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Abstract. This work considers sequential edge-promoting Bayesian experimental design for
(discretized) linear inverse problems, exemplified by X-ray tomography. The process of computing
a total variation type reconstruction of the absorption inside the imaged body via lagged diffusiv-
ity iteration is interpreted in the Bayesian framework. Assuming a Gaussian additive noise model,
this leads to an approximate Gaussian posterior with a covariance structure that contains informa-
tion on the location of edges in the posterior mean. The next projection geometry is then chosen
through A-optimal Bayesian design, which corresponds to minimizing the trace of the updated pos-
terior covariance matrix that accounts for the new projection. Two and three-dimensional numerical
examples based on simulated data demonstrate the functionality of the introduced approach.
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1. Introduction. Large-scale Bayesian inverse problems have rapidly gained
popularity during the last two decades [27, 45]. While computational resources seem
ever-increasing, data acquisition in a number of real-life inverse problems remains
restricted or expensive. In consequence, there is a growing interest to develop com-
putational methodologies for designing efficient data acquisition techniques or experi-
mental setups to maximize the value of data in the solution process. Bayesian optimal
experimental design (OED) provides a principled approach to such a task, and it has
been widely adopted in the inverse problems community; see, e.g., [3] and reference
therein.

A Bayesian optimal design p∗ maximizes the expected utility function U(p) over
the design space D with respect to the data y and model parameters u according to

p∗ = arg max
p∈D

E[U(p;u, y)]

= arg max
p∈D

∫
Y

∫
Θ

U(p;u, y)π(u | p, y)π(y | p) du dy. (1.1)

Here π(u | p, y) and π(y | p) stand for the posterior distribution of the parameter u and
the marginal distribution of the data y, respectively, under the design p. The utility
function can be devised in a number of ways; the two most common choices for U
are arguably a negative quadratic loss function that measures the squared distance
from u to a specific point estimator such as the posterior mean and the expected
information gain where U is the Kullback–Leibler distance between the posterior and
prior distributions.

The computational crux of (1.1) lies with the double integral over the poten-
tially high dimensional parameter and data spaces related to the considered imaging
application. Moreover, if the set of possible designs is vast (e.g., p is a continuous pa-
rameter on a high-dimensional manifold), an exhaustive search may seem unfeasible.
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Still, significant progress has been made in the past working under conditions that
allow closed form presentations for the above double integral. For the aforementioned
two cost functions, the integrals in (1.1) are explicitly solvable when the posterior and
data marginal distributions are Gaussian. In inverse problems, this occurs when the
forward operator is linear, and the prior and additive noise distributions are Gaus-
sian [27]. In such a case, the double integral is proportional to the the trace and
the determinant of the posterior covariance, respectively. In the literature, these are
called the Bayesian A and D-optimality criteria [14].

There has also been substantial effort to go beyond the conditions that enable
explicit integration in (1.1). In this regard, important early work was carried out in
[41, 23, 24] toward developing fast double loop Monte Carlo algorithms for tackling
general inverse problems. More recent approaches have concentrated on improving
efficiency of integral approximations by Laplace’s method in the context of nonlinear
inverse problems [32, 6, 16, 12]. Under well-designed approximation schemes, the com-
putational complexity of such methods can be low in terms of the number of required
forward solutions and scalable in the sense of being independent of the parameter and
data dimensions [50, 51].

This paper grows out of the observation that the efficient use of non-Gaussian
prior distributions in Bayesian OED for inverse problems has not been addressed in
the literature. Indeed, successful solvers in imaging problems rely on well-designed
prior information, which in variational regularization is often formulated in terms of
nonquadratic penalty functionals [42]. Following the popularity of convex regular-
ization in imaging, similar ideas have been successfully introduced to the Bayesian
setting by formulating non-Gaussian priors in Banach spaces such as Besov spaces or
BV spaces; see, e.g., [49, 52, 47, 29, 1, 2, 33]. Motivated by these observations, our
work contributes toward including non-Gaussian prior distributions in Bayesian OED
practices for inverse problems and imaging.

1.1. Our contribution. This work introduces a computational method for per-
forming greedy sequential OED for linear inverse problems with a total variation (TV)
prior. The proposed algorithm is novel, as it does not utilize Laplace’s approxima-
tion or sampling schemes to tackle a non-Gaussian posterior distribution. Instead,
its founding idea is based on the so-called lagged diffusivity approximation for TV
introduced in [48]. At each step of the sequential algorithm, a lagged diffusivity it-
eration is employed to produce a sequence of Gaussian approximations for the TV
prior, presumably with increasing accuracy close to the posterior mode. Assuming an
additive Gaussian noise model and one of the two cost functions U considered above,
replacing the TV prior by its final approximation allows a closed form solution for the
double integral in (1.1). This leads to a standard form A or D-optimality criterion
for choosing the (subsequent) measurement design.

Like the lagged diffusivity approximation, our method could also be formulated
for a large class of Gibbs prior measures. Moreover, it may be possible to extend some
of our ideas to the framework of nonlinear inverse problems by combining them with
Laplace’s method. Be that as it may, in this work the proposed algorithm is only
tested with a linear inverse problem and a TV prior.

We develop our method in the context of X-ray tomography and A-optimality,
building upon our previous work [13] that considered efficiency and adaptivity of se-
quential OED in such a framework. X-ray tomography is particularly well-suited for
a sequential approach to OED as the radiation exposure (i.e. the number of projec-
tions) often needs to be minimized while maximizing the quality of the reconstruction
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in certain regions of interest, the locations of which may be unknown a priori.
We consider X-ray tomography in both two and three-dimensional imaging se-

tups with a narrow X-ray beam whose propagation angle and lateral position can be
optimized. Our main hypothesis is that an (approximate) TV prior in Bayesian OED
for X-ray tomography should promote designs that efficiently recover edges in the
imaged target. The presented numerical experiments, which are based on simulated
data, demonstrate that our algorithm does indeed perform well for certain piecewise
constant phantoms when compared with the use of equiangular full-width projections
corresponding to an equivalent radiation dose.

This text is organized as follows. Section 2 introduces a discretized linear measure-
ment model for X-ray tomography. In Section 3 the basic ideas of lagged diffusivity
iteration are interpreted in the Bayesian framework. The concept of A-optimality is
recalled in Section 4, and it is subsequently combined with the lagged diffusivity iter-
ation to form a sequential OED algorithm in Section 5. The numerical experiments
are presented in Section 6, and the concluding remarks are listed in Section 7.

1.2. Literature review. Bayesian OED has gained substantial attention in
large-scale inverse problems during the recent years. In addition to the works men-
tioned above, let us list [8, 11, 18, 19, 20, 21, 26, 28, 31, 32, 9] to name a few papers on
this topic. In particular, there is an interesting line of research developing Bayesian
OED for infinite-dimensional inverse problems [5, 4, 6, 7]. Here, we test our novel
ideas in a sequential optimization strategy, which has previously been formalized for
large-scale problems in [25] based on ideas from dynamical programming. For general
references on Bayesian OED, we mention the review papers [14, 40] and the mono-
graph [36].

Optimization of the imaging geometry in X-ray tomography has previously been
considered in [39, 13]. The former article explored empirical A-optimal design in con-
strained problems based on training data by adopting sparse sensor-placing strategies
and a gradient-based optimization scheme. The latter paper [13] introduced more
degrees of freedom (lateral position of the source-receiver pair) to the problem, con-
sidered efficient evaluation of the A and D-optimality target functions and introduced
adaptivity to the algorithm.

The idea of TV denoising was originally presented in [38], and the lagged-diffusivity
fixed point iteration for approximating TV regularization was introduced in [48]. The
convergence of the algorithm has been considered, e.g., in [17, 15] for finite-dimensional
image restoration problems. Finally, let us remark that total variation regularization
is widely employed in computed tomography; see, e.g., [43, 30, 46].

2. Measurement model and its discretization. The X-ray measurements
are modeled either as parallel beam or cone beam tomography, where multiple rays
are directed into the object D ⊂ Rd, d = 2 or 3, and the resulting intensities of the
rays are measured at detectors [34]. The attenuation is described by the equation

I = I0 exp

(
−
∫
L

uds

)
, (2.1)

where L is the line along which the considered ray travels, I0 is the intensity of the
X-ray before entering the object and u : D → R+ is the absorption. Obviously, (2.1)
can equivalently be given as

log(I0)− log(I) =

∫
L

uds.
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In particular, the difference between the logarithms of the emitted and measured
intensities is typically considered as the available data when X-ray tomography is
tackled mathematically.

We discretize the imaged domain into n′ ∈ N pixels or voxels, but assume the ab-
sorption distribution vanishes at the boundary pixels/voxels and denote the number
of interior pixels/voxels by n < n′. The forward operator, mapping the discretized
absorption to a single set of log-intensity measurements at the detectors, can be ap-
proximated by a matrix R ∈ Rm×n, wherem is the number of detectors (see, e.g., [44]);
typically the dimension of the unknown is higher than the number of pixels in a single
projection image, i.e. m � n. In what follows, we abuse the notation by denoting
with u ∈ Rn, n ∈ N, both the vector of pixel/voxel values defining the discretized
(interior) absorption as well as a (smooth enough) function on D taking the given
absorption values at the center points of the respective pixels/voxels. The correct
interpretation should be clear from the context.

3. Total variation prior and lagged diffusivity. Let uk−1 ∈ Rn be the recon-
struction after taking k−1 ∈ N0 X-ray projections and assume that the kth projection
image has just become available; Section 4 below explains how the experimental design
for this newest projection was chosen. Let us denote by

Rk =

R(p1)
...

R(pk)

 ∈ Rkm×n and yk =

y1

...
yk

 ∈ Rkm

the stacked X-ray matrix corresponding to all previous projections and the corre-
sponding stacked noisy data vector, respectively. The vectors p1, . . . , pk are the de-
sign parameters employed thus far. The measurements y1, . . . , yk are modeled as
realizations of the random variables

Yj = R(pj)U +Nj , j = 1, . . . , k, (3.1)

where U is the randomized discrete absorption and the noise Nj is assumed to follow

a zero-mean Gaussian distribution N (0,Γ
(j)
noise), where is Γ

(j)
noise ∈ Rm×m is symmetric

and positive definite. The noise processes N1, . . . , Nk are assumed to be mutually
independent.

The (accurate) prior for the absorption U has an edge-promoting probability
density of the form

π(u) ∝ exp
(
− γΦ(u)

)
, (3.2)

where γ > 0 is a free parameter and Φ is defined through

Φ(u) =

∫
D

ϕ
(
|∇u|

)
dx, (3.3)

accompanied by the information that u vanishes at the pixels/voxels next to the
boundary of D. In this work, we exclusively consider the (smoothened) TV prior [38]

ϕ(t) =
√
t2 + T 2 ≈ |t|, (3.4)

where T > 0 is a small parameter that ensures differentiability. However, it would
also be possible to consider other edge-preferring priors such as Perona–Malik [35].
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According to the Bayes’ formula and assuming the measurement model (3.1), the
posterior density for u thus reads

π(u |yk) ∝ π(yk |u)π(u)

∝ exp
(
− 1

2
(yk −Rku)T(Γ

(k)
noise)−1(yk −Rku)− γΦ(u)

)
, (3.5)

where Γ
(k)
noise := diag(Γ

(1)
noise, . . . ,Γ

(k)
noise) ∈ Rkm×km is a block diagonal matrix defined

by the noise covariance matrices for the previous measurements. Our leading idea is to
iteratively approximate Φ(u) by quadratic terms in the spirit of the lagged diffusivity
iteration [48]; see also [10, 22]. This results in an iterative algorithm for computing
the reconstruction uk after k measurements as well as forming the corresponding
covariance matrix employed in choosing the next projection geometry by means of
A-optimality.

3.1. First step: Gaussian approximation for the prior around uk−1.
Let {φj}n

′

j=1 ⊂ H1(D) be a Lagrangian finite element basis for the dual mesh of
the employed pixelification/voxelification for D numbered so that the first n basis
functions correspond to the interior pixels/voxels in D. In particular, the jth basis
function φj takes value one at the midpoint of the jth pixel/voxel and vanishes at
all the other midpoints. After identifying u with its interpolant in this basis and
recalling that u is assumed to vanish at (the midpoints of) the boundary voxels, one
easily deduces that

∇uΦ(u) = H(u)u, u ∈ Rn,

where

Hi,j(w) :=

∫
D

1√
|∇xw(x)|2 + T 2

∇φi(x) · ∇φj(x) dx, i, j = 1, . . . , n, (3.6)

for any w ∈ Rn interpreted as an element of H1(D) via the introduced finite element
basis.

Observe that H(w) ∈ Rn×n is the stiffness matrix for a finite element approxima-
tion of the differential operator

−∇ ·
(
ρ(|∇w|)∇( · )

)
(3.7)

over D, with

ρ(v) :=
1√

v2 + T 2

and a homogeneous Dirichlet condition on ∂D. As a consequence, H(w) is positive
definite and, in particular, invertible for any w ∈ Rn.

Let us then introduce the quadratic penalty function

Φk−1(u) =
1

2
uTH(uk−1)u+

1

2
uT
k−1H(uk−1)uk−1 +

∫
D

T 2√
|∇xuk−1(x)|2 + T 2

dx.

It is straightforward to check that

Φk−1(uk−1) = Φ(uk−1) and ∇uΦk−1(uk−1) = ∇uΦ(uk−1) = H(uk−1)uk−1, (3.8)
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meaning that the tangent planes for the graphs of Φk−1 : Rn → R+ and Φ : Rn → R+

coincide above the previous reconstruction uk−1. Substituting Φ for Φk−1 in (3.5),
we have thus arrived at the approximate Gaussian posterior density

π(1)(u |yk) ∝ exp
(
− 1

2

(
(yk−Rku)T(Γ

(k)
noise)−1(yk−Rku)+γuT(Γ

(1)
k−1)−1u

))
, (3.9)

where Γ
(1)
k−1 := H(uk−1)−1.

3.2. Second step: iterating the argument. Building the initial Gaussian
approximation (3.9) for the posterior (3.5) consists essentially of two steps: (i) as-
suming a reasonable estimate uk−1 for the solution of the studied inverse problem

and (ii) forming the approximate prior covariance via Γ
(1)
k−1 = H(uk−1)−1. Introduc-

ing the mean of the density (3.9) as a new, hopefully more accurate reconstruction
and iterating the argument leads to a Bayesian interpretation of the lagged diffusivity
algorithm [48] for computing a reconstruction uk after having k projection images in
hand:

Define u
(0)
k−1 = uk−1. Assuming the availability of u

(j−1)
k−1 , form an approximate

prior covariance

Γ
(j)
k−1 = H(u

(j−1)
k−1 )−1. (3.10)

Introduce the corresponding posterior density

π(j)(u |yk) ∝
(
− 1

2

(
(yk −Rku)T(Γ

(k)
noise)−1(yk −Rku) + γuT(Γ

(j)
k−1)−1u

))
(3.11)

and compute its mean

u
(j)
k−1 = Γ

(j)
k−1R

T
k

(
RkΓ

(j)
k−1R

T
k + γΓ

(k)
noise

)−1
yk; (3.12)

see., e.g., [27].

If the chosen stopping criterion is satisfied at j = J , one dubs uk := u
(J)
k−1 the

reconstruction after k projection images. The corresponding covariance matrix for
the Gaussian density (3.11) with j = J is

Γk = γ−1
(
Γ

(J)
k−1 − Γ

(J)
k−1R

T
k

(
RkΓ

(J)
k−1R

T
k + γΓ

(k)
noise

)−1
RkΓ

(J)
k−1

)
; (3.13)

see, e.g., [27]. This covariance structure is then used for choosing the parameter vector
pk+1 defining the next X-ray projection as explained in the following section.

Remark 3.1. The two steps (3.10) and (3.12) correspond to a lagged diffusivity
iteration for minimizing the argument of the exponential in (3.5), that is, computing
an approximation of the maximum a posteriori (MAP) estimate for the absorption
in D after the availability of k projection images. As the convergence of the lagged
diffusivity iteration has been proven for denoising problems in [17, 15], it is arguably
not too far-fetched to hope that the above introduced iteration converges toward the
mode of the posterior (3.5). For large enough j, the Gaussian density π(j) defined by
(3.11) can thus be considered an approximation for the exact posterior (3.5) close to
its mode, cf. (3.8).
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4. A-optimal design. Let us assume that we have k ∈ N projection images of
the imaged object D at our disposal. According to the construction in the previous
section, this leads to the (approximate, posterior) probability distribution N (uk,Γk)
for the absorption U , with the mean and covariance defined via (3.12) and (3.13),
respectively. Assuming the new X-ray projection obeys the same measurement model
as the previous ones, i.e. (3.1), the Gaussian posterior covariance after the (k + 1)th
projection reads

Γ
(k+1)
post (p) = Γk − ΓkR(p)T

(
R(p)ΓkR(p)T + Γ

(k+1)
noise

)−1
R(p)Γk, (4.1)

where p is the to-be-selected design parameter determining the (k + 1)th projection.
The task in hand is now to choose the (k + 1)th projection, or more precisely,

the corresponding design parameter pk+1. In Bayesian optimal experimental design,
one often considers minimizing the expected squared distance of the unknown in a
given (semi)norm around the posterior mean; see, e.g., [4, 14] for more details. In
the considered simple setting, this leads to the so-called A-optimality criterion for
choosing the (k + 1)th design parameter,

pk+1 = arg min
p

tr
(
AΓ

(k+1)
post (p)AT

)
, (4.2)

with the employed seminorm induced by the positive semidefinite matrix ATA for a
given A ∈ Rl×n.

To solve the minimization problem (4.2) and to find the optimal design for the (k+
1)th X-ray projection, we resort to the exhaustive optimization algorithm introduced
in [13]. In our numerical experiments, the weight A is always the identity matrix
I ∈ Rn×n, that is, we consider the reconstruction accuracy equally important at all
pixels/voxels. If one were only interested in the accuracy of the reconstruction inside
a certain region of interest, one could select A = IROI ∈ Rn×n having ones at the
diagonal positions corresponding to the pixels/voxels in the region of interest and
zeros as its all other elements [13].

Remark 4.1. Finding the optimal design parameter via (4.2) is computationally
more demanding than computing an edge-enhancing reconstruction using the lagged
diffusivity ideas presented in Section 3. However, one can speed up the optimiza-
tion step by implementing it using a sparser discretization than the one employed for
computing the actual reconstructions: Once the reconstruction uk ∈ Rn correspond-
ing to the first k projection images has become available, it is interpolated onto a
sparser grid with ñ ≤ n interior pixels/voxels to obtain ũk ∈ Rñ. The correspond-
ing covariance matrix Γ̃k is then formed as in (3.13) but with Rk replaced by the
analogous (stacked) X-ray projection matrix for the sparser discretization and with

Γ
(J)
k−1 replaced by H(ũk)−1 formed as in (3.6) but using a Lagrangian finite element

basis for the sparser discretization. The (approximate) posterior for the interpolated

absorption Γ̃
(k+1)
post (p) is then as in (4.1) but with Γk replaced by Γ̃k and R(p) with

an X-ray projection matrix corresponding to the sparser discretization. Finally, the
optimal design parameters (that are discretization invariant in our numerical experi-

ments) are computed via (4.2) with Γ
(k+1)
post (p) ∈ Rn×n replaced by Γ̃

(k+1)
post (p) ∈ Rñ×ñ

and the weight matrix A modified appropriately.

5. Sequential edge-promoting optimization of projections. In this sec-
tion, the above developments are summarized by combining the lagged diffusivity
iteration and the sequential optimization of X-ray projections into a single concise
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algorithm. In the following it is assumed that the overall number of X-ray projections
K ∈ N is known in advance, but in practice the operator of the algorithm can stop
the iteration as soon as the reconstruction is considered good enough, thus treating
K as the maximum number of projection images.

Algorithm 1.

Select the prior parameters T > 0 and γ > 0, a tolerance for the stopping criterion
τ > 0, the number of iterations K ∈ N, and the weight matrix A.

Initialization:
B Set u0 = 1 ∈ Rn.
B Define Γ0 := H(u0)−1 according to (3.6).

Iteration:
for k = 1, . . . ,K do

B Solve for pk via (4.2) with Γ
(k)
post(p) defined by (4.1) [13].

B Form the projection matrix R(pk) and ‘measure’ the data yk.

B Set j = 0, u
(0)
k−1 = uk−1, and ∆Φ = τ + 1.

while ∆Φ > τ do
B Set j ← j + 1.

B Form Γ
(j)
k−1 according to (3.10).

B Compute u
(j)
k−1 according to (3.12).

B Compute ∆Φ = |Φ(u
(j−1)
k−1 )− Φ(u

(j)
k−1)|/Φ(u

(j)
k−1).

end while
B Define Γk = Γ

(j)
k−1 and uk = u

(j)
k−1.

end for

return uK and ΓK .

The stopping criterion for the interior loop is motivated by material in [10]: Apart
from the case j = 0, the value of the (smoothened) TV functional Φ typically decreases
monotonically during the lagged diffusivity iteration because the reconstruction be-
comes gradually better aligned with the prior information. The iteration is stopped
once the relative convergence rate falls below a preselected tolerance τ > 0.

In many of the following numerical examples, the deduction of the sequentially A-
optimal projections, i.e. the first step in the exterior loop of Algorithm 1, is performed
on a sparser discretization of D consisting of ñ < n interior pixels/voxels in order to
speed up the computations. The modifications required by this accelerated algorithm
are described in Remark 4.1. Consult [13] for more information on the exhaustive
algorithm for defining the optimal projections.

6. Numerical experiments. Both two and three-dimensional numerical ex-
amples are presented. In all tests, the free parameters in Algorithm 1 are chosen as
T = 10−6, γ = 10−2, τ = 10−4 and A = I. The algorithm is not very sensitive to the
chosen (reasonably small) value for T . The other two parameters γ and τ do affect
the numerical results, but as our main aim is to compare reconstructions with and
without sequential optimization of the projection geometries, we do not dwell on their
selection. The choice of A reflects that we are equally interested in the reconstruction
quality everywhere in D. The components of the additive zero-mean Gaussian noise
contaminating the measurements are assumed to be mutually independent with a
common standard deviation σ > 0 that may vary between the experiments. In other
words, all noise covariance matrices appearing in Sections 3 and 4 are assumed to be



ADAPTIVE EXPERIMENTAL DESIGN IN X-RAY IMAGING 9

Source

Detectors

Object

Fig. 6.1: Two-dimensional measurement setup.

of the form σ2I, with I being an identity matrix of the appropriate size.
When the performance of Algorithm 1 is compared to reconstructions correspond-

ing to, say, equiangular projections, the reference reconstructions are computed via a
single lagged diffusivity iteration with the same, aforelisted values for the parameters
T , γ, τ and A. To be more precise, if R is the projection matrix corresponding to all
employed reference geometries, y is the corresponding data vector and Γnoise = σ2I
is the assumed noise covariance, then one starts from the initial guess u(0) = 1 ∈ Rn

and iterates the two steps

Γ(j) = H(u(j−1))−1, u(j) = Γ(j)RT
(
RΓ(j)RT + γΓnoise

)−1
y

until ∣∣Φ(u(j−1))− Φ(u(j))
∣∣

Φ(u(j))
< τ,

after which u(j) is dubbed the reconstruction. In other words, one essentially runs
the interior loop of Algorithm 1 assuming that all (equiangular) projection geometries
and the associated data are available to start with.

Remark 6.1. We do not claim that the lagged diffusivity iteration is the best
method for computing TV type reconstructions in X-ray tomography. However, since
the algorithm for deducing the optimal projection geometries is inherently connected
to the lagged diffusivity ideas, we consider using a simplified version of Algorithm 1
for computing the control reconstructions corresponding to nonoptimized projection
geometries a well motivated choice. In particular, this enables focusing solely on the
effect of the optimal design when comparing the reconstructions.

6.1. Two-dimensional parallel beam tomography. In our two-dimensional
numerical experiments, the measurement setup is the same as described in [13]. That
is, the domain D = [0, 1]2 is discretized into n = N2 square pixels, through which we
take projections consisting of a number of parallel X-rays; see Figure 6.1. The indi-
vidual X-rays are equally spaced and have a fixed width for a particular experiment.
The width of the whole source-receiver pair satisfies 0 < w ≤ 1. The components of
the design variable p ∈ R2 for a single projection geometry define the projection angle
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Fig. 6.2: 2D Test 1. Left: Target with the rectangle, circle and ellipse having
absorption levels 1, 0.5, and 0.8 respectively. Right: Relative L2(D) errors for the
reconstructions. The blue curve corresponds to projections optimized with the dense
discretization for D, the red curve to projections optimized with the sparse discretiza-
tion for D, and the black curve to the equiangular full-width reference projections.
The horizontal axis indicates the number of projections with the beam width 0.25.

and the signed distance from the center of D to the median line of the source-receiver
pair. The latter component of p is restricted within the interval [w − 1, 1− w]/2.

We present three two-dimensional experiments. The first one exemplifies the gen-
eral behavior of Algorithm 1 with a simple target. The effect of optimizing the pro-
jection geometries on a sparser grid than the one used for forming the reconstructions
is also tested; see Remark 4.1. In the second test, the superiority of Algorithm 1 over
the usage of equiangular full-width projections with an equivalent radiation dose is
statistically demonstrated in the case of certain randomly selected phantoms. Finally,
the third test applies Algorithm 1 to the Shepp–Logan phantom.

6.1.1. 2D Test 1: Explicit example with a simple target. The aim of our
first numerical experiment is to demonstrate the basic functioning of Algorithm 1. The
target, shown in the left-hand image of Figure 6.2, consists of three simple shapes, each
with a different uniform absorption level, placed randomly inside D. The absorption
of the background is zero. The target has N = 100 pixels per edge, and the number
of individual sensors in a full-width source-receiver pair is 51. The noise level is
set to σ = 10−3, which corresponds to a noise-to-signal ratio of at least 0.2% for
all line integrals considered in the inversion. The beam width is chosen to be 0.25,
which is a quarter of the maximal source-receiver pair width and corresponds to 13
individual X-rays. Algorithm 1 is run for a total of K = 16 iterations. In addition to
considering the basic form of Algorithm 1, we also test speeding up the computations
by performing the selection of the projection geometries on a considerably sparser
discretization of the domain with only Ñ = 31 pixels per edge; see Remark 4.1 for
more details and note, in particular, that the actual reconstructions are still formed
on the denser grid with N2 pixels. For comparison, we also compute reconstructions
from equiangular full-width projections corresponding to equivalent radiation doses.

The right-hand image of Figure 6.2 shows the relative L2(D) reconstruction er-
rors after each step of Algorithm 1; the blue curve corresponds to optimizing the
projection geometries on the reconstruction grid with 104 pixels and the red curve
to performing the optimization steps of the algorithm using the considerably sparser
discretization with only Ñ2 ≈ 103 pixels. The black line depicts the relative L2(D)
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Fig. 6.3: 2D Test 1. First twelve optimized projection geometries and the corre-
sponding reconstructions.

errors resulting from the equiangular reference projections. Note that one projection
with the maximal beam width of 1 approximately corresponds to the same amount
of data, or equivalently the same radiation dose, as four projections with the beam
width 0.25. As a consequence, the labels at 4, 8, 12 and 16 on the horizontal axis
correspond to one, two, three and four equiangular reference projections, respectively.

According to Figure 6.2, the L2(D) reconstruction errors at equivalent radiation
doses are lower for the sequentially optimized projection geometries with the quarter-
width source-receiver pair than for the equiangular full-width projections. This is
not very surprising as the full-width projections (are forced to) waste radiation to
image regions that contain nothing interesting, whereas the optimized projections
concentrate on areas of interest; cf. Figure 6.3. On the other hand, deducing the opti-
mal designs employing the sparser discretization for D does not seem to considerably
hamper the overall performance of Algorithm 1, although the discretization level does
affect the precise specifications of the individual optimized projection geometries. Af-
ter sufficiently many projections, the advantage of Algorithm 1 over the equiangular
full-width projections becomes almost negligible.

Figure 6.3 shows the projection geometries and the corresponding reconstructions
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Fig. 6.4: 2D Test 1. Reference reconstructions for one, two and three equiangular
full-width projections.

for the first 12 iterations of Algorithm 1. At least in the considered setup, the algo-
rithm does indeed seem to have a tendency to concentrate the projections over areas
where the reconstruction already shows quick variations. Occasionally other areas are
also explored, cf. the ninth projection. After ten iterations all target shapes are al-
ready clearly visible. For comparison, Figure 6.4 shows the first three reconstructions
corresponding to the full-width equiangular reference projections.

6.1.2. 2D Test 2: Average errors over random targets. In the second
numerical experiment, the aim is to statistically demonstrate that Algorithm 1 has
the potential to produce on average better reconstructions for a limited radiation dose
than a straightforward approach with equiangular full-width projections. To this end,
the algorithm is run with the beam widths of 0.25 and 0.5 for a set of random targets,
and the average relative L2(D) reconstruction errors are compared to those obtained
by the equiangular approach.

The targets consist of ellipses with constant absorption levels in a homogeneous
nonabsorbing background. The number of ellipses is drawn from the uniform dis-
tribution over {2, 3, 4, 5}, their absorption levels from the uniform distribution over
[0.5, 1.5] and their centers from the uniform distribution over the disk of radius 0.5
centered at the midpoint of D. Furthermore, the ellipses have (uniformly) random
orientations and their semi-major and semi-minor axes are independently drawn from
the uniform distribution over [0.05, 0.2]. In the regions where many ellipses overlap,
the absorption level is defined to be the sum of those of the involved ellipses. An ex-
ample of such a target is shown on the left in Figure 6.5. In particular, note that the
ellipses may extend over the domain boundary, which is not in line with the Dirichlet
boundary condition for (3.7) but assures that any considered X-ray may pass through
something interesting in a target.

The discretization of D is the same as in the previous example, that is, the
reconstructions are formed on a uniform grid of n = N2 = 104 pixels and a full-
width source receiver pair corresponds to m = 51 individual X-rays (and the 0.25
and 0.5 beam widths to 13 and 26 X-rays, respectively). However, encouraged by
the observations in the previous test, the sequential optimization of the projection
geometries is carried out on the sparser grid of ñ = Ñ2 ≈ 103 pixels. The total number
of considered random targets is 100 and the noise level is once again set to σ = 10−3.
To make the radiation doses comparable, the algorithm is run for 20 and 10 iterations
for the beam widths of 0.25 and 0.5, respectively, and the corresponding relative L2(D)
reconstruction errors are computed after each iteration. Analogously, the reference
reconstructions and the corresponding relative L2(D) errors are computed for 1 2, 3,
4 and 5 equiangular full-width projections.

The results, shown on the right in Figure 6.5, indicate that the error for the



ADAPTIVE EXPERIMENTAL DESIGN IN X-RAY IMAGING 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20
Projections

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e 
L2 -e

rr
or

0.25 beam
0.5 beam
Reference

Fig. 6.5: 2D Test 2. Left: Example of a random target composed of ellipses with
randomly chosen shapes, sizes, positions and absorption levels. Right: Mean relative
L2(D) reconstruction errors over 100 samples for optimized projection geometries
and equiangular full-width projections with equivalent radiation doses. The red and
blue curves show the errors with optimized projection geometries with beam widths
0.25 and 0.5, respectively, whereas the black curve shows the errors for equiangular
projections with beam width 1. The error-bars show the confidence intervals of one
standard deviation, and the horizontal axis indicates the number of projections with
the narrowest beam width.

optimized projections decreases faster as a function of the radiation dose than that
for the reference projections. As in the previous experiment, once enough projection
data has been collected, this advantage starts to decrease. Performing the sequential
experimental design with a narrower beam seems to be advantageous, presumably
because the algorithm can concentrate on retrieving information on certain interest-
ing local details in the target without ‘wasting radiation’. However, this advantage
comes with a fairly significant computational price: in addition to having to run the
algorithm for twice as many iterations, the search space is also much wider due to the
increased number of possible lateral positions for the source-receiver pair. This poses
a problem for our exhaustive optimization routine [13]. In addition, the overlapping
confidence intervals in Figure 6.5 hint that the best approach is target-dependent.

6.1.3. 2D Test 3: Shepp–Logan phantom. In our third experiment, the
target is the Shepp–Logan phantom shown in the top left image of Figure 6.6. The
main aim is once again to compare the performance of Algorithm 1 with beam width
0.25 to reconstructions obtained from equiangular full-width reference projections.
However, we also consider using in Algorithm 1 sequentially optimized quarter-width
projections corresponding to a Gaussian prior with a covariance matrix of the form

(Γprior)i,j = η2 exp

(
−|xi − xj |

2

2`2

)
. (6.1)

Here | · | denotes the Euclidean norm, ` > 0 is the so-called correlation length, η > 0
is the pixelwise standard deviation, and xi denotes the center of the ith pixel. Under
such a prior, the sequentially optimized projections do not depend on the measure-
ments or the prior mean, and they can thus be computed in advance based on merely
the covariance matrix (6.1) and the known structure of the additive Gaussian noise
process; see [13] for more details. When employing a Gaussian prior with the covari-
ance structure (6.1), we thus use in Algorithm 1 precomputed sequentially optimized
design variables instead of determining the projection geometries adaptively as a part
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of the algorithm itself. However, the lagged diffusivity iteration is still employed in the
computation of the reconstructions, as indicated by the interior loop of Algorithm 1.

We choose η = 0.2 and ` = 0.1 in (6.1); the former is close to the pixelwise
standard deviation of the Shepp–Logan phantom, whereas the latter simply seems to
be in a relatively good agreement with the sizes of the areas with constant absorption
in the top left image of Figure 6.6. All other parameters are the same as in the previous
experiment. In particular, the optimization steps of Algorithm 1 are once again carried
out on a sparser grid with Ñ2 ≈ 103 pixels, and this same sparse discretization is also
used for deducing the sequentially optimized projection geometries corresponding to
the Gaussian prior with the covariance matrix (6.1). The test is run 100 times to
examine how the measurement noise affects the reconstruction quality, mainly via
changes in the adaptive optimal designs produced by Algorithm 1.

The top right image in Figure 6.6 shows the (mean) relative L2(D) reconstruc-
tion errors up to 40 and 10 projections for the two types of sequentially optimized
geometries and the equiangular reference geometries, respectively. After a radiation
dose that is equivalent to one full-width projection, both sets of reference projections,
i.e. the full-width equiangular one and the four quarter-width ones based on the
Gaussian prior, correspond to lower L2(D) errors than the reconstruction produced
by Algorithm 1. This is likely due to the Shepp–Logan phantom covering most of
the domain, which makes an initial full-width projection or four rather randomly dis-
tributed, non-adaptively chosen quarter-width projections sensible approaches. Dur-
ing the following 36 rounds of Algorithm 1, the edge-promoting sequentially optimal
design first shows a clear advantage over the full-width reference reconstructions, but
the advantage diminishes after enough projection data has been collected. On the
other hand, the reference quarter-width projections based on the Gaussian prior per-
form almost as well as Algorithm 1 until about 10 projections, but subsequently the
adaptive approach of Algorithm 1 leads to clearly superior results. It is also inter-
esting to notice that the equiangular full-width heuristic starts to outperform the
sequentially optimized projections corresponding to the Gaussian prior at about 25
quarter-width projections.

The final reconstructions after 40 sequentially optimized and with 10 full-width
equiangular projections, as well as those after only 20 optimized and 5 equiangular
projections, are presented on the bottom and middle rows of Figure 6.6. The reference
reconstructions corresponding to the full-width projections in the middle column con-
tain characteristic streaking artifacts of sparse-angle X-ray tomography, evenly spread
around the target; this effect is particularly emphasized in the case of five full-width
projections. For the 20 adaptively optimized projections in the left-hand column,
some sections of the ‘head boundary’ are reconstructed more accurately than in the
corresponding reference reconstructions, and there is arguably also less blurring in
the interior of the phantom. However, with only 20 projections Algorithm 1 leads to
a bad reconstruction of the bottom half of the phantom as the optimized projections
have not yet covered that region comprehensively. This exemplifies an obvious flaw
in our approach: even if the sequentially chosen projection geometries were locally
optimal, their combination is no longer optimal after several rounds, and there is
no guarantee that this nonoptimality could not be severe if a high number of pro-
jection geometries is considered. The final reconstruction produced by Algorithm 1
after 40 quarter-width projections and the one corresponding to ten equiangular full-
width projections shown on the bottom row of Figure 6.6 are comparable in quality,
whereas the one corresponding to the 40 quarter-width projections sequentially opti-
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Fig. 6.6: 2D Test 3. Top left: Shepp–Logan phantom. Top right: Mean relative
L2(D) reconstruction errors over 100 samples of noise realizations for sequentially opti-
mized projection geometries (red: Algorithm 1, blue: Gaussian prior) and equiangular
full-width projections with equivalent radiation doses (black). The error-bars show
the confidence intervals of one standard deviation, and the horizontal axis indicates
the number of projections with beam width 0.25. Middle row: Radiation dose cor-
responding to 5 full-width projections. Bottom row: Radiation dose corresponding
to 10 full-width projections. Left column: Reconstructions for projection geometries
optimized by Algorithm 1 with the latest projection depicted. Center column: Recon-
structions for equiangular full-width projections. Right column: Reconstructions for
projection geometries optimized based on a Gaussian prior with the latest projection
depicted.

mized based on the Gaussian prior is arguably somewhat inferior. These observations
are inline with the information in the convergence plot of the top right image in
Figure 6.6.

6.2. Three-dimensional cone beam tomography. In three dimensions, the
unknown absorption distribution is located in the unit cube D = [0, 1]3 that is dis-
cretized into a uniform grid of n = N3 voxels. We consider cone beam tomography,
where a point-like source at s ∈ R3 sends X-rays to a two-dimensional receiver patch
that occupies a ‘square’ solid angle of the form [θ+ δ, θ− δ]× [φ+ δ, φ− δ] if the origin
is transferred to s without affecting the orientation of the coordinate axes; see Figure
6.7. Here θ and φ denote the central polar and azimuthal angles of the detector, re-
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Fig. 6.7: Measurement setup of three-dimensional cone beam tomography.

spectively. When considering full-aperture projections, the imaging system is always
aligned so that the line between the source and the midpoint of the receiver passes
through the center of the cube D. The receiver is discretized into a rectangular grid
of m = M2 detectors with respect to its polar and azimuthal angles in the coordi-
nate system centered at s. To summarize, a single full-aperture projection geometry
is defined by the central spherical angles of the detector (θ, φ) with respect to the
source s (or the center of D), the corresponding opening angle δ, the distance d from
the source to the center of D, and the number of pixels per edge M in the detector.
Observe that the distance between the source and the detector does not play a role
as long as the two are on opposite sides of D.

After assigning (fixed) values for d, δ and M , a set of full-aperture projection
geometries to be used in the exhaustive optimization algorithm of [13] is defined by
choosing the corresponding central spherical angles (θj , φj). Unlike in the two dimen-
sional examples with parallel beam tomography, the projections are not symmetric
with respect to reflections about the center of the object, and thus one cannot only
focus on projections from one side of the object, i.e., one cannot exclude some pro-
jection directions as redundant by a symmetry argument. To simulate movement of
a smaller detector in the lateral direction, it is possible to only consider some subset
of detectors in a full-aperture receiver.

6.2.1. 3D Test with simple geometric shapes. Analogously to the first two-
dimensional experiment, our three-dimensional example only aims at demonstrating
the basic operation of the algorithm. The target shown on the left in Figure 6.8
consists of two balls with radius 0.2 centered at (0.2, 0.2, 0.2) and (0.3, 0.6, 0.6), re-
spectively, and a rectangular cuboid [0.6, 0.8]× [0.5, 0.9]× [0.5, 0.9] in a homogeneous
background with vanishing absorption. The common constant absorption level of the
balls is 1, and that of the cuboid is 2. The target D is discretized into a grid with
N = 50 voxels per edge, i.e. a total of 1.25 · 105 unknowns. For the optimization
step of Algorithm 1, we interpolate once again onto a significantly sparser grid with
203 = 8000 pixels to speed up the computations. The noise level is chosen to be
σ = 2 · 10−3, the opening angle of the projection cones is δ = 0.24 radians, and the
distance from the source to the center of D is set to 2.5.

To define the set of (central) projection angles used in determining the search
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Fig. 6.8: 3D Test. Left: Target. Right: Relative L2(D) reconstruction errors for
optimized quarter-aperture projection geometries and ‘equally spaced’ full-aperture
projections with equivalent radiation doses. The red curve depicts the errors for
optimized projection geometries whereas the black curve shows those for the equally
spaced projections. The horizontal axis indicates the number of quarter-aperture
projections.

space for the exhaustive optimization algorithm from [13], we introduce 60 evenly
spaced azimuthal angles φi over the interval [0, 2π] and three polar angles−π/4, 0, π/4,
with the zero polar angle associated to directions parallel to the xy-plane. The total
set of projection directions is then [φ1, . . . , φ30] × [−π/4, 0, π/4]. The detector is
split into four quadrants, each with 10× 10 detectors, to allow four quarter-aperture
projection geometries for each projection direction. This construction results in a
total number of 4 × 3 × 60 = 720 available projection geometries for the exhaustive
algorithm from [13]. In particular, note that the set of possible projection directions
is both sparse and limited in the polar direction, which has a certain effect on the
achievable reconstruction quality [37].

Algorithm 1 is run for a total of 40 rounds. For reference, we once again also
consider reconstructions corresponding to ‘equally spaced’ full-aperture projections
of equivalent radiation dose. Unlike in two-dimensions, there is no obvious method-
ology for choosing the directions for these reference projections: (i) there exist now
fundamental way of uniformly sampling the available 180 directions and (ii) it is ob-
vious that projections from opposite directions contain similar, yet not exactly the
same information. Our heuristic for choosing the directions of the full-aperture pro-
jections is including in the computation of the reference reconstructions one by one
more projection directions from the sequence: (0, 0), (0, 2π/3), (0, 4π/3), (π/4, π),
(π/4, 0), (−π/4, π/2), (−π/4, 3π/2), (0, π/6), (0, 3π/2), (0, 5π/6). In particular, note
that this construction does not even aim at globally optimal reference directions, as
are arguably the equiangular directions in two dimensions, but the selection of the
reference projection geometries is also sequential in the sense that all previously used
projections are also included in the subsequent projection sets of higher cardinality.

The relative L2(D) reconstruction errors for equivalent radiation doses are shown
on the right in Figure 6.8. For the optimized quarter-aperture projections, the re-
construction error initially starts to decrease, before plateauing for iterations 3-6. At
that point, the reconstruction error for the reference projections decreases faster, with
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Fig. 6.9: 3D Test. Slices parallel to the xy-plane of reconstructions produced by
Algorithm 1 for quarter-aperture projections. Top row: 5 optimized projections.
Bottom row: 15 optimized projections.

the quality of the reference reconstructions being better for radiation doses equiva-
lent to 3-8 quarter-aperture projections. However, between 7 and 10 iterations of
Algorithm 1, the reconstruction error for the optimized quarter-aperture projections
drops rapidly below the reference curve and stays there all the way until the limit of
40 quarter-aperture projections is reached. As in the two-dimensional experiments,
once enough data has been collected the optimized quarter-aperture projections and
the reference full-width projections result in roughly the same reconstruction errors
for equivalent radiation doses.

The top row of Figure 6.9 shows three slices of the reconstruction parallel to the
xy-plane after 5 rounds of Algorithm 1, while the bottom row illustrates the same
cross-sections after 15 rounds. These images demonstrate that initially the optimiza-
tion procedure focuses solely on the vicinity of the ball centered at (0.2, 0.2, 0.2), while
the surroundings of the two other inclusions are left unexplored. This explains the
rapid drop in the relative L2(D) reconstruction error over the first couple of itera-
tions as one of the two balls is found and explored, but it also gives a reason for the
slow convergence between 3 and 6 iterations: the algorithm prefers to first thoroughly
investigate the detected ball, and it moves its focus on the other two objects only
after an optimized projection accidentally passes through them. This demonstrates
an inherent flaw in the algorithm: areas with already detected distinguishable fea-
tures are examined in depth, whereas other areas are left untouched until something
interesting is found as a byproduct of the ongoing local exploration. This feature
could possibly be mitigated, e.g., by initializing the algorithm with a low number of
full-width projections that cover the entire target.

7. Concluding remarks. In this work we studied sequential edge-promoting
Bayesian experimental design for linear inverse problems and, in particular, for X-ray
tomography. We introduced a novel greedy iterative method that aims at optimizing
the measurement design when a TV type prior is applied. The method is based on
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interpreting the so-called lagged diffusivity iteration [48] in the Bayesian framework.
Our two and three-dimensional numerical examples based on simulated data suggest
that the introduced approach promotes sequential designs that enhance recovery of
edges in the target image.

There are a number of interesting avenues for future work. Due to the feed-
back from the data, our sequential algorithm often allocates subsequent projections
to enhance already observed edges while a portion of the target image may remain
uninvestigated. Such choices are not necessarily globally optimal, and we recorded
reconstruction error plots that exhibit occasional jumps when previously unexplored
objects are (accidentally) detected. Understanding the algorithmic balance between
exploring new areas and improving already observed edges via the choice of the next
design seems an interesting task.

The more straightforward questions are related to the performance of the algo-
rithm for nonlinear inverse problems and its integration with more efficient optimiza-
tion procedures than the exhaustive search employed here. Moreover, investigating
whether the sequential designs obtained via the proposed approach approximate (at
least asymptotically) the ones corresponding to the exact TV prior is also left for
future studies.
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