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Abstract. This work studies finite sample approximations of the exact and entropic regularized Wasserstein
distances between centered Gaussian processes and, more generally, covariance operators of func-
tional random processes. We first show that these distances/divergences are fully represented by
reproducing kernel Hilbert space (RKHS) covariance and cross-covariance operators associated with
the corresponding covariance functions. Using this representation, we show that the Sinkhorn diver-
gence between two centered Gaussian processes can be consistently and efficiently estimated from
the divergence between their corresponding normalized finite-dimensional covariance matrices, or
alternatively, their sample covariance operators. Consequently, this leads to a consistent and effi-
cient algorithm for estimating the Sinkhorn divergence from finite samples generated by the two
processes. For a fixed regularization parameter, the convergence rates are dimension-independent
and of the same order as those for the Hilbert-Schmidt distance. If at least one of the RKHS is
finite-dimensional, we obtain a dimension-dependent sample complexity for the exact Wasserstein
distance between the Gaussian processes.
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1. Introduction. This work studies exact and entropic regularized Wasserstein distances
and divergences between centered Gaussian processes, and more generally, between covariance
operators associated with functional random processes. Our main focus is on the finite sample
approximations of the entropic divergences, which we show to be dimension-independent.
Our main results are obtained via the analysis of reproducing kernel Hilbert space (RKHS)
covariance and cross-covariance operators associated with the covariance functions of the given
random processes. This work builds upon [33, 35], which formulated entropic Wasserstein
distances between Gaussian measures on Hilbert spaces and their convergence properties.

The topic of distances/divergences between covariance operators and stochastic processes
has attracted increasing interests in statistics and machine learning recently, e.g. [37, 15,
39, 29, 30, 50]. In [30, 50], the Kullback-Leibler divergence between stochastic processes was
studied, the latter in the context of functional Bayesian neural networks. In the field of func-
tional data analysis, see e.g. [43, 12, 21], one particular approach for analyzing functional data
has been via the analysis of covariance operators. Recent work along this direction includes
[37, 15], which utilize the Hilbert-Schmidt distance between covariance operators and [39, 29],
which utilize non-Euclidean distances, in particular the Procrustes distance, also known as
Bures-Wasserstein distance. The latter distance is precisely the 2-Wasserstein distance be-
tween two centered Gaussian measures on Hilbert space in the setting of optimal transport
(OT) and can better capture the intrinsic geometry of the set of covariance operators. This
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distance is always well-defined for singular covariance operators, which is a distinct advan-
tage over the Kullback-Leibler divergence, which requires equivalent Gaussian measures [34].
OT distances are, however, generally numerically difficult to compute and can have, more-
over, poor convergence rates (more below), which motivated the study of entropic regularized
OT. This direction has recently attracted much attention in machine learning, statistics, and
related fields [7, 13, 18, 31, 38]). This line of research is also closely connected with the
Schrödinger bridge problem [47], which has been studied extensively [3, 4, 8, 25, 46].

In [28, 22, 9], explicit formulas were obtained for the entropic regularized 2-Wasserstein
distance and Sinkhorn divergence between Gaussian measures on Euclidean space. These
were generalized to infinite-dimensional Gaussian measures on Hilbert spaces in [33], with
the entropic formulation being valid for both settings of singular and nonsingular covariance
operators. The Gaussian setting reveals explicitly several favorable theoretical properties of the
entropic regularization formulation, including strict convexity, unique solution of barycenter
equation in the singular setting, and Fréchet differentiability, in contrast to the 2-Wasserstein
distance, which is not Fréchet differentiable in the infinite-dimensional setting.

Furthermore, it has been shown that the Sinkhorn divergence has much better convergence
behavior and sample complexity compared with the exact Wasserstein distance. It is well-
known that the sample complexity of the Wasserstein distance can grow exponentially in the
dimension of the underlying space Rd, with the worst case being O(n−1/d) [11, 52, 14, 20].
In [17], it is shown that, as a consequence of entropic regularization, the Sinkhorn divergence
between two probability measures with bounded support on Rd achieves sample complexity
O((1+ε−bd/2c)n−1/2), that is the same as the Maximum Mean Discrepancy (MMD) for a fixed
ε > 0. However, the constant factor in the sample complexity in [17] depends exponentially

on the diameter of the support. In [31], the rate of convergence O
(
ε
(

1 + σd5d/2e+6

εd5d/4e+3

)
n−1/2

)
was obtained for σ2-subgaussian measures on Rd. In [35], it was shown that the Sinkhorn
divergence in the RKHS setting achieves the rate of convergence O

(
(1 + 1

ε )n
−1/2

)
for all

ε > 0, which is thus dimension-independent. In particular, this applies to Sinkhorn divergence
between Gaussian measures on Euclidean space and infinite-dimensional Hilbert spaces.

Contributions of this work. In this work, we apply the results in [33, 35] to the
setting of centered Gaussian processes, and more generally, covariance operators associated
with functional random processes. Specifically,

1. We show that the Wasserstein distance/Sinkhorn divergence between centered Gauss-
ian processes are fully represented by RKHS covariance and cross-covariance operators
associated with the corresponding covariance functions. From this representation,
we show that the Sinkhorn divergence can be consistently and efficiently estimated
via the corresponding normalized finite covariance matrices. The convergence rate is
dimension-independent and has the form O(1

εn
−1/2) (Section 4). Alternatively, the

Sinkhorn divergence can be consistently estimated via the corresponding sample co-
variance operators with similar convergence rate (Section 7).

2. We present an algorithm that consistently and efficiently estimates the Sinkhorn di-
vergence from finite samples of the two given random processes. The convergence rate
is dimension-independent. (Section 5).

3. For the exact 2-Wasserstein distance, we obtain the corresponding sample complexity



ENTROPIC WASSERSTEIN DISTANCES BETWEEN GAUSSIAN PROCESSES 3

when the RKHS of at least one of the covariance functions is finite-dimensional. The
convergence rate is dimension-dependent (Section 6).

Notation. Throughout the paper, letH be a real, separable Hilbert space, with dim(H) =
∞ unless explicitly stated otherwise. Let L(H) denote the set of bounded linear operators
on H, with norm ||A|| = sup||x||≤1 ||Ax||. Let Sym(H) ⊂ L(H) be the set of bounded, self-

adjoint linear operators on H. Let Sym+(H) ⊂ Sym(H) be the set of self-adjoint, positive
operators on H, i.e. A ∈ Sym+(H) ⇐⇒ 〈Ax, x〉 ≥ 0∀x ∈ H. The Banach space Tr(H)
of trace class operators on H is defined by (e.g. [44]) Tr(H) = {A ∈ L(H) : ||A||tr =∑∞

k=1〈ek, (A∗A)1/2ek〉 <∞}, for any orthonormal basis {ek}k∈N ∈ H, where || ||tr is the trace
norm. For A ∈ Tr(H), its trace is then given by tr(A) =

∑∞
k=1〈ek, Aek〉. The Hilbert space

HS(H1,H2) of Hilbert-Schmidt operators from H1 to H2 is defined by (e.g.[23]) HS(H1,H2) =
{A ∈ L(H1,H2) : ||A||2HS = tr(A∗A) =

∑∞
k=1 ||Aek||2 < ∞}, for any orthonormal basis

{ek}k∈N in H1, with inner product 〈A,B〉HS = tr(A∗B). For H1 = H2 = H, we write HS(H).
We give more detail of HS(H1,H2) and the Hilbert-Schmidt norm || ||HS in Section 12.

Proofs for all main results are presented in Section 10.

2. Background and previous work. Let (X, d) be a complete separable metric space
equipped with a lower semi-continuous cost function c : X × X → R≥0. Let P(X) denote
the set of all probability measures on X. The optimal transport (OT) problem between two
probability measures ν0, ν1 ∈ P(X) is (see e.g. [51])

(2.1) OT(ν0, ν1) = min
γ∈Joint(ν0,ν1)

Eγ [c] = min
γ∈Joint(ν0,ν1)

∫
X×X

c(x, y)dγ(x, y)

where Joint(ν0, ν1) is the set of joint probabilities with marginals ν0 and ν1. For 1 ≤ p <∞,
let Pp(X) denote the set of all probability measures µ on X of finite moment of order p,
i.e.

∫
X d

p(x0, x)dµ(x) < ∞ for some (and hence any) x0 ∈ X. The following p-Wasserstein
distance Wp between ν0 and ν1 defines a metric on Pp(X) (Theorem 7.3, [51])

(2.2) Wp(ν0, ν1) = OTdp(ν0, ν1)
1
p .

For two Gaussian measures νi = N (mi, Ci), i = 0, 1 on Rn [19, 10, 36, 24] and on a separable
Hilbert space H[16, 6], W2(ν0, ν1) admits the following closed form

(2.3) W 2
2 (ν0, ν1) = ‖m0 −m1‖2 + tr(C0) + tr(C1)− 2tr

(
C

1/2
0 C1C

1/2
0

)1/2
.

Entropic regularization. The OT problem (2.1) is often computationally challenging and
it is more numerically efficient to solve the following regularized optimization problem [7]

(2.4) OTε
c(µ, ν) = min

γ∈Joint(µ,ν)
{Eγ [c] + εKL(γ||µ⊗ ν)} , ε > 0,

where KL(ν||µ) denotes the Kullback-Leibler divergence between ν and µ. The KL in (2.4)
acts as a bias [13], with the consequence that in general OTε

c(µ, µ) 6= 0. The following p-
Sinkhorn divergence [18, 13] removes this bias

(2.5) Sεp(µ, ν) = OTε
dp(µ, ν)− 1

2
(OTε

dp(µ, µ) + OTε
dp(ν, ν)).
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In the case X = H is a separable Hilbert space and µ, ν are Gaussian measures on H, both
OTε

d2 and Sε2 admit closed form expressions, as follows.

Theorem 2.1 (Entropic Wasserstein distance and Sinkhorn divergence between Gauss-
ian measures on Hilbert space, [33], Theorems 3, 4, and 7). Let µ0 = N (m0, C0), µ1 =
N (m1, C1) be two Gaussian measures on H. For each fixed ε > 0,

OTε
d2(µ0, µ1) = ||m0 −m1||2 + tr(C0) + tr(C1)− ε

2
tr(M ε

01) +
ε

2
log det

(
I +

1

2
M ε

01

)
.(2.6)

Sε2(µ0, µ1) = ||m0 −m1||2 +
ε

4
tr [M ε

00 − 2M ε
01 +M ε

11](2.7)

+
ε

4
log det

[ (
I + 1

2M
ε
01

)2(
I + 1

2M
ε
00

) (
I + 1

2M
ε
11

)] .
The optimal joint measure is the unique Gaussian measure γε = N

((
m0

m1

)
,

(
C0 CXY
C∗XY C1

))
,

where CXY = 2
εC

1/2
0

(
I + 1

2M
ε
01

)−1
C

1/2
0 C1. Here det is the Fredholm determinant and M ε

ij :

H → H are trace class operators defined by M ε
ij = −I +

(
I + 16

ε2
C

1/2
i CjC

1/2
i

)1/2
, i, j = 0, 1.

In particular, limε→0 OTε
d2(µ0, µ1) = limε→0 Sε2(µ0, µ1) = W 2

2 (µ0, µ1) and limε→∞ Sε2(µ0, µ1) =
||m0 −m1||2. When dim(H) <∞, we recover the finite-dimensional results in [28, 22, 9].

Convergence property. Sε2 is a divergence function on Gauss(H), the set of all Gaussian
measures on H and has the following convergence property.

Theorem 2.2 ([35]-Theorems 2 and 5). Let A,B, {An, Bn}n∈N ∈ Sym+(H)∩Tr(H). ∀ε > 0,

Sε[N (0, An),N (0, A)] ≤ 3

ε
[||An||HS + ||A||HS]||An −A||HS.(2.8)

|Sε2[N (0, An),N (0, Bn)]− Sε2[N (0, A),N (0, B)]|

≤ 3

ε
[||An||HS + ||A||HS + 2||B||HS]||An −A||HS

+
3

ε
[2||An||HS + ||A||HS + ||B||HS]||Bn −B||HS.(2.9)

In this work, we apply Theorems 2.1 and 2.2 to estimate Sinkhorn divergence between centered
Gaussian processes and, more generally, covariance operators of random processes.

Related work. The 2-Wasserstein distance was applied to Gaussian processes in [29, 27],
however the treatment in [27] is generally only valid in finite dimensions. Sample complexities
were obtained in [35] for Sinkhorn divergence between Gaussian measures on Euclidean and
Hilbert spaces. In [26], the author obtained results similar to our Theorem 4.5, however the
main theoretical analysis carried out in [26] is flawed (see discussion in Section 4).

3. Kernels, covariance operators, and Gaussian processes. Throughout the paper, we
make the following assumptions

1. Assumption 1 T is a σ-compact metric space, that is T = ∪∞i=1Ti, where T1 ⊂ T2 ⊂
· · · , with each Ti being compact.
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2. Assumption 2 ν is a non-degenerate Borel probability measure on T , that is ν(B) > 0
for each open set B ⊂ T .

3. Assumption 3 K,K1,K2 : T × T → R are continuous, symmetric, positive definite
kernels and ∃κ > 0, κ1 > 0, κ2 > 0 such that∫

T
K(x, x)dν(x) ≤ κ2,

∫
T
Ki(x, x)dν(x) ≤ κ2

i .(3.1)

4. Assumption 4 ξ ∼ GP(0,K), ξi ∼ GP(0,Ki), i = 1, 2, are centered Gaussian pro-
cesses with covariance functions K,Ki, respectively.

For K satisfying Assumption 3, positivity implies K(x, t)2 ≤ K(x, x)K(t, t) ∀x, t ∈ T , thus∫
T
K(x, t)2dν(t) <∞ ∀x ∈ T,

∫
T×T

K(x, t)2dν(x)dν(t) <∞.(3.2)

The first inequality means Kx ∈ L2(T, ν) ∀x ∈ T , where Kx : T → R is defined by Kx(t) =
K(x, t). Let HK denote the corresponding reproducing kernel Hilbert space (RKHS), then
HK ⊂ L2(T, ν) [49]. Define the following linear operator

RK = RK,ν : L2(T, ν)→ HK ,(3.3)

RKf =

∫
T
Ktf(t)dν(t), (RKf)(x) =

∫
T
K(x, t)f(t)dν(t).(3.4)

Since ||RKf ||HK
≤
∫
T ||Kt||HK

|f(t)|dν(t) ≤
√∫

T K(t, t)dν(t)||f ||L2(T,ν), RK is bounded, with

||RK : L2(T, ν)→ HK || ≤

√∫
T
K(t, t)dν(t) ≤ κ.(3.5)

Its adjoint is R∗K : HK → L2(T, ν) = J : HK ↪→ L2(T, ν), the inclusion operator from HK
into L2(T, ν) [45]. RK then induces the following self-adjoint, positive, compact operator

CK = CK,ν = R∗KRK : L2(T, ν)→ L2(T, ν),(3.6)

(CKf)(x) =

∫
T
K(x, t)f(t)dν(t), ∀f ∈ L2(T, ν),(3.7)

||CK ||2HS(L2(T,ν)) =

∫
T×T

K(x, t)2dν(x)dν(t) ≤ κ4.(3.8)

The operator CK has been studied extensively, e.g. [5, 49, 45]. Let {λk}k∈N be its eigen-
values with normalized eigenfunctions {φk}k∈N forming an orthonormal basis in L2(T, ν). A
fundamental result for positive definite kernels is Mercer’s Theorem, which states that

K(x, y) =
∞∑
k=1

λkφk(x)φk(y) ∀(x, y) ∈ T × T,(3.9)
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(see version in [49]), where the series converges absolutely for each pair (x, y) ∈ T × T and
uniformly on any compact subset of T . By Mercer’s Theorem, K is completely determined
by CK and vice versa. The RKHS HK is explicitly described by

HK =

f ∈ L2(T, ν), f =
∞∑
k=1

akφk : ||f ||2HK
=

∞∑
k=1,λk>0

a2
k

λk
<∞

 ⊂ L2(T, ν).(3.10)

Furthermore, CK ∈ Sym+(H) ∩ Tr(H), H = L2(T, ν), with

tr(CK) =
∞∑
k=1

λk =

∫
T
K(t, t)dν(t) ≤ κ2.(3.11)

Gaussian processes. Consider the correspondence between Gaussian measures, covari-
ance operators CK as defined in Eq.(3.6), and Gaussian processes with paths in L2(T, ν) [42].
Let (Ω,F , P ) be a probability space, ξ = (ξ(t))t∈T = (ξ(ω, t))t∈T be a real Gaussian process
on (Ω,F , P ), with mean m and covariance function K, denoted by ξ ∼ GP(m,K), where

m(t) = Eξ(t), K(s, t) = E[(ξ(s)−m(s))(ξ(t)−m(t))], s, t ∈ T.(3.12)

The sample paths ξ(ω, ·) ∈ H = L2(T, ν) almost P -surely, i.e.
∫
T ξ

2(ω, t)dν(t) < ∞ almost
P -surely, if and only if ([42], Theorem 2 and Corollary 1)∫

T
m2(t)dν(t) <∞,

∫
T
K(t, t)dν(t) <∞.(3.13)

In this case, ξ induces the following Gaussian measure Pξ on (H,B(H)): Pξ(B) = P{ω ∈ Ω :
ξ(ω, ·) ∈ B}, B ∈ B(H), with mean m ∈ H and covariance operator CK : H → H, defined
by Eq.(3.6). Conversely, let µ be a Gaussian measure on (H,B(H)), then there is a Gaussian
process ξ = (ξ(t))t∈T with sample paths in H, with induced probability measure Pξ = µ.

Since Gaussian processes are fully determined by their means and covariance functions, the
latter being fully determined by their covariance operators, we can define distance/divergence
functions between two Gaussian processes as follows, see also e.g. [37, 15, 39, 29].

Definition 3.1 (Divergence between Gaussian processes). Assume Assumptions 1-4. Let
H = L2(T, ν). Let ξi ∼ GP(mi,Ki), i = 1, 2, be two Gaussian processes with mean mi ∈ H
and covariance function Ki. Let D be a divergence function on Gauss(H) × Gauss(H). The
corresponding divergence DGP between ξ1 and ξ2 is defined to be

DGP(ξ1||ξ2) = D(N (m1, CK1)||N (m2, CK2)).(3.14)

It is clear then that DGP(ξ1||ξ2) ≥ 0 and DGP(ξ1||ξ2) = 0 ⇐⇒ m1 = m2,K
1 = K2. Subse-

quently, we assume m1 = m2 = 0 and compute Sε2[N (0, CK1),N (0, CK2)].
RKHS covariance operators. To empirically estimate Sε2[N (0, CK1),N (0, CK2)], we

employ RKHS covariance operators and cross-covariance operators. The operator RK defined
in Eq.(3.4) induces the following self-adjoint, positive, compact RKHS covariance operator

LK = RKR
∗
K : HK → HK , LK =

∫
T

(Kt ⊗Kt)dν(t),(3.15)

LKf(x) =

∫
T
Kt(x)〈f,Kt〉HK

dν(t) =

∫
T
K(x, t)f(t)dν(t), f ∈ HK .(3.16)
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LK has the same nonzero eigenvalues as CK and thus LK ∈ Sym+(HK) ∩ Tr(HK), with

tr(LK) = tr(CK) ≤ κ2, ||LK ||HS(HK) = ||CK ||HS(L2(T,ν)) ≤ κ2.(3.17)

We note also that for f ∈ HK , CKf = LKf . However, as we see below, despite their many
common properties, CK and LK are generally not interchangeable.

Empirical RKHS covariance operator. Let X = (xi)
m
i=1 be independently sampled

from T according to ν. This defines the following empirical version of LK

LK,X =
1

m

m∑
i=1

(Kxi ⊗Kxi) : HK → HK ,(3.18)

LK,Xf =
1

m

m∑
i=1

Kxi〈f,Kxi〉HK
=

1

m

m∑
i=1

f(xi)Kxi , f ∈ HK .(3.19)

Let HK,X = span{Kxi}mi=1 ⊂ HK , then LK,X : HK → HK,X. In particular, LK,X : HK,X →
HK,X and ∀j, 1 ≤ j ≤ m, LK,XKxj = 1

m

∑m
i=1K(xj , xi)Kxi . Let K[X] denote the m×m Gram

matrix, with (K[X])ij = K(xi, xj), then the matrix representation of LK,X : HK,X → HK,X in
span{Kxi}mi=1 is 1

mK[X]. In particular, the nonzero eigenvalues of LK,X are precisely those of
1
mK[X], corresponding to eigenvectors that must lie inHK,X. Thus, the nonzero eigenvalues of
CK : L2(T, ν)→ L2(T, ν), tr(CK), ||CK ||HS, which are the same as those of LK : HK → HK ,
can be empirically estimated from those of the m×m matrix 1

mK[X] (see [45]).
RKHS cross-covariance operators. Let K1,K2 be two kernels satisfying Assumptions

1-4, and HK1 ,HK2 the corresponding RKHS. Let RKi : L2(T, ν)→ HKi , i = 1, 2 be as defined
in Eq.(3.4). They give rise to the following RKHS cross-covariance operators

R12 = RK1R∗K2 : HK2 → HK1 , R21 = RK2R∗K1 : HK1 → HK2 = R∗12.(3.20)

Both LK and R12, R21 are encompassed in the following, which is straightforward to verify.

Lemma 3.2. The operators Rij = RKiR∗Kj : HKj → HKi, i, j = 1, 2, are given by

Rij =

∫
T

(Ki
t ⊗K

j
t )dν(t), Rijf =

∫
T
Ki
t〈f,K

j
t 〉HKj dν(t), i, j = 1, 2,(3.21)

Rijf(x) =

∫
T
Ki
t(x)f(t)dν(t) =

∫
T
Ki(x, t)f(t)dν(t), f ∈ HKj ,(3.22)

Then Rii = LKi, R∗12 = R21, and the operator R∗12R12 : HK2 → HK2 is given by

R∗12R12f =

∫
T
K2
t

∫
T
K1(t, u)f(u)dν(u)dν(t), f ∈ HK2 ,(3.23)

(R∗12R12f)(x) =

∫
T×T

K2(x, t)K1(t, u)f(u)dν(u)dν(t), ∀x ∈ T.

We remark that with f ∈ L2(T, ν), CK1f(t) =
∫
T K

1(t, u)f(u)dν(u) and

(CK2CK1f)(x) =

∫
T
K2(x, t)(CK1f)(t)dν(t) =

∫
T×T

K2(x, t)K1(t, u)f(u)dν(u)dν(t).(3.24)

Thus for f ∈ HK2 , CK2CK1f = R∗12R12f ∈ HK2 , however CK2CK1 : L2(T, ν) → L2(T, ν) is
generally not self-adjoint, whereas R∗12R12 ∈ Sym+(HK2).
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Lemma 3.3 (Hilbert-Schmidt norm). Under Assumptions 1-3, Rij ∈ HS(HKj ,HKi),
with ||Rij ||HS(H

Kj ,HKi ) ≤ κiκj, i, j = 1, 2.

Lemma 3.4 (Empirical RKHS covariance and cross-covariance operators). Let X =
{x1, . . . , xm} in Tm. Define the empirical integral operators Rij,X : HKj → HKi i, j = 1, 2, by

Rij,X =
1

m

m∑
k=1

(Ki
xk
⊗Kj

xk
) : HKj → HKi ,(3.25)

Rij,Xf =
1

m

m∑
k=1

Ki
xk
〈f,Kj

xk
〉H

Kj =
1

m

m∑
k=1

f(xk)K
i
xk
, f ∈ HKj ,(3.26)

Then Rii,X = LKi,X, R∗12,X = R21,X, and the operator R∗12,XR12,X : HK2 → HK2 is given by

R∗12,XR12,Xf =
1

m2

m∑
i,j=1

f(xi)K
1(xi, xj)K

2
xj ∈ HK2,X.(3.27)

Thus R∗12,XR12,X : HK2 → HK2,X and on the subspace HK2,X, in span{K2
xj}

m
j=1, R∗12,XR12,X :

HK2,X → HK2,X has matrix representation 1
m2K

1[X]K2[X].

4. Estimation of Sinkhorn divergence from finite covariance matrices. Main goal.
Assume Assumptions 1-4. Our main goal in this work is to estimate W2[N (0, CK1),N (0, CK2)]
and Sε2[N (0, CK1),N (0, CK2)] given finite samples {{ξ1

i (xj)}N1
i=1, {ξ2

i (xj)}N2
i=1}mj=1 from the two

processes ξ1, ξ2 on the set of points X = (xj)
m
j=1 in T . These correspond to Ni realizations of

process ξi, i = 1, 2, sampled at the m points in T given by X.
Let X = (xi)

m
i=1 be independently sampled from (T, ν). The Gaussian process assumption

ξi ∼ GP(0,Ki) means that (ξi(., xj))
m
j=1 are m-dimensional Gaussian random variables, with

(ξi(., xj))
m
j=1 ∼ N (0,Ki[X]), where (Ki[X])jk = Ki(xj , xk), 1 ≤ j, k ≤ m. We first assume

that the covariance matrices Ki[X] are known. In this section, we show that

Sε2

[
N
(

0,
1

m
K1[X]

)
,N
(

0,
1

m
K2[X]

)]
consistently estimates Sε2[N (0, CK1),N (0, CK2)].

Let H be any separable Hilbert space. Let c ∈ R, c 6= 0 be fixed. Consider the following
function G : Sym+(H) ∩ Tr(H)→ R defined by

G(A) = tr[M(A)]− log det

(
I +

1

2
M(A)

)
, where M(A) = −I + (I + c2A)1/2.(4.1)

With this definition, with c = 4
ε , Sε2[N (0, CK1),N (0, CK2)] can be expressed as

Sε2[N (0, CK1),N (0, CK2)] =
1

c

[
G(C2

K1) +G(C2
K2)− 2G(C

1/2
K1 CK2C

1/2
K1 )

]
.(4.2)

We now represent this via the RKHS covariance and cross-covariance operators in Section 3.
RKHS covariance operator terms. Since CKi ∈ Tr(L2(T, ν)) and LKi ∈ Tr(HKi),

i = 1, 2, have the same nonzero eigenvalues, we have G(C2
Ki) = G(L2

Ki), which can be approx-
imated by their empirical versions G(L2

Ki,X
), i = 1, 2, which are the same as G( 1

m2 (Ki[X])2).
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RKHS cross-covariance operator term. Consider the term G(C
1/2
K1 CK2C

1/2
K1 ) in Eq.

(4.2). Recall that RKi : L2(T, ν) → HKi , R∗Ki : HKi → L2(T, ν), with CKi = R∗
KiRKi :

L2(T, ν)→ L2(T, ν). The nonzero eigenvalues of C
1/2
K1 CK2C

1/2
K1 are the same as those of

CK1CK2 = (R∗K1RK1)(R∗K2RK2) : L2(T, ν)→ L2(T, ν),(4.3)

which, in turns, are the same as the nonzero eigenvalues of the operator

R∗12R12 = RK2(R∗K1RK1)R∗K2 : HK2 → HK2 ,(4.4)

or equivalently, of R∗21R21 = RK1(R∗K2RK2)R∗K1 : HK1 → HK1 . Thus G(C
1/2
K1 CK2C

1/2
K1

) =
G(R∗12R12), with the empirical version being G(R∗12,XR12,X). By Lemma 3.4, the nonzero

eigenvalues of R∗12,XR12,X are those of 1
m2K

1[X]K2[X], or equivalently, of 1
m2 (K1[X])1/2×

K2[X](K1[X])1/2. Thus G(R∗12,XR12,X) = G( 1
m2 (K1[X])1/2K2[X]K1([X])1/2). We thus have

Proposition 4.1 (RKHS covariance and cross-covariance operator representation for
Sinkhorn divergence). Under Assumptions 1-4, let X = (xi)

m
i=1 ∈ Tm. Then

Sε2[N (0, CK1),N (0, CK2)] =
1

c

[
G(L2

K1) +G(L2
K2)− 2G(R∗12R12)

]
.(4.5)

Sε2

[
N
(

0,
1

m
K1[X]

)
,N
(

0,
1

m
K2[X]

)]
=

1

c

[
G(L2

K1,X) +G(L2
K2,X)− 2G(R∗12,XR12,X)

]
.(4.6)

The representations in Proposition 4.1 suggest that, given a random sample X = (xi)
m
i=1,

Sε2
[
N
(
0, 1

mK
1[X]

)
,N
(
0, 1

mK
2[X]

)]
→ Sε2[N (0, CK1),N (0, CK2)] as m → ∞. We now ana-

lyze the rate of this convergence. The function G as defined in Eq.(4.1) satisfies the following

Proposition 4.2. Let H,H1,H2 be separable Hilbert spaces. Then

|G(A)−G(B)| ≤ 3c2

4
||A−B||tr ∀A,B ∈ Sym+(H) ∩ Tr(H).(4.7)

|G(A2)−G(B2)| ≤ 3c2

4
[||A||HS + ||B||HS]||A−B||HS, ∀A,B ∈ Sym(H) ∩HS(H).(4.8)

Let A,B ∈ HS(H1,H2), then A∗A,B∗B ∈ Sym+(H1) ∩ Tr(H1) and

|G(A∗A)−G(B∗B)| ≤ 3c2

4
[||A||HS(H1,H2) + ||B||HS(H1,H2)]||A−B||HS(H1,H2).(4.9)

By Proposition 4.2, we thus need to estimate ||LKi,X−LKi ||HS(Hi), i = 1, 2 and ||R12,X−
R12||HS(HK2 ,HK1 ). We apply the following law of large numbers for Hilbert space-valued ran-
dom variables, which is a consequence of a general result by Pinelis ([40], Theorem 3.4).

Proposition 4.3 ([48]). Let (Z,A, ρ) be a probability space and ξ : (Z, ρ)→ H be a random
variable. Assume that ∃M > 0 such that ||ξ|| ≤ M < ∞ almost surely. Let σ2(ξ) = E||ξ||2.
Let (zi)

m
i=1 be independently sampled from (Z, ρ). ∀0 < δ < 1, with probability at least 1− δ,∥∥∥∥∥ 1

m

m∑
i=1

ξ(zi)− Eξ

∥∥∥∥∥ ≤ 2M log 2
δ

m
+

√
2σ2(ξ) log 2

δ

m
.(4.10)
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4.1. Estimation with bounded kernels. We first consider the following setting
Assumption 5. K,K1,K2 are bounded, i.e. ∃κ, κ1, κ2 > 0 such that

sup
x∈T

K(x, x) ≤ κ2, sup
x∈T

Ki(x, x) ≤ κ2
i , i = 1, 2.(4.11)

This is satisfied for exponential kernels exp(−a||x − y||p), a > 0, 0 < p ≤ 2, on T = Rd and
for all continuous kernels if T is compact. Applying Proposition 4.3, we obtain the following.

Proposition 4.4 (Convergence of RKHS empirical covariance and cross-covariance op-
erators). Under Assumptions 1-5, ||Rij,X||HS(H

Kj ,HKi ) ≤ κiκj, i, j = 1, 2, ∀X ∈ Tm. Let
X = (xi)

m
i=1 be independently sampled from (T, ν). ∀0 < δ < 1, with probability at least 1− δ,

||Rij,X −Rij ||HS(H
Kj ,HKi ) ≤ κiκj

2 log 2
δ

m
+

√
2 log 2

δ

m

 ,(4.12)

||R∗ij,XRij,X −R∗ijRij ||tr(HKj ) ≤ 2κ2
iκ

2
j

2 log 2
δ

m
+

√
2 log 2

δ

m

 .(4.13)

In particular, ||LKi,X||HS(HKi ) ≤ κ2
i , and ∀0 < δ < 1, with probability at least 1− δ,

∥∥LKi,X − LKi

∥∥
HS(HKi )

≤ κ2
i

2 log 2
δ

m
+

√
2 log 2

δ

m

 .(4.14)

Proposition 4.4 generalizes Proposition 4 in [35], which states the bound in Eq.(4.14). Com-
bining Propositions 4.1, 4.2, and 4.4, we are led to our first main result.

Theorem 4.5 (Estimation of Sinkhorn divergence between Gaussian processes from fi-
nite covariance matrices - bounded kernels). Assume Assumptions 1-5. Let X = (xi)

m
i=1 be

independently sampled from (T, ν). For any 0 < δ < 1, with probability at least 1− δ,∣∣∣∣Sε2 [N (0,
1

m
K1[X]

)
,N
(

0,
1

m
K2[X]

)
− Sε2 [N (0, CK1),N (0, CK2)]

]∣∣∣∣
≤ 6

ε
(κ2

1 + κ2
2)2

2 log 6
δ

m
+

√
2 log 6

δ

m

 .(4.15)

Discussion. Similar results to Theorem 4.5 were reported in ([26], Theorem 8). However,
the main theoretical analysis in [26] is flawed, in particular Proposition 2 there. We note
that in the last term of Eq.(4.2), CKi ∈ Tr(L2(T, ν)) cannot be replaced by LKi ∈ Tr(HKi).
This is because in general HK1 and HK2 are different. For example, let T ⊂ Rn be compact
with nonempty interior, K1 be the Gaussian kernel K(x, y) = exp(−σ||x − y||2), σ > 0,
and K2 be any polynomial kernel. Then HK1 does not contain any polynomial [32], that
is HK1 ∩ HK2 = {0}. Thus, while CK1CK2 and (CK1)1/2CK2(CK1)1/2 are well-defined on

L2(T, ν), the products L
1/2
K1LK2L

1/2
K1 and LK1LK2 are generally not defined.
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Furthermore, for any compact operators Ai ∈ L(H), i = 1, 2, the operators A∗iA and AiA
∗
i

have the same nonzero eigenvalues, but this is generally not true for the products A∗1A1A
∗
2A2

and A1A
∗
1A2A

∗
2, which generally have different nonzero eigenvalues. This can be readily

verified numerically when H = Rn.
Thus ([26], Proposition 2) and the most crucial step in its proof, which substitutes CKi

by LKi , is not valid. We note also that Kato’s Theorem ([26], Theorem 1) does not apply to
operators of the form AB, A,B ∈ Sym+(H) compact, since AB is generally not self-adjoint.

4.2. Estimation with general kernels. Consider the following more general setting, where
the kernels are not necessarily bounded, e.g. polynomial kernels on T = Rd, d ∈ N. In this
case, the sample bounds are less tight compared to those in Section 4.1.

Assumption 6 ∃κ, κ1, κ2 > 0 such that∫
T

[K(x, x)]2dν(x) ≤ κ4,

∫
T

[Ki(x, x)]2dν(x) ≤ κ4
i , i = 1, 2.(4.16)

This is related to the fourth moments of the processes (Assumption 6(*) in Section 8) and
implies (3.1) in Assumption 3. The following is the corresponding version of Proposition 4.4.

Proposition 4.6. Under Assumptions 1-4 and 6, let X = (xi)
m
i=1 be independently sampled

from (T, ν). For any 0 < δ < 1, with probability at least 1− δ,

||Rij,X||HS(H
Kj ,HKi ) ≤

2κiκj
δ

, ||Rij,X −Rij ||HS(H
Kj ,HKi ) ≤

2κiκj√
mδ

.(4.17)

In particular, for Ki = Kj = K, ∀0 < δ < 1, with probability at least 1− δ,

||LK,X||HS(HK) ≤
2κ2

δ
, ||LK,X − LK ||HS(HK) ≤

2κ2

√
mδ

.(4.18)

Combining Propositions 4.2 and 4.6, we obtain the corresponding version of Theorem 4.5.

Theorem 4.7 (Estimation of Sinkhorn divergence between Gaussian processes from fi-
nite covariance matrices - general kernels). Under Assumptions 1-4 and 6, let X = (xi)

m
i=1

be independently sampled from (T, ν). For any 0 < δ < 1, with probability at least 1− δ,∣∣∣∣Sε2 [N (0,
1

m
K1[X]

)
,N
(

0,
1

m
K2[X]

)]
− Sε2[N (0, CK1),N (0, CK2)]

∣∣∣∣
≤ 18

ε
(κ2

1 + κ2
2)2

(
1 +

6

δ

)
1√
mδ

.(4.19)

5. Estimation of Sinkhorn divergence from finite samples. We now return to our main
goal stated in Section 4, where we are only given finite samples of the Gaussian processes
ξ1, ξ2. It is then necessary to estimate the covariance matrices K1[X],K2[X] and the Sinkhorn
divergence between them. For simplicity and without loss of generality, in the theoretical
analysis we let N1 = N2 = N . We recall that the Gaussian process ξ = (ξ(ω, t)) is defined
on the probability space (Ω,F , P ). Let W = (ω1, . . . , ωN ) be independently sampled from
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(Ω, P ), which corresponds to N sample paths ξi(x) = ξ(ωi, x), 1 ≤ i ≤ N, x ∈ T . Let
X = (xi)

m
i=1 ∈ Tm be fixed. Consider the following m×N data matrix

Z =

 ξ(ω1, x1), . . . , ξ(ωN , x1),
· · ·

ξ(ω1, xm), . . . , ξ(ωN , xm)

 = [z(ω1), . . . z(ωN )] ∈ Rm×N .(5.1)

Here z(ω) = (zi(ω))mi=1 = (ξ(ω, xi))
m
i=1. Since (K[X])ij = E[ξ(ω, xi)ξ(ω, xj)], 1 ≤ i, j ≤ m,

K[X] = E[z(ω)z(ω)T ] =

∫
Ω
z(ω)z(ω)TdP (ω).(5.2)

The empirical version of K[X], using the random sample W = (ωi)
N
i=1, is then

K̂W[X] =
1

N

N∑
i=1

z(ωi)z(ωi)
T =

1

N
ZZT .(5.3)

The convergence of K̂W[X] to K[X] is given by the following.

Proposition 5.1. Assume Assumptions 1-5. Let ξ ∼ GP(0,K) on (Ω,F , P ) Let X =
(xi)

m
i=1 ∈ Tm be fixed. Then ||K[X]||F ≤ mκ2. Let W = (ω1, . . . , ωN ) be independently

sampled from (Ω, P ). For any 0 < δ < 1, with probability at least 1− δ,

||K̂W[X]−K[X]||F ≤
2
√

3mκ2

√
Nδ

, ||K̂W[X]||F ≤
2mκ2

δ
.(5.4)

Let now ξi ∼ GP(0,Ki), i = 1, 2, on the probability spaces (Ωi,Fi, Pi), respectively. Let
Wi = (ωij)

N
j=1, be independently sampled from (Ωi, Pi), corresponding to the sample paths

{ξij(t) = ξi(ωj , t)}Nj=1, t ∈ T , from ξi, i = 1, 2. Combining Proposition 5.1 and Theorem 2.2,

we obtain the following empirical estimate of Sε2
[
N
(
0, 1

mK
1[X]

)
,N
(
0, 1

mK
2[X]

)]
from two

finite samples of ξ1 ∼ GP(0,K1) and ξ2 ∼ GP(0,K2) given by W1,W2.

Theorem 5.2. Assume Assumptions 1-5. Let X = (xi)
m
i=1 ∈ Tm, m ∈ N be fixed. Let W1 =

(ω1
j )
N
j=1, W2 = (ω2

j )
N
j=1 be independently sampled from (Ω1, P1) and (Ω2, P2), respectively. For

any 0 < δ < 1, with probability at least 1− δ,∣∣∣∣Sε2 [N (0,
1

m
K̂1

W1 [X]

)
,N
(

0,
1

m
K̂2

W2 [X]

)]
− Sε2

[
N
(

0,
1

m
K1[X]

)
,N
(

0,
1

m
K2[X]

)]∣∣∣∣
≤ 12

√
3

εδ

[(
1 +

4

δ

)
κ41 +

(
3 +

8

δ

)
κ21κ

2
2 + κ42

]
1√
N
.(5.5)

Here the probability is with respect to the product space (Ω1, P1)N × (Ω2, P2)N .

Combing Theorem 5.2 with Theorem 4.5, we are finally led to the following empirical esti-
mate of the theoretical Sinkhorn divergence Sε2[N (0, CK1),N (0, CK2)] from two finite samples
Z1,Z2 of ξ1 ∼ GP(0,K1) and ξ2 ∼ GP(0,K2).
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Theorem 5.3 (Estimation of Sinkhorn divergence between Gaussian processes from fi-
nite samples - bounded kernels). Assume Assumptions 1-5. Let X = (xi)

m
i=1 be indepen-

dently sampled from (T, ν). Let W1 = (ω1
j )
N
j=1, W2 = (ω2

j )
N
j=1 be independently sampled from

(Ω1, P1) and (Ω2, P2), respectively. For any 0 < δ < 1, with probability at least 1− δ,∣∣∣∣Sε2 [N (0,
1

m
K̂1

W1 [X]

)
,N
(

0,
1

m
K̂2

W2 [X]

)]
− Sε2[N (0, CK1),N (0, CK2)]

∣∣∣∣
≤ 6

ε
(κ21 + κ22)2

2 log 12
δ

m
+

√
2 log 12

δ

m

+
24
√

3

εδ

[(
1 +

8

δ

)
κ41 +

(
3 +

16

δ

)
κ21κ

2
2 + κ42

]
1√
N
.(5.6)

Here the probability is with respect to the space (T, ν)m × (Ω1, P1)N × (Ω2, P2)N .

We note that if κ1, κ2 are absolute constants, e.g. for exponential kernels, then the con-
vergence rate in Theorem 5.3 is completely dimension-independent. Theorem 5.3 provides
the theoretical justification for the Sinkhorn divergence estimation in Algorithm 5.1 (we set
N1 = N2 = N in the theoretical analysis only for simplicity).

Algorithm 5.1 Estimate Wasserstein distance and Sinkhorn divergence between centered
Gaussian processes from finite samples

Input: Finite samples {ξik(xj)}, from Ni realizations ξik, 1 ≤ k ≤ Ni, of processes ξi, i = 1, 2,
sampled at m points xj , 1 ≤ j ≤ m
Procedure:

Form m×Ni data matrices Zi , with (Zi)jk = ξik(xj), i = 1, 2, 1 ≤ j ≤ m, 1 ≤ k ≤ Ni

Compute m×m empirical covariance matrices K̂i = 1
NZiZ

T
i , i = 1, 2

Compute W = W2

[
N
(

0, 1
mK̂

1
)
,N
(

0, 1
mK̂

2
)]

according to Eq.(2.3)

Compute S = Sε2

[
N
(

0, 1
mK̂

1
)
,N
(

0, 1
mK̂

2
)]

according to Eq.(2.7)

return W and S

6. Estimation of Wasserstein distance between Gaussian processes. In contrast to the
Sinkhorn divergence of centered Gaussian processes, which is continuous in the || ||HS norm,
the 2-Wasserstein divergence is continuous in the || ||tr norm ([29, 2]). We note that Theorem
8 in [27], which claims that W2 is continuous in the operator norm || ||, is not correct in
infinite-dimensional setting (see [29], Proposition 4 and discussion). More specifically ([35]),

W 2
2 [N (0, C1),N (0, C2)] ≤ ||C1 − C2||tr.(6.1)

It is not clear if concentration results in e.g. [40], which require 2-smooth Banach space norms,
can be extended to the || ||tr norm. We now present estimates of the 2-Wasserstein distance
when min{dim(HKi), i = 1, 2} < ∞, in which case || ||tr(HKi ) and || ||HS(HKi ) are equivalent
for at least one i = 1, 2. They are not valid in the case dim(HK1) = dim(HK2) =∞.
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Theorem 6.1 (Estimation of 2-Wasserstein distance from finite covariance matrices).
Under Assumptions 1− 5, let X = (xi)

m
i=1 be independently sampled from (T, ν). Then

W 2
2 [N (0, CK1),N (0, CK2)] = tr(LK1) + tr(LK2)− 2tr[(R∗12R12)1/2].(6.2)

W 2
2

[
N
(

0,
1

m
K1[X]

)
,N
(

0,
1

m
K2[X]

)]
= tr(LK1,X) + tr(LK2,X)− 2tr[(R∗12,XR12,X)1/2].(6.3)

Assume further that dim(HK2) <∞. ∀0 < δ < 1, with probability at least 1− δ,∣∣∣∣W 2
2

[
N
(

0,
1

m
K1[X]

)
,N
(

0,
1

m
K2[X]

)]
−W 2

2 [N (0, CK1),N (0, CK2)]

∣∣∣∣
≤ (κ2

1 + κ2
2)

2 log 6
δ

m
+

√
2 log 6

δ

m

+ 2
√

2κ1κ2

√
dim(HK2)

√√√√2 log 6
δ

m
+

√
2 log 6

δ

m
.(6.4)

Theorem 6.2. Assume Assumptions 1-5. Let X = (xi)
m
i=1 ∈ Tm, m ∈ N be fixed. Let W1 =

(ω1
j )
N
j=1, W2 = (ω2

j )
N
j=1 be independently sampled from (Ω1, P1) and (Ω2, P2), respectively. For

any 0 < δ < 1, with probability at least 1− δ,∣∣∣∣W2

[
N
(

0,
1

m
K̂1

W1 [X]

)
,N
(

0,
1

m
K̂2

W2 [X]

)]
−W2

[
N
(

0,
1

m
K1[X]

)
,N
(

0,
1

m
K2[X]

)]∣∣∣∣
≤ 3(κ1 + κ2)

√
4

Nδ2
+

√
m√
Nδ

(
3 +

4√
Nδ

)
.(6.5)

Theorem 6.3 (Estimation of 2-Wasserstein distance from finite samples). Assume As-
sumptions 1-5. Let X = (xi)

m
i=1 be independently sampled from (T, ν). Let W1 = (ω1

j )
N
j=1,

W2 = (ω2
j )
N
j=1 be independently sampled from (Ω1, P1) and (Ω2, P2), respectively. For any

0 < δ < 1, with probability at least 1− δ,∣∣∣∣W2

[
N
(

0,
1

m
K̂1

W1 [X]

)
,N
(

0,
1

m
K̂2

W2 [X]

)]
−W2(N (0, CK1),N (0, CK2))

∣∣∣∣
≤

(κ21 + κ22)

2 log 12
δ

m
+

√
2 log 12

δ

m

+ 2
√

2κ1κ2
√

dim(HK2)

√√√√2 log 12
δ

m
+

√
2 log 12

δ

m


1/2

(6.6)

+ 3(κ1 + κ2)

√
16

Nδ2
+

2
√
m√
Nδ

(
3 +

8√
Nδ

)
.

In contrast to Theorems 4.5 and 5.3, the convergence rates in Theorems 6.1 and 6.3 both
depend on dim(HK2). As an example, if T = [0, 1]d and K2(x, y) = 〈x, y〉D, D ∈ N, then

[5] dim(HK2) =

(
D + d− 1
d− 1

)
. Theorem 6.3 provides the theoretical justification for the

estimation of the 2-Wasserstein distance in Algorithm 5.1 when dim(HK2) <∞.

7. Estimation of Sinkhorn divergence via sample covariance operators. For comparison,
we now estimate the Sinkhorn divergence via sample covariance operators, which is a standard
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approach in functional data analysis (see e.g. [37, 21]). For ξ ∼ GP(0,K) on the probability
space (Ω,F , P ), define the rank-one operator ξ(ω, .) ⊗ ξ(ω, .) ∈ L(L2(T, ν)) by [ξ(ω, .) ⊗
ξ(ω, .)]f(x) = ξ(ω, x)

∫
T ξ(ω, t)f(t)dν(t), ω ∈ Ω, f ∈ L2(T, ν). Then

||ξ(ω, .)⊗ ξ(ω, .)||HS(L2(T,ν)) =

∫
T
ξ(ω, t)2dν(t) <∞ P -almost surely.(7.1)

Thus [ξ(ω, .)⊗ ξ(ω, .)] ∈ HS(L2(T, ν)) P -almost surely. By Fubini Theorem (Lemma 10.7),

CK = E[ξ ⊗ ξ], CKf(x) = E
∫
T
ξ(ω, x)ξ(ω, t)f(t)dν(t) =

∫
T
K(x, t)f(t)dν(t).(7.2)

Let W = (ωj)
N
j=1 be independently sampled from (Ω, P ), corresponding to the samples

{ξj(t) = ξ(ωj , t)}Nj=1 from ξ. It defines the pair of sample covariance function/operator

KW(x, y) =
1

N

N∑
i=1

ξ(ωi, x)ξ(ωi, y), CK,W =
1

N

N∑
i=1

ξ(ωi, .)⊗ ξ(ωi, .),(7.3)

CK,Wf(x) =
1

N

N∑
i=1

∫
T
ξ(ωi, x)ξ(ωi, t)f(t)dν(t) =

∫
T
KW(x, t)f(t)dν(t).(7.4)

For each fixed W, KW is symmetric, positive definite. It is continuous if the sample paths
ξ(ω, .) are continuous P -almost surely, but not necessarily uniformly bounded over W even if
K is bounded. We always have, however, that HKW

= span{ξ(ωj , .)}Nj=1 ⊂ L2(T, ν) is a vector
space of dimension at most N , CK,W is a finite-rank operator, together with the following

Lemma 7.1. Under Assumptions 1-4 and 6, taking expectation with respect to W gives

E
∫
T
KW(x, x)2dν(x) ≤ 3

∫
T
K(x, x)2dν(x) ≤ 3κ4.(7.5)

In particular P{W ∈ (Ω, P )N :
∫
T KW(x, x)2dν(x) ≤ 3κ4

δ } ≥ 1− δ for any 0 < δ < 1.

Proposition 7.2. Assume Assumptions 1-4 and 6. Let W = (ωj)
N
j=1 be independently sam-

pled from (Ω, P ). For any 0 < δ < 1, with probability at least 1− δ,

||CK,W||HS(L2(T,ν)) ≤
2κ2

δ
, ||CK,W − CK ||HS(L2(T,ν)) ≤

2
√

3κ2

√
Nδ

.(7.6)

Combining Theorem 2.2 and Proposition 7.2, we obtain the following result.

Theorem 7.3 (Estimation of Sinkhorn divergence between Gaussian processes from
sample covariance operators). Under Assumptions 1-4 and 6, let Wi = (ωij)

N
j=1, i = 1, 2,

be independently sampled from (Ωi, Pi). ∀0 < δ < 1, with probability at least 1− δ,∣∣Sε2[N (0, CK1,W1),N (0, CK2,W2)]− Sε2[N (0, CK1),N (0, CK2)]
∣∣

≤ 12
√

3

εδ

((
1 +

4

δ

)
κ4

1 +

(
3 +

8

δ

)
κ2

1κ
2 + κ4

2

)
1√
N
.(7.7)
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On a set X = (xi)
m
i=1 ∈ Tm, the Gram matrix of KW is precisely K̂W[X], as in Eq.(5.3).

Combining Lemma 7.1, Theorem 4.7, and Theorem 7.3, we obtain the following result

Theorem 7.4 (Estimation of Sinkhorn divergence between Gaussian processes from fi-
nite samples - general kernels). Under Assumptions 1-4 and 6, let W1 = (ω1

j )
N
j=1, W2 =

(ω2
j )
N
j=1 be independently sampled from (Ω1, P1) and (Ω2, P2), respectively. Let X = (xi)

m
i=1 be

independently sampled from (T, ν). For any 0 < δ < 1, with probability at least 1− δ,∣∣∣∣Sε2 [N (0,
1

m
K̂1

W1 [X]

)
,N
(

0,
1

m
K̂2

W2 [X]

)]
− Sε2[N (0, CK1),N (0, CK2)]

∣∣∣∣
≤ 48

√
3

εδ

((
1 +

16

δ

)
κ41 +

(
3 +

32

δ

)
κ21κ

2 + κ42

)
1√
N

+
864

εδ
(κ21 + κ22)2

(
1 +

12

δ

)
1√
m
.(7.8)

We note that a similar version of Theorem 7.4 can also be obtained from Theorem 4.7.

8. Divergences between covariance operators of stochastic processes. Assume that
ξ1, ξ2 are centered stochastic processes, not necessarily Gaussian, with covariance functions
K1,K2 and paths in L2(T, ν). Then W2[N (0, CK1),N (0, CK2)], Sε2[N (0, CK1),N (0, CK2)] are
distance/divergence between the two covariance operators CK1 , CK2 associated with ξ1, ξ2.

Assumption 6(*) ξ, ξi, i = 1, 2, are centered stochastic processes and ∃κ, κi > 0 with

E
∫
T
ξ(ω, x)4dν(x) ≤ 3κ4, E

∫
T
ξi(ω, x)4dν(x) ≤ 3κ4

i .(8.1)

For ξ ∼ N (0,K), ξi ∼ N (0,Ki), Assumption 6(*) reduces to Assumption 6, as follows.

Lemma 8.1. Under Assumption 6(*), ξ(ω, .) ∈ L2(T, ν) P -almost surely. Furthermore,∫
T K(x, x)2dν(x) ≤ 3κ4 and E||ξ||4L2(T,ν) ≤ 3κ4. In particular, if ξ ∼ N (0,K), then

E[ξ(., x)4] = 3K(x, x)2 ∀x ∈ T, E
∫
T
ξ(ω, x)4dν(x) = 3

∫
T
K(x, x)2dν(x).(8.2)

Hence, Proposition 4.6, 7.2, and Theorems 4.7 7.3, 7.4 for Sε2 carry over virtually unchanged,
except for some absolute constant factors. We note that condition E||ξ||4L2(T,ν) ≤ 3κ4 is
sufficient for proving Proposition 7.2 and Theorem 7.3. Similar results also hold for W2.

9. Numerical experiments. We demonstrate W2 and Sε2 on the following Gaussian pro-
cesses ξi = GP(0,Ki), i = 1, 2, on T = [0, 1]d ⊂ Rd, where d = 1, 5, 50, with

K1(x, y) = exp(−a||x− y||), K2(x, y) = exp

(
− 1

σ2
||x− y||2

)
,(9.1)

In the experiments, we fix a = 1, σ = 0.1. Figure 1 shows samples of these processes for d = 1.
(i) Let X = (xi)

m
i=1 be randomly chosen from T , where m = 10, 20, 30, . . . , 1000. We plot

in Figures 1 and 2 the following divergences between (1/m)K1[X] and (1/m)K2[X]: || ||2HS

(squared Hilbert-Schmidt), W 2
2 (squared Wasserstein), and Sε2 (Sinkhorn, ε = 0.1 and ε = 0.5).

(ii) Consider two sets of N sample paths from each process, each path sampled at m = 500
points X = (xi)

m
i=1, which are randomly chosen and fixed in advance from T . We then compute

the different divergences using Algorithm 5.1, for N = 10, 20, . . . , 1000 (Figure 3).
In agreement with theory, the convergence of the Sinkhorn divergence and Hilbert-Schmidt

distance, being dimension-independent, is consistent across different dimensions, whereas the
convergence of the Wasserstein distance is slower the larger the dimension d is.
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Figure 1: Samples of the centered Gaussian processes defined in Eq.(9.1) on T = [0, 1] and
approximations of divergences/squared distances between them. Left: K1(x, y) = exp(−a||x−
y||), a = 1. Right: K2(x, y) = exp(−||x− y||2/σ2), σ = 0.1. Here m = 10, 20, . . . , 1000.

.

Figure 2: Approximate divergences/squared distances between the Gaussian processes defined
in Eq.(9.1), using normalized m ×m covariance matrices, on T = [0, 1]d ⊂ Rd. Left: d = 5.
Right: d = 50. Here m = 10, 20, . . . , 1000.

10. Proofs of main results.

Proof of Lemma 3.3. It suffices to prove this for the case i = 1, j = 2. Let {ek}k∈N be
any orthonormal basis in HK2 , then

||R12||2HS(HK2 ,HK1 ) =

∞∑
k=1

||R12ek||2HK1
=

∞∑
k=1

∥∥∥∥∫
T
K1
x〈ek,K2

x〉HK2dν(x)

∥∥∥∥2

HK1

≤
∞∑
k=1

(∫
T
||K1

x||HK1 |〈ek,K2
x〉HK2 |dν(x)

)2

≤
∞∑
k=1

∫
T
||K1

x||2HK1
dν(x)

∫
T
|〈ek,K2

x〉HK2 |2dν(x)

=

∫
T
||K1

x||2HK1
dν(x)

∫
T

∞∑
k=1

|〈ek,K2
x〉HK2 |2dν(x) by the Monotone Convergence Theorem

=

∫
T
||K1

x||2HK1
dν(x)

∫
T
||K2

x||2HK2
dν(x) =

∫
T
K1(x, x)dν(x)

∫
T
K2(x, x)dν(x) ≤ κ2

1κ
2
2.



18 H.Q. MINH

Figure 3: Approximate divergences/squared distances between the Gaussian processes defined
in Eq.(9.1) on T = [0, 1]d ⊂ Rd. Left: d = 1. Middle: d = 5. Right: d = 50. The estimation
is obtained using N realizations of each process, sampled at m = 500 points, according to
Algorithm 5.1. Here N = 10, 20, . . . , 1000.

Proof of Lemma 3.4. For any f ∈ HK2 , g ∈ HK1 ,

〈g,R12,Xf〉HK1 =

〈
g,

1

m

m∑
i=1

f(xi)K
1
xi

〉
HK1

=
1

m

m∑
i=1

f(xi)g(xi) = 〈R21,Xg, f〉HK2 ,

showing that R∗12,X = R21,X. It follows that for any f ∈ HK2 ,

R∗12,XR12,Xf =
1

m

m∑
i=1

R∗12,Xf(xi)K
1
xi =

1

m2

m∑
i,j=1

f(xi)K
2
xj 〈K

1
xi ,K

1
xj 〉HK1

=
1

m2

m∑
i,j=1

f(xi)K
1(xi, xj)K

2
xj .

R∗12,XR12,XK
2
xk

=
1

m2

m∑
i,j=1

K2(xk, xi)K
1(xi, xj)K

2
xj =

1

m2

m∑
j=1

(K2[X]K1[X])kjK
2
xj .

It follows that, in the span{K2
xi}

m
i=1, the matrix representation of R∗12,XR12,X : HK2,X →

HK2,X is 1
m2 (K2[X]K1[X])T = 1

m2K
1[X]K2[X].

Lemma 10.1 (Corollary 5 in [35]). For A,B ∈ Sym+(H) ∩ Tr(H),

||(I +A)r − (I +B)r||tr ≤ r||A−B||tr, 0 ≤ r ≤ 1.(10.1)

Corollary 10.2. For A,B ∈ Sym+(H) ∩ Tr(H),

|tr[−I + (I +A)1/2]− tr[−I + (I +B)1/2]| ≤ 1

2
||A−B||tr.(10.2)

Lemma 10.3 (Corollary 6 in [35]). For A,B ∈ Sym+(H) ∩ Tr(H),∣∣∣∣log det

(
1

2
I +

1

2
(I +A)1/2

)
− log det

(
1

2
I +

1

2
(I +B)1/2

)∣∣∣∣ ≤ 1

4
||A−B||tr.(10.3)
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Proof of Proposition 4.2. (i) For A,B ∈ Sym+(H) ∩ Tr(H),

|G(A)−G(B)| ≤ |tr[M(A)]− tr[M(B)]|+
∣∣∣∣log det

(
I +

1

2
M(A)

)
− log det

(
I +

1

2
M(B)

)∣∣∣∣
= |tr[−I + (I + c2A)1/2]− tr[−I + (I + c2B)1/2]|

+

∣∣∣∣log det

(
1

2
I +

1

2
(I + c2A)1/2

)
− log det

(
1

2
I +

1

2
(I + c2B)1/2

)∣∣∣∣
≤ c2

2
||A−B||tr +

c2

4
||A−B||tr =

3c2

4
||A−B||tr, by Corollary 10.2 and Lemma 10.3.

(ii) For A,B ∈ Sym(H) ∩HS(H), using the first part,

|G(A2)−G(B2)| ≤ 3c2

4
||A2 −B2||tr ≤

3c2

4
||A(A−B) + (A−B)B||tr

≤ 3c2

4
[||A||HS + ||B||HS]||A−B||HS.

(iii) For A,B ∈ HS(H1,H2), by Proposition 12.1, A∗A,B∗B ∈ Sym+(H1) ∩ Tr(H1) and

|G(A∗A)−G(B∗B)| ≤ 3c2

4
||A∗A−B∗B||tr(H1) from part (i)

≤ 3c2

4
[||A||HS(H1,H2) + ||B||HS(H1,H2)]||A−B||HS(H1,H2).

Proof of Proposition 4.4. It suffices to prove this for the case i = 1, j = 2. Define the
random variable ξ : (T, ν) → HS(HK2 ,HK1) by ξ(x) = K1

x ⊗ K2
x : HK2 → HK1 , ξ(x)f =

K1
x〈f,K2

x〉 = f(x)K1
x ∀f ∈ HK2 . Then E[ξ(x)] =

∫
T (K1

x ⊗K2
x)dν(x) = R12, 1

m

∑m
i=1 ξ(xi) =

1
m

∑m
i=1K

1
xi ⊗K

2
xi = R12,X. By Lemma 12.3,

||ξ(x)||HS(HK2 ,HK1 ) = ||K1
x||HK1 ||K2

x||HK2 =
√
K1(x, x)K2(x, x) ≤ κ1κ2, ∀x ∈ T,

||R12,X||HS(HK2 ,HK1 ) ≤
1

m

m∑
i=1

||K1
xi ⊗K

2
xi ||HS(HK2 ,HK1 ) ≤ κ1κ2,

E||ξ||2HS(HK2 ,HK1 ) =

∫
T
K1(x, x)K2(x, x)dν(x) ≤ κ2

1κ
2
2.

The bound for ||R12,X −R12||HS(HK2 ,HK1 ) follows from Proposition 4.3. By Corollary 12.2,

||R∗12,XR12,X −R∗12R12||tr(HK2 )

≤ (||R12,X||HS(HK2 ,HK1 ) + ||R12||HS(H2
K ,HK1 ))||R12,X −R12||HS(HK2 ,HK1 ),

which gives the desired bound for ||R∗12,XR12,X −R∗12R12||tr(HK2 ).

Proof of Theorem 4.5. By Proposition 4.1, let c = 4
ε , then

∆ =

∣∣∣∣Sε2[N (0, CK1),N (0, CK2)]− Sε2

[
N
(

0,
1

m
K1[X]

)
,N
(

0,
1

m
K2[X]

)]∣∣∣∣
≤ 1

c

[
|G(L2

K1,X)−G(L2
K1)|+ |G(L2

K2,X)−G(L2
K2)|+ 2|G(R∗12,XR12,X)−G(R∗12R12)|

]
.
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We now combine Proposition 4.2 with Propositions 4.4. For 0 < δ < 1, define

Ui =

X ∈ Tm : |G(L2
Ki,X)−G(L2

Ki)| ≤
3c2

2
κ4i

2 log 6
δ

m
+

√
2 log 6

δ

m

 , i = 1, 2,

U3 =

X ∈ Tm : |G(R∗12,XR12,X)−G(R∗12R12)| ≤ 3c2

2
κ21κ

2
2

2 log 6
δ

m
+

√
2 log 6

δ

m

 .

Then νm(U1) ≥ 1 − δ
3 , νm(U2) ≥ 1 − δ

3 , νm(U3) ≥ 1 − δ
3 . From the Inclusion-Exclusion

Principle, using the property νm(Ui ∪ Uj) = νm(Ui) + νm(Uj)− νm(Ui ∩ Uj),

νm(U1 ∩ U2 ∩ U3) = νm(U1 ∪ U2 ∪ U3) + νm(U1) + νm(U2) + νm(U3)

− [νm(U1 ∪ U2) + νm(U1 ∪ U3) + νm(U2 ∪ U3)] ≥ 1 + 3(1− δ

3
)− 3 = 1− δ.

Thus for any 0 < δ < 1, with probability at least 1− δ,

∆ ≤ 3c

2
(κ2

1 + κ2
2)2

2 log 6
δ

m
+

√
2 log 6

δ

m

 =
6

ε
(κ2

1 + κ2
2)2

2 log 6
δ

m
+

√
2 log 6

δ

m

 .
Proof of Propositions 4.6. Define the random variables Yj : (T, ν)m → HS(HK2 ,HK1)

by Yj(X) = K1
xj ⊗K

2
xj , 1 ≤ j ≤ m, where X = (xj)

m
j=1 is independently sampled from (T, ν).

The Yj ’s are IID, with EYj = R12 and 1
m

∑m
j=1 Yj(X) = R12,X. By Lemma 12.3,

E||Yj ||HS(HK2 ,HK1 ) =

∫
T
||K1

x||HK1 ||K2
x||HK2dν(x) =

∫
T

√
K1(x, x)

√
K2(x, x)dν(x)

≤

√∫
T
K1(x, x)dν(x)

√∫
T
K2(x, x)dν(x) ≤ κ1κ2,

E||Yj ||2HS(HK2 ,HK1 ) =

∫
T
||K1

x||2HK1
||K2

x||2HK2
=

∫
T
K1(x, x)K2(x, x)dν(x)

≤

√∫
T

[K1(x, x)]2dν(x)

√∫
T

[K2(x, x)]2dν(x) ≤ κ2
1κ

2
2.

Define the random variable η : (T, ν)m → R by η(X) =
∥∥∥ 1
m

∑m
j=1 Yj(X)− EYj

∥∥∥
HS(HK2 ,HK1 )

=

||R12,X −R12||HS(HK2 ,HK1 ). Since the Yj ’s are IID,

Eη2 = E

∥∥∥∥∥∥ 1

m

m∑
j=1

Yj − EYj

∥∥∥∥∥∥
2

HS

=
1

m2

m∑
j=1

E||Yj − EYj ||2HS =
1

m2

m∑
j=1

(E||Yj ||2HS − ||EYj ||2HS) ≤ κ21κ
2
2

m
.

By Chebyshev inequality, for any t > 0, P(η ≥ t) ≤ Eη
t ≤

√
Eη2
t ≤ κ1κ2√

mt
. Let δ = κ1κ2√

mt
⇐⇒ t =

κ1κ2√
mδ

, then P{X : ||R12,X − R12||HS = η(X) ≤ κ1κ2√
mδ
} ≥ 1 − δ. Similarly, since E||R12,X||HS ≤

1
m

∑m
j=1 E||Yj ||HS ≤ κ1κ2, we have P{X : ||R12,X||HS ≤ κ1κ2

δ } ≥ 1 − δ. Computing the

intersection of these two sets of events and replacing δ by δ
2 , we obtain the desired bounds.
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Proof of Theorem 4.7. Define ∆ as in the proof of Theorem 4.5. We now combine
Proposition 4.2 with Propositions 4.6. For 0 < δ < 1, define

Ui =

{
X ∈ Tm : |G(L2

Ki,X)−G(L2
Ki)| ≤

3c2

2
κ4
i

(
1 +

6

δ

)
3√
mδ

}
, i = 1, 2,

U3 =

{
X ∈ Tm : |G(R∗12,XR12,X)−G(R∗12R12)| ≤ 3c2

2
κ2

1κ
2
2

(
1 +

6

δ

)
3√
mδ

}
.

Then νm(Ui) ≥ 1− δ
3 , i = 1, 2, 3. Thus for any 0 < δ < 1, with probability at least 1− δ,

∆ ≤ 3c

2
(κ2

1 + κ2
2)2

(
1 +

6

δ

)
3√
mδ

=
18

ε
(κ2

1 + κ2
2)2

(
1 +

6

δ

)
1√
mδ

.

Proof of Lemma 8.1. Since E||ξ||4L2(T,ν) = E
(∫
T ξ(ω, x)2dν(x)

)2 ≤ E
∫
T ξ(ω, x)4dν(x)

≤ 3κ4, we have E||ξ||2L2(T,ν) ≤
√
E||ξ||4L2(T,ν)

≤
√

3κ2, thus ξ(ω, .) ∈ L2(T, ν) P -almost surely.

By Hölder Theorem and Tonelli Theorem,∫
T
K(x, x)2dν(x) =

∫
T

(∫
Ω
ξ(ω, x)2dP (ω)

)2

dν(x) ≤
∫

Ω

∫
T
ξ(ω, x)4dP (ω)dν(x) ≤ 3κ4.

If ξ ∼ N (0,K), then for each fixed x ∈ T , we have ξ(., x) ∼ N (0,K(x, x)). Thus

Eξ(., x)4 =

∫
Ω
ξ(ω, x)4dP (ω) =

∫
R
t4dN (0,K(x, x))(t) = 3K(x, x)2

by using the integral
∫
R t

4dN (0, λ)(t) = 3λ2 (see Formula 7.4.4 in [1]).

Proof of Proposition 5.1. We have ||K[X]||F = m||LK,X||HS(HK) ≤ mκ2 by Proposi-

tion 4.4. Define the map z : Ω → Rm by z(ω) = (ξ(ω, xi))
m
i=1 ∈ Rm. Let Yj : (Ω, P )N →

Sym+(m), 1 ≤ j ≤ N , be IID Sym+(m)-valued random variables defined by Yj(W) =
z(ωj)z(ωj)

T , where W = (ω1, . . . , ωN ) is independently sampled from (Ω, P )N . Then

K[X] =

∫
Ω
z(ω)z(ω)TdP (ω) = EYj , K̂W[X] =

1

N

N∑
j=1

z(ωj)z(ωj)
T =

1

N

N∑
j=1

Yj(W),

E||Yj ||F = E||z(ω)||2 =

∫
Ω

m∑
i=1

ξ(ω, xi)
2dP (ω) =

m∑
i=1

K(xi, xi) ≤ mκ2,

E||Yj ||2F = E||z||4 = E

[
(

m∑
i=1

ξ(ω, xi)
2)2

]
≤ m

m∑
i=1

E
[
ξ(ω, xi)

4
]

= 3m

m∑
i=1

K(xi, xi)
2 ≤ 3m2κ4

by Lemma 8.1. Define η : (Ω, P )N → R by η(W) =
∥∥∥ 1
N

∑N
j=1 Yj(W)− EYj

∥∥∥
F

= ||K̂W[X] −
K[X]||F . Since the Yj ’s are independent, identically distributed,

Eη2 = E

∥∥∥∥∥∥ 1

N

N∑
j=1

Yj − EYj

∥∥∥∥∥∥
2

F

=
1

N2

N∑
j=1

E||Yj − EYj ||2F =
1

N2

N∑
j=1

(E||Yj ||2F − ||EYj ||2F ) ≤ 3m2κ4

N
.
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By Chebyshev inequality, for any t > 0, P(η ≥ t) ≤ Eη
t ≤

√
Eη2
t ≤

√
3mκ2√
Nt

. Let δ =
√

3mκ2√
Nt
⇐⇒ t =

√
3mκ2√
Nδ

, then P{W : ||K̂W[X]−K[X]||F = η(W) ≤
√

3mκ2√
Nδ
} ≥ 1−δ. Similarly,

E||K̂W[X]||F ≤ 1
N

∑N
j=1 E||Yj ||F = mκ2 ⇒ P{W : ||K̂W[X]||F ≤ mκ2

δ } ≥ 1 − δ. Computing

the intersection of these two events and replacing δ by δ
2 , we obtain the desired bounds.

Proof of Theorem 5.2. With each pair (W1,W2), by Theorem 2.2,

∆ = ∆(W1,W2) =
∣∣∣Sε2 [N (0, (1/m)K̂1

W1 [X]
)
,N
(

0, (1/m)K̂2
W2 [X]

)]
−Sε2

[
N
(
0, (1/m)K1[X]

)
,N
(
0, (1/m)K2[X]

)]∣∣
≤ 3

εm2
[||K̂1

W1 [X]||F + ||K1[X]||F + 2||K2[X]||F ]||K̂1
W1 [X]−K1[X]||F

+
3

εm2
[2||K̂1

W1 [X]||F + ||K1[X]||F + ||K2[X]||F ]||K̂2
W2 [X]−K2[X]||F .

For 0 < δ < 1, by Proposition 5.1, the following sets satisfy PNi (Ui) ≥ 1− δ
2 , i = 1, 2,

Ui =

{
Wi ∈ ΩNi : ||K̂i

Wi [X]−Ki[X]||F ≤
4
√

3mκ2i√
Nδ

, ||K̂i
Wi [X]||F ≤

4mκ2i
δ

}
.

Let U = (U1 × Ω2) ∩ (Ω1 × U2), then (P1 ⊗ P2)N (U) ≥ 1− δ and ∀(W1,W2) ∈ U ,

∆(W1,W2) ≤ 3

εm2

[
4mκ2

1

δ
+mκ2

1 + 2mκ2
2

]
4
√

3mκ2
1√

Nδ
+

3

εm2

[
8mκ2

1

δ
+mκ2

1 +mκ2
2

]
4
√

3mκ2
2√

Nδ

=
12
√

3

εδ

[(
1 +

4

δ

)
κ4

1 +

(
3 +

8

δ

)
κ2

1κ
2
2 + κ4

2

]
1√
N
.

Proof of Theorem 5.3. For each fixed X ∈ (T, ν)m, define

∆1 =
∣∣Sε2 [N (0, (1/m)K1[X]

)
,N
(
0, (1/m)K2[X]

)
− Sε2 [N (0, CK1),N (0, CK2)]

]∣∣ .
By Theorem 4.5, the following set U1 ⊂ (T, ν)m satisfies νm(U1) ≥ 1− δ

2

U1 =

X ∈ (T, ν)m : ∆1 ≤
6

ε
(κ21 + κ22)2

2 log 12
δ

m
+

√
2 log 12

δ

m

 .

For each fixed X ∈ (T, ν)m,W1 ∈ (Ω1, P1)N ,W2 ∈ (Ω2, P2)N , define

∆2 =
∣∣∣Sε2 [N (0, (1/m)K̂1

W1 [X]
)
,N
(

0, (1/m)K̂2
W2 [X]

)]
−Sε2

[
N
(
0, (1/m)K1[X]

)
,N
(
0, (1/m)K2[X]

)]∣∣ .
By Theorem 5.2, the following set U2 ∈ (Ω1, P1)N×(Ω2, P2)N satisfies (P1⊗P2)N (U2) ≥ 1− δ

2

U2 =

{
(W1,W2) : ∆2 ≤

24
√

3

εδ

[(
1 +

8

δ

)
κ41 +

(
3 +

16

δ

)
κ21κ

2
2 + κ42

]
1√
N

}
.
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Let U = (U1× (Ω1, P1)N × (Ω2, P2)N )∩ ((T, ν)m×U2), then (νm⊗PN1 ⊗PN2 )(U) ≥ 1− δ and

∆1 + ∆2 ≤
6

ε
(κ2

1 + κ2
2)2

2 log 12
δ

m
+

√
2 log 12

δ

m


+

24
√

3

εδ

[(
1 +

8

δ

)
κ4

1 +

(
3 +

16

δ

)
κ2

1κ
2
2 + κ4

2

]
1√
N
, ∀(X,W1,W2) ∈ U.

Lemma 10.4. Under Assumptions 1 − 5, let X = (xi)
m
i=1 be independently sampled from

(T, ν). For any 0 < δ < 1, with probability at least 1− δ,

|tr(LK,X)− tr(LK)| ≤ κ2

2 log 2
δ

m
+

√
2 log 2

δ

m

 .(10.4)

Proof. Define the random variable η : (T, ν) → R by η(x) = K(x, x), then ||η||∞ ≤
κ2 and tr(LK,X) = 1

mtr [
∑m

i=1Kxi ⊗Kxi ] = 1
m

∑m
i=1K(xi, xi) = 1

m

∑m
i=1 η(xi), tr(LK) =∫

T K(x, x)dν(x) = Eξ, E|η2| =
∫
T K(x, x)2dν(x) ≤ κ4. The desired bound then follows from

Proposition 4.3.

Lemma 10.5 (Lemma 4.1 in [41]). For A,B ∈ Sym+(H) ∩ Tr(H),

||A1/2 −B1/2||2HS ≤ ||A−B||tr.(10.5)

Proof of Theorem 6.1. Eqs.(6.2) and (6.3) follow as in the case of the Sinkhorn diver-
gence. By Lemma 10.4, ∀0 < δ < 1, the following sets satisfy νm(Ui) ≥ 1− δ

3 , i = 1, 2,

Ui =

X ∈ (T, ν)m : |tr(LKi,X)− tr(LKi)| ≤ κ2i

2 log 6
δ

m
+

√
2 log 6

δ

m

 .

Under the assumption dim(HK2) <∞, we have by Lemma 10.5,

|tr[(R∗12,XR12,X)1/2]− tr[(R∗12R12)1/2]| ≤ ||(R∗12,XR12,X)1/2 − (R∗12R12)1/2||tr(HK2 )

≤
√

dim(HK2)||(R∗12,XR12,X)1/2 − (R∗12R12)1/2||HS(HK2 )

≤
√

dim(HK2)
√
||(R∗12,XR12,X)− (R∗12R12)||tr(HK2 ).

By Proposition 4.1, the following set satisfies νm(U3) ≥ 1− δ
3 ,

U3 =

X ∈ (T, ν)m : ||R∗12,XR12,X −R∗12R12||tr(HK2 ) ≤ 2κ21κ
2
2

2 log 6
δ

m
+

√
2 log 6

δ

m

 .

Let U = U1 ∩ U2 ∩ U3. As in the proof of Theorem 4.5, νm(U) ≥ 1− δ and ∀X ∈ U ,∣∣W 2
2

[
N
(
0, (1/m)K1[X]

)
,N
(
0, (1/m)K2[X]

)
−W 2

2 [N (0, CK1),N (0, CK2)]
]∣∣

≤ (κ2
1 + κ2

2)

2 log 6
δ

m
+

√
2 log 6

δ

m

+ 2
√

2κ1κ2

√
dim(HK2)

√√√√2 log 6
δ

m
+

√
2 log 6

δ

m
.
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The following is a special case of Corollary 4 in [35], where µX and CX are the sample
mean and sample covariance matrix, respectively, based on the sample X = (xi)

N
i=1.

Proposition 10.6 (Estimation of 2-Wasserstein distance between Gaussian measures on
Rd). Let ρi = N (µi, Ci) on Rd, i = 1, 2. Let X = (xi)

N
i=1 and Y = (yj)

N
j=1 be independently

sampled from (Rd, ρ1) and (Rd, ρ2), respectively. ∀0 < δ < 1, with probability at least 1− δ,

|W2[N (µX, CX),N (µY, CY)]−W2(N (µ1, C1),N (µ2, C2))|

≤ 2(η1 + η2)

√
4

Nδ2
+

√
d√
Nδ

(
3 +

4√
Nδ

)
,(10.6)

where ηi = (2||Ci||2HS + 4〈µi, Ciµi〉+ (trCi + ||µi||2)2)1/4, i = 1, 2.

Proof of Theorem 6.2. Apply Proposition 10.6 with d = m, µi = 0, Ci = 1
mK

i[X],
and tr(Ci) = 1

mtr(Ki[X]) = 1
m

∑m
j=1K

i(xj , xj) ≤ κ2
i , ||Ci||2HS ≤ [tr(Ci)]

2 ≤ κ4
i . Thus ηi =

(2||Ci||2HS + [tr(Ci)]
2)1/4 ≤ 31/4κi <

3
2κi.

Proof of Theorem 6.3. This follows by combining Theorems 6.1 and 6.2, as in Theorem
5.3. Here we make use of the elementary inequality |a− b|2 ≤ |a2 − b2| for a ≥ 0, b ≥ 0.

Lemma 10.7. Under Assumptions 1-4, ∀x ∈ T, ∀f ∈ L2(T, ν),

E[ξ ⊗ ξ]f(x) = E
∫
T
ξ(ω, x)ξ(ω, t)f(t)dν(t) =

∫
T
K(x, t)f(t)dν(t).(10.7)

Proof. By Hölder Theorem and Tonelli Theorem, ∀f ∈ L2(T, ν), ∀x ∈ T ,(∫
Ω

∫
T
|ξ(ω, x)ξ(ω, t)f(t)|dν(t)dP (ω)

)2

≤
∫

Ω×T
ξ(ω, t)2dν(t)dP (ω)

∫
Ω×T

ξ(ω, x)2f(t)2dP (ω)dν(t)

= ||f ||2L2(T,ν)K(x, x)

∫
T
K(t, t)dν(t) ≤ κ2||f ||2L2(T,ν)K(x, x) <∞.

Thus ξ(., x)ξ(., .)f ∈ L1(Ω× T, P × ν). By Fubini Theorem,

E
∫
T
ξ(ω, x)ξ(ω, t)f(t)dν(t) =

∫
Ω

(∫
T
ξ(ω, x)ξ(ω, t)f(t)dν(t)

)
dP (ω)

=

∫
T

(∫
Ω
ξ(ω, x)ξ(ω, t)f(t)dP (ω)

)
dν(t) =

∫
T
K(x, t)f(t)dν(t).

Proof of Lemma 7.1. By definition of KW, Lemma 8.1, and Tonelli Theorem,

E
∫
T
KW(x, x)dν(x) =

∫
T
E[ξ(ω, x)2]dν(x) =

∫
T
K(x, x)dν(x) ≤ κ2,

∫
T
KW(x, x)2dν(x) =

1

N2

∫
T

(
N∑
i=1

ξ(ωi, x)2

)2

dν(x) ≤ 1

N

∫
T

N∑
i=1

ξ(ωi, x)4dν(x),

E
∫
T
KW(x, x)2dν(x) ≤

∫
T
E[ξ(ω, x)4]dν(x) = 3

∫
T
K(x, x)2dν(x) ≤ 3κ4.
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Proof of Proposition 7.2. Define random variable Yj : (Ω, P )N → HS(L2(T, ν)) by
Yj(W) = ξ(ωj , .)⊗ ξ(ωj , .), where W = (ω1, . . . , ωN ) is independently sampled from Ω. Then

the Yj ’s are IID and CK = EYj , CK,W = 1
N

∑N
j=1 Yj(W), and

||Yj ||HS(L2(T,ν)) = ||ξ(ωj , .)||2L2(T,ν) =

∫
T
ξ(ωj , t)

2dν(t),

E||Yj ||HS(L2(T,ν)) =

∫
Ω

∫
T
ξ(ω, t)2dν(t)dP (ω) =

∫
T
K(t, t)dν(t) ≤ κ2,

E||Yj ||2HS(L2(T,ν)) =

∫
Ω

(∫
T
ξ(ω, t)2dν(t)

)2

dP (ω) = E||ξ||4L2(T,ν)

≤
∫

Ω

∫
T
ξ(ω, t)4dν(t)dP (ω) = 3

∫
T
K(t, t)2dν(t) ≤ 3κ4 by Lemma 8.1.

Define the random variable η : (Ω, P )N → R by η(W) =
∥∥ 1
N Yj(W)− EYj

∥∥2

HS
= ||CK,W −

CK ||2HS. Since the Yj ’s are independent, identically distributed,

Eη2 = E

∥∥∥∥∥∥ 1

N

N∑
j=1

Yj − EYj

∥∥∥∥∥∥
2

HS

=
1

N2

N∑
j=1

E||Yj − EYj ||2HS =
1

N2

N∑
j=1

(E||Yj ||2HS − ||EYj ||2HS) ≤ 3κ4

N
.

By the Chebyshev inequality, for any t > 0, P(η ≥ t) ≤ Eη
t ≤

√
Eη2
t ≤

√
3κ2√
Nt

. Let δ =
√

3κ2√
Nt
⇐⇒ t =

√
3κ2√
Nδ

, then P{W : ||CK,W − CK ||HS = η(W) ≤
√

3κ2√
Nδ
} ≥ 1− δ. Similarly, since

E||CK,W||HS ≤ 1
N

∑N
j=1 E||Yj ||F = κ2, we have P{W : ||CK,W||HS ≤ κ2

δ } ≥ 1− δ. Computing

the intersection of these two sets, replacing δ with δ
2 , gives us the desired result.

Proof of Theorem 7.3. By Theorem 2.2,

∆ =
∣∣Sε2[N (0, CK1,W1),N (0, CK2,W2)]− Sε2[N (0, CK1),N (0, CK2)]

∣∣
≤ 3

ε
[||CK1,W1 ||HS + ||CK1 ||HS + 2||CK2 ||HS]||CK1,W1 − CK1 ||HS

+
3

ε
[2||CK1,W1 ||HS + ||CK1 ||HS + ||CK2 ||HS]||CK2,W2 − CK2 ||HS.

For 0 < δ < 1, by Proposition 7.2, the following sets satisfy PNi (Ui) ≥ 1− δ
2 , i = 1, 2,

Ui =

{
Wi ∈ (Ωi, Pi)

N : ||CKi,Wi ||HS ≤
4κ2

i

δ
, ||CKi,Wi − CKi ||HS ≤

4
√

3κ2
i√

Nδ

}
.

Then U = (U1 × ΩN
2 ) ∩ (ΩN

1 × U2) satisfies (PN1 × PN2 )(U) ≥ 1− δ. For (W1,W2) ∈ U ,

∆ ≤ 3

ε

[
4κ2

1

δ
+ κ2

1 + 2κ2
2

]
4
√

3κ2
1√

Nδ
+

3

ε

[
8κ2

1

δ
+ κ2

1 + κ2
2

]
4
√

3κ2
2√

Nδ

≤ 12
√

3

ε
√
Nδ

((
1 +

4

δ

)
κ4

1 +

(
3 +

8

δ

)
κ2

1κ
2 + κ4

2

)
.
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Proof of Theorem 7.4. This is similar to Theorem 5.3. By Lemma 7.1, ∀0 < δ < 1,

P
{

(W1,W2) ∈ (Ω1, P1)N × (Ω2, P2)N :

∫
T
KW1(x, x)2dν(x) ≤ 24κ4

1

δ
,∫

T
KW2(x, x)2dν(x) ≤ 24κ4

2

δ

}
≥ 1− δ

4
.

Let ∆1 =
∣∣Sε2[N (0, CK1,W1),N (0, CK2,W2)]− Sε2[N (0, CK1),N (0, CK2)]

∣∣. By Theorem 7.3,

P
{

(W1,W2) ∈ (Ω1, P1)N × (Ω2, P2)N :

∆1 ≤
48
√

3

εδ

((
1 +

16

δ

)
κ4

1 +

(
3 +

32

δ

)
κ2

1κ
2 + κ4

2

)
1√
N

}
≥ 1− δ

4
.

It follows that the following set satisfies P(U1) ≥ 1− δ
2 ,

U1 =

{
(W1,W2) ∈ (Ω1, P1)N × (Ω2, P2)N :

∫
T
KW1(x, x)2dν(x) ≤ 24κ4

1

δ
,∫

T
KW2(x, x)2dν(x) ≤ 24κ4

2

δ
,∆1 ≤

48
√

3

εδ

((
1 +

16

δ

)
κ4

1 +

(
3 +

32

δ

)
κ2

1κ
2 + κ4

2

)
1√
N

}
.

Let ∆2 =
∣∣∣Sε2[N (0, 1

mK̂
1
W1 [X]),N (0, 1

mK̂
2
W2 [X])]− Sε2[N (0, CK1,W1),N (0, CK2,W2)]

∣∣∣. Theo-

rem 4.7 implies that for (W1,W2) ∈ U1 fixed, the following set satisfies P(U2) ≥ 1− δ
2 ,

U2 =

{
X ∈ (T, ν)m : ∆2 ≤

18

ε
(((24/δ)1/4κ1)2 + ((24/δ)1/4κ2)2)2

(
1 +

12

δ

)
2√
mδ

=
864

εδ
(κ2

1 + κ2
2)2

(
1 +

12

δ

)
1√
m

}
.

Let U = (U1 × (T, ν)m) ∩ (((Ω1, P1)N × (Ω2, P2)N )× U2), then P(U) ≥ 1− δ.

11. Estimation of Hilbert-Schmidt distance. For completeness, we present the finite
sample estimate of ||CK1 − CK2 ||HS(L2(T,ν)). For this, it is not necessary to assume that CKi ,
i = 1, 2 are self-adjoint, positive. The only requirement is that CKi ∈ HS(L2(T, ν)).

Assumption 7. Let T be a complete, separable metric space, ν a Borel probability
measure on T . Let K,K1,K2 : T → R be pointwise defined. Assume ∃κ, κ1, κ2 > 0 such that

sup
x,y∈T×T

|K(x, y)| ≤ κ2, sup
(x,y)∈T×T

|Ki(x, y)| ≤ κ2
i , i = 1, 2.(11.1)

It is well-known (see e.g. Theorem VI.23 in [44]) that the following operator CK : L2(T, ν)→
L2(T, ν) (similarly CKi , i = 1, 2) is Hilbert-Schmidt

(CKf)(x) =

∫
T
K(x, y)f(y)dν(y), with ||CK ||2HS(L2(T,ν)) =

∫
T×T

K(x, y)2dν(x)dν(y).(11.2)
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Theorem 11.1 (Estimation of Hilbert-Schmidt distance). Under Assumption 7, let X =
(xi)

m
i=1, Y = (yj)

n
j=1 be independently sampled from (T, ν). Let K[X,Y] ∈ Rm×n be defined

by (K[X,Y])ij = K(xi, yj), 1 ≤ i ≤ m, 1 ≤ j ≤ n. ∀0 < δ < 1, with probability at least 1− δ,∣∣∣∣ 1

mn
||K1[X,Y]−K2[X,Y]||2F − ||CK1 − CK2 ||2HS(L2(T,ν))

∣∣∣∣
≤ (κ2

1 + κ2
2)2

2 log 2
δ

mn
+

√
2 log 2

δ

mn

 .(11.3)

Lemma 11.2. Under Assumption 7, let X = (xi)
m
i=1, Y = (yj)

n
j=1 be independently sampled

from (T, ν). ∀0 < δ < 1, with probability at least 1− δ,

∣∣∣∣ 1

mn
||K[X,Y]||2F − ||CK ||2HS(L2(T,ν))

∣∣∣∣ ≤ κ4

2 log 2
δ

mn
+

√
2 log 2

δ

mn

 .(11.4)

Proof. Define the random variable η : (T × T, ν ⊗ ν)→ R by η(x, y) = K(x, y)2. Then

||η||∞ ≤ κ4, Ex,yη =

∫
T×T

K(x, y)2dν(x)dν(y) = ||CK ||2HS(L2(T,ν)),

1

mn

m∑
i=1

n∑
j=1

η(xi, yj) =
1

mn

m∑
i=1

n∑
j=1

K(xi, yj)
2 =

1

mn
||K[X,Y]||2F .

The desired bound the follows from Proposition 4.4.

Proof of Theorem 11.1. We apply Lemma 11.2 to K1−K2, noting that CK1 −CK2 =
CK1−K2 and ||K1 −K2||∞ ≤ ||K1||∞ + ||K2||∞ ≤ κ2

1 + κ2
2.

12. Hilbert-Schmidt operators between two Hilbert spaces. For completeness, we in-
clude here several properties of the set of Hilbert-Schmidt operators HS(H1,H2) between two
separable Hilbert spaces H1 and H2. Many standard texts in functional analysis consider the
set HS(H), with H = H1 = H2. The definition of HS(H1,H2) that we use here is from [23]

HS(H1,H2) = {A ∈ L(H1,H2) : ||A||HS(H1,H2) <∞},(12.1)

where the Hilbert-Schmidt norm || ||HS(H1,H2) is defined by

||A||2HS(H1,H2) =
∞∑

k,j=1

〈Aek,1, ej,2〉2H2
=
∞∑
k=1

||Aek,1||2H2
= tr(A∗A)(12.2)

for any orthonormal bases {ek,i}k∈N of Hi, i = 1, 2, independently of the choice of bases.

Proposition 12.1. Let H1,H2 be two separable Hilbert spaces. Let A,B ∈ HS(H1,H2).
Then A∗B ∈ Tr(H1) and ||A∗B||tr(H1) ≤ ||A||HS(H1,H2)||B||HS(H1,H2).
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Proof. Consider the polar decomposition A∗B = U |A∗B| where U is a partial isometry on
H1, i.e. an isometry on the closed subspace HU = ker(U)⊥ = ker(AB)⊥. Let {ek}k∈N be an
orthonormal basis in HU , then {Uek}k∈N is also an orthonormal basis in HU and

tr|A∗B| = tr|A∗B|HU
=

∞∑
k=1

〈|A∗B|ek, ek〉H1 =

∞∑
k=1

〈U |A∗B|ek, Uek〉H1

=
∞∑
k=1

〈A∗Bek, Uek〉H1 =
∞∑
k=1

〈Bek, AUek〉H2 ≤
∞∑
k=1

||Bek||H2 ||AUek||H2

≤

( ∞∑
k=1

||Bek||2H2

)( ∞∑
k=1

||AUek||2H2

)1/2

≤ ||B||HS(H1,H2)||A||HS(H1,H2),

where the last inequality is an equality if ker(AB)⊥ = {0}, i.e. HU = H1.

Corollary 12.2. Let H1,H2 be two separable Hilbert spaces. Let A,B ∈ HS(H1,H2). Then
A∗A,B∗B ∈ Tr(H1) and

||A∗A−B∗B||tr(H1) ≤ (||A||HS(H1,H2) + ||B||HS(H1,H2))||A−B||HS(H1,H2).(12.3)

Lemma 12.3. Let H1,H2 be two separable Hilbert spaces. Let u1 ∈ H1, u2 ∈ H2. Then
u1 ⊗ u2 ∈ HS(H2,H1) and ||u1 ⊗ u2||HS(H2,H1) = ||u1||H1 ||u2||H2.

Proof. Let {ek}k∈N be any orthonormal basis in H2. By definition, ||u1 ⊗ u2||2HS(H2,H1) =∑∞
k=1 ||u1〈u2, ek〉H2 ||2H1

= ||u1||2H1

∑∞
k=1 |〈u2, ek〉H2 |2 = ||u1||2H1

||u2||2H2
<∞.
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[13] J. Feydy, T. Séjourné, F.-X. Vialard, S. Amari, A. Trouve, and G. Peyré, Interpolating between
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[15] S. Fremdt, J. Steinebach, L. Horváth, and P. Kokoszka, Testing the equality of covariance oper-
ators in functional samples, Scandinavian Journal of Statistics, 40 (2013), pp. 138–152.

[16] M. Gelbrich, On a formula for the L2 Wasserstein metric between measures on Euclidean and Hilbert
spaces, Mathematische Nachrichten, 147 (1990), pp. 185–203.

[17] A. Genevay, L. Chizat, F. Bach, M. Cuturi, and G. Peyré, Sample Complexity of Sinkhorn Di-
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[46] L. Rüschendorf and W. Thomsen, Closedness of sum spaces and the generalized schrödinger problem,

Theory of Probability & Its Applications, 42 (1998), pp. 483–494.
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