arXiv:2004.07671v2 [cs.DS] 24 Oct 2022

[somorphism Testing for Graphs Excluding Small Minors

Martin Grohe Daniel Neuen
RWTH Aachen University Simon Fraser University
grohe@informatik.rwth-aachen.de dneuen@sfu.ca

Daniel Wiebking
RWTH Aachen University
wiebking@informatik.rwth-aachen.de

October 26, 2022

Abstract

We prove that there is a graph isomorphism test running in time nP°Y1°8(") on p-vertex
graphs excluding some h-vertex graph as a minor. Previously known bounds were nP° (%)
(Ponomarenko, 1988) and nP°¥1°&(") (Babai, STOC 2016). For the algorithm we combine re-
cent advances in the group-theoretic graph isomorphism machinery with new graph-theoretic
arguments.

1 Introduction

Determining the computational complexity of the Graph Isomorphism Problem (GI) is one of
best-known open problems in theoretical computer science. The problem is obviously in NP,
but neither known to be NP-complete nor known to be solvable in polynomial time. In a recent
breakthrough result, Babai 2] presented a quasipolynomial-time algorithm (i.e., an algorithm
running in time np"lylog(")) deciding isomorphism of two graphs, significantly improving over
the best previous algorithm running in time n®(V™/1°6™) [4]. For his algorithm, Babai greatly
extends the group-theoretic isomorphism machinery dating back to Luks [21] as well as our
understanding of combinatorial methods like the Weisfeiler-Leman algorithm (see, e.g., |7, 37]).
Still, the question of whether the Graph Isomorphism Problem can be solved in polynomial time
remains wide open.

Polynomial-time algorithms are known for restrictions of the Graph Isomorphism Problem
to several important graph classes (e.g., [10, 11, 14, 16, 19, 21, 23, 29]). In particular, Luks [21]
gave an isomorphism algorithm running in time n®@ on input graphs of maximum degree d.
Building on Luks’s techniques and refinements due to Miller [24|, Ponomarenko [29] designed an
isomorphism test running in time nP°Y®) for all graph classes that exclude a fixed graph with
h vertices as a minor. Finally, it was shown that the polynomial-time bound can be pushed to
graph classes excluding a fixed topological subgraph [11].

For the algorithms mentioned above the exponent of the polynomial always depends at least
linearly on the parameter in question. In light of Babai’s quasipolynomial-time algorithm it
seems natural to ask for which parameters these dependencies can be improved to polylogarith-
mic.

In [12] it was shown that Luks’s original isomorphism test for bounded-degree graphs can be
combined with Babai’s group-theoretic techniques. By using a novel normalization technique,
Schweitzer and the first two authors of this paper provided an isomorphism algorithm for graphs
of maximum degree d running in time nP°Y°8(4) - Recently, it was shown that the group-theoretic
techniques used for bounded-degree graphs can be extended to isomorphism testing of hyper-
graphs [26]. This key subroutine finally led to an isomorphism test for graphs of Euler genus

https://orcid.org/0000-0002-0292-9142
mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0002-4940-0318
mailto:dneuen@sfu.ca
mailto:wiebking@informatik.rwth-aachen.de

¢ running in time nP¥1°8(9) Another branch of research deals with the question how Babai’s
and Luks’s group-theoretic techniques can be combined with graph decomposition techniques
[38] (see also [13, 32]). This series of papers finally led to an isomorphism test for graphs of
tree-width at most & running in time nPelog(k),

In this work, we assemble the recent advances in the group-theoretic machinery developed in
[12, 26, 38| and combine it with new structural results for graphs with excluded minors. Recall
that a graph H is a minor of a graph G if H is isomorphic to a graph that can be obtained
from a subgraph of G by contracting edges. If H is not a minor of G, we say that G excludes
H as a minor. For example, all planar graphs exclude the complete graph K5 and the complete
bipartite graph K33 as a minor, and in fact this characterizes the planar graphs [35]. Other
natural classes of graphs excluding some fixed graph as a minor are classes of bounded genus or
bounded tree-width.

We present a new isomorphism test for graph classes that exclude a fixed graph as a minor,
improving the previously best algorithm for this problem due to Ponomarenko [29] running in
time nPoy (),

Theorem 1.1. There exists an algorithm deciding graph isomorphism in time nPo¥os(h) op
n-verter graphs that exclude some h-verter graph as a minor.

Note that a graph G excludes some h-vertex graph as a minor if and only if G excludes the
complete graph K} on h vertices as minor. Hence, for the remainder of this work, we restrict
ourselves to the case where the input graphs exclude K} as minor.

The maximum h such that K} is a minor of G is known as the Hadwiger number hd(G)
of G. Thus, an equivalent formulation of our result is that we design an isomorphism test for
n-vertex graphs running in time nPo¥log(hd(G)),

Our proof heavily builds on the recently developed group-theoretic machinery (the depen-
dencies on the main previous results are shown in Figure 1). The main technical contributions
of the present paper are of a graph-theoretic nature. However, we are not using Robertson-
Seymour-style structure theory for graphs with excluded minors [30], as one may expect given
the previous results for graphs of bounded genus and of bounded tree-width. Instead, our results
can be viewed as a structural theory for the automorphism groups of such graphs; we find that
graphs excluding K} as a minor have an isomorphism-invariant decomposition into pieces whose
automorphism groups are similar to those of bounded-degree graphs (Theorem 5.2 is the precise
statement). This structural result may be of independent interest. The only deeper graph-
theoretic result we use is Kostochka’s and Thomason’s theorem stating that graphs excluding
K}, as a minor have an average degree of O(hy/logh) [18, 34].

On a high level, our algorithm follows a decomposition strategy. Given two graphs G; and
G4 excluding K} as a minor, the goal is to find isomorphism-invariant subsets D; C V(G1) and
Dy C V(G2) such that one can control the interplay between the subsets and its complement
and one can significantly restrict the graph automorphisms on the two subsets. Note that it is
crucial to define the subsets D; and D in an isomorphism-invariant fashion as to not compare
two graphs that are decomposed in structurally different ways. To capture the restrictions on
the automorphism group, we build on the well-known class of I'j-groups, which are groups all
whose composition factors are isomorphic to a subgroup of Sy (the symmetric group on d points).
However, to prove the restrictions on the automorphism group, we mostly use combinatorial and
graph-theoretic arguments.

In particular, the algorithm heavily uses the 2-dimensional Weisfeiler-Leman algorithm, a
standard combinatorial algorithm which computes an isomorphism-invariant coloring of pairs
of vertices. In a lengthy case-by-case analysis depending on the color patterns computed by
the 2-dimensional Weisfeiler-Leman algorithm, we are able to find initial isomorphism-invariant
subsets X; C V(G;) and X2 C V(G2) such that (Aut(Gi))viiXi] (the automorphism group of
G, restricted to X; after fixing some vertex v; € X;) forms a I';-group where t € O(h3logh).

In order to get control of the interplay between the subsets and their complement, we rely on
a closure operator that builds on the notion of t-CR-bounded graphs which were originally intro-
duced by Ponomarenko in [28]', and have been recently used to obtain an nP°¥1°8(9) isomorphism
test for graphs of Euler genus at most g [26]. Intuitively speaking, a graph G is ¢-CR-bounded
if an initially uniform vertex-coloring x can be turned into a discrete coloring (i.e., a coloring
where every vertex has its own color) by repeatedly (a) applying the standard Color Refinement
algorithm, and (b) splitting all color classes of size at most t. We define the closure of a set X;
(with respect to parameter t) to be the set D; of all vertices appearing in a singleton color class
after (i) individualizing all vertices from the set X;, and (ii) applying the above ¢-CR procedure.
This operator increases the subsets X; and X5 in an isomorphism-invariant fashion and leads
to (possibly larger) sets D; = cltG" (Xi) 2 X;, i € {1,2}. A feature of this operator, which in a
basic form was already observed in [36], is that a given ft—group defined on the initial set X;
can be extended to a ft—group defined on the superset D; (see Theorem 3.8). This provides us
a I'y-group on the closure D; (after fixing a point) which allows the use of the group-theoretic
techniques from [12, 26].

The second main feature of the closure operator is that, in a graph G that excludes an
h-vertex graph as a minor, the closure D = CltG(X) of any set X C V(G) can only stop to
grow at a separator of small size. More precisely, we show that for every vertex set Z of a
connected component of G — D, it holds that |Ng(Z)| < h. This key result shows that the
interplay between D and its complement in G is simple and allows for the application of the
group-theoretic decomposition framework from [13, 32, 38].

We remark that our proof strategy is quite different from that used by Ponomarenko [29] in
his isomorphism test for graphs with excluded minors, because we could not improve Miller’s
[24] “tower—of—fd—groups” technique to meet our quasipolynomial time demands.

Organization of the Paper. After introducing some basic preliminaries in the next section,
we review the recent advances on the group-theoretic isomorphism machinery from [26, 38] in
Section 3. Then, the main two technical theorems are presented in Section 4. Finally, the
complete algorithm is assembled in Section 5.

2 Preliminaries

2.1 Graphs

A graph is a pair G = (V(G), E(G)) consisting of a verter set V(G) and an edge set E(G) C
(V(QG)) = {{u, v} ‘ u,v € V(G),u # U}. All graphs considered in this paper are finite, undirected
and simple (i.e., they contain no loops or multiple edges). For v,w € V, we also write vw as a
shorthand for {v,w}. The neighborhood of v is denoted by Ng(v). The degree of v, denoted by
degq(v), is the number of edges incident with v, i.e., degs(v) = |Ng(v)|. For X C V(G), we
define Ng(X) == (Upex N(v)) \ X. If the graph G is clear from context, we usually omit the
index and simply write N(v), deg(v) and N(X).

We write K, to denote the complete graph on n vertices. A graph is reqular if every vertex
has the same degree. A bipartite graph G = (V1, Va, E) is called (dy, d2)-biregular if all vertices
v; € V; have degree d; for both ¢ € {1,2}. In this case d; - |Vi| = da - |V2| = |E|. By a double
edge counting argument, for each subset S C V;, i € {1,2}, it holds that |S|-d; < |[Ng(S)|-ds—;.
A bipartite graph is biregular, if there are dj,dy € N such that G is (dj, d2)-biregular. Each
biregular graph satisfies the Hall condition, i.e., for all S C Vj it holds |S| < |Ng(5)| (assuming
[Vi| < |Va|). Thus, by Hall’s Marriage Theorem, each biregular graph contains a matching of
size min(|V1], [V2|).

'In [28] t-CR-bounded graphs are referred to as graphs with property I1(0,).

A path of length k from v to w is a sequence of distinct vertices v = ug, u1,...,u = w
such that w;_1u; € E(G) for all ¢ € [k] == {1,...,k}. For two sets A,B C V(G), we denote
by G[A, B] the graph with vertex set AU B and edge set {vw € E(G) |v € A,w € B}. For a
set A C V(G), we denote by G[A] = G[A, A] the induced subgraph of G on the vertex set A.
Also, we denote by G — A the subgraph induced by the complement of A, that is, the graph
G—-A:=G[V(G)\ A]. A graph H is a subgraph of G, denoted by H C G, if V(H) C V(G) and
E(H) C E(G). Aset S C V(Q) is a separator of G if G — S has more connected components
than G. A k-separator of G is a separator of G of size k.

An isomorphism from G to a graph H is a bijection ¢: V(G) — V(H) that respects the edge
relation, that is, for all v,w € V(G), it holds that vw € E(G) if and only if ¢(v)p(w) € E(H).
Two graphs G and H are isomorphic, written G = H, if there is an isomorphism from G to H.
We write ¢: G = H to denote that ¢ is an isomorphism from G to H. Also, Iso(G, H) denotes
the set of all isomorphisms from G to H. The automorphism group of G is Aut(G) := Iso(G, G).
Observe that, if Iso(G, H) # 0, it holds that Iso(G, H) = Aut(G)p = {y¢ | v € Aut(G)} for
every isomorphism ¢ € Iso(G, H).

A wvertex-colored graph is a tuple (G, x) where G is a graph and x: V(G) — C is a mapping
into some set C' of colors, called vertez-coloring. Similarly, an arc-colored graph is a tuple (G, x),
where G is a graph and x: {(u,v) | {u,v} € E(G)} — C is a mapping into some color set C,
called arc-coloring. We also consider vertex- and arc-colored graphs (G, xv, xg) where xy is
a vertex-coloring and xg is an arc-coloring. Also, a pair-colored graph is a tuple (G, x), where
G is a graph and x: (V(G))? — C is a mapping into some color set C. Typically, C is chosen
to be an initial segment [n] of the natural numbers. Isomorphisms between vertex-, arc- and
pair-colored graphs have to respect the colors of the vertices, arcs and pairs.

2.2 Graph Minors and Topological Subgraphs

Let G be a graph. A graph H is a minor of G if H can be obtained from G by deleting vertices
and edges of G as well as contracting edges of G. More formally, let B = {Bj,..., By} be a
partition of V(G) such that G[B;] is connected for all i € [h]. We define G/B to be the graph
with vertex set V(G/B) := B and

E(G/B) :={BB'|3v e B,v € B': v’ € E(G)}.

A graph H is a minor of G if there is a partition B = {Bj,..., By} of connected subsets
B; C V(G) such that H is isomorphic to a subgraph of G/B. A graph G ezcludes H as a minor
if H is not a minor of G. The following theorem states the well-known fact that graphs excluding
small minors have bounded average degree. This was observed by Mader before Kostochka and
Thomason independently proved an optimal bound on the average degree.

Theorem 2.1 (|22, 18, 34]). There is an absolute constant a > 1 such that for every h > 1 and
every graph G that excludes K}, as a minor, it holds that

Z degq(v) < ahy/logh.

veV(Q)

1
V(G|

A graph H is a topological subgraph of G if H can be obtained from G by deleting edges,
deleting vertices and dissolving degree 2 vertices (which means deleting the vertex and making
its two neighbors adjacent). More formally, we say that H is a topological subgraph of G if a
subdivision of H is a subgraph of G (a subdivision of a graph H is obtained by replacing each
edge of H by a path of length at least 1). Note that every topological subgraph of G is also a
minor of G.

2.3 Weisfeiler-Leman Algorithm

The Weisfeiler-Leman algorithm, originally introduced by Weisfeiler and Leman in its 2-dimen-
sional form [37], forms one of the most fundamental subroutines in the context of isomorphism
testing. The algorithm presented in this work builds on the 1-dimensional Weisfeiler-Leman
algorithm, also known as the Color Refinement algorithm, as well as the 2-dimensional Weisfeiler-
Leman algorithm.

Let x1,x2: V¥ — C be colorings of the k-tuples of vertices of G, where C' is some finite set
of colors. We say x1 refines x2, denoted x1 =< x2, if x1(0) = x1(w) implies x2(v) = x2(w) for
all 5,w € V*. The two colorings x; and ya are equivalent, denoted y1 = xo, if x1 = x2 and
X2 = X1-

The Color Refinement algorithm (i.e., the 1-dimensional Weisfeiler-Leman algorithm) is a
procedure that, given a graph G, iteratively computes an isomorphism-invariant coloring of the
vertices of GG. In this work, we actually require an extension of the Color Refinement algorithm
that apart from vertex-colors also takes arc-colors into account. We describe the mechanisms
of the algorithm in the following. For a vertex- and arc-colored graph (G, xv, xg) we define
Xé‘,o = xy to be the initial coloring for the algorithm. This coloring is iteratively refined by

defining XlGﬂ-_i_l(U) = (Xéyi(v),/\/li(v)) where

Ml(v) = {{ (XlG,i(w)vXE'(U7w)aXE(w7v)) | w e NG(U)}}

(and {...} denotes a multiset). By definition, X%},H—l =< Xé,i for all ¢ > 0. Thus, there is a
minimal ¢ such that Xé,i_ﬂ is equivalent to X%;z For this value of ¢ we call the coloring XlG,i the
stable coloring of G and denote it by xi,[G]. The Color Refinement algorithm takes as input a
vertex- and arc-colored graph (G, xv, xg) and returns (a coloring that is equivalent to) xi, [G].
The procedure can be implemented in time O((m + n)logn) (see, e.g., [6]).

Next, we define the 2-dimensional Weisfeiler-Leman algorithm. For a vertex-colored graph
(G, xv) let X%},o‘ (V(G@))? = C be the coloring where each pair is colored with the isomorphism
type of its underlying ordered subgraph. More formally, X%‘,o (v1,v9) = X%’,O(U/h vh) if and only
if xv(vi) = xv(v)) for both i € {1,2}, v; = vy & v] = v} and viv2 € E(G) < vjvh € E(G).
We then recursively define the coloring X%‘,i obtained after ¢ rounds of the algorithm. Let
X&is1(v1,v2) = (x&;(v1,v2), Mi(v1, v2)) where

M;(v1,0) = { (x&i (v, w), x& i (w,v2)) |w € V(G) .

Again, there is a minimal 4 such that X%:,z' 41 18 equivalent to X%:,z' and for this 7 the coloring
e lG] = Xé,i is the stable coloring of G.

Note that the algorithm can easily be extended to arc-colored and pair-colored graphs by
modifying the definition of the initial coloring X%‘,o accordingly. However, in contrast to the
Color Refinement algorithm, the 2-dimensional Weisfeiler-Leman algorithm is only applied to
vertex-colored graphs throughout this paper.

The 2-dimensional Weisfeiler-Leman algorithm takes as input a (vertex-, arc- or pair-)colored
graph G and returns (a coloring that is equivalent to) x&,[G]. This can be implemented in time
O(n3logn) (see [17]).

2.4 Group Theory

In this subsection, we introduce the group-theoretic notions required in this work. For a general
background on group theory we refer to [31], whereas background on permutation groups can
be found in [9].

Permutation Groups. A permutation group acting on a set €2 is a subgroup I' < Sym(Q2) of
the symmetric group. The size of the permutation domain €2 is called the degree of I'. If Q = [n],
then we also write S, instead of Sym(£2). For v € I and a € Q2 we denote by a” the image of «
under the permutation . The set a! := {a” | v € I'} is the orbit of a.

For a € Q the group I'y, ;== {7y € T' | ¥ = a} < T is the stabilizer of o in I'. The pointwise
stabilizer of a set A C) is the subgroup I' 4y = {7y € ' | Va € A: a” = a}. For A C Q and
v €T let A7 :={a” | a« € A}. The set A is I'-invariant if AY = A for all y € T.

For A C Q and a bijection 6: Q — ' we denote by 0[A] the restriction of # to the domain
A. For a I'-invariant set A C Q, we denote by T'[4] .= {y][A] | v € T'} the induced action of T
on A, i.e., the group obtained from I' by restricting all permutations to A. More generally, for
every set A of bijections with domain €, we denote by A[A] := {0[A] | 6 € A}.

Let T' < Sym(f2) and IV < Sym(€). A homomorphism is a mapping ¢: I' — I such that
©(7)e(0) = p(79) for all 4,6 € T'. A bijective homomorphism is also called isomorphism. For
~v € I we denote by ¥ the p-image of . Similarly, for A <T', we denote by A¥ the p-image of
A (note that A¥ is a subgroup of I).

Algorithms for Permutation Groups. We review some basic facts about algorithms for
permutation groups. For detailed information we refer to [33].

In order to perform computational tasks for permutation groups efficiently the groups are
represented by generating sets of small size. Indeed, most algorithms are based on so-called
strong generating sets, which can be chosen of size quadratic in the size of the permutation
domain of the group and can be computed in polynomial time given an arbitrary generating set
(see, e.g., [33]).

Theorem 2.2 (cf. [33]). Let ' < Sym(Q2) and let S be a generating set for I'. Then the following
tasks can be performed in time polynomial in n and |S|:

1. compute the order of T,
2. giwen vy € Sym(Q2), test whether v € T,
3. compute the orbits of ', and

4. given A C QQ, compute a generating set for T'(y).

Groups with Restricted Composition Factors. In this work, we shall be interested in a
particular subclass of permutation groups, namely groups with restricted composition factors.
Let I" be a group. A subnormal series is a sequence of subgroups I' =Ty > T'; > - -+ > Ty, = {id}.
The length of the series is k and the groups I';_; /T'; are the factor groups of the series, ¢ € [k]. A
composition series is a strictly decreasing subnormal series of maximal length. For every finite
group I all composition series have the same family (considered as a multiset) of factor groups
(cf. [31]). A composition factor of a finite group I is a factor group of a composition series of T.

Definition 2.3. For d > 2 let T 4 denote the class of all groups I' for which every composition
factor of I' is isomorphic to a subgroup of Sy.

We want to stress the fact that there are two similar classes of groups that have been used
in the literature both typically denoted by I'y. One of these is the class introduced by Luks [21]
that we denote by fd, while the other one used in [3| in particular allows composition factors
that are simple groups of Lie type of bounded dimension.

Lemma 2.4 (Luks [21]). Let T € T'y. Then
1. Ae fd for every subgroup A <T', and

2. T% e fd for every homomorphism ¢: T' — A.

[GI in time n2@ [21]]

GI in quasipoly- GI parameterized by
nomial time [2] tree-width in FPT [19]

-

[GI in time nrolylog(d) [12]

bounded tree-width [13]

/

Hypergriph Isomor- Decompositions with
phism for I'y-groups [26] labeling cosets [32, 3§]

7

This paper

[Group-theoretic GI test for]

Figure 1: Dependencies between the main results leading to this paper.

3 Group-Theoretic Techniques for Isomorphism Testing

Next, we present several group-theoretic tools in the context of isomorphism testing which are
exploited by our algorithm testing isomorphism for graph classes that exclude a fixed minor.
The dependencies between the main results leading to this paper are shown in Figure 1.

3.1 Hypergraph Isomorphism

Two hypergraphs Hq = (V1,&1) and He = (Va, &) are isomorphic if there is a bijection ¢: Vj —
Va such that E € & if and only if E¥ € & for all E € 21 (where E? := {¢(v) | v € E} and 2"
denotes the power set of V7). We write ¢: Hi = Hs to denote that ¢ is an isomorphism from
H1 to Ho. Consistent with previous notation, we denote by Iso(H1, Hz) the set of isomorphisms
from H; to Ha. More generally, for I' < Sym(V7) and a bijection 0: V; — V3, we define

ISOFQ(Hl,Hz) = {QO eld ’ w: Hp = 7‘[2}.

The set Isorg(Hi,Hse) is either empty, or it is a coset of Autp(Hi) = Isor(Hi,H1), ie.,
Isorg(Hi,H2) = Autp(H1)e where ¢ € Isorg(Hi,Hs2) is an arbitrary isomorphism. As a re-
sult, the set Isorg(H1, Hz2) can be represented efficiently by a generating set for Autp(H;) and
a single isomorphism ¢ € Isorg(#H1, Hz2). In the remainder of this work, all sets of isomorphisms
are represented in this way.

Theorem 3.1 (|26, Theorem 1.1]). Let Hi = (V1,&1) and Ha = (V2, &) be two hypergraphs and
let ' < Sym(V4) be a I‘d -group and 0: Vi — V4 a bijection. Then Isorg(H1, Hz2) can be computed
in time (n +m)C18D) for some absolute constant ¢ where n = |Vi| and m = |&|.

3.2 Coset-Labeled Hypergraphs

Actually, for the applications in this paper, the Hypergraph Isomorphism Problem itself turns
out to be insufficient. Instead, we require a generalization of the problem that is, for example,
motivated by graph decomposition approaches to graph isomorphism testing (see, e.g., [13, 38]).
Let G; and G2 be two graphs and suppose that an algorithm has already computed sets D C
V(G1) and Dy C V(G2) in an isomorphism-invariant way, i.e., each isomorphism from G; to
G5 also maps D7 to Dy. Moreover, assume that G1 — D1 is not connected and let Z{, cen Zé
be the connected components of G; — D; (without loss of generality G1 — D1 and Gy — D3 have

the same number of connected components, otherwise the graphs are non-isomorphic). Also, let
Sji. = NGi(ZJi-) for all j € [¢] and 7 € {1,2}. A natural strategy for an algorithm is to recursively
compute representations for Iso(G1[Z}, U S}], G2[Z3, U S3]) for all ji,j> € [f]. Then, in the
second step, the algorithm needs to compute all isomorphisms ¢: G1[D1] = G2[D>] such that
there is a bijection o: [¢(] — [¢] satisfying

2. the restriction go[Sjl] extends to an isomorphism from Gl[Z]1 U 5]1] to GQ[ZOQ_(j) U Sg(j)] (in

the natural way, i.e., the isomorphism restricted to S Jl equals @[Sjl])

for all j € [4].

Let us first discuss a simplified case where Sjl1 #* 5;2 for all distinct ji,j2 € [¢]. In this
situation the first property naturally translates to an instance of the Hypergraph Isomorphism
Problem (in particular, there is at most one bijection ¢ for any given bijection ¢). However, for
the second property, we also need to be able to put restrictions on how two hyperedges can be
mapped to each other. Towards this end, we consider hypergraphs with coset-labeled hyperedges
where each hyperedge is additionally labeled by a coset.

A labeling of a set V' is a bijection p: V' — {1,...,|V|}. A labeling coset of a set V is a set
A consisting of labelings such that A = Ap := {dp | § € A} for some group A < Sym(V') and
some labeling p: V' — {1,...,|V]}. Observe that each labeling coset Ap can also be written as

pO = {ph | 6 € O} where © = p~1Ap < Siv)-

Definition 3.2 (Coset-Labeled Hypergraph). A coset-labeled hypergraph is a tuple H = (V, &, p)
where V is a finite set of vertices, £ C 2V is a set of hyperedges, and p is a function that associates
with each E € £ a pair p(E) = (pO, ¢) consisting of a labeling coset of E and a natural number
ceN.

Two coset-labeled hypergraphs H; = (V1,&1,p1) and He = (Va, &9, p2) are isomorphic if
there is a bijection ¢: V3 — V5 such that

1. E €& if and only if E¥ € & for all E € 2V1, and
2. for all E € & with p1(E) = (p1©1,c1) and pa(E¥) = (p202, c2) we have ¢; = ¢z and

[E] 1101 = p20s. (1)

In this case, ¢ is an isomorphism from H; to He, denoted by ¢: Hi = Hs. Observe that (1)
is equivalent to ¢; = ¢, ©1 = O9 and @[F] € pl@lpgl. For I' < Sym(V;) and a bijection
0: V1 — V2 let

Isorg(Hi,H2) ={p €10 | p: H1 = Ha}.

Note that, for two coset-labeled hypergraphs H; and Hs, the set of isomorphisms Iso(H1, H2)
forms a coset of Aut(H1) (or Iso(H1, Ha) = () and therefore, it again admits a compact represen-
tation. Indeed, this is a crucial feature of the above definition that again allows the application
of group-theoretic techniques.

The next theorem is an immediate consequence of Theorem 3.1 and [25, Theorem 6.6.7]°.

Theorem 3.3. Let H1 = (V1,&1,p1) and Ho = (Va, Ea,p2) be two coset-labeled hypergraphs such
that for all E € £ U &y it holds |E| < d. Also let T' < Sym(V7) be a fd—group and 0: V1 = V5 a
bijection.

Then Tsorg(H1,Ha) can be computed in time (n 4+ m)C18D) for some absolute constant c
where n = |V1| and m = |&].

In the notation of [25, Theorem 6.6.7], there is a prototype © for every pair (©,c). We have © € Ty since
|E| < d for all E € & U&;. Finally, we use Theorem 3.1 to compute the induced coset of Isorg((V1, 1), (Va, E2))
on the set of hyperedges &;.

3.3 Multiple-Labeling-Cosets

The theorem above covers the problem discussed in the beginning of the previous subsection
assuming that all separators of the first graph are distinct, i.e., S]1-1 % S}Q for all distinct ji, jo €
[€]. In this subsection, we consider the case in which Sjll = 5’}2 for all 71,72 € [¢]. In order to
handle the case of identical separators, we build on a framework considered in [32, 38]. (The
mixed case in which some, but not all, separators coincide can be handled by a mixture of both
techniques.)

Definition 3.4 (Multiple-Labeling-Coset). A multiple-labeling-coset is a tuple X = (V, L,p)
where L = {p101,...,p0;} is a set of labeling cosets p;0;, i € [t], of the set V and p: L — N
is a function that assigns each labeling coset p© € L a natural number p(p©) = c.

Two multiple-labeling-cosets X} = (Vi, L1,p1) and Xy = (Va, Lo, p2) are isomorphic if there
is a bijection ¢: V3 — V5 such that

(PO eLlr A pi(p©)=c) <= (¢ 'pOcLy N pap 'pO)=c) (2)

for all labeling cosets p© of V' and all ¢ € N. In this case, ¢ is an isomorphism from X} to Xs,
denoted by ¢: X} = Xy. Observe that (2) is equivalent to |Li| = |L2| and for each p1©; € Ly
there is a pa©2 € Ly such that p1(p101) = pa(p202) and O = O and ¢ € pl@lpz_l. Let

Iso(X1, Xo) ={p: V1 = Vo | p: A1 = Xy}

Again, the set of isomorphisms Iso(X}, X2) forms a coset of Aut(X;) = Iso(X7, X1) (or
Iso(X1, X)) = () and therefore, it again admits a compact representation. The next theorem is
obtained by a canonization approach building on the canonization framework from [32]. Intu-
itively, a canonical form for a class of objects maps each object in that class to a representative
of its isomorphism class. For background on canonical forms and labelings we refer to [5].

Theorem 3.5 (|38, Theorem 22 and Corollary 35]). Let X = (V, L,p) be a multiple-labeling-
coset. Canonical labelings for X can be computed in time (n + m)o((log”)c) for some absolute
constant ¢ where n == |V| and m = |L|.

Theorem 3.6. Let X1 = (Vi, L1,p1) and Xy = (Va, Lo, p2) be two multiple-labeling cosets.
Then Tso(Xy, Xp) can be computed in time (n + m)O8™) for some absolute constant c
where n = |V1| and m = |Ly|.

Proof. We compute canonical labelings Ay, As for Xy, Xs, respectively. We compare the canonical
forms Xl’\l and XQ)‘Z for labelings A\; € A;, i € {1,2} (this can be done in polynomial time as shown
in [38]). We can assume that the canonical forms are equal, otherwise we reject isomorphism.
Then, we return Iso(X;, Xs) = Al)\g_l. d

3.4 Allowing Color Refinement to Split Small Color Classes

In order to be able to apply the decomposition framework outlined above, an algorithm first
needs to compute an isomorphism-invariant subset D C V(G) such that Ng(Z) is sufficiently
small for every connected component Z of the graph G — D. Moreover, the application of
Theorem 3.3 additionally requires a I'g-group that restricts the set of possible automorphisms
for the set D. Both problems are tackled building on the notion of t-CR-bounded graphs. This
class of graphs was originally introduced by Ponomarenko in the late 1980’s [28] and has been
exploited more recently for isomorphism testing of graphs of bounded genus [26] which form an
important subfamily of graph classes excluding a fixed graph as a minor.

Intuitively speaking, a vertex-colored graph (G, x) is t-CR-bounded, t € N, if it is possible
to obtain a discrete vertex-coloring (a vertex-coloring is discrete if each vertex has a distinct
color) for the graph by iteratively applying the following two operations:

e applying the Color Refinement algorithm, and

e picking a color class [v], = {w € V(G) | x(v) = x(w)} for some vertex v € V(G) where
[[v]y| <t and individualizing each vertex in that class (every vertex in that color class is
assigned a distinct color).

In this work, we exploit the ideas behind t-CR-~bounded graphs to define a closure operator.
Given an initial set X C V/(G), all vertices from X are first individualized before applying
the operators of the t-CR-bounded definition. The closure of the set X (with respect to the
parameter t) then contains all singleton vertices of the resulting coloring. The next definition
formalizes all these concepts. Since we usually deal with vertex- and arc-colored graphs, the
definition is formulated in this general setting.

Definition 3.7. Let (G, xv, xg) be a vertex- and arc-colored graph and X C V(G). Let (x;)i>o0
be the sequence of vertex-colorings where

o) (v,1) ifveX
xo(v) {(XV(U),O) otherwise ’

X2i+1 = XwilG: X2i; XE] and

v, 1 if |[v i <t
X2it+2(v) = (v,1) I]X2'+1’
(x2i+1(v),0) otherwise
for all © > 0. Since x;4+1 = x; for all ¢+ > 0 there is some minimal ¢* such that x;+ = x;4+1. We
define . |
A (X) = (v e V(G) | [[o]y. | = 1}

For vy,..., v, € V(G) we also denote

L FXVXE) () = VB (Lo o)),
Moreover, the pair (G, X) is t-CR-bounded if clgG’XV’XE)(X) = V(@). Finally, the graph G
is t-CR-bounded if (G,) is t-CR-bounded.

For ease of notation, we usually omit the vertex- and arc-colorings and simply write cltG

instead of CIEG’XV’XE).

For applications in graph classes with an excluded minor it turns out to be useful to combine
the concept of cltG with the 2-dimensional Weisfeiler-Leman algorithm. More precisely, in order
to increase the scope of the set CItG , information computed by the 2-dimensional Weisfeiler-Leman
algorithm are taken into account. Since the 2-dimensional Weisfeiler-Leman algorithm computes
a pair-coloring, we extend the definition of cltG to pair-colored graphs. For a pair-colored graph

(G, x) we define clEG’X) = CIEKT“X) where K, is the complete graph on the same vertex set V(G)
and x(v,w) = (atp(v,w), x(v,w)) where atp(v,w) = 0 if v = w, atp(v,w) = 1 if vw € E(G),
and atp(v,w) = 2 otherwise. This allows us to take all pair-colors into account for the Color
Refinement algorithm, but also still respect the edges of the input graph G.

It can be shown that for each t-CR-bounded graph G it holds that Aut(G) € T;. Moreover,
there is an algorithm that, given a graph G, computes a I';-group I' < Sym(V(G)) such that
Aut(G) < T in time nP°¥1o2() where n is the number of vertices of G. It is important for our
techniques that this statement generalizes to t-CR-bounded pairs (G, X) for which we already
have a good knowledge of the structure of X in form of a ft—group I' < Sym(X) as stated in
the following theorem.

10

Theorem 3.8 ([26, Lemma 5.2]). Let G1,G2 be two graphs and let X1 C V(G1) and X2 C
V(Ggy). Also, let T' < Sym(Xy) be a Ty-group and 6: X1 — Xo a bijection. Moreover, let
D; =% (X;) fori € {1,2} and define

e = {(p S ISO((Gl,Xl), (GQ,XQ)) ’ gO[Xl] € FQ}[Dl].

Then IV € ft. Moreover, there is an algorithm computing a ft—group A < Sym(Dq) and a
bijection §: D1 — Do such that
I'¢" C As

O((log t)°

n time n) for some absolute constant ¢ where n = [V(G1)].

4 Exploiting the Structure of Graphs Excluding a Minor

In the following, we first give a more detailed description of the high-level strategy for building
a faster isomorphism test for graph classes that exclude a fixed minor. In particular, we state
the two main technical theorems which build the groundwork for the isomorphism test.

4.1 The Strategy

The basic idea for our isomorphism test is to follow the decomposition framework outlined in the
previous section. Let G; and G2 be two connected graphs that exclude K} as a minor (note that
it is always possible to restrict to connected graphs by considering the connected components of
the input graphs separately). To apply the decomposition framework outlined in the previous
section, we need to compute subsets D; C V(G;), @ € {1,2}, such that

(A) the subsets Dy, Do are isomorphism-invariant, i.e., each isomorphism from G; to G maps
D1 to Do,

(B) for each connected component Z; of G; — D; it holds |Ng,(Z;)| < h and,

(C) one can efficiently compute a fd—group A < Sym(D;) and a bijection 6: D1 — Ds such
that Iso(G1, G2)[D1] C Ad.

In such a setting, the decomposition framework can be applied as follows. For every pair of
connected components Z]11 and Z?Q of G1—D1 and G3— D3, respectively, the algorithm recursively
computes the set of isomorphisms from G; [Z}1 U S}l] to GQ[Z?2 U 5]22] where S;l = NGZ.(Z;:i),
i € {1,2}. Then, the set of isomorphisms from G; to G2 can be computed by combining
Theorem 3.6 and 3.3. Recall that Theorem 3.6 handles the case in which Sjl1 = 5;2 for all
connected components Z }1, Z }2 of G1 — D;. To achieve the desired running time for this case, we
exploit Property (B). For Theorem 3.3, which handles the case of distinct separators S]1-1 %8S]1-2,
we require sufficient structural information of the sets D; and Ds. More precisely, we require
Property (C) to ensure the desired time bound.

Now, we turn to the question how to find the sets D; and Ds satisfying Properties (A),
(B) and (C). The central idea is to build on the closure operator cltGi (where t is polynomially
bounded in k). We construct the sets by computing the closure D; := cl?i (X;) for some suitable
initial set X;. The first key insight is that this process of growing the sets X; can only be stopped
by separators of small size which ensures Property (B).

Theorem 4.1. Let G be a graph that excludes Ky, as a topological subgraph and let X C V(G).
Lett > 3h? and define D = CltG(X). Let Z be the vertex set of a connected component of G— D.
Then |[Ng(Z)| < h.

11

Observe that the theorem addresses graphs that only exclude Kj, as a topological subgraph
which is a weaker requirement than excluding K} as a minor. A proof of this theorem, which
forms the first main technical contribution of this paper, is provided in Subsection 4.2. As
a central tool, it is argued that graphs, for which all color classes under the Color Refinement
algorithm are large, contain large numbers of vertex-disjoint trees with predefined color patterns.
The vertex-disjoint trees then allow for the construction of a topological minor on the vertex set

Ne(2).

In order to ensure Property (C), we need sufficient structural information for the sets Dj,
i € {1,2}. Using Theorem 3.8, we are able to extend structural information in form of a fd—group
from the sets X; to the supersets D; O X;, i € {1,2}.

Hence, the main task that remains to be solved is the computation of the initial isomorphism-
invariant sets X; and Xy as well as suitable restrictions on the set Iso(G1, G2)[X1] = {¢[X1] |
¢ € Iso(G1,G2)}. Ideally, one would like to compute a fd-group I' < Sym(X;) and a bijection
0: X; — Xy such that Iso(G1,G2)[X1] € I'0. But this is not always possible. For example,
for a cycle C) of length p where p is a prime number, it is only possible to choose X = V(C))
(because C), is vertex-transitive) and Aut(C),) ¢ T for all p > d.

However, we are able to prove that there are isomorphism-invariant sets X; and X, such
that, after individualizing a single vertex v; € X; and vy € X5 in each input graph, the set
Iso((G1,v1), (G2,v2))[X1] = {¢[X1] | ¢ € Iso(G1,G2),v{ = va} has the desired structure. This
is achieved by the next theorem which forms the second main technical contribution of this
paper and again relies on the closure operator cl? .

Recall the definition of the constant a from Theorem 2.1. Without loss of generality assume
a> 2.

Theorem 4.2. Lett > a’h®logh. There is a polynomial-time algorithm that, given a connected
vertez-colored graph G, either correctly concludes that G has a minor isomorphic to Kj or
computes a pair-colored graph (G',x") and a set X C V(G') such that

1. X ={v e V(G) | x'(v,v) = ¢} for some color ¢ € {x'(v,v) | v e V(G")},
2. X C ClgGl’X/)(v) for every v e X, and
3. X CV(Q).
Moreover, the output of the algorithm is isomorphism-invariant with respect to G.

Observe that Property 2 and 3 of the theorem imply that (Aut(G)),[X] € T for all v € X
by Theorem 3.8 (by setting X; = Xo = {v} and I'§ as the singleton set containing the unique
bijection from X; to Xs).

For technical reasons, the theorem actually provides a second graph (G}, x}) for both input
graphs G;. Intuitively speaking, one can think of G as an extension of G; which allows us
to build additional structural information about G; into the graph structure of G;. Also, the
algorithm heavily exploits the 2-dimensional Weisfeiler-Leman algorithm leading to pair-colored
graphs.

The remainder of this section is devoted to proving both theorems above. First, Theorem
4.1 is proved in Subsection 4.2 and then Theorem 4.2 is proved in Subsection 4.3. Afterwards,
the complete algorithm is assembled in Section 5.

4.2 Finding Separators of Small Size

In this subsection, we give a proof of Theorem 4.1. Let us start by giving some intuition for
the proof. Let G be a graph and let X C V(G). Also define D := cI¥(X) and let us suppose
for simplicity that G — D is connected with vertex set Z := V(G) \ D. Assume towards a

12

Figure 2: Visualization of the construction of a topological subgraph Kj for h = 3. The figure
shows (g) = 3 vertex-disjoint subgraphs Hy, Ha, Hs of G[Z] each of which is adjacent to vy, va, vs.
Note that only the vertices and edges appearing in one the graphs H; are shown. Indeed, by
assumption, all color classes in Z contain at least 3h3 = 81 vertices. The edges of the color class
graph on Z are visualized by thick, gray connections.

contradiction that |[Ng(Z)| > h and let us fix h distinct vertices vi,...,v, € Ng(Z). We
need to show that G contains a topological subgraph isomorphic to Kj. We use the vertices
v1,...,Un as the vertices of this topological subgraph, i.e., our task is to find internally vertex-
disjoint paths P connecting v; and vy for all i1’ € ([g]). Actually, we shall achieve a stronger
result by constructing vertex-disjoint, connected subgraphs Hy, ..., H, of G— D, where r == (g),
such that v; € Ng(V(H;)) for all ¢ € [h] and j € [r], i.e., each subgraph H; is adjacent to all the
vertices v1,..., v, (see Figure 2). Note that each such subgraph H; can be used to construct
one of the paths P for #i’ € ([g}).

To construct the subgraphs H;, we build on the assumption that D = cltG(X) which, by
Definition 3.7, means that there is a vertex-coloring x of GG that is stable with respect to the Color
Refinement algorithm, |[v],| = 1 for all v € D, and |[w]y| > ¢ > 3h3 for all w € Z. Towards this
end, consider the color class graph of (G, x) on Z, denoted by G[[x, Z]], which is the graph with
vertex set V(G][x, Z]]) == x(Z) and edge set E(G[[x, Z]]) = {x(wi)x(w2) | wiws € E(G[Z])}.
Clearly, G[[x, Z]] is connected since G[Z] is connected. Since v1,...,v, € Ng(Z), there are
colors ¢y, ..., cp, such that v; € Ng(x (¢;)) for every i € [h], i.e., v; is adjacent to some vertex
contained in the color class corresponding to color ¢;. Since x is stable with respect to the Color
Refinement algorithm and |[v;],| = 1 by assumption, it actually follows that N (v;) C x!(¢;),
i.e, v; is adjacent to every vertex from the color class corresponding to ¢;.

Now, let T" be a Steiner tree for c1,...,c, in G[x, Z]], i.e., T is a subtree of G[[x, Z]] with
leaves exactly ci, ..., ¢, (such a tree clearly always exists). We construct the graphs Hy, ..., H,
in such a way that each H; “mimics” the structure of T', i.e., for every color ¢ that is a vertex of
T, the graph H; contains exactly one vertex with color ¢, and two vertices with colors ¢, ¢’ are
adjacent if and only if ¢’ is an edge of T (see Figure 2). Here, we crucially use that all color
classes are sufficiently large which gives us enough “capacity” to fit all the subgraphs H; into
the desired color classes at the same time.

Before turning to the formal proof of Theorem 4.1, let us briefly comment on the assumption
that G—D is connected which we made for the above argument. If G—D is not connected, it may
happen that color classes are not sufficiently large when restricted to a connected component
Z, since color classes may span over multiple connected components of G — D. However, this is
not a problem since we can consider all these connected components together. Indeed, for our
argument, we do not require that G[Z] is connected, but it suffices that G[[x, Z]] is connected.

The following lemma reformulates the task of proving Theorem 4.1 as indicated above.

Recall that for a vertex-colored graph (G, x) and W C V(G), we define the color class graph
of (G,x) on W to be the graph G[[x, W]] with vertex set V(G[[x, W]]) == x(W) and edge set
E(G[[x, W]]) = {x(wi)x(w2) [wiwz € E(G[W])}.

13

Lemma 4.3. Let h > 1. Let G be a graph and V(G) = Vi W Va be a partition of the vertex set
of G. Also let x be a vertex-coloring of G and suppose that

1. G[[x, V2]] is connected,
2. |Vi| > h and Ng(Va) = WA,
3. |[vly| =1 for allv € V7,
4. |[w]y| > 3R3 for all w € Va, and
5. x 1is stable with respect to the Color Refinement algorithm.
Then G has a topological subgraph isomorphic to Kj,.
Before showing the lemma, we give a proof for Theorem 4.1 based on Lemma 4.3.

Proof of Theorem /j.1. Let x be the final vertex-coloring that is stable under the ¢t~-CR-bounded
algorithm with respect to the initial set X. Let Z be a connected component of G — D and
assume for sake of contradiction that |Ng(Z)| > h. Let Vo = {v € V(G) | x(v) € x(Z)} and
Vi = Ng(V2) and define H := G[V; U V3]. We have |Vi| > [Ng(Z)| > h. Also, |[v]y| =1 for all
v e VL C D =c¥X). Moreover, x|y is stable under the Color Refinement algorithm for the
graph H and H|[x|n, V2]] is connected since G[Z] is connected. Finally, |[w]y| > t > 3h* for
all w € V5 since Y is stable under the t~-CR-bounded algorithm and Vo N D = (). So by Lemma
4.3 the graph H has a topological subgraph isomorphic to K. But H is a subgraph of G and
hence, G also has a topological subgraph isomorphic to K. This gives a contradiction. O

We now turn to proving Lemma 4.3 where we aim to construct a topological subgraph
isomorphic to Kp. The vertices of the topological subgraph are located in the set Vj. This
leaves the task to construct disjoint paths between vertices from V7 using the vertices from the
set Vo. Actually, as already described above, it turns out to be more convenient to construct a
large number of disjoint trees each of which can be used to obtain a single path connecting two
vertices in V7.

Let G be a graph, let x: V(G) — C be a vertex-coloring and let T" be a tree with vertex set
V(T) = C. A subgraph H C G agrees with T' if x|y g): H =T, i.e., the coloring x induces an
isomorphism between H and T. Equivalently, H agrees with T if |V (H) N x~!(c)| = 1 for every
c € C and cicy € E(T) if and only if H[x !(c1),x (c2)] contains an edge for all ¢1,co € C.
Observe that each H C G that agrees with a tree T is also a tree. Let Hi,...,Hr C G be
k pairwise vertex-disjoint subgraphs that agree with the tree 7. For a color ¢ € C we define
Ve(Hy, ..., Hg) = Ule V(H;) N x~Y(c). Since Hy, ..., Hy are pairwise vertex-disjoint, it holds
that |V.(Hi,..., Hi)| = k. The extension set for Hy, ..., Hy, and a color ¢ € C is defined as

W, = W.(Hy,...Hy) = {v € x (e ‘ there are k + 1 pairwise vertex-disjoint

connected graphs H,..., H;
that agree with T such that

Vo(H],..., H},\) = Vo(Hy,. .., Hy) U {v}}.

A visualization is also given in Figure 3.

Intuitively speaking, the idea is to construct subgraphs Hi,..., H, that agree with T one
after the other. Suppose we already constructed subgraphs Hi,..., Hy for some k < r, and
we aim to construct the next subgraph Hp,;. To do so, we can fix an arbitrary root of T
and construct Hyy1 in a bottom-up fashion starting at the leaves of 7. Unfortunately, when
constructing Hy1 this way, we may get stuck (i.e., it is not possible to extend the partial

14

X ' (es) X" (ca)

Figure 3: The figure shows three vertex-disjoint subgraphs Hy, He, Hs (in red, blue and green)
that agree with the tree 7" with node set V(T) = {c1,c2,c3,c4} and edge set E(T) =
{cica, cacs, cacy}. The extension set for the color ¢; is W, (Hi, Ha, H3) = {vs,vs}. Note
that there is a subgraph H, that agrees with T' containing v3 and being vertex-disjoint from
H,, Hs, H3. However, to argue that vs is contained in the extension set, one also has to modify
at least one of the already constructed subgraphs Hi, Hy, Hs.

subgraph Hy,q any further without using vertices from Hi,..., Hy) which forces us to make
changes to the already constructed Hi,..., Hy. We formalize this idea by providing, for each
node ¢ of T, a lower bound on the size of the extension set when restricting to the subtree of
T rooted at c. In the end, we obtain that the extension set for the root contains at least one
element and hence, there exist k + 1 disjoint connected subgraphs Hy, ..., H, 11 (which may be
completely different from Hy, ..., Hi, but this is not a problem for our purposes).

The next lemma serves as an important intermediate step to deal with long induced paths
of T'. Indeed, this case is critical since the number of nodes of T' of degree 2 may be unbounded.
To be more precise, in our application, the number of leaves of T" is bounded by h, and thus, the
number of internal nodes of degree at least 3 is also bounded by h. All color classes in Va5 have
size at least 3h3 (which is much larger than r = (g)) which means that, when providing lower
bounds on the size of the extension sets, we can afford some small loss at all internal nodes of
degree at least 3.

In contrast, the number of nodes of degree 2 in T' is unbounded, and hence we cannot afford
any loss at those nodes when lower-bounding the size of an extension set. We use the following
lemma to deal with long induced paths of T

Lemma 4.4. Let G be a graph and let x: V(G) — C be a vertex-coloring and let P be a path
with vertex set V(P) = C = {c1,...,¢s} and edge set E(P) = {cici+1 | 1 € [s —1]}. Also,
suppose that G[x~'(¢c;),x '(cix1)] is a non-empty bireqular graph for every i € [s — 1]. Let
m = mingeec |x 1 (e)|. Let Hy, ..., Hy be k pairwise vertex-disjoint path graphs that agree with
P. Let X C x e1)\ Vey (Hy, ..., Hy) and

Wx e, = {v € x es) ‘ there are k + 1 pairwise vertez-disjoint

path graphs Hy,. .. ,H,;+1 such that
Ve (HY, ..., Hyy) = Ve, (Hy,...,Hy) U{z} for some z € X

and V,,(H,,. .., Hj,\) = Vi, (Hy, ..., Hy) U {v}}.

Then
’WX7CS ’ > |X ‘ k;

IX7Hes)l T Ix el m

15

Figure 4: The left side shows part of a tree T rooted at ¢; with a long induced path between ¢,
and ¢;. We already constructed three subgraphs Hi, Ho, H3 that agree with T. The extension
set X for the subtree rooted at c; is shown in gray. We have v € Wx ., via witnessing paths
shown on the right side. In particular, v is contained in the extension set W, for the color cs.

To grasp the meaning of this lemma, it is helpful to think of P as an induced path of T" with
¢1 being a descendant of ¢y (see also Figure 4). The set X is the extension set with respect to
the subtree rooted at c¢1, and we aim to provide a lower bound for the size of the extension set
with respect to the subtree rooted at c;. Towards this end, the lemma provides a lower bound
on the size of Wx ., which is a subset of the desired extension set.

Proof. The proof uses an alternating-paths argument. We split the edges of G into forward and
backward edges and direct all edges accordingly. Let

Egy = {(v,w)) vw € E(G)\ (U E(H;)),v € x"(¢;) and
Jelk]

w € X (ciy1) for some i € [s — 1]}
and

Epy = {(v,w) ‘ vw € U E(H;),v € x '(ciy1) and
JE[K]
w € x ' (c¢;) for some i € [s — 1]}

We consider directed paths that start in X C x~*(c1) \ Ve, (H1, ..., Hy). A pathvy,...,v in G
is admissible if

1. v € X,
2. (vi,Vi+1) € Ery U Ehy,, and
3. if (vj,viq1) € Egy and v;41 € Uje[k] V(H;) then i <t —2 and (vi11,vi+2) € Epy
for all i € [t — 1]. Let
A = {v € V(G) | there is an admissible path vy, ..., v; such that v; = v}.

For a color ¢ € C let A, == AN x~(c).
Claim 4.1. A., € Wx,.

16

U X Hei) U X He)
o) X~ (eiv) S Ou X (eivr)
(a) The vertex u is incident to two backward edges. (b) The vertex wu is incident to one forward and
It is isolated in H since both backward edges are one backward edge. It is adjacent to ' and u” in
deleted. the graph H.

Figure 5: Visualization for the construction of the graph H in Claim 4.1 for £k = 3. The edges
of the graphs H,, Ho, H3 are highlighted in blue, red and green. The directed edges of the
admissible path are shown in gray.

Proof. Let v € A., and let vy,...,v: be an admissible path of minimal length ¢ such that v = v;.
Let Hp41 be the corresponding path graph with V(Hgi1) == {vi,..., v} and E(Hgq1) =
{vivit1 | @ € [t — 1]}. Consider the graph H with vertex set V(H) := U,cp11) V(Hi) and edge
set

B(H) = | | B(H)\ B | U | B | B |-
ic[k] i€[k]

We claim that H is the disjoint union of (k4 1) many graphs Hi, ..., H}, 41 (and possibly isolated
vertices) that agree with P.

To see this, consider some vertex u € V (H) such that u € x~1(¢;) for some i € {2,...,5—1}.
If u is contained in exactly one of the sets V(H;), i € [k + 1], then it is easy to see that u has
exactly two neighbors in H, one in x (¢;_1) and another in x 7(¢;41). Otherwise, u € V(Hyy1)
and u € V(H;) for some i € [k] (recall that V(H;) NV (H;) = 0 for all distinct ¢, j € [k]). Then,
on the admissible path vy,..., v, the vertex w is either incident to two backward edges, or
incident to one forward edge and one backward edge. In the former case, u is isolated in H (see
Figure 5a), and in the latter case u has again exactly two neighbors in H, one in x!(¢;_1) and
another in x~!(¢;11) (see Figure 5b).

Similarly, it follows that every u € V(H) Ny *(c1) has exactly one neighbor in x~!(c2), and
every u € V(H) N x !(cs) has exactly one neighbor in x~!(cs_1). Overall, it follows that H
is the disjoint union of (k + 1) many graphs Hj, ..., H; , (and possibly isolated vertices) that
agree with P. In particular, v € Wx . J

By the claim, it suffices to provide a lower bound on the size of the set A.,. Towards this
end, we analyze the structure of the set A. For j € [k] let w; ; be the unique vertex in the set
V(H;)Nx (i), i € [s]. First observe that, if w; ; € A then also wy j € A for all i’ < i since all
vertices w;y ; are reachable with backward edges in Fpy.

We call a vertex b € U;cp V(H;)\ A a blocking vertex if there is a vertex v € ;¢ V (Hj)NA
such that (b,v) € Eiy. In other words, the vertex w;; is a blocking vertex if w;; ¢ A and
wi—1,; € A (and therefore wy ; € A for all 7/ < 7). Let B be the set of blocking vertices. By
the above observation, |[BNV (H;)| <1 for all j € [k] (and |[BNV (H;)|=0if V(H;)NA=0).
Hence, |B| < k. Let k; :== |[B N x!(c;)| be the number of blocking vertices of color ¢;, i € [s].

|_Aci| > |_Acl‘ itk for all i € [s].
Ix~He)l — IxHe)l m

Claim 4.2.

Proof. The claim is proved by induction on i € [s]. In the base case ¢ = 1, it holds that k1 = 0
which implies the statement.
For the inductive step assume that i > 1. Since G[x!(¢;), X !(cix1)] is a non-empty bireg-

ular graph, for each subset S C x~!(¢;) it holds that |N(§)ﬂx(;_lff;|+1)l > ‘les(‘c_)‘ as argued

17

in the preliminaries. We first argue that (N(Ac,) N x '(ciy1)) € Ae,, UB. Let v € A,
and w € N(A;) N x Heir1). If w € Ujep V(H;) then w € B or w € A. Otherwise
w € V(G)\ Ujepy V(H;) and (v,w) € Ep, which means w € A. This shows the inclusion
and therefore

[Aci.i | S IN(Ae) Nx~ein)| = ki o el ki
IXx~Hei)| X~ (eirn)l T IxNe) om
By the induction hypothesis, |X‘_Alc("c|i)| > |X|_IL§C(1€‘1)| — k1+7'7;;+k". In combination this means
| Aciii | S |[Ac,| kit R+ ki]
X~ Heir)l — IxTHe) m

Now, we can prove the lemma. We already observed in Claim 4.1 that A., € Wx . ,. More-
over, it holds that X C A.,. Combining this with Claim 4.2, we obtain

’WX,cs’ > ’AC5|

IXTHes)] Ix (e
[Aei|

~ Ix el
X

~ IxHe)l
Let T be a tree. We define V<;(T") == {t € V(T) | deg(t) < i} and V5;(T) = {t € V(T |

deg(t) > i}. It is well known that [V>3(T)| < |[V<1(T)].

We are now ready to prove the main technical lemma of this section which provides the
desired subgraphs Hy, ..., H,.

O

k
m
k
m

Lemma 4.5. Let G be a graph, let x: V(G) — C be a vertex-coloring and let T be a tree with
vertex set V(T) = C. Assume that G[x~*(c1), x *(c2)] is a non-empty biregular graph for every
cica € E(T). Let m == mineec |x 71 (c)| and let € := 2|V (T)| + |V>3(T)|.

Then there are (at least) | 7] pairwise vertex-disjoint trees in G' that agree with T.

Proof. We show by induction on k that there are at least k pairwise vertex-disjoint trees that
agree with T for all k < |7]. The base case k = 0 is trivial. For the inductive step assume there
are k < |7 | pairwise vertex-disjoint trees Hy, ..., Hy C G that agree with 7. From Hy,..., Hy,
we construct vertex-disjoint trees Hy, ..., H, HI::H C G that agree with T.

Towards this end, it suffices to show that there is a color ¢ € C such that the extension set
W, = W.(Hy,...,H) is non-empty. In fact, we show by induction on n := |V(T')| that for all

colors ¢ € C it holds that el > M=HEHO) where ¢ = 07 = 2|Vt (T)| + [Va3(T)| and

—2 if degp(c) =1,
d(c) ==dr(c) =<0 if degp(c) =2,.
—1 otherwise

First observe that this proves the lemma since k(¢ + d(c)) < k¢ < m, and thus |[W,| > 0 for all
ceC.

Consider the base case |V(T)| = 1 and assume C = {c} In this case £ = 2, deg(c) = 0
and d(c) = —1. Also, for each vertex v € V(G) \ V.(H, ..., Hy), the graph Hy1 = ({v},0) is

vertex-disjoint to Hy, ..., H and agrees with T'. Hence, | |_1E|)‘ > - k(g D m= k(frj_d(c))

For the inductive step assume that |V(T)| > 2 and let ¢ € C. We distinguish two cases
depending on the degree of ¢ in the tree T'.

18

Case degp(c) = 1: Let ¢1,...,¢cs = ¢ be the unique path in 7" such that ¢; # ¢ is a color with
degr(c1) # 2 and degp(c;) = 2 for all i € {2,...,s — 1} (see also Figure 4). Consider
the subtree 77 := T — {ca,...,cs} obtained from T by removing all colors in the path
excluding ¢;. Define m/ := mincy (7 [x " (¢)], ¢’ := lg and d'(c1) := dg(c1). Also define
G" = GlUcev) x"(c)] and H] = H;[V(G")] for i € [k].

If degp(c1) = 3 (and thus degy/(c1) = 2), then ¢/ = ¢ — 3 and d'(¢1) = 0 = d(c) + 2.
Otherwise degp(c1) ¢ {2,3} (and thus degg/(c1) ¢ {1,2}) and ¢/ =2 =/¢—2 and d'(c;) =
—1=d(c)+ 1. In total, ¢/ + d'(c1) = £+ d(c) —

We define W/ = W, (H{,...,H;) with respect to G’ and T". By the induction hy-

pothesis, ‘Xf[l/?il)‘ > m/_k(elfd/(cl)) > m_kw;d(c)_l). Now, define T = T{c1,...,cs}],

= G[UceV(T) x 1(¢)] and H; := H;[V(G)] for i € [k]. We apply Lemma 4.4 to G, T
i, 1 € [k], and X := W/ . Note that Wx ., € W,,. Thus,

/
|Wcs’ > |WX,CS| > |W01‘ k

el T I Hes)| T el m
m—k(l+d()-1) k
— k(¢ Td(c)) "

m

which completes this case.

Case degp(c) > 2: Let Zi,...,Zs be the connected components of T — {c}. Note that s =
degp(c). Let T; == T[Z; U{c}] for all i € [s]. Observe that V(T;) N V(Tj) = {c} for all
distinct 7,5 € [s]. Let G; = G[UCEV(TZ')X_I(c)] for ¢ € [s]. Let H;; = H,;[V(G;)] for
i € [s] and j € [k]. Note that H;; agrees with T; for all i € [s] and j € [k]. Let W;. =
We(Hia,...,Hi), i € [s], be the extension set with respect to G; and T;. Finally, define
m; = mingey X' (¢)], £ == L1, and di(c) = dr,(c) be the corresponding parameters
for each T;, i € [.

If degp(c) = s =2, then £ = Y77 (¢; —2) and d(c) = 0 = ZS 1(di(c) +2). Otherwise,
degp(c) =s >3 inwhichcase { =1+> 7 ((;—2) and d(c) = -1 = —1+>7_,(di(c) +2).
In both cases, £ +d(c) = >_7 (4 + di(c)).

By the induction hypothesis, “ Wil mizk(litdi(d)) m_k(ﬁ;:'di(c)) for all i € [s]. More-

ol = mi

over, ﬂie[s] Wi . € W,. Together, this means

’Wc’ ‘ﬂze[s] Wl ,C
>

=12 (5,

Xl IxHe) e
(5 di(c))
>1-) (1-
’ie[s}<)
:m—k(€1+...+€5+d1(c)—i—...—i—ds(c))
_ —k‘(ﬁ—l—d(c)). "

O]

Proof of Lemma /.3. Consider the graph H := G|[x, V2]] which is connected. Let vy,...,v, € V]
be distinct vertices and let wy,...,wy, € Vi such that vyw; € E(G). Note that [w;], € N(v;)
for all i € [h] since x is stable with respect to the Color Refinement algorithm. Also define

19

¢i = x(w;). Now let T' C H be a Steiner tree for {ci,...,cp}, i.e., a tree that contains all the
vertices c1, ..., cp and is minimal with respect to the subgraph relation. Hence, T is a tree with
C1y...,cp € V(T) and |V<1(T)| < h. This also implies that [V>3(T")| < h.

Now let £ := 2|V<i(T)| + [V>3(T)| < 3h. We have that m := min.eyr) [x " '(c)| > 3h3.
Also note that G[x~1(t1), x"1(t2)] is biregular and non-trivial for all t1t, € E(T). By Lemma
4.5, there are r == || > h? pairwise vertex-disjoint trees Hi, ..., H, that agree with 7. But
this gives a topological subgraph K}, of the graph G. For each unordered pair v;vj, 1,5 € [h],
and each Hp, p € [r], there is a path in the graph H, from a vertex w, € [w;], € N(v;) to a
vertex wj € [w;]y € N(v;). Therefore, for each unordered pair v;v;, 4,j € [h], there is a path
from v; to vj in G and these paths are internally vertex disjoint (since Hi, ..., H, are pairwise
vertex-disjoint trees). O

4.3 Finding an Initial Color Class

Next, we give a proof for Theorem 4.2. The proof builds on the 2-dimensional Weisfeiler-Leman
algorithm. Towards this end, we first introduce some additional notation.

Let G be a graph and let x := x&,[G] the coloring computed by the 2-dimensional Weisfeiler-
Leman algorithm. We refer to Cy = Cy (G, x) = {x(v,v) | v € V(G)} as the set of vertex
colors and Cg = Cg(G, x) = {x(v,w) | vw € E(G)} as the set of edge colors. For a vertex color
c € Cy (G, x), we define V. :== V,(G, x) == {v € V(G) | x(v,v) = ¢} as the set of all vertices with
color ¢. Similar, for an edge color ¢ € Cg(G, x), we define E, := E.(G,x) = {viva € E(G) |
X(vi,v2) = c¢}. Let C C Cg be a set of edge colors. We define the graph G[C] with vertex set

vigeh=J |Je and E@GC) =] E. (3)

ceC ecE, ceC

Let Ay,..., Ay be the vertex sets of the connected components of G[C]. We also define the
graph G/C' as the graph obtained from contracting every set A; to a single vertex. Formally, we
set

V(G/C) = {{v} | v e V() \ V(GIC)} U{Ay,..., A} and

4
E(G/C) = {X1X2 ’ Jvi € Xq,v0 € Xo: v1vo € E(G)} ()

Observe that G/C' is a minor of G for every set of edge colors C' C Cg. We usually only consider
the case C' = {c}, and we write G[c] and G/c instead of G[{c}] and G/{c}.

Lemma 4.6 ([36, Section I]). Let G be a graph and C C Cg be a set of edge colors. Define
(x/C) (X1, X2) = {x(v1,v2) | v1 € X1,v2 € X}

for all X1,Xo € V(G/C). Then x/C is a stable coloring of the graph G/C with respect to the
2-dimensional Weisfeiler-Leman algorithm.

Moreover, for all X1, Xa, X1, X5 € V(G/C), either it holds (x/C) (X1, X2) = (x/C) (X1, X}5)
or (x/C)(X1, X2) N (x/C) (X1, X3) = 0.

For a more recent reference we also point the reader to [8, Theorem 3.1.11]. As before, if
C = {c}, we write x/c instead of x/{c}.

For every edge color ¢, the endvertices of all c-colored edges have the same vertex colors,
that is, for all edges vw,v'w’ € E(G) with x(v,w) = x(v/,w") = ¢ we have x(v,v) = x(v/,v')
and x(w,w) = x(w’,w’). This implies 1 < |Cy(G|c], x)| < 2. We say that G|c| is unicolored if
|Cv (Glc], x)| = 1. Otherwise G|c] is called bicolored.

The basic strategy for the proof of Theorem 4.2 is to color the input graph with the coloring
x computed by the 2-dimensional Weisfeiler-Leman algorithm. The goal is to find a color class
X = Vy (for some vertex color d) such that X C CIEG’X) (v) for every v € X. We prove the
existence of such a color class by a complicated case distinction depending on which types of

20

graphs G|c] occur within the graph G. For example, a simple case is that there is a unicolored
graph GJc] that is connected. Note that G]c] is r-regular for some number r > 1, and r <
ahy/Togh by Theorem 2.1. So we can choose X = V(G]c]) since the closure always contains
bounded-degree components (of some edge color) assuming at least one vertex of the component
is individualized.

For the other cases, the proof turns out to be significantly more complicated. Here, we also
need to rely on recursive approaches. A first, simple idea is that in certain cases, we are able to
distinguish between some vertices that receive the same color from the 2-dimensional Weisfeiler-
Leman algorithm. In this case, we update the coloring x accordingly (in an isomorphism-
invariant way) and restart the entire algorithm using the updated, finer coloring.

A second idea that is used in our algorithm is to consider an edge color ¢, recursively obtain
a set X' for the graph G/c, and then construct the set X from X’. This approach is actually
the reason why Theorem 4.2 provides a pair-colored graph (G’, x’): we need to ensure that G/c
is a subgraph of G’ so that properties for the closure can be lifted from G/c to G.

Let us now dive into the technical details of the proof. The next two lemmas investigate
properties of connected components of bicolored graphs G|c] for an edge color ¢. In particular,
we show that if G[c] is a bicolored connected graph with vertex color classes Vy, and V,, then

there is 7 € {1, 2} such that Vg, C CIEG’X) (v) for every v € Vy,. Again, recall the definition of the
constant a from Theorem 2.1.

Lemma 4.7. Let G = (V1,Va, E) be a connected, bipartite graph that excludes Kj as a minor
and define x = xau[G]. Suppose that x(vi,v2) = x (v}, vh) for all (v1,vs), (v],v}) € Vi x Vo with
vive, vvh € E. Also assume that |Va| > (ah+/logh) - |V1]|. Let

. Vi
E* = {vlv’l € (21)

Then there are colors ci, . ..,c. € x(V£) such that
1. B* = Uiy Be; where Ee, = {wiwz € V(G)? | x(wr, w2) = ¢},

Juy € Vo 1)11)2,1)1112 S E(G)} .

2. H = (Vq, E*) is connected, and
3. H; is a minor of G for all i € [r] where H; = (V1, Eg,).

Proof. Clearly, H is connected because G is connected. Since x(vi,v2) = x(vi,vh) for all
(v1,v2), (v],vh) € Vi x Vo with vive,vivh € E, it follows that x(vi,v1) = x(v],v}) for all
vi,v] € Vi, and x(va,v2) = x(vh,v}) for all vy, vh € Vo. So G is biregular which implies that
deg(vy) - |Vi| = |E| = deg(v2) - |Va] for all v; € Vi and vy € Va. Since |Va| > |Vi| we conclude
that deg(v1) # deg(v2), and hence x(vi,v1) # x(ve,v2) for all v; € Vi and vy € Vi, All
together, this means that there is some vertex color d € Cy such that Vy(G, x) = Vi. Since the
2-dimensional Weisfeiler-Leman algorithm distinguishes pairs of distinct vertices with a common
neighbor from other pairs of vertices, we conclude that there are colors ci, ..., ¢, € x(V{?) such
that E* = ;¢ B,

So fix some i € [r] and consider the bipartite graph B = (Va, E,,, E(B)) where E(B) =
{(va,v10]) | v2 € Ng(v1) N Ng(v})}. By the properties of the 2-dimensional Weisfeiler-Leman
algorithm the graph B is biregular. So it follows from Hall’'s Marriage Theorem that B contains
a matching M of size min(|Va|,|E,|) as explained in the preliminaries.

If |Va] > |Eg,| then each pair v1v] € E,, is matched to a vertex ve € Va (i.e., (v, v10]) € M)
such that v1ve,vjvy € E(G). It follows that H; is a minor of G.

Otherwise |Va| < |E,,|. Let F; C E,, be those vertices that are matched by the matching
M in the graph B. Then H] = (Vi, F}) is a minor of G, and thus it excludes K}, as a minor.
However,

1 2|F;| 2|Vq|
E degp(v1) = = > 2ahy/log h
VDL, S A

21

which contradicts Theorem 2.1. O

Lemma 4.8. Let t > (ah\/logh)?. Let G = (V1,Va, E) be a connected bipartite graph that
excludes Ky, as a minor and define x = x&,[G]. Suppose that x(vi,v2) = x(vi,vh) for all
(v1,v2), (v}, vh) € Vi xVa with viva, vivh € E. Also assume that |Vi| < [Va|. Then Vi C ClgG’X) (v)
for all v e V1 U V.

Proof. The graph G is biregular and it holds that deg(vy)-|V1| = deg(ve) - |V2] for all v; € V; and
vg € Vo. Hence, deg(ve) < ahy/logh for all v € V5 by Theorem 2.1. This means clgG’X)(v)ﬁVl #
(), because either v € CI(G7X)()NViorve Vaand Ng(v) C clgG’X) (v) N V7.

First suppose that [Va| < (ahy/Iogh) - |Vi|. Then deg(vi) = deg(v) M2l < ¢ and deg(vy) < t

Vil
for all v; € Vi, vs € Va. Tt follows that ¢l (v) = V(G).
So assume that |Vz| > ah+/log h|V1|. By Lemma 4.7, there are colors ci, ..., ¢, € x(V{) such
that

1. H; excludes K} as a minor for all i € [r] where H; = (V1, E,,) and E., = {vivs € V(G)? |
x(v1,v2) = ¢}, and

2. H = (Vl,Uie[r] E.,) is connected.

Note for all i € [r], the graph H; is d-regular for some d, and by Theorem 2.1 we have d <
ah+/log h < t. This implies that V; C CI(G X) (v1) for all v; € Vi, and since Vj N cl (@, X)() # 0 for
all v € Vi U Vs, it follows that V4 C eI\ (v). O

Let A be the vertex set of a connected component of G[c]. We define a size parameter for
the graph GJc] as
s(c)== min [ANVy.
deCy (G[d,x)
Note that this is well-defined since every two connected components of G[c] are equivalent with
respect to the 2-dimensional Weisfeiler-Leman algorithm (since the 2-dimensional Weisfeiler-
Leman algorithm “detects” components of graphs).

Proof of Theorem 4.2. First observe that ¢ > max{(ah/logh)?, ah® 3h3} (recall that we as-
sumed a > 2). Let x = x&,[G] be the coloring computed by the 2-dimensional Weisfeiler-Leman
algorithm for the graph G. The algorithm works recursively and essentially distinguishes be-
tween two cases (but for both cases there are several subcases). Also, in some situations, the
algorithm may find an isomorphism-invariant vertex-coloring xy that is strictly finer than the
one induced by x. In this case, the algorithm is always restarted on the current graph and the
coloring is updated accordingly (by running the 2-dimensional Weisfeiler-Leman algorithm on
G with vertex-coloring xy). Note that such a restart can only occur at most n times where n
denotes the number of vertices of G.

The algorithm distinguishes between two cases depending on whether there is an edge color
c? € Cp = Cg(G, x) such that s(c?) < ah® where a is the constant from Theorem 2.1.

In the first case, we assume that such a color exists. We choose an edge color ¢ € C such
that s(c”) < ah® and define F := G/c¥ (recall Equation (4) for the definition; to ensure that
the color in Cg is chosen in an isomorphism-invariant way, the algorithm chooses the smallest
color in Cg C N according to the ordering of natural numbers). The algorithm recursively
computes an isomorphism-invariant graph (F”,x’) and a vertex color cl' e Cy(F' , X) that
satisfies Properties 2 and 3 for the input graph F. (If F' contains a minor K}, then G also
contains a minor K, since F is a minor of G.) If V_r C V(G), then the algorithm simply returns
(F',x») and the color cF'.

22

Otherwise, V.r N {A1,...,As} # 0 where Aj,..., Ay are the vertex sets of the connected
components of G[c”]. Let d = argmingecy, (Gy),A;nv,0 [4i N Va| for some i € [¢]. This means
s(cP) = |A; N Vy|. The algorithm constructs G’ where

V(G =V(F) U (ANVy)
AEVCFQ{AL..‘,AZ}

and
E(G) =EF\Yu{Av|AecVrn{A, ..., A}, v € ANV}

Also, X' (v, w) = (Xp(v,w),0) for every v,w € V(F’), x'(w,v) = x'(v,w) = (1,1) for all distinct
veV(GE),weV(GE)\V(F), and x'(v,v) = ¢ = (0,1) for every v € V(G') \ V(F’). Clearly,
(G',x') is constructed in an isomorphism-invariant manner. The algorithm returns (G’,Y’)
together with the vertex color ¢. By definition, V., C V; C V(G). Moreover, V. C clEG/’X/)(v) for
all v € V. since |Ngr(A;) N Ve| < |A; N Vy| = s(cP) < ah? for all A; € V,r. This completes the
first case.

In the second case, s(c”) > ah? for every edge color ¥ € Cg. If |V(G)| = 1, the problem is
trivial. Otherwise, let ¢ := argmin ., |Ve| be the color of the smallest color class (if this color
is not unique, then the algorithm chooses the smallest color in Cyy C N with minimal color class
size).

Now let ¢¥ € Cp be an edge color defined in such a way that either V. = V(G[cF]), or
V. C V(G]c¥]) and there is no edge color ¢ such that V. = V(G[c]).

First suppose that G[c¥] is connected. If G[c¥] is unicolored, then V. C CLEG’X)(U) for every
v € V. by Theorem 2.1. So suppose that G[c”] is bicolored. Let ¢/ € Cy be the second vertex
color that appears in G[c], i.e., V.UV, = V(G[cF]). Note that G[cF] is a bipartite graph with
bipartition (Vg, Vi) and |V| < |V]. So V. C clgG’X) (v) for every v € V, by Lemma 4.8. In this
case, we are done and return (G, x) together with the vertex color c.

So assume that G/[cF] is not connected and let Ay, ..., Ay be the vertex sets of the connected
components of G[c”]. Note that |4; N V.| = s(c¥) > ah®. Now let i € [f] and v € A;. Then
ANV, C clgG’X) (v) by Lemma 4.8. In particular, clﬁG’X)(vl) = CIEG’X) (vg) for all vi,v9 € A;NV,.
Let D; == cliG’X) (v) for some v € A; NV, i € [4].

Without loss of generality assume that |D; NV = |D; N'Vy| for all 4,5 € [(] and ¢ € Cy.
(Otherwise define xy(v) = (x(v,v),0) for all v € V(G) \ Ve and xv(v) = (x(v,v),(|D; N
Vel)ereoy,) for allv € A;N Ve and ¢ € [£]. Then xy is isomorphism-invariant and strictly refines
the vertex-coloring induced by x, and the algorithm is restarted as discussed above.) Note that
for every 4,7 € [¢] it holds that

ApND;#0 = AynV.CD; (5)

by Lemma 4.8.

Let R:={(i,i) € [¢(] | Ay NV, C D;}. Clearly, R is reflexive and transitive.
Claim 4.3. If R is not symmetric, one can compute in polynomial time an isomorphism-invariant
vertex-coloring xy that is strictly finer than the one induced by .

Proof. Since R is not symmetric, there are distinct 4,4’ € [¢] such that (i,7') € R and (¢/,i) ¢ R.
Now, consider the directed graph ([¢], R) (ignoring self-loops). Since R is transitive it follows
that ([¢], R) is not strongly connected. Let M C [¢] denote the set of those vertices that appear
in a maximal strongly connected component of ([¢], R) (i.e., a strongly connected component
without outgoing edges). Also, let M, := J;c5; AiNVe. Clearly, M. is defined in an isomorphism-
invariant manner and () # M, C V.. We define xy (v) == (x(v,v),0) for all v € V(G) \ M, and

xv(v) = (x(v,v),1) for all v € M,.. It is easy to see that all objects can be computed in
polynomial time. g

23

Figure 6: Visualization of the proof in the case s(c”) > ah? (this condition is omitted for visual-
ization purposes). The figure shows the part G [CE] with six connected components A1, ..., Ag.
Moreover, D1 = Dy, D3 = D4 and D5 = Dg, and A; = {1,2}, Ay = {3,4} and A3 = {5,6}.

With the last claim in mind, we may assume that R is symmetric (otherwise the algorithm
is restarted). So overall, R is an equivalence relation. Let Ay, ..., A, be the equivalence classes
of R. If r =1, then V., C D; for all i € [¢] and the algorithm returns (G, x) together with the
vertex color c.

Hence, assume that » > 2. This is visualized in Figure 6. Note that D; = D, for all
(i,#') € R. The rest of the proof is devoted to computing a vertex-coloring that is strictly finer
than the one induced by x (which results again in a restart).

A partition P = {P,...,P,} of the set [{] refines the partition {A,..., A}, denoted

P <{Ai,..., A}, if for every j € [q] there is some i € [r] such that P; C A;.
Claim 4.4. There is a partition P = {Py,...,P;} < {Ai,..., A} and a graph Gp = (P, Ep)
such that Gp is a minor of G and there are distinct 4,7’ € [r] and P, P’ € P such that P C A;,
P’ C Ay and PP’ € Ep. Moreover, the partition P and the graph Gp are isomorphism-invariant
and can be computed in polynomial time.

Proof. We first construct an inclusionwise maximal set of edge colors C* C Cg(G, x) such that
(a) ¢ € C*, and

(b) for every connected component B of G[C*] there is some i € [¢] such that A; C B and
BNV, CD;,.

Observe that such a set C* can easily be constructed by a greedy algorithm that initially sets
C* := {c¥} and keeps adding colors as long as Condition (b) is satisfied. To ensure isomorphism-
invariance, the greedy algorithm always adds the smallest color in Cg(G, x) \ C* C N that does
not violate Condition (b).

Now let By, ..., B, denote the connected components of G[C*]. We define P; := {i € [{] |
A; C Bj}. Let P = {Py,...,F;}. Clearly, P is a partition of [¢(]. Also P = {A,..., A} by
Condition (b).

To define the graph G'» we associate the elements of P with the sets By, ..., B,;. Consider
the graph F := G/C* and let xp := x/C* as defined in Lemma 4.6. Note that y is stable with
respect to the 2-dimensional Weisfeiler-Leman algorithm for the graph F' by Lemma 4.6.

Let ¢! € Cg(F,xr) be an edge color such that {Bi,...,B,} C V(F[c!']). Note that such
an edge color exists since F' is connected and ¢ > r > 1.

Case F|[c!] is unicolored: We set
—Jpp F o ply _F
Ep = P]PJ/ S 9 XF(BjaBj) =c .

24

Clearly, Gp is isomorphic to F[c!] and hence, it is a minor of G. Also, there are distinct
i,i" € [r] and P, P" € P such that P C A;, P’ C Ay and PP’ € Ep by the maximality of
the set C*.

Case FcF] is bicolored: Let U == V(F[cF])\{Bu, ..., B,}. Note that [U| > |V.| > fah3 > qah3,
because V. is a color class of G of minimum size. We define

P
E; = {Pjpj/ S <2> ‘ Ju e U: XF(Bj,u) = XF(Bj/,u) = CF} .

Again, there are distinct i,7" € [r] and P;, Py € P such that P; C A;, Py € Ay and
P;Pj € E; by the maximality of the set C*.

Finally, to obtain a minor of GG, we further thin out the set E;; by keeping only those pairs
that have the same color as (Pj, Pj). Formally, we define

P
Ep = {Pj//Pj/// - <2> ‘ XF(Bj”aBj’”) — XF(BjaB]’)} .
Then Gp is a minor of G' by Lemma 4.7 which is applicable since |U| > gah?.

_I

Now let P = {Py,...,P;} and Gp = (P, Ep) be the objects computed in Claim 4.4. If Gp
is not regular, then the algorithm computes an isomorphism-invariant refinement of the coloring
X- (Actually, this case does not occur by the properties of the 2-dimensional Weisfeiler-Leman
algorithm). Hence, degg,, (Pj) < ahy/logh for all j € [q] by Theorem 2.1.

Let Zi, cee Z,ii be the connected components of G — D;. If there are i,7 € [{] such that
k; # ki, then the algorithm computes the vertex-coloring yy defined by xv (v) = (x(v,v), k;)
forallv € A;NV, and i € [{] and xy (v) == (x(v,v),0) for all v € V(G) \ V.. Then xy strictly
refines the vertex-coloring induced by x and the algorithm is restarted.

So suppose k = k; = ky for all 4,i’ € [(]. Then |[Ng(Z})| < h by Theorem 4.1 for all j € [k].
Moreover, it holds that

AyNVeNZi #0 <« Ay CZ; (6)

for all ' € [¢] and j € [k] by Equation (5). Let
Ep = {(D;,Ay) | i' € Py,i € P, P;Pj € Ep}.

For each i’ € [{] there are at most (ahy/logh) many distinct sets D € {Ds,..., Dy} such that
(D, Ay) € Ep. This implies |Ep| < lahy/logh. We define

Q= {(D.g) € (Dr.... D} x]| 30 € [0: (D.A) € Bp A Ay € Z1).

Note that @ # () by Claim 4.4 and that |Q| < |Ep| < fah\/logh by Equation (6). Now pick
d € Cy C N to be the smallest (according to the ordering of the natural numbers) vertex color
such that
X:= |J Na(Z)nVyG,x)
(Di,j)€Q
is not the empty set. Then
0 < |X| < Lah®\/logh < |V|.
Since X is defined in an isomorphism-invariant manner and V. forms the smallest vertex color
class, this allows us to refine the coloring x by taking membership in X into account.

This completes the description of the algorithm. Clearly, the running time is polynomially
bounded in the input size. Also, the correctness follows from the arguments provided throughout
the description of the algorithm. O

25

A e i,Pa

Figure 7: Visualization of the graph decomposition.

5 Isomorphism Test for Graphs Excluding a Minor

Having presented the key technical tools in the previous section, we are now ready to describe
our isomorphism test for graph classes that exclude K} as a minor.

Theorem 5.1. Let h € N. There is an algorithm that, given two connected vertex-colored
graphs G1,Ge with n vertices, either correctly concludes that G1 has a minor isomorphic to Ky
or decides whether Gy is isomorphic to Go in time n®1°8M)°) for some absolute constant c.

Proof. We present a recursive algorithm that, given two vertex-colored graphs (Gi,x1) and
(Ga,x2) and a color ¢ such that for S; = x; '(cp) it holds that |S;| < h and G; — S; is
connected for ¢ = 1,2, either correctly concludes that G; has a minor isomorphic to Kj or
computes a representation for Iso((G1, x1), (G2, x2))[S1]. The color ¢y does not have to be in
the range of the y; (we set x; '(co) = 0 in this case). Thus initializing it with a color ¢
not in the range, we have |S;| = 0 < h, in which case the algorithm simply decides whether
Iso((G1, x1), (G2, x2)) # 0, that is, decides whether (G1, x1) and (Ge, x2) are isomorphic. (For
S1 = So = (), we define Iso((G1, x1), (G2, x2))[S1] to contain the empty mapping if (G1, x1) and
(G2, x2) are isomorphic, in the other case Iso((G1, x1), (G2, x2))[S1] is empty.)

So let (G1,x1) and (G2, x2) be the vertex-colored input graphs, and let ¢y be a color such
that |S;| < h. Let t :== [a®h3logh] € O(h3logh) (as before, a denotes the constant from
Theorem 2.1). The algorithm first applies Theorem 4.2 to the graph G; and the parameter ¢.
This results in a pair-colored graph (G}, x}), a color ¢; € {xi(v,v) | v € V(G})} and a subset
X; = {v € V(G) | xi(v,v) = ¢} C V(G,;) for both i € {1,2}, or the algorithm correctly
concludes that one of the graphs has a minor isomorphic to K. If ¢; # ¢o or a minor is detected
in only one graph, then the input graphs are non-isomorphic. So suppose that ¢ = ¢; = co.
Then X7 = X for every ¢ € Iso(G1,Ga) by Theorem 4.2.

Now let D; = cltGi (X;i). Note that DY = D for every ¢ € Iso(G1,G2). Also observe that
S; C D; since |S;| = |x; (co)] < h <t. Let Zi1,...,Z;x be the vertex sets of the connected
components of G; — D; and define Z; .= {Z; 1, ..., Z; ;;} (if the number of connected components
differs in the two graphs then they are non-isomorphic). See Figure 7 for a visualization.

If Kk =1 and |D;| < h, then the algorithm proceeds as follows. First, the coloring x;,
i € {1,2}, is updated to take membership in the set D; into account, i.e., x;(v) is replaced
by xi(v) = (xi(v),1) if v € D; and x;(v) = (xi(v),0) if v € V(G;) \ D;. Afterwards, the
algorithm computes a set Xi1 according to the above procedure with respect to the input graphs

26

Gl =G;— D;. Let D} = ClEGi’Xi)(Xil) be the closure of X} in the graph G; (rather than G}).
Then D} D D; since |D;| < h < t. Moreover, D} 2 D; since X} C D} and § # X} C V(G}).
This procedure is repeated until |D3*] > h,or k> 2, or k=0 for some j* > 1.

So without loss of generality suppose that |D;| > h, k > 2 or k =0. If k =0 and |D;| < h,
then V(G;) = D; and therefore |V (G;)| < h, and the statement of the theorem can directly be
obtained from Babai’s quasipolynomial time isomorphism test [2| since both graphs have size at
most h — 1.

In the following, suppose that k& > 2 or |D;| > h. Let S;; = Ng,(Z;;) for all j € [K]
and i € {1,2}. Note that |S; ;| < h by Theorem 4.1. Finally, define H; ; .= G[Z; ; U S, ;] and
ij: V(H; ;) = C x {0,1} to be the vertex-coloring defined by

Xi/U,]. if’UEZZ‘,"
(e {001 v e 7,
(xi(v),0) otherwise

for all j € [k] and both i € {1,2}. For each pair ji,j2 € [k] and i1,i2 € {1,2} we compute the
set of isomorphisms

(1)311:;22 = I80((Hiy,j1» Xir i)s (Hig o Xiz g2) [Sir i]
recursively.

For both i € {1,2} we define an equivalence relation ~; on [k] via j; ~; jo if and only
if S;;, = Sij, for j1,j2 € [k]. Let P; .= {Pi1,..., P} be the corresponding partition into
equivalence classes (as visualized in Figure 7). For each P; € P; let S;p, = S;; for some
j € P;. (By definition, S; p, does not depend on the choice of j € P;.) Also, define H; p, :=
Gil(Ujep, Zij) U Si,p,] and let Xz{{P,- be the coloring defined by

7,"1),0 if'UGSi7 s
Xfﬂ(“) = Oxi(©).0) , F
(xi(v),1) otherwise

for all v € V(H; p,). For each iy,iy € {1,2} and P; € P;, and P> € P;, the algorithm computes

01,1 . H H
5%, = Iso((Hiy, Py Xiy,py)s (Hig, Py Xig, p,)) [Sin, 1

as follows. Without loss of generality assume that P, € P; and P, € P3. We formulate
the isomorphism problem between (Hj p;, x1 p,) and (Hz p,, i p,) as an instance of multiple-
labeling-coset isomorphism. We define another equivalence relation ~ on P; W P> via

ek e W5 A0
where j; € P;, and js € P,.

Again, we partition P & P, = Q1 U ... U (@, into the equivalence classes of the relation ~.
For each equivalence class @); we fix one representative j* € Q); and pick i* € {1,2} such that
J* € Pp. Let A\j«: Si« p.. — [|Sp,.|] be an arbitrary bijection.

Let i € {1,2},j; € P, N Q; and define p;I';, = cI);.’:;*)\j*, Moreover, we define X; p, =
(Si,ps Li,p,, pi,p,) where

Lip, = A{pj;Lj; | ji € Pi}
and
pip (P L) =45 | ji € BN Qj and p;T'j, = pyrLyr}
(for each j; such that pj,I';, = p;I'j; the element j is added to the multiset where j; € P, N Q;).
Claim 5.1. &%, =Tso(Xy p,, Xo.p,)-

27

Proof. Let ¢ € Iso((HLpl,xfpl), (Ha,p,, XIQL{&)) and let o: P; — P, be the unique bijection such
that ij = Zy(j) for all j € Py. Let j1 € P1 and consider the labeling coset pj,I'j, € L1 p,.
Let jz := o(j1). Then ji = ja since ©[Z1 ;] € Iso((H1jy, X1,51)s (Hajos X2,3))- Let j* = ji = j3
be the representative from the equivalence class containing j; and js and pick i* € {1,2} such
that j* € Pjx. Then

2, = 14*
PLS1 51 PGy o = @51 e

Since Aj,« = Ajs, this implies that (¢[S1,]) ;T = pj T, and, since the above statement
holds for all j; € Pj, it also means that p; p, (pj,[';;) = p2.p,(pj1j,) (ie., equality between
labeling cosets is preserved by the mapping o).

For the backward direction let ¢ € Iso(X) p,, X2 p,). This means, there is a bijection o: Py —
P5 such that

(a) 71 ~o(j1), and
(b) Vflpjlrjl = pU(jl)FU(jl)

for all j; € P;. This means that, for every j; € P, it holds that ¢ € @;fh. But this implies
that ¢ € @}5127132. 2

Hence, @}512 p, can be computed using Theorem 3.6. Next, the algorithm turns to computing
Iso((G1, x1,v1), (G2, X2, v2))[D1] from the sets @2{?}2, i1,72 € {1,2} and P, € P;,, P» € Pj,.

Let v1 € X1 be an arbitrary vertex. For all v € X3 the algorithm computes a representation
of all isomorphisms ¢ € Iso((G1, x1), (G2, x2))[D1] such that ¢(v1) = p(v2) as described below.
The output of the algorithm is the union of all these isomorphisms iterating over all vy € Xo.
Additionally, all mappings are restricted to S; (recall that S; C Dy).

Let D} = CIEG’I"’X(")(W) for v; € X; (and recall that D; = cl¥(X;)). The algorithm first
computes a [y-group ' < Sym(D}) and a bijection v: D] — D such that

ISO((Glla X,lv Ul)v (G,Zu X/27 UQ))[Dll] - F7

using Theorem 3.8. Note that X; C D) by Theorem 4.2. For ease of notation define A := I'y[X/]
(observe that X7 - X, for all 4/ € T'y). In a second step, the algorithm computes another
I';-group A < Sym(D;) and a bijection §: D1 — Do such that

ISO((Gla X1, Ul)a (G27 X2, UQ))[Dl]
= {p € Is0((G1,x1), (G2: x2)) | p[Xa] € A}D:]
C A6

again using Theorem 3.8.

To compute the set of isomorphisms, we now formulate the isomorphism problem between
(G1, x1,v1) and (G, x2,v2) as an instance of coset-labeled hypergraph isomorphism. Let H; :=
(D;, &, pi) where

E = E(Gl[DZ]) U {Si,Pz‘ | P e 7?1} U {{U} | NS Dl}

The function p; is defined separately for all three parts of the set & (if an element occurs in
more than one set of the union, the colors defined with respect to the single sets are combined
by concatenating them in a tuple).

For an edge vw € E(G;[D;]) we define p;(vw) = (py Sym([2]),0) with the bijection
pow: {v,w} — {1,2} where p,.,(v) =1 and py (w) = 2.

In order to define p; for sets S; p,, P; € P;, we first define an equivalence relation ~ on the
disjoint union P; & Py where P ~ @ if ISO(<H721,P;X'ZI7P)7 (Hiz,@Xg,Q)) # 0 for P € P;, and
Q € Pi,. Let Qq,...,Q, be the equivalence classes. For each equivalence class Q; we fix one

28

representative Q7 € Q; and pick i* € {1,2} such that Q} € P;«. Let pQ:: Sqr = HSQjH be an
arbitrary bijection. Let i € {1,2}, P; € P;N Q; and define

pi.p,Li p, = Iso((H; p,, Xfpi)y (Hi= g Xg,Q;f))[Si,Pi]pQ;f-
Now, for P; € P; N Q;, we define
pi(Sip,) = (pipTip J)

(Intuitively speaking, each separator S; p, is associated with a color j and a labeling coset
pi.p,Li p,. The color j encodes the isomorphism type of the graph H; p, whereas the label-
ing coset determines which mappings between separators extend to isomorphisms between the
corresponding graphs below the separators.)

Finally, for v € D;, we define p;(v) := (v +— 1, x;(v) + r) (recall that r denotes the number
of equivalence classes Q1, ..., Q,). Then

Iso((G1, x1,v1), (G2, X2, v2))[D1] = Isoas(H1, Ha)

which can be computed in the desired time by Theorem 3.3.

This completes the description of the algorithm. The correctness follows from the statements
made throughout the description of the algorithm. So it remains to analyze the running time.

First observe that the number of recursive calls the algorithm performs is at most quadratic
in the number of vertices of the input graphs. One way to see this is to associate vertices from
D; \ S; with the graph G;, and observe that every vertex can be associated with at most one
subgraph of the original input graph G; considered in some recursive call. So the number of
subgraphs of G; considered in recursive calls is at most the number of vertices, which means
that the total number of recursive calls is at most quadratic in the number of vertices of the
input graphs.

Also, [P;| < n and |S;;| < h for both ¢ € {1,2} and all j € [k]. Hence, the computation
of all sets @iél’ffp?, P, € P;, and P» € P;,, requires time n©((0gh)%) by Theorem 3.6. Next, the
algorithm iterates over all vertices vo € X5 and computes isomorphisms between coset-labeled
hypergraphs using Theorem 3.3. In total, the algorithm from Theorem 3.3 is applied | X32| < n
times and a single execution requires time n@((1°8")) " Overall, this gives the desired bound on
the running time. O

We remark that, by standard reduction techniques, there is also an algorithm computing a
representation for the set Iso(G1, G2) in time nO(0gh)%) assuming Gy excludes KJ, as a minor.

We also remark that the proof of the last theorem reveals some insight into the structure of
the automorphism group of a graph that excludes K} as a minor.

Let G be a graph. A tree decomposition for G is a pair (T, 3) where T is a rooted tree and
B: V(T) — 2V such that

(T.1) for every e € E(G) there is some t € V(T') such that e C 5(t), and
(T.2) for every v € V(G) the graph T'[{t € V(T) | v € 5(t)}] is non-empty and connected.

The adhesion-width of (T, 8) is max,+,cp(r) |B(t1) N B(t2)].
Let v € V(G). Also, recall that (Aut(G)), = {¢ € Aut(G) | v¥ = v} denotes the subgroup
of the automorphism group of G that stabilizes the vertex v.

Theorem 5.2. Let G be a graph that excludes Ky as a minor. Then there is an isomorphism-
invariant tree decomposition (T, 3) of G such that

1. the adhesion-width of (T,) is at most h — 1, and

29

2. for every t € V(T) there is some v € B(t) such that (Aut(G)),[3(t)] € Ty for d =
[a’h3logh].

The theorem readily follows from the same arguments used to prove Theorem 5.1. Indeed,
consider the recursion tree T' of the algorithm from Theorem 5.1 on input (G, G) where each
node t € V(T) is associated with the corresponding set §(t) := D; (see also Figure 7). For
teV(T) let ve Xy \S1 C Dy (recall that S; = B(s) N B(t) where s is the unique parent node
of t). Then D] = Dy for all v € (Aut(G)), and (Aut(G)),[B(t)] € T, Finally, observe that
X1\ S1 # 0 (in a situation where X; C 51, it also holds that D; C S; and the algorithm from
Theorem 5.1 would recompute a set X}).

6 Conclusion

We presented an isomorphism test for graph classes that exclude K} as a minor running in
time nPo1ee(h) The algorithm builds on group-theoretic methods from [26, 38] as well as novel
insights on the isomorphism-invariant structure of graphs excluding the minor Kj,.

In a follow-up work [27], the second author could show that most of the results presented
in this work can be extended to graph classes that only exclude K}, as a topological subgraph.
Actually, most of the techniques developed here already extend to classes that only exclude K},
as a topological subgraph rather than as a minor. In particular, this includes Theorem 4.1.
The only part of our algorithm that exploits closure under taking minors is the subroutine from
Theorem 4.2 which provides the initial set X together with sufficient structural information on
this set. It turns out that this theorem can also be extended to graphs only excluding Kj as a
topological subgraph, but this comes at the price of a much more complicated analysis which
also builds on different tools.

In another related work [15], Schweitzer together with the first and third author of this
paper investigates the structure of automorphism groups of graphs excluding K} as a minor in
more detail. This work confirms a conjecture of Babai [1] stating that all composition factors
of such groups are cyclic groups, alternating groups, or their size is bounded by f(h) for some
function f. Observe that our structural insights summarized in Theorem 5.2 do not imply such a
statement, since the restrictions only take effect after individualizing some vertex. On the other
hand, Theorem 5.2 provides polynomial bounds on the complexity of the composition factors
(after individualizing some vertex) whereas the bounds from [15] may depend arbitrarily on h.

Yet another recent result related to this work by Lokshtanov et al. [20] shows that the graph
isomorphism problem is also fixed-parameter tractable (i.e., it can be solved in time f(h) - n°)
when parameterized by the Hadwiger number (the maximum A such that K} is a minor). Note
that our result is independent of this fpt result, because our algorithm is obviously not fpt, but
it also has no exponential dependence on h (in fact, the function f obtained in [20] may not
even be computable). Running times of the form nPoW1oe(k) for parameterized problems with
input size n and parameter k so far seem to be quite specific to the isomorphism problem. It
may be worthwhile to study them more systematically in a broader context. More specifically,
looking at the isomorphism problem, a natural question concerns the existence of isomorphism
algorithms running in time nP°¥1°8(%) for other graph parameters. As a concrete example, can
isomorphism of graphs of rank-width k be tested in time nPollos(k)?

References

[1] Laszl6 Babai. On the abstract group of automorphisms. In Combinatorics (Swansea, 1981), vol-
ume 52 of London Math. Soc. Lecture Note Ser., pages 1-40. Cambridge Univ. Press, Cambridge-New
York, 1981.

[2] Laszlo Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel Wichs
and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

30

13l

4]

[5]

[6]

17l
18]
19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684—697. ACM, 2016.
doi:10.1145/2897518.2897542.

Laszlo Babai, Peter J. Cameron, and Péter P. Pélfy. On the orders of primitive groups with restricted
nonabelian composition factors. J. Algebra, 79(1):161-168, 1982. doi:10.1016/0021-8693(82)
90323-4.

Laszlo Babai, William M. Kantor, and Eugene M. Luks. Computational complexity and the clas-
sification of finite simple groups. In 24th Annual Symposium on Foundations of Computer Sci-
ence, Tucson, Arizona, USA, 7-9 November 1983, pages 162-171. IEEE Computer Society, 1983.
doi:10.1109/SFCS.1983.10.

Laszl6 Babai and Eugene M. Luks. Canonical labeling of graphs. In David S. Johnson, Ronald Fagin,
Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou,
Ronald L. Rivest, Walter L. Ruzzo, and Joel 1. Seiferas, editors, Proceedings of the 15th Annual
ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages
171-183. ACM, 1983. doi:10.1145/800061.808746.

Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper bounds for the
complexity of canonical colour refinement. Theory Comput. Syst., 60(4):581-614, 2017. doi:10.
1007/s00224-016-9686-0.

Jin-yi Cai, Martin Fiirer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Comb., 12(4):389-410, 1992. doi:10.1007/BF01305232.

Gang Chen and Ilia N. Ponomarenko. Lectures on coherent configurations. http://www.pdmi.ras.
ru/~inp/ccNOTES.pdf, 2019.

John D. Dixon and Brian Mortimer. Permutation groups, volume 163 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1996. doi:10.1007/978-1-4612-0731-3.

1. S. Filotti and Jack N. Mayer. A polynomial-time algorithm for determining the isomorphism
of graphs of fixed genus (working paper). In Raymond E. Miller, Seymour Ginsburg, Walter A.
Burkhard, and Richard J. Lipton, editors, Proceedings of the 12th Annual ACM Symposium on
Theory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages 236—243. ACM,
1980. doi:10.1145/800141.804671.

Martin Grohe and Daniel Marx. Structure theorem and isomorphism test for graphs with excluded
topological subgraphs. SIAM J. Comput., 44(1):114-159, 2015. doi:10.1137/120892234.

Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomorphism test for graphs of small
degree. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 89-100. IEEE Computer Society,
2018. doi:10.1109/F0CS.2018.00018.

Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An improved isomorphism
test for bounded-tree-width graphs. ACM Trans. Algorithms, 16(3):34:1-34:31, 2020. doi:10.1145/
3382082.

Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded rank width. In
Venkatesan Guruswami, editor, IEEFE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1010-1029. IEEE Computer Society,
2015. doi:10.1109/F0CS.2015.66.

Martin Grohe, Pascal Schweitzer, and Daniel Wiebking. Automorphism groups of graphs of bounded
hadwiger number. CoRR, abs/2012.14300, 2020. arXiv:2012.14300.

John E. Hopcroft and Robert Endre Tarjan. Isomorphism of planar graphs. In Raymond E. Miller
and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Com-
putations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, USA, The IBM Research Symposia Series, pages 131-152. Plenum Press, New
York, 1972. doi:10.1007/978-1-4684-2001-2_13.

Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canonization.
In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris Hartmanis on the
Occasion of His Sixtieth Birthday, July 5, 1988, pages 59-81. Springer New York, New York, NY,
1990. doi:10.1007/978-1-4612-4478-3_5.

31

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1016/0021-8693(82)90323-4
https://doi.org/10.1016/0021-8693(82)90323-4
https://doi.org/10.1109/SFCS.1983.10
https://doi.org/10.1145/800061.808746
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/BF01305232
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
https://doi.org/10.1007/978-1-4612-0731-3
https://doi.org/10.1145/800141.804671
https://doi.org/10.1137/120892234
https://doi.org/10.1109/FOCS.2018.00018
https://doi.org/10.1145/3382082
https://doi.org/10.1145/3382082
https://doi.org/10.1109/FOCS.2015.66
http://arxiv.org/abs/2012.14300
https://doi.org/10.1007/978-1-4684-2001-2_13
https://doi.org/10.1007/978-1-4612-4478-3_5

[18]

[19]

[20]

[21]
22]

23]

[24]
[25]
[26]

27]

28]
[29]
[30]
31]

32]

[33]
[34]
[35]
[36]

37]

Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree.
Comb., 4(4):307-316, 1984. doi:10.1007/BF02579141.

Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM J. Comput.,
46(1):161-189, 2017. doi:10.1137/140999980.

Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-parameter
tractability of graph isomorphism in graphs with an excluded minor. In Stefano Leonardi and Anu-
pam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, pages 914-923. ACM, 2022. doi:10.1145/3519935.3520076.

Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. J.
Comput. Syst. Sci., 25(1):42-65, 1982. doi:10.1016/0022-0000(82)90009-5.

Wolfgang Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann.,
174(4):265-268, 1967. doi:10.1007/BF01364272.

Gary L. Miller. Isomorphism testing for graphs of bounded genus. In Raymond E. Miller, Seymour
Ginsburg, Walter A. Burkhard, and Richard J. Lipton, editors, Proceedings of the 12th Annual
ACM Symposium on Theory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages
225-235. ACM, 1980. doi:10.1145/800141.804670.

Gary L. Miller. Isomorphism of k-contractible graphs. A generalization of bounded valence and
bounded genus. Inf. Control., 56(1/2):1-20, 1983. doi:10.1016/50019-9958(83)80047-3.

Daniel Neuen. The Power of Algorithmic Approaches to the Graph Isomorphism Problem. PhD
thesis, RWTH Aachen University, Aachen, Germany, 2019. doi:10.18154/RWTH-2020-00160.

Daniel Neuen. Hypergraph isomorphism for groups with restricted composition factors. ACM Trans.
Algorithms, 18(3):27:1-27:50, 2022. doi:10.1145/3527667.

Daniel Neuen. Isomorphism testing for graphs excluding small topological subgraphs. In
Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12,
2022, pages 1411-1434. STAM, 2022. doi:10.1137/1.9781611977073.509.

Ilia N. Ponomarenko. The isomorphism problem for classes of graphs. Dokl. Akad. Nauk SSSR,
304(3):552-556, 1989.

Ilia N. Ponomarenko. The isomorphism problem for classes of graphs closed under contraction.
Journal of Soviet Mathematics, 55(2):1621-1643, Jun 1991. doi:10.1007/BF01098279.

Neil Robertson and Paul D. Seymour. Graph minors I-XXIII. Journal of Combinatorial Theory,
Series B 1982-2012.

Joseph J. Rotman. An introduction to the theory of groups, volume 148 of Graduate Texts in
Mathematics. Springer-Verlag, New York, fourth edition, 1995. doi:10.1007/978-1-4612-4176-8.

Pascal Schweitzer and Daniel Wiebking. A unifying method for the design of algorithms canonizing
combinatorial objects. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoeniz, AZ, USA, June 23-26,
2019, pages 1247-1258. ACM, 2019. doi:10.1145/3313276.3316338.

Akos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2003. doi:10.1017/CB09780511546549.

Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos.
Soc., 95(2):261-265, 1984. doi:10.1017/S0305004100061521.

Klaus Wagner. Uber eine Eigenschaft der ebenen Komplexe. Math. Ann., 114(1):570-590, 1937.
doi:10.1007/BF01594196.

Boris Weisfeiler. On Construction and Identification of Graphs, volume 558 of Lecture Notes in
Mathematics. Springer-Verlag, 1976.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series 2, 1968. FEnglish translation by Grigory Ryabov available at
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

32

https://doi.org/10.1007/BF02579141
https://doi.org/10.1137/140999980
https://doi.org/10.1145/3519935.3520076
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1007/BF01364272
https://doi.org/10.1145/800141.804670
https://doi.org/10.1016/S0019-9958(83)80047-3
https://doi.org/10.18154/RWTH-2020-00160
https://doi.org/10.1145/3527667
https://doi.org/10.1137/1.9781611977073.59
https://doi.org/10.1007/BF01098279
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1145/3313276.3316338
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.1017/S0305004100061521
https://doi.org/10.1007/BF01594196
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

[38] Daniel Wiebking. Graph isomorphism in quasipolynomial time parameterized by treewidth. In
Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloguium on Au-
tomata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbriicken, Germany (Vir-
tual Conference), volume 168 of LIPIcs, pages 103:1-103:16. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.103.

33

https://doi.org/10.4230/LIPIcs.ICALP.2020.103

	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Graph Minors and Topological Subgraphs
	2.3 Weisfeiler-Leman Algorithm
	2.4 Group Theory

	3 Group-Theoretic Techniques for Isomorphism Testing
	3.1 Hypergraph Isomorphism
	3.2 Coset-Labeled Hypergraphs
	3.3 Multiple-Labeling-Cosets
	3.4 Allowing Color Refinement to Split Small Color Classes

	4 Exploiting the Structure of Graphs Excluding a Minor
	4.1 The Strategy
	4.2 Finding Separators of Small Size
	4.3 Finding an Initial Color Class

	5 Isomorphism Test for Graphs Excluding a Minor
	6 Conclusion

