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Abstract. Let 𝜇2(Ω) be the first positive eigenvalue of the Neumann Laplacian in a bounded
domain Ω ⊂ R𝑁 . It was proved by Szegő for 𝑁 = 2 and by Weinberger for 𝑁 ≥ 2 that among
all equimeasurable domains 𝜇2(Ω) attains its global maximum if Ω is a ball. In the present
work, we develop the approach of Weinberger in two directions. Firstly, we refine the Szegő-
Weinberger result for a class of domains of the form Ωout ∖ Ωin which are either centrally
symmetric or symmetric of order 2 (with respect to every coordinate plane (𝑥𝑖, 𝑥𝑗)) by show-
ing that 𝜇2(Ωout∖Ωin) ≤ 𝜇2(𝐵𝛽 ∖𝐵𝛼), where 𝐵𝛼, 𝐵𝛽 are balls centered at the origin such that
𝐵𝛼 ⊂ Ωin and |Ωout ∖Ωin| = |𝐵𝛽 ∖𝐵𝛼|. Secondly, we provide Szegő-Weinberger type inequal-
ities for higher eigenvalues by imposing additional symmetry assumptions on the domain.
Namely, if Ωout ∖Ωin is symmetric of order 4, then we prove 𝜇𝑖(Ωout ∖Ωin) ≤ 𝜇𝑖(𝐵𝛽 ∖𝐵𝛼) for
𝑖 = 3, . . . , 𝑁 + 2, where we also allow Ωin and 𝐵𝛼 to be empty. If 𝑁 = 2 and the domain is
symmetric of order 8, then the latter inequality persists for 𝑖 = 5. Counterexamples to the
obtained inequalities for domains outside of the considered symmetry classes are given. The
existence and properties of nonradial domains with required symmetries in higher dimen-
sions are discussed. As an auxiliary result, we obtain the non-radiality of the eigenfunctions
associated to 𝜇𝑁+2(𝐵𝛽 ∖𝐵𝛼).
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1. Introduction

We consider the Neumann eigenvalue problem⎧⎨⎩
−∆𝑢 = 𝜇𝑢 in Ω,

𝜕𝑢

𝜕𝑛
= 0 on 𝜕Ω,

(ℰ𝒫)

where Ω obeys the following general assumption:

(A1) Ω ⊂ R𝑁 , 𝑁 ≥ 2, is a bounded domain with boundary 𝜕Ω, such that the embedding
𝐻1(Ω) →˓ 𝐿2(Ω) is compact.

As a model case, one can ask Ω to be smooth or Lipschitz. Under the assumption (A1), the
spectrum of (ℰ𝒫) consists of a discrete sequence of eigenvalues

0 = 𝜇1(Ω) < 𝜇2(Ω) ≤ 𝜇3(Ω) ≤ . . .

The Szegő-Weinberger inequality states that

𝜇2(Ω) ≤ 𝜇2(𝐵), (1.1)

where 𝐵 is an open 𝑁 -ball of the same Lebesgue measure as Ω, and if equality holds in (1.1),
then Ω = 𝐵 up to a set of zero measure. The inequality (1.1) was conjectured for 𝑁 = 2
by Kornhauser & Stakgold [22] who established that the disk is a local maximizer of
𝜇2(Ω). Later, (1.1) was obtained by Szegő [29] for regular planar domains bounded by a
simple closed curve (Jordan domains, for short). Then, Weinberger [30] proved (1.1) in the
general higher-dimensional case without any topological restrictions on Ω. Qualitative versions
of (1.1) were investigated by Nadirashvili [26] in the case 𝑁 = 2 (for Jordan domains), and
by Brasco & Pratelli [8] in the general case 𝑁 ≥ 2, see also the survey [7].

Notice that 𝜇2(𝐵) is explicitly given by

𝜇2(𝐵) =

(︂
𝜔𝑁

|Ω|

)︂ 2
𝑁
(︂
𝑝
(1)
𝑁
2
,1

)︂2

,

where 𝜔𝑁 is the volume of a unit 𝑁 -ball, and, following the terminology of [25], 𝑝(𝑙)𝜈,𝑗 stands
for the 𝑗-th positive zero of the function (𝑟1−𝜈𝐽𝜈+𝑙−1(𝑟))′, 𝐽𝜈 being the Bessel function of the
first kind of order 𝜈.

In the planar case 𝑁 = 2, various improvements of the Szegő-Weinberger inequality are
known under additional assumptions on the symmetry of Ω. We say that a domain Ω ⊂ R2 is
symmetric of order 𝑞 ∈ N if, after an appropriate translation, Ω is invariant under the rotation
by angle 2𝜋/𝑞. It was proved by Hersch in [17, Section 5.3] that for any Jordan domain Ω
symmetric of order 𝑞 ≥ 3 the following inequality holds:

𝜇3(Ω) ≤ 𝜇2(𝐵) =
𝜋

|Ω|

(︁
𝑝
(1)
1,1

)︁2
≈ 10.6499

|Ω|
. (1.2)

In fact, to obtain (1.2) one can notice that 𝜇2(Ω) = 𝜇3(Ω) for such class of domains, see [5,
Lemma 4.1]. Moreover, Ashbaugh & Benguria showed in [5, Theorem 4.3] that (1.2) is
satisfied for all bounded domains (regardless the topology) which are symmetric of order 4.
We refer the reader to Enache & Philippin [12, 13] for further inequalities involving 𝜇𝑘(Ω)
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for domains with symmetry of order 𝑞 ≥ 2. Hersch in [17, Section 5.4] also proved that for
any Jordan domain Ω symmetric of order 4 there holds

𝜇4(Ω) ≤ 𝜇4(𝐵) =
𝜋

|Ω|

(︁
𝑝
(2)
1,1

)︁2
≈ 29.3059

|Ω|
. (1.3)

Let us mention that for a general bounded domain Ω ⊂ R𝑁 the inequality

𝜇3(Ω) ≤ 2
2
𝑁 𝜇2(𝐵) (1.4)

was established by Girouard, Nadirashvili, & Polterovich [15] for 𝑁 = 2 (for Jordan
domains), and by Bucur & Henrot [10] for all 𝑁 ≥ 2. Notice that if equality holds in (1.4),
then Ω is a.e. a union of two disjoint equimeasurable balls.

The main aim of the present work is to generalise the inequalities (1.1), (1.2), and (1.3) in
two directions: to the higher-dimensional case, and to domains with “holes”. Moreover, we
present an inequality which generalises (1.1), (1.2), and (1.3) to domains which are symmetric
of order 8. First, let us introduce the following natural generalisation of the notion of symmetry
of order 𝑞 to higher dimensions, cf. [5, Section 4].

Definition 1.1. A domain Ω ⊂ R𝑁 is symmetric of order 𝑞 if there exists an isometry 𝑇

such that 𝑅
2𝜋/𝑞
𝑖,𝑗 𝑇 (Ω) = 𝑇 (Ω) for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 , where 𝑅

2𝜋/𝑞
𝑖,𝑗 denotes the rotation (in

the anticlockwise direction with respect to the origin) by angle 2𝜋/𝑞 in the coordinate plane
(𝑥𝑖, 𝑥𝑗).

We will also use the following slight variation on the classical notion of central symmetry.

Definition 1.2. A domain Ω ⊂ R𝑁 is centrally symmetric if there exists a vector 𝜁 ∈ R𝑁

such that 𝑥 ∈ Ω + 𝜁 if and only if −𝑥 ∈ Ω + 𝜁.

Remark 1.3. Since the action of an isometry on Ω does not change the value of 𝜇𝑘(Ω), from
now on, except of Section 5, we will always assume that the isometry 𝑇 in Definition 1.1 is
the identity, and the translation 𝜁 in Definition 1.2 is the zero vector. On the other hand,
the presence of 𝑇 and 𝜁 will be important in Section 5 to show the relation between different
symmetry classes.

Remark 1.4. In the planar case 𝑁 = 2, the symmetry of order 2 is equivalent to the central
symmetry. When 𝑁 ≥ 4 is an even dimension, the symmetry of order 2 always implies the
central symmetry, but not vice versa. When 𝑁 ≥ 3 is an odd dimension, these two notions
are independent. We refer to Section 5.2 for a detailed discussion.

Let us now characterise a class of domains with “holes” by the following assumption:

(A2) Ω = Ωout ∖ Ωin is a domain in R𝑁 , where the domain Ωin is compactly contained in
the domain Ωout. If Ωin is nonempty, then we additionally assume 0 ∈ Ωin.

Remark 1.5. A domain Ω satisfying (A2) might possess other “holes” except Ωin, or might
possess no “holes” at all, in which case Ωin = ∅. The assumption 0 ∈ Ωin is imposed in order
to guarantee that if Ω is symmetric of order 𝑞 or centrally symmetric, and Ωin is nonempty,
then Ωin contains a ball centred at the origin.

Throughout this paper, 𝐵𝛾 will stand for the open ball of radius 𝛾 > 0 centred at the origin.
For 𝛾 = 0, we set 𝐵𝛾 = ∅.
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Our main result is the following theorem.

Theorem 1.6. Let Ω satisfy the assumptions (A1) and (A2). Let 0 ≤ 𝛼 < 𝛽 be such that
𝐵𝛼 ⊂ Ωin and |Ω| = |𝐵𝛽 ∖𝐵𝛼|. Then the following assertions hold:

(i) If Ω is either symmetric of order 2 or centrally symmetric, then

𝜇2(Ω) ≤ 𝜇2(𝐵𝛽 ∖𝐵𝛼). (1.5)

(ii) If Ω is symmetric of order 4, then

𝜇𝑖(Ω) ≤ 𝜇𝑖(𝐵𝛽 ∖𝐵𝛼) = 𝜇2(𝐵𝛽 ∖𝐵𝛼) for 𝑖 = 3, . . . , 𝑁 + 1, (1.6)

and
𝜇𝑁+2(Ω) ≤ 𝜇𝑁+2(𝐵𝛽 ∖𝐵𝛼). (1.7)

(iii) If 𝑁 = 2 and Ω is symmetric of order 8, then

𝜇5(Ω) ≤ 𝜇4(𝐵𝛽 ∖𝐵𝛼) = 𝜇5(𝐵𝛽 ∖𝐵𝛼). (1.8)

If equality holds in (1.5), (1.6), (1.7), (1.8), then Ω coincides a.e. with 𝐵𝛽 ∖𝐵𝛼.

As a direct corollary of Theorem 1.6, we get the domain monotonicity of several higher
Neumann eigenvalues on the class of equimeasurable spherical shells.

Corollary 1.7. Let 0 < 𝛼1 < 𝛼, 0 < 𝛽1 < 𝛽, and a ball 𝐵 be such that |𝐵𝛽1 ∖ 𝐵𝛼1 | =

|𝐵𝛽 ∖𝐵𝛼| = |𝐵|. Then

𝜇𝑖(𝐵𝛽 ∖𝐵𝛼) < 𝜇𝑖(𝐵𝛽1 ∖𝐵𝛼1) < 𝜇𝑖(𝐵) for 𝑖 = 2, 3, . . . , 𝑁 + 2,

and, in the case 𝑁 = 2, also

𝜇5(𝐵𝛽 ∖𝐵𝛼) < 𝜇5(𝐵𝛽1 ∖𝐵𝛼1) < 𝜇5(𝐵).

Remark 1.8. Corollary 1.7 shows that the inequalities given by Theorem 1.6 provide the
best upper bounds with respect to 𝛼 if 𝐵𝛼 is chosen to be the maximal ball (centred at the
origin) contained in Ωin. Moreover, the thinner the domain Ω (i.e., the closer 𝛼 to 𝛽), the
better these upper bounds compared to the estimates by 𝜇𝑖(𝐵).

Remark 1.9. If 𝛼 > 0, then (1.5) improves (1.1) for the class of symmetric domains described
by the assumption (A2). (Although in the case 𝛼 = 0, (1.5) is reduced to the classical Szegő-
Weinberger inequality (1.1) which holds regardless any symmetry assumptions on Ω.) The
inequalities (1.6) and (1.7) provide an improvement and a higher-dimensional generalisation of
the inequalities (1.2) and (1.3), respectively. Moreover, (1.6) improves [5, Theorem 4.2]. The
inequality for 𝑖 = 3 in (1.6) also improves (1.4). To the best of our knowledge, the inequality
(1.8) has not been explored in the literature before.

Remark 1.10. The following generalization of the inequality (1.8) to higher dimensions (𝑁 ≥
3):

𝜇𝑖(Ω) ≤ 𝜇𝑖(𝐵𝛽 ∖𝐵𝛼) for 𝑖 = 𝑁 + 3, . . . ,
𝑁(𝑁 + 3)

2
, (1.9)

can be established for the class of domains which are symmetric of order 8 with respect to
some coordinate plane and, simultaneously, symmetric of order 4 with respect to all other
coordinate planes. However, we show in Section 5 that the class of such domains consists only
of radially symmetric domains, i.e., of balls and spherical shells. In fact, we show that the
domains that are symmetric of order 𝑞 with 𝑞 ̸= 1, 2, 4 must be radially symmetric. Thus, the
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only nontrivial consequence of (1.9) would be the domain monotonicity of the corresponding
higher Neumann eigenvalues in spherical shells as in Corollary 1.7. However, we anticipate
that such monotonicity can be obtained by some other, perhaps easier, way. Because of that,
we do not provide a proof of (1.9).

For proving Theorem 1.6, we adapt the original idea of Weinberger [30] to our settings.
Namely, using certain eigenfunctions of (ℰ𝒫) on 𝐵𝛽 ∖𝐵𝛼, we construct trial finite-dimensional
subspaces of 𝐻1(Ω) for the variational characterisation of 𝜇𝑖(Ω) given by the Courant-Fischer
minimax principle. These trial subspaces have the property that the maximum of the Rayleigh
quotient over them does not exceed 𝜇𝑖(𝐵𝛽 ∖ 𝐵𝛼). In [30], Weinberger produced such con-
struction for an arbitrary domain Ω using an orthogonal basis of eigenfunctions corresponding
to 𝜇2(𝐵) in combination with their certain monotonicity properties. However, since we are
considering higher eigenvalues 𝜇𝑖(Ω) with 𝑖 ≥ 2 and allow the presence of the “hole” Ωin in
Ω, it is difficult to guarantee a similar construction of trial subspaces without additional as-
sumptions on Ω. Counterexamples which we provide in Section 4 demonstrate that symmetry
requirements of Theorem 1.6 might be vital. Moreover, in general, Weinberger’s argument
for the monotonicity works only for the second eigenfunctions, see Remark 2.9. In order to
deal with higher eigenvalues, we provide a more universal argument which also covers the
case of domains with ”holes”, see Proposition 2.8. In fact, the assumption that 𝐵𝛼 must be
contained in Ωin appears only in this proposition.

The structure of this work is as follows. Section 2 contains some preliminaries on the
structure and properties of the spectra {𝜇𝑘(𝐵𝛽∖𝐵𝛼)}, several results being proved in Appendix
A. Section 3 is devoted to the proof of Theorem 1.6. In Section 4, we discuss the violation of
the obtained inequalities for domains outside of the considered symmetry classes. In Section
5, we discuss the existence and properties of nonradial domains satisfying the symmetry
assumptions imposed in Theorem 1.6 and Remark 1.10. Section 6 contains some concluding
remarks. Finally, Appendix B contains several auxiliary results needed for the proof of the
main theorem.

2. Spectrum of (ℰ𝒫) on radially symmetric domains

In this section, we provide several results on the structure and properties of eigenvalues and
eigenfunctions of the problem (ℰ𝒫) in the spherical shell 𝐵𝛽 ∖ 𝐵𝛼, where 0 ≤ 𝛼 < 𝛽 < ∞.
Recall that in the case 𝛼 = 0, we set 𝐵𝛽 ∖ 𝐵𝛼 ≡ 𝐵𝛽 . Hereinafter, we will denote N0 =
{0, 1, 2, . . . } and N = {1, 2, . . . }.

In the spherical coordinates (𝑟, 𝜔) ∈ (0,+∞) × 𝑆𝑁−1, the Laplacian acts on a smooth
function 𝑢 = 𝑢(𝑥) = 𝑢(𝑟, 𝜔) as

∆𝑢 =
𝜕2𝑢

𝜕𝑟2
+

𝑁 − 1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟2
∆𝑆𝑁−1𝑢,

where 𝑟 = |𝑥| and ∆𝑆𝑁−1 is the Laplace-Beltrami operator on the unit sphere 𝑆𝑁−1. For a
smooth function ℎ on 𝑆𝑁−1, the action of ∆𝑆𝑁−1 is given as

∆𝑆𝑁−1ℎ = ∆ℎ

(︂
𝑥

|𝑥|

)︂⃒⃒⃒⃒
|𝑥|=1

.

It is well-known that the set of all eigenfunctions of ∆𝑆𝑁−1 is precisely the set of spherical
harmonics, which are defined as the restriction to 𝑆𝑁−1 of homogeneous harmonic polynomials
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in 𝑁 variables. Denote by 𝐻𝑙 the set of all homogeneous harmonic polynomials in 𝑁 variables
and of degree 𝑙 ∈ N0. Clearly, 𝐻0 consists only of constant functions. In Appendix B.2, we
discuss the form of orthogonal bases of 𝐻1 and 𝐻2, which will be important in the proof
of Theorem 1.6. We will need the following result on the spectrum of ∆𝑆𝑁−1 , see, e.g., [28,
Sections 22.3, 22.4].

Proposition 2.1. The spectrum of ∆𝑆𝑁−1 is the set {−𝑙(𝑙 + 𝑁 − 2) : 𝑙 ∈ N0}. The multiplic-
ity of the eigenvalue −𝑙(𝑙 + 𝑁 − 2) is equal to the dimension of 𝐻𝑙 and it is given by

Λ𝑙 = dim𝐻𝑙 =

(︂
𝑙 + 𝑁 − 1

𝑁 − 1

)︂
−
(︂
𝑙 + 𝑁 − 3

𝑁 − 1

)︂
=

2𝑙 + 𝑁 − 2

𝑙 + 𝑁 − 2

(︂
𝑙 + 𝑁 − 2

𝑙

)︂
.

By separating the variables, one can find a complete orthogonal system (in fact, a basis) in
𝐿2(𝐵𝛽 ∖𝐵𝛼) of eigenfunctions of (ℰ𝒫) on 𝐵𝛽 ∖𝐵𝛼 in the form

𝜙(𝑥) = 𝑣(|𝑥|)ℎ
(︂

𝑥

|𝑥|

)︂
, 𝑥 ∈

(︀
𝐵𝛽 ∖𝐵𝛼

)︀
∖ {0},

cf. [9, Chapter II, §1.6]. Here, ℎ is a spherical harmonic corresponding to the eigenvalue
−𝑙(𝑙 + 𝑁 − 2) of ∆𝑆𝑁−1 , and 𝑣 is an eigenfunction of the Sturm-Liouville eigenvalue problem
(SL problem, for short)

− 𝑣′′ − 𝑁 − 1

𝑟
𝑣′ +

𝑙(𝑙 + 𝑁 − 2)

𝑟2
𝑣 = 𝜇𝑣, 𝑟 ∈ (𝛼, 𝛽), (2.1)

with the boundary conditions

𝑣′(𝛼) = 0 and 𝑣′(𝛽) = 0. (2.2)

By the standard Sturm-Liouville theory, for every 𝑙 ∈ N0 the spectrum of the SL problem
(2.1), (2.2) consists of a sequence of eigenvalues

(0 ≤) 𝜇𝑙,1 < 𝜇𝑙,2 < · · · < 𝜇𝑙,𝑘 → +∞ as 𝑘 → +∞. (2.3)

Each eigenvalue 𝜇𝑙,𝑗 is simple and the associated eigenfunction vanishes exactly 𝑗− 1 times in
(𝛼, 𝛽). In particular, any first eigenfunction has a constant sign in (𝛼, 𝛽). Moreover, 𝜇0,1 = 0
and the associated eigenfunction is a nonzero constant.

The spectrum of the problem (ℰ𝒫) on 𝐵𝛽 ∖𝐵𝛼 is given by

{𝜇𝑘(𝐵𝛽 ∖𝐵𝛼)}𝑘∈N = {𝜇𝑙,𝑗}𝑙∈N0,𝑗∈N, (2.4)

where each 𝜇𝑙,𝑗 is counted with multiplicity Λ𝑙 (the dimension of 𝐻𝑙). In particular, if 𝜇𝑘(𝐵𝛽 ∖
𝐵𝛼) = 𝜇𝑙,𝑗 for some 𝑘, 𝑙, 𝑗, then the multiplicity of 𝜇𝑘(𝐵𝛽 ∖ 𝐵𝛼) is at least Λ𝑙. If 𝛼 = 0, that
is, in the case of the ball, then the multiplicity of such 𝜇𝑘(𝐵𝛽 ∖ 𝐵𝛼) is exactly Λ𝑙, see [16,
Proposition 2.3]. However, if 𝛼 > 0, then it might happen that 𝜇𝑙1,𝑗1 = 𝜇𝑙2,𝑗2 for two different
pairs of indices. In this case, the multiplicity of the corresponding eigenvalue of (ℰ𝒫) is at
least Λ𝑙1 + Λ𝑙2 . Notice also that taking 𝑙 = 0 we obtain all the radial eigenvalues of (ℰ𝒫).

Since the equation (2.1) can be rewritten as

− (𝑟𝑁−1𝑣′)′ + 𝑙(𝑙 + 𝑁 − 2)𝑟𝑁−3𝑣 = 𝜇𝑟𝑁−1𝑣, 𝑟 ∈ (𝛼, 𝛽), (2.5)

it is possible to characterise any eigenvalue 𝜇𝑙,𝑗 as a critical value of the Rayleigh quotient

𝑅𝑙(𝑣) =

∫︀ 𝛽
𝛼

[︁
(𝑣′(𝑟))2 + 𝑙(𝑙+𝑁−2)

𝑟2
𝑣2(𝑟)

]︁
𝑟𝑁−1 𝑑𝑟∫︀ 𝛽

𝛼 𝑣2(𝑟)𝑟𝑁−1 𝑑𝑟
, 𝑣 ∈ 𝐻1((𝛼, 𝛽); 𝑟𝑁−1) ∖ {0}, (2.6)
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where 𝐻1((𝛼, 𝛽); 𝑟𝑁−1) is the weighted Sobolev space on (𝛼, 𝛽) with the weight 𝑟𝑁−1. More
precisely, using the Courant-Fischer minimax formula, we have

𝜇𝑙,𝑗 = min
𝑋∈𝒳𝑗

max
𝑢∈𝑋∖{0}

𝑅𝑙(𝑢), (2.7)

where 𝒳𝑗 is the collection of all 𝑗-dimensional subspaces of 𝐻1((𝛼, 𝛽); 𝑟𝑁−1). In particular,

𝜇𝑙,1 = min
𝑢∈𝐻1((𝛼,𝛽);𝑟𝑁−1)∖{0}

𝑅𝑙(𝑢). (2.8)

Since 𝑅𝑙(𝑣) is strictly increasing with respect to 𝑙, we deduce from (2.7) that for each fixed
𝑗 ∈ N,

𝜇0,𝑗 < 𝜇1,𝑗 < . . . < 𝜇𝑙,𝑗 < . . . (2.9)

Note that the general solution of the equation (2.1) is given by

𝑣(𝑟) = 𝑟1−
𝑁
2

[︁
𝑐1𝐽𝑁

2
+𝑙−1 (

√
𝜇𝑟) + 𝑐2𝑌𝑁

2
+𝑙−1 (

√
𝜇𝑟)
]︁
,

where 𝐽𝑠 and 𝑌𝑠 are the Bessel functions of order 𝑠, of the first and second kind, respectively.
In the case 𝛼 = 0, 𝑐2 = 0 in view of the singularity of 𝑌𝑁

2
+𝑙−1 at zero, and one can characterize

each eigenvalue 𝜇𝑙,𝑗 as 𝜇𝑙,𝑗 = 𝛽−2

(︂
𝑝
(𝑙)
𝑁
2
,𝑗

)︂2

(see Section 1 for the definition of 𝑝(𝑙)𝑁
2
,𝑗
). In the

case 𝛼 > 0, the constants 𝑐1 and 𝑐2 are determined through the boundary conditions (2.2),
and 𝜇𝑙,𝑗 can be characterised as the 𝑗-th positive zero of the following cross-product of Bessel
functions:

𝐹 (𝜇) :=

(︂
2 −𝑁

2
𝐽𝜈 (

√
𝜇𝛼) + 𝛼

√
𝜇𝐽 ′

𝜈 (
√
𝜇𝛼)

)︂(︂
2 −𝑁

2
𝑌𝜈 (

√
𝜇𝛽) + 𝛽

√
𝜇𝑌 ′

𝜈 (
√
𝜇𝛽)

)︂
−
(︂

2 −𝑁

2
𝑌𝜈 (

√
𝜇𝛼) + 𝛼

√
𝜇𝑌 ′

𝜈 (
√
𝜇𝛼)

)︂(︂
2 −𝑁

2
𝐽𝜈 (

√
𝜇𝛽) + 𝛽

√
𝜇𝐽 ′

𝜈 (
√
𝜇𝛽)

)︂
,

where 𝜈 = 𝑁
2 + 𝑙 − 1.

Remark 2.2. In the case 𝛼 > 0, we have

𝜇𝑘(𝐵𝛽 ∖𝐵𝛼) → 𝜇𝑘(𝐵𝛽) as 𝛼 → 0, (2.10)

for any 𝑘 ∈ N0, see e.g., [11, Theorem 3.5 and Corollary 3.6]. In particular, if we temporarily
denote 𝜇𝑙,𝑗 = 𝜇𝑙,𝑗(𝛼) to stress the dependence on 𝛼, then the convergence (2.10) together with
the characterisation (2.4) and the fact that 𝜇𝑙1,𝑗1(0) ̸= 𝜇𝑙2,𝑗2(0) provided (𝑙1, 𝑗1) ̸= (𝑙2, 𝑗2) (see
[16, Lemma 2.5]) yield

𝜇𝑙,𝑗(𝛼) → 𝜇𝑙,𝑗(0) as 𝛼 → 0, (2.11)
for any 𝑙 ∈ N0 and 𝑗 ∈ N.

From (2.3) and (2.9) we see that the entries of the infinite matrix {𝜇𝑙,𝑗} are increasing along
the rows and columns. Since the eigenvalues of (ℰ𝒫) are counted in the nondecreasing order,
the first and second eigenvalues of (ℰ𝒫) on 𝐵𝛽 ∖𝐵𝛼 must be

𝜇1(𝐵𝛽 ∖𝐵𝛼) = 𝜇0,1 = 0 and 𝜇2(𝐵𝛽 ∖𝐵𝛼) = min{𝜇1,1, 𝜇0,2}.

In the following lemma, we provide a precise ordering of the eigenvalues 𝜇1,1, 𝜇2,1, and 𝜇0,2,
which gives, in particular, that 𝜇2(𝐵𝛽 ∖𝐵𝛼) = 𝜇1,1.
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Lemma 2.3. We have
𝜇1,1 < 𝜇2,1 < 𝜇0,2. (2.12)

The proof of Lemma 2.3 is placed in Appendix A. Notice that the weaker inequality 𝜇1,1 <
𝜇0,2 can be obtained from [2, Theorems 1.4] or [24, Theorem 1.2], see also Proposition A.2 for
a simple proof. However, (2.12) cannot be improved, in general, to 𝜇3,1 < 𝜇0,2. Indeed, in the
planar case 𝑁 = 2 with 𝛼 = 0 and 𝛽 = 1, one has 𝜇3,1 ≈ 17.65, while 𝜇0,2 ≈ 14.68. Hence
𝜇3,1 > 𝜇0,2 holds for all sufficiently small 𝛼 ≥ 0 in view of the convergence (2.11).

Thanks to Proposition 2.1, the following corollary of Lemma 2.3 can be easily derived.

Corollary 2.4. For any 0 ≤ 𝛼 < 𝛽, we have

𝜇2(𝐵𝛽 ∖𝐵𝛼) = · · · = 𝜇𝑁+1(𝐵𝛽 ∖𝐵𝛼) = 𝜇1,1,

𝜇𝑁+2(𝐵𝛽 ∖𝐵𝛼) = · · · = 𝜇𝑁(𝑁+3)
2

(𝐵𝛽 ∖𝐵𝛼) = 𝜇2,1. (2.13)

Remark 2.5. By Corollary 2.4 and the second inequality in (2.12), any eigenfunction 𝜙𝑘

corresponding to the eigenvalue 𝜇𝑘(𝐵𝛽 ∖𝐵𝛼) with 𝑘 = 2, . . . , 𝑁 + 1 has the form

𝜙𝑘(𝑥) = 𝑣(|𝑥|)ℎ
(︂

𝑥

|𝑥|

)︂
=

𝑣(𝑟)

𝑟
ℎ(𝑥), 𝑥 ∈

(︀
𝐵𝛽 ∖𝐵𝛼

)︀
∖ {0},

where ℎ ∈ 𝐻1, and if 𝑘 = 𝑁 + 2, . . . , 𝑁(𝑁+3)
2 , then 𝜙𝑘 has the form

𝜙𝑘(𝑥) = 𝑣(|𝑥|)ℎ
(︂

𝑥

|𝑥|

)︂
=

𝑣(𝑟)

𝑟2
ℎ(𝑥), 𝑥 ∈

(︀
𝐵𝛽 ∖𝐵𝛼

)︀
∖ {0},

where ℎ ∈ 𝐻2. In particular, any 𝜙𝑘 with 𝑘 = 2, . . . , 𝑁(𝑁+3)
2 is nonradial, and it is an odd

function when 𝑘 = 2, . . . , 𝑁 + 1, i.e.,

𝜙𝑘(−𝑥) = −𝜙𝑘(𝑥) for any 𝑥 ∈ 𝐵𝛽 ∖𝐵𝛼.

Let us remark that it is not known whether any second eigenfunction of the problem (ℰ𝒫) in
a general centrally symmetric domain Ω which is homeomorphic to a spherical shell is odd,
see [20].

Remark 2.6. The highest index in (2.13) occurs as

𝑁(𝑁 + 3)

2
= 𝑁 + 1 +

(𝑁 + 2)(𝑁 − 1)

2
,

where (𝑁+2)(𝑁−1)
2 = Λ2 is the dimension of 𝐻2, see Proposition 2.1.

The following auxiliary lemma will be needed to obtain Proposition 2.8 below, see Appendix
A for the proof.

Lemma 2.7. Let 𝑙 ∈ N and let 𝑣 be a positive eigenfunction corresponding to the eigenvalue
𝜇𝑙,1 of the SL problem (2.1), (2.2). Then for any 𝑟 ∈ (𝛼, 𝛽) we have 𝑣′(𝑟) > 0 and(︂

𝑙(𝑙 + 𝑁 − 2)

𝑟2
− 𝜇𝑙,1

)︂
𝑣2(𝑟) ≥

(︂
𝑙(𝑙 + 𝑁 − 2)

𝛽2
− 𝜇𝑙,1

)︂
𝑣2(𝛽). (2.14)

Finally, we establish the following general result which will be important in the proof of the
main theorem.
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Proposition 2.8. Let Ω be a bounded domain satisfying the assumption (A2). Let 0 ≤ 𝛼 < 𝛽
be such that 𝐵𝛼 ⊂ Ωin and |Ω| = |𝐵𝛽 ∖ 𝐵𝛼|. Let 𝑙 ∈ N and let 𝑣 be a positive eigenfunction
corresponding to the eigenvalue 𝜇𝑙,1 of the SL problem (2.1), (2.2). Define

𝐺𝑙(𝑟) =

{︃
𝑣(𝑟) if 𝑟 ∈ (𝛼, 𝛽),

𝑣(𝛽) if 𝑟 ≥ 𝛽.
(2.15)

Then ∫︀
Ω

(︁
(𝐺′

𝑙(𝑟))2 +
𝑙(𝑙+𝑁−2)𝐺2

𝑙 (𝑟)

𝑟2

)︁
𝑑𝑥∫︀

Ω𝐺2
𝑙 (𝑟) 𝑑𝑥

≤ 𝜇𝑙,1, (2.16)

and equality holds in (2.16) if and only if Ω coincides a.e. with 𝐵𝛽 ∖𝐵𝛼.

Proof. Denote 𝐺(𝑟) = 𝐺𝑙(𝑟) and 𝐻(𝑟) = (𝐺′(𝑟))2 + 𝑙(𝑙+𝑁−2)𝐺2(𝑟)
𝑟2

, for brevity. We see from
(2.8) that

𝜇𝑙,1 =

∫︀ 𝛽
𝛼 𝐻(𝑟)𝑟𝑁−1 𝑑𝑟∫︀ 𝛽
𝛼 𝑣2(𝑟)𝑟𝑁−1 𝑑𝑟

=

∫︀
𝐵𝛽∖𝐵𝛼

𝐻(𝑟) 𝑑𝑥∫︀
𝐵𝛽∖𝐵𝛼

𝐺2(𝑟) 𝑑𝑥
. (2.17)

Thus, the desired inequality (2.16) is equivalent to∫︀
Ω𝐻(𝑟) 𝑑𝑥∫︀
Ω𝐺2(𝑟) 𝑑𝑥

≤

∫︀
𝐵𝛽∖𝐵𝛼

𝐻(𝑟) 𝑑𝑥∫︀
𝐵𝛽∖𝐵𝛼

𝐺2(𝑟) 𝑑𝑥
. (2.18)

In order to prove (2.18), we first represent Ω as a union of disjoint sets as follows:

Ω = [Ω ∩ (𝐵𝛽 ∖𝐵𝛼)] ∪ [Ω ∩ (𝐵𝛽 ∖𝐵𝛼)𝑐] = [Ω ∩ (𝐵𝛽 ∖𝐵𝛼)] ∪ [Ω ∩𝐵𝑐
𝛽] ∪ [Ω ∩𝐵𝛼].

Similarly,

𝐵𝛽 ∖𝐵𝛼 =[Ω ∩ (𝐵𝛽 ∖𝐵𝛼)] ∪ [Ω𝑐 ∩ (𝐵𝛽 ∖𝐵𝛼)].

From the choice of 𝛼 and 𝛽, we have |Ω| = |𝐵𝛽 ∖𝐵𝛼| and |Ω ∩𝐵𝛼| = 0, which yields

|Ω𝑐 ∩ (𝐵𝛽 ∖𝐵𝛼)| = |Ω ∩𝐵𝑐
𝛽|. (2.19)

Therefore,∫︁
Ω
𝐻(𝑟) 𝑑𝑥 =

∫︁
Ω∩(𝐵𝛽∖𝐵𝛼)

𝐻(𝑟) 𝑑𝑥 +

∫︁
Ω∩𝐵𝑐

𝛽

𝐻(𝑟) 𝑑𝑥

=

∫︁
𝐵𝛽∖𝐵𝛼

𝐻(𝑟) 𝑑𝑥−
∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

𝐻(𝑟) 𝑑𝑥 +

∫︁
Ω∩𝐵𝑐

𝛽

𝐻(𝑟) 𝑑𝑥 (2.20)

and, in the same manner,∫︁
Ω
𝐺2(𝑟) 𝑑𝑥 =

∫︁
𝐵𝛽∖𝐵𝛼

𝐺2(𝑟) 𝑑𝑥−
∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

𝐺2(𝑟) 𝑑𝑥 +

∫︁
Ω∩𝐵𝑐

𝛽

𝐺2(𝑟) 𝑑𝑥. (2.21)

Substituting (2.20) and (2.21) into (2.18) and rearranging, we see that (2.18) is satisfied if
and only if

−
∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

𝐻(𝑟) 𝑑𝑥

∫︁
𝐵𝛽∖𝐵𝛼

𝐺2(𝑟) 𝑑𝑥 +

∫︁
Ω∩𝐵𝑐

𝛽

𝐻(𝑟) 𝑑𝑥

∫︁
𝐵𝛽∖𝐵𝛼

𝐺2(𝑟) 𝑑𝑥

≤ −
∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

𝐺2(𝑟) 𝑑𝑥

∫︁
𝐵𝛽∖𝐵𝛼

𝐻(𝑟) 𝑑𝑥 +

∫︁
Ω∩𝐵𝑐

𝛽

𝐺2(𝑟) 𝑑𝑥

∫︁
𝐵𝛽∖𝐵𝛼

𝐻(𝑟) 𝑑𝑥. (2.22)
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Dividing both sides of (2.22) by
∫︀
𝐵𝛽∖𝐵𝛼

𝐺2(𝑟) 𝑑𝑥 and using (2.17), we see that (2.22) is equiv-
alent to∫︁

Ω∩𝐵𝑐
𝛽

𝐻(𝑟) 𝑑𝑥−
∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

𝐻(𝑟) 𝑑𝑥 ≤ 𝜇𝑙,1

(︃∫︁
Ω∩𝐵𝑐

𝛽

𝐺2(𝑟) 𝑑𝑥−
∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

𝐺2(𝑟) 𝑑𝑥

)︃
.

(2.23)
Notice now that for any 𝑥 ∈ Ω ∩𝐵𝑐

𝛽 there holds |𝑥| ≥ 𝛽, and hence

𝐺(|𝑥|) = 𝐺(𝛽) and 𝐻(|𝑥|) =
𝑙(𝑙 + 𝑁 − 2)𝐺2(𝛽)

|𝑥|2
≤ 𝑙(𝑙 + 𝑁 − 2)𝐺2(𝛽)

𝛽2
= 𝐻(𝛽),

where the inequality for 𝐻 is strict if |𝑥| > 𝛽. This yields, in view of (2.19),∫︁
Ω∩𝐵𝑐

𝛽

𝐻(𝑟) 𝑑𝑥 ≤
∫︁
Ω∩𝐵𝑐

𝛽

𝐻(𝛽) 𝑑𝑥 =

∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

𝐻(𝛽) 𝑑𝑥, (2.24)∫︁
Ω∩𝐵𝑐

𝛽

𝐺2(𝑟) 𝑑𝑥 =

∫︁
Ω∩𝐵𝑐

𝛽

𝐺2(𝛽) 𝑑𝑥 =

∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

𝐺2(𝛽) 𝑑𝑥, (2.25)

where the inequality (2.24) is strict if and only if |Ω∩𝐵𝑐
𝛽| > 0. Thus, using (2.24) and (2.25),

we conclude that (2.23) is satisfied provided∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

[︀
𝐻(𝛽) −𝐻(𝑟) − 𝜇𝑙,1

(︀
𝐺2(𝛽) −𝐺2(𝑟)

)︀]︀
𝑑𝑥 ≤ 0,

or, equivalently,∫︁
Ω𝑐∩(𝐵𝛽∖𝐵𝛼)

[︂(︂
𝑙(𝑙 + 𝑁 − 2)

𝛽2
− 𝜇𝑙,1

)︂
𝑣2(𝛽) −

(︂
𝑙(𝑙 + 𝑁 − 2)

𝑟2
− 𝜇𝑙,1

)︂
𝑣2(𝑟) − (𝑣′(𝑟))2

]︂
𝑑𝑥 ≤ 0.

Lemma 2.7 asserts that the above integrand is negative on (𝛼, 𝛽), which completes the proof
of the inequality (2.16) and shows that if |Ω ∩𝐵𝑐

𝛽| > 0 or, equivalently, |Ω𝑐 ∩ (𝐵𝛽 ∖𝐵𝛼)| > 0,
then (2.16) is strict. Clearly, if |Ω ∩ 𝐵𝑐

𝛽| = 0 or, equivalently, |Ω𝑐 ∩ (𝐵𝛽 ∖ 𝐵𝛼)| = 0, then
Ω ⊂ 𝐵𝛽 ∖ 𝐵𝛼, and hence |(𝐵𝛽 ∖ 𝐵𝛼) ∖ Ω| = 0. That is, equality holds in (2.16) if and only if
Ω coincides a.e. with 𝐵𝛽 ∖𝐵𝛼. �

Remark 2.9. In the original proof of Weinberger [30], the inequality (2.16) (or, equiv-
alently, (2.18)) for 𝑙 = 1 and 𝛼 = 0 was proved by showing that 𝐻(𝑟) decreases and 𝐺(𝑟)
increases on (0, 𝛽), and hence∫︁

Ω
𝐻(𝑟) 𝑑𝑥 ≤

∫︁
𝐵𝛽

𝐻(𝑟) 𝑑𝑥 and
∫︁
Ω
𝐺2(𝑟) 𝑑𝑥 ≥

∫︁
𝐵𝛽

𝐺2(𝑟) 𝑑𝑥. (2.26)

For 𝑙 = 1 and 𝛼 > 0, the above inequalities are also satisfied. However, according to our
numerical simulation, the first inequality in (2.26) does not hold, in general, for 𝑙 ≥ 2, since
𝐻(𝑟) might not be a decreasing function. Thus, our argument presented in the proof of
Proposition 2.8 is more universal.
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3. Proof of Theorem 1.6

Let 𝒳𝑘 be the collection of all 𝑘-dimensional subspaces of 𝐻1(Ω) that are orthogonal to
the (one-dimensional) subspace of constant functions. Then, for any 𝑘 ∈ N, by the Courant-
Fischer minimax formula,

𝜇𝑘+1(Ω) = min
𝑋∈𝒳𝑘

max
𝑢∈𝑋∖{0}

∫︀
Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

. (3.1)

In particular, the second eigenvalue of the problem (ℰ𝒫) is defined as

𝜇2(Ω) = min

{︂∫︀
Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

: 𝑢 ∈ 𝐻1(Ω) ∖ {0},
∫︁
Ω
𝑢 𝑑𝑥 = 0

}︂
. (3.2)

We divide the proof of Theorem 1.6 into four subsections according to the consideration of
the inequalities (1.5), (1.6), (1.7), and (1.8).

3.1 Proof of (1.5). Recalling that 𝜇2(𝐵𝛽 ∖ 𝐵𝛼) = 𝜇1,1 by Corollary 2.4, we are going to
show that

𝜇2(Ω) ≤ 𝜇1,1.

To provide appropriate trial functions for the variational characterization (3.2) of 𝜇2(Ω), let
us consider the function 𝐺1(𝑟) defined in Proposition 2.8 with 𝑙 = 1. Since 𝑣′(𝛽) = 0, we
see that 𝐺1(𝑟) is at least a 𝐶1-function on (𝛼,+∞). For each 𝑖 ∈ {1, 2, . . . , 𝑁}, consider the
function 𝐺1(𝑟)

𝑟 𝑥𝑖, where 𝑟 = |𝑥| and 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) ∈ Ω. Notice that 𝐺1(𝑟)
𝑟 𝑥𝑖 ∈ 𝐻1(Ω).

By Proposition B.1 (i) (if 𝑁 = 2) or Proposition B.3 (if 𝑁 ≥ 3) we have∫︁
Ω

𝐺1(𝑟)

𝑟
𝑥𝑖 𝑑𝑥 = 0, 𝑖 = 1, . . . , 𝑁, (3.3)

in view of the symmetry of order 2 or central symmetry of Ω. Thus, each 𝐺1(𝑟)
𝑟 𝑥𝑖 is a valid

trial function for (3.2), and hence

𝜇2(Ω)

∫︁
Ω

𝐺1(𝑟)2

𝑟2
𝑥2𝑖 𝑑𝑥 ≤

∫︁
Ω

⃒⃒⃒⃒
∇
(︂
𝐺1(𝑟)

𝑟
𝑥𝑖

)︂⃒⃒⃒⃒2
𝑑𝑥 (3.4)

for all 𝑖 ∈ {1, . . . , 𝑁}. Moreover, from Remark B.11 we have∫︁
Ω

⃒⃒⃒⃒
∇
(︂
𝐺1(𝑟)

𝑟
𝑥𝑖

)︂⃒⃒⃒⃒2
𝑑𝑥 =

∫︁
Ω

(︂
(𝐺′

1(𝑟))2

𝑟2
𝑥2𝑖 −

𝐺2
1(𝑟)

𝑟4
𝑥2𝑖 +

𝐺2
1(𝑟)

𝑟2

)︂
𝑑𝑥.

Summing over 𝑖, we derive from (3.4) that

𝜇2(Ω) ≤

∫︀
Ω

(︁
(𝐺′

1(𝑟))2 +
(𝑁−1)𝐺2

1(𝑟)
𝑟2

)︁
𝑑𝑥∫︀

Ω𝐺2
1(𝑟) 𝑑𝑥

≤ 𝜇1,1, (3.5)

where the last inequality is given by Proposition 2.8 with 𝑙 = 1. This establishes the inequality
(1.5). Moreover, if equality holds in (1.5), then it follows from (3.5) and Proposition 2.8 that
Ω coincides a.e. with 𝐵𝛽 ∖𝐵𝛼.
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3.2 Proof of (1.6). In view of Corollary 2.4, to establish the inequality (1.6) it is enough
to prove that

𝜇𝑁+1(Ω) ≤ 𝜇1,1

under the assumption that Ω is symmetric of order 4. As an admissible choice of the 𝑁 -
dimensional subspace of 𝐻1(Ω) for the variational characterization (3.1) of 𝜇𝑁+1(Ω), we take

𝑋𝑁 = span
{︂
𝐺1(𝑟)

𝑟
𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑁

}︂
,

where 𝐺1(𝑟) is defined in Proposition 2.8 with 𝑙 = 1. From (3.3),
∫︀
Ω 𝑢 𝑑𝑥 = 0 for any 𝑢 ∈ 𝑋𝑁 ,

and hence we indeed have 𝑋𝑁 ∈ 𝒳𝑁 . Moreover, by the symmetry of order 4, we deduce from
Lemma B.6 and Remark B.7 (if 𝑁 = 2) or Lemma B.10 (if 𝑁 ≥ 3) that∫︁

Ω

(︂
𝐺1(𝑟)

𝑟
𝑥𝑖

)︂(︂
𝐺1(𝑟)

𝑟
𝑥𝑗

)︂
𝑑𝑥 = 0 and

∫︁
Ω
∇
(︂
𝐺1(𝑟)

𝑟
𝑥𝑖

)︂
∇
(︂
𝐺1(𝑟)

𝑟
𝑥𝑗

)︂
𝑑𝑥 = 0 (3.6)

for any 𝑖 ̸= 𝑗. At the same time, by Proposition B.1 (ii) (if 𝑁 = 2) or Proposition B.4 (ii) (if
𝑁 ≥ 3), and Remark B.11, there exist constants 𝐴1, 𝐴2 > 0 such that∫︁

Ω

(︂
𝐺1(𝑟)

𝑟
𝑥𝑖

)︂2

𝑑𝑥 =

∫︁
Ω

𝐺2
1(𝑟)

𝑟2
𝑥2𝑖 𝑑𝑥 = 𝐴1,∫︁

Ω

⃒⃒⃒⃒
∇
(︂
𝐺1(𝑟)

𝑟
𝑥𝑖

)︂⃒⃒⃒⃒2
𝑑𝑥 =

∫︁
Ω

(︂
(𝐺′

1(𝑟))2

𝑟2
𝑥2𝑖 −

𝐺2
1(𝑟)

𝑟4
𝑥2𝑖 +

𝐺2
1(𝑟)

𝑟2

)︂
𝑑𝑥 = 𝐴2,

for any 𝑖 ∈ {1, 2, . . . , 𝑁}. Therefore,

𝑁𝐴1 =
𝑁∑︁
𝑖=1

∫︁
Ω

(︂
𝐺1(𝑟)

𝑟
𝑥𝑖

)︂2

𝑑𝑥 =

∫︁
Ω
𝐺2

1(𝑟) 𝑑𝑥,

𝑁𝐴2 =
𝑁∑︁
𝑖=1

∫︁
Ω

(︂
(𝐺′

1(𝑟))2

𝑟2
𝑥2𝑖 −

𝐺2
1(𝑟)

𝑟4
𝑥2𝑖 +

𝐺2
1(𝑟)

𝑟2

)︂
𝑑𝑥 =

∫︁
Ω

(︂
(𝐺′

1(𝑟))2 +
(𝑁 − 1)𝐺2

1(𝑟)

𝑟2

)︂
𝑑𝑥.

Thus, for each 𝑖 ∈ {1, 2, . . . , 𝑁} we have∫︁
Ω

(︂
𝐺1(𝑟)

𝑟
𝑥𝑖

)︂2

𝑑𝑥 = 𝐴1 =
1

𝑁

∫︁
Ω
𝐺2

1(𝑟) 𝑑𝑥, (3.7)∫︁
Ω

⃒⃒⃒⃒
∇
(︂
𝐺1(𝑟)

𝑟
𝑥𝑖

)︂⃒⃒⃒⃒2
𝑑𝑥 = 𝐴2 =

1

𝑁

∫︁
Ω

(︂
(𝐺′

1(𝑟))2 +
(𝑁 − 1)𝐺2

1(𝑟)

𝑟2

)︂
𝑑𝑥. (3.8)

Since for any 𝑢 ∈ 𝑋𝑁 ∖ {0} there exist 𝑐1, 𝑐2, . . . , 𝑐𝑁 ∈ R, not simultaneously equal to zero,
such that

𝑢 = 𝑐1
𝐺1(𝑟)

𝑟
𝑥1 + · · · + 𝑐𝑁

𝐺1(𝑟)

𝑟
𝑥𝑁 ,

the orthogonality (3.6) and the expressions (3.7) and (3.8) imply that∫︀
Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

=

∑︀𝑁
𝑖=1 𝑐

2
𝑖

∫︀
Ω

⃒⃒⃒
∇
(︁
𝐺1(𝑟)

𝑟 𝑥𝑖

)︁⃒⃒⃒2
𝑑𝑥∑︀𝑁

𝑖=1 𝑐
2
𝑖

∫︀
Ω

(︁
𝐺1(𝑟)

𝑟 𝑥𝑖

)︁2
𝑑𝑥

=
𝐴2

𝐴1
=

∫︀
Ω

(︁
(𝐺′

1(𝑟))2 +
(𝑁−1)𝐺2

1(𝑟)
𝑟2

)︁
𝑑𝑥∫︀

Ω𝐺2
1(𝑟) 𝑑𝑥

.
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Therefore, for any 𝑢 ∈ 𝑋𝑁 ∖ {0}, by Proposition 2.8 with 𝑙 = 1 we get∫︀
Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

≤ 𝜇1,1,

and equality holds if and only if Ω coincides a.e. with 𝐵𝛽 ∖𝐵𝛼. Finally, by the Courant-Fischer
minimax formula (3.1),

𝜇𝑁+1(Ω) ≤ max
𝑢∈𝑋𝑁∖{0}

∫︀
Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

≤ 𝜇1,1,

which completes the proof of (1.6).

3.3 Proof of (1.7). Recalling that 𝜇𝑁+2(𝐵𝛽 ∖ 𝐵𝛼) = 𝜇2,1 by Corollary 2.4, let us prove
that

𝜇𝑁+2(Ω) ≤ 𝜇2,1, (3.9)
assuming that Ω is symmetric of order 4. Let 𝐺2(𝑟) be the function defined by Proposition
2.8 with 𝑙 = 2. Clearly, 𝐺2(𝑟) is at least a 𝐶1-function for 𝑟 ∈ (𝛼,+∞). As an admissible
choice of the (𝑁 + 1)-dimensional subspace of 𝐻1(Ω) for the variational characterization (3.1)
of 𝜇𝑁+2(Ω), we take

𝑋𝑁+1 = span
{︂
𝐺2(𝑟)

𝑟
𝑥1, . . . ,

𝐺2(𝑟)

𝑟
𝑥𝑁 , 𝑤

}︂
,

where we define 𝑤 as an extension to Ω of a certain (𝑁 + 2)-th eigenfunction of (ℰ𝒫) on
𝐵𝛽 ∖𝐵𝛼. Namely, recall that any (𝑁 + 2)-th eigenfunction 𝜙𝑁+2 of (ℰ𝒫) on 𝐵𝛽 ∖𝐵𝛼 has the
form

𝜙𝑁+2(𝑥) =
𝑣(𝑟)

𝑟2
ℎ(𝑥),

where ℎ ∈ 𝐻2 and 𝑣 is an eigenfunction of the SL problem (2.1), (2.2) associated to 𝜇2,1, see
Remark 2.5. We use the orthogonal basis 𝑍2 ∪̃︁𝑍3 of 𝐻2 (see Appendix B.2), where

𝑍2 = {𝑥𝑖𝑥𝑗 : 𝑖 < 𝑗 and 𝑖, 𝑗 = 1, 2, . . . , 𝑁} ,

̃︁𝑍3 =

⎧⎨⎩ 1√︀
𝑖(𝑖 + 1)

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 − 𝑖𝑥2𝑖+1

⎞⎠ : 𝑖 = 1, 2, . . . , 𝑁 − 1

⎫⎬⎭ ,

to define the desired function 𝑤 as follows:

𝑤 =
√

2
𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝐺2(𝑟)

𝑟2
𝑥𝑖𝑥𝑗 +

𝑁−1∑︁
𝑖=1

𝐺2(𝑟)√︀
𝑖(𝑖 + 1)𝑟2

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 − 𝑖𝑥2𝑖+1

⎞⎠ .

Let us remark that in the case 𝑁 = 2 the expression for 𝑤 is reduced to

𝑤 =
𝐺2(𝑟)√

2𝑟2
(2𝑥1𝑥2 + 𝑥21 − 𝑥22).

In view of the symmetry of order 4, we deduce from Proposition B.1 (i), (ii) (if 𝑁 = 2) or
Proposition B.3 (ii) and Proposition B.4 (ii) (if 𝑁 ≥ 3) that

∫︀
Ω 𝑢 𝑑𝑥 = 0 for any 𝑢 ∈ 𝑋𝑁+1.

Analogously to (3.6), we deduce that∫︁
Ω

(︂
𝐺2(𝑟)

𝑟
𝑥𝑖

)︂(︂
𝐺2(𝑟)

𝑟
𝑥𝑗

)︂
𝑑𝑥 = 0 and

∫︁
Ω
∇
(︂
𝐺2(𝑟)

𝑟
𝑥𝑖

)︂
∇
(︂
𝐺2(𝑟)

𝑟
𝑥𝑗

)︂
= 0. (3.10)
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Moreover, Lemma B.6 and Remark B.7 (if 𝑁 = 2) or Lemma B.10 (if 𝑁 ≥ 3) also give∫︁
Ω

(︂
𝐺2(𝑟)

𝑟
𝑥𝑖

)︂
𝑤 𝑑𝑥 = 0 and

∫︁
Ω
∇
(︂
𝐺2(𝑟)

𝑟
𝑥𝑖

)︂
∇𝑤 𝑑𝑥 = 0. (3.11)

In the same way as in the derivation of (3.7), (3.8), there exist constants 𝐴3, 𝐴4 > 0 such that
for every 𝑖 ∈ {1, 2, . . . , 𝑁} we have∫︁

Ω

(︂
𝐺2(𝑟)

𝑟
𝑥𝑖

)︂2

𝑑𝑥 = 𝐴3 =
1

𝑁

∫︁
Ω
𝐺2

2(𝑟) 𝑑𝑥, (3.12)∫︁
Ω

⃒⃒⃒⃒
∇
(︂
𝐺2(𝑟)

𝑟
𝑥𝑖

)︂⃒⃒⃒⃒2
𝑑𝑥 = 𝐴4 =

1

𝑁

∫︁
Ω

(︂
(𝐺′

2(𝑟))2 +
(𝑁 − 1)𝐺2

2(𝑟)

𝑟2

)︂
𝑑𝑥. (3.13)

For each 𝑢 ∈ 𝑋𝑁+1 ∖ {0} there exist 𝑐1, 𝑐2, . . . , 𝑐𝑁+1 ∈ R, not simultaneously equal to zero,
such that

𝑢 = 𝑐1
𝐺2(𝑟)

𝑟
𝑥1 + · · · + 𝑐𝑁

𝐺2(𝑟)

𝑟
𝑥𝑁 + 𝑐𝑁+1𝑤.

Thus, by the orthogonality (3.10), (3.11), and by the expressions (3.12), (3.13) we obtain

∫︀
Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

=

𝐴4

𝑁∑︁
𝑖=1

𝑐2𝑖 + 𝑐2𝑁+1

∫︁
Ω
|∇𝑤|2 𝑑𝑥

𝐴3

𝑁∑︁
𝑖=1

𝑐2𝑖 + 𝑐2𝑁+1

∫︁
Ω
𝑤2 𝑑𝑥

≤ max

{︂
𝐴4

𝐴3
,

∫︀
Ω |∇𝑤|2 𝑑𝑥∫︀
Ω𝑤2 𝑑𝑥

}︂
, (3.14)

and we know from (3.12), (3.13) that

𝐴4

𝐴3
=

∫︀
Ω

(︁
(𝐺′

2(𝑟))2 +
(𝑁−1)𝐺2

2(𝑟)
𝑟2

)︁
𝑑𝑥∫︀

Ω𝐺2(𝑟)2 𝑑𝑥
.

We claim that ∫︀
Ω |∇𝑤|2 𝑑𝑥∫︀
Ω𝑤2 𝑑𝑥

=

∫︀
Ω

(︁
(𝐺′

2(𝑟))2 +
2𝑁𝐺2

2(𝑟)
𝑟2

)︁
𝑑𝑥∫︀

Ω𝐺2
2(𝑟) 𝑑𝑥

. (3.15)

Suppose we established this claim. Then we get from Proposition 2.8 with 𝑙 = 2 that

𝐴4

𝐴3
<

∫︀
Ω

(︁
(𝐺′

2(𝑟))2 +
2𝑁𝐺2

2(𝑟)
𝑟2

)︁
𝑑𝑥∫︀

Ω𝐺2
2(𝑟) 𝑑𝑥

≤ 𝜇2,1, (3.16)

where the second inequality turns to equality if and only if Ω coincides a.e. with 𝐵𝛽 ∖ 𝐵𝛼.
Therefore, by (3.14) and (3.16), for every 𝑢 ∈ 𝑋𝑁+1 ∖ {0} we have∫︀

Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

≤ 𝜇2,1.

Now, the Courant-Fischer minimax formula (3.1) yields the desired inequality (3.9) as follows:

𝜇𝑁+2(Ω) ≤ max
𝑢∈𝑋𝑁+1∖{0}

∫︀
Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

≤ 𝜇2,1.

Thus, to complete the proof, it remains to establish the claimed equality (3.15). In view of
the 𝐿2(Ω)-orthogonality given by Lemma B.6 (if 𝑁 = 2, and assuming hereinafter, without
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loss of generality, that the rotation 𝑇 is the identity, see Remark B.2) or Lemma B.10 (if
𝑁 ≥ 3), we have∫︁

Ω
𝑤2 𝑑𝑥 =

∫︁
Ω

𝐺2
2(𝑟)

𝑟4

⎡⎣2

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝑥2𝑖𝑥
2
𝑗 𝑑𝑥 +

𝑁−1∑︁
𝑖=1

1

𝑖(𝑖 + 1)

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 − 𝑖𝑥2𝑖+1

⎞⎠2⎤⎦ 𝑑𝑥,

and hence the identity (B.8) implies that∫︁
Ω
𝑤2 𝑑𝑥 =

𝑁 − 1

𝑁

∫︁
Ω
𝐺2

2(𝑟) 𝑑𝑥. (3.17)

Next, we calculate
∫︀
Ω |∇𝑤|2 𝑑𝑥. Again, by the 𝐻1(Ω)-orthogonality given by Lemma B.6 (if

𝑁 = 2) or Lemma B.10 (if 𝑁 ≥ 3),∫︁
Ω
|∇𝑤|2 𝑑𝑥 = 2

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

∫︁
Ω

⃒⃒⃒⃒
∇
(︂
𝐺2(𝑟)

𝑟2
𝑥𝑖𝑥𝑗

)︂⃒⃒⃒⃒2
𝑑𝑥

+
𝑁−1∑︁
𝑖=1

1

𝑖(𝑖 + 1)

∫︁
Ω

⃒⃒⃒⃒
⃒⃒∇
⎛⎝𝐺2(𝑟)

𝑟2

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 − 𝑖𝑥2𝑖+1

⎞⎠⎞⎠⃒⃒⃒⃒⃒⃒
2

𝑑𝑥.

Using the expressions in Remark B.11, we obtain∫︁
Ω
|∇𝑤|2 𝑑𝑥

=

∫︁
Ω

[︂
(𝐺′

2(𝑟))2

𝑟4
− 4𝐺2

2(𝑟)

𝑟6

]︂⎡⎣2

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝑥2𝑖𝑥
2
𝑗 𝑑𝑥 +

𝑁−1∑︁
𝑖=1

1

𝑖(𝑖 + 1)

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 − 𝑖𝑥2𝑖+1

⎞⎠2⎤⎦ 𝑑𝑥

+

∫︁
Ω

𝐺2
2(𝑟)

𝑟4

⎡⎣2
𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

(𝑥2𝑖 + 𝑥2𝑗 ) + 4
𝑁−1∑︁
𝑖=1

1

𝑖(𝑖 + 1)

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 + 𝑖𝑥2𝑖+1

⎞⎠⎤⎦ 𝑑𝑥. (3.18)

By the identities (B.10) and (B.9) we have

2

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

(𝑥2𝑖 + 𝑥2𝑗 ) + 4

𝑁−1∑︁
𝑖=1

1

𝑖(𝑖 + 1)

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 + 𝑖𝑥2𝑖+1

⎞⎠ = 2(𝑁 − 1)𝑟2 +
4(𝑁 − 1)

𝑁
𝑟2

=
2(𝑁 − 1)(𝑁 + 2)

𝑁
𝑟2. (3.19)

Finally, using (B.8) and (3.19), we conclude from (3.18) that∫︁
Ω
|∇𝑤|2 𝑑𝑥 =

𝑁 − 1

𝑁

∫︁
Ω

[︂
(𝐺′

2(𝑟))2 − 4𝐺2
2(𝑟)

𝑟2

]︂
𝑑𝑥 +

2(𝑁 − 1)(𝑁 + 2)

𝑁

∫︁
Ω

𝐺2
2(𝑟)

𝑟2
𝑑𝑥

=
𝑁 − 1

𝑁

∫︁
Ω

(︂
(𝐺′

2(𝑟))2 +
2𝑁𝐺2

2(𝑟)

𝑟2

)︂
𝑑𝑥. (3.20)

Combining now (3.17) and (3.20), we get∫︀
Ω |∇𝑤|2 𝑑𝑥∫︀
Ω𝑤2 𝑑𝑥

=

∫︀
Ω

(︁
(𝐺′

2(𝑟))2 +
2𝑁𝐺2

2(𝑟)
𝑟2

)︁
𝑑𝑥∫︀

Ω𝐺2
2(𝑟) 𝑑𝑥

.
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This establishes the claimed equality (3.15) and therefore completes the proof of the inequality
(1.7).

3.4 Proof of (1.8). Due to Corollary 2.4, in order to establish (1.8) it is enough to prove
that

𝜇5(Ω) ≤ 𝜇2,1,

assuming that Ω is symmetric of order 8. Let the function 𝐺2 be defined by Proposition 2.8
with 𝑙 = 2. As an admissible choice of the 4-dimensional subspace of 𝐻1(Ω) for the variational
characterization (3.1) of 𝜇5(Ω), we take

𝑋4 = span
{︂
𝐺2(𝑟)

𝑟
𝑥1,

𝐺2(𝑟)

𝑟
𝑥2,

𝐺2(𝑟)

𝑟2
𝑥1𝑥2,

𝐺2(𝑟)

𝑟2
(𝑥21 − 𝑥22)

}︂
.

Since the symmetry of order 8 implies the symmetry of order 4, we get, as in Section 3.3,∫︀
Ω 𝑢 𝑑𝑥 = 0 for any 𝑢 ∈ 𝑋5, and equalities (3.12), (3.13) for 𝑖 ∈ {1, 2} and 𝑁 = 2. Moreover,

Lemma B.6 (in which we assume, without loss of generality, that the rotation 𝑇 is the identity,
see Remark B.2) gives the mutual orthogonality of elements of 𝑋4 in both 𝐿2(Ω) and 𝐻1(Ω).

On the other hand, since Ω is symmetric of order 8, Proposition B.1 (iii) provides the
existence of 𝐴5, 𝐴6 > 0 such that∫︁

Ω

𝐺2
2(𝑟)

𝑟4
(︀
𝑥21 − 𝑥22

)︀2
𝑑𝑥 = 4

∫︁
Ω

𝐺2
2(𝑟)

𝑟4
𝑥21𝑥

2
2 𝑑𝑥 = 𝐴5

and, using Remark B.11 with 𝑖 = 1,∫︁
Ω

⃒⃒⃒⃒
∇
(︂
𝐺2(𝑟)

𝑟2
(𝑥21 − 𝑥22)

)︂⃒⃒⃒⃒2
𝑑𝑥 =

∫︁
Ω

[︂(︂
(𝐺′

2(𝑟))2

𝑟4
− 4𝐺2

2(𝑟)

𝑟6

)︂
(𝑥21 − 𝑥22)

2 +
4𝐺2

2(𝑟)

𝑟2

]︂
𝑑𝑥

= 4

∫︁
Ω

[︂(︂
(𝐺′

2(𝑟))2

𝑟4
− 4𝐺2

2(𝑟)

𝑟6

)︂
𝑥21𝑥

2
2 +

𝐺2
2(𝑟)

𝑟2

]︂
𝑑𝑥

= 4

∫︁
Ω

⃒⃒⃒⃒
∇
(︂
𝐺2(𝑟)

𝑟2
𝑥1𝑥2

)︂⃒⃒⃒⃒2
𝑑𝑥 = 𝐴6.

This yields

2𝐴5 =

∫︁
Ω

𝐺2
2(𝑟)

𝑟4
(︀
𝑥21 − 𝑥22

)︀2
𝑑𝑥 + 4

∫︁
Ω

𝐺2
2(𝑟)

𝑟4
𝑥21𝑥

2
2 𝑑𝑥 =

∫︁
Ω
𝐺2

2(𝑟) 𝑑𝑥, (3.21)

2𝐴6 =

∫︁
Ω

[︂(︂
(𝐺′

2(𝑟))2

𝑟4
− 4𝐺2

2(𝑟)

𝑟6

)︂
𝑟4 +

8𝐺2
2(𝑟)

𝑟2

]︂
𝑑𝑥 =

∫︁
Ω

(︂
(𝐺′

2(𝑟))2 +
4𝐺2

2(𝑟)

𝑟2

)︂
𝑑𝑥. (3.22)

Thus, for any 𝑢 ∈ 𝑋4 ∖ {0}, by the orthogonality given by Lemma B.6, and by the expressions
(3.12), (3.13), and (3.21), (3.22), we get∫︀

Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

≤ max

{︂
𝐴4

𝐴3
,
𝐴6

𝐴5

}︂
=

∫︀
Ω

(︁
(𝐺′

2(𝑟))2 +
4𝐺2

2(𝑟)
𝑟2

)︁
𝑑𝑥∫︀

Ω𝐺2
2(𝑟) 𝑑𝑥

.

Therefore, by the Courant-Fischer minimax formula (3.1) and Proposition 2.8 with 𝑙 = 2, we
conclude that

𝜇5(Ωout ∖ Ωin) ≤ max
𝑢∈𝑋4∖{0}

∫︀
Ω |∇𝑢|2 𝑑𝑥∫︀
Ω 𝑢2 𝑑𝑥

≤ 𝜇2,1,
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where the second inequality turns to equality if and only if Ω coincides a.e. with 𝐵𝛽 ∖ 𝐵𝛼.
This completes the proof of (1.8).

4. Counterexamples

In this section, we show that the inequalities (1.5), (1.6), (1.7), and (1.8) stated in Theorem
1.6 might fail for domains which do not satisfy the corresponding symmetry requirements. For
simplicity, all the examples will be given in the planar case 𝑁 = 2.

4.1 Counterexample to (1.5). We consider the class of eccentric annuli 𝐵𝛽 ∖𝐵𝛼(𝑠) with
0 < 𝛼 < 𝛽 and 𝑠 ∈ (0, 𝛽 − 𝛼), where 𝐵𝛼(𝑠) is the open disk of radius 𝛼 > 0 centred at
the point (𝑠, 0). Clearly, for 𝑠 > 0, 𝐵𝛽 ∖ 𝐵𝛼(𝑠) is neither symmetric of order 2 nor centrally
symmetric. The fact that 𝜇2(𝐵𝛽 ∖ 𝐵𝛼(𝑠)) can be greater than 𝜇2(𝐵𝛽 ∖ 𝐵𝛼(0)) for certain
values of 𝛼, 𝛽, 𝑠 is observed numerically in [31], see [31, Figures 7, 8]. More rigorously, taking,
for instance, 𝛼 = 𝑠 = 0.25 and 𝛽 = 1, we have 𝜇2(𝐵𝛽 ∖ 𝐵𝛼(0.25)) ≥ (1.6446...)2, while
𝜇2(𝐵𝛽 ∖ 𝐵𝛼(0)) = (1.6445...)2, see [23, Table IX]. This establishes a counterexample to the
inequality (1.5).

4.2 Counterexamples to (1.6) and (1.7). Consider the rectangle Ωout =
(︀
−𝑎

2 ,
𝑎
2

)︀
×(︀

− 1
2𝑎 ,

1
2𝑎

)︀
of unite measure. Clearly, Ωout is not symmetric of order 4 provided 𝑎 ̸= 1. It

is well-known that all eigenvalues of the problem (ℰ𝒫) on Ωout are given by 𝜋2𝑘2

𝑎2
+ 𝜋2𝑚2𝑎2,

𝑘,𝑚 ∈ N0. Taking 𝑎 =
√

3, it is not hard to deduce that

𝜇3(Ωout) =
4𝜋2

3
≈ 13.1594 > 𝜇2(𝐵) = 𝜋

(︁
𝑝
(1)
1,1

)︁2
≈ 10.6499, (4.1)

𝜇4(Ωout) = 3𝜋2 ≈ 29.6088 > 𝜇4(𝐵) = 𝜋
(︁
𝑝
(2)
1,1

)︁2
≈ 29.3059, (4.2)

where 𝐵 is a disk of unit measure. These inequalities show that (1.2) and (1.3) are not satisfied
for Ωout. On the other hand, it is known that

𝜇𝜅(Ω ∖𝐵𝛼) → 𝜇𝜅(Ω) as 𝛼 → 0 (4.3)

for any 𝜅 ∈ N0, see, e.g., [11, Theorem 3.5 and Corollary 3.6]. Therefore, combining (4.1)
(reps. (4.2)) and (4.3) (with Ω = Ωout and Ω = 𝐵𝛽), we provide a counterexample to (1.6)
(resp. (1.7)) for all sufficiently small 𝛼 ≥ 0.

4.3 Counterexample to (1.8). It was observed by Hersch in [17, Section 5.4] that the
inequality (1.3) cannot be extended to the inequality

𝜇5(Ω) ≤ 𝜇4(𝐵)

for domains symmetric of order 4, since this inequality is reversed when Ω is a square. Clearly,
using the same convergence argument as in the counterexample above, we deduce that the
inequality (1.8) also does not hold, in general, if Ωout ∖𝐵𝛼 has only the symmetry of order 4.
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5. On the existence and properties of symmetric domains

In this section, we discuss the existence and certain properties of domains with symmetries
as required in Theorem 1.6 and Remark 1.10. Since radially symmetric domains trivially
satisfy all such symmetries, in what follows we will be interested only in nonradial domains.
It is evident that any domain in any dimension is symmetric of order 1. In the planar case
𝑁 = 2, nonradial domains with symmetry of order 𝑞 exist for any 𝑞 ≥ 2. For example, a
regular 𝑞-sided polygon is symmetric of order 𝑞 ≥ 3, and a square is symmetric of order 2.
Thus, throughout this section, we will be interested mainly in the case 𝑁 ≥ 3 and 𝑞 ≥ 2.

Recall that for each 𝑞 ∈ N we denote by 𝑅
2𝜋/𝑞
𝑖,𝑗 the 2𝜋/𝑞-rotation (in the anti-clockwise

direction with respect to the origin) in the coordinate plane (𝑥𝑖, 𝑥𝑗) with 𝑖 < 𝑗, see Definition
1.1. In particular, we will be interested in the cases 𝑞 = 2, 4, 8:

𝑅
2𝜋/2
𝑖,𝑗 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑗 , . . . , 𝑥𝑁 ) = (𝑥1, . . . ,−𝑥𝑖, . . . ,−𝑥𝑗 , . . . , 𝑥𝑁 ), (5.1)

𝑅
2𝜋/4
𝑖,𝑗 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑗 , . . . , 𝑥𝑁 ) = (𝑥1, . . . ,−𝑥𝑗 , . . . , 𝑥𝑖, . . . , 𝑥𝑁 ), (5.2)

𝑅
2𝜋/8
𝑖,𝑗 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑗 , . . . , 𝑥𝑁 ) =

(︂
𝑥1, . . . ,

1√
2

(𝑥𝑖 − 𝑥𝑗), . . . ,
1√
2

(𝑥𝑖 + 𝑥𝑗), . . . , 𝑥𝑁

)︂
. (5.3)

The antipodal map will be denoted by 𝐴, i.e., 𝐴(𝑥) = −𝑥.

For 𝑥 ∈ R𝑁 , we denote by ‖𝑥‖𝑝 the standard 𝐿𝑝-norm of 𝑥, that is, ‖𝑥‖𝑝 := (|𝑥1|𝑝 + · · · +

|𝑥𝑁 |𝑝)1/𝑝.

5.1 Symmetry of order 𝑞. Let Ω be a domain which has the symmetry of order 𝑞 ∈ N. If
𝑞 ̸= 1, 2, 4, then we claim that Ω must be invariant under the entire group 𝑆𝑂(𝑁), and hence
Ω is radially symmetric. Here, 𝑆𝑂(𝑁) stands for the special orthogonal group consisted of
all 𝑁 × 𝑁 orthogonal matrices of determinant 1, which correspond to rotations in R𝑁 . We
denote by ‖𝑇‖ the operator norm of 𝑇 ∈ 𝑆𝑂(𝑁) induced by the Euclidean norm ‖ · ‖2. The
group 𝑆𝑂(𝑁) is a real compact Lie group.

Let us fix some additional notation.

∙ For a subgroup 𝐻 of 𝑆𝑂(𝑁) and for 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑁,

𝐻𝑖,𝑗,𝑘 :=
{︁
𝑇 ∈ 𝐻 : 𝑇 (𝑥) = 𝑥 for every 𝑥 ∈ span{𝑒𝑖, 𝑒𝑗 , 𝑒𝑘}⊥

}︁
.

∙ 𝐺𝑞 ⊂ 𝑆𝑂(𝑁) is the group generated by the set of rotations
{︁
𝑅

2𝜋/𝑞
𝑖,𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑁

}︁
.

Proposition 5.1. Let Ω be a domain in R𝑁 with 𝑁 ≥ 3. Let 𝐻 := {𝑇 ∈ 𝑆𝑂(𝑁), 𝑇 (Ω) = Ω}.
If a natural number 𝑞 ̸= 1, 2, 4 and 𝐺𝑞 ⊂ 𝐻, then 𝐻 = 𝑆𝑂(𝑁).

Proof. We divide the proof into three steps.

Step 1. We claim that 𝐻 is a closed subgroup of 𝑆𝑂(𝑁). First, it is evident that 𝐻 is a
subgroup of 𝑆𝑂(𝑁). Let now {𝑇𝑛}𝑛∈N ⊂ 𝐻 and 𝑇 ∈ 𝑆𝑂(𝑁) be such that 𝑇𝑛 → 𝑇 , where
the convergence is understood in the operator norm. Since Ω is open, for any 𝑥 ∈ Ω ∖ {0} we
can choose 𝜀 > 0 such that 𝐵𝜀(𝑥) ⊂ Ω. Let 𝑛 be sufficiently large so that ‖𝑇𝑛 − 𝑇‖ < 𝜀

‖𝑥‖2 .
Thus, ‖𝑇𝑛(𝑥) − 𝑇 (𝑥)‖2 ≤ ‖𝑇𝑛 − 𝑇‖‖𝑥‖2 < 𝜀. Moreover, since 𝑇𝑛 is an isometry, we have
𝐵𝜀(𝑇𝑛(𝑥)) = 𝑇𝑛(𝐵𝜀(𝑥)). Therefore, 𝑇 (𝑥) ∈ 𝐵𝜀(𝑇𝑛(𝑥)) = 𝑇𝑛(𝐵𝜀(𝑥)) ⊂ 𝑇𝑛(Ω) = Ω, which
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yields 𝑇 (Ω) ⊂ Ω. By the same argument, we also obtain 𝑇−1(Ω) ⊂ Ω, and hence Ω ⊂ 𝑇 (Ω).
Consequently, 𝑇 (Ω) = Ω, that is, 𝑇 ∈ 𝐻, which implies that 𝐻 is closed.

Step 2: We claim that the proposition is true in the case 𝑁 = 3. Notice that the closed-
subgroup theorem asserts that 𝐺𝑞, the closure of 𝐺𝑞, is a Lie subgroup of 𝑆𝑂(3). Since
𝑞 ̸= 1, 2, 4, [27, Theorem 1, Corollary 2, and Remark on pp. 613-614] imply that 𝐺𝑞 contains
an infinite subgroup which is a free product or a nontrivial amalgamated free product of finite
groups, and hence 𝐺𝑞 must be also an infinite group. Therefore, according to the classification
of Lie subgroups of 𝑆𝑂(3) (see, e.g., [3, Example 2.4]), 𝐺𝑞 is either 𝑆𝑂(2) or 𝑂(2) or 𝑆𝑂(3).
Since 𝐺𝑞 contains two rotations by angles other than 𝜋 degrees about two different axes, we
conclude that 𝐺𝑞 is neither 𝑆𝑂(2) nor 𝑂(2), and hence 𝐺𝑞 = 𝑆𝑂(3). Since 𝐺𝑞 ⊂ 𝐻, and 𝐻
is a closed subgroup of 𝑆𝑂(𝑁) by Step 1, we deduce that 𝐻 = 𝑆𝑂(3).

Step 3: Finally, we claim that 𝐻 = 𝑆𝑂(𝑁) for any 𝑁 ≥ 4. By the same set of arguments
as in Step 2, for each 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑁 , we obtain 𝐻𝑖,𝑗,𝑘 = 𝑆𝑂(𝑁)𝑖,𝑗,𝑘. Notice that the Lie
algebra of 𝑆𝑂(𝑁) is the set all 𝑁 ×𝑁 skew-symmetric matrices. Now take skew-symmetric
matrices 𝐸𝑖,𝑗 defined as 𝐸𝑖,𝑗(𝑒𝑙) = 𝛿𝑖,𝑙𝑒𝑗 − 𝛿𝑗,𝑙𝑒𝑖. Clearly, 𝐸𝑖,𝑗 (as well as 𝐸𝑖,𝑘 and 𝐸𝑗,𝑘) lies
in the Lie algebra of 𝐻𝑖,𝑗,𝑘 and hence in the Lie algebra of 𝐻. Thus, the Lie algebra of 𝐻
contains the set {𝐸𝑖,𝑗 : 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑁}. Since the set {𝐸𝑖,𝑗 : 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑁} spans
the set of all 𝑁 ×𝑁 skew-symmetric matrices, we conclude that 𝐻 = 𝑆𝑂(𝑁). �

5.2 Symmetry of order 2 and central symmetry. Observe that in the planar case
𝑁 = 2 the symmetry of order 2 is equivalent to the central symmetry. Let us discuss the
relation between these two notions for 𝑁 ≥ 3. For this, taking 𝑝 ∈ [1,∞], we consider the
following four sets

𝑄𝑝 := {𝑥 ∈ R𝑁 : ‖𝑥‖𝑝 < 1}, 𝑄+
𝑝 := {𝑥 ∈ 𝑄𝑝 : 𝑥1, . . . , 𝑥𝑁 > 0}, 𝑄−

𝑝 := −𝑄+
𝑝 , (5.4)

̃︀𝑄+
𝑝 := {𝑥 ∈ 𝑄𝑝 : 𝑥1 · . . . · 𝑥𝑁 > 0} ,

see Figures 1 and 2. Notice that the 𝐿𝑝-cube 𝑄𝑝 has both the symmetry of order 2 and the
central symmetry, see (5.1) and the definition of the antipodal map 𝐴. Moreover, if 𝑝 ̸= 2,
then 𝑄𝑝 is nonradial.

Assume first that 𝑁 ≥ 4 is even. In this case, the domains that are symmetric of order
2 must be centrally symmetric, as it follows from the fact that the antipodal map 𝐴 can be
expressed as 𝐴 =

∏︀𝑁/2
𝑖=1 𝑅

2𝜋/2
2𝑖−1,2𝑖.

Assume now that 𝑁 ≥ 3 is odd. In this case, the symmetry of order 2 might not imply the
central symmetry. As an example, for 𝛼 ∈ (0, 1), the set ̃︀𝑄+

𝑝 ∪ 𝐵𝛼 is a bounded domain that
has the symmetry of order 2, see (5.1). However, 𝐴( ̃︀𝑄+

𝑝 ∪𝐵𝛼) ̸= ̃︀𝑄+
𝑝 ∪𝐵𝛼 since 𝑁 is odd. See

Figure 2.

In the following lemma, we demonstrate that, in general, the central symmetry does not
imply the symmetry of order 2 in any dimension 𝑁 ≥ 3. Here, we will denote by 𝐵𝛼(𝑥) an
open 𝑁 -ball of radius 𝛼 centred at 𝑥 ∈ R𝑁 .

Lemma 5.2. Let 𝑁 ≥ 3 and 𝑝 = ∞. Let 𝜉 = (1, 0, . . . , 0). Then, for any sufficiently small
𝛼 ∈ (0, 1), 𝑄+

𝑝 ∪𝑄−
𝑝 ∪𝐵𝛼(0) ∪𝐵𝛼(𝜉) ∪𝐵𝛼(−𝜉) is a domain which has the central symmetry,

but does not have the symmetry of order 2.
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Figure 1. 𝑄+
∞ ∪ 𝑄−

∞ for
𝑁 = 3.

Figure 2. ̃︀𝑄+
∞ for 𝑁 = 3.

Proof. Let Ω := 𝑄+
𝑝 ∪ 𝑄−

𝑝 ∪ 𝐵𝛼(0) ∪ 𝐵𝛼(𝜉) ∪ 𝐵𝛼(−𝜉). It is easy to see that Ω is a centrally
symmetric domain. Let us prove that Ω is not symmetric of order 2. Suppose, by contradiction,
that there exists an isometry 𝑇 such that 𝑅

2𝜋/2
𝑖,𝑗 𝑇 (Ω) = 𝑇 (Ω) for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 . Since

Ω is centrally symmetric and 𝑇 (Ω) is symmetric of order 2, we deduce from Proposition B.3
that their centroids (centres of mass) coincide with the origin. Since the isometry 𝑇 maps the
centroid of Ω to the centroid of 𝑇 (Ω), we deduce that 𝑇 must be an orthogonal transformation.

Evidently, Ω is symmetric of order 2 if and only if Ω is symmetric of order 2. Since 𝑝 = ∞
and 𝛼 ∈ (0, 1) is small enough, we have ‖𝑥‖2 ≤

√
𝑁 for any 𝑥 ∈ Ω, and equality holds if

and only if 𝑥 = ±𝑢, where 𝑢 = (1, . . . , 1). Since there are only two such points and 𝑇 is an
orthogonal transformation, for each 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 the transformation 𝑇−1𝑅

2𝜋/2
𝑖,𝑗 𝑇 either fixes

𝑢, or maps 𝑢 to −𝑢. Let us denote 𝑣 = 𝑇 (𝑢) and show that either 𝑣 =
√
𝑁𝑒𝑖 or 𝑣 = −

√
𝑁𝑒𝑖 for

some 𝑖 ∈ {1, . . . , 𝑁}. In other words, the axis 𝑒𝑖 is mapped by 𝑇−1 to the diagonal {𝑡𝑢 : 𝑡 ∈ R}
of the cube 𝑄𝑝. Denote

𝑆+ =
{︁
𝑅

2𝜋/2
𝑖,𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, 𝑅

2𝜋/2
𝑖,𝑗 𝑣 = 𝑣

}︁
,

𝑆− =
{︁
𝑅

2𝜋/2
𝑖,𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, 𝑅

2𝜋/2
𝑖,𝑗 𝑣 = −𝑣

}︁
.

Notice that, if 𝑅
2𝜋/2
𝑖,𝑗 ∈ 𝑆+, then 𝑣𝑖 = 0 and 𝑣𝑗 = 0, while if 𝑅

2𝜋/2
𝑖,𝑗 ∈ 𝑆−, then 𝑣𝑘 = 0 for

any 𝑘 ̸= 𝑖, 𝑗, see (5.1). Since 𝑣 ̸= 0, we have 𝑆+, 𝑆− ̸= ∅. Assume, without loss of generality,
that 𝑅

2𝜋/2
1,2 ∈ 𝑆−. Now, if 𝑅2𝜋/2

1,3 ∈ 𝑆−, then we get either 𝑣 =
√
𝑁𝑒1 or 𝑣 = −

√
𝑁𝑒1, while

if 𝑅2𝜋/2
1,3 ∈ 𝑆+, then we get either 𝑣 =

√
𝑁𝑒2 or 𝑣 = −

√
𝑁𝑒2. For convenience, assume that

𝑣 =
√
𝑁𝑒1. In particular, we have 𝑅

2𝜋/2
1,𝑗 𝑣 = −𝑣 for any 1 < 𝑗 ≤ 𝑁 , and 𝑅

2𝜋/2
𝑖,𝑗 𝑣 = 𝑣 for any

1 < 𝑖 < 𝑗 ≤ 𝑁 .

Consider now the point 𝜔 = (1 + 𝛼, 0, . . . , 0). It is easy to see that 𝜔 and −𝜔 are the only
points on 𝜕Ω with the properties that their Euclidean norm is 1+𝛼 and the mean curvature of
𝜕Ω at these points is a nonzero constant. Consequently, we must have 𝑇−1𝑅

2𝜋/2
𝑖,𝑗 𝑇 (𝜔) = ±𝜔

for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 . Recalling now that 𝑅
2𝜋/2
𝑖,𝑗 𝑇 (𝑢) = 𝑇 (𝑢) for any 1 < 𝑖 < 𝑗 ≤ 𝑁 , we

obtain

0 < 𝜔 · 𝑢 = 𝑅
2𝜋/2
𝑖,𝑗 𝑇 (𝜔) ·𝑅2𝜋/2

𝑖,𝑗 𝑇 (𝑢) = 𝑅
2𝜋/2
𝑖,𝑗 𝑇 (𝜔) · 𝑇 (𝑢) = 𝑇−1𝑅

2𝜋/2
𝑖,𝑗 𝑇 (𝜔) · 𝑢.
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Therefore, 𝑇−1𝑅
2𝜋/2
𝑖,𝑗 𝑇 (𝜔) = 𝜔 for any 1 < 𝑖 < 𝑗 ≤ 𝑁 , which yields 𝑇 (𝜔)𝑖 = 0 for 𝑖 ∈

{2, . . . , 𝑁}. Thus, we have 𝑇 (𝜔) = (1 + 𝛼)𝑒1, and hence

𝑤 = (1 + 𝛼)𝑇−1(𝑒1) = (1 + 𝛼)
1√
𝑁

𝑢,

which is impossible. �

In conclusion, when 𝑁 ≥ 4 is even, the symmetry of order 2 implies the central symmetry,
but not vice versa, i.e., the central symmetry is a weaker notion. When 𝑁 ≥ 3 is odd, the
symmetry of order 2 and the central symmetry are independent notions.

Figure 3. A set in 𝑁 = 3 which is symmetric of order 4 but not centrally symmetric.

5.3 Symmetry of order 4. For 𝑝 ∈ [1,∞] with 𝑝 ̸= 2, 𝑄𝑝 defined in (5.4) is a nonradial
domain having the symmetry of order 4. Indeed, applying any rotation 𝑅

2𝜋/4
𝑖,𝑗 (see (5.2)), we

deduce that ‖𝑅2𝜋/4
𝑖,𝑗 (𝑥)‖𝑝 = ‖𝑥‖𝑝, and hence 𝑅

2𝜋/4
𝑖,𝑗 (𝑄𝑝) ⊂ 𝑄𝑝. This implies that 𝑅

2𝜋/4
𝑖,𝑗 (𝑄𝑝) =

𝑄𝑝 since 𝑅
2𝜋/4
𝑖,𝑗 is an isometry.

It is interesting to mention that the symmetry of order 4 might not imply the central
symmetry if 𝑁 is odd, as indicated by an example for 𝑁 = 3 depicted in Figure 3.

5.4 Symmetry of order 8. Consider the class of domains which are symmetric of order 8
with respect to some coordinate plane (𝑥𝑘, 𝑥𝑙) and symmetric of order 4 with respect to all
other coordinate planes, as was discussed in Remark 1.10. Let us denote this class as 𝐶8,4. We
show that 𝐶8,4 coincides with the class of domains symmetric of order 8 (with respect to all
coordinate planes), and hence any Ω ∈ 𝐶8,4 is radially symmetric, see Section 5.1. Indeed, let
us take any Ω ∈ 𝐶8,4, fix any 𝑚 ̸= 𝑘, 𝑙, and show that Ω is symmetric of order 8 with respect
to (𝑥𝑙, 𝑥𝑚). Assuming, for the sake of clarity, that 1 < 𝑘 < 𝑙 < 𝑚 < 𝑁 , we deduce that for
any 𝑥 ∈ Ω,

𝑅
2𝜋/4
𝑘,𝑚 (𝑥1, . . . , 𝑥𝑘, . . . , 𝑥𝑙, . . . , 𝑥𝑚, . . . , 𝑥𝑁 ) = (𝑥1, . . . ,−𝑥𝑚, . . . , 𝑥𝑙, . . . , 𝑥𝑘, . . . , 𝑥𝑁 ),

𝑅
2𝜋/8
𝑘,𝑙 (𝑥1, . . . ,−𝑥𝑚, . . . , 𝑥𝑙, . . . , 𝑥𝑘, . . . , 𝑥𝑁 )

=

(︂
𝑥1, . . . ,−

1√
2

(𝑥𝑙 + 𝑥𝑚), . . . ,
1√
2

(𝑥𝑙 − 𝑥𝑚), . . . , 𝑥𝑘, . . . , 𝑥𝑁

)︂
,
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𝑅

2𝜋/4
𝑘,𝑚

)︁−1
(︂
𝑥1, . . . ,−

1√
2

(𝑥𝑙 + 𝑥𝑚), . . . ,
1√
2

(𝑥𝑙 − 𝑥𝑚), . . . , 𝑥𝑘, . . . , 𝑥𝑁

)︂
=

(︂
𝑥1, . . . , 𝑥𝑘, . . . ,

1√
2

(𝑥𝑙 − 𝑥𝑚), . . . ,
1√
2

(𝑥𝑙 + 𝑥𝑚), . . . , 𝑥𝑁

)︂
= 𝑅

2𝜋/8
𝑙,𝑚 (𝑥1, . . . , 𝑥𝑘, . . . , 𝑥𝑙, . . . , 𝑥𝑚, . . . , 𝑥𝑁 ).

That is,
(︁
𝑅

2𝜋/4
𝑘,𝑚

)︁−1
𝑅

2𝜋/8
𝑘,𝑙 𝑅

2𝜋/4
𝑘,𝑚 (𝑥) = 𝑅

2𝜋/8
𝑙,𝑚 (𝑥), and hence 𝑅

2𝜋/8
𝑙,𝑚 (𝑥) ∈ Ω, which establishes the

claim.

6. Final comments and open problems

Let us list some of the natural questions and remarks related to the discussion of this paper.

(1) In the planar case 𝑁 = 2, is it possible to obtain similar inequalities as in Theorem 1.6
for eigenvalues with higher indices (≥ 6) by imposing higher symmetry assumptions
on the domain? Notice that in our proof we used the constant extensions of nonradial
eigenfunctions of (ℰ𝒫) on 𝐵𝛽 ∖ 𝐵𝛼. However, there are also radial eigenfunctions,
which might disturb the “proper” index counting. For instance, if 𝑁 = 2 and 𝛼 ≥ 0 is
sufficiently small, then already 𝜇6(𝐵𝛽 ∖𝐵𝛼) might have a one-dimensional eigenspace
of radial eigenfunctions.

(2) In the higher-dimensional case 𝑁 ≥ 3, is it possible to establish results similar to those
of Theorem 1.6 for domains with other symmetries (e.g., symmetry groups of platonic
solids except of the symmetry of order 4) or for domains of the form Ω1 × Ω2, where
Ω1 and Ω2 are domains symmetric of order 𝑞1 and 𝑞2, respectively? In the case of
surfaces of platonic solids in R3, we refer the reader to [14, 18] for estimates on 𝜇2 and
further discussion. (Notice that the only platonic solid with unknown effective lower
bound on 𝜇2 is the dodecahedron.)

(3) It is natural to wonder which domains maximize higher Neumann eigenvalues (with
index ≥ 4) if no symmetry assumptions are imposed. In this regard, we refer the reader
to [1, 4] for numerical results on the maximization of higher Neumann eigenvalues with
respect to domains of equal volume.

(4) The counterexamples to (1.6), (1.7), (1.8) obtained in Section 4 show certain optimality
of the obtained results in the planar case. However, the actual optimality would follow
from the construction of counterexamples to these inequalities in the classes of domains
whose order of symmetry is reduced by one, i.e., for domains symmetric of order 3 in
the case of (1.6), (1.7), and of order 7 in the case of (1.8). (Recall that (1.2) is satisfied
for planar domains symmetric of order 3 under the additional simply-connectedness
assumption.)

(5) Recall that the assumption that 𝐵𝛼 must be contained in Ωin appears only in the
proof of Proposition 2.8. Can this assumption be relaxed? In particular, one could
wonder whether 𝐵𝛼 ⊂ Ωin can be replaced by the equality of measures |𝐵𝛼| = |Ωin|.
Numerical experiments with domains depicted on Figure 4 indicate that if Ωin is not
connected (and does not contain zero), then the assumption |𝐵𝛼| = |Ωin| might not
lead to the inequality (1.5).
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Figure 4. On the left: a domain Ω with three circular boundaries. The
outer disk is of radius 1, the inner disks are of radius

√
2/8, the distance

between centres of the inner disks is 3/5 +
√

2/4, Ω is symmetric of order
2, and 𝜇2(Ω) ≈ 2.74. On the right: 𝐵𝛽 ∖ 𝐵𝛼 with 𝛽 = 1, 𝛼 = 1/4, and
𝜇2(𝐵𝛽 ∖𝐵𝛼) ≈ 2.70.

(6) If Ω has an appropriate smoothness (say, Lipschitz), then equality holds in (1.5), (1.6),
(1.7), (1.8) if and only if Ω = 𝐵𝛽∖𝐵𝛼. The necessary part follows since |Ω| = |𝐵𝛽∖𝐵𝛼|,
and Ω ⊂ 𝐵𝛽 ∖𝐵𝛼 in case of equality, see the end of the proof of Proposition 2.8.

Appendix A.

In this section, we prove Lemmas 2.3 and 2.7 stated in Section 2. Throughout the section,
we always assume 0 ≤ 𝛼 < 𝛽. First, we prove Lemma 2.7.

Proof of Lemma 2.7. We start by showing that 𝑣′ does not vanish on (𝛼, 𝛽). For convenience,
let us rewrite (2.1) as

𝑣′′(𝑟) +
𝑁 − 1

𝑟
𝑣′(𝑟) =

(︂
𝑙(𝑙 + 𝑁 − 2)

𝑟2
− 𝜇𝑙,1

)︂
𝑣(𝑟), 𝑟 ∈ (𝛼, 𝛽). (A.1)

Suppose, by contradiction, that 𝑣′(𝛾) = 0 for some 𝛾 ∈ (𝛼, 𝛽), and hence

𝑣′′(𝛾) =

(︂
𝑙(𝑙 + 𝑁 − 2)

𝛾2
− 𝜇𝑙,1

)︂
𝑣(𝛾).

Assume first that 𝑣′′(𝛾) ≥ 0. Since 𝑣 is positive, we have 𝑙(𝑙+𝑁−2)
𝛾2 − 𝜇𝑙,1 ≥ 0, and hence,

multiplying (A.1) by 𝑟𝑁−1, we obtain

(𝑟𝑁−1𝑣′(𝑟))′ =

(︂
𝑙(𝑙 + 𝑁 − 2)

𝑟2
− 𝜇𝑙,1

)︂
𝑣(𝑟)𝑟𝑁−1 > 0, 𝑟 ∈ (𝛼, 𝛾).

That is, 𝑟𝑁−1𝑣′(𝑟) is strictly increasing on (𝛼, 𝛾), which is impossible since 𝑣′(𝛼) = 0.

Assume now that 𝑣′′(𝛾) < 0. In this case, we get 𝑙(𝑙+𝑁−2)
𝛾2 − 𝜇𝑙,1 < 0. Thus, we see from

(A.1), as above, that

(𝑟𝑁−1𝑣′(𝑟))′ =

(︂
𝑙(𝑙 + 𝑁 − 2)

𝑟2
− 𝜇𝑙,1

)︂
𝑣(𝑟)𝑟𝑁−1 < 0, 𝑟 ∈ [𝛾, 𝛽).

Consequently, 𝑟𝑁−1𝑣′(𝑟) is strictly decreasing on [𝛾, 𝛽), which gives a contradiction since
𝑣′(𝛽) = 0.
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Let us show now that 𝑣′ > 0 on (𝛼, 𝛽). Since 𝑣′ does not vanish in (𝛼, 𝛽), we have either
𝑣′(𝑟) > 0 or 𝑣′(𝑟) < 0 for every 𝑟 ∈ (𝛼, 𝛽). Suppose, by contradiction, that 𝑣′(𝑟) < 0 for every
𝑟 ∈ (𝛼, 𝛽). In particular, this yields 𝑣(𝛼) > 0 and 𝑣′′(𝛼) ≤ 0, since 𝑣 is positive and 𝑣′(𝛼) = 0.
Therefore, from (A.1) we obtain

0 ≥ 𝑣′′(𝛼) = 𝑣′′(𝛼) +
𝑁 − 1

𝛼
𝑣′(𝛼) =

(︂
𝑙(𝑙 + 𝑁 − 2)

𝛼2
− 𝜇𝑙,1

)︂
𝑣(𝛼),

and hence 𝑙(𝑙+𝑁−2)
𝛼2 − 𝜇1,1 ≤ 0. Again from (A.1) we get

(𝑟𝑁−1𝑣′(𝑟))′ =

(︂
𝑙(𝑙 + 𝑁 − 2)

𝑟2
− 𝜇𝑙,1

)︂
𝑣(𝑟)𝑟𝑁−1 <

(︂
𝑙(𝑙 + 𝑁 − 2)

𝛼2
− 𝜇𝑙,1

)︂
𝑣(𝑟)𝑟𝑁−1 ≤ 0

for any 𝑟 ∈ (𝛼, 𝛽). Thus, 𝑟𝑁−1𝑣′(𝑟) is strictly decreasing on (𝛼, 𝛽), which is impossible since
𝑣′(𝛽) = 0. Hence, we proved that 𝑣′(𝑟) > 0 for every 𝑟 ∈ (𝛼, 𝛽).

Let us now prove the inequality (2.14). Multiplying (A.1) by 𝑣, we get

𝑣′′(𝑟)𝑣(𝑟) = −𝑁 − 1

𝑟
𝑣′(𝑟)𝑣(𝑟) +

(︂
𝑙(𝑙 + 𝑁 − 2)

𝑟2
− 𝜇𝑙,1

)︂
𝑣2(𝑟), 𝑟 ∈ (𝛼, 𝛽).

Recalling that 𝑣 is positive, increasing, and 𝑣′(𝛽) = 0, we see that 𝑣′′(𝛽) ≤ 0, which yields

𝑣′′(𝛽)𝑣(𝛽) =

(︂
𝑙(𝑙 + 𝑁 − 2)

𝛽2
− 𝜇𝑙,1

)︂
𝑣2(𝛽) ≤ 0.

If 𝑙(𝑙+𝑁−2)
𝛽2 − 𝜇𝑙,1 = 0, then 𝑙(𝑙+𝑁−2)

𝑟2
− 𝜇𝑙,1 > 0 for all 𝑟 ∈ (𝛼, 𝛽), and hence (2.14) follows

trivially. On the other hand, if 𝑙(𝑙+𝑁−2)
𝛽2 − 𝜇𝑙,1 < 0, then

0 ≥
(︂
𝑙(𝑙 + 𝑁 − 2)

𝑟2
− 𝜇𝑙,1

)︂
𝑣2(𝑟) >

(︂
𝑙(𝑙 + 𝑁 − 2)

𝛽2
− 𝜇𝑙,1

)︂
𝑣2(𝛽)

for all those 𝑟 ∈ (𝛼, 𝛽) for which 𝑙(𝑙+𝑁−2)
𝑟2

− 𝜇𝑙,1 ≤ 0, since 𝑣 is increasing. That is, (2.14)
is satisfied for such 𝑟. For the remaining values of 𝑟, the inequality (2.14) is trivial since the
left-hand side of (2.14) is positive, while the right-hand side is negative. �

Prior to the proof of Lemma 2.3, we need to establish several auxiliary facts.

Lemma A.1. Let 𝑣 be an eigenfunction corresponding to the eigenvalue 𝜇0,2 of the SL problem
(2.1), (2.2). Then 𝑣′ does not vanish on (𝛼, 𝛽).

Proof. We know from the Sturm-Liouville theory that 𝑣 vanishes exactly once in (𝛼, 𝛽). Let
𝛾 ∈ (𝛼, 𝛽) be such that 𝑣(𝛾) = 0. Assume, without loss of generality, that 𝑣 > 0 in (𝛼, 𝛾)
and 𝑣 < 0 in (𝛾, 𝛽). Taking any 𝑠 ∈ (𝛼, 𝛾] and integrating (2.5) (with 𝑙 = 0) from 𝛼 to 𝑠, we
obtain

−𝑠𝑁−1𝑣′(𝑠) = 𝜇0,2

∫︁ 𝑠

𝛼
𝑣(𝑟)𝑟𝑁−1 𝑑𝑟 > 0.

Similarly, for any 𝑠 ∈ [𝛾, 𝛽), we get

𝑠𝑁−1𝑣′(𝑠) = 𝜇0,2

∫︁ 𝛽

𝑠
𝑣(𝑟)𝑟𝑁−1 𝑑𝑟 < 0.

Thus, 𝑣′(𝑠) < 0 for all 𝑠 ∈ (𝛼, 𝛽). �
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Let us now consider the Sturm-Liouville eigenvalue problem (2.1) with the Dirichlet bound-
ary conditions

𝑢(𝛼) = 0 and 𝑢(𝛽) = 0. (A.2)
The corresponding eigenvalues 𝜆𝑙,𝑗 have the following Courant-Fischer variational characteri-
sation:

𝜆𝑙,𝑗 = min
𝑋∈𝒳𝑗

max
𝑢∈𝑋∖{0}

𝑅𝑙(𝑢), 𝑙 ∈ N0, 𝑗 ∈ N, (A.3)

where 𝒳𝑗 is the collection of all 𝑗-dimensional subspaces of 𝐻1
0 ((𝛼, 𝛽); 𝑟𝑁−1), and 𝑅𝑙 is defined

as in (2.6). Comparing the variational characterizations (2.7) and (A.3), it can be shown that

𝜇𝑙,𝑗 < 𝜆𝑙,𝑗 for all 𝑙 ∈ N0, 𝑗 ∈ N. (A.4)

Proposition A.2. We have 𝜇0,2 = 𝜆1,1, and hence 𝜇1,1 < 𝜇0,2.

Proof. Let 𝑣 be an eigenfunction of the SL problem (2.1), (2.2) corresponding to 𝜇0,2. Differ-
entiating (2.1) with 𝑙 = 0, we deduce that 𝑢 = 𝑣′ satisfies the equation (2.1) with 𝑙 = 1 under
the Dirichlet boundary conditions (A.2), namely,

− 𝑢′′(𝑟) − 𝑁 − 1

𝑟
𝑢′ +

𝑁 − 1

𝑟2
𝑢 = 𝜇0,2𝑢 in (𝛼, 𝛽), 𝑢(𝛼) = 𝑢(𝛽) = 0. (A.5)

By Lemma A.1, 𝑣′ does not vanish on (𝛼, 𝛽), and hence 𝑢 must be the first eigenfunction of
(A.5). Therefore, we conclude that 𝜇0,2 = 𝜆1,1, and (A.4) yields 𝜇1,1 < 𝜇0,2. �

Now we are ready to prove Lemma 2.3.

Proof of Lemma 2.3. Since the inequality 𝜇1,1 < 𝜇2,1 is given by (2.9), we only need to show
that 𝜇2,1 < 𝜇0,2. Assume, without loss of generality, that 𝛽 = 1, and let us write 𝜇𝑙,𝑘 = 𝜇𝑙,𝑘(𝛼)
and 𝜆𝑙,𝑘 = 𝜆𝑙,𝑘(𝛼) to stress the dependence on 𝛼.

First, we consider the case 𝛼 = 0, i.e., the case of the ball. It is known that 𝜇2,1(0) =(︂
𝑝
(2)
𝑁
2
,1

)︂2

and 𝜇0,2(0) =

(︂
𝑝
(0)
𝑁
2
,2

)︂2

, see Section 2. Moreover, we have 𝑝
(0)
𝜈,𝑘 = 𝑗𝜈,𝑘, where 𝑗𝜈,𝑘 is

the 𝑘-th positive zero of the Bessel function 𝐽𝜈 , see, e.g., [25, p. 549]. Therefore, applying the
estimates

𝑝
(2)
𝑁
2
,1
<

√
2𝑁 + 8 and 𝑗𝑁

2
,2 >

𝑁

2
+

3𝜋 + 1

2

from [25, (1)] and [19, (4.6)], respectively, it is not hard to deduce that the corresponding
bounds are strictly ordered, which yields the desired inequality 𝜇2,1(0) < 𝜇0,2(0).

Second, we assume 𝛼 > 0. Notice that 𝜇2,1(𝛼) is nonincreasing with respect to 𝛼. Indeed,
denoting by 𝑣 the first positive eigenfunction of the SL problem (2.1), (2.2) associated to
𝜇2,1(𝛼), we have

𝜕𝜇2,1(𝛼)

𝜕𝛼
= −𝑣2(𝛼)(2𝑁𝛼𝑁−3 − 𝜇2,1(𝛼)𝛼𝑁−1) = −𝑣(𝛼)𝑣′′(𝛼)𝛼𝑁−1 ≤ 0, (A.6)

where the first equality is given by, e.g., [21, Theorem 4.1, 1], and the second equality follows
from (2.1) and the fact that 𝑣′(𝛼) = 0. The inequality in (A.6) is implied by 𝑣′′(𝛼) ≥ 0 which,
in its turn, is a consequence of 𝑣(𝛼) ≥ 0, 𝑣′(𝛼) = 0, and 𝑣′ > 0 on (𝛼, 𝛽) by Lemma 2.7.
On the other hand, in view of the domain monotonicity of the Dirichlet eigenvalues, 𝜆1,1(𝛼)
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is increasing with respect to 𝛼, and hence the same holds for 𝜇0,2(𝛼) by Proposition A.2.
Therefore, in view of the convergence (2.11), we conclude that

𝜇2,1(𝛼) ≤ 𝜇2,1(0) < 𝜇0,2(0) < 𝜇0,2(𝛼) for any 𝛼 ∈ (0, 1),

which completes the proof. �

Appendix B.

In this section, we provide several integral equalities and orthogonality results which will
be needed in the proof of Theorem 1.6 to show the orthogonality of elements of the set 𝑋𝑘 in
𝐿2(Ω) and 𝐻1(Ω).

B.1 Auxiliary integral equalities. We start by proving several integral equalities for
domains with symmetries imposed in Theorem 1.6.

Proposition B.1. Let Ω ⊂ R2 be a bounded domain. Let 𝑔 be a positive radial function on
R2. Then for 𝑖, 𝑗 ∈ {1, 2} with 𝑖 ̸= 𝑗 and any 𝑚 ∈ N0 the following assertions hold:

(i) If Ω is centrally symmetric (or, equivalently, symmetric of order 2), then∫︁
Ω
𝑔(𝑟)𝑥𝑖𝑥

2𝑚
𝑗 𝑑𝑥 = 0 and

∫︁
Ω
𝑔(𝑟)𝑥2𝑚+1

𝑖 𝑑𝑥 = 0. (B.1)

(ii) If Ω is symmetric of order 4, then∫︁
Ω
𝑔(𝑟)𝑥𝑖𝑥𝑗 𝑑𝑥 = 0 and

∫︁
Ω
𝑔(𝑟)𝑥2𝑚𝑖 𝑑𝑥 =

∫︁
Ω
𝑔(𝑟)𝑥2𝑚𝑗 𝑑𝑥. (B.2)

Moreover, there exists 𝑇 ∈ 𝑆𝑂(2) such that∫︁
𝑇 (Ω)

𝑔(𝑟)𝑥𝑖𝑥
3
𝑗 𝑑𝑥 = 0. (B.3)

(iii) If Ω is symmetric of order 8, then we have∫︁
Ω
𝑔(𝑟)𝑥𝑖𝑥

3
𝑗 𝑑𝑥 = 0 and

∫︁
Ω
𝑔(𝑟)

(︀
𝑥2𝑖 − 𝑥2𝑗

)︀2
𝑑𝑥 = 4

∫︁
Ω
𝑔(𝑟)𝑥2𝑖𝑥

2
𝑗 𝑑𝑥. (B.4)

Proof. (i) By the central symmetry of Ω, the transformation 𝑥 = −𝑦 (or, equivalently, 𝑥 =

𝑅
2𝜋/2
1,2 (𝑦)) yields∫︁

Ω
𝑔(𝑟)𝑥𝑖𝑥

2𝑚
𝑗 𝑑𝑥 = −

∫︁
Ω
𝑔(𝑟)𝑦𝑖𝑦

2𝑚
𝑗 𝑑𝑦 and

∫︁
Ω
𝑔(𝑟)𝑥2𝑚+1

𝑖 𝑑𝑥 = −
∫︁
Ω
𝑔(𝑟)𝑦2𝑚+1

𝑖 𝑑𝑦,

which implies (B.1).

(ii) By the symmetry of order 4, the transformation 𝑥 = 𝑅
2𝜋/4
1,2 (𝑦) (see (5.2)) yields∫︁

Ω
𝑔(𝑟)𝑥𝑖𝑥

2𝑚+1
𝑗 𝑑𝑥 = −

∫︁
Ω
𝑔(𝑟)𝑦𝑗𝑦

2𝑚+1
𝑖 𝑑𝑦 and

∫︁
Ω
𝑔(𝑟)𝑥2𝑚𝑖 𝑑𝑥 =

∫︁
Ω
𝑔(𝑟)𝑦2𝑚𝑗 𝑑𝑦, (B.5)

and hence (B.2) follows.



SZEGŐ-WEINBERGER TYPE INEQUALITIES 27

Consider now the map 𝐼(𝜃) =
∫︀
𝑅𝜃

1,2(Ω) 𝑔(𝑟)𝑥𝑖𝑥
3
𝑗 𝑑𝑥 for 0 ≤ 𝜃 ≤ 𝜋/4. Using the transforma-

tion 𝑥 = 𝑅
2𝜋/8
1,2 (𝑦) (see (5.3)) and applying (B.5), we obtain

𝐼(𝜋/4) =

∫︁
𝑅

2𝜋/8
1,2 (Ω)

𝑔(𝑟)𝑥𝑖𝑥
3
𝑗 𝑑𝑥 =

1

4

∫︁
Ω
𝑔(𝑟)(𝑦𝑖 − 𝑦𝑗)(𝑦𝑖 + 𝑦𝑗)

3 𝑑𝑦

=
1

4

∫︁
Ω
𝑔(𝑟)(𝑦4𝑖 + 2𝑦3𝑖 𝑦𝑗 − 2𝑦𝑖𝑦

3
𝑗 − 𝑦4𝑗 ) 𝑑𝑦 = −

∫︁
Ω
𝑔(𝑟)𝑦𝑖𝑦

3
𝑗 𝑑𝑦 = −𝐼(0).

(B.6)

Since 𝐼 is continuous, we conclude that either 𝐼(0) = 0, or 𝐼(𝜃) = 0 for some 0 < 𝜃 < 𝜋/4,
which establishes (B.3).

(iii) Since Ω is symmetric of order 8, we have 𝑅
2𝜋/8
1,2 (Ω) = Ω. Thus, arguing as in the

assertion (ii) above, we deduce from (B.6) that 𝐼(0) = −𝐼(0), which yields
∫︀
Ω 𝑔(𝑟)𝑥𝑖𝑥

3
𝑗 𝑑𝑥 = 0.

Furthermore, by applying the transformation 𝑥 = 𝑅
2𝜋/8
1,2 (𝑦) (see (5.3)) we easily derive the

second equality in (B.4). �

Remark B.2. The presence of rotation 𝑇 in Proposition B.1 (ii) is not avoidable, in general, as
a simple example when Ω is a square and 𝑔 = 1 shows. However, clearly, 𝑇 (Ω) is also symmetric
of order 4 and 𝜇𝑘(𝑇 (Ω)) = 𝜇𝑘(Ω) for any 𝑘 ∈ N. Thus, in applications of Proposition B.1 (ii)
we will often assume, without loss of generality, that 𝑇 is the identity, i.e., that (B.3) holds
for Ω itself.

Proposition B.3. Let Ω ⊂ R𝑁 be a bounded domain, 𝑁 ≥ 3. Let 𝑔 be a positive radial
function on R𝑁 . Then for any 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁} with 𝑖 ̸= 𝑗 and any 𝑚 ∈ N0 the following
assertions hold:

(i) If Ω is centrally symmetric, then∫︁
Ω
𝑔(𝑟)𝑥𝑖𝑥

2𝑚
𝑗 𝑑𝑥 = 0 and

∫︁
Ω
𝑔(𝑟)𝑥2𝑚+1

𝑖 𝑑𝑥 = 0.

(ii) If Ω is symmetric of order 2, then∫︁
Ω
𝑔(𝑟)𝑥𝑖𝑥

𝑚
𝑗 𝑑𝑥 = 0 and

∫︁
Ω
𝑔(𝑟)𝑥2𝑚+1

𝑖 𝑑𝑥 = 0. (B.7)

Proof. (i) The proof follows exactly as in Proposition B.1 (i).

(ii) Since 𝑁 ≥ 3, we can choose 𝑘 so that 𝑘 ̸= 𝑖, 𝑗. Using the transformation 𝑥 = 𝑅
2𝜋/2
𝑖,𝑘 (𝑦),

we obtain ∫︁
Ω
𝑔(𝑟)𝑥𝑖𝑥

𝑚
𝑗 𝑑𝑥 = −

∫︁
Ω
𝑔(𝑟)𝑦𝑖𝑦

𝑚
𝑗 𝑑𝑦,

and hence the first equality in (B.7) follows. The second equality in (B.7) can be shown as in
Proposition B.1 (i). �

Proposition B.4. Let Ω ⊂ R𝑁 be a bounded domain symmetric of order 4, 𝑁 ≥ 3. Let 𝑔 be
a positive radial function on R𝑁 . Then the following assertions hold:

(i) For any 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, 2, . . . , 𝑁} with 𝑖 ̸= 𝑗 and 𝑘, 𝑙 ̸∈ {𝑖, 𝑗}, and any 𝑚,𝑛 ∈ N0, we
have ∫︁

Ω
𝑔(𝑟)𝑥𝑖𝑥𝑗𝑥

𝑚
𝑘 𝑥𝑛𝑙 𝑑𝑥 = 0.
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(ii) There exist constants 𝐴,𝐵 > 0 such that∫︁
Ω
𝑔(𝑟)𝑥2𝑖 𝑑𝑥 = 𝐴 and

∫︁
Ω
𝑔(𝑟)𝑥4𝑖 𝑑𝑥 = 𝐵 for any 𝑖 ∈ {1, 2, . . . , 𝑁}.

(iii) There exists a constant 𝐶 > 0 such that∫︁
Ω
𝑔(𝑟)𝑥2𝑖𝑥

2
𝑗 𝑑𝑥 = 𝐶 for any 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁} with 𝑖 ̸= 𝑗.

Proof. (i) Since 𝑖 ̸= 𝑗 and 𝑘, 𝑙 ̸∈ {𝑖, 𝑗}, we use the transformation 𝑥 = 𝑅
2𝜋/4
𝑖,𝑗 (𝑦) (see (5.2)) to

obtain ∫︁
Ω
𝑔(𝑟)𝑥𝑖𝑥𝑗𝑥

𝑚
𝑘 𝑥𝑛𝑙 𝑑𝑥 = −

∫︁
Ω
𝑔(𝑟)𝑦𝑖𝑦𝑗𝑦

𝑚
𝑘 𝑦𝑛𝑙 𝑑𝑦,

and hence the result follows.

(ii) Fixing any 𝑖 ̸= 1 and taking 𝑥 = 𝑅
2𝜋/4
1,𝑖 (𝑦), we obtain∫︁

Ω
𝑔(𝑟)𝑥2𝑖 𝑑𝑥 =

∫︁
Ω
𝑔(𝑟)𝑦21 𝑑𝑦 and

∫︁
Ω
𝑔(𝑟)𝑥4𝑖 𝑑𝑥 =

∫︁
Ω
𝑔(𝑟)𝑦41 𝑑𝑦,

which yields the existence of the required constants 𝐴,𝐵 > 0.

(iii) Assume first that 𝑘, 𝑙 ∈ {1, 2, . . . , 𝑁} are such that 𝑘 ̸= 𝑙 and {𝑘, 𝑙} ≠ {𝑖, 𝑗}, but
{𝑘, 𝑙} ∩ {𝑖, 𝑗} ≠ ∅. Without loss of generality, we assume 𝑘 = 𝑖 and 𝑙 ̸= 𝑗. Then, applying the
transformation 𝑥 = 𝑅

2𝜋/4
𝑗,𝑙 (𝑦), we obtain∫︁

Ω
𝑔(𝑟)𝑥2𝑖𝑥

2
𝑗 𝑑𝑥 =

∫︁
Ω
𝑔(𝑟)𝑦2𝑘𝑦

2
𝑙 𝑑𝑦.

Assume now that 𝑘, 𝑙 are such that 𝑘 ̸= 𝑙 and {𝑘, 𝑙} ∩ {𝑖, 𝑗} = ∅. Then, applying the transfor-
mation 𝑥 = 𝑅

2𝜋/4
𝑖,𝑘

(︀
𝑅

2𝜋/4
𝑗,𝑙 (𝑦)

)︀
, we get∫︁

Ω
𝑔(𝑟)𝑥2𝑖𝑥

2
𝑗 𝑑𝑥 =

∫︁
Ω
𝑔(𝑟)𝑦2𝑘𝑦

2
𝑙 𝑑𝑦.

The combination of these two cases gives the existence of the required constant 𝐶 > 0. �

Finally, we provide several algebraic identities that we use in the proof of Theorem 1.6.

Lemma B.5. For any 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) ∈ R𝑁 we have the following identities:

2

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝑥2𝑖𝑥
2
𝑗 +

𝑁−1∑︁
𝑖=1

1

𝑖(𝑖 + 1)

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 − 𝑖𝑥2𝑖+1

⎞⎠2

=
𝑁 − 1

𝑁
𝑟4, (B.8)

𝑁−1∑︁
𝑖=1

1

𝑖(𝑖 + 1)

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 + 𝑖2𝑥2𝑖+1

⎞⎠ =
𝑁 − 1

𝑁
𝑟2, (B.9)

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

(𝑥2𝑖 + 𝑥2𝑗 ) = (𝑁 − 1)𝑟2. (B.10)

Proof. The proof follows easily by the induction with respect to the dimension 𝑁 . �
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B.2 Bases of 𝐻1 and 𝐻2. In this section, we provide an auxiliary information on the sets
of homogeneous harmonic polynomials 𝐻1 and 𝐻2. Let 𝛾 be a multi-index, i.e,

𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑁 ), 𝛾𝑖 ∈ N0.

For such 𝛾 we use the following standard notation:

|𝛾| = 𝛾1 + . . . + 𝛾𝑁 , 𝛾! = 𝛾1! . . . 𝛾𝑁 !, 𝑥𝛾 = 𝑥𝛾11 . . . 𝑥𝛾𝑁𝑁 .

For 𝑝 =
∑︁
|𝛾|=𝑘

𝑎𝛾𝑥
𝛾 ∈ 𝐻𝑘 and 𝑞 =

∑︁
|𝛾|=𝑙

𝑏𝛾𝑥
𝛾 ∈ 𝐻𝑙, we define

⟨𝑝, 𝑞⟩ =

⎧⎪⎨⎪⎩
1

𝑙!

∑︁
|𝛾|=𝑙

𝛾!𝑎𝛾𝑏𝛾 if 𝑘 = 𝑙,

0 if 𝑘 ̸= 𝑙.

(B.11)

In particular, for any monomials 𝑥𝛾 , 𝑥𝛽 ∈ 𝐻𝑙 we have

⟨𝑥𝛾 , 𝑥𝛽⟩ =

⎧⎨⎩
𝛾!

𝑙!
if 𝛾 = 𝛽,

0 if 𝛾 ̸= 𝛽.
(B.12)

It is not hard to verify that ⟨·, ·⟩ is an inner product on ∪∞
𝑙=0𝐻𝑙, see, e.g., [6, Chapter 5].

Let us now determine orthogonal bases for 𝐻1 and 𝐻2. Consider the following sets of
homogeneous harmonic polynomials:

𝑍1 := {𝑥𝑖 : 𝑖 = 1, 2, . . . , 𝑁} ,
𝑍2 := {𝑥𝑖𝑥𝑗 : 𝑖 < 𝑗 and 𝑖, 𝑗 = 1, 2, . . . , 𝑁} ,
𝑍3 :=

{︀
𝑥2𝑖 − 𝑥2𝑖+1 : 𝑖 = 1, 2, . . . , 𝑁 − 1

}︀
.

Clearly, 𝑍1 ⊂ 𝐻1 and 𝑍2, 𝑍3 ⊂ 𝐻2. Moreover, we deduce from (B.11) and (B.12) that

⟨𝑝, 𝑝⟩ =

⎧⎪⎪⎨⎪⎪⎩
1 for 𝑝 ∈ 𝑍1,

1

2
for 𝑝 ∈ 𝑍2,

2 for 𝑝 ∈ 𝑍3,

(B.13)

and if 𝑝 ̸= 𝑞, then

⟨𝑝, 𝑞⟩ =

{︂− 1 if 𝑝, 𝑞 ∈ 𝑍3 have a common index,
0 otherwise.

(B.14)

Combining the mutual orthogonality of elements of 𝑍1 given by (B.14) with the fact that
#(𝑍1) = dim𝐻1 = 𝑁 (see Proposition 2.1), we deduce that 𝑍1 is an orthonormal basis of 𝐻1.
Since #(𝑍2 ∪ 𝑍3) = dim𝐻2 = (𝑁+2)(𝑁−1)

2 , it is not hard to see that 𝑍2 ∪ 𝑍3 is a basis of 𝐻2.
However, the elements of 𝑍3 are not always orthogonal with each other, see (B.14). Applying
the Gram-Schmidt orthogonalization procedure to 𝑍3 with respect to the inner product (B.11),
we obtain the following subset of 𝐻2:

̃︁𝑍3 :=

⎧⎨⎩ 1√︀
𝑖(𝑖 + 1)

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 − 𝑖𝑥2𝑖+1

⎞⎠ : 𝑖 = 1, 2, . . . , 𝑁 − 1

⎫⎬⎭ .
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Since the elements of 𝑍2 were orthogonal to the elements of 𝑍3, we conclude that 𝑍2 ∪̃︁𝑍3 is
an orthogonal basis of 𝐻2. In particular, we have

⟨𝑝, 𝑞⟩ = 0 for 𝑝, 𝑞 ∈ 𝑍1 ∪ 𝑍2 ∪̃︁𝑍3 with 𝑝 ̸= 𝑞, ⟨𝑝, 𝑝⟩ = 1 for 𝑝 ∈ ̃︁𝑍3.

B.3 Orthogonality. In this section, we show several orthogonality results which will be
used to obtain the mutual orthogonality of elements of the set 𝑋𝑘 with respect to the scalar
products in 𝐿2(Ω) and 𝐻1(Ω), where 𝑋𝑘 are defined in the proof of Theorem 1.6 via the
elements of 𝑍1, 𝑍2, and ̃︁𝑍3.

In order to deal with the orthogonality in 𝐻1(Ω), let us provide several useful expressions.
For a radial 𝐶1-function 𝑔 and for any 𝑝 ∈ 𝑍𝑖, 𝑖 = 1, 2, 3, we have

∇(𝑔(𝑟)𝑝) = 𝑔′(𝑟)
𝑥

𝑟
𝑝 + 𝑔(𝑟)∇𝑝

and
∇(𝑔(𝑟)𝑝)∇(𝑔(𝑟)𝑞) = (𝑔′(𝑟))2𝑝𝑞 + 𝑔′(𝑟)𝑔(𝑟)

𝑥

𝑟
(𝑝∇𝑞 + 𝑞∇𝑝) + 𝑔2(𝑟)∇𝑝∇𝑞.

It is easy to see that

∇𝑝 =

⎧⎪⎨⎪⎩
𝑒𝑖 for 𝑝 = 𝑥𝑖,

𝑥𝑗𝑒𝑖 + 𝑥𝑖𝑒𝑗 for 𝑝 = 𝑥𝑖𝑥𝑗 ,

2(𝑥𝑖𝑒𝑖 − 𝑥𝑗𝑒𝑗) for 𝑝 = 𝑥2𝑖 − 𝑥2𝑗 ,

𝑥∇𝑝 =

⎧⎪⎨⎪⎩
𝑝 for 𝑝 = 𝑥𝑖,

2𝑝 for 𝑝 = 𝑥𝑖𝑥𝑗 ,

2𝑝 for 𝑝 = 𝑥2𝑖 − 𝑥2𝑗 ,

and

𝑥(𝑝∇𝑞 + 𝑞∇𝑝) =

⎧⎪⎨⎪⎩
2𝑝𝑞 for 𝑝, 𝑞 ∈ 𝑍1,

4𝑝𝑞 for 𝑝, 𝑞 ∈ 𝑍2 ∪ 𝑍3,

3𝑝𝑞 for 𝑝 ∈ 𝑍1, 𝑞 ∈ 𝑍2 ∪ 𝑍3.

(B.15)

Furthermore, denoting by 𝛿𝑖,𝑗 the Kronecker delta, we have

∇𝑝∇𝑞 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛿𝑖,𝑗 for 𝑝 = 𝑥𝑖, 𝑞 = 𝑥𝑗 ,

𝑥𝑙𝛿𝑖,𝑘 + 𝑥𝑘𝛿𝑖,𝑙 for 𝑝 = 𝑥𝑖, 𝑞 = 𝑥𝑘𝑥𝑙,

2(𝑥𝑘𝛿𝑖,𝑘 − 𝑥𝑙𝛿𝑖,𝑙) for 𝑝 = 𝑥𝑖, 𝑞 = 𝑥2𝑘 − 𝑥2𝑙 ,

𝑥𝑖(𝑥𝑘𝛿𝑗,𝑙 + 𝑥𝑙𝛿𝑗,𝑘) + 𝑥𝑗(𝑥𝑘𝛿𝑖,𝑙 + 𝑥𝑙𝛿𝑖,𝑘) for 𝑝 = 𝑥𝑖𝑥𝑗 , 𝑞 = 𝑥𝑘𝑥𝑙,

2𝑥𝑖(𝑥𝑘𝛿𝑗,𝑘 − 𝑥𝑙𝛿𝑗,𝑙) + 2𝑥𝑗(𝑥𝑘𝛿𝑖,𝑘 − 𝑥𝑙𝛿𝑖,𝑙) for 𝑝 = 𝑥𝑖𝑥𝑗 , 𝑞 = 𝑥2𝑘 − 𝑥2𝑙 ,

4𝑥𝑖(𝑥𝑘𝛿𝑖,𝑘 − 𝑥𝑙𝛿𝑖,𝑙) − 4𝑥𝑗(𝑥𝑘𝛿𝑗,𝑘 − 𝑥𝑙𝛿𝑗,𝑙) for 𝑝 = 𝑥2𝑖 − 𝑥2𝑗 , 𝑞 = 𝑥2𝑘 − 𝑥2𝑙 .

(B.16)

We will separately consider the cases 𝑁 = 2 and 𝑁 ≥ 3. In the planar case 𝑁 = 2, 𝑍3 is
equivalent to ̃︁𝑍3, up to a multiplication by a constant. Therefore, using Proposition B.1 (i),
(ii), and the expressions above, we deduce the following result.

Lemma B.6. Let Ω ⊂ R2 be a bounded domain symmetric of order 4. Let 𝑔 be a positive
radial 𝐶1-function on R𝑁 . Then there exists 𝑇 ∈ 𝑆𝑂(2) such that for any 𝑝, 𝑞 ∈ 𝑍1 ∪𝑍2 ∪̃︁𝑍3

with 𝑝 ̸= 𝑞 we have∫︁
𝑇 (Ω)

𝑔(𝑟)𝑝(𝑥)𝑞(𝑥) 𝑑𝑥 = 0 and
∫︁
𝑇 (Ω)

∇(𝑔(𝑟)𝑝(𝑥))∇(𝑔(𝑟)𝑞(𝑥)) 𝑑𝑥 = 0. (B.17)

Proof. By straightforward calculations. �
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Remark B.7. The rotation 𝑇 in Lemma B.6 is used only in the case 𝑝 ∈ 𝑍2, 𝑞 ∈ ̃︁𝑍3, that is,
𝑝 = 𝑥1𝑥2, 𝑞 = (𝑥21 − 𝑥22)/

√
2, while in all other cases (B.17) holds for Ω itself.

Let us now consider the case 𝑁 ≥ 3. In order to avoid bulky calculations caused by
the structure of ̃︁𝑍3, we first give explicit relations between the integrals

∫︀
Ω 𝑔(𝑟)𝑝(𝑥)𝑞(𝑥) 𝑑𝑥,∫︀

Ω∇(𝑔(𝑟)𝑝(𝑥))∇(𝑔(𝑟)𝑞(𝑥)) 𝑑𝑥 and the inner product ⟨𝑝, 𝑞⟩ for polynomials 𝑝, 𝑞 ∈ 𝑍1∪𝑍2∪𝑍3.

Lemma B.8. Let Ω ⊂ R𝑁 be a bounded domain symmetric of order 4, 𝑁 ≥ 3. Let 𝑔 be a
positive radial function on R𝑁 . Then

∫︁
Ω
𝑔(𝑟)𝑝(𝑥)𝑞(𝑥) 𝑑𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴 ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍1,

2𝐶 ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍2,

(𝐵 − 𝐶) ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍3,

0 otherwise,

(B.18)

where 𝐴, 𝐵, and 𝐶 are given by Proposition B.4 (ii), (iii).

Proof. We see from the definitions of 𝐴, 𝐵, and 𝐶 that∫︁
Ω
𝑔(𝑟)𝑝2(𝑥) 𝑑𝑥 =

⎧⎪⎨⎪⎩
𝐴 for 𝑝 ∈ 𝑍1,

𝐶 for 𝑝 ∈ 𝑍2,

2(𝐵 − 𝐶) for 𝑝 ∈ 𝑍3.

(B.19)

Moreover, if 𝑝 ̸= 𝑞, then, using Proposition B.3 (ii) and Proposition B.4, we obtain∫︁
Ω
𝑔(𝑟)𝑝(𝑥)𝑞(𝑥) 𝑑𝑥 =

{︂− (𝐵 − 𝐶) if 𝑝, 𝑞 ∈ 𝑍3 have a common index,
0 otherwise.

(B.20)

Combining the expressions (B.19), (B.20) with (B.13), (B.14), we easily derive (B.18). �

Lemma B.9. Let Ω ⊂ R𝑁 be a bounded domain symmetric of order 4, 𝑁 ≥ 3. Let 𝑔 be
a positive radial 𝐶1-function on R𝑁 . In view of Proposition B.4 (ii), (iii), for any 𝑖, 𝑗 ∈
{1, 2, . . . , 𝑁} we denote

𝐴′ =

∫︁
Ω

[︂
𝑔′(𝑟) +

2𝑔(𝑟)

𝑟

]︂
𝑔′(𝑟)𝑥2𝑖 𝑑𝑥, 𝐵′ =

∫︁
Ω

[︂
𝑔′(𝑟) +

4𝑔(𝑟)

𝑟

]︂
𝑔′(𝑟)𝑥4𝑖 𝑑𝑥,

𝐶 ′ =

∫︁
Ω

[︂
𝑔′(𝑟) +

4𝑔(𝑟)

𝑟

]︂
𝑔′(𝑟)𝑥2𝑖𝑥

2
𝑗 𝑑𝑥, 𝐷′ =

∫︁
Ω
𝑔2(𝑟)𝑥2𝑖 𝑑𝑥, 𝐸′ =

∫︁
Ω
𝑔2(𝑟) 𝑑𝑥.

Then

∫︁
Ω
∇(𝑔(𝑟)𝑝(𝑥))∇(𝑔(𝑟)𝑞(𝑥)) 𝑑𝑥 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝐴′ + 𝐸′) ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍1,

(2𝐶 ′ + 4𝐷′) ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍2,

(𝐵′ − 𝐶 ′ + 4𝐷′) ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍3,

0 otherwise.

(B.21)

Proof. Let us take any 𝑝, 𝑞 ∈ 𝑍1∪𝑍2∪𝑍3 such that 𝑝 ̸= 𝑞. If 𝑝 and 𝑞 have no common indices
or have two common indices, then we easily get from (B.16) that ∇𝑝∇𝑞 = 0. If 𝑝 ∈ 𝑍1 ∪ 𝑍2,
𝑞 ∈ 𝑍2 ∪ 𝑍3, and 𝑝, 𝑞 have exactly one common index, then using Proposition B.3 (ii) (with
𝑔2(𝑟) instead of 𝑔(𝑟)), we derive from (B.16) that

∫︀
Ω 𝑔2(𝑟)∇𝑝∇𝑞 𝑑𝑥 = 0. Thus, we are left
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with the case when 𝑝, 𝑞 ∈ 𝑍3 and they have exactly one common index. Assume, without loss
of generality, that 𝑝 = 𝑥2𝑖 − 𝑥2𝑖+1 and 𝑞 = 𝑥2𝑖+1 − 𝑥2𝑖+2. Then ⟨𝑝, 𝑞⟩ = −1 (see (B.14)) and∫︁

Ω
𝑔2(𝑟)∇𝑝∇𝑞 𝑑𝑥 = −4

∫︁
Ω
𝑔2(𝑟)𝑥2𝑖+1 𝑑𝑥 = 4𝐷′ ⟨𝑝, 𝑞⟩ .

Therefore, for 𝑝, 𝑞 ∈ 𝑍1 ∪ 𝑍2 ∪ 𝑍3 with 𝑝 ̸= 𝑞, we have∫︁
Ω
𝑔2(𝑟)∇𝑝∇𝑞 𝑑𝑥 =

{︃
4𝐷′ ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍3,

0 otherwise.
(B.22)

On the other hand, recalling (B.13), in the case 𝑝 = 𝑞 we get∫︁
Ω
𝑔2(𝑟)|∇𝑝|2 𝑑𝑥 =

{︃
𝐸′ ⟨𝑝, 𝑝⟩ for 𝑝 ∈ 𝑍1,

4𝐷′ ⟨𝑝, 𝑝⟩ for 𝑝 ∈ 𝑍2 ∪ 𝑍3.
(B.23)

Finally, for 𝑝, 𝑞 ∈ 𝑍1 ∪ 𝑍2 ∪ 𝑍3, using Proposition B.3 (ii), Proposition B.4, and (B.15), we
obtain

∫︁
Ω

[︁
(𝑔′(𝑟))2𝑝𝑞 + 𝑔′(𝑟)𝑔(𝑟)

𝑥

𝑟
(𝑝∇𝑞 + 𝑞∇𝑝)

]︁
𝑑𝑥 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴′ ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍1,

2𝐶 ′ ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍2,

(𝐵′ − 𝐶 ′) ⟨𝑝, 𝑞⟩ for 𝑝, 𝑞 ∈ 𝑍3,

0 otherwise.

(B.24)

Combining (B.22), (B.23), and (B.24), we easily derive (B.21). �

Now we are ready to obtain a counterpart of Lemma B.6 in the case 𝑁 ≥ 3.

Lemma B.10. Let Ω ⊂ R𝑁 be a bounded domain symmetric of order 4, 𝑁 ≥ 3. Let 𝑔 be a
positive radial 𝐶1-function on R𝑁 . Then for any 𝑝, 𝑞 ∈ 𝑍1 ∪ 𝑍2 ∪̃︁𝑍3 with 𝑝 ̸= 𝑞 we have∫︁

Ω
𝑔(𝑟)𝑝(𝑥)𝑞(𝑥) 𝑑𝑥 = 0 and

∫︁
Ω
∇(𝑔(𝑟)𝑝(𝑥))∇(𝑔(𝑟)𝑞(𝑥)) 𝑑𝑥 = 0.

Proof. For 𝑝, 𝑞 ∈ 𝑍3, we get from (B.18) that

(𝐵 − 𝐶) ⟨𝑝, 𝑞⟩ =

∫︁
Ω
𝑔(𝑟)𝑝(𝑥)𝑞(𝑥) 𝑑𝑥.

Taking 𝑝 = 𝑞 and recalling that 𝑔 is positive, we see that 𝐵 > 𝐶. That is, the integral
1

𝐵−𝐶

∫︀
Ω 𝑔(𝑟)𝑝(𝑥)𝑞(𝑥) 𝑑𝑥 defines an equivalent inner product on 𝑍3, and hence the Gram-

Schmidt orthogonalisation of 𝑍3 with respect to this inner product also produces ̃︁𝑍3. Thus,
using (B.18), we easily conclude that∫︁

Ω
𝑔(𝑟)𝑝(𝑥)𝑞(𝑥) 𝑑𝑥 = 0 for 𝑝, 𝑞 ∈ 𝑍1 ∪ 𝑍2 ∪̃︁𝑍3 with 𝑝 ̸= 𝑞.

Similarly, using (B.21), we conclude that∫︁
Ω
∇(𝑔(𝑟)𝑝(𝑥))∇(𝑔(𝑟)𝑞(𝑥)) 𝑑𝑥 = 0 for 𝑝, 𝑞 ∈ 𝑍1 ∪ 𝑍2 ∪̃︁𝑍3 with 𝑝 ̸= 𝑞,

which completes the proof. �
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Remark B.11. For any 𝑝 ∈ 𝑍1 ∪ 𝑍2 ∪ 𝑍3, from (B.21) we get∫︁
Ω
|∇𝑔(𝑟)𝑝(𝑥)|2 𝑑𝑥

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
Ω

[︂
(𝑔′(𝑟))2𝑝2(𝑥) +

2𝑔′(𝑟)𝑔(𝑟)

𝑟
𝑝2(𝑥) + 𝑔2(𝑟)

]︂
𝑑𝑥 for 𝑝 = 𝑥𝑖,∫︁

Ω

[︂
(𝑔′(𝑟))2𝑝2(𝑥) +

4𝑔′(𝑟)𝑔(𝑟)

𝑟
𝑝2(𝑥) + 𝑔2(𝑟)(𝑥2𝑖 + 𝑥2𝑗 )

]︂
𝑑𝑥 for 𝑝 = 𝑥𝑖𝑥𝑗 ,∫︁

Ω

[︂
(𝑔′(𝑟))2𝑝2(𝑥) +

4𝑔′(𝑟)𝑔(𝑟)

𝑟
𝑝2(𝑥) + 4𝑔2(𝑟)(𝑥2𝑖 + 𝑥2𝑗 ))

]︂
𝑑𝑥 for 𝑝 = 𝑥2𝑖 − 𝑥2𝑗 .

In particular, for the function 𝐺 := 𝐺𝑙 defined as in (2.15) and for every 𝑖 ∈ {1, 2, . . . , 𝑁} we
have ∫︁

Ω

⃒⃒⃒⃒
∇
(︂
𝐺(𝑟)

𝑟
𝑥𝑖

)︂⃒⃒⃒⃒2
𝑑𝑥 =

∫︁
Ω

(︂
(𝐺′(𝑟))2

𝑟2
𝑥2𝑖 −

𝐺2(𝑟)

𝑟4
𝑥2𝑖 +

𝐺2(𝑟)

𝑟2

)︂
𝑑𝑥,∫︁

Ω

⃒⃒⃒⃒
∇
(︂
𝐺(𝑟)

𝑟2
𝑥𝑖𝑥𝑗

)︂⃒⃒⃒⃒2
𝑑𝑥 =

∫︁
Ω

(︂[︂
(𝐺′(𝑟))2

𝑟4
− 4𝐺2(𝑟)

𝑟6

]︂
𝑥2𝑖𝑥

2
𝑗 +

𝐺2(𝑟)

𝑟4
(𝑥2𝑖 + 𝑥2𝑗 )

)︂
𝑑𝑥.

Further, we can deduce that∫︁
Ω

⃒⃒⃒⃒
⃒⃒∇
⎛⎝ 𝐺(𝑟)

𝑟2
√︀

𝑖(𝑖 + 1)

⎡⎣ 𝑖∑︁
𝑗=1

𝑥2𝑗 − 𝑖𝑥2𝑖+1

⎤⎦⎞⎠⃒⃒⃒⃒⃒⃒
2

𝑑𝑥

=
1

𝑖(𝑖 + 1)

∫︁
Ω

⎛⎝[︂(𝐺′(𝑟))2

𝑟4
− 4𝐺2(𝑟)

𝑟6

]︂⎡⎣ 𝑖∑︁
𝑗=1

𝑥2𝑗 − 𝑖𝑥2𝑖+1

⎤⎦2

+
4𝐺2(𝑟)

𝑟4

⎛⎝ 𝑖∑︁
𝑗=1

𝑥2𝑗 + 𝑖𝑥2𝑖+1

⎞⎠⎞⎠ 𝑑𝑥.
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