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Abstract. In this paper we introduce general transfer operators between high-order and low-order refined
finite element spaces that can be used to couple high-order and low-order simulations. Under natural

restrictions on the low-order refined space we prove that both the high-to-low-order and low-to-high-order

linear mappings are conservative, constant preserving and high-order accurate. While the proofs apply
to affine geometries, numerical experiments indicate that the results hold for more general curved and

mixed meshes. These operators also have applications in the context of coarsening solution fields defined
on meshes with nonconforming refinement. The transfer operators for H1 finite element spaces require a

globally coupled solve, for which robust and efficient preconditioners are developed. We present several

numerical results confirming our analysis and demonstrate the utility of the new mappings in the context
of adaptive mesh refinement and conservative multi-discretization coupling.

1. Introduction

High-order numerical methods, including conforming finite elements, spectral elements, and discontinu-
ous Galerkin methods, promise high efficiency and accurate solutions, in particular on modern computing
architectures [13, 21, 17]. However, traditional low-order methods remain useful for a large range of prac-
tical applications. Furthermore, the development of stable high-order methods poses additional challenges
[8, 2], and their efficient implementation requires significant infrastructure [21, 1]. For these reasons, while
increasing number of components in large-scale simulation codes are transitioning to high-order, many other
components remain low-order [34, 28, 35]. This is a considerable challenge for multi-physics simulations that
need both types of components, since solution data must be exchanged between the high-order and low-order
parts of the simulation. Coupling high-order discretizations with low-order methods is also important for the
purposes of preconditioning [29, 7, 30, 4], shock capturing [33, 36], and limiting [43, 31], among others. In
the context of multigrid methods (in particular p-multigrid methods), prolongation and restriction operators
are required to transfer solutions and residuals between high-order and low-order levels in the multigrid
hierarchy [15, 16, 12, 37].

The goal of this paper is to provide practical tools for solution transfer between high-order and low-order
finite element spaces with supporting analysis that ensures both accuracy and conservation. We propose
transfer operators that are designed to preserve constant fields (cf. freestream preservation, [41, 18]), conserve
integrated quantities of interest (e.g. total mass, momentum, and energy), and retain as high of approximation
properties as allowed by the given spaces. We develop a general methodology to define such operators in the
abstract setting, and then consider the specific case where the low-order space is obtained by the so-called
low-order refined procedure, whereby each element of the high-order mesh is subdivided into a number of
subelements of lower order.

The high-to-low-order transfer operator R and the low-to-high-order transfer operator P are defined
by simple variational problems (2)–(3), and explicit formulas (6)–(7), that can be implemented easily and
efficiently in high-order application codes. Assuming only that the low-order space is large enough (in the
sense of condition (1)), we prove that the solution transfer will be conservative and constant preserving
in both directions. For the important practical case of a low-order refined space on a mesh with tensor
product elements, we prove both conservation and high-order accuracy provided sufficient refinement (cf.
Lemma 1), with spacing based on a Gauss–Lobatto-like quadrature rule. Both of these requirements are
natural and easy to satisfy. Our approach works in 2D and 3D, on tensor-product and mixed meshes, and
can be extend to high-order curved meshes, in which case one needs to choose between conservation and
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constant preservation. While the proofs of the theoretical properties hold for meshes consisting of affine
tensor-product elements, our numerical results indicate that these properties do generalize to the high-order
curved and mixed meshes. Besides coupling high-order and low-order codes, the transfer operators can also
be used in other applications, e.g. coarsening in adaptive mesh refinement, an example of which is illustrated
in the numerical results.

The rest of the paper is organized as follows. In Section 2, we define the transfer operators in the
abstract setting, and prove several important properties, particularly regarding conservation. The accuracy
of the resulting operators, relying on analysis of one-dimensional quadrature rules, is considered in Section 3.
Implementation details and several numerical experiments verifying the theoretical properties of the operators
are provided in Section 4. This section includes also a multi-discretization example illustrating the high-order
coupling of a structured grid finite volume advection solver with a high-order finite element space. We end
with conclusions in Section 5.

2. Mappings between high-order and low-order refined spaces

In this section we introduce the mappings between high-order (HO) and low-order refined (LOR) spaces
that we propose as general transfer operators for coupling high-order and low-order simulations. Here we
focus on the conservation and constant preservation properties of the mappings, their accuracy is discussed
in the following Section 3.

2.1. General mappings. We begin by defining the transfer operators in general abstract settings. Let V
be a Hilbert space with inner product (· , ·), and let VH and VL denote finite-dimensional subspaces of V . In
this abstract setting, VH represents a “high-order” subspace of V , and VL represents a “low-order refined”
subspace of V , with the only requirement being that VL is sufficiently large, such that

(1) VH ∩ V ⊥L = {0}.
Our goal is to define transfer operators between VH and VL that are conservative, accurate, and constant
preserving. We define these operators, R : VH → VL and P : VL → VH as follows

(2) (RuH , vL) = (uH , vL) for all vL ∈ VL,
and

(3) (PvL, RuH) = (vL, RuH) for all uH ∈ VH .

These operators are illustrated by the following diagram:

VH VL

S

R

P

Q=RP

R−1

In the remainder of the paper, we refer to the operator R as the restriction operator, and the operator P as
the prolongation operator.

Theorem 1. Assume that VH and VL satisfy (1), and introduce the subspace S = R(VH) ⊆ VL. Then the
transfer operators R and P defined by (2) and (3) have the following properties:

(1) R is injective, and R : VH 7→ S is a bijection.
(2) P is surjective, and P is a left inverse of R, i.e. PR : VH → VH is the identity operator.
(3) Q = RP : VL 7→ S is a projection, and P = R|−1

S Q.
(4) For any functions 1L ∈ VL and 1S ∈ S, we have the following conservation properties:

(4) (RuH , 1L) = (uH , 1L) and (PvL, 1S) = (vL, 1S).

(5) For any u ∈ VH ∩ VL, u = Ru = Pu.

Proof.
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(1) First, R is well-defined as the orthogonal projection between two finite dimensional subspaces of
V (see (6) for an explicit formula for its matrix representation). Suppose RuH = RwH for some
uH , wH ∈ VH . Then, for any vL ∈ VL

0 = (RuH −RwH , vL) = (RuH , vL)− (RwH , vL) = (uH − wH , vL)

by (2). Since VH ∩ V ⊥L = {0}, we have uH = wH , proving injectivity. S is defined as the range of R,
and so R : VH 7→ S is a bijection, completing the proof of the first property.

(2) Since S is a finite dimensional subspace of VL, given vL ∈ VL there is an unique orthogonal projection
onto S, i.e. there is wH ∈ VH such that (RwH , RuH) = (vL, RuH) for all uH ∈ VH . By (2) this
implies that PvL := wH is well-defined (see (7) for an explicit formula for its matrix representation).
Now, let uH ∈ VH be given. For any wH ∈ VH we have

(RPRuH , RwH) = (PRuH , RwH) = (RuH , RwH) by (2) and (3)

which gives us RPRuH = RuH . By injectivity of R, this implies PRuH = uH for any uH ∈ VH , and
so P is surjective, and PR = I, proving the second property.

(3) Note that, for Q = RP , Q2 = RPRP = RP = Q, and so Q is a projection, and P = R|−1
S Q by the

definition of Q and the bijectivity of R : VH 7→ S. This means that we can think of P as a two-step
process: an orthogonal projection from VL to S, followed by inversion with R.

(4) The conservation properties hold for any 1L ∈ VL and 1S ∈ S from the definitions (2) and (3). Note
that R has stronger conservation properties than P because, in general, VL is larger than S.

(5) Finally, setting u for Ru clearly satisfies (2), and so Ru = u. Then PR = I implies Pu = PRu = u,
completing the proof. �

Theorem 1 shows that the restriction and prolongation operators defined by (2) and (3) have many
desirable properties for coupling simulations posed in the VH and VL spaces. For example, since PR = I,
any “high-order” function mapped with R can be exactly recovered by P and so no information is lost
by using the “low-order” space. In addition, if constant functions belong to both VH and VL, then both
operators preserve them. Furthermore, if V = L2(Ω), both operators are conservative in the sense that they
preserve the integrals over Ω, e.g. the mass is preserved when transferring density. Note than even if the
condition (1) does not hold, the restriction operator R still enables a one-way conservative map from high
to low order. However, when (1) is satisfied, we have a much more useful two-way coupling.

Remark 1 (Transfer of dual vectors). In this paper, we focus on the transfer of primal vectors between the
spaces VH and VL. However, we note that the operators R and P defined above can also be used to define
transfer operators R∗ : V ∗H → V ∗L and P ∗ : V ∗L → V ∗H between the corresponding dual spaces. Letting MH

and ML denote the Riesz identification of a primal vector with its associated dual vector, we briefly discuss
two possible definitions for these transfer operators. The first is given by

R∗1 = MLRM
−1
H , P ∗1 = MHPM

−1
L ,

while the second is given by

R∗2 = PT , P ∗2 = RT .

It is easy to see that in both cases P ∗R∗ = I, and both sets of operators satisfy constant preservation and
conservation properties. The operators are illustrated by the following diagrams:

VH VL

V ∗H V ∗L

R

MH

P

ML

R∗
1

P∗
1

VH VL

V ∗H V ∗L

R

RTMLR

P

ML

R∗
2

P∗
2

2.2. High-order and low-order refined mappings. As a canonical example of the transfer operators R
and P , we consider the so-called “low-order refined transfer.” Let Ω ⊆ Rd, d = 1, 2, or 3 denote a spatial
domain, and let TH denote the computational mesh. Let V = L2(Ω), where (u, v) =

∫
Ω
uv dx denotes

the standard L2 inner product. Let VH be a high-order finite element space, whose elements are piecewise
polynomials of degree p. The high-order space VH can be either a continuous or discontinuous space (e.g.
VH is either an H1 or L2 finite element space). The low-order refined space VL is a finite element space with
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VH VL

Figure 1. Illustration of high-order (VH) and low-order refined (VL) finite element spaces.
The high-order space is defined on a course mesh with polynomial degree p = 5, indicated
by the blue nodal points (left panel). The low-order space is defined on a mesh obtained
by subdividing each coarse element into subelements with Gauss–Lobatto points as vertices
(right panel).

polynomial degree q ≤ p, defined on a mesh TL, obtained by refining the high-order mesh, TH , n times in
each dimension. An illustration of these spaces is given in Figure 1. We remark that such low-order refined
spaces has been used extensively in the context of preconditioning (with R = P = I), where the spectral
equivalence of the mass and stiffness matrices defined on VL and VH is often referred to as the finite element
method–spectral element method (FEM–SEM) equivalence [9, 6, 7].

We require that the mesh TL be sufficiently refined so that the number of degrees of freedom in element
of VH is less than the total number of VL degrees of freedom in that element. While VL can be chosen to
be either a continuous or discontinuous space, it is typically more computationally efficient if the low-order
space is discontinuous, and we will make this assumption in many of the examples below. We next show
that under these assumptions (with VL discontinuous) the orthogonality assumption (1) is satisfied, namely
VH ∩ V ⊥L = {0}, cf. [11], and thus the statements of Theorem 1 hold.

Lemma 1. Let u(x) be a polynomial of degree p defined on [−1, 1]. Decompose the interval [−1, 1] into n
subintervals [ai, ai+1]. Furthermore, suppose that for all such subintervals, we have∫ ai+1

ai

u(x)Q(x) dx = 0 deg(Q) ≤ q,

where

(5) n(q + 1) ≥ p+ 1

Then, u(x) is identically zero.

Proof. Fix one subinterval [ai, ai+1]. Let x1, x2, . . . , xp denote the zeros of u, ordered such that the first m
zeros are those of odd multiplicity contained in (ai, ai+1), and the remaining p + 1 −m zeros are either of
even multiplicity, or lie outside of (ai, ai+1). We claim that m ≥ q+ 1. Suppose to the contrary that m ≤ q,
and define the polynomial Q(x) by

Q(x) =

m∏
i=1

(x− xi).

Then, by assumption, ∫ ai+1

ai

u(x)Q(x) dx = 0.

Note that u(x)Q(x) has only zeros of even multiplicity, and so it does not change sign on (ai, ai+1). Therefore,
either u ≡ 0 or else we obtain a contradiction, and conclude that m ≥ q + 1. In the latter case, we see that
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u has at least q + 1 zeros in each interval, and so u has at least n(q + 1) ≥ p + 1 zeros in [−1, 1], implying
that u ≡ 0. �

Remark 2. The above theorem can be generalized to the d-dimensional cube [−1, 1]d using a tensor-product
argument. The same conclusion holds if the integral is weighted with a separable tensor-product weight. In
particular, if VH is a degree-p finite element spaces defined on a mesh consisting of affine tensor-product
elements, and VL is a degree-q finite element space defined on a mesh refined n times in each dimension,
then VH ∩ V ⊥L = {0} if n(q+ 1) ≥ p+ 1. In Section 4, we numerically study the generalization to non-affine
meshes, curved meshes, and simplex elements.

Since any constant function belongs to both VL and VH , the transfer operators R and P preserve constants,
and by taking 1L = 1S = 1, the constant functions, we have the following conservation properties from (4):∫

Ω

R(uH) dx =

∫
Ω

uH dx and

∫
Ω

P (vL) dx =

∫
Ω

vL dx.

When VH is discontinuous, R and P preserve piecewise-constants on TH , and we get the stronger local
conservation properties∫

eH

R(uH) dx =

∫
eH

uH dx and

∫
eH

P (vL) dx =

∫
eH

vL dx.

for any element eH ∈ TH .

Remark 3 (Curved meshes). In many applications, the high-order space VH is defined on a mesh with
curved elements. If the low-order refined space VL is also defined on a mesh with the same curved elements,
then the above analysis holds. However, it is also practical for the low-order refined space VL to be defined on
a straight-sided low-order mesh. In this case, the areas and volumes of the mesh elements are not the same,
and so one can have conservation or constant preservation but not both [2]. Our default option is to choose
the former, which results in a second-order error in the mass conservation, see Section 4.3 for numerical
results.

Remark 4 (AMR derefinement). Suppose that VL is obtained from the finite element space VH through
an adaptive mesh refinement procedure. This procedure can include non-conforming refinement (i.e. with
hanging nodes [10]). Note that VH ⊆ VL, and so R is given by the natural injection. In this case, the
P operator can be used to derefine functions defined on the adaptively refined mesh, see Section 4.5 for
numerical results.

In the case of high-order and low-order refined finite element spaces, the transfer operators R and P can
be expressed naturally in terms of the low-order and mixed mass matrices. Let ML denote the low-order
mass matrix, i.e.,

(ML)ij =

∫
Ω

ψLi ψ
L
j ,

where {ψLj } are the basis functions for VL, and let MLH denote the mixed mass matrix, i.e.

(MLH)ik =

∫
Ω

ψLi ψ
H
k ,

where {ψHk } are the basis function for VH . Then, by definition (2), the operator R : VH → VL can be written
in matrix form (operating on the vectors of degrees of freedom in VH and VL) as

(6) R = M−1
L MLH .

If VL is a discontinuous space, then ML is block-diagonal, and so M−1
L can be computed efficiently element-

by-element. In the piecewise-constant LOR case, ML is a diagonal matrix, and can be inverted trivially.
Since (1) implies that R is injective, the associated matrix has full column rank, and so RTMLR is

invertible. Then, the operator P : VL → VH defined by (3) has the matrix representation

(7) P = (RTMLR)−1RTML.

Note that this explicit matrix representation immediately gives PR = I (cf. property 2 of Theorem 1). If the
high-order space is also discontinuous, then P can be computed efficiently element-by-element. Otherwise,
a global solve is required to compute the action of P .
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Remark 5 (Alternative transfer operators). Given a restriction operator R : VL → VH , it is possible to
define several alternative prolongation operators P : VL → VH . In this work, we choose P to be given by
(3) since it is a conservative, constant-preserving left-inverse of R. One other natural choice of prolongation
operator is the L2 projection, P ′ = M−1

H MHL = M−1
H RTML, which is conservative and constant-preserving;

however, P ′ fails to be a left-inverse for R. Similarly, the prolongation operator given by P ′′ = (RTR)−1RT

is a left-inverse for R, but in general fails to be conservative. Pointwise nodal interpolation is also commonly
used, particularly in the context of FEM–SEM preconditioning, but this operation is not conservative and
depends on the choice of nodal interpolation points for the high-order space.

Another option similar to what we propose in this paper is to define P̂ : VL → VH as the L2 projection,
and then define R̂ : VH → VL to be its conservative right-inverse R̂ = R(RTMLR)−1MH . This definition
gives rise to operators with properties similar to those enumerated in Theorem 1.

2.2.1. Preconditioning the P operator. In the case where the high-order space VH is continuous, a globally
coupled solve is required to compute the action of P = (RTMLR)−1RTML. The following result establishes
that RTMLR is spectrally equivalent to the high-order mass matrix,

(MH)lk =

∫
Ω

ψHl ψ
H
k ,

and so any effective preconditioner for MH can be used to precondition the inversion of the RTMLR operator
in the action of P .

Proposition 1. Let VL be a low-order refined finite element space, let ML and MH denote the low-order
and high-order mass matrices, respectively, and let A = RTMLR, where R is defined by (2). Then, M−1

H A
is uniformly well-conditioned.

Proof. Note that the operator R is given by the restriction to VH of the L2 projection onto VL. Therefore,
R is a projection, and so, for any vH ∈ VH , ‖RvH‖0 ≤ ‖vH‖0. Hence

vTHR
TMLRvH = ‖RvH‖20 ≤ ‖vH‖20.

Since R is injective, we have ‖RvH‖ ≥ α‖vH‖0, where the lower bound α is estimated in Lemma 3, and
shown to be independent of polynomial degree in the context of piecewise constant low-order refined space
VL. Therefore, RTMLR ∼MH , and so the condition number of M−1

H RTMLR is uniformly bounded. �

In the special case of tensor-product meshes (i.e. with quadrilateral or hexahedral elements), the high-
order mass matrix is spectrally equivalent to its diagonal, independent of mesh size h and polynomial degree
p, see [6, 40] and Section 3.2. As a consequence, the above proposition implies that the operator A = RTMLR
is well-preconditioned by the diagonal D of the high-order mass matrix in this case, enabling efficient and
readily available diagonal preconditioning.

Corollary 1. Consider tensor-product finite element spaces VL and VH with Gauss–Lobatto nodal basis
functions. Let D denote the diagonal of the high-order mass matrix MH , and let A = RTMLR as in
Proposition 1. Then, D−1A is uniformly well-conditioned.

2.2.2. Conservation of multiple fields. In certain contexts, it may be desirable to conservatively transfer
multiple fields. For example, suppose that density and velocity are represented in the high-order spaces as
ρH and uH , respectively. We wish to compute low-order approximations, ρL and uL that are both mass
and momentum conserving. In many applications, the density ρH ∈ Vρ,H is discontinuous, and the velocity
uH ∈ Vu,H is continuous, see e.g. [3]. Let Rρ : Vρ,H → Vρ,L denote the restriction operator defined above in
terms of the standard L2 inner product, and let ρL = R(ρH). Then, mass conservation follows from (2).

In order to define the momentum-conserving transfer operator for velocity, we consider density-weighted
inner products on the velocity spaces:

(uL, vL)u =

∫
Ω

uLvLρL dx and (uH , vL)u =

∫
Ω

uLvLρH dx.

Having first computed ρL = R(ρH), we can compute the density-weighted transfer operator Rρ using these
weighted inner products. Then, letting uL = Rρ(uH), we have, by (2),∫

Ω

uLρL dx = (uL, 1)u = (uH , 1)u =

∫
Ω

uHρH dx,
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proving conservation of momentum. If the low-order space is discontinuous, then the computation of Rρ
requires only the inversion of the block-diagonal density-weighted mass matrix.

A similar procedure can be used to map from the low-order spaces to the high-order spaces. First, given
the low-order density ρL, the high-order density ρH = P (ρL) is computed using the prolongation operator
P defined in terms of the unweighted L2 inner product. Assuming that the density spaces Vρ,L are Vρ,H are
discontinuous, we see that P = (RTMLR)−1RTML can be computed element-by-element. Once ρH = P (ρL)
is computed, we can compute the density-weighted prolongation operator Pρ in terms of the density-weighted
inner products. Since the high-order velocity space Vu,H is typically continuous, the matrix RTρMLRρ is not
block-diagonal, and so the corresponding prolongation operator cannot be computed element-by-element,
and instead RTρMLRρ may be preconditioned using the results of Proposition 1 and Corollary 1.

3. Accuracy of the mappings

In this section we study the accuracy of the transfer operators (2) and (3). R is a standard L2 projection
operator with respect to the inner product on VL, and its accuracy properties are well understood. Therefore,
our focus is on the accuracy of the prolongation operator P .

Let f ∈ V be a given function, and suppose that f is approximated by fH ∈ VH , i.e. f = fH + eH , for
some error term eH . Let fL = ΠLf , where ΠL denotes L2 projection onto VL. We are interested in the
accuracy of PfL ∈ VH compared with fH . We begin with a general result, estimating the accuracy of PfL
in terms of a lower bound for R.

Lemma 2. Let f ∈ V be given, and let fH ∈ VH . Define fL ∈ VL by fL = ΠLf . Then,

‖PfL − f‖ ≤ (1 + α−1)‖f − fH‖,
where α gives a lower bound for the operator R, i.e. ‖Rv‖ ≥ α‖v‖.
Proof. First, note that ΠLf = ΠLfH + ΠLeH , and so PfL = PΠLfH + PΠLeH . Recall from the definition
(3), that PΠLfH is defined by

(PΠLfH , RuH) = (ΠLfH , RuH) for all uH ∈ uH .

By definition of the L2 projection, (ΠLfH , RuH) = (fH , RuH), and so by (2)

(RPΠLfH , RuH) = (RfH , RuH),

implying (since R is injective) that PΠLfH = fH . Therefore

(8) ‖PfL − f‖ = ‖fH + PΠLeH − f‖ ≤ ‖PΠLeH‖+ ‖eH‖,
and so it remains to estimate the term ‖PΠLeH‖. Since ΠL is a projection, we have ‖ΠLeH‖ ≤ ‖eH‖.
Furthermore RP is a projection by Theorem 1, and so ‖RPuL‖ ≤ ‖uL‖. Since the operator R is injective,
we have ‖RuH‖ ≥ α‖uH‖ for some α, and hence

‖PuL‖ ≤
1

α
‖uL‖.

Combining this estimate with (8), we have

‖PfL − f‖ ≤ ‖eH‖+ ‖PΠLeH‖ ≤ ‖eH‖+
1

α
‖eH‖ = (1 + α−1)‖eH‖. �

Now, we consider the specific case of high-order to low-order refined transfer defined on meshes with
tensor-product elements. Suppose V = L2(Ω), and VH is a finite element space with polynomial degree p
and mesh size h, and VL is a low-order refined piecewise constant finite element space. Then, if f possesses
sufficient regularity, we can bound the error term ‖eH‖ by O(hp+1). Additionally, in this case, we have the
following lower bound on R, whose proof we defer to the following subsections.

Lemma 3. Let VH be a high-order finite element space of degree p consisting of affine tensor-product ele-
ments, and let VL be a piecewise constant low-order refined finite element space satisfying VH ∩ V ⊥L = {0}.
Then, the operator R has the lower bound

‖Rv‖ ≥ α‖v‖ for all v ∈ VH ,

where the constant α ∼ 1 is independent of the polynomial degree p.
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As a consequence of the above two lemmas, we have the following main accuracy result regarding the
prolongation operator P . Informally it states that the range of P has the same approximation properties
as the full high-order space, and thus there is no loss of high-order accuracy from the transfers between the
high-order and low-order refined spaces.

Theorem 2. Let VH be a high-order finite element space consisting of affine tensor-product elements, and
let VL be a piecewise constant low-order refined finite element space satisfying VH ∩V ⊥L = {0}. Let f ∈ V be
given, and sufficiently regular, such that f = fH + eH , where eH = O(hp+1). Let fL = ΠLf . Then,

‖PfL − f‖0 . hp+1‖f‖0,
where the implied constant is independent of the polynomial degree of the high-order space.

We now turn our attention to the proof of Lemma 3. We begin by enumerating some technical results
regarding one-dimensional quadrature rules.

3.1. 1D quadrature analysis. In this section we derive some estimates for the abscissas xi and weights
wi of 1D quadrature rules ∫ 1

−1

f(x)dx ≈
∑
i

wif(xi)

which we classify to be of either open or closed type:

(1) The open rules have n abscissas and weights {(wi, xi)}ni=1, with all points being interior to the
interval. Examples include the Gauss and Chebyshev (Fejer’s first) rules.

(2) The closed rules have n + 1 abscissas and weights {(wi, xi)}ni=0, which include the points x0 = −1
and xn = 1. Examples include the Gauss–Lobatto and Chebyshev–Lobatto (Clenshaw–Curtis) rules.

We assume that the abscissas are sorted in an increasing order, and that the rule is symmetric with
respect to the origin, i.e. xi = −xn−i+1 and wi = wn−i+1 in the open case, and similar in the closed case.
We will also use superscripts to distinguish between the different quadrature rules, e.g. G for Gauss, C for
Chebyshev, GL for Gauss–Lobatto, and CL for Chebyshev–Lobatto.

Remark 6. Generally, the abscissas of the open rules are the zeros of orthogonal polynomials with certain
weights, while the closed abscissas are the zeros of the derivative of that polynomial plus the two endpoints,
±1. Specifically

(1) The Gauss points {xGi }ni=1 are the zeros of the Legendre polynomials Pn(x) which are orthogonal in
[−1, 1] with weight 1.

(2) The Chebyshev points {xCi }ni=1 are the zeros of the Chebyshev polynomials Tn(x) which are orthogonal
in [−1, 1] with weight 1√

1−x2
. We have xCi = − cosφi, φi = (i− 1

2 )π/n.

(3) The Gauss–Lobatto points {xGLi }ni=0 are the zeros of (1− x2)P ′n(x).
(4) The Chebyshev–Lobatto points {xCLi }ni=0 are the zeros of (1 − x2)T ′n(x). We have xCLi = − cosφi,

φi = iπ/n.

Both Legendre and Chebyshev are special cases of the Jacobi polynomials P
(α,β)
n which are orthogonal on

[−1, 1] with respect to the weight (1− x)α(1 + x)β. The properties of the Jacobi polynomials are critical for
the estimates in this section, see [39].

We use the notation x ∼ y to denote that there are constants 0 < c < C independent of the number of
quadrature points, such that cx ≤ y ≤ Cx. We first observe that on [0, π/2] the functions x and sin(x) are
equivalent with respect to the ∼ relation.

Lemma 4. If x and y are in [0, π/2], then x ∼ sinx and x ∼ y =⇒ sinx ∼ sin y.

In the next proposition we summarize a number of known estimates of quadrature weights and points
based on representation of the points via angles on the unit semi-circle.

Proposition 2. The n Gauss weights and points satisfy

xGi = − cosφGi , wGi ∼
π

n
sinφGi , φGi ∼

2i− 1

2n
π , i = 1, . . . , n .
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Bruns estimates for Gauss angles

2i−1
2n+1π ≤ φGi ≤ 2i

2n+1π

Sündermann estimates for Gauss–Lobatto angles

2i
2n+1π ≤ φGL

i ≤ 2i+1
2n+1π

Figure 2. Bruns estimates for the Gauss angles (left) and Sündermann estimates for the
Gauss–Lobatto angles (right) in the case n = 9.

Similarly, the n+ 1 Gauss–Lobatto weights and points satisfy

xGLi = − cosφGLi , wGLi ∼ π

n
sinφGLi , φGLi ∼ i

n
π , i = 0, . . . , n.

Additionally

φGi − φGi−1 ∼
π

n
and φGLi − φGLi−1 ∼

π

n
for i = 2, . . . , n and i = 1, . . . , n respectively.

The quantities φGi and φGLi are referred to as the Gauss angles and Gauss–Lobatto angles, respec-
tively.

Proof. The estimate wi ∼ π
n sinφi can be found in the form

wi ∼
√

1− x2
i

n

for both the Gauss and Gauss–Lobatto weights as equation (2.3.16) in [8], and for the Gauss–Lobatto weights
as equation (2.3) in [6]. Both Gauss–Lobatto estimates are in the case i = 1, . . . , n− 1. For the special case
of the endpoint weights we have

wGL0 = wGLn =
2

n(n+ 1)
∼ 1

n2
.

These estimates are derived from Darboux’s asymptotic formulas for Jacobi polynomials, see (15.3.10) in
[39] for the Gauss case (in the setting of that paper α = β = 0, λν = wi, and θν = φi).

The Bruns estimates for the Gauss angles (cf. (6.6.2) in [39] and Figure 2) are:

(9)
2i− 1

2n+ 1
π ≤ φGi ≤

2i

2n+ 1
π , i = 1, . . . , n,

from which we obtain
1

2n+ 1
π ≤ φGi − φGi−1 ≤

3

2n+ 1
π ,

and therefore

c
π

n
≤ φGi − φGi−1 ≤ C

π

n
for c = 1

3 and C = 3
2 . Furthermore, (9) implies

c
2i− 1

2n
π ≤ φGi ≤ C

2i− 1

2n
π

for c = 2
3 and C = 3.

The Sündermann estimates for the Gauss–Lobatto angles (cf. [38], [25, Lemma 4.2] and Figure 2) are

(10)
2i

2n+ 1
π ≤ φGLi ≤ 2i+ 1

2n+ 1
π , i = 0, . . . , n

from which we obtain
1

2n+ 1
π ≤ φGLi − φGLi−1 ≤

3

2n+ 1
π ,
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and therefore

c
π

n
≤ φGLi − φGLi−1 ≤ C

π

n

for c = 1
3 and C = 3

2 . Since φGL0 = 0, it is sufficient to show φGLi ∼ i
nπ for i ≥ 1. In that case, (10) implies

c
i

n
π ≤ φGLi ≤ C i

n
π ,

for c = 2
3 and C = 3

2 . �

The Chebyshev and Chebyshev–Lobatto points are defined as xCi = − cosφCi , φCi = 2i−1
2n π and xCLi =

− cosφCLi , φCLi = i
nπ, so the angle equivalences in Proposition 2 hold as equalities. Equivalently, we have

φGi ∼ φCi and φGLi ∼ φCLi .

We also note the useful property that the n Gauss points {xGi }ni=1 interleave the n + 1 Gauss–Lobatto
points {xGLi }ni=0, which is a simple consequence of the definitions in Remark 6.

Proposition 3. For the points and weights in [−1, 0] we have

wGi ∼ (i− 1/2)
π2

n2
and hGi := xGi − xGi−1 ∼ (i− 1)

π2

n2

for i = 1, . . . , dn/2e, and

wGLi ∼ iπ
2

n2
and hGLi := xGLi − xGLi−1 ∼ (i− 1/2)

π2

n2

for i = 1, . . . , dn/2e and wGL0 ∼ 1/n2. It is straightforward to extend these results to all indices i by
symmetry.

In particular, near the endpoints both the weights wi and the distances between the quadrature points hi
are of order O(n−2), while in the middle of the interval their order is O(n−1).

Proof. By Proposition 2 and Lemma 4

wGi ∼
π

n
sinφGi ∼

π

n
φGi ∼ (i− 1/2)

π2

n2
.

The estimate wGLi ∼ iπ2

n2 follows that same way. Furthermore,

hGLi = − cosφGLi + cosφGLi−1 = 2 sin
φGLi − φGLi−1

2
sin

φGLi + φGLi−1

2
,

so

hGLi ∼ (φGLi − φGLi−1)
φGLi + φGLi−1

2
∼ π

n

2i− 1

2n
π = (i− 1/2)

π2

n2
,

and similarly

hGi ∼ (φGi − φGi−1)
φGi + φGi−1

2
∼ π

n

4i− 4

4n
π = (i− 1)

π2

n2
. �

Corollary 2. For the appropriately defined indices of Gauss and Gauss–Lobatto points and weights in [−1, 1]
the following equivalences hold:

(1) wGi ∼ hGLi ∼ (hGi+1 + hGi )/2

(2) wGLi ∼ (hGLi+1 + hGLi )/2 ∼ hGi+1 (cf. Lemma 2.1 in [6])

(3) wGLi ∼ (wGi+1 + wGi )/2, wGi+1 ∼ (wGLi+1 + wGLi )/2

(4) hGi+1 ∼ (hGLi+1 + hGLi )/2, hGLi ∼ (hGi+1 + hGi )/2

Numerical results establish that the asymptotic estimates established above are quite sharp in practice.
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3.2. Equivalence of 1D high-order and low-order refined functions. We next use the quadrature
rule estimates to derive norm equivalences between high-order functions, which are polynomials of order n
or n − 1 on [−1, 1], e.g. with degrees of freedom in the points of an open quadrature rule, and low-order
refined functions that are piecewise linear H1 or piecewise-constant L2 functions on the 1D mesh defined by
the points of a closed quadrature rule.

First note that since both the n-point Gauss and the (n + 1)-point Gauss–Lobatto rules are exact for
polynomials of order 2n− 1, for any polynomial v of order n− 1 we have

(11) ‖v‖20 =

∫ 1

−1

v(x)2dx =

n∑
i=1

wGi v(xGi )2 =

n∑
i=0

wGLi v(xGLi )2.

The first equality in (11) can be written in the form MG = DG, where MG is the mass matrix for the
nodal basis {ψi} associated with the points xGj , i.e. ψi(x

G
j ) = δij , and DG is the diagonal of MG. The

second equality in (11) implies that MGL is a rank-one update of its diagonal, DGL, and the mass matrix in
Gauss–Lobatto points can be preconditioned well by its diagonal [40]. This statement holds for many other
choices of points, specifically, numerical results show that for n = 1, . . . 40:

• κ(D−1
G MG) = 1;

• κ(D−1
C MC) . 1.12;

• κ(D−1
GLMGL) . 1.5, remarkably this condition number decreases with n (cf. [40]);

• κ(D−1

GL
MGL) . 1.27, where xGLi are the midpoints of the intervals (xGLi−1, x

GL
i ).

Canuto has shown that for polynomials of degree n, the L2 norm is well-approximated by the L2 norm of
its piecewise linear Gauss–Lobatto interpolant [6], summarized in the following proposition.

Proposition 4. For any polynomial v = vH of order n let vL be the piecewise-linear continuous function
which has the same values as vH in the Gauss–Lobatto points, i.e.

vL(xGLi ) = vH(xGLi ) , i = 0, . . . , n .

We have

(12) ‖vH‖0 ∼ ‖vL‖0 and ‖v′H‖0 ∼ ‖v′L‖0 ,
or equivalently

(13) ‖v‖20 ∼
n∑
i=0

hGLi + hGLi+1

2
v(xGLi )2 and ‖v′‖20 ∼

n∑
i=1

1

hGLi

(
v(xGLi )− v(xGLi−1)

)2
.

Proof. The estimates (12) are propositions 2.1 and 2.2 in [6] respectively. The estimates (13) follow from
the fact that for a linear function ` on an interval [a, b] we have∫ b

a

`2 ∼ (b− a)

2

(
`2(a) + `2(b)

)
and

∫ b

a

(`′)2 =
1

(b− a)
(`(b)− `(a))

2
.

By examining the proofs in [6] we notice that the only requirement on the closed set of points is (hi+hi+1)/2 ∼
wi. The last statement then follows from Proposition 3. �

The next two propositions combine all 1D estimates so far to provide the key ingredient for the proof of
Lemma 3. Informally it states that the L2 norm of a 1D polynomial of order n − 1 is equivalent to the L2

norm of the piecewise-constant function of its averages on the n intervals defined by a closed quadrature rule
with n+ 1 points.

Proposition 5. For any polynomial v of order n−1 let vL be the piecewise-constant discontinuous function
on the mesh of Gauss–Lobatto points that has the same averages as v on each subinterval ei = (xi, xi+1) ,
i.e.,

vL|ei =
1

hi

∫
ei

v , i = 1, . . . , n .

We have

(14) ‖v‖0 ∼ ‖vL‖0,
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or equivalently

(15) ‖v‖20 ∼
n∑
i=1

1

hi

(∫
ei

v

)2

.

Proof. Let w be a polynomial of order n that satisfies w′ = v. By (13) applied to w we have

‖v‖20 = ‖w′‖20 ∼
n∑
i=1

1

hi
(w(xi)− w(xi−1))

2
=

n∑
i=1

1

hi

(∫
ei

v

)2

. �

We now want to extend Proposition 5 to more general sets of points. Notice that the only condition that
is required is for ‖w′‖0 ∼ ‖w′h‖0, where wh is the piecewise linear interpolant at the given points.

Proposition 6. Consider any closed set of (n+1) points (i.e. containing the interval endpoints) that satisfy
condition (2.21) from [24] (note that this includes both Gauss–Lobatto and Chebyshev Lobatto points). Let
w be a polynomial of degree n, and let wh be the piecewise linear interpolant of w at these points. Then,
‖w′‖0 ∼ ‖w′h‖0.

Proof. Of all functions in H1[−1, 1] that interpolate w at the given points, the piecewise linear interpolant
wh has minimum H1 seminorm (cf. [6]). Therefore, ‖w′h‖0 . ‖w′‖0. It remains to show ‖w′‖0 . ‖w′h‖0. By
[5], there exists a polynomial πn of degree n that satisfies the following three properties:

‖wh − πn‖0 . n−1‖wh‖0,(16)

‖wh − πn‖1 . ‖wh‖1,(17)

πn(±1) = wh(±1),(18)

where the implicit constants in the inequalities are independent of n. Then, by property (17),

‖w′ − w′h‖0 ≤ ‖w′h − π′n‖0 + ‖w′ − π′n‖0 . ‖wh‖1 + ‖w′ − π′n‖0.
Notice that because the interpolation points include ±1, w−πn is a polynomial of degree n that vanishes at
both endpoints. Therefore, by the inverse inequality on polynomials ([5], Lemma 4.4), we have ‖w′−π′n‖0 .
n‖w − πn‖0. Then, by property (16),

‖w − πn‖0 ≤ ‖w − wh‖0 + ‖πn − wh‖ . ‖w − wh‖0 + n−1‖wh‖0.
Theorem 2.2 from [24] gives us ‖w − wh‖0 . n−1‖w′h‖0, and so, combining the above estimates, we obtain
the error estimate ‖w′ − w′h‖0 . ‖wh‖1 In particular, we have the stability result ‖w′‖0 . ‖wh‖1. Letting
wh denote the average of wh, we apply the Poincaré inequality for zero-mean functions (as in [6]) to obtain
‖w′‖0 = ‖(w − wh)′‖0 . ‖wh − wh‖1 . ‖w′h‖0. We therefore conclude that ‖w′‖0 ∼ ‖w′h‖0. �

We are now ready to prove Lemma 3.

Proof of Lemma 3. We first consider the case where VH is the space of polynomials of degree p on [0, 1], and
VL is the space of piecewise constant functions defined on the subintervals defined by n+ 1 Gauss–Lobatto
points, where n ≥ p+ 1. Then, defining the operator R by (2), we have

(RvH , wL) = (vH , wL) for all wL ∈ VL.
Let κL denote a given Gauss–Lobatto subinterval. Choosing wL to take the value 1 on κL, and 0 elsewhere,
we see that RvH is the piecewise constant function that is equal to the average value of vH over each
Gauss–Lobatto subinterval. By Propositions 5 and 6, we see that ‖RvH‖0 ∼ ‖vH‖0, independent of the
polynomial degree of the high-order space p. This result trivially extends to the d-dimensional cube [−1, 1]d by
writing the d-dimensional restriction operator Rd as the Kronecker product of the one-dimensional restriction,
Rd = R ⊗ · · · ⊗ R. Similarly, this estimate can be extended to affine elements with constant Jacobian
determinant (cf. Remark 2).

We next consider the case of more general quadrature point sets that satisfy the hypotheses of Propo-
sition 6. Let VL be the piecewise constant finite element space defined on a low-order refined mesh with
subelements defined by such rule. Applying the above result element-by-element, over each element in the
high-order space VH , we get

‖RvH‖0 ∼ ‖vH‖0,
and so the estimate ‖RvH‖0 ≥ α‖vH‖0 holds, with α = O(1). �
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Figure 3. Numerically computed estimates for the lower bound for the R operator for
different node choices. The right pane in a zoom-in of the plot on the left pane. Node sets
with Chebyshev distribution remain bounded, while uniformly distributed points exhibit
exponential decay of the lower bound.

Remark 7 (Non-affine and curved elements). The proof of Lemma 3 holds for affine elements with constant
Jacobian determinant. In the numerical results in Section 4, we consider the more general case of curved
elements and mapped geometries given by κ = T ([−1, 1]d) for diffeomorphism T : Rd → Rd. The extension
of the analysis to this case remains open.

Remark 8 (Alternative node sets). Empirical results suggest that any set of nodes that is asymptotically

distributed according to the Chebyshev density ∼ n/(π
√

1− x2) will result in accurate transfer operators
[22, 42]. The numerically computed values of α (i.e. the lower bounds of the R operator) for the case of
piecewise constant low-order space in one spatial dimension are shown in Figure 3 for a variety of node sets,
including uniformly spaced, Gauss–Lobatto, Chebyshev–Lobatto, nodes, as well as the augmented Chebyshev
and Gauss–Legendre sets (obtained by taking the union with the interval endpoints {−1, 1}). These numerical
results suggest that while the lower bound for R degrades severely for uniformly spaced points, it is essentially
uniform for other node choices.

4. Implementation and numerical results

In this section we discuss the practical implementation of the proposed transfer operators, particularly
with respect to matrix-free efficiency which is critical for high-order methods. We also present a number
of numerical results confirming the accuracy and conservation analysis in Section 3 and Section 2, discuss
curved meshes and preconditioning, and demonstrate the utility of the R and P mappings in the context of
adaptive mesh refinement and conservative multi-discretization coupling.

4.1. Efficient implementation. In this section, we describe the efficient implementation of the transfer
operators on tensor-product meshes. In particular, we focus on the high-order matrix-free context, where
the computational complexity and storage costs associated with fully assembled matrix-based algorithms are
prohibitively expensive. We will make the assumption that the low-order space VL is discontinuous, whereas
the high-order space VH can be either continuous or discontinuous. Let q denote the polynomial degree of
the low-order space VL, and let p denote the polynomial degree of VH . The space VL is defined on a LOR
mesh TL, which is obtained from the high-order mesh TH by subdividing each element into nd subelements,
where d is the spatial dimension, and n(q + 1) ≥ p+ 1 as required by (5).

The main tools required for efficient implementation of the transfer operators are sum factorization, which
allows for the efficient computation of the action of the linear operators with optimal memory requirements,
and matrix-free preconditioning, whereby preconditioners are constructed without access to the entries of the
matrix representation of the operator. We begin with discussion of the restriction operator R = M−1

L MLH ,
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since that is also necessary for the computation of the prolongation operator P . The mixed mass matrix
MLH can be written as

MLH = M̂Λ,

where Λ is the boolean assembly matrix that duplicates degrees of freedom shared between elements, and M̂

is a block-diagonal matrix whose blocks are the elemental mixed mass matrix. The blocks of the matrix M̂
are of size (n(q + 1))d × (p + 1)d. In general, each block is dense, and so the memory required to store the
assembled mixed mass matrix scales like (nqp)d, and the number of operations required to compute matrix-
vector products scales the same. The number of operations required to form these blocks is O

(
ndqdp2d

)
using naive algorithms, and O(ndqdpd+1) using sum factorization techniques [26].

On the other hand, computing the matrix-free action of M̂ can be performed in O(nd(pd+1 + qd+1))
operations using sum factorization. Perhaps more importantly, the memory required to compute the matrix-
free action is optimal: assuming that nq ∼ p, only O(pd) memory is required. As a consequence, the
matrix-free algorithm has significantly higher arithmetic intensity than the matrix-based algorithm. On
GPU-based platforms, memory transfer is typically the bottleneck, and the matrix-free algorithms can be
expected to outperform algorithms requiring fully assembled matrices [23, 14, 13]. The appropriate choice
of algorithm will depend on both polynomial degrees p and q. In the context of discontinuous Galerkin
methods, it has been shown that for moderate orders of p = 3 or p = 4, then efficient matrix-free algorithms
may significantly outperform the corresponding matrix-based algorithms [20, 19]. However, if the low-order
space has polynomial degree q = 0 or q = 1, the overhead required for matrix assembly is typically small
enough so that matrix-based algorithms remain practical.

The low-order polynomial degree q is typically chosen so that the matrix ML can be efficiently assembled.
Since the low-order space is discontinuous, the inverse M−1

L can be computed block-by-block using direct
methods. In many practical cases, the low-order space consists of piecewise-constant functions (q = 0), and
so ML is in fact a diagonal matrix. In cases where q may be large enough to warrant matrix-free algorithms,
an element-by-element preconditioned conjugate gradient algorithm may be used. In this case, effective
diagonal or tensor-product preconditioners ensure uniform convergence of the iterations [40, 32].

Efficient implementation of the P operator builds on the preceding discussion of the R operator. We
recall that P = (RTMLR)−1RTML. The challenging aspect of this operator is performing the action of
A−1, where A = RTMLR. If the high-order space is discontinuous then A is block-diagonal. In cases where
the high-order polynomial degree p is not prohibitively high, this allows for the block-by-block inversion
of the operator using direct methods, just as in the case of the DG mass matrix. For large polynomial
degree p, it is more efficient to solve the resulting system using a preconditioned conjugate gradient solver.
Furthermore, when the space VH is continuous, then the system A becomes globally coupled, and block-by-
block algorithms are no longer feasible. In these cases, the matrix-free action of A is performed, as described
above. In Section 2.2.1, is shown that any uniform preconditioner for the high-order mass matrix MH is a
uniform preconditioner for A. As a consequence, on tensor-product meshes, the diagonal of the high-order
mass matrix is an effective preconditioner for A. Iteration counts using this choice of preconditioner are
presented in Section 4.4.

4.2. Numerical experiments. The algorithms described in this paper have been implemented in the
MFEM finite element library [1, 27], and that implementation was used to perform the numerical experi-
ments presented in this section. The problems on tensor-product methods make use of the partial assembly
features of MFEM to implement efficient sum factorized operator action.

4.2.1. 2D test case. As a first numerical example, we consider a unstructured, straight-sided two-dimensional
mesh and high-order H1-conforming finite element space VH with polynomial degree p. Let VL denote the
piecewise-constant discontinuous space defined on the Gauss–Lobatto refined mesh, where each element is
subdivided into (p+ 1)2 sub-elements. Consider the function f defined by

f = exp(0.1 sin(5.1x− 6.2y) + 0.3 cos(4.3x+ 3.4y)).

Let ΠH denote L2 projection onto the space VH , and let R and P denote the transfer operators as defined
in Section 2. For g ∈ {ΠHf,RΠHf, PRΠHf}, we compute the L2 error ‖f − g‖0, and the integral difference∫

Ω
(f − g) dx. We consider four uniform refinements of the original mesh, and present the results in Figure 4.

As expected by well-known properties of the L2 projection, the L2 error ‖ΠHf−f‖0 scales like O(hp+1), and
the L2 error of the piecewise constant approximation ‖RΠHf − f‖0 scales like O(h). All of these operations
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are conservative, and the total integral is preserved up to machine precision for each of the functions. By
Theorem 1, we have PR = I, and so the L2 errors for ΠHf and PRΠHf are equal.

Additionally, we consider the functions ΠLf and PΠLf , where ΠL denotes L2 projection onto the space
VL. Even though we can only expect ΠLf to be first-order accurate, Theorem 2 implies that the L2 error of
PΠLf will scale like O(hp+1). This property is verified in Figure 4. Mass conservation is also preserved up
to machine accuracy for this test case.
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Figure 4. 2D test case. L2 errors for transfer operators between high-order finite element
space VH and piecewise-constant low-order space VL. Dotted reference lines shown for
O(hp+1). Dashed lines converge at a rate of O(h).

We also repeat the same 2D test with a piecewise-linear low-order space. The results are similar to
the previous case, but as predicted by the analysis we observe second-order convergence for the low-order
functions RΠHf and ΠLf .

1 2 3 4
10−11

10−8

10−5

10−2

Refinement level

L
2

er
ro

r

Solid lines: ‖ΠHf − f‖0
Dashed lines: ‖RΠHf − f‖0

1 2 3 4
10−11

10−8

10−5

10−2

Refinement level

Dashed lines: ‖ΠLf − f‖0
Solid lines: ‖PΠLf − f‖0

p = 2
p = 3
p = 4
p = 5

Figure 5. 3D test case. L2 errors for transfer operators between high-order finite element
space VH and piecewise-constant low-order space VL. Dotted reference lines shown for
O(hp+1). Dashed lines converge at a rate of O(h).
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4.2.2. 3D test case. The analysis and implementation are readily extendable to 3D as shown by the results in
Figure 5. The initial mesh for this problem was a 4× 4× 4 Cartesian grid, which was then refined uniformly
three times to obtain a final mesh of 32,768 elements. Polynomial degrees p = 2, 3, 4, 5 were used for the
high-order space. The low-order space VL was taken to be piecewise constant.

4.3. Curved geometries. It is natural for the high-order space VH to be defined on a high-order (i.e. curved)
mesh. While the low-order refined space VL can in principle be defined on the same curved geometry, it
is often advantageous and more natural to define VL on an associated straight-sided mesh. For example, if
the low-order space VL is used to transfer solution fields to a low-order discretization that does not support
curved meshes, then the mesh must be straight-sided out of practical concerns. However, the process of
converting a curved mesh to straight-sided (e.g. by linear interpolation at nodal points) incurs geometric
errors. For example, the total volume and the volumes of individual elements are not guaranteed to be
preserved. In this case, a constant-preserving transfer operator cannot be conservative [2].

To numerically study the performance of the transfer operators defined on curved meshes, we consider a
two-dimensional mixed mesh consisting of triangular and quadrilateral elements with mappings defined by
degree-3 polynomials. The mesh is obtained from that shown in Figure 1 by splitting half of the quadrilaterals
into triangles and perturbing the mesh nodes. The high-order space is a degree-5 H1-conforming finite
element space defined on the curved mesh, and the low-order refined mesh is a degree-2 L2 finite element
space defined on the straight-sided mesh obtained by interpolating the nodal points of the high-order mesh.
(We have n = 4, q = 2 and p = 5, so condition (5) holds.) The results are presented in Table 1. We observe
that although the L2 error of ΠLf scales like O(h3) (since the low-order space has polynomial degree q = 2),
the restriction RΠHf has L2 error that scales like O(h2). Similarly, the error of PΠLf and the difference
in total integrals for both of these quantities scale like O(h2). This is because the total volumes of the
high-order and low-order refined meshes differ by O(h2).

Table 1. Convergence results on two-dimensional mixed mesh with curved elements and
piecewise-quadratic low-order space (n = 4, q = 2 and p = 5).

ΠHf RΠHf
Ref. L2 error Rate Integral L2error Rate Integral Rate

0 4.80× 10−4 — 1.07× 10−14 3.69× 10−3 — 8.72× 10−4 —
1 1.12× 10−5 5.43 1.15× 10−14 8.48× 10−4 2.12 1.82× 10−4 2.26
2 1.91× 10−7 5.87 4.44× 10−15 2.11× 10−4 2.01 4.42× 10−5 2.04
3 2.84× 10−9 6.07 1.95× 10−14 5.27× 10−5 2.00 1.10× 10−5 2.01

ΠLf PΠLf
Ref. L2 error Rate Integral L2 error Rate Integral Rate

0 1.05× 10−3 — 1.87× 10−14 3.23× 10−3 — 8.80× 10−4 —
1 1.41× 10−4 2.90 2.66× 10−14 7.51× 10−4 2.10 1.83× 10−4 2.27
2 1.77× 10−5 2.99 5.95× 10−14 1.89× 10−4 1.99 4.42× 10−5 2.05
3 2.22× 10−6 3.00 4.17× 10−14 4.72× 10−5 2.00 1.10× 10−5 2.01

4.4. Preconditioning. In this example, we consider the diagonal preconditioning of P defined in Sec-
tion 2.2.1. Recall that P = (RTMLR)−1RTML. Proposition 1 established that the condition number of
D−1(RTMLR), where D is the diagonal of the high-order mass matrix, is independent of the mesh size and
polynomial degree. We consider the two-dimensional straight-sided mesh shown in Figure 1, with four levels
of uniform refinement. The high-order space is a H1-conforming finite element space with polynomial degree
p, and VL is a L2 low-order refined finite element space with polynomial degree q. We record the number of
conjugate gradient iterations required to converge to a relative tolerance of 10−12 in Table 2. We observe that
the iteration counts remain bounded both with increasing refinements and increasing high-order polynomial
degree p. Additionally, the iteration counts with low-order polynomial degree q = 1 are uniformly lower than
the corresponding iteration counts with q = 0.
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Table 2. Conjugate gradient iterations required to solve RTMLR with diagonal precondi-
tioning for a relative tolerance of 10−12.

q = 0 q = 1
Ref. p = 1 p = 2 p = 3 p = 4 p = 5 p = 1 p = 2 p = 3 p = 4 p = 5

0 23 37 38 39 35 21 22 22 21 18
1 39 38 36 32 31 32 23 20 17 14
2 41 35 30 29 28 31 21 17 14 11
3 37 32 27 27 25 29 19 14 10 9

Table 3. Convergence results for AMR coarsening.

Ref. ‖uh − f‖0 Rate ‖Puh − f‖0 Rate
∣∣∫

Ω
(uh − Puh) dx

∣∣
0 3.02× 10−4 — 4.32× 10−4 — 7.99× 10−15

1 5.96× 10−6 5.66 9.46× 10−6 5.51 8.88× 10−15

2 9.10× 10−8 6.03 1.43× 10−7 6.05 6.48× 10−14

3 1.60× 10−9 5.83 2.18× 10−9 6.03 1.10× 10−13

4 2.44× 10−11 6.04 3.31× 10−11 6.04 2.66× 10−14

4.5. AMR coarsening. Consider a conforming mesh, obtained from a coarse mesh through a series of
uniform refinements. This mesh is then further refined through a series of non-conforming (potentially
anisotropic) refinements, resulting in a non-matching mesh with hanging nodes [10]. These refinements
could be driven through an adaptive process; in this example, the refinements are performed randomly. Let
VC denote a degree-p finite element space on the conforming mesh, and VNC denote the degree-p space on
the nonconforming mesh. Since VC ⊆ VNC , the natural injection R : VC ↪→ VNC satisfies the properties of
the R operator as defined in Theorem 1. Defining the P : VNC → VC operator as in Theorem 1 gives a
method for coarsening a field defined on VNC . Let MNC denote the mass matrix defined on the space VNC .
Then, the P operator takes the form P = (RTMNCR)−1RTMNC . As in the cases of the low-order refined
transfer operators, computing the action of A−1, where A = RTMNCR, generally requires a globally coupled
solve. The arguments of Section 2.2.1 apply also to this operator: A is symmetric and positive-definite, and
A is spectrally equivalent to MC , the mass matrix defined on the conforming space. We therefore use the
diagonal of the mass matrix defined on the conforming mesh as a preconditioner for the operator RTMNCR.

Remark 9 (Matrix-free implementation of AMR coarsening). As discussed in Section 4.1, the matrix-free
action of MNC can be performed efficiently using sum factorization techniques. Similarly, the diagonal of
MC , required for preconditioning, can be obtained using matrix-free algorithms. Therefore, given an efficient
matrix-free representation of the injection R : VC ↪→ VNC , the coarsening operator P also has an efficient
matrix-free implementation.

To numerically study the behavior of this coarsening operator, we consider a fixed two dimensional mesh,
and perform ` uniform refinements. Subsequently, a sequence of random refinements is performed to obtain
the nonconforming mesh. Let VC and VNC be degree-5 H1-conforming spaces defined on the conforming and
nonconforming meshes, respectively. The function uh ∈ VNC is obtained by interpolating a given function
f at nodal points. Then, a coarsened function Puh ∈ VC is obtained by applying the coarsening operator
P . An example of this transfer process is illustrated in Figure 6. In Table 3, we present convergence
results for the transferred solution Puh. We note that ‖Puh − f‖0 = O(hp+1). Additionally, we compute
the conservation error by comparing the integrals of the solutions uh and Puh. Verifying the conservation
properties of Theorem 1, we see that the transfer operator is conservative up to machine precision.

4.6. Conservative multi-discretization coupling. To demonstrate the utility of these transfer operators
for multiphysics or multi-discretization applications, we consider the coupling of a high-order finite element
method to a high-order structured finite volume method. The space VH is chosen to be a degree-p piecewise
polynomial finite element space defined on a two-dimensional Cartesian grid denoted TH of the spatial domain
Ω. In principle, the space VH can be chosen to be either a continuous Galerkin or discontinuous Galerkin
space; in this example, we choose VH to be a continuous space. The low-order space VL is a piecewise constant
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uh ∈ VNC

P−−−→

Puh ∈ VC

Figure 6. Illustration of coarsening operator P , mapping from the finite element space VNC

defined on the nonconforming mesh (left) to the coarser space VC defined on the conforming
mesh (right).

(i.e. finite volume) space defined on a mesh TL, which is obtained from TH through uniform refinements.
Each element of TH is subdivided into at least (p+ 1)2 sub-elements.

Given u0
H ∈ VH , which could be obtained, for example, through the solution of a high-order finite element

problem, we compute u0
L = Ru0

H . This piecewise-constant field is used as the initial condition for a finite
volume discretization of the scalar advection equation ut + ∇ · (βu) = 0. The finite volume discretization
evolves the cell averages ui by integrating reconstructed polynomials on cell faces using an upwind numerical
flux. The initial condition is integrated in time using the standard fourth-order Runge–Kutta method to
obtain the solution uNL . Using degree-q polynomial reconstructions in the finite volume discretization, the

spatial error scales as O(hq+1), where h is the element size of the mesh TL. Additionally, since we use a
conservative finite volume method, the total mass is conserved, i.e.

∫
Ω
u0
L dx =

∫
Ω
uNL dx. The piecewise-

constant field uNL is transferred to the high-order finite element space using the prolongation operator P ,
i.e. uNH = PuNL . The conservation properties of the transfer operators (Theorem 1) and the accuracy of the
prolongation operator (Theorem 2) guarantee that the solution uNH in the high-order finite element space

will have accuracy O(hmin{p+1,q+1}), and that the total mass will be conserved,
∫

Ω
u0
H dx =

∫
Ω
uNH dx.

We numerically verify these properties on the unit square Ω = [0, 1]2, with the rotational velocity field
β = (2y− 1, 1− 2x)T and periodic boundary conditions. The initial condition is taken to be the sum of two
Gaussian perturbations,

u0 = exp
(
−200

((
x− 1

4

)2
+
(
y − 1

2

)2))
+ exp

(
−200

((
x+ 1

4

)2
+
(
y − 1

2

)2))
.

The high-order initial condition u0
H is obtained by interpolating u0 at the Gauss–Lobatto nodes of the

high-order space VH , such that ‖u0
H − u0‖0 = O(hp+1). We use polynomial degree p = 2, subdivide each

mesh element into 42 subelements (so that VL has strictly more degrees of freedom than VH), and use a
fourth-order finite volume method. The equations are integrated in time for one quarter revolution, until
t = π/4. Snapshots of the initial and final solutions are shown in Figure 7 and convergence results are
displayed in Table 4. We begin with a 10 × 10 Cartesian grid, and refine uniformly four times to compute
the observed rates of convergence. The L2 error of the piecewise-constant solution scales as O(h). However,
since a fourth-order finite volume reconstruction is used, the L2-norm difference between the finite volume
solution uNL and the L2 projection of the exact solution ΠLu|t=π/4 scales as O

(
hmax{p+1,q+1}) = O(h3) (that

is to say, the finite volume cell averages ui provide high-order approximations to the cell averages of the true
solution). This high-order of accuracy is preserved when transferring the finite volume solution back to the
high-order finite element space; we observe O(hp+1) convergence in L2 norm of PuNL . Additionally, we verify
that the conservation error remains at the level of machine precision for all test cases performed.

5. Conclusions

In this paper, we introduced solution transfer operators between high-order and low-order finite element
spaces. The operators are defined in a general, abstract context, but particular attention is paid to the case
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u0
H ∈ VH

R

u0
L = Ru0

H ∈ VL

Finite volume
time evolution

uNH = PuNL ∈ VH

P

uNL ∈ VL

Figure 7. High-order and conservative solution transfer between a high-order finite element
representation and a finite volume representation. Starting with restricted high-order initial
condition, u0

L = Ru0
H , a high-order finite volume reconstruction is used to integrate the

advection equation in time u0
L 7→ uNL , obtaining a solution which is transferred to the finite

element space using the prolongation operator uNH = PuNL .

Table 4. Convergence results for multi-discretization coupling.

nx ‖uN
L − u‖0 Rate ‖uN

L −ΠLu‖0 Rate ‖PuN
L − u‖0 Rate

∣∣∫
Ω(uN

H − u0
H) dx

∣∣
10 2.12× 10−2 — 1.14× 10−1 — 1.26× 10−2 — 6.94× 10−18

20 9.12× 10−3 1.22 1.60× 10−2 2.84 1.58× 10−3 3.00 8.19× 10−16

40 4.52× 10−3 1.01 1.47× 10−3 3.44 1.90× 10−4 3.05 3.68× 10−16

80 2.26× 10−3 1.00 1.95× 10−4 2.92 2.44× 10−5 2.96 3.33× 10−16

160 1.13× 10−3 1.00 2.40× 10−5 3.02 3.07× 10−6 2.99 2.35× 10−15

of low-order refined spaces, whereby the low-order finite element space is obtained by refining the coarse
elements of the original high-order mesh. The transfer operators are shown to be conservative, constant
preserving, and accurate. In particular, we show that when Gauss–Lobatto nodes are used to define the low-
order refined mesh, the accuracy of the prolongation operator does not degrade as the polynomial degree is
increased. Efficient implementation techniques, including sum factorization and matrix-free preconditioning
are discussed. The theoretical properties, including accuracy and conservation are illustrated with a number
of numerical examples.
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