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Abstract. In many real-world applications, we are interested in approximating black-box, costly functions as
accurately as possible with the smallest number of function evaluations. A complex computer code is
an example of such a function. In this work, a Gaussian process (GP) emulator is used to approximate
the output of complex computer code. We consider the problem of extending an initial experiment
(set of model runs) sequentially to improve the emulator. A sequential sampling approach based
on leave-one-out (LOO) cross-validation is proposed that can be easily extended to a batch mode.
This is a desirable property since it saves the user time when parallel computing is available. After
fitting a GP to training data points, the expected squared LOO (ES-LOO) error is calculated at
each design point. ES-LOO is used as a measure to identify important data points. More precisely,
when this quantity is large at a point it means that the quality of prediction depends a great deal on
that point and adding more samples nearby could improve the accuracy of the GP. As a result, it is
reasonable to select the next sample where ES-LOO is maximized. However, ES-LOO is only known
at the experimental design and needs to be estimated at unobserved points. To do this, a second
GP is fitted to the ES-LOO errors, and where the maximum of the modified expected improvement
(EI) criterion occurs is chosen as the next sample. EI is a popular acquisition function in Bayesian
optimization and is used to trade off between local and global search. However, it has a tendency
towards exploitation, meaning that its maximum is close to the (current) ``best"" sample. To avoid
clustering, a modified version of EI, called pseudoexpected improvement, is employed which is more
explorative than EI yet allows us to discover unexplored regions. Our results show that the proposed
sampling method is promising.
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1. Introduction. In many real-world applications, we are interested in predicting the
output of complex computer models (or simulators) such as high fidelity numerical solvers.
The reason is that such models are computationally intensive and we cannot use them to
perform analysis that requires very many runs. One way to predict the model output is
to use surrogate models also known as emulators which are constructed based on a limited
number of simulation runs. Surrogates are fast to run, and the analysis can be carried out
on them; see, e.g., [34, 59, 4]. Among different classes of surrogate models, Gaussian process
(GP) emulators [48] have gained increasing attention due to their statistical properties such
as computational tractability and flexibility. GPs provide a flexible paradigm to approximate
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any smooth, continuous function [43] thanks to the variety of covariance kernels available.
Most importantly, the GP prediction is equipped with an estimation of uncertainty which
reflects the accuracy of the prediction.

One factor that heavily affects the accuracy of emulators is the location of the training
data, also called the design [56, 27]. In this context, the design of computer experiments has
become an integral part of the analysis of computer experiments [51, 52]. Generally speaking,
such design can be performed in a one-shot or adaptive manner [35]. In the former all samples
are chosen at once, while in the latter the points are selected sequentially using information
from the emulator and the existing data. Examples of one-shot design of experiment (DoE)
methods are the Latin hypercube [40], full factorial [8], orthogonal array [44], and minimax
and maximin-distance designs [23]. A potential drawback of one-shot DoEs is that they may
result in under/oversampling and can waste computational resources [54, 15]. However, this
is not the case for adaptive approaches where we can stop the computationally expensive
sampling process as soon as the emulator reaches an acceptable level of accuracy. Moreover,
with adaptive sampling it is possible to take more samples in ``interesting"" regions where, e.g.,
the underlying function is highly nonlinear or exhibits abrupt changes. This paper focuses
on GP-based adaptive sampling where an initial design is extended sequentially to improve
the emulator. The initial DoE is often space-filling meaning that the points are scattered
uniformly over the input space. We refer the reader to [47, 26] and references therein for more
information on space-filling designs.

There are various GP-based adaptive sampling methods which can be categorized ac-
cording to their selection criteria, i.e., the strategies to find future designs. The readers are
referred to [15, 35] for a comprehensive review of the existing methods. An intuitive criterion
is the built-in predictive variance of GPs, also known as the prediction uncertainty or mean
squared error (MSE). The idea is that the predictive variance is regarded as an estimation of
the ``real"" prediction error and a point with the maximum uncertainty is taken as the next
experimental design [38, 22]. The predictive variance increases away from the data points. It
is highly probable that sampling based on the MSE criterion gives some sort of space-filling
design which can be achieved using one-shot techniques. Note that the MSE criterion (see
(2.4)) depends only on the location of samples and not the output values. Thus, the MSE-
based sampling strategy can be regarded as nonadaptive in the sense that it does not consider
output information. Moreover, MSE is large on the boundaries of the input space, and that
can lead to taking a lot of samples on the boundaries. However, this is not desirable in many
situations especially when the main characteristics of the true function appear inside the in-
terior region and when the dimension of the input space is high. The integrated mean square
error (IMSE) is a variant of the MSE criterion and selects a new point if adding that point
to the existing design minimizes the integral of the MSE [51, 45]. However, computing IMSE
can be cumbersome, especially in high dimensions.

Maximum entropy is another common selection criterion in the adaptive sampling par-
adigm [55, 28]. It is equivalent to the maximum MSE criteria under certain circumstances
[22, 30]. As a result, an adaptive sampling strategy based on maximum entropy tends to place
many points at the borders of the input space [28]. This issue can be mitigated using mutual
information (MI) as proposed by Krause, Singh, and Guestrin [29] in the sensor placement
problem. The MI of two random variables is a measure of reduction in the uncertainty of one
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random variable through observing the other one. A sequential design approach is developed
in [5] where the MI criterion is modified by introducing an extra parameter, called a nugget,
to the correlation matrix of the GP (in the denominator); see Appendix A. The inclusion of
the nugget parameter prevents selecting a new sample close to the current design. The algo-
rithm called MICE (mutual information for computer experiments) is then used to emulate a
simulator.

The leave-one-out (LOO) cross-validation (CV) error defines another class of adaptive
sampling criterion [32, 31, 2, 36]. To obtain the LOO error at an experimental design we
remove that point from the training data set. Then, a GP is fitted to the remaining samples,
and the response at the left out point is predicted. The difference between the predicted
and actual response serves as the LOO error. A relatively small error indicates that the
prediction accuracy in a vicinity of the removed point is high and there is good information
about the true function there. On the other hand, a comparably large error means that the
removed point has a huge impact on the accuracy of the emulator and, hence, we need more
samples in the nearby region to reduce the errors. In [61] scores obtained by CV are used
to identify regions of distinct model behavior and specify mixture of covariance functions for
GP emulators. Using the LOO errors as a sampling criterion has several advantages. First,
it provides actual prediction error at the design points. Second, it is model-independent and
can be achieved by any surrogate model. For example, in [7] a methodology based on the
LOO CV is proposed to estimate the prediction uncertainty of any surrogate model, either
deterministic or probabilistic. Third, computing the LOO errors is not expensive in terms
of computational cost [12]. However, the LOO errors are not determined everywhere in the
input space and only defined at locations where we have preexisting model runs.

It is worth mentioning that CV is used for other purposes (such as model selection/fitting
and diagnostic and parameter inference) than adaptive sampling. A survey of CV strategies
on the model selection can be found in [1, 65]. [17] suggested an efficient (multiple-fold) CV
expression for GP model fitting and diagnostics. The CV technique is employed by [37] to
estimate the covariance parameters of a GP with inequality constraints. Bachoc [3] studied
the capability of CV (and maximum likelihood) in estimating the parameters of a GP with
a misspecified covariance structure. A probabilistic version of CV is proposed in [39] and is
reported robust against mismatch between the data and chosen model. Viana, Haftka, and
Steffen [60] proposed to predict computer codes by an ensemble of surrogate models such
that CV serves as a performance measure of surrogates to select the best one. [33] suggested
to use CV for the optimal basis functions selection in designing the GP (prior) mean. A
methodology for the Bayesian time series analysis is presented in [9] where the forecast of
future observations is performed via CV. In [63] the human gait pattern kinematics is predicted
with a GP regression whose validation is done by CV.

This paper proposes an adaptive sampling DoE relying on the LOO CV method to build
GP emulators as accurately as possible for deterministic computer codes over the entire do-
main. The proposed method has a few parameters to be tuned and can be extended to a batch
mode where at each iteration a set of inputs is selected for evaluation. This is an important
property as it saves the user time when parallel computing is available [62]. The remainder of
the paper is organized as follows. In the next section, the statistical methodology of GP emu-
lators is briefly reviewed. Section 3 introduces the proposed adaptive sampling approach and
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its extension to batch mode. Section 4 presents numerical experiments where the predictive
performance of our algorithm is tested. Finally, the paper's conclusion is in section 5.

2. GP models. First we look at GP emulators and their statistical background. Let
the underlying function of a deterministic complex computer code be given by f : \scrD \mapsto \rightarrow \BbbR 
in which \scrD is a compact set in \BbbR d. Suppose \scrA = \{ Xn,yn\} is a training data set, where
Xn = (x1, . . . ,xn)

\top and yn = (f(x1), . . . , f(xn))
\top represent n locations in the input space \scrD 

and the corresponding outputs (responses/observations), respectively. Let (Z0(x))\bfx \in \scrD be the
GP by which we want to model f . In this framework, it is assumed that yn has a multivariate
normal distribution given by

(2.1) yn \sim \scrN (m0(Xn), k0(Xn,Xn)) ,

where m0 and k0 are the (preselected) mean and covariance functions of (Z0(x))\bfx \in \scrD . Without
loss of generality, we assume that the mean function is a constant: m0(x) = \mu . The positive
semidefinite covariance function k0 plays an important role in GP modeling; assumptions
about the underlying function such as differentiability or periodicity are encoded through
kernels. The Mat\'ern family of kernels are commonplace in computer experiments and (in the
univariate case) are defined as

(2.2) k0(x, x
\prime ) = \sigma 2 2

1 - \nu 

\Gamma (\nu )

\Biggl( \surd 
2\nu 

\theta 
| x - x\prime | 

\Biggr) \nu 

B\nu 

\Biggl( \surd 
2\nu 

\theta 
| x - x\prime | 

\Biggr) 
,

where \Gamma (\cdot ) is the gamma function and B\nu (\cdot ) denotes the modified Bessel function of the
second kind of order \nu . The parameter \nu regulates the degree of smoothness of the GP
sample paths/functions such that a process with the Mat\'ern kernel of order \nu is \lceil \nu  - 1\rceil times
differentiable [48]. The positive parameters \sigma 2 and \theta are referred to as the process variance
and correlation length scale, respectively. These parameters are usually unknown and need to
be estimated from data. We refer the reader to [48, 16] for a more detailed explanation on
parameter estimation techniques.

Given that the unknown parameters are estimated, the posterior predictive distribution
relying on Zn(x) = Z0(x) | \scrA can be calculated. The posterior mean and covariance at a
generic location x have closed-form expressions as [48]

mn(x) = \^\mu + k(x)\top K - 1(yn  - \^\mu 1),(2.3)

kn(x,x
\prime ) = k0(x,x

\prime ) - k(x)\top K - 1k(x\prime )

+

\bigl( 
1 - 1\top K - 1k(x)

\bigr) \bigl( 
1 - 1\top K - 1k(x\prime )

\bigr) 
1\top K - 11

.(2.4)

Here, k(x) = (k0(x,x1), . . . , k0(x,xn))
\top is the vector of covariances between Z0(x) and

Z0(xi)s, 1 is a vector of ones, and K is an n \times n covariance matrix with elements Kij =
k0(xi,xj) for all 1 \leq i, j \leq n. The last term in (2.4) reflects the additional uncertainty
concerning the estimation of \mu . We refer the reader to [49] where the ``ordinary kriging"" is de-
scribed. The predictive variance s2n(x) = kn (x,x) determines the uncertainty associated with
the prediction at x \in \scrD and is a measure of the prediction accuracy. In adaptive sampling
based on the MSE criterion, the new sample is the point that maximizes s2n(x).D
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3. Proposed adaptive sampling method. Before introducing our method, it is worth
mentioning that an ``efficient"" adaptive sampling strategy should meet the conditions below
[35].

(i) Local exploitation that allows us to add more points in interesting areas discovered so
far.

(ii) Global exploration by which unexplored domain regions can be detected.
(iii) Trade-off between local exploitation and global exploration which balances the previous

two objectives using a suitable measure.
The proposed adaptive sampling approach uses expected squared LOO error (see subsec-
tion 3.1) for local exploitation. The global exploration and the trade-off between the lo-
cal and global search are driven by the pseudoexpected improvement criterion introduced in
subsection 3.2.

3.1. Expected squared LOO CV error. We wish to improve the GP emulator Zn(x)
constructed on the training data set \scrA using the LOO CV method. To do so, the first
step is to obtain the LOO errors. Let eL(xi) denote the LOO CV error at the design sites
xi, i = 1, . . . , n. The computation of eL(xi) relies on the GP Zn, - i(x) which is obtained by
conditioning Z0(x) on all observations except the ith one: Zn, - i(x) = Z0(x) | yn \setminus \{ f(xi)\} .
The predictive mean and variance of Zn, - i(x) are shown bymn, - i(x) and s2n, - i(x), respectively.
The LOO CV error is then calculated as

(3.1) eL(xi) = | mn, - i(xi) - f(xi)| ,

which can be regarded as the sensitivity of the emulator to the left out point xi. As a result,
the idea of adding new samples near the points with large LOO errors is used in several
adaptive sampling works; see, e.g., [32, 2]. In this work, the unknown parameters of Zn(x) are
estimated at each iteration when a new point is added to the existing data. However, we do
not estimate the parameters of Zn, - i(x) to alleviate the computational burden. To this end,
the estimated parameters of Zn(x) are used in Zn, - i(x). Moreover, (3.1) can be calculated
efficiently using the formula proposed in [12].

The LOO error eL(xi) only accounts for the difference between the predictive mean and
the real value at xi and can be a misleading selection criterion in some situations. Figure 1 (left
panel) shows an example where the prediction at x5 = 0 is equal to the true value there and
therefore eL(x5) = 0. This means that the chance of adding a new sample near the fifth data
point is low although it is in a crucial region. The above mentioned problem can be mitigated
using expected squared LOO (ES-LOO) error, which provides more information than the
LOO error about the sensitivity of the emulator to the design points. More precisely, ES-
LOO accounts for both the prediction uncertainty and the difference between the prediction
and the true value, as described below.

Let \scrE L(xi) represent the value of (normalized) ES-LOO error at the design site xi. It is
defined as

(3.2) \scrE L(xi) =
\BbbE 
\Bigl[ 
(Zn, - i(xi) - f(xi))

2
\Bigr] 

\sqrt{} 
\BbbV ar

\Bigl( 
(Zn, - i(xi) - f(xi))

2
\Bigr) ,
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Figure 1. Left: The LOO error (i.e., (3.1)) can be misleading as a selection criterion. Removing the
fifth sample, i.e., (0, 0.5), does not change the prediction at x = 0 and the LOO error remains zero there:
| m9, - 5(x5) - f(x5)| = 0. This means that the point (0, 0.5) does not have any influence on the emulator, while
f has a large gradient there. However, the ES-LOO error which accounts for the prediction uncertainty is
not zero at x5. Right: Normalized (black) vs. nonnormalized (red) ES-LOO errors for the sigmoid function
visualized on the left panel. The value of nonnormalized ES-LOO is maximum at the endpoints where adding
new samples does not improve the emulator. The true function is f(x) = 1

1+\mathrm{e}\mathrm{x}\mathrm{p}( - 20x)
.

where

\BbbE 
\Bigl[ 
(Zn, - i(xi) - f(xi))

2
\Bigr] 
= s2n, - i(xi) + (mn, - i(xi) - f(xi))

2 ,(3.3)

\BbbV ar
\Bigl( 
(Zn, - i(xi) - f(xi))

2
\Bigr) 
= 2s4n, - i(xi) + 4s2n, - i(xi) (mn, - i(xi) - f(xi))

2 .(3.4)

The latter is used in (3.2) to normalize ES-LOO values. It is recommended in [31, 19] that
standardizing the LOO errors yields a better measure for adaptive sampling. Our experi-
ments also suggest that normalized ES-LOO should be preferred over nonnormalized one. For
example, in Figure 1 (right panel) the normalized (black) and nonnormalized (red) ES-LOO
are shown for the sigmoid function. As can be seen, the nonnormalized ES-LOO error is
maximum at the endpoints where adding new samples does not improve the accuracy of the
emulator significantly. In the standardized case, however, the value of ES-LOO is moderated
at the endpoints since the term sn, - i(xi) plays an important role in (3.4).

To see how (3.3) and (3.4) are obtained we first note that

(3.5) Zn, - i(xi) \sim \scrN 
\bigl( 
mn, - i(xi), s

2
n, - i(xi)

\bigr) 
,

as is shown with an example in Figure 2. By standardizing the above equation we reach

(3.6)
Zn, - i(xi) - f(xi)

sn, - i(xi)
\sim \scrN 

\biggl( 
mn, - i(xi) - f(xi)

sn, - i(xi)
, 1

\biggr) 
,
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Figure 2. Left: GP prediction (blue) with 95\% credible intervals (shaded) based on 7 observations from the
true function (black). Right: GP prediction based on the training data except the third one where the GP has
a normal distribution specified by (3.5).

in which the square of the left-hand side is a random variable with noncentral chi-square
distribution characterized by

(3.7)

\biggl( 
Zn, - i(xi) - f(xi)

sn, - i(xi)

\biggr) 2

\sim \chi \prime 2

\Biggl( 
\kappa = 1, \lambda =

\biggl( 
mn, - i(xi) - f(xi)

sn, - i(xi)

\biggr) 2
\Biggr) 
.

Here, \kappa and \lambda are the degrees of freedom and noncentrality parameter, respectively.1 As a
result

\BbbE 

\Biggl[ \biggl( 
Zn, - i(xi) - f(xi)

sn, - i(xi)

\biggr) 2
\Biggr] 
= 1 +

\biggl( 
mn, - i(xi) - f(xi)

sn, - i(xi)

\biggr) 2

,(3.8)

\BbbV ar

\Biggl( \biggl( 
Zn, - i(xi) - f(xi)

sn, - i(xi)

\biggr) 2
\Biggr) 

= 2

\Biggl( 
1 + 2

\biggl( 
mn, - i(xi) - f(xi)

sn, - i(xi)

\biggr) 2
\Biggr) 
.(3.9)

Finally, if the expectation and variance in the above equations are multiplied by s2n, - i(xi) and

s4n, - i(xi), respectively, we reach (3.3) and (3.4).
The analytical expression of (3.3) is similar to the expected improvement for global fit

(EIGF) infill sampling criterion proposed by Lam [30]. In section 4, we compare the predictive

1Suppose X1, . . . , X\kappa are \kappa independent random normal variables such that Xi \sim \scrN (\mu i, 1) , 1 \leq i \leq \kappa .
Then,

\sum \kappa 
i=1 X

2
i \sim \chi \prime 2 \bigl( \kappa , \lambda =

\sum \kappa 
i=1 \mu 

2
i

\bigr) 
has a noncentral chi-square distribution with mean \kappa + \lambda and variance

2 (\kappa + 2\lambda ).
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performance of our method with EIGF on several test functions. In EIGF, the improvement
at an arbitrary point x is given by

(3.10) IGF (x) = (Zn(x) - f(x\ast 
i ))

2 ,

where f(x\ast 
i ) is the response at the location x\ast 

i which is closest (in Euclidean distance) to x.
The EIGF criterion is the expected value of IGF (x) and takes the following form:

(3.11) EIGF (x) = \BbbE [IGF (x)] = (mn(x) - f(x\ast 
i ))

2 + s2n(x).

Using EIGF as the selection criterion, the next sample is chosen where EIGF is maximum:

xn+1 = argmax
\bfx \in \scrD 

EIGF (x).

3.2. Proposed selection criterion. Since the magnitude of \scrE L(xi) reflects the sensitivity
of the emulator to the loss of information provided by the function evaluation at xi, it is
reasonable to choose the next sample where ES-LOO is maximum. However, this quantity
is only defined at the training data, while we need to look for the next design point out-
of-sample. In this work, we extend the ES-LOO error to be a function defined over the
whole domain, \scrE L(x),x \in \scrD , that we have observed at the design points, and we model this
function with a GP. The interpretation of \scrE L(x) is the value of the ES-LOO error we think
we would see if (x, f(x)) were part of our data set. The GP model to estimate \scrE L(x) at
unobserved locations is denoted by Ze

n(x) whose predictive mean and variance are indicated
by me

n(x) and sen(x), respectively. The training set for the second GP is \{ Xn,y
e
n\} where

ye
n = (\scrE L(x1), . . . , \scrE L(xn))

\top .
After estimating \scrE L(x), we can find its maximum applying techniques in surrogate-based

optimization. In this framework, a naive approach is to maximizeme
n(x). However, this simple

strategy does not define a valid optimization scheme due to overexploitation [24] meaning that
the new samples are taken very close to the points with a large ES-LOO error. To overcome this
problem, we need to take into account sen(x) as the exploration component in the course of the
search. To this end, we employ expected improvement (EI) which is one of the most common
acquisition functions in Bayesian optimization [10, 24], to trade-off between exploration and
exploitation. It is expressed via

EI(x) =

\Biggl\{ 
(me

n(x) - max(ye
n)) \Phi (u) + sen(x)\phi (u) if sen(x) > 0,

0 if sen(x) = 0,
(3.12)

where u = me
n(\bfx ) - \mathrm{m}\mathrm{a}\mathrm{x}(\bfy e

n)
sen(\bfx )

and \phi (\cdot ) and \Phi (\cdot ) represent the PDF and cumulative distribution
function of the standard normal distribution, respectively. EI is a nonnegative, parameter-
free function and is zero at the data points. However, it is shown that EI is biased towards
exploitation especially at the beginning of the search [53, 25, 46]. As a result, if EI is used to
find the maximum of \scrE L(x) at each iteration, the new samples are clustered. This is illustrated
by an example in Figure 3 where the black circles are the initial design and the red circles
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Figure 3. Adaptive designs (red circles) are obtained by maximizing \scrE L(\bfx ) using the EI criterion. The
filled circles are the initial design, and the true function is Franke's function. EI tends towards exploitation,
and as a result clustering occurs.

represent the new samples selected based on the EI criterion. Clusters of the new points
can be detected on the contour plot of Franke's function (its analytic expression is given in
Appendix B) due to the tendency of EI towards exploitation.

In this paper, pseudoexpected improvement (PEI) [64] is considered as the selection crite-
rion which has a better exploration property than EI. PEI is obtained by multiplying EI by a
repulsion function (RF): PEI(x) = EI(x)RF (x). The RF is defined as

(3.13) RF (x;Xn) =
n\prod 

i=1

[1 - \BbbC orr (Ze
n(x), Z

e
n(xi))] ,

where \BbbC orr(\cdot , \cdot ) is the correlation function of Ze
n(\cdot ). RF (x) is a measure of the (canonical)

distance between x and the design points. It is always between zero and one at the data
points because \BbbC orr (Ze

n(xi), Z
e
n(xi)) = 1 for all xi \in Xn. Multiplying EI by the RF improves

its exploration property as is shown in Figure 4. The picture on the left illustrates a GP fitted
on five data points, and the corresponding RF (red), EI (blue), and PEI (black) are visualized
on the right picture. It can be seen that the maximum of EI is biased towards the design
point whose ES-LOO error is maximum.

The correlation function in (3.13) depends on length scales \bfittheta e = [\theta e1, . . . , \theta 
e
d]
\top that are esti-

mated from \{ Xn,y
e
n\} . It is important that \theta ei 's do not take very ``small"" values to circumvent

clustering. The reason is that when they come near zero, \BbbC orr (Ze
n(x), Z

e
n(xi)) tends to zero

and RF (x) is (almost) one everywhere meaning that it has no influence on EI. Besides, the
maximum of EI is located in a shrinking neighborhood of the current best point when \bfittheta e is
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Figure 4. Left: A GP is fitted to five ES-LOO errors. Right: PEI (black) is obtained by multiplying EI
(blue) by the influence functions (red). The next sample point is where the PEI is maximum (black circle). The
maximum of EI is shown by the blue circle. The PEI criterion is more explorative than EI.

small [41]. Therefore, a lower bound has to be considered for \bfittheta e. In a normalized input space,
i.e., \scrD = [0, 1]d, we define this lower bound to be

(3.14) \theta elb =
\sqrt{} 
 - 0.5/ ln(10 - 8)

for each dimension. It is obtained by setting the minimum correlation equal to 10 - 8 for the
squared exponential correlation function defined as

(3.15) k0(x, x
\prime ) = exp

\biggl( 
 - | x - x\prime | 2

2\theta 2

\biggr) 
.

In the above equation, the minimum correlation between x and x\prime happens when | x - x\prime | = 1
which is the maximum distance between the two points in the normalized input space.

A common issue in adaptive sampling strategies is that many design points lie along the
boundaries of the input space where the predictive variance is large. Such samples might be
nonoptimal if the true model is not feasible on the boundaries [18]. However, this problem can
be alleviated in our approach by introducing ``pseudopoints"" at appropriate locations on the
boundaries. Pseudopoints, denoted by Xp, are used to update the RF, i.e., RF (x;Xn \cup Xp),
but the true function is not evaluated there due to computational cost. The following locations
are considered as the pseudopoints in our algorithm:

1. corners of the input space,
2. closest point on each face of the (rectangular) bounding input region to the initial

design.
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Figure 5. Initial design (black points) and pseudopoints (red triangles). They are the closest points on
each face of the input space to the initial design and also at the corners of the region. The RF is updated by
pseudopoints at almost no cost.

A 2-dimensional example is illustrated in Figure 5 that shows the location of pseudopoints
(red triangles) and six initial design (black points). Finally, Algorithm 3.1 summarizes the
steps of the proposed adaptive sampling method.

3.3. Extension to batch mode. When parallel computing is available, it is often better
to evaluate the expensive function f at a set of inputs rather than a single point since it saves
the user time. In batch sampling, q > 1 locations are chosen for evaluation at each iteration.
Note that the computation time of running the simulator on q parallel cores is the same as
a single run. The PEI criterion can be employed in a batch mode thanks to the RF. We
now show how to choose q points xn+1, . . . ,xn+q in a single iteration. The first point xn+1 is
obtained by maximizing the PEI criterion. Then, the RF is updated by xn+1:

(3.16) RF (x;Xn \cup xn+1) =
n+1\prod 
i=1

[1 - \BbbC orr (Ze
n(x), Z

e
n(xi))] ,

which updates PEI without evaluating f at xn+1. The second location xn+2 is selected where
the updated PEI is maximum. We repeat this procedure until the last point xn+q is chosen:

RF (x;Xn \cup xn+1 \cup \cdot \cdot \cdot \cup xn+q - 1) =

n+q - 1\prod 
i=1

[1 - \BbbC orr (Ze
n(x), Z

e
n(xi))] ,

xn+q = argmax
\bfx \in \scrD 

EI(x)RF (x;Xn \cup xn+1 \cup \cdot \cdot \cdot \cup xn+q - 1) .

Figure 6 shows our adaptive sampling method in batch mode where q = 3 locations (x6, x7
and x8) are picked in one iteration. The first new sample x6 is chosen where the PEI criterion
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Algorithm 3.1 Proposed sequential sampling approach.

1: Create an initial design: Xn = \{ x1, . . . ,xn\} 
2: Evaluate f at Xn: yn = f(Xn)
3: Fit the GP Zn(x) to \{ Xn,yn\} 
4: while not stop do
5: for i = 1 to n do
6: Calculate \scrE L(xi) (equation (3.2))
7: end for
8: Set ye

n = (\scrE L(x1), . . . , \scrE L(xn))
\top 

9: Set the lower bound for \bfittheta e (equation (3.14))
10: Fit the GP Ze

n(x) to \{ Xn,y
e
n\} 

11: Create pseudopoints Xp (see Figure 5)
12: xn+1 \leftarrow argmax\bfx \in \scrD PEI(x) = EI(x)RF (x;Xn \cup Xp)
13: Set Xn = Xn \cup \{ xn+1\} 
14: Evaluate f at xn+1 and yn+1 \leftarrow f(xn+1)
15: Set yn = yn \cup \{ yn+1\} 
16: Update Zn(x) using (xn+1, yn+1)
17: n\leftarrow n+ 1
18: end while
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Figure 6. A batch of q = 3 points (x6, x7, and x8) are selected thanks to the RF. Left: there are five
initial samples, and the first query point, x6, is chosen where PEI is maximum. Middle: the RF is updated as
RF (x;x1:5 \cup x6) which updates PEI accordingly without evaluating f at x6. The second query point, x7, is the
location of maximum of updated PEI. Right: PEI is updated using x7, and the third sample, x8, is selected as
explained.

is maximum (left). Then, the RF is updated by x6. This will update PEI, and its maximum
allows us to find x7 without evaluating f at x6 (middle). Again, we update the RF using x7
and maximize the updated PEI to obtain the sample site x8 (right).

4. Numerical experiments. Experimental results are presented and discussed in this sec-
tion. Four analytic test functions and two real-world problems are considered as the ``true""
function to assess the efficiency of our proposed sampling method. The results are compared
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with one-shot Latin hypercube sampling (LHS) and three adaptive approaches, namely, MSE,
EIGF, and MICE. A typical characteristic of these adaptive sampling approaches is exhibited
in Figure 7 where the black dots are the initial design (identical in all pictures) and the red
circles represent the adaptive samples. The true function has two spikes as it is a sum of two

ES-LOO
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Figure 7. A typical sampling behavior of four adaptive sampling methods: ES-LOO, EIGF, MSE, and
MICE. The red circles represent adaptive samples that are added to the six initial design (black dots). ES-LOO
tends to fill the space with focusing on regions where the function values change rapidly. EIGF mainly exploits
the basin of attraction of an optimum while other areas are unexplored. MSE samples more points on the
boundaries where the prediction uncertainty is large. There is not any special pattern in the sampling behavior
of MICE; however, it avoids putting points on the boundaries.
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Gaussian functions centered at (1/3, 1/3)\top and (2/3, 2/3)\top . As can be seen, our proposed
method fills space uniformly with a focus on areas where the true function has nonlinear
behavior. The efficiency of our algorithm is due to two parts together. Firstly, the ES-LOO
measure reflects the actual model error and indicates promising regions for future evalua-
tions. Secondly, incorporating the RF in our EI-based selection criterion prevents points from
clustering. Without the repulsion trick, as is the case in Figure 3, new experimental designs
tend to pile up at points where the ES-LOO errors are large. However, further investigation
is required to identify the exact contribution of each part on the algorithm. In our method
the boundary issue, i.e., taking many points on the boundaries, is mitigated by introducing
pseudopoints at locations shown in Figure 5.

EIGF tends toward local exploitation and does not explore the input space; it gets stuck
in an optimum. This can be explained according to the EIGF formula in (3.11) where local
exploitation is carried out by the first term, (mn(x) - f(x\ast 

i ))
2. It represents the difference

between the GP prediction and response at the nearest sample location x\ast 
i and increases in

regions where a drastic response change takes place. As a result, the first term can be inter-
preted as a measure of gradient. In Figure 7, there is a design point close to the center of the
spike (1/3, 1/3)\top at which the function reaches its maximum. Since the function varies ``sig-
nificantly"" there, the EIGF criterion is large (due to its first term) around (1/3, 1/3)\top where
most samples are taken. Note that the points sampled on the boundaries are due to increase in
the second term of the EIGF expression, i.e., s2n(x). MSE samples most points on the bound-
aries where the prediction uncertainty is large. It is possible that MSE leads to a space-filling
design as is the case of the Franke's function; see below. No special trend can be found on the
performance of the MICE algorithm. However, it avoids sampling around the boundaries, and
all new points are taken in the interior region. We describe our implementation of ES-LOO
below.

4.1. Experimental setup. The prediction accuracy is assessed by the root mean squared
error (RMSE) criterion. Given the test set \{ (xt, f(xt))\} t=N

t=1 , RMSE is defined as

(4.1) RMSE =

\sqrt{} \sum N
t=1 (mn(xt) - f(xt))

2

N
,

which measures the distance between the emulator, mn(xt), and the true function, f(xt). In
our experiments, N = 3000, and the test points are selected uniformly across the input space.
A total budget equal to 30d is considered for each experiment. The initial space-filling DoE
is of size 3d and is obtained by the maximinESE LHS function implemented in the R package
DiceDesign [13]. There are ten different initial DoEs for every function, and we assess the
prediction performance of each method using all ten sets. The R package DiceKriging [49]
is employed to construct GP models. The covariance kernel for modeling the true function
and \scrE L(x) is Mat\'ern with \nu = 3/2. Since the ES-LOO error is a positive quantity, the GP
emulator is fitted to its natural logarithm. The closest point on each face of the input space
to the initial design and the corners of the input region are considered as the pseudopoints.

The optimization of the PEI function (and other selection criteria) is conducted by the
differential evolution (DE) algorithm [57] implemented in the R package DEoptim [42]. This
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algorithm is considered by [64] to optimize acquisition functions used in the Bayesian opti-
mization paradigm. DE is a stochastic global search algorithm for continuous problems and
belongs to the family of population-based evolutionary methods. It can tackle nondifferen-
tiable, multimodal functions and has a small number of parameters to tune. The progress
toward better solutions in the search space is made by applying mutation, crossover, and se-
lection operators to the population of candidate solutions. In this paper, the population size
is equal to 10d. The other control parameters (such as the step size and crossover probability)
are set to their default values; see the DEoptim package.

4.2. Test functions. The four test functions are
\bullet f1(x): Franke's function [20], d = 2;
\bullet f2(x): Hartmann function [21], d = 3;
\bullet f3(x): Friedman function [14], d = 5;
\bullet f4(x): Gramacy and Lee function [18], d = 6,

and their analytic expression are given in Appendix B. The four test functions are defined on
[0, 1]d. Figure 8 illustrates a comparison between the prediction performance of our proposed
method ES-LOO: sequential (black) and batch with q = 4 (orange) and three other sequential
sampling approaches: MSE (blue), EIGF (red) and MICE (green). Each curve represents
the median of ten RMSEs using ten different initial DoEs. The results are also compared
with the one-shot space-filling design (magenta) for all sample sizes 3d, 4d, . . . , 30d; the graph
represents the median of ten RMSEs obtained by LHS. The x-axis shows the number of
function evaluations divided by the problem dimension, d. The y-axis is on logarithmic scale.

Generally, the prediction performance of our method is comparable to other adaptive
approaches. In particular, it outperforms MSE and EIGF in approximating the Hartmann (f2)
and Gramacy and Lee (f4) functions. As can be seen, the sequential (black) and batch (orange)
ES-LOO have similar performances such that in both algorithms the RMSE is monotonically
(almost linearly) decreasing in all test problems. However, this is not the case of other
adaptive sampling approaches. The Hartmann function has four local minima, and EIGF
can get stuck in one of them. The EIGF method has the best performance on the Friedman
function (f3) and has the lowest accuracy in approximating other functions, especially f4.
The reason is that the main response change of f4 occurs near the right bound of the input
space and EIGF puts more points there. The MICE algorithm shows a poor performance in
predicting the test functions. However, it is the fastest algorithm as the criterion is based on
a discrete representation. Other adaptive sampling methods could be implemented on similar
discrete representation, and they would then gain the speed-up. It is observed that the
points obtained by the MSE method fill the space almost uniformly in the Franke's function
and thus has a similar performance to the LHS method. However, MSE favors sampling
more points on the boundary of the input space of the (6-dimensional) f4 function. LHS
is the best sampling strategy to predict f1, f2, and f4. However, the RMSE of ES-LOO
approaches that of LHS when the number of function evaluations increases, say, after 25\times d
evaluations.

According to Figure 8, it seems that LHS should be preferred over adaptive sampling
methods as it has a superior performance in most cases. However, this is not always the case
as LHS performs poorly on the real-world problems presented in the next section. Besides, the
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Figure 8. The median of ten RMSEs of our proposed approach ES-LOO: sequential (black) and batch
with q = 4 (orange), EIGF (red), MSE (blue), and MICE (green). Ten different initial DoEs of size 3d are
considered for each function; every method produces ten predictions based on them. The median of RMSEs
based on (one-shot) LHS design for sample sizes 3d, 4d, . . . , 30d is shown in magenta. The total budget is 30d.
The y-axis is on logarithmic scale.

main disadvantage of LHS (one-shot methods in general) is that we cannot stop them as soon
as the emulator reaches an acceptable level of accuracy. In adaptive approaches, however,
the costly sampling procedure can be halted at any time. For example, suppose that f2 is
the underlying function of a complex code and the LHS sample size (as a rule of thumb) is
10 \times d = 30. Let RMSE = 0.5 be the acceptable prediction accuracy. In this setting, the
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ES-LOO algorithm can be stopped at about 15 runs which is half of the time required to
execute the model based on the LHS design.

4.3. Real-world problems. We also tested our method on two real-world problems which
are the 6-dimensional output transformerless (OTL) circuit and 7-dimensional piston simu-
lation functions [6]. The former (fOTL) returns the midpoint voltage of a transformerless
circuit, and the latter (fpiston) measures the cycle time that a piston takes to complete one
cycle within a cylinder. The analytical expressions of fOTL and fpiston and their design spaces
are given in Appendix C. Figure 9 illustrates the results of comparing our proposed method
with MSE, EIGF, MICE, and LHS design in predicting the OTL circuit and piston simulation
functions. The experimental setup is the same as explained in subsection 4.1. The sequen-
tial (black) and batch (orange) ES-LOO again have similar performances, and their RMSE
criterion reduces steadily on both problems.

As can be seen, ES-LOO is the best sampling approach for emulating the piston simulation
function and performs quite well on the OTL problem. The MSE approach does not work
well in both problems, especially after almost 10 \times d function evaluations. Based on our
experiments, MSE is not recommended when the dimensionality of the problem is larger than
five. LHS has a similar behavior to MSE and is not a good sampling approach on the OTL
and piston simulation problems, contrary to our previous results demonstrated in Figure 8.
While EIGF has the best performance on the OTL circuit problem, there is no improvement
in the prediction accuracy of the emulator after 10 \times d evaluations of the piston simulation
function. MICE is the least successful algorithm in these two problems.
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Figure 9. The median of ten RMSEs of our proposed approach ES-LOO: sequential (black) and batch with
q = 4 (orange), EIGF (red), MSE (blue), and MICE (green). Size of initial design = 3d and total budget
= 30d. The magenta line represents the median of RMSEs obtained by (one-shot) LHS design for sample sizes
3d, 4d, . . . , 30d. The y-axis is on logarithmic scale.
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5. Conclusions. This paper deals with the problem of extending an initial design se-
quentially for training GP models. This is an important issue in the context of emulating
computationally expensive computer codes where the goal is to approximate the underlying
function with a minimum number of evaluations. An adaptive sampling scheme is presented
based on the ES-LOO error which is used to identify ``good"" locations for future evaluations.
Since the value of ES-LOO is only known at the design points, another GP model is applied
to approximate it at unobserved sites. Then, the PEI criterion is employed at each iteration
to find the location of maximum of ES-LOO as the most promising point to improve the
emulator. PEI is obtained by multiplying the EI criterion by an RF. Once the new sample
is chosen, it is added to the existing designs, and the procedure is repeated until a stopping
criterion is met. The proposed method can be easily promoted to a batch mode where at
each iteration a set of input points is selected for evaluation. This can save the user time if
parallel computing is available. Several test functions are used to test the capability of our
method, and the results are compared with other commonly used sampling techniques. The
results show that our proposed adaptive sampling approach is promising. Ideally there would
be some proof of the asymptotic convergence of the ES-LOO to zero error. Unfortunately,
we have not been able to derive such proofs, and they remain for further work. We think
that following similar results from the convergence of EI in Bayesian optimization (see, e.g.,
[58, 11, 50]) can help to prove the asymptotic properties of our method.

One can extend the idea of the RF to other sequential sampling approaches. For example,
Figure 10 illustrates the behavior of EIGF and MSE modified by the repulsion trick. As can
be seen, such modification promotes the diversity of samples in EIGF and improves the RMSE
criterion. However, in the modified MSE algorithm the boundary issue is intensified as the
RF tends to push away the points. A possible future research direction is to investigate the
inclusion of such repulsion-type functions in sampling strategies to improve their exploration
property.

Appendix A. MICE algorithm. In the MICE algorithm, the continuous design space
is discretized into a finite grid XG \subseteq \scrD such that XG = Xn \cup Xcand. The latter is a set of
candidate points on which the optimization of the MI criterion is performed. The elements of
Xcand are regenerated at each iteration based on a maximin design scheme. The next sample
location is obtained by the following optimization problem:

(A.1) xn+1 = argmax
\bfx \in \bfX cand

s2n(x)/s
2
G\setminus (n\cup \bfx )(x; \tau 

2),

wherein G\setminus (n\cup x) denotes XG\setminus (Xn \cup x) and \tau 2 is the nugget effect added to the correlation
matrix of the GP fitted to XG\setminus (Xn \cup x). The inclusion of the nugget prevents the denom-
inator of (A.1) approaching zero. The recommended value for the nugget parameter is one,
although it can take any positive value in theory.

Appendix B. Test function expressions. The analytic expressions of four test functions
used in our experiments are given below.

1. f1(x) = 0.75 exp( - (9x1 - 2)2

4  - (9x2 - 2)2

4 ) + 0.75 exp( - (9x1+1)2

49  - 9x2+1)
10 )

+ 0.5 exp( - (9x1 - 7)2

4  - (9x2 - 3)2

4 ) - 0.2 exp( - (9x1  - 4)2  - (9x2  - 7)2).
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Figure 10. Top: Incorporating the RF in the EIGF (left) and MSE (right) algorithms. While such modifi-
cation promotes the diversity of points in EIGF, it intensifies the boundary issue in MSE. Bottom: The median
of ten RMSEs associated with ES-LOO (black), EIGF (red), MSE (blue), modified EIGF (dashed red), and
MSE (dashed blue) with the RF.

2. f2(x) =  - 
\sum 4

i=1\bfitalpha i exp(
\sum 3

j=1Aij(xj  - Pij)
2), where \bfitalpha = (1, 1.2, 3, 3.2)\top ,

A =

\left[    
3 10 30
0.1 10 35
3 10 30
0.1 10 35

\right]    , P = 10 - 4

\left[    
3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

\right]    .

3. f3(x) = 10 sin(\pi x1x2) + 20(x3  - 0.5)2 + 10x4 + 5x5.
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4. f4(x) = exp
\bigl( 
sin
\bigl( 
[0.9(x1 + 0.48))]10

\bigr) \bigr) 
+ x2x3 + x4.

Appendix C. Real-world function expressions.
OTL circuit function. The function fOTL is defined as

fOTL(x) =
(Vb1 + 0.74)\beta (Rc2 + 9)

\beta (Rc2 + 9) +Rf
+

11.35Rf

\beta (Rc2 + 9) +Rf
+

0.74Rf\beta (Rc2 + 9)

(\beta (Rc2 + 9) +Rf )Rc1
,

where Vb1 =
12Rb2

Rb1+Rb2
. The input variables of fOTL are the following:

\bullet Rb1 \in [50, 150] is the resistance b1 (K-Ohms),
\bullet Rb2 \in [25, 70] is the resistance b2 (K-Ohms),
\bullet Rf \in [0.5, 3] is the resistance f (K-Ohms),
\bullet Rc1 \in [1.2, 2.5] is the resistance c1 (K-Ohms),
\bullet Rc2 \in [0.25, 1.2] is the resistance c2 (K-Ohms),
\bullet \beta \in [50, 300] is the current gain c1 (amperes).

Piston simulation function. The function fpiston is defined as

fpiston(x) = 2\pi 

\sqrt{} 
M

k + S2 P0V0Ta

T0V 2

, where V =
S

2k

\Biggl( \sqrt{} 
A2 + 4k

P0V0

T0
Ta  - A

\Biggr) 
,

A = P0S + 19.62M  - kV0

S
.

The input variables of fpiston are the following:
\bullet M \in [30, 60] is the piston weight (kg),
\bullet S \in [0.005, 0.020] is the piston surface area (m2),
\bullet V0 \in [0.002, 0.010] is the initial gas volume (m3),
\bullet k \in [1000, 5000] is the spring coefficient (N/m),
\bullet P0 \in [90000, 110000] is the atmospheric pressure (N/m2),
\bullet Ta \in [290, 296] is the ambient temperature (K),
\bullet T0 \in [340, 360] is the filling gas temperature (K).
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