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Abstract

Metastability is a formidable challenge to Markov chain Monte

Carlo methods. In this paper we present methods for algorithm design

to meet this challenge. The design problem we consider is tempera-

ture selection for the infinite swapping scheme, which is the limit of the

widely used parallel tempering scheme obtained when the swap rate

tends to infinity. We use a recently developed tool for the analysis of

the empirical measure of a small noise diffusion to transform the vari-

ance reduction problem into an explicit optimization problem. Our

first analysis of the optimization problem is in the setting of a double

well model, and it shows that the optimal selection of temperature ra-

tios is a geometric sequence except possibly the highest temperature.

In the same setting we identify two different sources of variance reduc-

tion, and show how their competition determines the optimal highest

temperature. In the general multi-well setting we prove that a pure ge-

ometric sequence of temperature ratios is always nearly optimal, with

a performance gap that decays geometrically in the number of temper-

atures.

1 Introduction

Monte Carlo methods are among the most general purpose stochastic sim-
ulation methods currently available. However, rare events present a partic-
ular challenge for the design of efficient Monte Carlo methods. There is a
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relatively long history of the use of large deviation ideas in the design of al-
gorithms for estimating probabilities of single rare events [8, 13], since large
deviation results can be used to determine how the rare events are most
likely to occur. But less is known on how to adverse overcome the impact of
rare events on Markov chain Monte Carlo (MCMC).

Parallel tempering (PT) [23, 17], also known as replica exchange, and a
scheme obtained as a suitable limit and known as infinite swapping (INS)
[12], are methods for accelerating MCMC. They work by coupling reversible
Markov chains with different “temperatures” to enhance the sampling prop-
erties of the ensemble. An important question that remains to be answered
is how to choose the temperatures in these algorithms.

In this paper, we apply recently developed methods for the analysis of
the empirical measure of a small noise diffusion to characterize the optimal
temperatures in the low temperature limit, which is the setting where the
difficulties caused by rare events and related metastable behaviors are most
severe. The analysis is done for the INS scheme, which is itself an opti-
mized limit of parallel tempering, in part because of this optimality, and
also in part because the large deviation properties needed for the analysis
take a simpler form for INS than for PT. However, the conclusions regarding
optimal temperature placements will also be at least approximately valid
for parallel tempering if the swap rate is high enough that it approximates
infinite swapping.

In the course of the analysis we are able to identify mechanisms that
produce variance reduction, and find that it has two sources. As will be
discussed in detail later, one source of improved sampling is the increased
mobility obtained by lowering the maximum energy barriers. A second and
less obvious source of variance reduction is due to certain weights appearing
in INS, which play a role reminiscent of the likelihood ratios that appear
in importance sampling (see Section 4.2). As it turns out, it is the weights
that are responsible for most of the variance reduction, and which ultimately
determine the proper placement of the temperatures in the low temperature
limit.

The paper is organized as follows. The problem of interest is described in
Section 2. Various Monte Carlo methods including PT and INS are discussed
in Section 3, as are the performance measure we will use to characterize good
performance. Section 4 states the main theoretical results of the paper,
and also includes a discussion on the mechanisms that produce variance
reduction in the accelerated Monte Carlo methods. The proof of our main
result, Theorem 4.12, is given in Section 5. Section 6 gives examples and
discusses bounds on crucial parameters that appear in Theorem 4.12, and the
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Appendix sketches the proof of why the INS model satisfies a large deviation
principle on path space.

2 Problem formulation

We are concerned with computing integrals with respect to a Gibbs measure
on the state space R

d. The measure takes the form

µε(dx)
.
=

1

Zεµ
e−

V (x)
ε dx, (2.1)

where V : Rd → R is the potential of a complex physical system, ε > 0 is
proportional to a parameter that is interpreted as temperature in physical
systems, and the normalization constant Zεµ is typically unknown.1 As an

elementary example, one would like to estimate µε(A) for a set A ⊂ R
d which

does not contain the global minimum of V , with ∂A regular. Problems of
this general sort occur in chemistry, physics, statistics, Bayesian statistics
and elsewhere.

Under proper conditions on V, one can check using detailed balance that
µε is the unique invariant distribution of the diffusion process {Xε(t)}t≥0

satisfying the stochastic differential equation

dXε (t) = −∇V (Xε (t)) dt+
√
2εdW (t) , (2.2)

where W is a d-dimensional standard Wiener process.
The empirical measure of {Xε(t)}t≥0 over the time interval [0, T ] is de-

fined by

λε,T (dx)
.
=

1

T

∫ T

0
δXε(t) (dx) dt, (2.3)

where δx is the Dirac measure at x. The ergodic theorem implies λε,T gives
an approximation to µε, and strictly speaking it is the use of discrete time
analogues in this context that is known as MCMC, though we will also
use the term for the continuous time model. For the particular problem of
approximating µε(A), we have the estimator

θε,TMC

.
= λε,T (A) =

1

T

∫ T

0
1A (Xε (t)) dt. (2.4)

1To be precise, in a physical system one would have ε = kBT , where T is the tempera-
ture and kB is Boltzmann’s constant, but we abuse terminology and simplify notation by
referring to ε as a temperature.
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We think of θε,TMC as the most straightforward MCMC estimator of µε(A),
and since we will later on introduce more complicated estimators, a subscript
(e.g., MC) will be used to distinguish the different estimators.

In many applications (e.g., chemistry, physics, Bayesian inference, count-
ing [20, 22]), V (x) is a complicated surface which contains multiple local
minima of varying depths. The diffusion {Xε(t)}t≥0 can be trapped within
these deep local minima for a long time before moving out to other parts of
the state space, a phenomena sometimes referred to a metastability. As a
result, it requires a very long (exponential in 1/ε) simulation time for λε,T

to approximate the equilibrium µε when ε is small.
Our analysis of the performance of computational approximations for µε

will be based on recently derived large deviation approximations for vari-
ances associated with empirical measures such as (2.4) [14]. Following the
convention of [16, Chapter 6], [14] considers in place of say (2.2) a small noise
diffusion that takes values in a compact and connected manifold M ⊂ R

d of
dimension r and with smooth boundary (precise regularity assumptions for
M are given on [16, page 135]). This is also consistent with how MCMC al-
gorithms for a process such as (2.2) are often implemented by using periodic
boundary conditions that are far removed for the regions of interest. How-
ever, for ease of discussion we will keep the notation of the SDE model, but
with the understanding that we mean a diffusion process with the same lo-
cal characteristics that takes values in the compact space M , with M locally
equivalent to a Euclidean space.

Remark 2.1. In this paper we focus on the problem of computing integrals
with respect to a Gibbs measure on a continuous state space. However,
analogous results for discrete state systems are expected. See [9] for the
formulation of infinite swapping for discrete state models.

3 Accelerated MCMC

In this section we introduce various alternative estimators of µε(A) as in
(2.1). Consider an ergodic Markov process {X̄ε(t)}t ⊂ M̄ and suppose that
νε ∈ P(M̄ ) is the unique stationary distribution of {X̄ε(t)}t. As an example,
M̄ could be K ∈ N products of the M just introduced. If we define θε,T by

θε,T
.
=

1

T

∫ T

0
f ε
(

X̄ε (t)
)

dt (3.1)

4
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for a bounded and measurable function f ε : M̄ → R such that
∫

M̄
f ε (x̄) νε (dx̄) = µε(A),

then by the ergodic theorem [5], θε,T → µε(A) w.p.1 as T → ∞, which means
one can also consider θε,T as an approximation to µε(A). We will consider
several classes of estimators that are of the general form (3.1).

3.1 Parallel tempering

Parallel tempering is an algorithm used to speed up the sampling of a “slowly
converging” Markov process, i.e., one for which the empirical measure con-
verges slowly to the stationary distribution. Specifically, the idea of two-
temperature parallel tempering is to introduce a higher temperature ε/α in
addition to ε with α ∈ (0, 1). If W1 and W2 are independent Wiener pro-
cesses, then the empirical measure of the pair

{

dXε
1 = −∇V (X1)dt+

√
2εdW1

dXε
2 = −∇V (X2)dt+

√

2ε/αdW2
, (3.2)

gives an approximation to the Gibbs measure with density ψε(x1, x2) ∝

e−V (x1)/εe−αV (x2)/ε. If we allow swaps between Xε
1 and Xε

2 , i.e., Xε
1 and Xε

2

exchange locations with the state dependent intensity a (1 ∧ [ψε(x2, x1)/ψ
ε(x1, x2)]),

then we have a Markov jump-diffusion. Moreover, it is straightforward
to check this new process still satisfies detailed balance with respect to
ψε(x1, x2) if this swapping intensity is used, and so can be used for numerical
approximations.

It has been shown that various rates of convergence, such as the large
deviation empirical measure rate [12] and the asymptotic variance, can be
optimized by letting a → ∞. This suggests one should consider the limit
as a → ∞ (the infinite swapping limit). This cannot be done directly with
the parallel tempering processes, since they will not be tight, and hence do
not converge in a meaningful way. An alternative perspective is to consider
a temperature swapping process and approximate ψε(x1, x2)dx1dx2 by a
corresponding weighted empirical measure instead (see [12] for details). The
advantage of doing so is that we have a well defined weak limit process as
a → ∞, though as noted the empirical measure is replaced by a weighted
analogue. The limit model is as follows. We define (Y ε

1 , Y
ε
2 ) as the solution

to
{

dY ε
1 = −∇V (Y ε

1 )dt+
√

2ερε,α(Y ε
1 , Y

ε
2 ) + 2ερε,α(Y ε

2 , Y
ε
1 )/αdW1

dY ε
2 = −∇V (Y ε

2 )dt+
√

2ερε,α(Y ε
1 , Y

ε
2 )/α + 2ερε,α(Y ε

2 , Y
ε
1 )dW2

,

5
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and then define the weighted empirical measure of (Y ε
1 , Y

ε
2 ) and its permu-

tation (Y ε
2 , Y

ε
1 ) by

ζε,T (dx)
.
=

1

T

∫ T

0

[

ρε,α(Y ε
1 , Y

ε
2 )δ(Y ε

1 ,Y
ε
2 )(dx) + ρε,α(Y ε

2 , Y
ε
1 )δ(Y ε

2 ,Y
ε
1 )(dx)

]

dt,

where

ρε,α(x1, x2) =
e−

1
ε
[V (x1)+αV (x2)]

e−
1
ε
[V (x1)+αV (x2)] + e−

1
ε
[V (x2)+αV (x1)]

,

(note that ρε,α(x1, x2) + ρε,α(x2, x1) = 1). One can show that ζε,T (dx) has
precisely the same distribution as what one would obtain by forming the
ordinary empirical measure of the parallel tempering process with swap rate
a and letting a→ ∞.

Remark 3.1. We see that the infinite swapping scheme uses a symmetrized
version of the original dynamics together with a weighted empirical measure
to construct approximations to µε(dx1)µ

ε/α(dx2). As noted previously, the
weights ρε,α will play an important role in the reduction of variance, and
are in some sense analogous to the likelihood ratio appearing in importance
sampling [15].

Remark 3.2. Infinite swapping algorithms for continuous time reversible
jump Markov processes and for discrete time reversible Markov processes
are also discussed in [12, 9].

3.2 Infinite swapping

In this subsection we introduce the K-temperature INS estimator, which is
the main object of study. We use the following notation: x

.
= (x1, . . . , xK)

denotes an element in MK ; for any permutation σ ∈ ΣK and x ∈ MK , xσ
denotes (xσ(1), . . . , xσ(K));

∆
.
=
{

(x1, . . . , xK) ∈ R
K : 1 = x1 ≥ x2 ≥ · · · ≥ xK > 0

}

;

α
.
= (α1, . . . , αK) ∈ ∆ denotes the K temperature multiplication factors

appearing in the definition of the K-temperature INS estimator.
To define the K-temperature INS estimator for a given α, we consider

the (symmetric) diffusion process {Xε(t)}t≥0 = {(Xε
1(t), . . . ,X

ε
K(t))}t≥0 on

6
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MK satisfying



















dXε
1 = −∇V (Xε

1) dt+
√
2ε
√

ρε11/α1 + ρε12/α2 + · · ·+ ρε1K/αKdW1

dXε
2 = −∇V (Xε

2) dt+
√
2ε
√

ρε21/α1 + ρε22/α2 + · · ·+ ρε2K/αKdW2
...

dXε
K = −∇V (Xε

K) dt+
√
2ε
√

ρεK1/α1 + ρεK2/α2 + · · ·+ ρεKK/αKdWK

,

(3.3)
where W1, . . . ,WK are independent Wiener processes and, for any i, j ∈
{1, . . . ,K} and σ ∈ ΣK , ρ

ε
ij denotes ρεij(X

ε(t);α) with

ρεij (x;α)
.
=

∑

σ:σ(j)=i

wε (xσ;α) ,

and with

wε (x;α)
.
=

exp[−1
ε

∑K
ℓ=1 αℓV (xℓ)]

∑

σ∈ΣK
exp[−1

ε

∑K
ℓ=1 αℓV

(

xσ(ℓ)
)

]
. (3.4)

Using detailed balance, one can show that for each ε ∈ (0,∞), νε is the
unique stationary distribution of {Xε(t)}t≥0, where

νε (dx)
.
=

1

K!Zεν

∑

σ∈ΣK

exp

[

−1

ε

∑K

ℓ=1
αℓV

(

xσ(ℓ)
)

]

dx (3.5)

with

Zεν
.
=

∫

MK

exp

[

−1

ε

∑K

ℓ=1
αℓV (xℓ)

]

dx.

Remark 3.3. For any σ ∈ ΣK , we also have

Zεν =

∫

MK

exp

[

−1

ε

∑K

ℓ=1
αℓV

(

xσ(ℓ)
)

]

dx.

Let ζε,T (dx) be the weighted empirical measure of {Xε(t)}t≥0 over the
time interval of length T given by

ζε,T (dx)
.
=

1

T

∫ T

0

∑

σ∈ΣK

wε (Xε
σ (t) ;α) δXε

σ(t)
(dx)dt.

It then follows from the ergodic theorem that ζε,T converges in the topol-
ogy of weak convergence of probability measures (and in fact in the stronger

7



November 12, 2020

τ -topology [7]) to µε/α1 × µε/α2 × · · · × µε/αK w.p.1 as T → ∞. The K-
temperature INS estimator of µε(A) with parameter α over time T is there-
fore defined by

θε,TINS

.
= ζε,T (A×MK−1) (3.6)

=
1

T

∫ T

0

∑

σ∈ΣK

wε (Xε
σ (t) ;α) 1A

(

Xε
σ(1)(t)

)

dt.

Remark 3.4. Besides µε (A) for various choices of A, one is also interested
in estimating risk sensitive functionals of the form

∫

Rd

e−
1
ε
F (x)µε (dx) ,

as well as the analogous integrals with respect to some or all of the higher
temperatures ε/αℓ. However, it is the lowest temperature which is most
challenging, and thus we focus on the problem of estimating µε(A) but seek
rates of decay for the relative error that are in some sense uniform in A.

Before discussing a property which makes it heuristically clear why one
would expect θε,TINS to do better than θε,TMC, we introduce the notion of implied
potential.

Definition 3.5. Given a probability density φε with respect to Lebesgue mea-
sure, we define the implied potential of φε to be −ε log φε.

Example 3.6. If µε is a Gibbs measure as in (2.1), then the implied potential
of µε is V , the potential appearing in the dynamics (2.2).

From Example 3.6 we see that implied potential generalizes the notion
of potential. By comparing the implied potential of νε as in (3.5) and the
product measure µε/α1 × · · · × µε/αK with µε as in (2.1), one can show that
the maximum barrier of the implied potential of the former is smaller than
that of the latter provided that αℓ < 1 for some ℓ ∈ {2, . . . ,K}. Since
as is well known the barrier heights determine the exponential time scale of
transitions between neighborhoods of local minimum of the implied potential,
this lowering of the energy barriers is expected to enhance the sampling of
the entire space.

While it is intuitive that lowering energy barriers is helpful, it does not
by itself lead to schemes that are in any sense optimal at low temperatures.
A more important and open question in the design of the K-temperature
INS estimator is how to select the ensemble of multiplicative factors α. In
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this paper we not only characterize the low temperature performance of a
K-temperature INS estimator with a fixed set of temperature factors α, but
we also provide optimal and nearly optimal temperatures for problems of
interest in the same limit. As we will see, the optimal temperature schedule
is dominated by a geometric relation, and moreover is fairly insensitive to
the particular numerical quantity of interest.

3.3 Performance measure

In this subsection we discuss the performance measure that will be used to
characterize good performance of an estimator. Let {X̄ε}ε∈(0,∞) ⊂ C([0, T ]; M̄ )
be a sequence of stochastic processes that will be used to define an estimator.
For complicated potentials V we expect these processes to exhibit metasta-
bility, which means that the time required for X̄ε to visit the various parts of
the state space that are needed for good estimation scales like T ε = e

1
ε
c for

some c > 0. As a consequence, if we wish to compare algorithms after they
have become reasonably accurate we should assume the simulation interval
scales in this way.

As noted in Remark 3.4, we focus on the problem of estimating µε(A)
for some set A ⊂ M , and assume there is a large deviation limit (i.e.,
limε→0 ε log µ

ε(A) exists).

Definition 3.7. An estimator θε,T
ε
of µε(A) is called essentially unbiased

if there is c0 ∈ (0,∞) such that for any x ∈ M̄

lim inf
ε→0

−ε log
(∣

∣Exθ
ε,T ε − µε(A)

∣

∣

)

≥ lim
ε→0

−ε log µε(A) + c0.

This says that the bias of θε,T
ε

(i.e., the difference between Exθ
ε,T ε

and
µε(A)) decays strictly faster than µε(A) as ε→ 0.

Definition 3.8. Given an estimator θε,T
ε
, the lower bound on the decay

rate of the variance per unit time of θε,T
ε

is defined as

inf
x∈M̄

lim inf
ε→0

−ε log
(

Varx
(

θε,T
ε)

T ε
)

.

If the lim inf is a limit that does not depend on x, then we call it the decay

rate of the variance per unit time.

Remark 3.9. In this paper, we seek to optimize the decay rate of the vari-
ance per unit time (often referred to simply as the decay rate of the variance),
but only among estimators that are essentially unbiased. A criticism is that
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essential unbiasedness depends on the time scaling T ε, which may itself de-
pend on the estimator. One may be concerned that improving the decay
rate somehow lengthens the time till essential unbiasedness. However, as
we discuss in a moment the selection of INS temperature parameters that
lower the decay rate of the variance also reduce the growth rate of this time.
Thus there is no conflict in using the decay rate of the variance as the sole
performance measure.

Remark 3.10. We will take as our ideal performance benchmark a decay
rate of the variance exactly twice limε→0−ε log µε(A). The reason is as
follows. Suppose that we measure errors by the standard deviation (and
assume essential unbiasedness). If we achieve this best possible decay rate,
then the amount of time needed for the numerical error θε,T

ε − µε(A) to be
comparable to µε(A) itself becomes subexponential in ε. See Remark 4.11
for a more detailed statement.

Strictly speaking, 2 limε→0−ε log µε(A) is not the best possible decay
rate of the variance, but rather the best practically achievable decay rate.
Indeed, in analogy with the zero variance estimator that one can define when
using importance sampling for rare event estimation [6, 3], it is possible to
define estimators with a larger decay rate. But these are not useful since they
require information that is not typically available, such as knowing µε(A).
Hence the aim in the design of an INS algorithm is to obtain a lower bound
on the decay rate of the variance that is close to this maximum practical
value.

4 Statement of the Main Results

In this section we state the main results on the performance and optimal
design of the INS scheme in the low temperature limit. The proofs involve
applying the results of [14], and then simplifying the variational problem
that characterizes the decay rate of the variance.

We present two main results. The first considers the restricted setting of
a simple two well model. In this case we can obtain a very precise reduction
of the variational problem. Using this simplified expression, we can then
probe in some detail the question of how INS achieves variance reduction.
Our interest in this model is twofold. One reason is that with an exact
expression (rather than a tight bound) for the solution to the variational
problem we can explore issues relating to how variance reduction is obtained
through swapping. The second is that it properly suggests very useful bounds
for the general model. (While exact simplifications are possible there as well,

10
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the number of cases quickly becomes unwieldy as the number of local minima
increases.) Since the proof of the reduction is long, we refer the reader to
[24] for details.

The second main result is concerned with temperature selection when
there are an arbitrary number of wells. Owing to this generality, we do
not attempt to find the exact optimizer, but rather show that the geomet-
ric relation for temperatures suggested by the two well model allows one to
get arbitrarily close to the benchmark articulated in Remark 3.10, with the
“gap” between the two taking the form (1/2)K−1(V (A)+B) for some positive
constant B, and therefore decaying geometrically in the number of temper-
atures. The proof of this result is also somewhat detailed, and is started in
Section 5 and completed in Section 6. In particular, the results of Section
6 show how B depends in a natural and intuitive way on properties of the
original potential V .

To apply the results of [14] we need to know that the INS process defined
in (3.3) satisfies a large deviation principle on C([0, T ] : MK) for arbitrary
T ∈ (0,∞). This is not straightforward, owing to the fact that the diffusion
coefficients involve wε (x;α) defined in (3.4), which become discontinuous in
x as ε → 0. Hence one is concerned with the large deviation properties of
processes with discontinuous statistics [11, 10].

The sorts of discontinuities encountered are in fact analogous to those
encountered in the large deviation analysis of stochastic networks, such as
multiclass queueing networks. A general approach to proving that a large
deviation principle holds for stochastic networks appears in [10], and can
be adapted to the INS model (3.3). It is important to note that we do not
need the precise form of the rate function, but only that the LDP holds with
some rate function and basic qualitative properties. This is because with
the INS model we already have an expression for the stationary distribution.
Various quantities are defined in [14] using the rate function that allow the
identification of the Freidlin-Wentzell quasipotential and related objects. For
the INS model the explicit formula for the stationary distribution directly
identifies the quasipotential, thereby eliminating the need for the explicit
form of the rate function. The technique of [10] is in fact ideally suited to
showing the existence of an LDP without necessarily having an expression for
the rate function. We will assume the needed existence of the large deviation
principle, and outline in the Appendix how one can adapt the argument of
[10] to (3.3) for the case of the two well model, which features the main issues
in the proof of the general case.
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4.1 Two well model

Our first result considers the setting of a double-well potential. Let V : R →
R (d = 1) be as in the following figure.

xL xR

x

hL

hR

Figure 1: Asymmetric two well model

Assume V satisfies the following condition.

Condition 4.1. V is a bounded C2 function and

• V is defined on a compact interval D ⊂ R and extended periodically as
a C2 function.

• V has only two local minima at xL and xR with values V (xL) < V (xR).

• V has only one local maximum at 0 ∈ (xL, xR).

• V (xL) = 0, V (0) = hL and V (xR) = hL − hR > 0.

• infx∈∂D V (x) > hL.

Remark 4.2. As noted previously, the use of periodic boundary conditions
is common in numerical implementation. It is assumed that the boundary
is away from the neighborhoods of the equilibrium points of interest, and

12
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that the potential at the boundary is high enough that transitions across the
boundary are unimportant. For our purposes, this means that the relevant
large deviation calculations involve only paths that remain in D.

Remark 4.3. In the analysis of θε,T
ε

INS we will assume T ε satisfies T ε =

e
1
ε
c with c > αKhL. Recall that αK is the smallest of the αℓ, and hence

determines the highest temperature. As we will see, this condition ensures
asymptotic unbiasedness.

The next result follows from [14, Theorems 4.3 and 4.5]. The theorem, in
particular, characterizes the decay rate of the variance for the INS estimator
for a given α. For a set A let V (A)

.
= infx∈A V (x), and also define K .

=
{1, 2, . . . ,K + 1}.

Theorem 4.4. Assume Condition 4.1, and that the process defined by (3.3)
satisfies a large deviation principle that is uniform with respect to initial
conditions [6, Section 1.2]. Then for any closed interval A ⊂ D with xL /∈ A
and A = Ā◦,

θε,T
ε

INS =
1

T ε

∫ T ε

0

∑

σ∈ΣK

wε (Xε
σ (t) ;α) 1A

(

Xε
σ(1)(t)

)

dt (4.1)

is an essentially unbiased estimator of µε(A), where wε (x;α) is given by
(3.4). Moreover, for any α ∈ ∆ and x ∈ R

K , we have

lim inf
ε→0

−ε log
(

Varx

(

θε,T
ε

INS

)

T ε
)

≥
{

r̂1 (α) ∧ r̂3 (α) , if A ⊂ (−∞, 0]
r̂1 (α) ∧ r̂2 (α) , if A ⊂ [0,∞)

,

where

r̂1 (α)
.
= infx∈A×RK−1

[

2
K
∑

ℓ=1

αℓV (xℓ)− min
σ∈ΣK

{

K
∑

ℓ=1

αℓV
(

xσ(ℓ)
)

}]

,

r̂2 (α)
.
= min

i∈K\{1}

{

2V (A) +

[

i−2
∑

ℓ=1

αK−ℓ+1 − αK−i+2

]

(hL − hR)

}

− αKhR,

and
r̂3 (α)

.
= 2V (A)− αKhL.

Remark 4.5. As mentioned in [14, Conjecture 4.10], we expect that the
lower bound is tight. The proof of the conjecture for a special case is outlined
in [14, Section 11].
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Recall that the optimal decay rate of the variance per unit time is twice
the large deviation decay rate of µε(A), which is V (A). The next two results
identify optimizers over α for the relevant variational problems. Note that
in all cases we can get close to the best possible decay rate by choosing
K appropriately, and in fact the gap goes to zero geometrically in K. For
example, K = 7 will to get within 2% of the maximum rate of 2V (A).

Theorem 4.6. Assume the conditions of Theorem 4.4. For any closed set
A ⊂ (−∞, 0] with xL /∈ A, if V (A) ≥ hL, then

sup
α∈∆

[r̂1 (α) ∧ r̂3 (α)] = 2V (A)− (1/2)K−1 V (A)

with the optimal α∗ =
(

1, 1/2, . . . , (1/2)K−2 , (1/2)K−1
)

∈ ∆. If V (A) ≤ hL,

then

sup
α∈∆

[r̂1 (α) ∧ r̂3 (α)] = 2V (A)− (1/2)K−2

(

hL
V (A) + hL

)

V (A)

with the optimal α∗ =
(

1, 1/2, . . . , (1/2)K−2 , V (A)
V (A)+hL

(1/2)K−2
)

∈ ∆.

Theorem 4.7. Assume the conditions of Theorem 4.4. For any closed set
A ⊂ [0,∞) and if hL ≥ 2hR or V (A) ≥ hL, then

sup
α∈∆

[r̂1 (α) ∧ r̂2 (α)] = 2V (A)− (1/2)K−1 (V (A) ∨ hL)

with the optimal α∗ =
(

1, 1/2, . . . , (1/2)K−2 , (1/2)K−1
)

∈ ∆. If hL ≤ 2hR

and V (A) ∈ [hL − hR, hL], then

sup
α∈∆

[r̂1 (α) ∧ r̂2 (α)] = 2V (A)− (1/2)K−2

(

hR
V (A)− (hL − 2hR)

)

V (A)

with the optimal α∗ =
(

1, 1/2, . . . , (1/2)K−2 , V (A)−(hL−hR)
V (A)−(hL−2hR) (1/2)

K−2
)

∈ ∆.

Remark 4.8. According to Theorems 4.4, 4.6 and 4.7, no matter what set
A is considered, the optimal temperatures α∗ form a geometric sequence
with common ratio 1/2, except possibly the last and smallest value, which
corresponds to the highest temperature.

Remark 4.9. By Theorems 4.4 and 4.7, if A ⊂ [0,∞), hL ≤ 2hR and
V (A) = hL − hR, the last component of the optimal temperature α∗ is 0.
Of course the INS estimator is not well-defined with α∗

K = 0. In fact, α∗ is

14
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not in ∆, though it is in the closure of ∆. However, since r̂1 (α)∧ r̂2 (α) is a
continuous function of α, we can always approach the optimal performance
by using α which is close to α∗, e.g., α = (1, 1/2, . . . , (1/2)K−2 , δ (1/2)K−2)
for some δ ∈ (0, 1).

Remark 4.10. Analogous results hold for a high-dimensional double-well
potential V : Rd → R, where xL and xR are the two local minima (and the
former is the unique global minimum) and 0 is the unique local maximum.
Moreover, one should interpret (−∞, 0] and [0,∞) as the closure of the
domain of attraction of xL and that of xR, respectively.

Remark 4.11. Let γi > 0, i = 1, 2 be given. Suppose that the lower bound
on the variance decay rate is within γ1 of the benchmark, here 2V (A), and
that also αKhL ≤ (1/2)K−1hL < γ2. When this is true, with the simulation

time horizon T ε = e
1
ε
γ2 (see Remark 4.3) we find that for small ε > 0

Varx

(

θε,T
ε

INS

)

≤ 1

T ε
e−

2
ε
(V (A)−γ1),

while the quantity being estimated is (approximately) of magnitude µε(A) ≈
e−

1
ε
V (A). Therefore the ratio of the standard deviation of the estimator

(recall that the bias will be negligible) to the quantity of interest satisfies

SDx

(

θε,T
ε

INS

)

µε(A)
≤ e

1
ε
(γ1−γ2/2),

with simulation time that scales like e
1
ε
γ2 , and bounded relative error re-

quires, in addition to the bound above, γ2 > 2γ1. Although the simulation
time grows exponentially in 1/ε, the constant gets small very quickly as K
increases. Note also that the bound applies for arbitrary sets A. For com-
parison, let δ1 > 0 and δ2 > hL. If we consider standard Monte Carlo with
T ε = e

1
ε
δ2 we would have a lower bound of the form

Varx

(

θε,T
ε

MC

)

≥ 1

T ε
e−

1
ε
(V (A)+δ1),

for small ε > 0, and

SDx

(

θε,T
ε

MC

)

µε(A)
≥ e

1
ε
(V (A)/2−δ1/2−δ2/2).

In this case we cannot reduce T ε below e
1
ε
hL . If V (A) < hL we can have

bounded relative error, but if the set is moved further to the right so that

15
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V (A) > hL then we must increase the growth rate of T ε for bounded relative
error. In all cases, the time required grows exponentially in 1/ε and, unlike
the INS case, we cannot make the constant small.

4.2 Sources of variance reduction

Here we make some remarks on the form of the optimal α and its interpreta-
tion regarding how variance reduction is achieved by INS. The remarks will
also apply to parallel tempering to some extent if the swap rate is sufficiently
high, though in this case the weights ρ used in INS are then implicitly com-
puted by the algorithm, giving another sense in which INS is an optimized
version of PT.

To begin, we note that the most obvious qualitative change when adding
a higher temperature particle to one or more particles with lower temperature
is that the “mobility,” by which we mean the ease with which it crosses energy
barriers, of the new particle is greater than that of all other particles. (What
this means for INS is that the particle with the currently highest value of V
is essentially given this temperature, with a slightly modified interpretation
when two or more particles share the highest V value.)

Hence it is tempting to explain the improved sampling of INS, espe-
cially with respect to functionals that correspond to integration with respect
to the lowest temperature, as a consequence of this greater mobility being
passed between higher temperatures and lower temperatures. The mobility
is passed via the swap mechanism with PT, and by the ρ weights with INS.
For example, with PT the argument would be that the sharing of mobility
between different temperatures obtained via swapping makes it easier for the
low temperature particle to overcome potential barriers, and hence the em-
pirical measure will converge more quickly. While plausible in a qualitative
way, it is not clear, for example, how to relate the claim of faster conver-
gence of the empirical measure to the properties of the variance. In fact, the
situation is more complex.

In order to understand the role played by “mobility,” in a previous paper
[15] we introduced and studied what we call INS for IID, which stands for in-
finite swapping for independent and identically distributed random variables.
The setting of that paper considers the integral of a distribution with respect
to some risk-sensitive functional (including as a special case probabilities of
sets with a positive large deviation rate, as is the case of Theorems 4.4, 4.6
and 4.7). Because straightforward Monte Carlo will not work well, the paper
follows the logic of parallel tempering but within the context of INS. It is as-
sumed the distribution (say µε) is indexed by a parameter ε that corresponds

16
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to temperature here, and that a large deviation principle holds for {µε} with
a known rate function. This measure is then coupled with measures indexed
by higher values of the temperature using a parameter exactly analogous to
α, and using symmetrization in the same way as INS one can define an es-
timator for integrals with respect to the lowest temperature using ρ weights
in the way (suitable for the static setting) that is exactly analogous to what
is done in the present paper for the Markov setting. Knowledge of the LD
rate function is what allows for the explicit computation of the analogues of
the ρ weights. This produced unbiased estimators analogous to those of the
Markov setting, but for this purely static setting.

A key observation is the following. Since the setting of [15] does not
involve any dynamics, the notion that any variance reduction is due to “in-
creased mobility” is not possible. Indeed, as is discussed in [15] the ρ weights
act in a way similar to the likelihood ratio in a well designed importance sam-
pling scheme, helping to cluster the values of the unbiased estimate around
the true value, thereby reducing variance. We argue that the analogous
property holds here, and that the primary role of the higher temperatures
(except possibly the highest temperature) is to provides this variance re-
duction, and that solving the variational problems as in Theorems 4.6 and
4.7 tells us how to do this in the low temperature limit. Indeed, we obtain
exactly the same geometric spacing of all temperatures (save the highest) in
the low temperature limit in the Markovian setting as was obtained in the
static setting. An analogous claim could be made regarding PT in the high
swap rate setting, though as noted for PT the computation of the weights is
carried out implicitly via the swaps and averaging in time.

While this motivates the form of the lower temperatures, it leaves out
the highest temperature. Here we find a variety of behaviors that depend on
the particular quantity that is being estimated, and one might argue that it
is here that the mobility of a particle plays a role in determining the value of
αK . In all the cases of Theorems 4.6 and 4.7, we find that the optimal αK
is less than or equal to (1/2)K−1, which is the value one finds in the static
setting. We conjecture that the perturbation of αK away from (1/2)K−1

in the Markov case reflects that the optimization here benefits more from
greater mobility than the variance reducing effects of the geometric sequence.
There is even one case, where the optimal value of αK is zero, which one
can interpret as saying we should make the corresponding component as
noisy as possible. It is also worth noting that the overall performance is not
particularly sensitive to αK having the optimal value, in that if we were to
simply use the purely geometric sequence then we still have a decay rate that
is within (1/2)K−1(V (A) ∨ hL) of the optimal 2V (A).
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4.3 Multiple well model

The second main result considers a finite but otherwise arbitrary number
of wells. While it is possible that one could derive results analogous to
Theorems 4.6 and 4.7, which identify the optimizer appearing in the lower
bound of Theorem 4.4, we will instead settle for showing that the geometric
spacing suggested by the two well model leads to a variance decay rate that
can be made close to the optimum of 2V (A). The parameter B that appears
in the following theorem depends only on V , and is identified in Remark 6.4.
In particular, it does not depend on ε. As will be illustrated by examples
in Section 6, B contains interesting information on how the geometry and
other properties of the original potential V affect the rate of decay of the
variance. For example, if the well that corresponds to the global minimum
O1 is also the most difficult well to escape from, then the situation of the
multiple well model is very similar to that of the two well model. However,
when this is not the case one can have B > V (A), and B will depend on
how the local minima are interconnected.

For the following theorem, we assume that V : M → R is a smooth
multi-well potential with a unique global minimum y1 ∈M and without loss
normalize so that V takes value 0 at y1 (i.e., V (y1) = 0 and V (x) > 0 for all
x ∈M). We assume that the gradient of V is Lipschitz continuous, and also
assume that there exists a finite collection of points {Oi}i∈L ⊂MK with L

.
=

{1, 2, . . . , l} for some l ∈ N, such that ∪i∈L{Oi} coincides with the ω-limit
set of the zero noise analogue of (3.3), so that ∪i∈L{Oi} = {y1, . . . , yH}K .
This imposes some additional structure on V , and in particular rules out
open regions on which V is a constant.

Theorem 4.12. Assume that the process defined by (3.3) satisfies a large
deviation principle that is uniform with respect to initial conditions. Then
there exists B < ∞ such that the following hold. Consider the choice α∗ =
(1, 1/2, . . . , (1/2)K−1) and let T ε = e

1
ε
c for some c > Bα∗

K = B (1/2)K−1.

Define θε,T
ε

INS by (4.1). Then θε,T
ε

INS is essentially unbiased, and

lim inf
ε→0

−ε log
(

Varx

(

θε,T
ε

INS

)

T ε
)

≥
(

2− (1/2)K−1
)

V (A)−B (1/2)K−1 .

5 Proof of Theorem 4.12

We first recall notation from Subsection 3.2 and introduce additional no-
tation. Given K ∈ N, for any α ∈ ∆ we consider the diffusion process
{Xε(t)}t≥0 = {(Xε

1(t), . . . ,X
ε
K(t))}t≥0 on MK satisfying (3.3), and denote
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O1
.
= (y1, . . . , y1). Figure 2 illustrates the points ∪i∈L{Oi} when V is the

Franz potential and K = 2, with O1, O3, O7 and O9 local minima in the mul-
tidimensional potential defined in (5.1), O2, O4, O6 and O8 saddle points, and
O5 a local maximum.
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Figure 2: Franz potential θ = 0.85 and equilibrium points of INS K = 2

To apply the results of [14] we need several quantities that are constructed
in terms of the Freidlin-Wentzell quasipotential. The quasipotential for (3.3)
is easy to identify because the system is reversible with νε ∈ P(MK) defined
by (3.5) as its unique stationary distribution. Thus if for x ∈MK we define

U(x)
.
= min

σ∈ΣK

{

K
∑

ℓ=1

αℓV
(

xσ(ℓ)
)

}

, (5.1)

then U corresponds to a potential, and it is easy to see that U(O1) = 0.
Figure 2 depicts U for the Franz potential.

Since we assume that {Xε(t)}0≤t≤T satisfies a large deviation principle
on C([0, T ] : MK) with rate function IT : C([0, T ] : MK) → [0,∞] for
arbitrary T ∈ (0,∞), the quasipotential Q(x,y) is defined for all x,y ∈MK

by
Q(x,y)

.
= inf {IT (φ) : φ(0) = x, φ(T ) = y, T <∞} .

(in fact the specific form of the quasipotential is already known since we
know the rate function for the stationary distributions {νε}).

Next we give a definition from graph theory which will be used in the
proofs of the main results.

Definition 5.1. Given a subset W ⊂ L = {1, . . . , l}, a directed graph con-
sisting of arrows i → j (i ∈ L \W, j ∈ L, i 6= j) is called a W -graph on L
if it satisfies the following conditions.
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Figure 3: Symmetrized potential for K = 2

1. Every point i ∈ L \W is the initial point of exactly one arrow.

2. For any point i ∈ L \W, there exists a sequence of arrows leading from
i to some point in W.

We note that we could replace the second condition by the requirement
that there are no closed cycles in the graph. We denote by G(W ) the set of
W -graphs; we shall use the letter g to denote graphs.

Remark 5.2. We use G(i) to denote G({i}) and G(i, j) to denote G({i, j}).

Definition 5.3. For all j ∈ L, define

W (Oj)
.
= min

g∈G(j)

[

∑

(m→n)∈gV (Om, On)
]

, (5.2)

W (O1 ∪Oj) .= min
g∈G(1,j)

[

∑

(m→n)∈gV (Om, On)
]

, (5.3)

and
W (x)

.
= min

i∈L
[W (Oi) +Q(Oi,x)] . (5.4)
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Remark 5.4. Heuristically, if we interpret V (Om, On) as the “cost” of mov-
ing from Om to On, then W (Oj) is the “least total cost” of reaching Oj from
every Oi with i ∈ L \ {j}.

Before proceeding to the next subsection, we state and prove a lemma
that ties up the relation between W and U . The relation will also be used
later on for solving the optimization problem

Lemma 5.5. For any x,y ∈MK , W (x)−W (y) = U (x)− U (y) .

Proof. Since we know that the stationary distribution νε of {Xε(t)}t≥0 is
given by (3.5), we can apply [16, Theorem 4.3, Chapter 6] to find that for
any η > 0 and for sufficiently small neighborhoods of x and y,

νε (Bδ (x))

νε (Bδ (y))
≤ exp

{

−1
ε (W (x)−mini∈LW (Oi)− η)

}

exp
{

−1
ε (W (y)−mini∈LW (Oi) + η)

} = e−
1
ε
(W (x)−W (y)−2η)

and

νε (Bδ (x))

νε (Bδ (y))
≥ exp

{

−1
ε (W (x)−mini∈LW (Oi) + η)

}

exp
{

−1
ε (W (y)−mini∈LW (Oi)− η)

} = e−
1
ε
(W (x)−W (y)+2η).

Thus

lim sup
ε→0

−ε log
(

νε (Bδ (x))

νε (Bδ (y))

)

≤W (x)−W (y) + 2η

and

lim inf
ε→0

−ε log
(

νε (Bδ (x))

νε (Bδ (y))

)

≥W (x)−W (y)− 2η.

On the other hand, for w = x,y the definition of U implies

∫

Bδ(w)
exp

{

−1

ε
U (z)

}

dz ≤
∫

Bδ(x)





∑

σ∈ΣK

exp

{

−1

ε

K
∑

ℓ=1

αℓV
(

zσ(ℓ)
)

}



 dz

≤ K! ·
∫

Bδ(w)
exp

{

−1

ε
U (z)

}

dz.
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Therefore

lim
ε→0

−ε log
(

νε (Bδ (x))

νε (Bδ (y))

)

= lim
ε→0

−ε log





∫

Bδ(x)

[

∑

σ∈ΣK
exp

{

−1
ε

∑K
ℓ=1 αℓV

(

zσ(ℓ)
)

}]

dz

∫

Bδ(y)

[

∑

σ∈ΣK
exp

{

−1
ε

∑K
ℓ=1 αℓV

(

zσ(ℓ)
)

}]

dz





= lim
ε→0

−ε log
(∫

Bδ(x)
exp

{

−1
εU (z)

}

dz
∫

Bδ(y)
exp

{

−1
εU (z)

}

dz

)

= min
u∈Bδ(x)

U (u)− min
u∈Bδ(y)

U (u) ,

where the last equality is from Laplace’s principle. Hence minu∈Bδ(x) U (u)−
minu∈Bδ(y) U (u) is between W (x)−W (y)± 2η. Sending η → 0 (and thus
δ → 0), we find W (x)−W (y) = U (x)− U (y) .

Remark 5.6. By (5.4) and Lemma 5.5,

U(x) = min
i∈L

[U(Oi) +Q(Oi,x)] .

We can now state the main result of [14]. The result stated in [14]
assumes a fixed function f , but the result as stated below follows from this
and the uniform convergence fε → f . The uniformity with respect to the
initial condition is discussed on [14, page 12]. Let

h
.
= min

i∈L\{1}
Q(O1, Oi) and w

.
=W (O1)− min

i∈L\{1}
W (O1 ∪Oi). (5.5)

The quantity h is related to the time that it takes for the process to leave a
neighborhood of O1, and W (O1) −W (O1 ∪ Oi) is related to the transition
time from a neighborhood of Oi to one of O1. The roles of h and w will be
further explained in Section 6.

Theorem 5.7. Assume that the process defined by (3.3) satisfies a large
deviation principle that is uniform with respect to initial conditions, and let
νε be its unique stationary distribution and let T ε = e

1
ε
c for some c > h∨w.

Suppose that for each ε > 0 fε :M
K → R, and that for a continuous function

f : MK → R we have fε → f uniformly on MK . Then for any compact set
A ⊂MK and x ∈MK ,

lim inf
ε→0

−ε log
∣

∣

∣

∣

Ex

(

1

T ε

∫ T ε

0
e−

1
ε
fε(Xε

t )1A (Xε
t ) dt

)

−
∫

MK

e−
1
ε
fε(x)1A (x) νε (dx)

∣

∣

∣

∣

≥ inf
x∈A

[f (x) +W (x)]−W (O1) + c− (h ∨ w),

22



November 12, 2020

and

lim inf
ε→0

−ε log
(

T ε ·Varx
(

1

T ε

∫ T ε

0
e−

1
ε
fε(Xε

t )1A(X
ε
t )dt

))

≥







mini∈L

(

R
(1)
i ∧R(2)

i

)

, if h ≥ w

mini∈L

(

R
(1)
i ∧R(2)

i ∧R(3)
i

)

, otherwise
,

where
R

(1)
i

.
= inf

x∈A
[2f(x) +Q(Oi,x)] +W (Oi)−W (O1),

R
(2)
1

.
= 2 inf

x∈A
[f(x) +Q(O1,x)]− h,

for i ∈ L \ {1}

R
(2)
i

.
= 2 inf

x∈A
[f(x) +Q(Oi,x)] +W (Oi)− 2W (O1) +W (O1 ∪Oi),

and for i ∈ L

R
(3)
i

.
= 2 inf

x∈A
[f(x) +Q(Oi,x)] + 2W (Oi)− 2W (O1)− w.

To apply this theorem to the INS model, we note that the definition of
θε,T

ε

INS involves the sum of a finite number of integrals of the form

1

T ε

∫ T ε

0
wε(Xε

σ(t),α)1A(X
ε
σ(1)(t))dt,

where σ is a permutation which for simplicity we take here to be the identity,
and wε(x,α) is defined in (3.4). Since V is bounded and continuous, it
follows from standard features of the mollification used in the definition of
wε in (3.4), that if we write wε(x,α) in the form

e−
1
ε

∑K
ℓ=1 αℓV (xℓ)+

1
ε
gε(x,α),

then as ε→ 0

gε(x,α) → U(x)
.
= min

σ∈ΣK

[

K
∑

ℓ=1

αℓV (xσ(ℓ))

]

(5.6)

uniformly in x ∈MK (see, e.g., [6, Lemma 14.7]). Define

f(x,α) =

K
∑

ℓ=1

αℓV (xℓ)− U(x).
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We can then apply Theorem 5.7 with the function fε(x,α) =
∑K

ℓ=1 αℓV (xℓ)−
gε(x,α) and the compact set A×MK−1 ⊂MK , to find that

lim inf
ε→0

−ε log
∣

∣

∣
Ex

(

θε,T
ε

INS

)

− νε(A)
∣

∣

∣

≥ inf
x∈A×MK−1

[f (x,α) +W (x)]−W (O1) + c− (h ∨w)

= inf
x∈A×MK−1

[f (x,α) + U (x)] + c− (h ∨ w).

Since f ≥ 0, U ≥ 0 and c > h∨w, this shows that θε,T
ε

INS is essentially unbiased.

Moreover, we find that lim infε→0−ε log(T ε · Varx(θε,T
ε

INS )) is bounded below

by either mini∈L(R
(1)
i (α)∧R(2)

i (α)) or mini∈L(R
(1)
i (α)∧R(2)

i (α)∧R(3)
i (α)),

depending on whether h ≥ w or w > h.
In the next subsection, we will identify appropriate lower bounds for

these two minima and then optimize the lower bounds over α.

Remark 5.8. As mentioned in Remark 3.4, we are also interested in esti-
mating risk sensitive functionals of the form

∫

Rd

e−
1
ε
F (x)µε (dx) .

We can apply Theorem 5.7 to the associated INS estimator in this case as well
by using the function fε(x,α) = F (x1) +

∑K
ℓ=1 αℓV (xℓ) − gε(x,α) and the

compact set MK . Moreover, one can modify the arguments in Subsection
5.1 to derive an analogous version of Theorem 4.12 for the risk sensitive
functional case.

5.1 Bounds for the optimization problem

In this subsection we provide suitable lower bounds for mini∈L(R
(1)
i (α) ∧

R
(2)
i (α)) and mini∈L(R

(1)
i (α) ∧R(2)

i (α) ∧R(3)
i (α)). Define

r(α)
.
= inf

x∈A×MK−1

{

2
K
∑

ℓ=1

αℓV (xℓ)− min
σ∈ΣK

{

K
∑

ℓ=1

αℓV (xσ(ℓ))

}}

,

which is the same as infx∈A×MK−1 {2f(x,α) + U(x)}, where f(x,α)
.
=

∑K
ℓ=1 αℓV (xℓ)−U(x). As the next lemma shows, this optimization problem,

which plays a key role in the bounds we will derive, has an explicit solution.
Although a proof appears in [15], we include a slightly simpler proof of the
special case needed here owing to its central role.
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Lemma 5.9. We have

sup
α∈∆

r(α) =
(

2− (1/2)K−1
)

V (A),

with the unique optimizer α∗ = (1, 1/2, . . . , (1/2)K−1).

Proof. The first step is to decompose A×MK−1 as ∪τ∈ΣK
Nτ , where

Nτ
.
=
{

x ∈ A×MK−1 : V
(

xτ(1)
)

≤ V
(

xτ(2)
)

≤ · · · ≤ V
(

xτ(K)

)}

.

For any τ ∈ ΣK there exists i ∈ {1, . . . ,K} which depends on τ such that 1 =
τ (i) . We will use the rearrangement inequality [18, Section 10.2, Theorem
368], which says that if x ∈ Nτ , then since αℓ is nonincreasing in ℓ the
minimum in U(x)

.
= minσ∈ΣK

{∑K
ℓ=1 αℓV

(

xσ(ℓ)
)

} is at σ = τ . Thus,

inf
x∈A×MK−1

[

2

K
∑

ℓ=1

αℓV (x
ℓ
)− U(x)

]

= min
τ∈ΣK

{

inf
x∈Nτ

[

2
K
∑

ℓ=1

αℓV (x
ℓ
)− min

σ∈ΣK

{

K
∑

ℓ=1

αℓV
(

xσ(ℓ)
)

}]}

= min
τ∈ΣK

{

inf
x∈Nτ

[

K
∑

ℓ=1

(

2ατ(ℓ) − αℓ
)

V
(

xτ(ℓ)
)

]}

.

Let βℓ
.
= 2ατ(ℓ) − αℓ, and for each i ∈ {1, . . . ,K} define the sets

N i
τ
.
=
{(

xτ(1), . . . , xτ(i)
)

: x ∈ Nτ

}

and

N̄ i
τ (y)

.
=
{(

xτ(i), . . . , xτ(K)

)

: x ∈ Nτ and
(

xτ(1), . . . , xτ(i)
)

= y
}

.

Note that for each τ (and using that i is the index such that τ (i) = 1)

inf
x∈Nτ

[

K
∑

ℓ=1

βℓV
(

xτ(ℓ)
)

]

= inf
(y1,...,yi)∈N i

τ

[
∑i−1

ℓ=1 βℓV (yℓ) + βiV (yi)

+ inf(zi,...,zK)∈N̄ i
τ (y1,...,yi)

[

∑K
ℓ=i+1 βℓV (zℓ)

]

]

.
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Next we show that given (y1, . . . , yi) (and noting that by definition zi =
yi),

inf
(zi,...,zK)∈N̄ i

τ (y1,...,yi)

[

K
∑

ℓ=i+1

βℓV (zℓ)

]

=

(

K
∑

ℓ=i+1

βℓ

)

V (yi) . (5.7)

Recall that α1 ≥ α2 · · · ≥ αK > 0. Therefore, βK = 2ατ(K) − αK ≥
2αK − αK = αK > 0. More generally, since τ(ℓ), . . . , τ(K) are distinct
values drawn from {1, . . . ,K}, for each ℓ

βℓ + · · ·+ βK = 2

K
∑

j=ℓ

ατ(j) −
K
∑

j=ℓ

αj ≥ 2

K
∑

j=ℓ

αj −
K
∑

j=ℓ

αj > 0.

Using βK ≥ 0 and the fact that (zi, . . . , zK) ∈ N̄ i
τ (y1, . . . , yi) implies the

restriction
V (zi) ≤ V (zi+1) ≤ · · · ≤ V (zK) ,

we can rewrite the infimum as

inf
(zi,...,zK)∈N̄ i

τ (y1,...,yi)

[

K
∑

ℓ=i+1

βℓV (zℓ)

]

= inf
(zi,...,zK)∈N̄ i

τ (y1,...,yi)

[

K−2
∑

ℓ=i+1

βℓV (zℓ) + (βK−1 + βK)V (zK−1)

]

.

Iterating, we have (5.7). Letting D
.
= {V (x) : x ∈ A},

inf
x∈A×MK−1

[

2
K
∑

ℓ=1

αℓV (x
ℓ
)− min

σ∈ΣK

{

K
∑

ℓ=1

αℓV
(

xσ(ℓ)
)

}]

= min
τ∈ΣK

{

inf
x∈Nτ

[

K
∑

ℓ=1

(

2ατ(ℓ) − αℓ
)

V
(

xτ(ℓ)
)

]}

= min
τ∈ΣK

{

inf
(xτ(1),...,xτ(i))∈N i

τ

[

i−1
∑

ℓ=1

βℓV
(

xτ(ℓ)
)

+

(

K
∑

ℓ=i

βℓ

)

V
(

xτ(i)
)

]}

= min
τ∈ΣK















inf
{Vτ(i)∈D}

{(Vτ(1),...,Vτ(i−1)):Vτ(1)≤Vτ(2)≤···≤Vτ(i)}

[

i−1
∑

ℓ=1

βℓVτ(ℓ) +

(

K
∑

ℓ=i

βℓ

)

Vτ(i)

]















.

The last equality holds because V is continuous.
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We claim that the last display coincides with

r̄ (α)
.
= inf

{V1∈D}
{(V1,...,VK):Vℓ∈[0,V1] for ℓ≥2}

[

2

K
∑

ℓ=1

αℓVℓ − min
σ∈ΣK

{

K
∑

ℓ=1

αVσ(ℓ)

}]

= min
τ∈ΣK



















inf
{Vτ(i)∈D}

{(Vτ(1),··· ,Vτ(K)):Vτ(1)≤Vτ(2)≤···≤Vτ(K)≤Vτ(i)}

[

K
∑

ℓ=1

(

2ατ(ℓ) − αℓ
)

Vτ(ℓ)

]



















.

Since V ∈ Nτ implies Vτ(ℓ) ≥ Vτ(i) and hence Vτ(ℓ) = Vτ(i) for i < ℓ ≤ K,

inf

{Vτ(i)∈D}
{(Vτ(1),...,Iτ(K)):Vτ(1)≤Vτ(2)≤···≤Vτ(K)≤Vτ(i)}

[

K
∑

ℓ=1

βℓVτ(ℓ)

]

= inf
{Vτ(i)∈D}

{(Vτ(1),...,Vτ(i−1)):Vτ(1)≤Vτ(2)≤···≤Vτ(i)}

[

i−1
∑

ℓ=1

βℓVτ(ℓ) +

(

K
∑

ℓ=i

βℓ

)

Vτ(i)

]

,

which establishes the claim.
To prove that supα r̄ (α) = {(2− (1/2)K−1)V (A)}, first rewrite r̄ (α) by

noticing that since V1 is the largest value in the set V ,

min
τ∈ΣK

{

K
∑

ℓ=1

αℓVτ(ℓ)

}

obtains the minimum at some τ ∈ ΣK with τ (K) = 1. Therefore

r̄ (α)

= inf
(V1,F )∈D

{V :Vℓ≤V1 for ℓ≥2}

[

(2α1 − αK)V1 + 2

K
∑

ℓ=2

αℓVℓ − min
τ∈ΣK ,τ(K)=1

{

K−1
∑

ℓ=1

αℓVτ(ℓ)

}]

.

Suppose we are given any K− 1 numbers and assign them to {Vℓ}ℓ=2,...,K in
a certain order. Then the value of

min
τ∈ΣK ,τ(K)=1

{

K−1
∑

ℓ=1

αℓVτ(ℓ)

}
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is independent of the order. But since α1 ≥ · · · ≥ αK ≥ 0, by the rearrange-
ment inequality, the smallest value of

∑K
ℓ=2 αℓVℓ is obtained by taking the

Vℓ, ℓ ≥ 2 in increasing order. By choosing this ordering of {Vℓ}ℓ=2,...,K ,

min
τ∈ΣK ,τ(K)=1

{

K−1
∑

ℓ=1

αℓVτ(ℓ)

}

=
K
∑

ℓ=2

αℓ−1Vℓ.

Thus,

r̄ (α) = inf
V1∈D

{V :0≤V2≤···≤VK≤V1}

[

(2α1 − αK)V1 + 2
K
∑

ℓ=2

αℓVℓ −
K
∑

ℓ=2

αℓ−1Vℓ

]

= inf
V1∈D

{V :0≤V2≤···≤VK≤V1}

[

(2α1 − αK)V1 +

K
∑

ℓ=2

(2αℓ − αℓ−1)Vℓ

]

. (5.8)

Using summation by parts and α1 = 1, we have

r̄ (α) (5.9)

= inf
V1∈D

{V :0≤V2≤···≤VK≤V1}

[

(2α1 − αK)V1 +

K−1
∑

ℓ=2

αℓ (2Vℓ − Vℓ+1) + 2αKVK − V2

]

.

Since V is continuous and bounded from below, there is V0 ∈ D̄ such that
(

2− (1/2)K−1
)

V0 =
[(

2− (1/2)K−1
)

V (A)
]

.

Let α∗ .
=
(

1, 1/2, . . . , 1/2K−1
)

and V ∗ = (V ∗
1 , . . . , V

∗
K) , with V ∗

1
.
= V0,

V ∗
ℓ

.
= (1/2)K−ℓ+1 V0 for ℓ = 2, . . . ,K. We have the following inequalities,

which are explained after the display:
(

2− (1/2)K−1
)

V0

= inf
V1∈D

{V :0≤V2≤···≤VK≤V1}

[

(2α∗
1 − α∗

K)V1 +
K
∑

ℓ=2

(

2α∗
ℓ − α∗

ℓ−1

)

Vℓ

]

= r̄ (α∗)

≤ sup
α
r̄ (α)

≤ sup
α

[

(2α1 − αK)V ∗
1 +

K−1
∑

ℓ=2

αℓ
(

2V ∗
ℓ − V ∗

ℓ+1

)

+ 2αKV
∗
K − V ∗

2

]

=
(

2− (1/2)K−1
)

V0.
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The first equality follows from 2α∗
ℓ − α∗

ℓ−1 = 0 for ℓ = 2, . . . ,K; the second
equality from (5.8); the second inequality is from (5.9); the third equality
uses α1 = 1, 2V ∗

ℓ − V ∗
ℓ+1 = 0 for ℓ = 2, . . . ,K, −αKV ∗

1 + 2αKV
∗
K = 0 and

V ∗
2 = (1/2)K−1 V0. We therefore obtain

sup
α
r̄ (α) =

{(

2− (1/2)K−1
)

V (A)
}

.

In the rest of the subsection, we will show that for any α ∈ ∆, both

mini∈L(R
(1)
i (α) ∧ R

(2)
i (α)) and mini∈L(R

(1)
i (α) ∧ R

(2)
i (α) ∧ R

(3)
i (α)) are

bounded below by quantities slightly smaller than r(α). Actually, we will

find lower bounds for mini∈LR
(k)
i (α) for k = 1, 2 and 3, individually. The

precise statement is given in the following lemma.

Lemma 5.10. For any α ∈ ∆, we have mini∈LR
(1)
i (α) = r(α), mini∈LR

(2)
i (α) ≥

r(α)− h ∨ w and mini∈LR
(3)
i (α) ≥ r(α)− w.

Proof. First note that

min
i∈L

R
(1)
i (α) = min

i∈L

(

inf
x∈A×MK−1

{2f(x,α) +Q(Oi, x)}+W (Oi)−W (O1)

)

= inf
x∈A×MK−1

{

2f(x,α) + min
i∈L

[Q(Oi, x) +W (Oi)]−W (O1)

}

= inf
x∈A×MK−1

{2f(x,α) +W (x)−W (O1)}

= inf
x∈A×MK−1

{2f(x,α) + U(x)} = r(α),

where we use (5.4) for the third equality and Lemma 5.5 for the fourth
equality. Moreover, since

min
i∈L\{1}

R
(2)
i (α)

= min
i∈L\{1}

[

2 inf
x∈A×MK−1

[f(x,α) +Q(Oi,x)] +W (Oi)− 2W (O1) +W (O1 ∪Oi)
]

≥ inf
x∈A×MK−1

[2f(x,α) + min
i∈L\{1}

{Q(Oi,x) +W (Oi)−W (O1)}]

−W (O1) + min
i∈L\{1}

W (O1 ∪Oi)

= inf
x∈A×MK−1

[2f(x,α) + min
i∈L\{1}

{Q(Oi,x) + U(Oi)}]− w,
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using U ≥ 0 we obtain

min
i∈L

R
(2)
i (α) = R

(2)
1 (α) ∧

(

min
i∈L\{1}

R
(2)
i (α)

)

≥
(

inf
x∈A×MK−1

[2f(x,α) +Q(O1,x)]− h

)

∧
(

inf
x∈A×MK−1

[2f(x,α) + min
i∈L\{1}

{Q(Oi,x) + U(Oi)}]−w

)

≥ inf
x∈A×MK−1

[2f(x,α) + min
i∈L

{Q(Oi,x) + U(Oi)}]− h ∨ w

= inf
x∈A×MK−1

[2f(x,α) + U(x)]− h ∨ w

= r(α)− h ∨ w,

where the second equality is from Remark 5.6. Lastly,

min
i∈L

R
(3)
i (α)

= min
i∈L

{

2 inf
x∈A×MK−1

[f(x,α) +Q(Oi,x)] + 2W (Oi)− 2W (O1)− w

}

= min
i∈L

{

2 inf
x∈A×MK−1

[f(x,α) +Q(Oi,x)] + 2U(Oi)

}

− w

= 2 inf
x∈A×MK−1

[f(x,α) + min
i∈L

{Q(Oi,x) + U(Oi)}]− w

= 2 inf
x∈A×MK−1

[f(x,α) + U(x)]− w

≥ inf
x∈A×MK−1

[2f(x,α) + U(x)]− w

= r(α)− w.

6 Bounds on the error terms h and w

Lemma 5.10 shows that for any collection of temperature ratios α ∈ ∆,
lim infε→0−ε log(T ε ·Varx(θε,T

ε

INS )) is always bounded below by r(α)−h∨w.
It remains to bound h and w for the INS model. Let H be the index set

for equilibrium points of V and let yi ∈M be the equilibrium corresponding
to index i ∈ H. Recall that we assumed y1 is the unique global minimum of
V . Let b1 be the minimum barrier height of y1, namely,

b1
.
= min

j∈H\{1}
Q̂(yj , y1), (6.1)
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where Q̂ is the quasipotential associated with the original diffusion (2.2),
and Ŵ is defined analogously to W but for this process.

Lemma 6.1. h
.
= mini∈L\{1}Q(O1, Oi) = αKb1.

Proof. Letting D1 be the domain of attraction of O1, we define

QD1 (x,y)
.
= inf {IT (φ) : φ (0) = x, φ (T ) = y, φ (t) ∈ D1 for all 0 ≤ t ≤ T, T <∞} .

Recall that Q (x,y) is defined by

Q (x,y)
.
= inf {IT (φ) : φ (0) = x, φ (T ) = y, T <∞ } .

Now since O1 is the only equilibrium point in D1, this implies that

h
.
= min

i∈L\{1}
Q(O1, Oi) ≥ inf

x∈∂D1

QD1 (O1,x) .

Moreover, we can apply [16, Theorem 4.3, Chapter 4] and (5.1) to find

inf
x∈∂D1

QD1 (O1,x) = − lim
ε→0

ε log

(

νε (∂D1)

νε (D1)

)

= inf
x∈∂D1

U(x)− inf
x∈D1

U (x)

= U(O2)− U(O1) = U(O2) = αKV (y2) = αKb1,

where O2
.
= (y1, . . . , y1, y2) ∈ ∂D1 with y2 being an unstable equilibrium

point such that b1 = Q̂(y1, y2) = V (y2). Thus, we have h ≥ αKb1. For
the other direction, we use the definitions of QD1 and Q, and we apply [16,
Theorem 4.3, Chapter 4] again to find

h ≤ Q (O1, O2) ≤ QD1(O1, O2) = U(O2)− U(O1) = αKb1.

Recall that w
.
=W (O1)−mini∈L\{1}W (O1 ∪Oi). We provide an upper

bound for w in the next lemma. To state the lemma, we need some more
definitions. Let Ĝ(1) denote the collection of graphs on {yi}i∈H that end
at y1. Let Ĝm(1) denote the subset of such graphs with the property that
for every local maximum or saddle point y there is a local local minimum z
such that Q̂(y, z) = 0. We know that Ĝm(1) is nonempty since it contains
the optimizing ĝ in the definition of Ŵ (y1) [16, Lemma 4.3(a), Chapter 6].
Given ĝ ∈ Ĝm(1) let Hĝ ⊂ H\{1} be the indices which are starting points,
i.e., k ∈ Hĝ means that there is no arrow in the graph that leads to yk.
Given k ∈ Hĝ, let Cĝ(k) be the cost along the path i1 = k, i2, . . . , im = 1 in
ĝ leading from k to 1:

Cĝ(k) =
m−1
∑

j=1

Q̂
(

yij , yij+1

)

.
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Lemma 6.2. w ≤ KαK minĝ∈Ĝm(1)maxk∈Hĝ
Cĝ(k).

Remark 6.3. Note that always minĝ∈Ĝm(1)maxk∈Hĝ
Cĝ(k) ≤ Ŵ (y1), and

that minĝ∈Ĝm(1)maxk∈Hĝ
Cĝ(k) can in some cases be much smaller than

Ŵ (y1). For example, this is often the case whenH is large but all equilibrium
points of V can reach y1 while passing through only a few intermediate
equilibrium points. The lemma is useful owing to the scaling in K that is
obtained, but unlike the expression for h is not tight.

Proof. We will show that for any i ∈ L\{1} and any ĝ ∈ Ĝm(1), Q(Oi, O1) ≤
αK maxk∈Hĝ

Cĝ(k). If this is true, then from the definition of W (O1∪Oi) we
can construct a graph to use in the definition of W (O1) that gives W (O1) ≤
W (O1∪Oi)+Q(Oi, O1) for any i ∈ L\{1}. Combining these two inequalities
with the definition of w in (5.5) complete the proof.

To prove the upper bound for Q(Oi, O1) we fix a graph ĝ ∈ Ĝm(1), and
note that for any yℓ with ℓ ∈ Hĝ, there is a unique sequence of arrows
(containing no loop) that leads from yℓ to y1 with cost Cĝ(ℓ). Furthermore,
we known that in this ĝ, every local maximum or saddle point will lead to a
local minimum with zero Q̂-cost. Using these facts, we design a route from
Oi to O1 through points from ({yi}i∈H)K in the following way.

• We change only one component at a time.

• We change the component with the largest V -value, and replace it by
the next equilibrium point suggested by the graph ĝ. If there is more
than one component with the largest V -value, then we can move any
one of them.

• Then repeat the process until all the components reach y1, i.e., Oi
reaches O1.

Next we analyze the Q-cost for each single step. For notational con-
venience, suppose without lose of generality that it is the first component
that takes the largest V -value. Then we will move from (x1, x2 . . . , xK)
to some (z1, x2, . . . , xK), with V (x1) ≥ V (xℓ) for all ℓ 6= 1, and (x1 →
z1) ∈ ĝ. We claim that Q((x1, x2 . . . , xK), (z1, x2 . . . , xK)) is always equal to
αKQ̂(x1, z1).

We first consider the case when x1 is a saddle point or a local maximum
of V . In this case then we know that z1 must be a local minimum of V such
that Q̂(x1, z1) = 0, so it is easy to see that we can construct a zero Q-cost
trajectory from (x1, x2 . . . , xK) to (z1, x2 . . . , xK), and this gives

Q((x1, x2 . . . , xK), (z1, x2 . . . , xK)) = 0 = αKQ̂(x1, z1).
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On the other hand, if x1 is a local minimum of V , then V (z1) must be larger
than V (x1) (which is larger than V (xℓ) for all ℓ 6= 1), and hence according
to the definition of U

Q((x1, x2 . . . , xK), (z1, x2 . . . , xK)) = U(z1, x2 . . . , xK)− U(x1, x2 . . . , xK)

= αKV (z1)− αKV (x1)

= αKQ̂(x1, z1).

As a result, the overall cost for each component to reach y1 is not larger
than αK maxk∈Hĝ

Cĝ(k), and because there are K components in total, we
conclude that Q(Oi, O1) ≤ KαK maxk∈Hĝ

Cĝ(k). We then minimize on ĝ ∈
Ĝm(1).

Remark 6.4. A consequence of Lemmas 6.1 and 6.2 is that if we pick the
temperature ratios to be α∗ = (1, 1/2, . . . , (1/2)K−1), then lim infε→0−ε log(T ε·
Varx(θ

ε,T ε

INS )) is bounded below by 2V (A) − (1/2)K−1 (V (A) + B), where
B

.
= b1 ∨ (Kminĝ∈Ĝm(1)maxk∈Hĝ

Cĝ(k)). For fixed V , the gap between

this value and the best possible 2V (A) decays geometrically in K.

6.1 Examples

Example 6.5. We first consider the situation depicted in Figure 4. If we
use INS with two temperatures, i.e. K = 2 and 1 = α1 ≥ α2 > 0, then some
algebra shows h = α2b1 = 4α2 and w =W (O1)−mini 6=1W (O1 ∪Oi) = 3α2,
and therefore h > w. The outcome h > w reflects the fact the well containing
y1 is the hardest to escape from and also contains the global minimum.

Example 6.6. In this example, we consider the situation depicted in Fig-
ure 5. With the same two temperature setting as in the last example, one
finds h = α2b1 = 4α2 and w = W (O1) − mini 6=1W (O1 ∪ Oi) = 5α2, which
gives w > h. Here we see that there is a secondary well from which es-
cape is harder than from that which contains y1. Moreover, in this case
minĝ∈Ĝm(1)maxk∈Hĝ

Cĝ(k) = Ŵ (y1) = 7α2, andKαK minĝ∈Ĝm(1)maxk∈Hĝ
Cĝ(k) =

14α2 is strictly larger then w = 5α2. Thus the bound for w from Lemma
6.2 is not tight, though it is still good enough to show the deviation from
optimality decays geometrically in K.

Example 6.7. The last example we consider is a potential V with a unique
global minimum y1 in the deepest well which is surrounded by N collections
of wells of the same form as depicted in Figure 5, with y1 common to all
collections, and each collection arranged in a radial direction out from y1.
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V (y1) = 5

V (y2) = 9

V (y3) = 7

V (y4) = 11

V (y5) = 8

y1 y2 y3 y4 y5

Figure 4: A case with h > w

Let {yni , i = 1, . . . , 5, n = 1, . . . , N} with yn1 = y1 denote the critical points of
V . Let ĝ be the graph with all arrows pointing in along the radial direction.
In this case Hĝ has N vertices, and with n indexing such a vertex let Cĝ(n) =
V (yn4 ) − V (yn5 ) + V (yn2 ) − V (yn3 ). With this example, so long as we have a
uniform bound on Cĝ(n) there is a bound on w that is independent of N .
Note that if there are large barriers between the radial collections then we
will also have Ŵ (y1) =

∑

1≤n≤N Cĝ(n), which in this case will be much
larger that max1≤n≤N Cĝ(n), a situation noted in 6.3.

7 Appendix

The results of [14] use the large deviation principle for a small noise diffu-
sion process to characterize large deviation properties of the variance of the
empirical measure, in the limit as the time horizon tends to infinity and the
strength of the noise tends to zero. One use of the rate function on path
space is to determine probabilities of transitions between equilibrium points
of the noiseless system. As noted previously for the INS model this is not
needed, in that the known form of the stationary distribution hands us this
information directly. Because of this, all that is needed is that the LDP holds
with some rate function that is uniform with respect to initial conditions,
and certain bounds on the rate function.
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V (y1) = 7

V (y2) = 11

V (y3) = 9

V (y4) = 13

V (y5) = 8

y1 y2 y3 y4 y5

Figure 5: A case with h < w

One bound that is needed is an upper bound on the cost to go from
any point x to any nearby point y, i.e., inf{IT (φ) : φ(0) = x, φ(T ) =
y, T ∈ (0,∞)}, which shows that this cost can be made small by making the
distance between x and y small (a controllability type condition). Such a
bound follows easily from the non-degeneracy of the noise and boundedness
of ∇V by making comparison with the case of Brownian motion.

The other bound needed is used to show that for many calculations what
happens away from neighborhoods of the equilibrium points is not so impor-
tant, in that the process spends very little time (in a relative sense) any place
but in the union of these neighborhoods. For this, the key property of the
rate function is a result that shows that if δ > 0 then all zero cost trajectories
(i.e., paths φ such that IT (φ) = 0 for all T ∈ (0,∞)) that start outside the
union of the δ-neighborhoods of the equilibrium points must reach that set
in a time that is uniformly bounded over all initial conditions and paths.

Thus to apply the results of [14] two things need to be shown: an LDP
holds that is uniform with respect to initial conditions, and that if IT (φ) is
the rate function for this LDP then the stability property for zero cost paths
just mentioned is true. In this section we sketch how both of these can be
shown for the INS model.
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7.1 Properties of zero cost trajectories

A condition that is sufficient to show that the time spent away from δ-
neighborhoods of the equilibrium points is the following.

1. There is a measurable function L̄ : MK × (Rd)K → [0,∞) that is
uniformly bounded on each compact subset, such that for all absolutely
continuous ψ ∈ C([0, T ] : MK) , the rate function for the INS model
discussed in the next section of the Appendix satisfies

∫ T

0
L̄(ψ, ψ̇)ds ≤ IT (ψ),

and in all other cases IT (ψ) = ∞.

2. For each δ > 0 there is f : [0,∞) → [0,∞) that satisfies f(t) → ∞ as
t → ∞, and if ψ : [0,∞) → MK is absolutely and if ψ(t) avoids the
δ-neighborhoods of all the equilibrium points {θi, i ∈ H}K , then

∫ T

0
L̄(ψ, ψ̇)ds ≥ f(T ). (7.1)

Given that an LDP holds with rate function IT (φ), it follows from the
general large deviation upper bound proved in [11] that IT (φ) ≥ JT (φ),

with JT (φ) giving the upper bound rate and with JT (φ) =
∫ T
0 L̄(φ, φ̇)ds of

the following form. For each point x ∈ MK there is a finite collection of
functions

Hj(x,γ)
.
=

K
∑

k=1

[

〈−∇V (xk), γk〉+ cjk ‖γk‖
2
]

=
K
∑

k=1

〈−∇V (xk), γk〉+H̄j(x,γ),

j = 1, . . . , J , where each γk ∈ R
d and for each j the cjk take distinct values

from {α−1
1 , . . . , α−1

K }, and the equality defines H̄j(x,γ). Note that each
H̄j(x,γ) is quadratic and positive definite (i.e., greater than zero if γ 6= 0).
For β = (β1, . . . , βK) with each βk in the tangent space to M at xk (the only
values where L̄(x,β) will be finite), we then have that

L̄(x,β) = sup
{γk}

[

K
∑

k=1

〈βk, γk〉+
K
∑

k=1

〈∇V (xk), γk〉 − ∨Jj=1H̄j(x,γ)

]

= sup
{γk}

[

K
∑

k=1

〈(βk +∇V (xk)), γk〉 − ∨Jj=1H̄j(x,γ)

]
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From standard theory of the Legendre-Fenchel transform, L̄(x,β) ≥ 0 with
equality if and only if β + v is in the set of subdifferentials of ∨Jj=1H̄j(x,γ)
in the γ variable at γ = 0, with v being the vector of components ∇V (xk).
Since the subdifferentials of ∨Jj=1H̄j(x,γ) at γ = 0 is precisely {0}, we

get that L̄(φ, φ̇) = 0 if and only if each component of φ = (φ1, φ2, . . . , φK)
satisfies φ̇k = −∇V (φk). Since we assume there are only finitely many
equilibrium points of V it must be true that each component reaches the
δ-neighborhood of one of the equilibrium points in finite time. The reference
[11] also proves that JT (φ) has compact level sets. Since the equilibrium
points of the combined system are just {θi, i ∈ H}K , the claimed property
(7.1) follows from standard calculations (see, e.g., [16, Lemma 2.2, Chapter
4]).

7.2 Uniform LDP on path space

The second issue is more complicated. We want to argue the following:

• Let Xε
x denote the solution to the INS dynamics (3.3) with initial

condition x ∈ MK . Fix any T ∈ (0,∞). Then {Xε
x} satisfies an LDP

on C([0, T ] :MK) with rate function IT that is uniform in x ∈MK [6,
Section 1.2].

Owing to the discontinuities in the diffusion coefficient as ε→ 0, the INS
model falls into what are called processes with “discontinuous statistics” in
the large deviation literature. There are models with discontinuous statistics
for which very explicit expressions for the rate function are possible, but
there are also many examples where, although the existence of an LDP can
be established, a precise characterization is difficult. The INS model falls
into the latter category. We will describe in some detail one way to show
the existence of an LDP for the INS model. To explain the main points we
consider the particular case of an asymmetric two well model in dimension
one, with K = 2. An example is the Franz potential with parameter θ
depicted in Figure 2:

V (x) = V (x; θ) =
3x4 − 4(θ − 1)x3 − 6θx2

2θ + 1
+ 1, x ∈ R.

For every θ ∈ [0, 1], V (·; θ) has a fixed local minimum of zero at xL = −1,
another local minimum at xR = θ, and a fixed barrier of height 1 at x = 0.
Taking θ = 1 produces a symmetric two well potential and θ = 0 gives a sin-
gle well. As before, one should imagine that the potential has been extended
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in a periodic fashion while retaining this two local minimum structure. The
symmetrized potential, which identifies the stationary distribution for the
INS dynamics, is plotted in Figure 3. This potential has a global minimum
with value 0 at (−1,−1), local minima at (−1, .85) and (.85,−1), and a
highest local minimum at (.85, .85).

In Figure 6 we plot the regions in the pair of variables where the diffu-
sion coefficients for the symmetrized dynamics converge to a discontinuous
function. Away from these regions the ρεij(x;α) converge uniformly to a
constant, with limiting values 1 and 0.

Figure 6: Locations where limits of weights are discontinuous

Figure 2 superimposes the locations of the critical points of the sym-
metrized potential on the plat of the discontinuity region. Points O1, O3, O7,
and O9 are local minima with O1 the global minimum. Points O2, O4, O6,
and O8 are saddle points, and O5 is a local maximum.

To prove the LDP one can adapt the theory presented in [10], which was
motivated by problems from queueing theory and hence focuses on contin-
uous time processes that take values in a lattice, to deal with the diffusion
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models of INS. To do so one will want some regularity assumptions on the
set D of discontinuities of the functions limε→0w

ε(xσ,α), which will impose
conditions on V . These discontinuities occur when two or more V (xi) tie,
and we will want that given any point in D there is a smooth change of
variable so that in an open neighborhood of the point D can be mapped to
a set consisting of the union of a finite set of hyperplanes of fixed dimension.
These are mild conditions, imposing smoothness on V and ruling out sets
of positive Lebesgue measure where V is a constant. When such conditions
do not hold the local structure of D can be more complicated, and a more
involved argument would be needed.

The method of [10] uses two steps to prove the LDP. One step is to
show, using the Markov property, that it is sufficient to prove large deviation
estimates of the following general form, rephrased for a continuous state
model. We suppose for simplicity of terminology that the state space is
(Rd)K rather than MK .

We consider the large deviation properties of increments of the process
of the form

pε(z,∆;β, η)
.
= P

(

sup
s∈[0,∆]

‖Xε(s)− sβ‖ < η

∣

∣

∣

∣

∣

Xε(0) = z

)

.

To establish an LDP on path space, it is sufficient to show the following. For
each y ∈ (Rd)K there is an affine space Γy with dimension strictly smaller
than that of (Rd)K and a lower semicontinuous function L : (Rd)K × Γy →
[0,∞), with the property that for each fixed y the map β → L(y, β) is convex,
and such that

lim
∆→0

1

∆
lim
η→0

lim
δ→0

lim inf
ε→0

inf
{z:‖z−y‖≤δ}

(−ε log pε(z,∆;β, η))

= lim
∆→0

1

∆
lim
η→0

lim
δ→0

lim sup
ε→0

sup
{z:‖z−y‖≤δ}

(−ε log pε(z,∆;β, η))

= L(y, β). (7.2)

The set Γy is a local approximation to the directions in which the dynamics
of the process are in some sense uniformly (in ε) continuous, and it is in
directions orthogonal to Γy that there are rapidly changing or perhaps even
discontinuous behaviors. We illustrate the role of Γy through the two dimen-
sional example. The definition of L(y, β) for β /∈ Γy is unimportant when
Γy 6= (Rd)K , since the Lebesgue measure of the times t where an absolutely
continuous function ψ : [0, T ] → (Rd)K lies on a hyperplane of dimension
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dK−1 and at the same time ψ̇ is not on that plane is zero (i.e., ψ̇(s) ∈ Γψ(s)
a.s.).

Given the estimates of (7.2) and mild regularity properties of L(y, β), in
the second step [10] shows how to combine these estimates for increments
using the Markov property to obtain a uniform LDP for {Xε} on path space.
(There is an error in the proof of the LDP upper bound in [10] that was
pointed out and corrected in [19].)

To connect to the INS model, we consider the two temperature two well
model discussed earlier, and for which the discontinuity set D is depicted
in Figure 6. There are qualitatively three types of points in this figure:
(a) continuity points, (b) points y such that in a small neighborhood of y
the set D is smooth and one dimensional, and (c) points y such that in a
small neighborhood of y the set D is the intersection of two smooth, one
dimensional sets. For points of type (a) we can easily show (7.2) for Γy = R

2

using many different methods and with an explicit expression for L(y, β). For
points of type (b) Γy is the one dimensional tangent space to D at y. Here we
do not attempt to explicitly identify L(y, β), and the argument to establish
the existence of the limit in (7.2) uses a monotonicity argument, a method
that allows existence of limits to be shown without their identification. For
the last class of points of type (c) Γy = {0}.

We will describe how to prove the existence of the limits in each of the
three cases mentioned above. We recall that the INS process model is given
by the solution to

{

dXε
1 = −∇V (Xε

1)dt+
√
ε
√

2ρε,α(Xε
1 ,X

ε
2) + 2ρε,α(Xε

2 ,X
ε
1)/αdW1

dXε
2 = −∇V (Xε

2)dt+
√
ε
√

2ρε,α(Xε
1 ,X

ε
2)/α + 2ρε,α(Xε

2 ,X
ε
1)dW2

,

where α ∈ (0, 1) and

ρε,α(x1, x2) =
e−

1
ε
[V (x1)+αV (x2)]

e−
1
ε
[V (x1)+αV (x2)] + e−

1
ε
[αV (x1)+V (x2)]

. (7.3)

Recall also that D consists of points (x1, x2) such that V (x1) = V (x2), and
so if not in D then

[V (x1) + αV (x2)] 6= [αV (x1) + V (x2)] .

7.2.1 y /∈ D

In this case as ε → 0 we have ρε,α(x1, x2) → 0 or 1 uniformly in a neigh-
borhood of y. Suppose that in fact the limit is 1. Then by standard large
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deviation theory and elementary martingale bounds the large deviation lim-
its are the same as those of the system

{

dXε
1 = −∇V (Xε

1)dt+
√
ε
√
2 dW1

dXε
2 = −∇V (Xε

2)dt+
√
ε
√

2/αdW2
,

i.e., (7.2) holds with

L(y, β) =
1

4

[

(β1 +∇V (y1))
2 + α (β2 +∇V (y2))

2
]

.

The analogous result holds when ρε,α(x1, x2) → 0.

7.2.2 y ∈ D and locally D is a smooth 1-dimensional manifold

We can make a smooth change of variable to “flatten” D and also replace
∇V as it appears in the drift by (∇V (y1),∇V (y2)), and V as it appears in
ρε,α(x1, x2) by (V (y1) + (x1 − y1)∇V (y1), V (y2) + (x2 − y2)∇V (y2)). The
reason such localization is relevant is because of the limit on ∆ in (7.2).
This can be justified by using comparison controls to bound the differences
in optimal cost under the two sets of dynamics. For notational simplicity let
b = (∇V (y1),∇V (y2)). To avoid degeneracy we will assume b 6= 0. (If b = 0
then the same arguments we use below to justify the replacement of ∇V by
its affine approximation can be used to reduce to the case of y /∈ D.)

One can check that if b 6= 0 then D is the line orthogonal to (−b1, b2).
Using that V (y1) = V (y2) we find

ρε,α(x1, x2) =
e−

1
ε
〈(x−y),(b1,αb2)〉

e−
1
ε
〈(x−y),(b1,αb2)〉 + e−

1
ε
〈(x−y),(αb1,b2)〉

. (7.4)

In terms of the natural coordinates defined by (g1, g2) = (−x1b1 + x2b2, x1b2 + x2b1) / ‖b‖2
we have

dGε1 =
1

‖b‖2
(

b21dt− b1
√
ε
√

2ρ̄(Gε1/ε) + 2ρ̄(−Gε1/ε)/αdW1

− b22dt+ b2
√
ε
√

2ρ̄(Gε1/ε)/α + 2ρ̄(−Gε1/ε)dW2

)

and

dGε2 =
1

‖b‖2
(

−b2b1dt+ b2
√
ε
√

2ρ̄(Gε1/ε) + 2ρ̄(−Gε1/ε)/αdW1

− b2b1dt+ b1
√
ε
√

2ρ̄(Gε1/ε)/α + 2ρ̄(−Gε1/ε)dW2

)

,
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where ρ̄(g1) = e−g1C/(eg1C + e−g1C) and C = (1− α)
[

b21 + b22
]

> 0.
To simplify notation we write this SDE as

dGε = B̄dt+
√
εCε(Gε1)dW

where the diffusion matrix C1(g) is uniformly nondegenerate and can be
written in terms of ρ̄(g/ε) and ρ̄(−g/ε). Note that the process depends
smoothly on Gε2 (in fact owing to the linearization it does not depend on
Gε2 at all), and the diffusion coefficient is discontinuous in Gε1 in the limit
ε → 0. For each ε > 0 this SDE has a strong solution that is unique in the
strong sense. A final modification that will ease the analysis and which is
also justified by using comparison controls is to perturb ρ̄(g) slightly (with
a controllable change in the cost by making Γ large), so that

ρ̄(g) = 1 for g ≥ Γ and ρ̄(g) = −1 for g ≤ −Γ.

It will be enough to show that for any y and β = (0, β2) there is L(y, β) ∈
[0,∞) such that

L(y, β) = lim
η→0

lim
δ→0

lim inf
ε→0

inf
{z:‖z−y‖≤δ}

(−ε log pε(z, 1;β, η)) (7.5)

= lim
η→0

lim
δ→0

lim sup
ε→0

sup
{z:‖z−y‖≤δ}

(−ε log pε(z, 1;β, η)) .

We prove (7.5) by using stochastic control arguments and quasistationary
distributions. To be precise, we consider the controlled system

dḠε = B̄dt+ Cε(Ḡε1)u
εdt+

√
εCε(Ḡε1)dW

where uε = (uε1, u
ε
2) is any progressively measurable, square integrable con-

trol. We make one last elementary change, which is to absorb β2 into B̄.
This can be done since Cε does not depend on g2. Let

τ ε
.
= inf{s ≥ 0 :

∥

∥Ḡε(s)
∥

∥ ≥ η}.

Then we have the representation [4], [6, Chapter 3]

V ε(g; η)
.
= −ε log pε(y, 1;β, η)

= inf
uε
E

[

1

2

∫ 1

0
‖uε(s)‖2 ds +∞1{τε≤1}

∣

∣

∣

∣

Ḡε(0) = g

]

.

We will need to show a type of uniform (in ε) continuity of V ε(g; η) in
the neighborhood Bδ(0)

.
= {y : ‖y‖ ≤ δ} as described below. By a time
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change and scaling properties, we can relate V ε(g; η) to a control problem
on the set B1/ε(0) over the time interval [0, 1/ηε], and the dynamics

dḠ = B̄dt+ C1(Ḡ1)udt+ C1(Ḡ1)dW

and the same running cost and time averaged costs, but requiring no exit
before 1/ηε. If V̄ ε(g; 1/ηε) is the value function for this problem, then

V ε(g; η) = V̄ ε(g/ε; 1/ηε),

so we want a uniformity of V̄ ε(y; 1/ηε) for y distance δ/ε from the origin.
Owing to the fact a limit η → 0, it is natural to relate V̄ ε(g; 1/ηε) to

an ergodic control problem. For M ∈ (0,∞) let λM be the minimal cost
for the ergodic control problem when considered with these ε = 1 dynamics
and which constrains the process to BM (0) with minimal cost per unit time.
This ergodic control problem is closely related to the problem of existence
of a quasistationary distribution (QSD) when the original dynamics are con-
strained to BM (0), with the ergodic cost equal to the decay rate under the
QSD, and the QSD itself is the stationary distribution under the optimal
ergodic control. This is proved by a verification argument when a classical
sense solution to the HJB equation exists. The control problem is also re-
lated to the existence of suitable solutions to an eigenvalue problem [2]. The
required existence holds in the present setting owing to the regularity of the
boundary and smoothness and nondegeneracy of the dynamics [21].

By the use of comparison controls it is easy to see that λM is nonincreas-
ing in M ,

λM ↓ λ∗,
where λ∗ > 0 if and only if B̄ 6= 0 (note that for the ergodic control problem
we send T → ∞ first). (In fact the ergodic cost is more generally monotone
in that a larger set will correspond to a smaller cost, and hence the shape of
the domain, a ball here, is not important.) It is easy to see that λ∗ is finite.
We outline why

lim
η→0

lim
δ→0

lim inf
ε→0

inf
‖g‖≤δ

V̄ ε(g/ε; 1/ηε) = lim
η→0

lim
δ→0

lim sup
ε→0

sup
‖g‖≤δ

V̄ ε(g/ε; 1/ηε) = λ∗

is valid.
To prove the upper bound, one would argue as follows. Fix M < ∞.

Owing to the nondegeneracy, on an interval of the form [0, δ/εη] we can
drive the process from starting points within δ/εη of zero to BM/2(0) with a
cost of size (when averaged over the time interval 1/εη) of size δ. After this
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we can apply the optimal control for the λM problem. During the second
interval of the form [δ/εη, 1], ergodicity on the fixed compact set BM (0) gives
a cost of the form (λM + δ)(1 − δ). One then takes limits in the indicated
order and then sends M → ∞.

For the lower bound we will need to partition into cases, depending on
what happens with the λM . It is convenient here to use RM (0)

.
= {(g1, g2) :

|g1| ∨ |g2| < M} rather than BM (0), which is possible due to monotonic-
ity properties mentioned previously. Let µM be the stationary distribution
under the optimal ergodic control. Suppose that for some sequence Mi → ∞

lim
i→∞

µMi
{(g1, g2) : −Γ < g1 < Γ} > 0.

Then the optimally controlled process must return to this set repeatedly.
(When this is not the case then process will run off to ±∞ in the g1 direc-
tion, and this case is handled with a simpler argument.) In this case the
minimizing points of the cost potential WMi(y) will be uniformly bounded
in i (due to the need to return to {(g1, g2) : −Γ < g1 < Γ}), and using com-
parison controls on any fixed compact set we will have uniform bounds on
the Lipschitz constant of WMi(g) for all large enough i. Hence we can pass
to the limit

W ∗(g) = lim
i→∞

WMi(g).

We claim thatW ∗ will satisfy the limit HJB (see [1] for properties of exp−W ∗

for special cases) and
W ∗(g) ≤ κ ‖g‖+K

for some κ,K <∞ (in fact W ∗(g) will be independent of g2).
If the lower bound is not true, then we know there is a > 0 and sequences

ηj → 0, δj → 0 with δj/ηj → 0, gj with ‖gj‖ ≤ δj and εj → 0 such that

V̄ εj(gj/εj ; 1/ηjεj) ≤ λ∗ − a (7.6)

for all large enough j.
We use that W ∗(y) satisfies

λ∗ =
〈

DW ∗(g), B̄
〉

− 1

2

∥

∥(C1)T (g1)DW
∗(g)

∥

∥

2
+

1

2
tr
[

A(g1)D
2W ∗(g)

]

≤
〈

DW ∗(g), B̄ + C1(g1)u
〉

+
1

2
‖u‖2 + 1

2
tr
[

A(g1)D
2W ∗(g)

]

,

where A(g1) = C1(g1)(C
1)T (g1). Also V̄ εj(g; 1/ηjεj) is equal to U εj ,ηj (g, t)

at t = 0, where U εj ,ηj satisfies

∂tU
εj ,ηj (g, t)+

〈

DU εj ,ηj (g, t), B̄
〉

−1

2

∥

∥(C1)T (g1)DU
εj ,ηj (g, t)

∥

∥

2
+
1

2
tr
[

A(g1)D
2U εj ,ηj(g, t)

]

= 0
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plus a zero terminal condition at t = 1/εη for g ∈ RM (0) and U εj ,ηj(g, t) =
∞ for g ∈ ∂ [−1/ε, 1/ε]2. (The existence and uniqueness of a solution to this
equation follows easily from the fact that exp−U εj,ηj (g, t) satisfies a linear
equation with zero boundary condition.)

Now suppose that

dḠ = B̄dt+ C1(Ḡ1)udt+ C1(Ḡ1)dW

is an optimally controlled process for V̄ εj(g; 1/ηjεj). Then

dW ∗(Ḡ) =
〈

DW ∗(Ḡ), B̄ + C1(Ḡ1)u
〉

dt+
1

2
tr
[

A(Ḡ1)D
2W ∗(Ḡ)

]

dt+a martingale.

If the lower bound does not hold, then by (7.6) there is a sequence of starting
points gj such that

V̄ εj(gj/εj ; 1/ηjεj) ≤ λ∗ − a.

That means that since u is the corresponding optimal control

Eyj/εj ,0

(

εjηj

∫ 1/εjηj

0

1

2
‖u(t)‖2 dt

)

≤ λ∗ − a.

With this control and starting point, by Itô’s formula

Eyj/εj ,0W
∗(Ḡ(1/εjηj))−W ∗(gj/εj)

= Eyj/εj ,0

∫ 1/εjηj

0

〈

DW ∗(Ḡ(t)), B̄ + C1(Ḡ1(t))u(t)
〉

dt+
1

2
tr
[

A(Ḡ1(t))D
2W ∗(Ḡ(t))

]

dt

≥ 1

εjηj
λ∗ − Eyj/εj ,0

(

∫ 1/εjηj

0

1

2
‖u(t)‖2 dt

)

≥ 1

εjηj
λ∗ − 1

εjηj
(λ∗ − a) ≥ 1

εjηj
a.

Since we have normalized so that W ∗ ≥ 0, W ∗(gj/εj) ≥ 0. Using the upper
bound W ∗(g) ≤ κ ‖g‖ +K and that Ḡ(1/εjηj) ∈ R1/εj (0) gives

Eyj/εj ,0W
∗(Ḡ(1/εjηj)) ≤

κ

εj
+K.

Since a > 0, since εj → 0 and ηj → 0 as j → ∞ we get a contradiction to

1

εjηj
a ≤ κ

εj
+K.
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7.2.3 D is the intersection of two smooth 1-dimensional manifolds,

i.e., a point

The argument in this case is essentially the same as in the last case, except
that the only velocity we need consider is β = 0, and so the centering around
this velocity is no longer needed, and the linearization is done so as to make
the ρε,α(x1, x2) be of the form e

1
ε
(g1B1+g2B2)/(e

1
ε
(g1B1+g2B2)+e−

1
ε
(g1B1+g2B2)).
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