
cF
∩{A1,...,A`}

(A ∩ Vd)

and
E(G′) := E(F ′) ∪ {Av | A ∈ VcF ∩ {A1, . . . , A`}, v ∈ A ∩ Vd}.

Also, χ′(v, w) := (χ′F (v, w), 0) for every v, w ∈ V (F ′), χ′(w, v) = χ′(v, w) := (1, 1) for all distinct
v ∈ V (G′), w ∈ V (G′) \ V (F ′), and χ′(v, v) := c := (0, 1) for every v ∈ V (G′) \ V (F ′). Clearly,
(G′, χ′) is constructed in an isomorphism-invariant manner. The algorithm returns (G′, χ′)

together with the vertex color c. By definition, Vc ⊆ Vd ⊆ V (G). Moreover, Vc ⊆ cl
(G′,χ′)
t (v) for

all v ∈ Vc since |NG′(Ai) ∩ Vc| ≤ |Ai ∩ Vd| = s(cE) ≤ ah3 for all Ai ∈ VcF . This completes the
first case.

In the second case, s(cE) > ah3 for every edge color cE ∈ CE . If |V (G)| = 1, the problem is
trivial. Otherwise, let c := argminc∈CV |Vc| be the color of the smallest color class (if this color
is not unique, then the algorithm chooses the smallest color in CV ⊆ N with minimal color class
size).

Now let cE ∈ CE be an edge color defined in such a way that either Vc = V (G[cE]), or
Vc ⊆ V (G[cE]) and there is no edge color cE2 such that Vc = V (G[cE2]).

First suppose that G[cE] is connected. If G[cE] is unicolored, then Vc ⊆ cl
(G,χ)
t (v) for every

v ∈ Vc by Theorem 2.1. So suppose that G[cE] is bicolored. Let c′ ∈ CV be the second vertex
color that appears in G[cE], i.e., Vc ∪ Vc′ = V (G[cE]). Note that G[cE] is a bipartite graph with
bipartition (Vc, Vc′) and |Vc| ≤ |Vc′ |. So Vc ⊆ cl

(G,χ)
t (v) for every v ∈ Vc by Lemma 4.8. In this

case, we are done and return (G,χ) together with the vertex color c.
So assume that G[cE] is not connected and let A1, . . . , A` be the vertex sets of the connected

components of G[cE]. Note that |Ai ∩ Vc| = s(cE) > ah3. Now let i ∈ [`] and v ∈ Ai. Then
Ai∩Vc ⊆ cl

(G,χ)
t (v) by Lemma 4.8. In particular, cl

(G,χ)
t (v1) = cl

(G,χ)
t (v2) for all v1, v2 ∈ Ai∩Vc.

Let Di := cl
(G,χ)
t (v) for some v ∈ Ai ∩ Vc, i ∈ [`].

Without loss of generality assume that |Di ∩ Vc′ | = |Dj ∩ Vc′ | for all i, j ∈ [`] and c′ ∈ CV .
(Otherwise define χV (v) := (χ(v, v), 0) for all v ∈ V (G) \ Vc and χV (v) := (χ(v, v), (|Di ∩
Vc′ |)c′∈CV) for all v ∈ Ai ∩ Vc and i ∈ [`]. Then χV is isomorphism-invariant and strictly refines
the vertex-coloring induced by χ, and the algorithm is restarted as discussed above.) Note that
for every i, i′ ∈ [`] it holds that

Ai′ ∩Di 6= ∅ =⇒ Ai′ ∩ Vc ⊆ Di (5)

by Lemma 4.8.
Let R := {(i, i′) ∈ [`] | Ai′ ∩ Vc ⊆ Di}. Clearly, R is reflexive and transitive.

Claim 4.3. If R is not symmetric, one can compute in polynomial time an isomorphism-invariant
vertex-coloring χV that is strictly finer than the one induced by χ.

Proof. Since R is not symmetric, there are distinct i, i′ ∈ [`] such that (i, i′) ∈ R and (i′, i) /∈ R.
Now, consider the directed graph ([`], R) (ignoring self-loops). Since R is transitive it follows
that ([`], R) is not strongly connected. Let M ⊆ [`] denote the set of those vertices that appear
in a maximal strongly connected component of ([`], R) (i.e., a strongly connected component
without outgoing edges). Also, letMc :=

⋃
i∈M Ai∩Vc. Clearly,Mc is defined in an isomorphism-

invariant manner and ∅ 6= Mc (Vc. We define χV (v) := (χ(v, v), 0) for all v ∈ V (G) \Mc and
χV (v) := (χ(v, v), 1) for all v ∈ Mc. It is easy to see that all objects can be computed in
polynomial time. y

23

Vc

A1 A2 A3 A4 A5 A6

D1 = D2 D3 = D4 D5 = D6

G[cE]

G− Vc

Figure 6: Visualization of the proof in the case s(cE) ≥ ah3 (this condition is omitted for visual-
ization purposes). The figure shows the part G[cE] with six connected components A1, . . . , A6.
Moreover, D1 = D2, D3 = D4 and D5 = D6, and A1 = {1, 2}, A2 = {3, 4} and A3 = {5, 6}.

With the last claim in mind, we may assume that R is symmetric (otherwise the algorithm
is restarted). So overall, R is an equivalence relation. Let A1, . . . ,Ar be the equivalence classes
of R. If r = 1, then Vc ⊆ Di for all i ∈ [`] and the algorithm returns (G,χ) together with the
vertex color c.

Hence, assume that r ≥ 2. This is visualized in Figure 6. Note that Di = Di′ for all
(i, i′) ∈ R. The rest of the proof is devoted to computing a vertex-coloring that is strictly finer
than the one induced by χ (which results again in a restart).

A partition P = {P1, . . . , Pq} of the set [`] refines the partition {A1, . . . ,Ar}, denoted
P � {A1, . . . ,Ar}, if for every j ∈ [q] there is some i ∈ [r] such that Pj ⊆ Ai.
Claim 4.4. There is a partition P = {P1, . . . , Pq} � {A1, . . . ,Ar} and a graph GP = (P, EP)
such that GP is a minor of G and there are distinct i, i′ ∈ [r] and P, P ′ ∈ P such that P ⊆ Ai,
P ′ ⊆ Ai′ and PP ′ ∈ EP . Moreover, the partition P and the graph GP are isomorphism-invariant
and can be computed in polynomial time.

Proof. We first construct an inclusionwise maximal set of edge colors C∗ ⊆ CE(G,χ) such that

(a) cE ∈ C∗, and

(b) for every connected component B of G[C∗] there is some i ∈ [`] such that Ai ⊆ B and
B ∩ Vc ⊆ Di.

Observe that such a set C∗ can easily be constructed by a greedy algorithm that initially sets
C∗ := {cE} and keeps adding colors as long as Condition (b) is satisfied. To ensure isomorphism-
invariance, the greedy algorithm always adds the smallest color in CE(G,χ) \C∗ ⊆ N that does
not violate Condition (b).

Now let B1, . . . , Bq denote the connected components of G[C∗]. We define Pj := {i ∈ [`] |
Ai ⊆ Bj}. Let P := {P1, . . . , Pq}. Clearly, P is a partition of [`]. Also P � {A1, . . . ,Ar} by
Condition (b).

To define the graph GP we associate the elements of P with the sets B1, . . . , Bq. Consider
the graph F := G/C∗ and let χF := χ/C∗ as defined in Lemma 4.6. Note that χF is stable with
respect to the 2-dimensional Weisfeiler-Leman algorithm for the graph F by Lemma 4.6.

Let cF ∈ CE(F, χF) be an edge color such that {B1, . . . , Bq} ⊆ V (F [cF]). Note that such
an edge color exists since F is connected and q ≥ r > 1.

Case F [cF] is unicolored: We set

EP :=

{
PjPj′ ∈

(
P
2

) ∣∣∣∣ χF (Bj , B
′
j) = cF

}
.

24

Clearly, GP is isomorphic to F [cF] and hence, it is a minor of G. Also, there are distinct
i, i′ ∈ [r] and P, P ′ ∈ P such that P ⊆ Ai, P ′ ⊆ Ai′ and PP ′ ∈ EP by the maximality of
the set C∗.

Case F [cF] is bicolored: Let U := V (F [cF])\{B1, . . . , Bq}. Note that |U | ≥ |Vc| ≥ `ah3 ≥ qah3,
because Vc is a color class of G of minimum size. We define

E+
P :=

{
PjPj′ ∈

(
P
2

) ∣∣∣∣ ∃u ∈ U : χF (Bj , u) = χF (Bj′ , u) = cF

}
.

Again, there are distinct i, i′ ∈ [r] and Pj , Pj′ ∈ P such that Pj ⊆ Ai, Pj′ ⊆ Ai′ and
PjPj′ ∈ E+

P by the maximality of the set C∗.

Finally, to obtain a minor of G, we further thin out the set E+
P by keeping only those pairs

that have the same color as (Pj , Pj′). Formally, we define

EP :=

{
Pj′′Pj′′′ ∈

(
P
2

) ∣∣∣∣ χF (Bj′′ , Bj′′′) = χF (Bj , Bj′)

}
.

Then GP is a minor of G by Lemma 4.7 which is applicable since |U | ≥ qah3.

y

Now let P = {P1, . . . , Pq} and GP = (P, EP) be the objects computed in Claim 4.4. If GP
is not regular, then the algorithm computes an isomorphism-invariant refinement of the coloring
χ. (Actually, this case does not occur by the properties of the 2-dimensional Weisfeiler-Leman
algorithm). Hence, degGP (Pj) ≤ ah

√
log h for all j ∈ [q] by Theorem 2.1.

Let Zi1, . . . , Ziki be the connected components of G − Di. If there are i, i′ ∈ [`] such that
ki 6= ki′ , then the algorithm computes the vertex-coloring χV defined by χV (v) := (χ(v, v), ki)
for all v ∈ Ai ∩ Vc and i ∈ [`] and χV (v) := (χ(v, v), 0) for all v ∈ V (G) \ Vc. Then χV strictly
refines the vertex-coloring induced by χ and the algorithm is restarted.

So suppose k := ki = ki′ for all i, i′ ∈ [`]. Then |NG(Zij)| < h by Theorem 4.1 for all j ∈ [k].
Moreover, it holds that

Ai′ ∩ Vc ∩ Zij 6= ∅ ⇐⇒ Ai′ ⊆ Zij (6)

for all i′ ∈ [`] and j ∈ [k] by Equation (5). Let

ẼP := {(Di, Ai′) | i′ ∈ Pj′ , i ∈ Pj , PjPj′ ∈ EP}.

For each i′ ∈ [`] there are at most (ah
√

log h) many distinct sets D ∈ {D1, . . . , D`} such that
(D,Ai′) ∈ ẼP . This implies |ẼP | ≤ `ah

√
log h. We define

Q :=
{

(D, j) ∈ {D1, . . . , D`} × [k]
∣∣∣ ∃i′ ∈ [`] : (D,Ai′) ∈ ẼP ∧Ai′ ⊆ Zij

}
.

Note that Q 6= ∅ by Claim 4.4 and that |Q| ≤ |ẼP | ≤ `ah
√

log h by Equation (6). Now pick
d ∈ CV ⊆ N to be the smallest (according to the ordering of the natural numbers) vertex color
such that

X :=
⋃

(Di,j)∈Q

NG(Zij) ∩ Vd(G,χ)

is not the empty set. Then
0 < |X| < `ah2

√
log h ≤ |Vc|.

Since X is defined in an isomorphism-invariant manner and Vc forms the smallest vertex color
class, this allows us to refine the coloring χ by taking membership in X into account.

This completes the description of the algorithm. Clearly, the running time is polynomially
bounded in the input size. Also, the correctness follows from the arguments provided throughout
the description of the algorithm.

25

Si

Xi

Di

Zi,1

Zi,2

Zi,3

Si,1

Zi,4

Si,4

Zi,7

Zi,6

Zi,5

Si,5

Hi,P2

Hi,P1 Hi,P3

Figure 7: Visualization of the graph decomposition.

5 Isomorphism Test for Graphs Excluding a Minor

Having presented the key technical tools in the previous section, we are now ready to describe
our isomorphism test for graph classes that exclude Kh as a minor.

Theorem 5.1. Let h ∈ N. There is an algorithm that, given two connected vertex-colored
graphs G1, G2 with n vertices, either correctly concludes that G1 has a minor isomorphic to Kh

or decides whether G1 is isomorphic to G2 in time nO((log h)c) for some absolute constant c.

Proof. We present a recursive algorithm that, given two vertex-colored graphs (G1, χ1) and
(G2, χ2) and a color c0 such that for Si := χ−1

i (c0) it holds that |Si| < h and Gi − Si is
connected for i = 1, 2, either correctly concludes that G1 has a minor isomorphic to Kh or
computes a representation for Iso((G1, χ1), (G2, χ2))[S1]. The color c0 does not have to be in
the range of the χi (we set χ−1

i (c0) = ∅ in this case). Thus initializing it with a color c0

not in the range, we have |Si| = 0 < h, in which case the algorithm simply decides whether
Iso((G1, χ1), (G2, χ2)) 6= ∅, that is, decides whether (G1, χ1) and (G2, χ2) are isomorphic. (For
S1 = S2 = ∅, we define Iso((G1, χ1), (G2, χ2))[S1] to contain the empty mapping if (G1, χ1) and
(G2, χ2) are isomorphic, in the other case Iso((G1, χ1), (G2, χ2))[S1] is empty.)

So let (G1, χ1) and (G2, χ2) be the vertex-colored input graphs, and let c0 be a color such
that |Si| < h. Let t := da2h3 log he ∈ O(h3 log h) (as before, a denotes the constant from
Theorem 2.1). The algorithm first applies Theorem 4.2 to the graph Gi and the parameter t.
This results in a pair-colored graph (G′i, χ

′
i), a color ci ∈ {χ′i(v, v) | v ∈ V (G′i)} and a subset

Xi = {v ∈ V (G′i) | χ′i(v, v) = ci} ⊆ V (Gi) for both i ∈ {1, 2}, or the algorithm correctly
concludes that one of the graphs has a minor isomorphic to Kh. If c1 6= c2 or a minor is detected
in only one graph, then the input graphs are non-isomorphic. So suppose that c := c1 = c2.
Then Xϕ

1 = X2 for every ϕ ∈ Iso(G1, G2) by Theorem 4.2.
Now let Di := clGit (Xi). Note that Dϕ

1 = D2 for every ϕ ∈ Iso(G1, G2). Also observe that
Si ⊆ Di since |Si| = |χ−1

i (c0)| < h ≤ t. Let Zi,1, . . . , Zi,k be the vertex sets of the connected
components of Gi−Di and define Zi := {Zi,1, . . . , Zi,k} (if the number of connected components
differs in the two graphs then they are non-isomorphic). See Figure 7 for a visualization.

If k = 1 and |Di| < h, then the algorithm proceeds as follows. First, the coloring χi,
i ∈ {1, 2}, is updated to take membership in the set Di into account, i.e., χi(v) is replaced
by χi(v) := (χi(v), 1) if v ∈ Di and χi(v) := (χi(v), 0) if v ∈ V (Gi) \ Di. Afterwards, the
algorithm computes a set X1

i according to the above procedure with respect to the input graphs

26

G1
i := Gi −Di. Let D1

i := cl
(Gi,χi)
t (X1

i) be the closure of X1
i in the graph Gi (rather than G1

i).
Then D1

i ⊇ Di since |Di| < h ≤ t. Moreover, D1
i) Di since X1

i ⊆ D1
i and ∅ 6= X1

i ⊆ V (G1
i).

This procedure is repeated until |Dj∗

i | ≥ h, or k ≥ 2, or k = 0 for some j∗ ≥ 1.
So without loss of generality suppose that |Di| ≥ h, k ≥ 2 or k = 0. If k = 0 and |Di| < h,

then V (Gi) = Di and therefore |V (Gi)| < h, and the statement of the theorem can directly be
obtained from Babai’s quasipolynomial time isomorphism test [2] since both graphs have size at
most h− 1.

In the following, suppose that k ≥ 2 or |Di| ≥ h. Let Si,j := NGi(Zi,j) for all j ∈ [k]
and i ∈ {1, 2}. Note that |Si,j | < h by Theorem 4.1. Finally, define Hi,j := G[Zi,j ∪ Si,j] and
χHi,j : V (Hi,j)→ C × {0, 1} to be the vertex-coloring defined by

χHi,j(v) :=

{
(χi(v), 1) if v ∈ Zi,j ,
(χi(v), 0) otherwise

for all j ∈ [k] and both i ∈ {1, 2}. For each pair j1, j2 ∈ [k] and i1, i2 ∈ {1, 2} we compute the
set of isomorphisms

Φi1,i2
j1,j2

:= Iso((Hi1,j1 , χi1,j1), (Hi2,j2 , χi2,j2))[Si1,j1]

recursively.

For both i ∈ {1, 2} we define an equivalence relation ∼i on [k] via j1 ∼i j2 if and only
if Si,j1 = Si,j2 for j1, j2 ∈ [k]. Let Pi := {Pi,1, . . . , Pi,p} be the corresponding partition into
equivalence classes (as visualized in Figure 7). For each Pi ∈ Pi let Si,Pi := Si,j for some
j ∈ Pi. (By definition, Si,Pi does not depend on the choice of j ∈ Pi.) Also, define Hi,Pi :=
Gi[(

⋃
j∈Pi Zi,j) ∪ Si,Pi] and let χHi,Pi be the coloring defined by

χHi,Pi(v) :=

{
(χi(v), 0) if v ∈ Si,Pi ,
(χi(v), 1) otherwise

for all v ∈ V (Hi,Pi). For each i1, i2 ∈ {1, 2} and P1 ∈ Pi1 and P2 ∈ Pi2 the algorithm computes

Φi1,i2
P1,P2

:= Iso((Hi1,P1 , χ
H
i1,P1

), (Hi2,P2 , χ
H
i2,P2

))[Si1,P1]

as follows. Without loss of generality assume that P1 ∈ P1 and P2 ∈ P2. We formulate
the isomorphism problem between (H1,P1 , χ

H
1,P1

) and (H2,P2 , χ
H
2,P2

) as an instance of multiple-
labeling-coset isomorphism. We define another equivalence relation ' on P1] P2 via

j1 ' j2 ⇔ Φi1,i2
j1,j2
6= ∅

where j1 ∈ Pi1 and j2 ∈ Pi2 .
Again, we partition P1] P2 = Q1 ∪ . . . ∪ Qq into the equivalence classes of the relation '.

For each equivalence class Qj we fix one representative j∗ ∈ Qj and pick i∗ ∈ {1, 2} such that
j∗ ∈ Pi∗ . Let λj∗ : Si∗,Pi∗ → [|SPi∗ |] be an arbitrary bijection.

Let i ∈ {1, 2}, ji ∈ Pi ∩ Qj and define ρjiΓji := Φi,i∗

ji,j∗
λj∗ . Moreover, we define Xi,Pi :=

(Si,Pi , Li,Pi , pi,Pi) where
Li,Pi := {ρjiΓji | ji ∈ Pi}

and
pi,Pi(ρjiΓji) := {{j | j′i ∈ Pi ∩Qj and ρjiΓji = ρj′iΓj′i}}

(for each j′i such that ρjiΓji = ρj′iΓj′i the element j is added to the multiset where j′i ∈ Pi ∩Qj).

Claim 5.1. Φ1,2
P1,P2

= Iso(X1,P1 ,X2,P2).

27

Proof. Let ϕ ∈ Iso((H1,P1 , χ
H
1,P1

), (H2,P2 , χ
H
2,P2

)) and let σ : P1 → P2 be the unique bijection such
that Zϕ1,j = Z2,σ(j) for all j ∈ P1. Let j1 ∈ P1 and consider the labeling coset ρj1Γj1 ∈ L1,P1 .
Let j2 := σ(j1). Then j1 ' j2 since ϕ[Z1,j1] ∈ Iso((H1,j1 , χ1,j1), (H2,j2 , χ2,j2)). Let j∗ = j∗1 = j∗2
be the representative from the equivalence class containing j1 and j2 and pick i∗ ∈ {1, 2} such
that j∗ ∈ Pi∗ . Then

ϕ[S1,j1]Φ2,i∗

j2,j∗
= Φ1,i∗

j1,j∗
.

Since λj1∗ = λj∗2 , this implies that (ϕ[S1,j1])−1ρj1Γj1 = ρj2Γj2 and, since the above statement
holds for all j1 ∈ P1, it also means that p1,P1(ρj1Γj1) = p2,P2(ρj2Γj2) (i.e., equality between
labeling cosets is preserved by the mapping σ).

For the backward direction let ϕ ∈ Iso(X1,P1 ,X2,P2). This means, there is a bijection σ : P1 →
P2 such that

(a) j1 ' σ(j1), and

(b) ϕ−1ρj1Γj1 = ρσ(j1)Γσ(j1)

for all j1 ∈ P1. This means that, for every j1 ∈ P1, it holds that ϕ ∈ Φ1,2
j1,j2

. But this implies
that ϕ ∈ Φ1,2

P1,P2
. y

Hence, Φ1,2
P1,P2

can be computed using Theorem 3.6. Next, the algorithm turns to computing
Iso((G1, χ1, v1), (G2, χ2, v2))[D1] from the sets Φi1,i2

P1,P2
, i1, i2 ∈ {1, 2} and P1 ∈ Pi1 , P2 ∈ Pi2 .

Let v1 ∈ X1 be an arbitrary vertex. For all v2 ∈ X2 the algorithm computes a representation
of all isomorphisms ϕ ∈ Iso((G1, χ1), (G2, χ2))[D1] such that ϕ(v1) = ϕ(v2) as described below.
The output of the algorithm is the union of all these isomorphisms iterating over all v2 ∈ X2.
Additionally, all mappings are restricted to S1 (recall that S1 ⊆ D1).

Let D′i := cl
(G′i,χ

′
i)

t (vi) for vi ∈ Xi (and recall that Di = clGt (Xi)). The algorithm first
computes a Γ̂t-group Γ ≤ Sym(D′1) and a bijection γ : D′1 → D′2 such that

Iso((G′1, χ
′
1, v1), (G′2, χ

′
2, v2))[D′1] ⊆ Γγ

using Theorem 3.8. Note that Xi ⊆ D′i by Theorem 4.2. For ease of notation define Λ := Γγ[X1]

(observe that Xγ′

1 = X2 for all γ′ ∈ Γγ). In a second step, the algorithm computes another
Γ̂t-group ∆ ≤ Sym(D1) and a bijection δ : D1 → D2 such that

Iso((G1, χ1, v1), (G2, χ2, v2))[D1]

= {ϕ ∈ Iso((G1, χ1), (G2, χ2)) | ϕ[X1] ∈ Λ}[D1]

⊆ ∆δ

again using Theorem 3.8.
To compute the set of isomorphisms, we now formulate the isomorphism problem between

(G1, χ1, v1) and (G2, χ2, v2) as an instance of coset-labeled hypergraph isomorphism. Let Hi :=
(Di, Ei, pi) where

Ei := E(Gi[Di]) ∪ {Si,Pi | Pi ∈ Pi} ∪ {{v} | v ∈ Di}.

The function pi is defined separately for all three parts of the set Ei (if an element occurs in
more than one set of the union, the colors defined with respect to the single sets are combined
by concatenating them in a tuple).

For an edge vw ∈ E(Gi[Di]) we define pi(vw) := (ρv,w Sym([2]), 0) with the bijection
ρv,w : {v, w} → {1, 2} where ρv,w(v) = 1 and ρv,w(w) = 2.

In order to define pi for sets Si,Pi , Pi ∈ Pi, we first define an equivalence relation ≈ on the
disjoint union P1] P2 where P ≈ Q if Iso((Hi1,P , χ

H
i1,P

), (Hi2,Q, χ
H
i2,Q

)) 6= ∅ for P ∈ Pi1 and
Q ∈ Pi2 . Let Q1, . . . ,Qr be the equivalence classes. For each equivalence class Qj we fix one

28

representative Q∗j ∈ Qj and pick i∗ ∈ {1, 2} such that Q∗j ∈ Pi∗ . Let ρQ∗j : SQ∗j → [|SQ∗j |] be an
arbitrary bijection. Let i ∈ {1, 2}, Pi ∈ Pi ∩Qj and define

ρi,PiΓi,Pi := Iso((Hi,Pi , χ
H
i,Pi), (Hi∗,Q∗j

, χHi∗,Q∗j))[Si,Pi]ρQ
∗
j
.

Now, for Pi ∈ Pi ∩Qj , we define

pi(Si,Pi) := (ρi,PiΓi,Pi , j).

(Intuitively speaking, each separator Si,Pi is associated with a color j and a labeling coset
ρi,PiΓi,Pi . The color j encodes the isomorphism type of the graph Hi,Pi whereas the label-
ing coset determines which mappings between separators extend to isomorphisms between the
corresponding graphs below the separators.)

Finally, for v ∈ Di, we define pi(v) := (v 7→ 1, χi(v) + r) (recall that r denotes the number
of equivalence classes Q1, . . . ,Qr). Then

Iso((G1, χ1, v1), (G2, χ2, v2))[D1] = Iso∆δ(H1,H2)

which can be computed in the desired time by Theorem 3.3.
This completes the description of the algorithm. The correctness follows from the statements

made throughout the description of the algorithm. So it remains to analyze the running time.
First observe that the number of recursive calls the algorithm performs is at most quadratic

in the number of vertices of the input graphs. One way to see this is to associate vertices from
Di \ Si with the graph Gi, and observe that every vertex can be associated with at most one
subgraph of the original input graph Gi considered in some recursive call. So the number of
subgraphs of Gi considered in recursive calls is at most the number of vertices, which means
that the total number of recursive calls is at most quadratic in the number of vertices of the
input graphs.

Also, |Pi| ≤ n and |Si,j | < h for both i ∈ {1, 2} and all j ∈ [k]. Hence, the computation
of all sets Φi1,i2

P1,P2
, P1 ∈ Pi1 and P2 ∈ Pi2 , requires time nO((log h)c) by Theorem 3.6. Next, the

algorithm iterates over all vertices v2 ∈ X2 and computes isomorphisms between coset-labeled
hypergraphs using Theorem 3.3. In total, the algorithm from Theorem 3.3 is applied |X2| ≤ n
times and a single execution requires time nO((log h)c). Overall, this gives the desired bound on
the running time.

We remark that, by standard reduction techniques, there is also an algorithm computing a
representation for the set Iso(G1, G2) in time nO((log h)c) assuming G1 excludes Kh as a minor.

We also remark that the proof of the last theorem reveals some insight into the structure of
the automorphism group of a graph that excludes Kh as a minor.

Let G be a graph. A tree decomposition for G is a pair (T, β) where T is a rooted tree and
β : V (T)→ 2V (G) such that

(T.1) for every e ∈ E(G) there is some t ∈ V (T) such that e ⊆ β(t), and

(T.2) for every v ∈ V (G) the graph T [{t ∈ V (T) | v ∈ β(t)}] is non-empty and connected.

The adhesion-width of (T, β) is maxt1t2∈E(T) |β(t1) ∩ β(t2)|.
Let v ∈ V (G). Also, recall that (Aut(G))v = {ϕ ∈ Aut(G) | vϕ = v} denotes the subgroup

of the automorphism group of G that stabilizes the vertex v.

Theorem 5.2. Let G be a graph that excludes Kh as a minor. Then there is an isomorphism-
invariant tree decomposition (T, β) of G such that

1. the adhesion-width of (T, β) is at most h− 1, and

29

2. for every t ∈ V (T) there is some v ∈ β(t) such that (Aut(G))v[β(t)] ∈ Γ̂d for d :=
da2h3 log he.

The theorem readily follows from the same arguments used to prove Theorem 5.1. Indeed,
consider the recursion tree T of the algorithm from Theorem 5.1 on input (G,G) where each
node t ∈ V (T) is associated with the corresponding set β(t) := D1 (see also Figure 7). For
t ∈ V (T) let v ∈ X1 \ S1 ⊆ D1 (recall that S1 = β(s) ∩ β(t) where s is the unique parent node
of t). Then Dγ

1 = D1 for all γ ∈ (Aut(G))v and (Aut(G))v[β(t)] ∈ Γ̂d. Finally, observe that
X1 \ S1 6= ∅ (in a situation where X1 ⊆ S1, it also holds that D1 ⊆ S1 and the algorithm from
Theorem 5.1 would recompute a set X1

i).

6 Conclusion

We presented an isomorphism test for graph classes that exclude Kh as a minor running in
time npolylog(h). The algorithm builds on group-theoretic methods from [26, 38] as well as novel
insights on the isomorphism-invariant structure of graphs excluding the minor Kh.

In a follow-up work [27], the second author could show that most of the results presented
in this work can be extended to graph classes that only exclude Kh as a topological subgraph.
Actually, most of the techniques developed here already extend to classes that only exclude Kh

as a topological subgraph rather than as a minor. In particular, this includes Theorem 4.1.
The only part of our algorithm that exploits closure under taking minors is the subroutine from
Theorem 4.2 which provides the initial set X together with sufficient structural information on
this set. It turns out that this theorem can also be extended to graphs only excluding Kh as a
topological subgraph, but this comes at the price of a much more complicated analysis which
also builds on different tools.

In another related work [15], Schweitzer together with the first and third author of this
paper investigates the structure of automorphism groups of graphs excluding Kh as a minor in
more detail. This work confirms a conjecture of Babai [1] stating that all composition factors
of such groups are cyclic groups, alternating groups, or their size is bounded by f(h) for some
function f . Observe that our structural insights summarized in Theorem 5.2 do not imply such a
statement, since the restrictions only take effect after individualizing some vertex. On the other
hand, Theorem 5.2 provides polynomial bounds on the complexity of the composition factors
(after individualizing some vertex) whereas the bounds from [15] may depend arbitrarily on h.

Yet another recent result related to this work by Lokshtanov et al. [20] shows that the graph
isomorphism problem is also fixed-parameter tractable (i.e., it can be solved in time f(h) · nc)
when parameterized by the Hadwiger number (the maximum h such that Kh is a minor). Note
that our result is independent of this fpt result, because our algorithm is obviously not fpt, but
it also has no exponential dependence on h (in fact, the function f obtained in [20] may not
even be computable). Running times of the form npolylog(k) for parameterized problems with
input size n and parameter k so far seem to be quite specific to the isomorphism problem. It
may be worthwhile to study them more systematically in a broader context. More specifically,
looking at the isomorphism problem, a natural question concerns the existence of isomorphism
algorithms running in time npolylog(k) for other graph parameters. As a concrete example, can
isomorphism of graphs of rank-width k be tested in time npolylog(k)?

References
[1] László Babai. On the abstract group of automorphisms. In Combinatorics (Swansea, 1981), vol-

ume 52 of London Math. Soc. Lecture Note Ser., pages 1–40. Cambridge Univ. Press, Cambridge-New
York, 1981.

[2] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel Wichs
and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

30

of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016.
doi:10.1145/2897518.2897542.

[3] László Babai, Peter J. Cameron, and Péter P. Pálfy. On the orders of primitive groups with restricted
nonabelian composition factors. J. Algebra, 79(1):161–168, 1982. doi:10.1016/0021-8693(82)
90323-4.

[4] László Babai, William M. Kantor, and Eugene M. Luks. Computational complexity and the clas-
sification of finite simple groups. In 24th Annual Symposium on Foundations of Computer Sci-
ence, Tucson, Arizona, USA, 7-9 November 1983, pages 162–171. IEEE Computer Society, 1983.
doi:10.1109/SFCS.1983.10.

[5] László Babai and Eugene M. Luks. Canonical labeling of graphs. In David S. Johnson, Ronald Fagin,
Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou,
Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings of the 15th Annual
ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages
171–183. ACM, 1983. doi:10.1145/800061.808746.

[6] Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper bounds for the
complexity of canonical colour refinement. Theory Comput. Syst., 60(4):581–614, 2017. doi:10.
1007/s00224-016-9686-0.

[7] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.

[8] Gang Chen and Ilia N. Ponomarenko. Lectures on coherent configurations. http://www.pdmi.ras.
ru/~inp/ccNOTES.pdf, 2019.

[9] John D. Dixon and Brian Mortimer. Permutation groups, volume 163 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1996. doi:10.1007/978-1-4612-0731-3.

[10] I. S. Filotti and Jack N. Mayer. A polynomial-time algorithm for determining the isomorphism
of graphs of fixed genus (working paper). In Raymond E. Miller, Seymour Ginsburg, Walter A.
Burkhard, and Richard J. Lipton, editors, Proceedings of the 12th Annual ACM Symposium on
Theory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages 236–243. ACM,
1980. doi:10.1145/800141.804671.

[11] Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with excluded
topological subgraphs. SIAM J. Comput., 44(1):114–159, 2015. doi:10.1137/120892234.

[12] Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomorphism test for graphs of small
degree. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 89–100. IEEE Computer Society,
2018. doi:10.1109/FOCS.2018.00018.

[13] Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An improved isomorphism
test for bounded-tree-width graphs. ACM Trans. Algorithms, 16(3):34:1–34:31, 2020. doi:10.1145/
3382082.

[14] Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded rank width. In
Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1010–1029. IEEE Computer Society,
2015. doi:10.1109/FOCS.2015.66.

[15] Martin Grohe, Pascal Schweitzer, and Daniel Wiebking. Automorphism groups of graphs of bounded
hadwiger number. CoRR, abs/2012.14300, 2020. arXiv:2012.14300.

[16] John E. Hopcroft and Robert Endre Tarjan. Isomorphism of planar graphs. In Raymond E. Miller
and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Com-
putations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, USA, The IBM Research Symposia Series, pages 131–152. Plenum Press, New
York, 1972. doi:10.1007/978-1-4684-2001-2_13.

[17] Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canonization.
In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris Hartmanis on the
Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer New York, New York, NY,
1990. doi:10.1007/978-1-4612-4478-3_5.

31

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1016/0021-8693(82)90323-4
https://doi.org/10.1016/0021-8693(82)90323-4
https://doi.org/10.1109/SFCS.1983.10
https://doi.org/10.1145/800061.808746
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/BF01305232
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
https://doi.org/10.1007/978-1-4612-0731-3
https://doi.org/10.1145/800141.804671
https://doi.org/10.1137/120892234
https://doi.org/10.1109/FOCS.2018.00018
https://doi.org/10.1145/3382082
https://doi.org/10.1145/3382082
https://doi.org/10.1109/FOCS.2015.66
http://arxiv.org/abs/2012.14300
https://doi.org/10.1007/978-1-4684-2001-2_13
https://doi.org/10.1007/978-1-4612-4478-3_5

[18] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree.
Comb., 4(4):307–316, 1984. doi:10.1007/BF02579141.

[19] Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM J. Comput.,
46(1):161–189, 2017. doi:10.1137/140999980.

[20] Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-parameter
tractability of graph isomorphism in graphs with an excluded minor. In Stefano Leonardi and Anu-
pam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, pages 914–923. ACM, 2022. doi:10.1145/3519935.3520076.

[21] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. J.
Comput. Syst. Sci., 25(1):42–65, 1982. doi:10.1016/0022-0000(82)90009-5.

[22] Wolfgang Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann.,
174(4):265–268, 1967. doi:10.1007/BF01364272.

[23] Gary L. Miller. Isomorphism testing for graphs of bounded genus. In Raymond E. Miller, Seymour
Ginsburg, Walter A. Burkhard, and Richard J. Lipton, editors, Proceedings of the 12th Annual
ACM Symposium on Theory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages
225–235. ACM, 1980. doi:10.1145/800141.804670.

[24] Gary L. Miller. Isomorphism of k-contractible graphs. A generalization of bounded valence and
bounded genus. Inf. Control., 56(1/2):1–20, 1983. doi:10.1016/S0019-9958(83)80047-3.

[25] Daniel Neuen. The Power of Algorithmic Approaches to the Graph Isomorphism Problem. PhD
thesis, RWTH Aachen University, Aachen, Germany, 2019. doi:10.18154/RWTH-2020-00160.

[26] Daniel Neuen. Hypergraph isomorphism for groups with restricted composition factors. ACM Trans.
Algorithms, 18(3):27:1–27:50, 2022. doi:10.1145/3527667.

[27] Daniel Neuen. Isomorphism testing for graphs excluding small topological subgraphs. In
Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12,
2022, pages 1411–1434. SIAM, 2022. doi:10.1137/1.9781611977073.59.

[28] Ilia N. Ponomarenko. The isomorphism problem for classes of graphs. Dokl. Akad. Nauk SSSR,
304(3):552–556, 1989.

[29] Ilia N. Ponomarenko. The isomorphism problem for classes of graphs closed under contraction.
Journal of Soviet Mathematics, 55(2):1621–1643, Jun 1991. doi:10.1007/BF01098279.

[30] Neil Robertson and Paul D. Seymour. Graph minors I–XXIII. Journal of Combinatorial Theory,
Series B 1982–2012.

[31] Joseph J. Rotman. An introduction to the theory of groups, volume 148 of Graduate Texts in
Mathematics. Springer-Verlag, New York, fourth edition, 1995. doi:10.1007/978-1-4612-4176-8.

[32] Pascal Schweitzer and Daniel Wiebking. A unifying method for the design of algorithms canonizing
combinatorial objects. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 1247–1258. ACM, 2019. doi:10.1145/3313276.3316338.

[33] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511546549.

[34] Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos.
Soc., 95(2):261–265, 1984. doi:10.1017/S0305004100061521.

[35] Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114(1):570–590, 1937.
doi:10.1007/BF01594196.

[36] Boris Weisfeiler. On Construction and Identification of Graphs, volume 558 of Lecture Notes in
Mathematics. Springer-Verlag, 1976.

[37] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series 2, 1968. English translation by Grigory Ryabov available at
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

32

https://doi.org/10.1007/BF02579141
https://doi.org/10.1137/140999980
https://doi.org/10.1145/3519935.3520076
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1007/BF01364272
https://doi.org/10.1145/800141.804670
https://doi.org/10.1016/S0019-9958(83)80047-3
https://doi.org/10.18154/RWTH-2020-00160
https://doi.org/10.1145/3527667
https://doi.org/10.1137/1.9781611977073.59
https://doi.org/10.1007/BF01098279
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1145/3313276.3316338
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.1017/S0305004100061521
https://doi.org/10.1007/BF01594196
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

[38] Daniel Wiebking. Graph isomorphism in quasipolynomial time parameterized by treewidth. In
Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Vir-
tual Conference), volume 168 of LIPIcs, pages 103:1–103:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.103.

33

https://doi.org/10.4230/LIPIcs.ICALP.2020.103

	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Graph Minors and Topological Subgraphs
	2.3 Weisfeiler-Leman Algorithm
	2.4 Group Theory

	3 Group-Theoretic Techniques for Isomorphism Testing
	3.1 Hypergraph Isomorphism
	3.2 Coset-Labeled Hypergraphs
	3.3 Multiple-Labeling-Cosets
	3.4 Allowing Color Refinement to Split Small Color Classes

	4 Exploiting the Structure of Graphs Excluding a Minor
	4.1 The Strategy
	4.2 Finding Separators of Small Size
	4.3 Finding an Initial Color Class

	5 Isomorphism Test for Graphs Excluding a Minor
	6 Conclusion

