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Abstract

The Turán number of an r-uniform graph F , denoted by ex(n, F ), is the maximum num-

ber of edges in an F -free r-uniform graph on n vertices. The Turán density of F is defined as

π(F ) = lim
n→∞

ex(n,F )

(nr)
. Denote Π

(r)
∞ = {π(F) : F is a family of r−uniform graphs}, Π

(r)
fin = {π(F) :

F is a finite family of r−uniform graphs} and Π
(r)
t = {π(F) : F is a family of r−uniform graphs and

|F| ≤ t}. For graphs, Erdős-Stone-Simonovits ([7], [8]) showed that Π
(2)
∞ = Π

(2)
fin = Π

(2)
1 = {0, 1

2
, 2
3
, ...,

l−1
l
, ...}. We know quite few about the Turán density of an r-uniform graph for r ≥ 3. Baber and

Talbot [2], and Pikhurko [27] showed that there is an irrational number in Π
(3)
3 and Π

(3)
fin respectively,

disproving a conjecture of Chung and Graham [5]. Baber and Talbot [2] asked whether Π
(r)
1 contains

an irrational number. The Lagrangian of a hypergraph has been a useful tool in hypergraph extremal

problems. The Lagrangian density of an r-uniform graph F is πλ(F ) = sup{r!λ(G) : G is F -free},
where λ(G) is the Lagrangian of an r-uniform graph G. Sidorenko [31] showed that the Lagrangian

density of an r-uniform hypergraph F is the same as the Turán density of the extension of F . In

this paper, we show that the Lagrangian density of F = {123, 124, 134, 234, 567} (the disjoint union

of K3
4 and an edge) is

√
3

3
, consequently, the Turán density of the extension of F is an irrational

number, answering the question of Baber and Talbot.

Keywords: Hypergraph Lagrangian, Lagrangian density, Turán density

1 Introduction

For a set V and a positive integer r, let V (r) denote the family of all r-subsets of V . An r-uniform graph

or r-graph G consists of a set V (G) of vertices and a set E(G) ⊆ V (G)(r) of edges. Let e(G) denote the

number of edges of G. An edge e = {a1, a2, . . . , ar} will be simply denoted by a1a2 . . . ar. An r-graph H

is a subgraph of an r-graph G, denoted by H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph of G

induced by V ′ ⊆ V , denoted as G[V ′], is the r-graph with vertex set V ′ and edge set E′ = {e ∈ E(G) :

e ⊆ V ′}. For S ⊆ V (G), let G − S denote the subgraph of G induced by V (G) \ S. Let Gc denote the

complement r-graph of an r-graph G with V (Gc) = V (G) and E(Gc) = {e : e ∈ V (G)r \E(G)}. Let Kr
t

denote the complete r-graph on t vertices. Let Kr−
t be obtained by removing one edge from Kr

t . For a

positive integer n, let [n] denote {1, 2, 3, . . . , n}.
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For a family F of r-graphs, an r-graph G is called F-free if it does not contain an isomorphic copy

of any r-graph of F . For a fixed positive integer n and a family of r-graphs F , the Turán number of F ,

denoted by ex(n,F), is the maximum number of edges in an F-free r-graph on n vertices. An averaging

argument of Katona, Nemetz and Simonovits [17] shows that the sequence ex(n,F)

(nr)
is non-increasing.

Hence lim
n→∞

ex(n,F)

(nr)
exists. The Turán density of F is defined as

π(F) = lim
n→∞

ex(n,F)(
n
r

) .

If F consists of an single r-graph F , we simply write ex(n, {F}) and π({F}) as ex(n, F ) and π(F ).

Denote

Π(r)
∞ = {π(F) : F is a family of r−uniform graphs},

Π
(r)
fin = {π(F) : F is a finite family of r−uniform graphs}

and

Π
(r)
t = {π(F) : F is a family of r−uniform graphs and |F| ≤ t}.

Clearly,

Π
(r)
1 ⊆ Π

(r)
2 ⊆ · · · ⊆ Π

(r)
fin ⊆ Π(r)

∞ .

For 2-graphs, Erdős-Stone-Simonovits ([7], [8]) determined the Turán numbers of all non-bipartite

graphs asymptotically. Their result implies that

Π(2)
∞ = Π

(2)
fin = Π

(2)
1 = {0, 1

2
,

2

3
, ...,

l − 1

l
, ...}.

Very few results are known for r ≥ 3. In [5] Chung and Graham proposed the conjecture that every

element in Π
(r)
fin is a rational number. Baber and Talbot [2], and Pikhurko [27] disproved this conjecture

by showing that there is an irrational number in Π
(3)
3 and Π

(3)
fin, respectively. Baber and Talbot [2] asked

whether Π
(r)
1 contains an irrational number. In this paper, we answer this question by showing that the

Lagrangian density of the disjoint union of K3
4 and an edge is an irrational number.

The hypergraph Lagrangian method has been helpful in hypergraph extremal problems.

Definition 1.1 Let G be an r-graph on [n] and let ~x = (x1, . . . , xn) ∈ [0,∞)n. Define the Lagrangian

function

λ(G,~x) =
∑

e∈E(G)

∏
i∈e

xi.

The Lagrangian of G, denoted by λ(G), is defined as

λ(G) = max{λ(G,~x) : ~x ∈ ∆},

where

∆ = {~x = (x1, x2, . . . , xn) :

n∑
i=1

xi = 1, xi ≥ 0 for every i ∈ [n]}.

The value xi is called the weight of the vertex i and a vector ~x ∈ ∆ is called a feasible weight vector
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on G. A feasible weight vector ~y ∈ ∆ is called an optimum weight vector for G if λ(G, ~y) = λ(G).

In [22], Motzkin and Straus established a connection between the Lagrangian of a 2-graph and it’s

maximum complete subgraphs.

Theorem 1.2 ([22]) If G is a 2-graph in which a maximum complete subgraph has t vertices, then

λ(G) = λ(K2
t ) = 1

2 (1− 1
t ).

They also applied this connection to give another proof of the theorem of Turán on the Turán

density of complete graphs. Since then the Lagrangian method has been a useful tool in hypergraph

extremal problems. Earlier applications include that Frankl and Rödl [11] applied it in disproving the

long standing jumping constant conjecture of Erdős. Sidorenko [31] applied Lagrangians of hypergraphs

to first find infinitely many Turán densities of hypergraphs. More recent developments of this method

were obtained in [26, 2, 13, 24, 3, 25, 15, 16, 14, 37]. Determining the Lagrangian of a hypergraph is

much more difficult than graphs and there is no conclusion similar to Theorem 1.2 for hypergraphs. It is

of great interests to estimate Lagrangians of hypergraphs that have some certain properties. In 1980’s,

Frankl and Füredi [9] asked the question that for a given integer m, what is the maximum Lagrangian

among all r-graphs with m edges? They conjectured that the r-graph with m edges formed by taking

the first m sets in the colex ordering of N(r) has the largest Lagrangian of all r-graphs with m edges.

For distinct A,B ∈ Nr we say that A is less than B in the colex ordering if max(A4B) ∈ B, where

A4B = (A\B)∪ (B \A). By Theorem 1.2, this conjecture is true when r = 2. For hypergraphs, Talbot

[32] first proved the conjecture for r = 3 and
(
`
3

)
≤ m ≤

(
`
3

)
+
(
`−1
2

)
− `, where ` > 0 is an integer.

Subsequent progress in this conjecture were made in the papers of Tang, Peng, Zhang and Zhao [33, 34],

Tyomkyn [36], Lei, Lu and Peng [20], Nikiforov[23], Lei and Lu[19], and Lu[21]. Recently, Gruslys,

Letzter and Morrison [12] confirmed this conjecture for r and
(
`
r

)
≤ m ≤

(
`
r

)
+
(
`−1
r−1
)

if ` is sufficiently

large. They also found infinitely many counterexamples for all r ≥ 4. As remarked in [12], it would be

interesting to find the maximisers for other values of m though it might be a very hard problem. In this

paper, we will apply the connection of the Lagrangian density and the Turán density of an r-graph to

answer the question of Baber and Talbot. Our proof relies heavily on the estimation of Lagrangians of

3-graphs.

The Lagrangian density πλ(F ) of an r-graph F is defined to be

πλ(F ) = sup{r!λ(G) : G is F -free}.

A pair of vertices {i, j} is covered in a hypergraph F if there exists an edge e in F such that {i, j} ⊆ e.
We say that F covers pairs if every pair of vertices in F is covered. Let r ≥ 3 and F be an r-graph. The

extension of F , denoted by HF is obtained as follows: For each pair of vertices vi and vj not covered

in F , we add a set Bij of r − 2 new vertices and the edge {vi, vj} ∪ Bij , where the Bij ’s are pairwisely

disjoint over all such pairs {i, j}.
The Lagrangian density is closely related to the Turán density. The following proposition is implied

by Theorem 2.6 in [30] (see Proposition 5.6 in [3] and Corollary 1.8 in [31] for the explicit statement).

Proposition 1.3 ([30, 3, 31]) Let F be an r-graph. Then

(i) π(F ) ≤ πλ(F );

(ii) π(HF ) = πλ(F ). In particular, if F covers pairs, then π(F ) = πλ(F ).

3



To answer the question of Baber and Talbot, we show that the Lagrangian density of {123, 124, 134, 234,

567}, the disjoint union of K3
4 and an edge, denoted as K3

4 ∪e, is
√
3
3 . The following is our main Theorem.

Theorem 1.4 πλ(K3
4 ∪ e) =

√
3
3 .

Applying Theorem 1.4 and Proposition 1.3, we see that the Turán density of the extension of K3
4 ∪ e is√

3
3 .

For an r-graph H on t vertices, it is clear that πλ(H) ≥ r!λ(Kr
t−1). An r-graph H on t vertices

is λ-perfect if πλ(H) = r!λ(Kr
t−1). Theorem 1.2 implies that all 2-graphs are λ-perfect. Theorem 1.4

indicates that K3
4 ∪ e is not λ-perfect. We can show however that K3

4 ∪ k · e, the disjoint union of K3
4

and k disjoint edges is λ-perfect for k ≥ 2.

Theorem 1.5 K3
4 ∪ k · e is λ-perfect for k ≥ 2.

In Section 2, we give a sketch of the proof of Theorem 1.4. In Section 3, we will give the proof of

Theorem 1.5. In Section 4, we give some preliminaries on KKT conditions for continuous optimization

problems and properties of hypergraph Lagrangians. In Section 5, we prove the main Lemmas needed

in the proof of Theorem 1.4.

2 Sketch of the proof of Theorem 1.4

The following three 3-graphs are to be used throughout the paper.

B(2, n-2): the 3-graph with vertex set [n] and edge set E(B(2, n− 2)) = {e ∈
(
[n]
3

)
: e∩{1, 2} 6= ∅},

i.e., every edge in B(2, n − 2) contains vertex 1 or 2 or both. Note that B(2, n − 2) is K3
4 ∪ e-free, we

will show that it is an extremal 3-graph for K3
4 ∪ e (in terms of Lagrangian density).

Xi : the 3-graph with vertex set [2i+ 2] such that {1, 2, 2j + 1, 2j + 2} form K3
4 for all j, 1 ≤ j ≤ i,

i.e., it consists of i copies of K3
4 all sharing vertices {1, 2}.

Yi : the 3-graph with vertex set [i+ 3] such that {1, 2, 3, j + 3} form K3
4 for all j, 1 ≤ j ≤ i, i.e., it

consists of i copies of K3
4 all sharing vertices {1, 2, 3}.

An r-graph G is dense if λ(G′) < λ(G) for every proper subgraph G′ of G.

Sketch of the proof of Theorem 1.4: For the lower bound, note that B(2, n − 2) is K3
4 ∪ e-free, we

shall prove lim
n→∞

λ(B(2, n)) =
√
3

18 in Lemma 4.10. So πλ(K3
4 ∪ e) ≥ 3! lim

n→∞
λ(B(2, n− 2)) =

√
3
3 .

For the upper bound, let G be a K3
4 ∪ e-free 3-graph, our goal is to show that λ(G) ≤

√
3

18 . If G is

not dense, then there exists a proper subgraph G′ of G such that λ(G′) = λ(G) and |V (G′)| < |V (G)|. If

G′ is dense, then we stop. Otherwise, we continue this process until we find a dense subgraph G′′ such

that λ(G′′) = λ(G). This process terminates since the number of vertices is reduced by at least one in

each step. To show λ(G) ≤
√
3

18 , it’s sufficient to show that λ(G′′) ≤
√
3

18 . So we may assume that G is a

dense K3
4 ∪ e-free 3-graph. Suppose that λ(G) >

√
3

18 , we will prove the following lemmas in Section 5.

Lemma 2.1 Let G be a dense K3
4 ∪ e-free 3-graph with λ(G) >

√
3

18 . Then G is X2-free.

Lemma 2.2 Let G be a dense K3
4 ∪e-free 3-graph with λ(G) >

√
3

18 . Then G contains at least two copies

of K3
4 .

Lemma 2.3 Let G be a dense K3
4 ∪ e-free 3-graph with λ(G) >

√
3

18 . Then G is Y2-free.

4



By Lemma 2.2, G contains two copies of K3
4 . Since G is K3

4 ∪ e-free, these two copies of K3
4 must

have 2 or 3 vertices in common. So G contains a copy of X2 or Y2, a contradiction to Lemmas 2.1 and

2.3.

To complete the proof of Theorem 1.4, what remains is to show those three main lemmas. They will

be given in Section 5.

3 The proof of Theorem 1.5

In order to prove Theorem 1.5, we need some lemmas form [38]. Let S2,t denote the 3-graph with vertex

set {v1, v2, u1, u2, ..., ut} and edge set {v1v2u1, v1v2u2, ..., v1v2ut}. A result of Sidorenko in [31] implies

that S2,t is λ-perfect.

Theorem 3.1 ([38]) If H is λ-perfect, then H ∪ S2,t is λ-perfect for any t ≥ 1.

Claim 3.2 ([38]) Let G be a 3-graph with λ(G) > λ(K3
k+1) and let ~x be an optimal weight vector. Then

for any v ∈ V (G), its weight xv satisfies that xv < 1−
√
k(k−1)
k+1 .

Claim 3.3 ([38]) Let v be a vertex in a 3-graph G and xv be the weight of v in an optimal weight vector

~x of G. If G− {v} is H-free, then λ(G) ≤ πλ(H)(1−xv)3
6(1−3xv) .

Remark 3.4 ([38]) f(x) = (1−x)3
1−3x is increasing in (0, 13 ).

Definition 3.5 For v ∈ V (G), the link graph of v in G, denote by Gv, is the graph on vertex set V (G)

and the edge set {e \ {v} : v ∈ e ∈ E(G)}. Let ω(Gv) be the number of vertices in a maximum complete

subgraph in Gv.

Claim 3.6 ([38]) Let a 3-graph G be H ∪S2,t-free, where H is a 3-graph with s vertices. Let v ∈ V (H).

If H ⊆ G− {v}, then ω(Gv) ≤ s+ t.

Claim 3.7 ([38]) Let a 3-graph G be H ∪ S2,t-free, where H is a 3-graph with s vertices. Let S2,s+t =

{v1v2b1, v1v2b2, ..., v1v2bs+t} ⊆ G. Then G− {v1, v2} is H-free.

Claim 3.8 ([38]) Let a 3-graph G be H∪S2,t-free, where H is a 3-graph with s vertices. If H ⊆ G−{v1}
and H * G− {v1, v2}, then ω((G− {v2})v1) ≤ s+ t− 1.

Proof of Theorem 1.5. By Theorem 3.1, it’s sufficient to show that K3
4 ∪ 2 · e is λ-perfect. Note

that K3
4 ∪ 2 · e has 10 vertices. It’s sufficient to show that if G is K3

4 ∪ 2 · e-free dense 3-graph then

λ(G) ≤ λ(K3
9 ). Suppose on the contrary that λ(G) > λ(K3

9 ) = 28
243 . Let ~x be an optimal weight vector

of G.

Case 1. There exists v ∈ V (G) with weight xv such that G− {v} is K3
4 ∪ e-free.

By Claim 3.2, xv < 1− 2
√
14
9 . By Theorem 1.4 and Claim 3.3,

λ(G) ≤

√
3

18 (1− xv)3

1− 3xv
= f(xv). (3).
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Since f(xv) is increasing in [0, 1− 2
√
14
9 ], then

λ(G) ≤ f(1− 2
√

14

9
)

=
28
√

42

729(3
√

14− 9)

≤ 28

243
,

a contradiction.

Case 2. For any v ∈ V (G), K3
4 ∪ e ⊆ G− {v}.

Since λ(G) > λ(K3
9 ) and S2,8 is λ-perfect, then S2,8 = {v1v2b1, v1v2b2, ..., v1v2b8} ⊆ G. By Claim

3.7, G− {v1, v2} is K3
4 ∪ e-free. Applying Claim 3.6 (s = 7, t = 1), we have

ω(Gv1) ≤ 8 and ω(Gv2) ≤ 8.

Applying Claim 3.8 (s = 7, t = 1), we have ω((G− {v2})v1) ≤ 7 and ω((G− {v1})v2) ≤ 7.

Assume the weight of v1 and v2 are a1 and a2 respectively, and a1 + a2 = 2a. Since G − {v1, v2} is

K3
4 ∪ e-free and by Theorem 1.4, the contribution of edges containing neither v1 nor v2 to λ(G,~x) is at

most
√
3

18 (1−2a)3. Since ω((G−{v2})v1) ≤ 7 and ω((G−{v1})v2) ≤ 7, by Theorem 1.2, the contribution

of edges containing either v1 or v2 to λ(G,~x) is at most 2 × 1
2a(1 − 1

7 )(1 − 2a)2. The contribution of

edges containing both v1 and v2 to λ(G,~x) is at most a2(1− 2a). Therefore

λ(G) ≤
√

3

18
(1− 2a)3 + a2(1− 2a) +

6

7
a(1− 2a)2

≤ 1

10
(1− 2a)3 + a2(1− 2a) +

6

7
a(1− 2a)2 = f(a)

f ′(a) =
66a2 − 86a+ 9

35
.

Since f(a) is increasing in [0, 43−
√
1255

66 ] and is decreasing in [ 43−
√
1255

66 , 1], then λ(G) ≤ f( 43−
√
1255

66 ) <
28
243 . 2

4 Preliminaries

4.1 Karush-Kuhn-Tucker Conditions

Let us consider the optimisation problem:

maximise f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m, (3.1)

where x ∈ Rn and f and gi are differentiable functions from Rn to R for all i. Let ∇f(x) be the gradient

of f at x i.e. the vector in Rn whose ith coordinate is ∂
∂xi

f(x). We say that KKT conditions hold at

x∗ ∈ Rn if there exist λ1, . . . λm ∈ R such that

(i) ∇f(x∗) =
∑m
i=1 λi∇gi(x∗),

6



(ii) λi ≥ 0, i = 1, . . . ,m,

(iii) λigi(x
∗) = 0, i = 1, . . . ,m.

We call the constraints linear if g1, . . . , gm are all affine functions.

Theorem 4.1 ([4],[15]) If the constraints of (3.1) are linear, then any optimum point of (3.1) must

satisfy the KKT conditions.

4.2 Properties of the Lagrangian function

The following fact follows immediately from the definition of the Lagrangian.

Fact 4.2 Let G1, G2 be r-graphs and G1 ⊆ G2. Then λ(G1) ≤ λ(G2).

Fact 4.3 ([11]) Let G be an r-graph on [n]. Let ~x = (x1, x2, . . . , xn) be an optimum weight vector on G.

Then
∂λ(G,~x)

∂xi
= rλ(G)

for every i ∈ [n] satisfying xi > 0.

Given an r-graph G, and i, j ∈ V (G), define

LG(j \ i) = {e : i /∈ e, e ∪ {j} ∈ E(G) and e ∪ {i} /∈ E(G)}.

Fact 4.4 Let G be an r-graph on [n]. Let ~x = (x1, x2, . . . , xn) be a feasible weight vector on G. Let

i, j ∈ [n], i 6= j satisfying LG(i \ j) = LG(j \ i) = ∅. Let ~y = (y1, y2, . . . , yn) be defined by letting y` = x`

for every ` ∈ [n] \ {i, j} and yi = yj = 1
2 (xi + xj). Then λ(G, ~y) ≥ λ(G,~x). Furthermore, if the pair

{i, j} is contained in an edge of G, xi > 0 for each 1 ≤ i ≤ n, and λ(G, ~y) = λ(G,~x), then xi = xj.

Proof of Fact 4.4. Since LG(i \ j) = LG(j \ i) = ∅, then

λ(G, ~y)− λ(G,~x) =
∑

{i,j}⊆e∈G

(
(xi + xj)

2

4
− xixj

) ∏
k∈e\{i,j}

xk ≥ 0.

If the pair {i, j} is contained in an edge of G and xi > 0 for each 1 ≤ i ≤ n, then the equality holds only

if xi = xj . 2

Fact 4.5 Let ~x = (x1, x2, . . . , xn) be an optimum vector for an r-graph G on [n]. If LG(j \ i) = ∅, then

we may assume that xi ≥ xj.

Proof of Fact 4.5. If xi < xj , then let ε =
xj−xi

2 and ~x′ = (x1, x2, . . . , xi + ε, . . . , xj − ε, . . . , xn). Since

LG(j \ i) = ∅, then

λ(G, ~x′)− λ(G,~x) ≥
∑

{i,j}⊆e∈G

((xi + ε)(xj − ε)− xixj)
∏

k∈e\{i,j}

xk ≥
(xj − xi)2

4

∑
{i,j}⊆e∈G

∏
k∈e\{i,j}

xk ≥ 0.

2
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Fact 4.6 ([11]) Let G = (V,E) be a dense r-graph. Then G covers pairs.

Let Cr,m denote the r-graph with m edges formed by taking the first m sets in the colex ordering of Nr.
The following two results was given in [35] and [32], respectively.

Lemma 4.7 ([35]) Let m and t be positive integers satisfying the condition that
(
t
3

)
− 6 ≤ m ≤

(
t
3

)
− 3.

Let G be a 3-graph with m edges. Then λ(G) ≤ λ(C3,m).

Lemma 4.8 ([32]) For any integers m, t and r satisfying the condition that
(
t−1
r

)
≤ m ≤

(
t−1
r

)
+
(
t−2
r−1
)
,

then we have λ(Cr,m) = λ(Kr
t−1).

Fact 4.9 Let f(x) = x2(1−x)
4 + x(1−x)2

2 , where 0 ≤ x ≤ 1. Then f(x) ≤
√
3

18 and equality holds only if

x = 3−
√
3

3 .

Proof of Fact 4.9. Since f ′(x) = 3x2−6x+2
4 , then f(x) is increasing when x ∈ [0, 3−

√
3

3 ] and decreasing

when x ∈ [ 3−
√
3

3 , 1]. Therefore f(x) ≤ f( 3−
√
3

3 ) =
√
3

18 . 2

Lemma 4.10 λ(B(2, n− 2)) ≤
√
3

18 and lim
n→+∞

λ(B(2, n− 2)) =
√
3

18 .

Proof of Lemma 4.10. Let ~x = {x1, x2, . . . , xn} be an optimum vector of λ(B(2, n− 2)). Let x1 +x2 = a

and b = 1− a. Then

λ(B(2, n− 2)) ≤ a2(1− a)

4
+ a

(
1− a
n− 2

)2(
n− 2

2

)
≤ a2(1− a)

4
+
a(1− a)2

2
.

By Fact 4.9, λ(B(2, n− 2)) ≤
√
3

18 . Note that ′ =′ holds only if a = 3−
√
3

3 and n→∞. 2

4.3 Preliminaries for the main Lemmas

In this section we introduce two hypergraphs and show their Lagrangian are less than
√
3

18 . When giving

some proofs in Section 5, we will change our hypergraph by replacing some edges such that the new

hypergraph has non-decreasing Lagrangian and is isomorphic with the subgraph of the following two

hypergraphs.

H1 : the 3-graph with vertex set [n] and edge set E(H1) = E(B(2, n − 2)) \ {2ij : i, j ∈ [n] \
{1, 2, 3, 4, 5, 6}} ∪ {345, 346}.

H2 : a 3-graph with vertex set [n] and edge set E(H2) = E(B(2, n−2))\{2ij : i, j ∈ D}∪{34i : i ∈ D},
where D is a subset of [n] \ {1, 2, 3, 4} with |D| ≥ 2.

Lemma 4.11 λ(H1) <
√
3

18 .

Proof of Lemma 4.11. Let ~x = (x1, x2, ..., xn) be an optimum vector of λ(H1). Assume that x1 = a,

x2 = b, x3 +x4 = c, x5 +x6 = d, e = 1−a−b−c−d. By Fact 4.4, we may assume that x5 = x6 = d
2 and

8



x3 = x4 = c
2 . By Fact 4.5, we may assume that a ≥ b. If c = 0 or d = 0, then λ(H1) < λ(B(2, n− 2)) ≤√

3
18 . If b = 0, then

λ(H1) ≤ a(
c2

4
+
d2

4
+
e2

2
+ cd+ ce+ de) +

c2d

4

≤ a(c+ d+ e)2

2
+

( c2 + c
2 + d+ e)3

27
=
a(1− a)2

2
+

(1− a)3

27
= f(a).

f ′(a) =
25a2

18
− 16a

9
+

7

18
.

Note that f(a) is increasing in [0, 7
25 ] and decreasing in [ 7

25 , 1], then λ ≤ f( 7
25 ) <

√
3

18 . So we may assume

that a, b, c, d > 0. By Fact 4.3,
∂λ

∂x1
+

∂λ

∂x2
=

∂λ

∂x5
+

∂λ

∂x6
.

Note that

∂λ

∂x1
+

∂λ

∂x2
≥ bc+ bd+ be+ cd+ ce+ de+

c2

4
+
d2

4
+ ac+ ad+ ae+ cd+ ce+ de+

c2

4
+
d2

4
,

and

∂λ

∂x5
+

∂λ

∂x6
= ab+ ac+ ae+ bc+ be+ (a+ b)

d

2
+
c2

4
+ ab+ ac+ ae+ bc+ be+ (a+ b)

d

2
+
c2

4
.

Therefore

2cd+ 2ce+ 2de+
d2

2
≤ 2ab+ ac+ ae+ bc+ be.

If a + b ≤ d, then 2ab ≤ d2

2 , ac + bc ≤ cd and ae + be ≤ de. So we have a = b and e = c = 0, a

contradiction to c > 0. So we may assume that a+ b > d, then

λ(H1) ≤ ab(c+ d+ e) + a(
c2

4
+
d2

4
+
e2

2
+ cd+ ce+ de) + b(

c2

4
+
d2

4
+ cd+ ce+ de) +

c2d

4

≤ ab(1− a− b) +
(a+ b)(c+ d+ e)2

2
+
c2d

4
− c2a

4
− c2b

4

< ab(1− a− b) +
(a+ b)(1− a− b)2

2

≤ (a+ b)2(1− a− b)
4

+
(a+ b)(1− a− b)2

2
.

By Fact 4.9, then λ(H1) <
√
3

18 . 2

Lemma 4.12 λ(H2) ≤
√
3

18 .

Proof of Lemma 4.12. Let ~x = (x1, x2, ..., xn) be an optimum vector of λ(H2). Let x1 = a, x2 = b,

x3 + x4 = c,
∑
v∈D xv = d,

∑
v∈E xv = e. We have

λ(H2) ≤ ab(c+ d+ e) + a(
c2

2
+
d2

2
+
e2

2
+ cd+ ce+ de) + b(

c2

4
+
e2

2
+ cd+ ce+ de) +

c2d

4
= λ(a, b, c, d, e) = λ

9



under the constraint {
a+ b+ c+ d+ e = 1,

a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 and e ≥ 0.
(1)

Note that if c = 0 or d = 0, then

λ <
(a+ b)2(1− a− b)

4
+

(a+ b)(1− a− b)2

2
,

by Fact 4.9, then λ ≤
√
3

18 . So we may assume that c, d > 0. By Theorem 4.1, then ∂λ
∂c = ∂λ

∂d . By direct

calculation,

∂λ

∂c
= ab+ a(c+ d+ e) + b(

c

2
+ d+ e) +

cd

2
∂λ

∂d
= ab+ a(c+ d+ e) + b(c+ e) +

c2

4
,

then c
2 ( c2 + b) = d( c2 + b), so c = 2d.

By Fact 4.5, we may assume that a ≥ b. We claim that b > 0. If b = 0, then

λ = a(
c2

2
+
d2

2
+
e2

2
+ cd+ ce+ de) +

c2d

4

≤ a(c+ d+ e)2

2
+

( c
2 + c

2 + d+ e

3

)3

=
a(1− a)2

2
+

(1− a)3

27
= f(a),

f ′(a) =
25a2

18
− 16a

9
+

7

18
.

Note that f(a) is increasing in [0, 7
25 ] and decreasing in [ 7

25 , 1], then λ ≤ f( 7
25 ) ≤

√
3

18 . So we may assume

that a, b > 0. By Theorem 4.1, then ∂λ
∂a = ∂λ

∂b . Therefore (a− b)(c+ d+ e) = c2

4 + d2

2 .

We claim that e > 0. If e = 0, recall that we have shown that c = 2d and (a− b)(c + d) = c2

4 + d2

2 ,

then a = b+ d
2 . Since a+ b+ c+ d = 1, then a = 1

2 −
5d
4 and b = 1

2 −
7d
4 . So

λ =
−53d3 − 12d2 + 12d

16

λ′ =
−159d2

16
− 3d

2
+

3

4
.

Note that λ is increasing in [0, 2
√
57−4
53 ] and decreasing in [ 2

√
57−4
53 , 1], so λ ≤ 0.094.

Therefore we may assume that a, b, c, d, e > 0. Recall that c = 2d. By Theorem 4.1, then ∂λ
∂d = ∂λ

∂e .

Since

∂λ

∂d
= ab+ a(c+ d+ e) + b(c+ e) +

c2

4
∂λ

∂e
= ab+ a(c+ d+ e) + b(c+ d+ e),

10



then d = b. So

λ <
(a+ b)2(1− a− b)

4
+

(a+ b)(1− a− b)2

2
+
c2d

4
− bc2

4
− bd2

2

<
(a+ b)2(1− a− b)

4
+

(a+ b)(1− a− b)2

2
.

By Fact 4.9, then λ ≤
√
3

18 . 2

5 Proofs of the main Lemmas

To complete the proof of Theorem 1.4, what remains is to show Lemma 2.1 to 2.3. In this section,

we prove these lemmas. Throughout this section, let G be a dense K3
4 ∪ e-free 3-graph on vertex set

[n] with Lagrangian λ(G) >
√
3

18 . Let ~x = {x1, x2, . . . , xn} be an optimum vector for λ(G). Since

λ(K3
6 ) = 5

54 ≤
√
3

18 , then n ≥ 7.

Lemma 5.1 ([1],[28]) π(K3
4 ) ≤ 0.5615.

By Fact 4.6, Proposition 1.3 and Lemma 5.1, πλ(K3
4 ) = π(K3

4 ) ≤ 0.5615 < 3!
√
3

18 < 3!λ(G). So

K3
4 ⊆ G. Without loss of generality, assume that {1, 2, 3, 4} forms a K3

4 in G.

For x, y ∈ V (G), let N∗(x, y) = {v : vxy ∈ E(G)}.

Claim 5.2 K3
5 * G.

Proof of Claim 5.2. Assume that K3
5 ⊆ G. Since n ≥ 7, then there are x, y ∈ [n] \ V (K3

5 ), since G

is dense, then there exists z ∈ N∗(x, y). The edge xyz together with the K3
5 contains a K3

4 ∪ e, a

contradiction. 2

Claim 5.3 For v ∈ [n], ω(Gv) ≥ 3 and xv < 1 −
√√

3
3

ω(Gv)
ω(Gv)−1 . Furthermore, if v ∈ [n] \ {1, 2, 3, 4},

then 3 ≤ ω(Gv) ≤ 4. Therefore xv < 0.0694 if ω(Gv) = 3, and xv < 0.12262 if ω(Gv) = 4.

Proof of Claim 5.3. For any v ∈ [n], applying Fact 4.3 and Theorem 1.2, we have

√
3

6
< 3λ =

∂λ

∂xv
≤
(

1− xv
ω(Gv)

)2(
ω(Gv)

2

)
.

Then

xv < 1−

√√
3

3

ω(Gv)

ω(Gv)− 1
.

If v ∈ {1, 2, 3, 4}, then it’s clear that ω(Gv) ≥ 3. Let v /∈ [n] \ {1, 2, 3, 4}. If ω(Gv) ≤ 2, then

xv < 0, a contradiction. Therefore ω(Gv) ≥ 3. If ω(Gv) ≥ 5, then ω(Gv) contains at least 1 vertex in

[n] \{1, 2, 3, 4}, therefore G contains either a K3
5 (if ω(Gv) contains only 1 vertex in [n] \{1, 2, 3, 4}) or a

K3
4 ∪e (if ω(Gv) contains at least 2 vertices in [n]\{1, 2, 3, 4}), a contradiction. Therefore 3 ≤ ω(Gv) ≤ 4

for all v ∈ [n] \ {1, 2, 3, 4}. 2

Claim 5.4 For 2 vertices a and b in [n], xa + xb ≤ 3−
√
3

3 .
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Proof of Claim 5.4. Applying Fact 4.3, we have

√
3

3
≤ 6λ(G) =

∂λ(G)

∂xa
+
∂λ(G)

∂xb

≤ xb(1− xa − xb) +

(
1− xa − xb

n− 2

)2(
n− 2

2

)
+ xa(1− xa − xb) +

(
1− xa − xb

n− 2

)2(
n− 2

2

)
≤ (xa + xb)(1− xa − xb) + (1− xa − xb)2

= 1− (xa + xb).

Therefore xa + xb ≤ 3−
√
3

3 . 2

Claim 5.5 If G− {v} is K3
4 -free for some v ∈ [n], then xv > 0.0848.

Proof of Claim 5.5. Applying Lemma 5.1 and Proposition 1.3, we have

λ(G− {v}, ~x) ≤ (1− xv)3
0.5615

6
.

Therefore

λ(G) ≤ (1− xv)3
0.5615

6
+ xv

∂λ(G)

∂xv

= (1− xv)3
0.5615

6
+ 3xvλ(G),

the last equality follows from Fact 4.3. So

λ(G) ≤ 0.5615

6

(1− xv)3

1− 3xv
.

Note that (1−xv)3
1−3xv is increasing in [0, 13 ). If xv ≤ 0.0848, then λ(G) ≤ 0.09622 ≤

√
3

18 , a contradiction. 2

Let Mr
t be an r-graph on tr vertices with t disjoint edges.

Claim 5.6 n ≥ 8.

Proof of Claim 5.6. Assume that and V (G) = [7]. Recall that {1, 2, 3, 4} forms K3
4 . By Claim 5.3, then

ω(G5), ω(G6), ω(G7) ≤ 4 and x5+x6+x7 ≤ 3×0.12262. Therefore x1+x2+x3+x4 ≥ 0.63214 > 4×0.158,

then, without loss of generality, let x1 ≥ 0.158. By Claim 5.3, xv < 0.151 if ω(Gv) ≤ 5. Therefore

ω(G1) = 6. Since G is K3
4 ∪ e-free, then G − {1} is M3

2 -free. Hefetz and Keevash ([13]) proved that

πλ(M3
2 ) ≤ 12

25 . So λ(G− {1}) ≤ 2
25 . Therefore

λ(G) ≤ x1

(
1− x1

6

)2(
6

2

)
+

2

25
(1− x1)3

=
5

12
x1(1− x1)2 +

2

25
(1− x1)3 = f(x1).

f ′(x1) =
5

12
(1− x1)2 − 5

6
x1(1− x1)− 6

25
(1− x1)2

=
(1− x1)(53− 303x1)

300
.
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So f(x1) is increasing in [0, 53
303 ] and decreasing in [ 53

303 , 1], then f(x1) ≤ f( 53
303 ) < 0.095 <

√
3

18 . 2

5.1 G is K3−
5 -free

Lemma 5.7 G is K3−
5 -free.

Proof of Lemma 5.7. Assume that K3−
5 ⊆ G with vertex set {1, 2, 3, 4, 5} and 345 /∈ E(G). Since G

is K3
4 ∪ e-free, then for any x, y ∈ [n] \ {1, 2, 3, 4, 5}, we have N∗(x, y) ⊆ {1, 2}. By Claim 5.6, n ≥ 8.

Recall that ~x = (x1, x2, . . . , xn) is an optimal vector for G.

Case 1. x1, x2 ≥ x3, x4, x5.

We say that a vertex v ∈ [n] \ {1, 2, 3, 4, 5} is a good vertex if for the set of edges in

Bv = {vij ∈ E(G) : {i, j} ∈ {3, 4, 5}(2)},

there exist the same number of triples in

Av = {vij ∈ E(Gc) : {i, j} ∩ {1, 2} 6= ∅, {i, j} ⊂ {1, 2, 3, 4, 5}}

such that
∑
vij∈Bv xvxixj ≤

∑
vij∈Av xvxixj . In this case, we say that Bv can be replaced by Av.

Otherwise, we call v a bad vertex.

We call v34, v35, v45 bad edges for v ∈ [n] \ {1, 2, 3, 4, 5}. Note that for a good vertex v ∈ [n] \
{1, 2, 3, 4, 5}, replacing Bv by Av in G does not reduce the Lagrangian. Let B be the set of all bad

vertices. If B = ∅, then we can replace Bv by Av in G for each v ∈ [n] \ {1, 2, 3, 4, 5}, obtain G0, and all

edges in E(G0) are incident to 1 or 2. So G0 ⊆ B(2, n−2). Hence λ(G) ≤ λ(G0) ≤ λ(B(2, n−2)) =
√
3

18 ,

a contradiction.

Case 1.1. There exists v ∈ B such that exactly 1 of v34, v35, v45 is in E(G).

Without loss of generality, let v34 ∈ E(G). SinceG isK3
5 -free, then at least 1 of v12, v13, v23, v14, v24 /∈

E(G). Since x1, x2 ≥ x3, x4, then v34 can be replaced by that missing edge, so v /∈ B, a contradiction.

Case 1.2. There exists v ∈ B such that exactly 2 of v34, v35, v45 in E(G).

Without loss of generality, let v34, v35 ∈ E(G). Since {v, 1, 2, 3, 4} can’t form a K3
5 , then at least 1

of v12, v13, v23, v14, v24 is not in E(G).

If v12 /∈ E(G), then v13, v14, v23, v24 ∈ E(G). Otherwise we can replace v34, v35 by that missing

edge and v12 with λ(G) non-decreasing. Contradict to v ∈ B. Therefore {v, 1, 3, 4}, {v, 2, 3, 4} form K3
4 .

Since G is K3
4 ∪ e-free, then N∗(x, y) = ∅ for x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, a contradiction to that G is

dense.

If v14 /∈ E(G) (or v24 /∈ E(G)), then {v, 1, 3, 5}, {v, 2, 3, 5} form K3
4 . Otherwise we can replace

v34, v35 by v14 and one of the missing edges, a contradiction to v ∈ B. Since G is K3
4 ∪ e-free, then

N∗(x, y) = ∅ for x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, a contradiction to that G is dense.

If v23 /∈ E(G) (or v13 /∈ E(G)), then {v, 1, 3, 4}, {v, 1, 3, 5}, {v, 1, 2, 4}, {v, 1, 2, 5} form K3
4 . Since G

is K3
4 ∪ e-free, then for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, we have N∗(x, y) = {1} and x34, x35 /∈ E(G). So

for any x ∈ [n] \ {v, 1, 2, 3, 4, 5} only, possibly, x45 ∈ E(G) is a bad edge incident to x. By the proof

of Case 1.1, x /∈ B, so B = {v}. Replacing v35 by v23, adding 345 and replacing Bx by Ax for all

x ∈ [n] \ {v, 1, 2, 3, 4, 5}, we obtain G0. Note that G0 is contained in an isomorphic copy of H1 (view v

in G0 as 6 in H1), then λ(G) ≤ λ(G0) ≤ λ(H1) ≤
√
3

18 by Lemma 4.11, a contradiction to λ(G) >
√
3

18 .
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Case 1.3. There exists v ∈ B such that v34, v35, v45 ∈ E(G).

Since v ∈ B, then at most two of {v12, v13, v23, v14, v24, v15, v25} are not in E(G), otherwise we can

replace Bv by the three missing edges. We claim that there are 2 of those edges not in E(G). Suppose

that there is only 1 of those edges missing in E(G). If only v12 /∈ E(G), then {v, 1, 3, 4}, {v, 2, 3, 4} form

K3
4 . Since G is K3

4 ∪ e-free and |G| ≥ 8, then there are x, y ∈ [n]\{v, 1, 2, 3, 4, 5} such that N∗(x, y) = ∅,
a contradiction to that G is dense. If only vij /∈ E(G) for some i ∈ {1, 2} and some j ∈ {3, 4, 5}, then

{v, 1, 2, k, l} form a K3
5 , where {k, l} = {3, 4, 5} \ {j}, a contradiction to Claim 5.2. So we may assume

that there are two of those edges not in E(G).

If v12 /∈ E(G) and vij /∈ E(G), where i ∈ {1, 2} and j ∈ {3, 4, 5}, then {v, 1, k, l} and {v, 2, k, l}
({k, l} = {3, 4, 5}\{j}) form K3

4 . Since G is K3
4 ∪e-free, then N∗(x, y) = ∅ for x, y ∈ [n]\{v, 1, 2, 3, 4, 5},

contradicting to G being dense.

If v1i, v2j /∈ E(G), where i, j ∈ {3, 4, 5}, then {v, 1, p, q} and {v, 2, s, t} form K3
4 , where {p, q} =

{3, 4, 5} \ {i} and {s, t} = {3, 4, 5} \ {j}. Since G is K3
4 ∪ e-free, then N∗(x, y) = ∅ for x, y ∈ [n] \

{v, 1, 2, 3, 4, 5}, contradicting to G being dense.

If vij, vik /∈ E(G), where i ∈ {1, 2} and {j, k} ∈ {3, 4, 5}(2), without loss of generality, assume that

v13, v14 /∈ E(G), then {v, 2, 3, 4}, {v, 2, 3, 5}, {v, 2, 4, 5}, {v, 1, 2, 5} form K3
4 . Since G is K3

4 ∪ e-free, then

for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, we have N∗(x, y) = {2} and x34 /∈ E(G). By the proof of Case 1.2,

x /∈ B, so B = {v}. Replacing Bx by Ax for all x ∈ [n] \ {v, 1, 2, 3, 4, 5}, replacing v35, v45 by v13, v14

and adding 345, we obtain G0 which is contained in an isomorphic copy of H1 (view v in G0 as 6 in H1).

So λ(G) ≤ λ(G0) ≤ λ(H1) ≤
√
3

18 by Lemma 4.11, a contradiction to λ(G) >
√
3

18 .

Case 2. x1, x3 ≥ x2, x4, x5.
A vertex v ∈ [n] \ {1, 2, 3, 4, 5} is a good vertex if for the edges in

Bv = {vij ∈ E(G) : ij ∈ {2, 4, 5}(2)},

there exist the same number of triples in

Av = {vi′j′ ∈ E(Gc) : {i′, j′} ∩ {1, 3} 6= ∅, {i′, j′} ⊂ {1, 2, 3, 4, 5}}

such that the substitute vi′j′ for vij ∈ Bv satisfies |{i′, j′} ∩ {i, j}| = 1 or {i′, j′} = {1, 3}. Note that∑
vij∈Bv xvxixj ≤

∑
vij∈Av xvxixj . In this case, we say that Bv can be replaced by Av. Otherwise, we

call v a bad vertex. We call v24, v25, v45 bad edges for v ∈ [n] \ {1, 2, 3, 4, 5}.
Let B be the vertex set containing all bad vertices.

Case 2.1. There exists v ∈ B and exactly one of {v24, v25, v45} is in E(G).

Case 2.1.1. v45 ∈ E(G).

Since v ∈ B, then v13, v14, v34, v15, v35 ∈ E(G). Therefore {v, 1, 3, 4}, {v, 1, 3, 5}, {v, 1, 4, 5} form

K3
4 , then for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5} we have N∗(x, y) = {1} and x23, x24, x25 /∈ E(G). Otherwise

K3
4 ∪ e ⊆ G. For any u ∈ B, since u24, u25 /∈ E(G), then u45 ∈ E(G) and {u, 1, 3, 4}, {u, 1, 3, 5},
{u, 1, 4, 5} form K3

4 .

If B = {v}, then let E = [n] \ {1, 2, 3, 4, 5, v}. Note that N∗(x, y) = 1 for x, y ∈ E. Replacing Bx

by Ax for x ∈ E, we obtain G0. Then G0 is contained in an isomorphic copy of H1 (view 3 in G0 as

2 in H1, view 245, v45 in G0 as 345, 346 in H1). So λ(G) ≤ λ(G0) ≤ λ(H1) ≤
√
3

18 by Lemma 4.11, a

contradiction.
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If B = {v, u}, then let E = [n] \ (B ∪ {1, 3, 4, 5}). Note that 2 ∈ E. Since x is a good vertex for

x ∈ E \ {2}, then x45 can be replaced by 1 of {x13, x14, x15, x34, x35}. Note that N∗(x, y) = 1 for

x, y ∈ E ∪ {2}. Replace uv2 by uv3, then the obtained G0 is contained in an isomorphic copy of H1

(view 3 in G0 as 2 in H1, view v45, u45 in G0 as 345, 346 in H1). So λ(G) ≤ λ(G0) ≤ λ(H1) ≤
√
3

18 by

Lemma 4.11, a contradiction.

If |B| ≥ 3, then N∗(x, y) = {1} for x, y ∈ B. Otherwise if xy2 ∈ E(G), then {z, 1, 4, 5} ∪ {x, y, 2}
forms K3

4 ∪ e in G for x, y, z ∈ B. Let E = [n] \ (B ∪ {1, 3, 4, 5}). Replacing Bx by Ax for each x ∈ E,

we obtain G0 which is contained in an isomorphic copy of H2 (view B in G0 as D in H2, view 3 in G0

as 2 in H2, view i45(i ∈ B) in G0 as i34(i ∈ D) in H2). So λ(G) ≤ λ(G0) ≤ λ(H2) ≤
√
3

18 by Lemma

4.12, a contradiction.

Case 2.1.2. v2i ∈ E(G), where i is 4 or 5.

Since v ∈ B, then v12, v23, v1i, v3i, v13 ∈ E(G), so {v, 1, 2, 3, i} forms a K3
5 , a contradiction to Claim

5.2.

Case 2.2. There exists v ∈ B and exactly two of {v24, v25, v45} are in E(G).

Case 2.2.1. v24, v25 ∈ E(G).

Since {v, 1, 2, 3, 4} can’t form a K3
5 , then at least one of {v12, v23, v14, v34, v13} is not in E(G).

If v12 /∈ E(G), then v13, v14, v23, v34 ∈ E(G). Otherwise we can replace v24, v25 by v12 and that

missing edge, a contradiction to v /∈ B. Therefore {v, 1, 3, 4}, {v, 2, 3, 4} form K3
4 . Since G is K3

4 ∪e-free,

then N∗(x, y) = ∅ for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, a contradiction to that G is dense.

If v23 /∈ E(G), then v12, v13, v14, v15, v34, v35 ∈ E(G). Therefore {v, 1, 2, 4}, {v, 1, 2, 5}, {v, 1, 3, 4},
{v, 1, 3, 5} form K3

4 , then for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5} we have N∗(x, y) = {1} and x24, x25 /∈ E(G),

by the proof of Case 2.1, x /∈ B, so B = {v}. Let E = [n] \ {1, 2, 3, 4, 5, v}. Deleting v25, adding v23,

and replacing Bx by Ax for x ∈ E, we obtain G0 which is contained in an isomorphic copy of H1 (view

3, 2 in G0 as 2, 3 in H1 respectively, view v24 in G0 as 346 in H1). So λ(G) ≤ λ(G0) ≤ λ(H1) ≤
√
3

18 by

Lemma 4.11, a contradiction.

If v34 /∈ E(G) (or v14 /∈ E(G) or both), then {v12, v13, v15, v23, v35} ⊂ E(G), so {v, 1, 3, 5}, {v, 2, 3,
5} form K3

4 . Since G is K3
4 ∪ e-free, then N∗(x, y) = ∅ for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, a contradiction

to that G is dense.

If v13 /∈ E(G), then {v12, v14, v15, v23, v34, v35} ⊆ E(G), otherwise we can replace v24, v25 by that

missing edge and v13, so {v, 1, 2, 4}, {v, 1, 2, 5}, {v, 2, 3, 4}, {v, 2, 3, 5} form K3
4 . Since G is K3

4 ∪ e-free,

then N∗(x, y) = {2} and x34, x35, x14 /∈ E(G) for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}. Note that x /∈ B for

x ∈ [n]\{v, 1, 2, 3, 4, 5}, otherwise we can replace the all bad edges incident to x by x34, x35, x14. Deleting

v25, adding v13, replacing Bx by Ax and replacing xv2, xy2 by xv3, xy1 for x, y ∈ [n] \ {1, 2, 3, 4, 5, v},
we obtain G0 which is contained in an isomorphic copy of H1 (view 3, 2 in G0 as 2, 3 in H1 respectively,

view v24 in G0 as 346 in H1). So λ(G) ≤ λ(G0) ≤ λ(H1) ≤
√
3

18 by Lemma 4.11, a contradiction.

Case 2.2.2. v24, v45 ∈ E(G) (the proof for v25, v45 ∈ E(G) is identical).

Since {v, 1, 2, 3, 4} can’t form a K3
5 , then at least 1 of {v23, v12, v13, v14, v34} is not in E(G).

If v23 /∈ E(G), since v ∈ B, then v13, v14, v15, v34, v35 ∈ E(G). So {v, 1, 3, 4}, {v, 1, 3, 5}, {v, 1, 4, 5}
form K3

4 . Since G is K3
4 ∪ e-free, then N∗(x, y) = {1} and x23, x24, x25 /∈ E(G) for all x, y ∈ [n] \

{v, 1, 2, 3, 4, 5}. By the proof of case 2.1, then x /∈ B, so B = {v}. Let E = [n]\{1, 2, 3, 4, 5, v}. Deleting

v24, adding v23, deleting xv2, adding xv3 for x ∈ E, and replacing Bx by Ax for x ∈ E, we obtain

G0 which is contained in an isomorphic copy of H1 (view 3 in G0 as 2 in H1, view {245, v45} in G0 as
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{345, 346} in H1). So λ(G) ≤ λ(G0) ≤ λ(H1) ≤
√
3

18 by Lemma 4.11, a contradiction. So we may assume

that v23 ∈ E(G).

If v12 /∈ E(G), since v ∈ B, then v13, v14, v23, v34 ∈ E(G), so {v, 1, 3, 4}, {v, 2, 3, 4} form K3
4 . Since

G is K3
4 ∪ e-free, then N∗(x, y) = ∅ for x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, contradicting to G being dense. So

we may assume that v12 ∈ E(G).

If v13 /∈ E(G), since v ∈ B, then v14, v15, v23, v34 ∈ E(G), so {v, 1, 4, 5}, {v, 2, 3, 4} form K3
4 . Since

G is K3
4 ∪ e-free, then N∗(x, y) = ∅ for x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, contradicting to G being dense. So

we may assume that v13 ∈ E(G).

If v14 /∈ E(G), since v ∈ B, then v13, v15, v23, v34, v35 ∈ E(G), so {v, 1, 3, 5}, {v, 2, 3, 4} form K3
4 .

Since G is K3
4 ∪ e-free, then N∗(x, y) = ∅ for x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, contradicting to G being dense.

So we may assume that v14 ∈ E(G).

If v34 /∈ E(G), since v ∈ B, then v12, v13, v14, v15, v23, v35 ∈ E(G), so {v, 1, 2, 3}, {v, 1, 2, 4}, {v, 1, 3,
5}, {v, 1, 4, 5} form K3

4 . Since G is K3
4 ∪ e-free, then N∗(x, y) = {1} and x24, x45 /∈ E(G) for all

x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, which means, by the proof of Case 2.1., x /∈ B and B = {v}. Let E =

[n] \ {1, 2, 3, 4, 5, v}. Deleting v24, adding v34, replacing Bx by Ax, deleting xv2 and adding xv3 for

x ∈ E, we obtain G0 which is contained in an isomorphic copy of H1 (view 3 in G0 as 2 in H1, view

{245, v45} in G0 as {345, 346} in H1). So λ(G) ≤ λ(G0) ≤ λ(H1) ≤
√
3

18 by Lemma 4.11, a contradiction.

Case 2.3. There exists v ∈ B and v24, v25, v45 ∈ E(G).

Since v ∈ B, then at most 2 of {v12, v13, v14, v15, v23, v34, v35} are not in E(G), otherwise we can re-

placeBv = {v24, v25, v45} by those 3 missing edges inAv. We claim that exactly 2 of {v12, v13, v14, v15, v23,

v34, v35} are not in E(G). Otherwise there is only 1 of those edges not in E(G). If only v12 /∈ E(G) (or

only v23 /∈ E(G)), then {v, 1, 4, 5} , {v, 2, 4, 5} form K3
4 . Since G is K3

4 ∪e-free, then N∗(x, y) = ∅ for all

x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, a contradiction to G being dense. If only v13 (or one of {v14, v15, v34, v35})
is not in E(G), then {v, 1, 2, 4, 5} forms an K3

5 , a contradiction. So we can assume that there are exactly

two of {v12, v13, v14, v15, v23, v34, v35} not in E(G).

If v12 /∈ E(G), and v23 /∈ E(G) (the discussion for v23 replaced by 1 of {v13, v14, v15, v34, v35}
is similar), then {v, 1, 4, 5}, {v, 2, 4, 5} form K3

4 . Since G is K3
4 ∪ e-free, then N∗(x, y) = ∅ for x, y ∈

[n] \ {v, 1, 2, 3, 4, 5}, contradicting to G being dense. So we may assume that v12 ∈ E(G).

If v13 /∈ E(G), and v23 /∈ E(G) (or 1 of {v34, v35} /∈ E(G)), then {v, 1, 4, 5}, {v, 2, 4, 5} form

K3
4 . Therefore N∗(x, y) = ∅ for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, a contradiction. If v13 /∈ E(G)

and v14 /∈ E(G) (or v15 /∈ E(G), since 4 and 5 are symmetric, we only discuss v14 here), then

{v, 2, 3, 4}, {v, 2, 3, 5}, {v, 2, 4, 5}, {v, 1, 2, 5} form K3
4 . Therefore N∗(x, y) = {2} and x13, x14, x15, xv3 /∈

E(G) for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}. Since we can replace Bx by x13, x14, x15 for x ∈ [n] \
{v, 1, 2, 3, 4, 5}, then x /∈ B, so B = {v}. Let E = [n] \ {1, 2, 3, 4, 5, v}. Deleting v24 and v25, adding

v13 and v14, deleting xv2, adding xv3, deleting xy2, adding xy1 for x, y ∈ E, and replacing Bx by Ax

for x ∈ E, we obtain G0. Note that G0 is contained in an isomorphic copy of H1 (view 3 in G0 as 2

in H1, view {245, v45} in G0 as {345, 346} in H1). So λ(G) ≤ λ(G0) ≤ λ(H1) ≤
√
3

18 by Lemma 4.11, a

contradiction. So we may assume that v13 ∈ E(G).

If v14 /∈ E(G), and v23 /∈ E(G) (or v34 /∈ E(G)), then {v, 1, 3, 5} and {v, 2, 4, 5} form K3
4 . Therefore

N∗(x, y) = ∅ for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, a contradiction. If v14, v15 /∈ E(G) (v14, v35 /∈ E(G)

is similar), then {v, 1, 2, 3}, {v, 2, 3, 4}, {v, 2, 3, 5}, {v, 2, 4, 5} form K3
4 . Therefore N∗(x, y) = {2} and

x13, x14, x15, x45 /∈ E(G) for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}. So we can replace Bx by x13, x14, x15 for
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x ∈ [n] \ {v, 1, 2, 3, 4, 5}, then x /∈ B, and B = {v}. Let E = [n] \ {1, 2, 3, 4, 5, v}. Deleting v24 and v25,

adding v14 and v15, deleting xv2, adding xv3, deleting xy2, adding xy1 for x, y ∈ E, and replacing Bx

by Ax for x ∈ E, we obtain G0 which is contained in an isomorphic copy of H1 (view 3 in G0 as 2 in H1,

view {245, v45} in G0 as {345, 346} in H1). By Lemma 4.11, then λ(G) ≤ λ(G0) ≤
√
3

18 , a contradiction.

So we may assume that v14 ∈ E(G).

Similar to v14, we may assume that v15 ∈ E(G), but then {v, 1, 2, 4, 5} forms a K3
5 , a contradiction

to Claim 5.2.

Case 3. x3, x4 ≥ x1, x2, x5.

A vertex v ∈ [n] \ {1, 2, 3, 4, 5} is a good vertex if for the edges in

Bv = {vij ∈ E(G) : ij ∈ {1, 2, 5}(2)},

there exist the same number of triples in

Av = {vi′j′ ∈ E(Gc) : {i′, j′} ∩ {3, 4} 6= ∅, {i′, j′} ⊂ {1, 2, 3, 4, 5}}

such that the substitute vi′j′ for vij ∈ Bv satisfies |{i′, j′} ∩ {i, j}| = 1 or {i′, j′} = {3, 4}. Note that∑
vij∈Bv xvxixj ≤

∑
vij∈Av xvxixj . In this case, we say that Bv can be replaced by Av. Otherwise we

call v a bad vertex. We call v12, v15, v25 bad edges for v ∈ [n] \ {1, 2, 3, 4, 5}.
Let B be the set of all bad vertices. Let E = [n] \ (B ∪ {1, 2, 3, 4, 5}).
Case 3.1. There exists v ∈ B and there is exactly 1 of v12, v15, v25 ∈ E(G).

Case 3.1.1. v12 ∈ E(G).

Since v ∈ B, then {v13, v14, v23, v24, v34} ⊆ E(G), so {v, 1, 2, 3, 4} forms a K3
5 , a contradiction to

Claim 5.2.

Case 3.1.2. v15 ∈ E(G) (the case v25 ∈ E(G) is similar).

Since v ∈ B, then v13, v14, v34, v35, v45 ∈ E(G). So {v, 1, 3, 4}, {v, 1, 3, 5}, {v, 1, 4, 5} form K3
4 . Since

G is K3
4∪e-free, then N∗(x, y) = {1} and v12, v25, x23, x24, x25 /∈ E(G) for all x, y ∈ [n]\{v, 1, 2, 3, 4, 5}.

Therefore for all u ∈ B, only possibly, u12, u15 ∈ E(G). Since we can replace u12 by u23 and u ∈ B,

then u15 can’t be replaced. So {u, 1, 3, 4}, {u, 1, 3, 5}, {u, 1, 4, 5} form K3
4 .

If |B| = 1, i.e. B = {v}, then replacing Bx by Ax, deleting xv1, xv2, xy1, adding xv3, xv4, xy3 for

all x, y ∈ E, we obtain G0 which is contained in an isomorphic copy of H1 (view 3, 4 in G0 as 1, 2 in

H1 respectively, view {v15, 125} in G0 as {345, 346} in H1). Then λ(G) ≤ λ(G0) ≤
√
3

18 by Lemma 4.11,

a contradiction.

If |B| = 2, i.e. B = {v, v′}, then v′15 ∈ E(G) (or v′12, v′15 ∈ E(G) but we can replace v′12 by v′23).

Deleting vv′1, vv′2, adding vv′3, vv′4, and replacing xy1, xv1, xv′1, x12, 125 by xy3, xv3, xv′3, x23, 345

respectively for all x, y ∈ E, we obtain G0. View 3, 4, 1, 5, v, v′ in G0 as 1, 2, 3, 4, 5, 6 in H1, respectively.

Note that N∗(x, 2) = {3} in G0 for x ∈ E, so G0 is contained in an isomorphic copy of H1. Hence

λ(G) ≤ λ(G0) ≤
√
3

18 by Lemma 4.11, a contradiction.

If |B| ≥ 3, then vv′2, xv2 /∈ E(G) for any v, v′ ∈ B and x ∈ E, since otherwise {v′′, 1, 3, 4}∪{v, v′, 2}
forms K3

4 ∪ e for v′′ ∈ B and x ∈ E. Replacing vv′1 by vv′3, deleting xy1, xv1, adding xy3, xv3 for

all x, y ∈ E and v, v′ ∈ B, and replacing Bx by Ax for x ∈ E, we obtain G0. So N∗(v, v′) = {3} for

v, v′ ∈ B in G0. View {3, 4} in G0 as {1, 2} in H2, view v15 in G0 (v ∈ B) as i34 (i ∈ D) in H2,
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then G0 is contained in an isomorphic copy of H2. So λ(G) ≤ λ(G0) ≤ λ(H2) ≤
√
3

18 by Lemma 4.12, a

contradiction.

Case 3.2. v ∈ B and exactly 2 of v12, v15, v25 ∈ E(G).

Case 3.2.1. v12, v15 ∈ E(G). (The case that v12, v25 ∈ E(G) is similar.)

Since {v, 1, 2, 3, 4} can’t form a K3
5 , then there is at least 1 of {v13, v14, v23, v24, v34} not in E(G).

Since v ∈ B, then we may assume that v35, v45 ∈ E(G). Otherwise we may replace v12, v15 by 1 of

{v13, v14, v23, v24, v34} and 1 of v35, v45 ∈ E(G), a contradiction. If v13 /∈ E(G) (or v14 /∈ E(G)),

since v ∈ B, then {v, 2, 3, 4} and {v, 1, 4, 5} (or {v, 1, 3, 5}) form K3
4 , then N∗(x, y) = ∅ for all x, y ∈

[n] \ {v, 1, 2, 3, 4, 5}. So we may assume that v13, v14 ∈ E(G).

If v23 /∈ E(G) (or v24 /∈ E(G) or both), since v ∈ B, then v34 ∈ E(G). So {v, 1, 3, 4}, {v, 1, 3, 5}, {v, 1,
4, 5} form K3

4 . So N∗(x, y) = {1} and x23, x24, x25 /∈ E(G) for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}. If

v′ ∈ B \{v}, note that v′25 /∈ E(G), only possibly, v′12, v′15 ∈ E(G). And v′12 can be replaced by v′23,

so v′15 can’t be replaced, therefore {v′, 1, 3, 4}, {v′, 1, 3, 5}, {v′, 1, 4, 5} form K3
4 .

If B = {v}, then replacing Bx by Ax for x ∈ E, deleting xy1, xv1, xv2, and adding xy3, xv3, xv4 for

x, y ∈ E, we obtain G0 which is contained in an isomorphic copy of H1 (view 3, 4, v in G0 as 1, 2, 6 in

H1 respectively, view {v15, 125} in G0 as {345, 346} in H1), a contradiction.

If B = {v, v′}, then replace v12 by v23. Delete 125, 1vv′, 2vv′, xy1 and add 345, 3vv′, 4vv′, xy3 for

x, y ∈ E, respectively. Replace x12 by x23. Since x is a good vertex for x ∈ E, then x15 can be

replaced by 1 of the missing edges in {x13, x14, x34, x35, x45}. Let G0 be the resulting 3-graph, note

that N∗(x, y) = {3} for x, y ∈ E∪{2} in G0 (view 3, 4, 1, 5, v, v′ in G0 as 1, 2, 3, 4, 5, 6 in H1 respectively).

Then G0 is contained in an isomorphic copy of H1, a contradiction.

If |B| ≥ 3, then replace v12 by v23 for v ∈ B. Delete 125 and add 345 for x ∈ E. Replace Bx by

Ax for x ∈ E. Since G is K3
4 ∪ e-free, then N∗(v, v′) = {1} for any v, v′ ∈ B. Replace vv′1 by vv′3 for

v, v′ ∈ B. Let G0 be the resulting 3-graph. Note that N∗(x, y) = {3} for x, y ∈ B in G0. View {3, 4} in

G0 as {1, 2} in H2, view v15 in G0 (v ∈ B) as i34 (i ∈ D) in H2. Then G0 is contained in an isomorphic

copy of H2, a contradiction.

So we may assume that v23, v24 ∈ E(G), then v34 /∈ E(G). Therefore {v, 1, 2, 3}, {v, 1, 2, 4}, {v, 1, 3,
5}, {v, 1, 4, 5} formK3

4 . SoN∗(x, y) = {1} and x23, x24, x35, x45 /∈ E(G) for all x, y ∈ [n]\{v, 1, 2, 3, 4, 5},
so B = {v}. Deleting v12, 1xv, 2xv, xy1, adding v34, 3xv, 4xv, xy3 for x, y ∈ E, replacing Bx by Ax for

x ∈ E, we obtain G0. View {3, 4} in G0 as {1, 2} in H1, view {v15, 125} in G0 as {345, 346} in H1.

Then G0 is contained in an isomorphic copy of H1, a contradiction.

Case 3.2.2. v15, v25 ∈ E(G).

If v34 /∈ E(G), since v ∈ B, then {v, 1, 4, 5}, {v, 2, 4, 5} form K3
4 . Since G is K3

4 ∪ e-free, then

N∗(x, y) = ∅ for x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, contradicting to G being dense. Therefore v34 ∈ E(G).

If v35 /∈ E(G) (or v45 /∈ E(G)), then {v, 1, 3, 4}, {v, 2, 3, 4} form K3
4 . Since G is K3

4 ∪ e-free, then

N∗(x, y) = ∅ for x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, contradicting to G being dense. Therefore v35, v45 ∈ E(G).

If v13 /∈ E(G) (or v14 /∈ E(G) or neither v13 nor v14 is in E(G) or v23 /∈ E(G) or v24 /∈ E(G) or

neither v23 nor v24 is in E(G)), then {v, 2, 3, 4}, {v, 2, 3, 5}, {v, 2, 4, 5} form K3
4 . So N∗(x, y) = {2} and

x13, x14, x15 /∈ E(G) for all x, y ∈ [n]\{v, 1, 2, 3, 4, 5}. By Case 3.2.1, x /∈ B for x ∈ [n]\{v, 1, 2, 3, 4, 5},
so B = {v}. Replacing Bx by Ax for x ∈ E, deleting xy2, v15, 1xv, 2xv, and adding xy3, v13, 3xv, 4xv,

respectively, we obtainG0. Note that N∗(x, y) = {3} for x, y ∈ E in G0. View {3, 4} in G0 as {1, 2} in

H1, view {v25, 125} in G0 as {345, 346} in H1. Then G0 is contained in an isomorphic copy of H1, a
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contradiction.

Case 3.3. There exists v ∈ B and v12, v15, v25 ∈ E(G).

Since v ∈ B, then there are at most 2 of {v13, v14, v23, v24, v34, v35, v45} not in E(G). We claim that

there are exactly 2 of those edges not in E(G). Otherwise if there is at most 1 of {v13, v14, v23, v24, v34,

v35, v45} not in E(G), without loss of generality, say at most v13 /∈ E(G), then {v, 1, 4, 5}, {v, 2, 4, 5}
form K3

4 . So N∗(x, y) = ∅ for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, a contradiction. So we may assume that

there are exactly 2 of v13, v14, v23, v24, v34, v35, v45 not in E(G).

Assume that v34 /∈ E(G). If v13 /∈ E(G) (the case that 1 of {v14, v23, v24} is not in E(G) is

similar), then {v, 1, 4, 5}, {v, 2, 3, 5} form K3
4 . Since G is K3

4 ∪ e-free, then N∗(x, y) = ∅ for x, y ∈ [n] \
{v, 1, 2, 3, 4, 5}, contradicting toG being dense. If v35 /∈ E(G) (or v45 /∈ E(G)), then {v, 1, 4, 5}, {v, 2, 4, 5}
form K3

4 . Since G is K3
4 ∪ e-free, then N∗(x, y) = ∅ for x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}, contradicting to G

being dense. So we may assume that v34 ∈ E(G).

Assume that 1 of {v13, v14, v23, v24} is not in E(G). Without loss of generality, let v13 /∈ E(G).

If v14 /∈ E(G), then {v, 1, 2, 5}, {v, 2, 3, 4}, {v, 2, 3, 5}, {v, 2, 4, 5} form K3
4 . So N∗(x, y) = {2} and

x13, x14, x34, x35 /∈ E(G) for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}. Therefore B = {v}. Replacing v12, v15 by

v13, v14, replacing Bx by Ax for x ∈ E, deleting 1xv, 2xv, xy2 and adding 3xv, 4xv, xy3 for x, y ∈ E,

respectively. Let G0 be the resulting 3-graph. Note that N∗(x, y) = {3} for x, y ∈ E in G0. View {3, 4}
in G0 as {1, 2} in H1, view {v25, 125} in G0 as {345, 346} in H1. Then G0 is contained in an isomorphic

copy of H1, a contradiction. If v23 /∈ E(G) (or v35 /∈ E(G)), then {v, 1, 4, 5}, {v, 2, 4, 5} form K3
4 . So

N∗(x, y) = ∅ for all x, y ∈ [n]\{v, 1, 2, 3, 4, 5}, a contradiction. If v24 /∈ E(G), then {v, 1, 4, 5}, {v, 2, 3, 5}
form K3

4 . Since G is K3
4∪e-free, then N∗(x, y) = ∅ for x, y ∈ [n]\{v, 1, 2, 3, 4, 5}, contradicting to G being

dense. If v45 /∈ E(G), then {v, 1, 2, 4}, {v, 1, 2, 5}, {v, 2, 3, 4}, {v, 2, 3, 5} form K3
4 . So N∗(x, y) = {2} and

x14, x15, x34, x35 /∈ E(G) for all x, y ∈ [n] \ {v, 1, 2, 3, 4, 5}. Therefore B = {v}. Replacing v12, v25 by

v13, v45, replacing Bx by Ax for x ∈ E, deleting 1xv, 2xv, xy2 and adding 3xv, 4xv, xy3 for x, y ∈ E,

respectively. Let G0 be the resulting 3-graph. Note that N∗(x, y) = {3} for x, y ∈ E in G0. View {3, 4} in

G0 as {1, 2} in H1, view {v15, 125} in G0 as {345, 346} in H1. Then G0 is contained in an isomorphic copy

of H1, a contradiction. So it’s sufficient to consider v35, v45 /∈ E(G). However {v, 1, 3, 4}, {v, 2, 3, 4}
form K3

4 in this situation. Since G is K3
4 ∪ e-free, then N∗(x, y) = ∅ for x, y ∈ [n] \ {v, 1, 2, 3, 4, 5},

contradicting to G being dense. 2

5.2 G does not contain two copies of K3
4 sharing two vertices

Before giving the proof of Lemma 2.1, we will prove the following Lemmas.

Lemma 5.8 G is X4-free.

Proof of Lemma 5.8. Assume that G contains an X4 with the vertex set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and

{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 7, 8}, {1, 2, 9, 10} form K3
4 . Since G is K3

4 ∪ e-free, then there is no edge in

V (G) \ {1, 2}. Therefore G is a subgraph of B(2, n− 2). By Lemma 4.10, λ(G) ≤
√
3

18 . 2

Lemma 5.9 G is X3-free.

Proof of Lemma 5.9. Assume that G contains an X3 with vertex set {1, 2, 3, 4, 5, 6, 7, 8} and {1, 2, 3, 4},
{1, 2, 5, 6}, {1, 2, 7, 8} form K3

4 . Denote C = {3, 4, 5, 6, 7, 8}, D = {x ∈ [n] \ {1, 2, 3, 4, 5, 6, 7, 8} : x12 ∈
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E(G)} and E = [n] \ ({1, 2} ∪ C ∪ D). Note that x12 /∈ E(G) for x ∈ E. Since G is K3
4 ∪ e-free and

X4-free, then N∗(x, y) = {1} or {2} for x, y ∈ D, and there is no edge between C and D ∪ E. And if

there is an edge e1 in C, then |e1 ∩{3, 4}|=|e1 ∩{5, 6}|=|e1 ∩{7, 8}| = 1, i.e. G[C] is a 3-partite 3-graph

and λ(G[C]) ≤ 1
27 . Set

x1 = a, x2 = b,
∑
v∈C

xv = c,
∑
v∈D

xv = d and
∑
v∈E

xv = e.

Without loss of generality, assume that a ≥ b, then replacing xy2 by xy1 for all x, y ∈ D does not

decrease the Lagrangian. So

λ(G) ≤ ab(c+ d) + a(

(
c

6

)2(
6

2

)
+ cd+ ce+ de+

d2

2
+
e2

2
) + b(

(
c

6

)2(
6

2

)
+ cd+ ce+ de+

e2

2
) +

c3

27

≤ ab(c+ d) + a

(
5c2

12
+ c(d+ e) +

(d+ e)2

2

)
+ b

(
5c2

12
+ c(d+ e) +

(d+ e)2

2

)
+
c3

27
.

Let δ = d+ e. Then

λ(G) ≤ λ(a, b, c, δ) = ab(c+ δ) + a(
5c2

12
+ cδ +

δ2

2
) + b(

5c2

12
+ cδ +

δ2

2
) +

c3

27
, λ

subject to {
a+ b+ c+ δ = 1,

a ≥ 0, b ≥ 0, c ≥ 0 and δ ≥ 0.
(2)

For simplicity of the notation, we assume that λ reaches the maximum at (a, b, c, δ).

If c = 0, then λ ≤ (a+b)2[1−(a+b)]
4 + (a+b)[1−(a+b)]2

2 . By Fact 4.9, λ ≤
√
3

18 .

If δ = 0, then

λ = abc+
5(a+ b)c2

12
+
c3

27

≤ (a+ b)2c

4
+

5(a+ b)c2

12
+
c3

27

=
(1− c)2c

4
+

5(1− c)c2

12
+
c3

27
= f(c).

f ′(c) =
(1− c)2 − 2c(1− c)

4
+

10c(1− c)− 5c2

12
+
c2

9

=
−14c2 − 6c+ 9

36
.

So f(c) is increasing in [0, 3(
√
15−1)
14 ], then fmax = f( 3(

√
15−1)
14 ) < 0.0921.

If c, δ > 0, then by Theorem 4.1, we have ∂λ
∂c = ∂λ

∂δ , solving it, we obtain that ac+bc
6 = c2

9 . Therefore
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c = 3(a+b)
2 . So

λ = ab(1− a− b) +
(a+ b)(c+ δ)2

2
− c2(a+ b)

12
+
c3

27

≤ (a+ b)2[1− (a+ b)]

4
+

(a+ b)[1− (a+ b)]2

2
+
c3

27
− c3

18

<
(a+ b)2[1− (a+ b)]

4
+

(a+ b)[1− (a+ b)]2

2

≤
√

3

18
,

the last inequality follows from Fact 4.9. 2

Proof of Lemma 2.1. Assume that G contains an X2 with vertex set {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4},
{1, 2, 5, 6} form K3

4 . We prove the following claim first.

Claim 5.10 λ(G[{1, 2, 3, 4, 5, 6}]) ≤ 2
25 .

Proof of Claim 5.10. Denote A = {1, 2, 3, 4, 5, 6}. By Lemma 5.7, G is K3−
5 -free, then e(G[A′]) ≤ 8 for

all A′ ⊆ A and |A′| = 5. By double counting, we have(
6− 3

2

)
e(G[A]) ≤

(
6

5

)
× 8.

Therefore e(G[A]) ≤ 16 =
(
6−1
3

)
+
(
6−2
2

)
<
(
6
3

)
− 3 = 17. By Lemma 4.7 and Lemma 4.8, λ(G[A]) ≤

λ(K3
5 ) = 2

25 . 2

Denote C = {3, 4, 5, 6}, D = {x ∈ V (G)\{1, 2, 3, 4, 5, 6} : x12 ∈ E(G)} and E = V (G)\ ({1, 2}∪C ∪
D). Note that x12 /∈ E(G) for x ∈ E. Since G is K3

4 ∪ e-free, then x34, x56 /∈ E(G) and only possibly,

x35, x36, x45, x46 ∈ E(G) for x ∈ D ∪ E. Let

x1 = a, x2 = b,
∑
v∈C

xv = c,
∑
v∈D

xv = d,
∑
v∈E

xv = e.

Without loss of generality, assume that a ≥ b. Note that the contribution of the edges between C and

D ∪ E to λ(G) is at most (d+ e)(x3 + x4)(x5 + x6) ≤ (d+e)c2

4 . Since G is X3-free, then N∗(x, y) = {1}
or {2} for x, y ∈ D. If xy2 ∈ E(G), we delete xy2 and add xy1, this does not reduce the Lagrangian.

Hence

λ(G) ≤ abd+ a(cd+ ce+ de+
d2

2
+
e2

2
) + b(cd+ ce+ de+

e2

2
) +

2(a+ b+ c)3

25
+

(d+ e)c2

4
(3)

= λ(a, b, c, d, e) = λ

under the constraints a+ b+ c+ d+ e = 1, a, b, c, d, e ≥ 0.

To simplify the notation, we assume that λ reaches the maximum at (a, b, c, d, e), Note that a ≥ b.

Claim 5.11 λ(a, 0, c, d, e) ≤
√
3

18 .

The proof of Claim 5.11 is given in Appendix.
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Let us continue the proof of Lemma 2.1. We have shown that a ≥ b > 0 (Claim 5.11). If d = 0,

substitute it into (3), then

λ(a, b, c, 0, e) = a(ce+
e2

2
) + b(ce+

e2

2
) +

2(a+ b+ c)3

25
+
ec2

4
.

So λ(a+b, 0, c, 0, e) also gets the maximum value, a contradiction to a ≥ b > 0 when λ gets the maximum.

So a, b, d > 0. By Theorem 4.1, ∂λ
∂a = ∂λ

∂b , combining with

∂λ

∂a
= bd+ cd+ ce+ de+

d2

2
+
e2

2
+

6(a+ b+ c)2

25
,

∂λ

∂b
= ad+ cd+ ce+ de+

e2

2
+

6(a+ b+ c)2

25
,

we get

a = b+
d

2
. (4)

Claim 5.12 λ(a, b, c, d, 0) ≤
√
3

18 .

The proof of Claim 5.12 is given in Appendix.

Let us continue the proof of Lemma 2.1. We have shown that a, b, d, e > 0. By Theorem 4.1, we have
∂λ
∂d = ∂λ

∂e . Since

∂λ

∂d
= ab+ ac+ ae+ ad+ bc+ be+

c2

4
,

∂λ

∂e
= ac+ ad+ ae+ bc+ bd+ be+

c2

4
,

then a = d. Recall (4), so

a = d = 2b. (5)

Claim 5.13 λ(a, b, 0, d, e) ≤
√
3

18 .

Proof of Claim 5.13. Assume c = 0. By (5), then e = 1− a− b− c− d = 1− 5b. Substituting it into (3),

then

λ = abd+ a(de+
d2

2
+
e2

2
) + b(de+

e2

2
) +

2(a+ b)3

25

= 4b3 + b

(
6b(1− 5b) + 4b2 +

3(1− 5b)2

2

)
+

2(3b)3

25

=
883b3

50
− 9b2 +

3b

2
= f(b),

f ′(b) =
2649b2

50
− 18b+

3

2
.

So f(b) is increasing in [0, 450−5
√
153

2649 ] or [ 450+5
√
153

2649 , 1]. Note that a + b + d + e = 1, then 5b < 1, so

λ ≤ f( 450−5
√
153

2649 ) ≤ 0.083. 2
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Let us continue the proof of Lemma 2.1. We have shown that a = d = 2b and e = 1 − 5b − c and

a, b, c, d, e > 0. Substituting them into (3), we have

λ = 4b3 + b(6bc+ 3ce+ 6be+ 4b2 +
3e2

2
) +

2(3b+ c)3

25
+

(2b+ e)c2

4

=
31b3

2
− 3bc2

2
− 9b2 +

3b

2
+

2(3b+ c)3

25
+

(1− 3b− c)c2

4

≤ 16b3 − 3bc2

2
− 9b2 +

3b

2
+

(3b+ c)3

12
+

(1− 3b− c)c2

4
= λ0(b, c)

under the constraints 5b + c ≤ 1, b, c ≥ 0. Now we estimate the optimum value of λ0. For simplicity of

the notation, let λ0 reach the maximum value at (b, c).

If b = 0, then λ0 = c3

12 + (1−c)c2
4 ≤ 3c2−2c3

12 = f(c). Since f ′(c) = c(1−c)
2 , then λ is increasing in [0, 1].

Therefore λ0 ≤ f(1) = 1
12 < 0.09.

If c = 0, then λ0 = 16b3 − 9b2 + 3b
2 + (3b)3

12 = 73b3

4 − 9b2 + 3b
2 ≤ 19b3 − 9b2 + 3b

2 = f(b). Since

f ′(b) = 57b2 − 18b+ 3
2 > 0, so f(b) is increasing in [0, 1]. Therefore λ0 ≤ f( 1

5 ) = 0.092.

If 5b+ c = 1, then

λ0 = 16b3 − 3b(1− 5b)2

2
− 9b2 +

3b

2
+

(1− 2b)3

12
+
b(1− 5b)2

2
,

λ′0 = −29b2 + 4b.

Then λ0 ≤ λ0(4/29) ≤ 0.0961 <
√
3

18 .

Therefore we may assume that λ0 gets maximum when b, c > 0 and 5b+ c < 1. By Theorem 4.1,

∂λ0
∂b

= 48b2 − 9c2

4
− 18b+

3

2
+

3(3b+ c)2

4
= 0

∂λ0
∂c

= −3bc+
(3b+ c)2

4
+

2c− 6bc− 3c2

4
= 0.

Equivalently, ∂λ0

∂b − 3× ∂λ0

∂c = 0 and ∂λ0

∂c = 0. Solving these two equations, we have

c =
1− 12b+ 32b2

1− 9b
=

(1− 8b)(1− 4b)

1− 9b
and 9b2 − 12bc+ 2c− 2c2 = 0.

Recall that c > 0 and b < 1
5 . So 0 < b < 1

9 or 1
8 ≤ b ≤ 1

5 . Combining the above equations, we have

b(2137b3−882b2+125b−6) = 0. Let f(b) = 2137b3−882b2+125b−6. Since f ′(b) = 6411b2−1764b+125 >

0, then f(b) is increasing in [0, 14 ]. However f(0), f( 1
9 ) < 0 and f( 1

8 ) > 0, so f(b) = 0 has no solution in

0 < b < 1
9 and 1

8 ≤ b ≤
1
5 , a contradiction. This completes the proof of Lemma 2.1. 2

5.3 G contains at least two copies of K3
4

In this section, we give the proof of Lemma 2.2.

Proof of Lemma 2.2. Recall that {1, 2, 3, 4} forms a K3
4 . Assume that G contains no other K3

4 ,

in other words, v does not belong to any K3
4 for any v ∈ [n] \ {1, 2, 3, 4}. We claim that |Gv ∩

{12, 13, 14, 23, 24, 34}| ≤ 4. Since otherwise Gv[{1, 2, 3, 4}] contains a triangle and v is contained in

the K3
4 formed by v and the vertices in this triangle. Since G is K3

4 ∪ e-free, then Gv does not contain
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an edge in [n] \ {1, 2, 3, 4}. By Claim 5.3, ω(Gv) ≥ 3, so the maximum clique of Gv contains at least 2

vertices in {1, 2, 3, 4}, therefore |Gv ∩ {12, 13, 14, 23, 24, 34}| ≥ 1. Let

A = {1, 2, 3, 4},

A1 = {v ∈ [n] \A : |Gv ∩ {12, 13, 14, 23, 24, 34}| = 1},

A2 = {v ∈ [n] \A : |Gv ∩ {12, 13, 14, 23, 24, 34}| = 2},

A3 = {v ∈ [n] \A : |Gv ∩ {12, 13, 14, 23, 24, 34}| = 3},

A4 = {v ∈ [n] \A : |Gv ∩ {12, 13, 14, 23, 24, 34}| = 4}.

Without loss of generality, let’s assume that x1 ≥ x2 ≥ x3 ≥ x4. Then x1x2 ≥ x1x3 ≥ x2x3, x1x4 ≥
x2x4 ≥ x3x4. We aim to give an upper bound of λ(G,~x), therefore we can assume that v12, v13 ∈ E(G)

for v ∈ A2, v12 ∈ E(G) for v ∈ A1. Set

x1 = a, x2 = b, x3 = c, x4 = d,
∑
v∈A1

xv = h,
∑
v∈A2

xv = g,
∑
v∈A3

xv = f,
∑
v∈A4

xv = e.

Since G doesn’t contain two copies of K3
4 , then the deletion of any 1 of {123, 124, 134, 234} of E(G)

makes G K3
4 -free. So abc, abd, acd, bcd > 0.00264 since otherwise λ(G) ≤ 0.00264 + 0.5615

6 (in view of

Lemma 5.1)≤
√
3

18 . So (a + b)cd > 2 × 0.00264. By Claim 5.4, a + b ≤ 3−
√
3

3 , then cd ≥ 6×0.00264
3−
√
3

.

Therefore c+ d ≥ 2
√
cd > 0.22354. If d < 0.11177, then b+ c ≥ 2

√
bc > 0.307.

To complete the proof, we show the following three claims in Appendix.

Claim 5.14 λ(G[A ∪A4], ~x) ≤ 0.0789(a+ b+ c+ d+ e)3.

Claim 5.15 λ(G[A ∪A4 ∪A3], ~x) ≤ 0.092(a+ b+ c+ d+ e+ f)3.

Claim 5.16 λ(G) ≤
√
3

18 .

5.4 G does not contain two copies of K3
4 sharing three vertices

Proof of Lemma 2.3. Assume that G contains an Y2 with the vertex set {1, 2, 3, 4, 5}, where {1, 2, 3, 4}
and {1, 2, 3, 5} form K3

4 . Since G is K3
4 ∪ e-free, then any two K3

4 in G must intersect 2 or 3 vertices.

Since G is X2-free (Lemma 2.1), then any two K3
4 in G must intersect 3 vertices. Therefore G − {3}

cannot contain a K3
4 since it cannot intersect with {1, 2, 3, 4} and {1, 2, 3, 5} at three vertices in the same

time. Let x1 = a, x2 = b, x3 = c, x4 + x5 = d and assume that a ≥ b ≥ c. By Claim 5.5, c > 0.08. Let

D = {4, 5}, and

E0 = {v : v ∈ [n] \ {1, 2, 3, 4, 5} and |Gv ∩ {12, 13, 23}| = 0},

E1 = {v : v ∈ [n] \ {1, 2, 3, 4, 5} and |Gv ∩ {12, 13, 23}| = 1},

E2 = {v : v ∈ [n] \ {1, 2, 3, 4, 5} and |Gv ∩ {12, 13, 23}| ≥ 2}.

Set
∑
v∈E0

xv = g,
∑
v∈E1

xv = f and
∑
v∈E2

xv = e. Since G is K3
4 ∪ e-free, then for x, y ∈ [n] \

{1, 2, 3, 4, 5}, N∗(x, y) ⊆ {1, 2, 3}. If x ∈ D and y ∈ E2, then N∗(x, y) ⊆ {1, 2, 3, 4, 5}. We claim

that |N∗(x, y) ∩ {1, 2, 3}| ≤ 2 for x, y ∈ E2 or x ∈ D and y ∈ E2, otherwise there exists two vertices
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z, w ∈ N∗(x, y) ∩ {1, 2, 3} such that zw ∈ Gx ∩Gy. So {x, y, z, w} forms a K3
4 , which forms an X2 with

G[{1, 2, 3, 4}], a contradiction. Therefore we may let N∗(x, y) ∩ {1, 2, 3} ⊆ {1, 2} for those x, y with

Lagrangian non-decreasing. Since G is K3
4 ∪ e-free, then all edges in G[V −{1, 2, 3}] must contain {4, 5}.

Since G is K3
5 -free, then at least one of {145, 245, 345} is not in E(G). (Indeed, G is K3−

5 -free, at least

two of {145, 245, 345} are not in E(G). But it seems to be easier to estimate the Lagrangian below if we

relax it to be one.) We may assume that 345 is not in E(G). Therefore

λ(G) ≤ ab(c+ d+ e+ f) + (ac+ bc)(d+ e) + (a+ b)(de+
e2

2
) + (a+ b+ c)(df + dg + eg + fg + ef

+
f2

2
+
g2

2
) +

d2(a+ b+ e+ f + g)

4

= ab(c+ d+ e+ f) + (ac+ bc)(d+ e) + (a+ b)(de+
e2

2
) + (a+ b+ c)

(
d(g + f) + e(g + f)

+
(f + g)2

2

)
+
d2(a+ b+ e+ f + g)

4

= λ(a, b, c, d, e, f, g) = λ.

Note that λ(a, b, c, d, e, f, g) ≤ λ(a+b2 , a+b2 , c, d, e, f + g, 0), then we may assume that g = 0 and a = b.

Then let α = a+ b, so

λ =
α2(c+ d+ e+ f)

4
+ αc(d+ e) + α(de+

e2

2
) + (α+ c)(df + ef +

f2

2
) +

d2(α+ e+ f)

4

subject to {
α+ c+ d+ e+ f = 1,

c ≥ 0.08, α, d, e, f ≥ 0.
(6)

Note that

λ =
α2(c+ d+ e+ f)

4
+ αc(d+ e) + α(

d2

2
+ de+

e2

2
) + (α+ c)(df + ef +

f2

2
) +

d2(e+ f − α)

4
.

If e + f − α < d
2 , then λ ≤ λ(a, c, d − ε, e + ε, f) for ε > 0 small enough, a contradiction. So we may

assume that e+ f ≥ α+ d
2 or d = 0.

Claim 5.17 λ(0, c, d, e, f) ≤
√
3

18 .

Proof of Claim 5.17. If α = 0, then c+ d+ e+ f = 1 and

λ = c(df + ef +
f2

2
) +

d2(e+ f)

4

≤ c
(d+ e+ f)2

2
+

( d
2 + d

2 + e+ f

3

)3

=
c(1− c)2

2
+

(1− c)3

27
=

25c3 − 48c2 + 21c+ 2

54
= f(c),

f ′(c) =
25c2 − 32c+ 7

18
=

(25c− 7)(c− 1)

18
.

Therefore λ ≤ f( 7
25 ) = 0.0864. 2
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Let’s continue the proof of Lemma 2.3. We claim that if c > 0.08, then α ≥ c. If α < c, then α ≤ 1
2 ,

and for 0 < ε < a
3 ,

λ(α+ ε, c− ε, d, e, f)− λ(α, c, d, e, f) ≥ (α+ ε)2(c− ε+ d+ e+ f)− (α)2(c+ d+ e+ f)

4

> ε(2α− 3α2 − 3εα)

> ε(2α− 4α2) ≥ 0,

a contradiction.

Claim 5.18 λ(α, c, d, e, 0) ≤
√
3

18 .

The proof of Claim 5.18 is given in Appendix.

Claim 5.19 λ(α, c, d, 0, f) ≤
√
3

18 .

The proof of Claim 5.19 is given in Appendix.

By the above claims, we may assume that α, e, f > 0, so by Theorem 4.1, we have ∂λ
∂e = ∂λ

∂f . In view

of (6),

∂λ

∂e
=

α2

4
+ αc+ αd+ αe+ (α+ c)f +

d2

4
∂λ

∂f
=

α2

4
+ (α+ c)(d+ e+ f) +

d2

4
.

So α = d+ e.

Claim 5.20 λ(α, c, 0, e, f) ≤
√
3

18 .

The proof of Claim 5.20 is given in Appendix.

Let’s continue the proof of Lemma 2.3. The above claims indicate that we may assume d, e > 0, then

by Theorem 4.1, we have ∂λ
∂d = ∂λ

∂e . Since

∂λ

∂d
=

α2

4
+ αc+ αe+ (α+ c)f +

d(α+ e+ f)

2
∂λ

∂e
=

α2

4
+ αc+ αd+ αe+ (α+ c)f +

d2

4
,

then α+ d
2 = e+ f . Since α = d+ e, then f = 3d

2 . Note that α+ c+ d+ e+ f = 1, then f = 1− 2α− c
and d = 2(1−2α−c)

3 > 0 and e = 7α+2c−2
3 . Substituting these into (6), we have

λ =
α2(1− α)

4
+ α2c+ α((

2(1− 2α− c)
3

)(
7α+ 2c− 2

3
) +

( 7α+2c−2
3 )2

2
)

+ (α+ c)(α(1− 2α− c) +
(1− 2α− c)2

2
) +

(1− 2α− c)2

9
(1− c− 2(1− 2α− c)

3
)

=
−5α3

108
+

14α2c

9
− 11α2

36
+

23αc2

18
− 14αc

9
+

5α

18
+

25c3

54
− 8c2

9
+

7c

18
+

1

27
= λ(α, c).
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If c = 0.08, then

λ =
−5α3

108
− 1.63α2

9
+

1.4536α

9
+

1.6928

27
,

λ′ =
−5α2

36
− 3.26α

9
+

1.4536

9
.

Note that λ is increasing in [0, 3
√
4971−163
125 ], then λ ≤ 0.096. So we may assume that c > 0.08. Recall

that α ≥ c when c > 0.08 and e = 7α+2c−2
3 , f = 1 − 2α − c > 0, so α > 2

9 and 2α + c < 1. So we can

maximize λ(α, c) subject to 
2α+ c ≤ 1,

α ≥ 2
9 ,

c ≥ 0.08.

(7)

Consider

λ (α+
c− 0.08

2
, 0.08)− λ(α, c)

=
(2− 25c)(32500α2 + 26250αc− 25500α+ 9375c2 − 16150c+ 4728)

500000
= λ0,

λ′0|α =
(2− 25c)(260α+ 105c− 102)

2000
.

If 260α+ 105c− 102 > 0, then λ′0|α < 0. So λ0 ≥ λ0( 1−c
2 , c). Therefore

λ0 ≥ −7c3

32
+

11c2

32
− c

32
+

103

250000
= λ1,

λ′1 =
−21c2

32
+

11c

16
− 1

32
.

Note that λ1 is increasing in [0.08, 1], so λ1 ≥ λ1(0.08) = 0. So λ gets maximum when c = 0.08, a

contradiction.

If 260α+ 105c− 102 < 0, then λ′0|a > 0. So λ0 ≥ λ0( 2
9 , c). Therefore

λ0 ≥
(2− 25c)(9375c2 − 30950c

3 + 53968
81 )

500000
= λ2

λ′2 =
83c

75
− 45c2

32
− 6041

81000
.

Note that λ2 is increasing in [0.08, 0.7], then λ2 ≥ λ2(0.08) = 0. So λ gets maximum when c = 0.08, a

contradiction. The proof of Lemma 2.3 is completed. 2

6 Remark

Let Λ
(r)
t = {πλ(F) : F is a family of r−uniform graphs and |F| ≤ t}. Proposition 1.3 (Proposition 1.3

can be generalized to a family of r-graphs) implies that Λ
(r)
t ⊆ Π

(r)
t .

Question 1 Is Λ
(r)
t the same as Π

(r)
t ?
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Let us propose the following conjecture implying that there exists an r-graph whose Turán density

is an irrational number.

Conjecture 6.1 If c · r!rr is in Π
(r)
1 for r ≥ 2, then c · p!pp is in Π

(p)
1 for p ≥ r.

7 Appendix

We give theoretical proofs for Claims 5.11, 5.12, 5.14-5.16 and 5.18-5.20 in this section, we have also

used Lingo to run the optimization problems. The outcome by Lingo is consistent with the expected

optimum values. We can provide the programming upon request.

7.1 Proof of Claim 5.11

Substitute b = 0 into (3), then

λ = a(cd+ ce+ de+
d2

2
+
e2

2
) +

2(a+ c)3

25
+

(d+ e)c2

4
,

= a[c(d+ e) +
(d+ e)2

2
] +

2(a+ c)3

25
+

(d+ e)c2

4
, (8)

= a[cδ +
δ2

2
] +

2(a+ c)3

25
+
δc2

4
,

where δ = d+ e, then a+ c+ δ = 1.

If a = 0, then

λ =
2c3

25
+
δc2

4
≤ c3

12
+

(1− c)c2

4
=

3c2 − 2c3

12
= f(c)

f ′(c) =
c− c2

2
=
c(1− c)

2
.

So f(c) is increasing in [0, 1], then λ ≤ f(1) = 1
12 <

√
3

18 .

If δ = 0, then

λ =
2(a+ c)3

25
≤ 2

25
.

If c = 0, then

λ =
aδ2

2
+

2a3

25
≤ a(1− a)2

2
+
a3

12
=

7a3 − 12a2 + 6a

12
= f(a)

f ′(a) =
7a2 − 8a+ 2

4
.

So f(a) is increasing in [0, 4−
√
2

7 ] or [ 4+
√
2

7 , 1], then λ ≤ max{f(1), f( 4−
√
2

7 )}. Note that f( 4−
√
2

7 ) ≤ 0.078,

then λ ≤ f(1) = 1
12 ≤

√
3

18 .

Therefore we may assume that a, c, δ > 0. Substituting c = 1− a− δ into (8), then

λ = a[(1− a− δ)δ +
δ2

2
] +

2(1− δ)3

25
+
δ(1− a− δ)2

4
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gets its maximum inside interior points. By Theorem 4.1,

∂λ

∂a
=

δ

2
− 3aδ

2
= 0,

∂λ

∂δ
=

(1− a− δ)(1 + 3a− 3δ)

4
− 6(1− δ)2

25
= 0.

Then a = 1
3 and δ = 26−10

√
2

51 , and λ < 0.09. 2

7.2 Proof of Claim 5.12

Substitute e = 0 into (3), then

λ = abd+ a(cd+
d2

2
) + bcd+

2(a+ b+ c)3

25
+
dc2

4
. (9)

If c = 0, applying (4), then b = 3a− 1 and d = 2− 4a. By Theorem 4.1, ∂λ
∂b = ∂λ

∂d . Combining with

∂λ

∂b
= ad+

6(a+ b)2

25
,

∂λ

∂d
= ab+ ad,

we get ab = 6(a+b)2

25 . Substituting b = 3a− 1, we have 21a2 − 23a+ 6 = 0, then a = 2
3 or 3

7 . Note that if

a = 2
3 , then d < 0, a contradiction. So a = 3

7 , b = 2
7 and d = 2

7 . Therefore λ = 4
49 ≤ 0.082.

If c 6= 0, substitute c = 1− a− b− d into (9),

λ = abd+ a[(1− a− b− d)d+
d2

2
] + b(1− a− b− d)d+

2(1− d)3

25
+
d(1− a− b− d)2

4

= ad− a2d− abd− ad2

2
+ bd− b2d− bd2 +

2(1− d)3

25
+
d(1− a− b− d)2

4
.

subject to a+ b+ d ≤ 1, and a.b, d ≥ 0. Since a+ b+ d < 1 and we have showned that a, b, d > 0, then

by Theorem 4.1,

∂λ

∂a
= d− 2ad− bd− d2

2
− d(1− a− b− d)

2
= 0,

∂λ

∂b
= −ad+ d− 2bd− d2 − d(1− a− b− d)

2
= 0,

∂λ

∂d
= a− a2 − ab− ad+ b− b2 − 2bd− 6(1− d)2

25
+

(1− a− b− d)2

4
− d(1− a− b− d)

2
= 0.

Then we have b = 1 − 3a (by solving ∂λ
∂a = 0) and d = 8a − 2 (by solving ∂λ

∂b = 0), substitute this into
∂λ
∂d = 0, we have 1266a2 − 787a+ 121 = 0. Therefore a = 787−5

√
265

2532 and λ ≤ 0.0939. 2
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7.3 Proof of Claim 5.14

Since G contains no other K3
4 , then for any v ∈ A4, there is no K3 in Gv[A], so Gv[A] forms a C4. Hence

λ(Gv[A], ~x) ≤ max{(a+ b)(c+ d), (a+ c)(b+ d), (a+ d)(b+ c)} ≤ (a+ b+ c+ d)2

4
.

Since G is K3
4 ∪ {e}-free, then N∗(x, y) ⊆ A for x, y ∈ [n] \ A. Since G contains only one K3

4 , we claim

that |N∗(x, y)| ≤ 2 for all x, y ∈ A4. Recall that Gx and Gy are C4’s, then Gx[A] ∩Gy[A] must be two

vertex disjoint edges or Gx[A] = Gy[A]. If |N∗(x, y)| ≥ 3, then there are z, w ∈ N∗(x, y) ⊆ A such that

zw ∈ Gx ∩Gy. Then {x, y, z, w} forms a K3
4 , a contradiction. Recall that a ≥ b ≥ c ≥ d, then we may

assume that N∗(x, y) = {1, 2} for x, y ∈ A4 with the Lagrangian non-decreasing. Therefore

λ(G[A ∪A4], ~x) ≤ abc+ abd+ acd+ bcd+
(a+ b)e2

2
+ e

(a+ b+ c+ d)2

4
,

subject to a + b + c + d + e = 1 and c + d > 0.22354 and a + b > c + d. Let α = a+b
a+b+c+d+e ,

γ = c+d
a+b+c+d+e ≥ 0.22354 and η = e

a+b+c+d+e . So

λ(G[A ∪A4], ~x)

(a+ b+ c+ d+ e)3
≤ α2γ

4
+
αγ2

4
+
αη2

2
+ η

(α+ γ)2

4
= λ(α, γ, η) , λ

subject to 
α+ γ + η = 1,

γ ≥ 0.22354,

α ≥ γ.
(10)

If η = 0, then λ ≤ λ( 1
2 ,

1
2 , 0) = 1

16 .

If α = γ, then η = 1− 2α. So

λ =
α3 + αη2

2
+ ηα2 =

α(α+ η)2

2
=
α(1− α)2

2
≤

( 2α+1−α+1−α
3 )3

4
=

2

27
< 0.075.

If γ = 0.22354, then η = 0.77646− α

λ ≤ α3

4
− 0.6382α2 + 0.38823α+ 0.0097 = λ0

λ′0 =
3α2

4
− 1.2764α+ 0.38823.

So λ0 is increasing in [0, 0.3965684]. Then λ ≤ 0.0789.

Therefore we may assume that λ gets the maximum in its interior points. By Theorem 4.1, then
∂λ
∂γ = ∂λ

∂η . Combining with

∂λ

∂γ
=

α2

4
+
αγ

2
+ η

(α+ γ)

2

∂λ

∂η
= αη +

(α+ γ)2

4
,
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we get γ2 = 2η(γ − α), contradicting to α > γ. This completes the proof of Claim 5.14. 2

7.4 Proof of Claim 5.15.

Note that for x, y ∈ A3, if |N∗(x, y)| = 4 (i.e. N∗(x, y) = A) and there exists zw ∈ Gx[A] ∩Gy[A], then

{x, y, z, w} forms a K3
4 , a contradiction. So for x, y ∈ A3, if |N∗(x, y)| = 4, then Gx[A] ∩Gy[A] = ∅ and

Gx[A] ∪Gy[A] =
(
A
2

)
. Such pairs {x, y} are partitioned into at most

(
6
3

)
/2 groups {B0i, B1i} such that

Gx[A] are the same for all x ∈ B0i, Gy[A] are the same for all y ∈ B1i, and Gx[A]∪Gy[A] is a partition

of
(
A
2

)
for all x ∈ B0i and y ∈ B1i for each i. Assume that there are s such groups. So |N∗(x, y)| ≤ 3 for

x, y ∈ A4 ∪ A3 except x ∈ B0i and y ∈ B1i, then we may assume that N∗(x, y) = {1, 2, 3} for such x, y

with the Lagrangian non-decreasing. Note that |N∗(x, y)| ≤ 2 for x, y ∈ B0i or x, y ∈ B1i for 1 ≤ i ≤ s.
Therefore we may assume that N∗(x, y) = {1, 2} for such x, y with the Lagrangian non-decreasing. And

for all x ∈ A3, if x23 /∈ E(G), then we may assume that x12, x13, x14 ∈ E(G). If x23 ∈ E(G), since

{x, 1, 2, 3} doesn’t span K3
4 , then one of x12, x13 does not belong to E(G), we can replace x23 by that

edge and replace other 2 edges xij, ij ∈ A(2) from {x12, x13, x14} with the Lagrangian non-decreasing.

Let f0i =
∑
v∈B0i

xv and f1i =
∑
v∈B1i

xv and fi = f0i + f1i for 1 ≤ i ≤ s. Let f ′ = f −
∑s
i=1 fi. By

Claim 5.14 and the above analysis, we have

λ(G[A ∪A4 ∪A3], ~x) ≤ 0.0789(a+ b+ c+ d+ e)3 + (ab+ ac+ ad)f + (ef + f ′
s∑
i=1

fi +
∑

1≤i 6=j≤s

fifj

+
f ′2

2
)(a+ b+ c) +

s∑
i=1

f20i + f21i
2

(a+ b) +

s∑
i=1

f0if1i(a+ b+ c+ d)

≤ 0.0789(a+ b+ c+ d+ e)3 + (ab+ ac+ ad)f + ef(a+ b+ c) +
(a+ b)f2

2

+ c(f ′
s∑
i=1

fi +
∑

1≤i6=j≤s

fifj +
f ′2

2
) + (c+ d)

s∑
i=1

f0if1i

≤ 0.0789(a+ b+ c+ d+ e)3 + (ab+ ac+ ad)f + ef(a+ b+ c) +
(a+ b)f2

2

+ c(f ′
s∑
i=1

fi +
∑

1≤i6=j≤s

fifj +
f ′2

2
) + (c+ d)

s∑
i=1

f2i
4

= λ(f ′, f1, . . . , fs).

Note that

λ(f, 0, . . . , 0) − λ(f ′, f1, . . . , fs)

=
cf2

2
− c(f ′

s∑
i=1

fi +
∑

1≤i 6=j≤s

fifj +
f ′2

2
)− (c+ d)

s∑
i=1

f2i
4

= c

∑s
i=1 f

2
i

2
− (c+ d)

s∑
i=1

f2i
4

≥ 0
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since c ≥ d. So we may assume that f ′ = f and fi = 0 for 1 ≤ i ≤ s. So

λ(G[A ∪A4 ∪A3], ~x) ≤ 0.0789(a+ b+ c+ d+ e)3 + (ab+ ac+ ad)f + (ef +
f2

2
)(a+ b+ c)

= 0.0789(a+ (b+ c) + d+ e)3 + (a(b+ c) + ad)f + (ef +
f2

2
)(a+ (b+ c))

= λ. (11)

Let α = a
(a+b+c+d+e+f) , β = b+c

a+b+c+d+e+f , δ = d
a+b+c+d+e+f , η = e

a+b+c+d+e+f and ρ = f
a+b+c+d+e+f ,

and let τ = λ
(a+b+c+d+e+f)3 . Then

τ = 0.0789(α+ β + δ + η)3 + (αβ + αδ)ρ+ (ηρ+
ρ2

2
)(α+ β),

and it’s sufficient to prove that τ ≤ 0.092.

Case 1. d ≥ 0.11177.

In this case, note that δ ≥ d ≥ 0.11177. Recall that b+ c ≥ 2d, then β ≥ b+ c ≥ 0.22354. Note that

τ is non-decreasing if we change (β, δ) to (β + ε, δ − ε) for ε > 0. So, we may assume that δ = 0.11177.

By Claim 5.4, a ≤ 3−
√
3

3 − d ≤ 3 × 0.11177 ≤ b + c + d, so α ≤ β + δ. Therefore τ is non-decreasing if

we change (α, β) to (α+ ε, β − ε) for small ε, we may assume that β = 0.22354. Therefore

τ = 0.0789(α+ 0.33531 + η)3 + 0.33531αρ+ (ηρ+
ρ2

2
)(α+ 0.22354) (12)

subject to α+ 0.33531 + η+ ρ = 1, α, η, ρ ≥ 0. If ρ = 0, then τ = 0.0789. So we may assume that ρ > 0.

If α = 0, then η = 0.66469− ρ. So

τ ≤ −0.0789ρ3 + 0.125ρ2 − 0.08ρ+ 0.0789 = f(ρ),

f ′(ρ) = −0.2367ρ2 + 0.25ρ− 0.08 < 0.

Note that f(ρ) is decreasing in [0, 1], then τ0 ≤ f(0) ≤ 0.0789. So we may assume that α > 0.

If η > 0, then by Theorem 4.1, we have ∂τ
∂α = ∂τ

∂η , so α = 0.11177+η+ ρ
2 . Therefore ρ = 1.55292−4α

and η = 3α− 0.88823. So

τ ≤ 1.05α3 − 3.55α2 + 1.55α− 0.094 = τ0

τ ′0 = 3.15α2 − 7.1α+ 1.55.

Note that τ0 is increasing in [0, 71−4
√
193

63 ], then τ0 ≤ 0.09.

If η = 0, then ρ = 0.66469− α > 0. So

τ = 0.0789(α+ 0.33531)3 + 0.33531α(0.66469− α) +
(0.66469− α)2

2
(α+ 0.22354)

≤ 0.5789α3 − 0.8088α2 + 0.3219α+ 0.0524 = τ0

τ ′0 = 1.7367α2 − 1.6176α+ 0.3219.

Note that τ0 is increasing in [0, 2696−
√
1056819

5789 ] or [ 2696+
√
1056819

5789 , 0.66469], then τ0 ≤ 0.092.
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Case 2. d < 0.11177.

In this case, we know that b + c ≥ 0.307, so β ≥ 0.307. By Claim 5.5, we know that d ≥ 0.0848, so

δ ≥ 0.0848. Note that τ is non-decreasing if we change (β, δ) to (β + ε, δ − ε) for ε > 0, so we may let

δ = 0.0848 in τ . Therefore

τ = 0.0789(α+ β + 0.0848 + η)3 + (αβ + 0.0848α)ρ+ (ηρ+
ρ2

2
)(α+ β)

subject to 
α+ β + 0.0848 + η + ρ = 1,

β ≥ 0.307,

α, ρ ≥ 0

(13)

Note that ρ > 0.

If α = 0, then we claim that β = 0.307, this is because that τ is non-decreasing if we change (α, β)

to (α+ ε, β − ε) for small ε. So η = 0.6082− ρ. Substituting these into (13), we have

τ ≤ −0.0789ρ3 + 0.042ρ2 + 0.002ρ+ 0.0789 = f(ρ),

f ′(ρ) = −0.2367ρ2 + 0.084ρ+ 0.002.

Note that f(ρ) is increasing in [0, 2
√
6215+140
789 ] and decreasing in [2

√
6215+140
789 , 1], then τ ≤ f( 2

√
6215+140
789 ) <

0.085. So we may assume that α > 0.

If β > 0.307, then by Theorem 4.1, ∂τ
∂α = ∂τ

∂β , simplifying it, we have α = β + 0.0848 > 0.3918.

If η > 0, then by Theorem 4.1, we have ∂τ
∂α = ∂τ

∂η , simplyfying it, we get α = 0.0848 + η + ρ
2 . Hence

1.1754 < 3α = α + β + 2 × 0.0848 + η + ρ
2 < 1 + 0.0848 = 1.0848, a contradiction. So η = 0. Then

ρ = 1− α− β − 0.0848 = 1− 2α > 0 and β = α− 0.0848. So 0.39 < α < 0.5. And

τ = 0.0789(2α)3 + α2(1− 2α) +
(1− 2α)2

2
(2α− 0.0848)

≤ 2.65α3 − 3.1695α2 + 1.1695α− 0.0424 = τ0,

τ ′0 = 7.95α2 − 6.339α+ 1.1695.

Note that τ0 is decreasing in [0.39, 0.5], then τ0 ≤ τ0(0.39) ≤ 0.089.

So we may assume that β = 0.307. If η > 0, then by Theorem 4.1, ∂τ
∂α = ∂τ

∂η , simplifying it, we

have α = 0.0848 + η + ρ
2 . Since α + η + ρ = 1 − β − 0.0848 = 0.6082, then η = 3α − 0.7778 and

ρ = 1.386 − 4α > 0. Since ∂τ
∂η = ∂τ

∂ρ , then 0.2367(α + β + 0.0848 + η)2 = αβ + 0.0848α + η(α + β). By

direct calculation, 492α2

625 −
395603α
312500 + 685129883

2500000000 = 0, and α = 395603−20
√
180576895

492000 . But 3α < 0.774, then

η = 3α− 0.7778 < 0, a contradiction. So η = 0, then ρ = 1− α− β − 0.0848 = 0.6082− α > 0. So

τ = 0.0789(α+ 0.3918)3 + 0.3918α(0.6082− α) +
(0.6082− α)2

2
(α+ 0.307)

≤ 0.5789α3 − 0.75375α2 + 0.27286α+ 0.06153 = τ0,

τ ′0 = 1.7367α2 − 1.5075α+ 0.27286.

Note that τ0 is increasing in [0, 5025
11578 −

√
942631005
173670 ], then τ0 ≤ 0.092. This complete the proof of Claim
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5.15. 2

7.5 Proof of Claim 5.16

By Claim 5.15, we have

λ(G) ≤ 0.092(a+ b+ c+ d+ e+ f)3 + (ab+ ac)g + abh+ (eg + eh+ fg + fh+
g2

2
+ gh

+
h2

2
)(a+ b+ c+ d)

≤ 0.092(a+ β + d+ ζ)3 + aβη + (ζη +
η2

2
)(a+ β + d)

= λ,

where η = g + h, β = b+ c and ζ = e+ f .

Case 1. d ≥ 0.11177.

Since replacing (a, d) by (a+ε, d−ε) for ε > 0 will not decrease λ, so we may assume that d = 0.11177.

Let α = a+ β. Then

λ ≤ 0.092(α+ δ + ζ)3 +
α2η

4
+ (ζη +

η2

2
)(α+ δ),

subject to {
α+ δ + ζ + η = 1,

δ = 0.11177, α, ζ, η ≥ 0.
(14)

If η = 0, then λ = 0.092, we are done. So assume that η > 0.

If α = 0, then ζ = 0.88823− η.

λ ≤ −0.092η3 + 0.221η2 − 0.1767η + 0.092 = λ0

λ′0 = −0.276η2 + 0.442η − 0.1767.

Note that λ0 is decreasing in [0, 0.7700236] or [0.8314257, 1]. Therefore λ0 ≤ 0.095. So assume that

α > 0.

If ζ = 0, then η = 0.88823− α > 0. So

λ ≤ 0.342α3 − 0.58α2 + 0.3α+ 0.045 = λ0

λ′0 = 1.026α2 − 1.16α+ 0.3.

Note that λ0 is increasing in [0, 290−5
√
286

513 ] or [290+5
√
286

513 , 0.88823]. Therefore λ0 ≤ 0.095.

If ζ > 0, then by Theorem 4.1, we have ∂λ
∂α = ∂λ

∂ζ , i.e. 2ζ + η = α+ 2δ. Since α+ δ+ ζ + η = 1, then

ζ = 2α− 0.66469 and η = 1.55292− 3α > 0. So 0.33234 < α < 0.51764. And

λ ≤ 0.234α3 − 0.7115α2 + 0.4765α+ 0.00385 = λ0

λ′0 = 0.702α2 − 1.423α+ 0.4765.
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Note that λ0 is increasing in [0, 1423−11
√
5677

1404 ]. Therefore λ0 ≤ 0.096.

Case 2. d < 0.11177.

In this case, we have β ≥ 0.307. By Claim 5.5, then d ≥ 0.0848. Since replacing (a, d) by (a+ε, d−ε)
for ε > 0 will not decrease λ, so we may assume d = 0.0848. So

λ = 0.092(a+ β + δ + ζ)3 + aβη + (ζη +
η2

2
)(a+ β + δ),

subject to 
a+ β + δ + ζ + η = 1,

β ≥ 0.307,

δ = 0.0848.

(15)

If a = 0, we claim that β = 0.307 since λ is non-decreasing if we change (a, β) to (a + ε, β − ε) for

small ε. So ζ = 0.6082− η. Then

λ ≤ −0.092η3 + 0.0801η2 − 0.037η + 0.092 = f(η),

f ′(η) = −0.276η2 + 0.1602η − 0.037 < 0.

Therefore λ0 ≤ f(0) = 0.092. So we may assume that a > 0.

If β > 0.307, then by Theorem 4.1, ∂λ
∂a = ∂λ

∂β , simplifying it, we get a = β > 0.307. If ζ > 0, then we

have ∂λ
∂a = ∂λ

∂ζ , i.e. a+ δ = ζ + η
2 . So 1 < 3a+ 2δ = a+ β + δ + ζ + η

2 < 1, a contradiction. Then ζ = 0.

So η = 1− a− β − δ = 1− 2a− δ = 0.9152− 2a > 0, then a < 0.4576. Recall that δ = 0.0848. So

λ = 0.092(2a+ 0.0848)3 + (0.9152− 2a)a2 +
(0.9152− 2a)2

2
(2a+ 0.0848).

By a direct calculation on the derivative of λ0, we obtain that λ0 is increasing in [0, 0.2138466]. Therefore

λ0 ≤ 0.096.

So we may assume that β = 0.307 and δ = 0.0848. If ζ = 0, then η = 1 − a − β − δ = 0.6082 − a.

By Theorem 4.1, then ∂λ
∂a = ∂λ

∂η . Combining them, we get 0.276(a + 0.3918)2 + (0.6082−a)2
2 = (0.6082 −

a)(a + 0.0848) + 0.307a. Solving the equation for a and substituting the values into λ, we obtain that

λ ≤ 0.095. So we may assume that ζ > 0. By Theorem 4.1, then ∂λ
∂a = ∂λ

∂ζ , i.e. a + δ = ζ + η
2 . So

η = 1.0468− 4a and ζ = 3a− 0.4386. Then 0.1462 < a < 0.2617 and

λ = 0.092(4a− 0.0468)3 + 0.307(1.0468− 4a)a+ ((3a− 0.4386)(1.0468− 4a)

+
(1.0468− 4a)2

2
)(a+ 0.3918).

By a direct calculation on the derivative of λ, we obtain that λ is increasing in [0, 716959
1770000 −

√
211982461
70800 ]

or [ 716959
1770000 +

√
211982461
70800 , 1]. Recall that 0.1462 < a < 0.2617, then λ < 0.0961. 2

35



7.6 Proof of Claim 5.18

If f = 0, then

λ =
α2(c+ d+ e)

4
+ αc(d+ e) + α(de+

e2

2
) +

d2(α+ e)

4

subject to {
α+ c+ d+ e = 1,

c ≥ 0.08.
(16)

If d = 0, then λ = α2(c+e)
4 + αce+ α e

2

2 ≤ limn→∞B(2, n− 2) =
√
3

18 . So we are done.

If e = 0, then λ = α2(c+d)
4 + αcd+ αd2

4 ≤ λ(K3
5 ) <

√
3

18 . So we are done.

So we may assume that d, e > 0. By direct calculation,

∂λ

∂α
=

α(c+ d+ e)

2
+ cd+ ce+ de+

e2

2
+
d2

4
∂λ

∂c
=

α2

4
+ αd+ αe

∂λ

∂d
=

α2

4
+ αc+ αe+

d(α+ e)

2
∂λ

∂e
=

α2

4
+ αc+ αd+ αe+

d2

4
.

By Theorem 4.1, ∂λ
∂d = ∂λ

∂e , combining with the above equations, we get d = 2e − 2α. If c > 0.08, then

by Theorem 4.1, ∂λ
∂c = ∂λ

∂e , combining the equations, we get αc + d2

4 = 0, a contradiction. So c = 0.08,

therefore α + d + e = 0.92, combining with d = 2e − 2α, we get d = 1.84−4α
3 and e = α+0.92

3 . Since
∂λ
∂α = ∂λ

∂e , then 5α2

36 + 307α
450 −

3473
11250 = 0. Then α = 3

√
14331−307

125 . By direct calculation, λ ≤ 0.096 <
√
3

18 ,

a contradiction. 2

7.7 Proof of Claim 5.19

If e = 0, in view of (6), then

λ =
α2(c+ d+ f)

4
+ αcd+ (α+ c)(df +

f2

2
) +

d2(α+ f)

4
,

subject to {
α+ c+ d+ f = 1,

c ≥ 0.08;α, d, f ≥ 0.
(17)

If d = 0, then we have

λ =
α2(c+ f)

4
+ (α+ c)

f2

2
.

We relax the constraint c ≥ 0.08 to c ≥ 0 and α+ c+ f = 1. If c = 0, then λ = α2(1−α)
4 +α (1−α)2

2 ≤
√
3

18

by Fact 4.9. If c > 0, recall that f > 0, then by Theorem 4.1, we have ∂λ
∂c = ∂λ

∂f , then f = 2(α + c),
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combining with α+ c+ f = 1, we have f = 2
3 and c = 1

3 − α. So λ = α2(1−α)
4 + 2

27 , where α < 1
3 . Since

λ′ = α(2−3α)
4 , then λ is increasing in [0, 13 ], i.e. λ ≤ ( 1

3 )
2 2

3

4 + 2
27 = 5

54 ≤
√
3

18 .

So we may assume that d > 0. Recall that e + f > α + d
2 and e = 0, so f > α + d

2 . By direct

calculation,

∂λ

∂α
=

α(c+ d+ f)

2
+ cd+ df +

f2

2
+
d2

4
∂λ

∂c
=

α2

4
+ αd+ df +

f2

2
∂λ

∂d
=

α2

4
+ αc+ (α+ c)f +

d(α+ f)

2
∂λ

∂f
=

α2

4
+ (α+ c)(d+ f) +

d2

4
.

By Theorem 4.1, we have ∂λ
∂d = ∂λ

∂f , i.e.

d2

4
+ (α+ c)d = αc+

d(α+ f)

2
> αc+

d(2α+ d
2 )

2
,

then d > α. If c > 0.08, then ∂λ
∂α = ∂λ

∂c . Therefore α2

4 + αd = α(c+d+f)
2 + cd+ d2

4 . Since f > α+ d
2 , then

α2

4 + αd >
α(c+α+ 3d

2 )

2 + cd + d2

4 > α2

2 + d2+3αd
4 . So αd > α2 + d2, a contradiction. So c = 0.08. Since

∂λ
∂α = ∂λ

∂f and f = 0.92− α− d, then

α2

4
+ αd+ αf + cf − α(1− α)

2
− df − f2

2
= 0.

Substituting c = 0.08 and f = 0.92− α− d into it, we have

α2

4
+ αd+ α(0.92− α− d) + 0.08(0.92− α− d)− α(1− α)

2
− d(0.92− α− d)− (0.92− α− d)2

2
= 0.

Simplifying it, we have d2

2 −
2d
25 + 63α

50 −
3α2

4 −
437
1250 = 0, then d =

√
3α2

2 −
63α
25 + 441

625 + 2
25 . Note that 0.92 =

α+d+f > α+α+ 3α
2 = 7α

2 , then 0 < α < 0.2629. Therefore φ(α) = 3α2

2 −
63α
25 + 441

625 > φ(0.2629) > 0.1467.

So d >
√

0.1467 + 2
25 > 0.46 and f > 0.23 +α, then α+d+ f > α+

√
3α2

2 −
63α
25 + 441

625 + 2
25 + 0.23 +α ,

ψ(α) > ψ(0) = 1.15 > 1, a contradiction. 2

7.8 Proof of Claim 5.20

If d = 0, then we have α+ c+ e+ f = 1 and α = e. In view of (6),

λ =
α2(c+ e+ f)

4
+ αce+ α

e2

2
+ (α+ c)(ef +

f2

2
).
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Then

∂λ

∂α
=

α(c+ e+ f)

2
+ ce+

e2

2
+ ef +

f2

2
∂λ

∂c
=

α2

4
+ αe+ ef +

f2

2
∂λ

∂e
=

α2

4
+ αc+ αe+ (α+ c)f,

If c > 0.08, then by Theorem 4.1, we have ∂λ
∂α = ∂λ

∂c , so α(1−α)
2 +αc+ α2

2 = α2

4 +α2, then 0.08 < c =
5α−2

4 and 0 < f = 6−13α
4 . So 0.464 < α < 6

13 < 0.462, a contradiction.

If c = 0.08, then f = 0.92− 2α. So

λ =
α2(1− α)

4
+ 0.08α2 +

α3

2
+ (α+ 0.08)(α(0.92− 2α) +

(0.92− 2α)2

2
)

=
α3

4
− 59α2

100
+

437α

1250
+

529

15625
.

λ′ =
3α2

4
− 59α

50
+

437

1250
.

Note that λ is increasing in [0, 59−
√
859

75 ], then λ ≤ 0.0955. 2
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:1802.10075v2, March 2018, preprint.

[24] S. Norin and L. Yepremyan, Turán numbers of generalized triangles, J. Combin. Theory Ser.

A 146 (2017), 312-343.

39

http://arxiv.org/abs/1806.10846


[25] S. Norin and L. Yepremyan, Turán numbers of extensions, J. Combin. Theory Ser. A 155

(2018), 476-492.

[26] O. Pikhurko, An exact Turán result for the generalized triangle, Combinatorica 28 (2008),

187-208.

[27] O. Pikhurko, On possible Turán densities, Israel Journal of Mathematics, 20(2014), 415-454.

[28] A. Razborov, On 3-hypergraphs with forbidden 4-vertex configurations, SIAM. J. Discrete

Math. 24(2010), 946-963.
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