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Abstract. We consider finite-volume approximations of Fokker-Planck equa-
tions on bounded convex domains in Rd and study the corresponding gradient
flow structures. We reprove the convergence of the discrete to continuous Fokker-
Planck equation via the method of Evolutionary Γ-convergence, i.e., we pass to the
limit at the level of the gradient flow structures, generalising the one-dimensional
result obtained by Disser and Liero. The proof is of variational nature and relies
on a Mosco convergence result for functionals in the discrete-to-continuum limit
that is of independent interest. Our results apply to arbitrary regular meshes,
even though the associated discrete transport distances may fail to converge to
the Wasserstein distance in this generality.

1. Introduction

This paper deals with the convergence of discrete gradient flow structures arising
from finite volume discretisations of Fokker-Planck equations on bounded convex
domains Ω ⊂ Rd. For a given potential V ∈ C(Ω) we consider the Fokker-Planck
equation

∂tµ = ∆µ+∇ · (µ∇V ) on (0, T )× Ω, µ|t=0 = µ0 (1.1)

with no-flux boundary conditions, for T ∈ (0,+∞). Since the seminal works of
Jordan, Kinderlehrer, and Otto [JKO98, Ott01] it is known that (1.1) can be formu-
lated as a gradient flow in the space of probability measures P(Ω) endowed with the
2-Wasserstein distance W2 from optimal transport. The driving functional is the
relative entropy with respect to the invariant measure m(dx) := 1

ZV
exp(−V (x)) dx,

where ZV is a normalising constant. Here we consider spatial discretisations of (1.1)
obtained by finite volume methods for a general class of admissible meshes. In this
setting it is very well known that solutions to the discrete equations converge to
solutions of (1.1); see, e.g., [EGH00], [BHO18] for results in dimension 2 and 3, and
[DE∗18] for more general situations.

The discretised Fokker-Planck equation can also be formulated as gradient flow,
with respect to a suitable discrete dynamical transport distance WT ; see the inde-
pendent works [CH∗12, Maa11, Mie11]. Here we exploit this gradient flow structure
to reprove the convergence of discrete to continuous Fokker-Planck equations via
the method of evolutionary Γ-convergence; i.e., rather than directly passing to the
limit at the level of the gradient flow equation, we pass to the limit in the energy-
dissipation inequality that characterises the gradient flow structure.

This yields a new proof of convergence for the associated gradient flow equations,
which does not rely on specific properties such as linearity or second order. Instead,
the method is based on properties of functionals and tools such as Γ- and Mosco
convergence.
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The method of evolutionary Γ-convergence was pioneered by Sandier and Ser-
faty [SaS04]; see [Mie16] for a survey on the topic and [MMP20] for important
refinements. It has recently been applied to gradient system with a wiggly energy
[DFM19, MMP20], coarse graining in linear fast-slow reaction systems [MiS19], dif-
fusion in thin structures [FrL18], chemical reaction systems [MaM20], and various
other situations.

For Fokker-Planck equations in dimension d = 1, evolutionary Γ-convergence
of the discrete gradient flow structures was proved by Disser and Liero [DiL15],
for a specific class of finite-volume discretisations (cf. Section 3.3). Their proof
relies on interpolation techniques which do not easily extend to multiple dimensions.
Our proof is different and relies on compactness and representation theorems, in
particular [BF∗02, Theorem 2], adapting ideas from [AlC04]. Our variational proof
suggests the possibility of extending these techniques to more general settings, e.g.,
to higher order and/or nonlinear PDEs.

The fact that the method of evolutionary Γ-convergence of the gradient structures
works on arbitrary admissible meshes is remarkable in view of recent work on the
discrete-to-continuous limit of the associated transport distances. In fact, it was
shown in [GKM20] that the convergence of the discrete transport distances to the
Wasserstein distance W2 (in the limit of vanishing mesh size) requires a restrictive
isotropy condition on the meshes; see [GK∗20] for explicit examples. This discrep-
ancy in convergence behaviour can be explained by a difference in regularity: to
prove Γ-convergence of the discrete gradient flow structures one may exploit spatial
smoothness assumptions on the discrete dynamics (in view of regularity results for
the discrete gradient flows). By contrast, the transport costs on anisotropic meshes
are minimised along highly oscillatory curves.

Organisation of the paper. In Section 2 we discuss gradient flow structures for
continuous and discretised Fokker-Planck equations. Section 3 contains the main
result of this paper, namely, the evolutionary Γ-convergence of discrete to contin-
uous gradient flow structures (Theorem 3.7). This result relies on energy bounds
(Theorem 3.3) which are proved using Mosco convergence results in the discrete-to-
continuum limit that are of independent interest (Theorem 3.9). In Section 3.3 we
discuss related work. Section 4 contains the proofs of Theorem 3.3 and Theorem
3.7. The proof of Theorem 3.9 is contained in Sections 5, 6, and 7.

2. Finite-volume discretisation of Wasserstein gradient flows

In this section we describe the formulation of the Fokker-Planck equations as
gradient flow in the space of probability measures, both at the continuous and at
the discrete level. For the sake of clarity, our discussion will be informal. We refer
to Section 3 below for rigorous statements of the main results.

2.1. Fokker-Planck equations as Wasserstein gradient flows. On a bounded
convex domain Ω ⊂ Rd we consider the Fokker-Planck equation

∂tµt = ∆µt +∇ · (µt∇V ) (2.1)

with no-flux boundary conditions, where V ∈ C(Ω) ∩ C1(Ω) is a driving potential.
This equation describes the time-evolution of the law of a Brownian particle in a
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potential field. The steady state is given by the probability measure

m ∈P(Ω) with density σ(x) =
dm

dx
=

1

ZV
e−V (x), (2.2)

where ZV ∈ R+ is a normalising constant.
Since the seminal work of Jordan, Kinderlehrer and Otto [JKO98] it is known that

(2.1) is a gradient flow with respect to the Wasserstein distance W2 from optimal
transport. In its dynamical formulation, W2 is given by the Benamou–Brenier
formula

W2(µ0, µ1)2 = inf

{ˆ 1

0

ˆ
Ω

|vt(x)|2 dµt(x) dt

}
, (2.3)

where the infimum runs over all curves (µt)t in the space of probability measures
and all vector fields (vt)t satisfying the continuity equation

∂tµt +∇ · (µtvt) = 0

in the sense of distributions, with boundary conditions µt|t=0 = µ0 and µt|t=1 = µ1.
The driving functional in this gradient flow formulation is the relative entropy H :
P(Ω)→ [0,+∞] given by

H(µ) :=

{´
Ω
ρ(x) log ρ(x) dm if dµ = ρ dm,

+∞ otherwise.

The gradient flow structure can be interpreted at various levels: the original formula-
tion in [JKO98] was given in terms of a time-discrete minimising movement scheme.
Another interpretation is in terms of Otto’s formal infinite-dimensional Riemannian
calculus on the Wasserstein space [Ott01]. Yet another approach relies on the metric
formulation of gradient flows in terms of the energy dissipation inequality (EDI)

H(µt) +
1

2

ˆ T

0

|µ̇t|2W2
+ |∂W2H(µt)|2 dt ≤ H(µ0), (2.4)

where |µ̇t| denotes the W2-metric derivative of the curve µt and ∂W2H(µ) the slope
of the relative entropy, namely

|µ̇t|W2 := lim
h→0

1

h
W2(µt+h, µt), |∂W2H(µ)| := lim sup

ν→µ

[H(µ)−H(ν)]−
W2(µ, ν)

,

where [a]− = max{0,−a}. Writing ρ = dµ
dm

, we have the identity

|∂W2H(µ)|2 = I(µ), where I(µ) :=

ˆ
Ω

|∇ log ρ|2ρ dm = 4

ˆ
Ω

|∇√ρ|2 dm (2.5)

is the relative Fisher information with respect to m.

A-A∗ formalism of gradient flows. One can recast (2.4) in terms of a suitable
weighted Dirichlet energy A and its Legendre transform A∗. Let us consider the
energy functional

A(µ, ϕ) :=
1

2

ˆ
Ω

|∇ϕ|2 dµ, ϕ ∈ C∞c (Rd), µ ∈P(Ω), (2.6)

and its Legendre dual of A with respect to the second variable:

A∗(µ, η) = sup
ϕ∈C∞

c (Rd)

{〈ϕ, η〉 −A(µ, ϕ)}
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for any distribution η ∈ D′(Rd). Note that A∗(µ,w) = A(µ, ϕ) whenever w =
−∇ · (µ∇ϕ). The connection to Wasserstein geometry is given by the infinitesimal
Benamou–Brenier formula

1

2
|µ̇t|2W2

= A∗(µt, ∂tµt).

Moreover, the relative Fisher information can be written as

I(µ) = 2A
(
µ,−DH(µ)

)
, (2.7)

where DH(µ) = log ρ is the L2(m)-differential of H. Hence, it follows that (2.4) can
be stated equivalently as

H(µT ) +

ˆ T

0

A∗(µt, µ̇t) + A
(
µt,−DH(µt)

)
dt ≤ H(µ0). (2.8)

This formulation is particularly convenient to relate the discrete framework to the
continuous one, as we discuss in the next subsection.

2.2. The discrete Fokker-Planck equation as gradient flow. We consider a
finite volume discretisation of Ω, closely following the setup in [EGH00]. We thus
consider finite partition T of Ω into sets (called cells) with nonempty and convex
interior. Note that all interior cells are polytopes. We assume that T is admissible,
in the sense that each of the cells K ∈ T contains a point xK ∈ K such that
xK − xL is orthogonal to the boundary surface ΓKL := ∂K ∩ ∂L, whenever K and
L are neighbouring cells, i.e., H d−1(ΓKL) > 0. In this case we write K ∼ L. This
in a standard finite-volume setup.

ё/
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Figure 1. An admissible mesh with cells K,L, . . . on a domain Ω ⊂ Rd.

An admissible mesh is said to be ζ-regular for some ζ ∈ (0, 1], if the following
conditions hold:

(inner ball) B
(
xK , ζ[T ]

)
⊆ K for all K ∈ T ,

(area bound) H d−1(ΓKL) ≥ ζ[T ]d−1 for all K,L ∈ T with K ∼ L,

where [T ] := max
{

diam(K) : K ∈ T
}
denotes the size of the mesh.

Discrete Fokker-Plank equations. We consider discrete Fokker-Planck equa-
tions of the form

d

dt
mt(K) =

∑
L∼K

wKL

(
mt(L)

πT (L)
− mt(K)

πT (K)

)
. (2.9)
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Here, the probability measure πT ∈P(T ) is the canonical discretisation of m, and
the coefficients wKL are defined using the geometry of the mesh:

πT ({K}) := m(K), wKL :=
H d−1(ΓKL)

|xK − xL|
SKL for K ∼ L. (2.10)

where SKL is a suitable average of the stationary density σ on K and L, i.e., SKL :=
θ
(
σ(xK), σ(xL)

)
for a fixed function θ : R+ × R+ → R+ satisfying min{a, b} ≤

θ(a, b) ≤ max{a, b}.
As (2.9) is the forward equation for a reversible Markov chain on T , it follows

from the theory in [Maa11] and [Mie11] that this equation is the gradient flow of
the relative entropy HT : P(T )→ R+ given by

HT (m) :=
∑
K∈T

m(K) log
m(K)

πT (K)
.

The discrete analogue of (2.6) is given by the operator AT : P(T ) × RT → R+

defined by

AT (m, f) =
1

4

∑
K,L∈T

(
f(K)− f(L)

)2
θlog

(
m(K)

πT (K)
,
m(L)

πT (L)

)
wKL, (2.11)

where θlog(a, b) = a−b
log a−log b

denotes the logarithmic mean. Its Legendre transform
A∗T : P(T )× RT → R with respect to the second variable is given by

A∗T (m,σ) = sup
f∈RT

{∑
K∈T

σ(K)f(K)−AT (m, f)

}
.

In analogy to (2.8), we can formulate the gradient flow structure for the discrete
Fokker-Planck equation (2.9) in terms of the discrete EDI

HT (mT ) +

ˆ T

0

A∗T (mt, ṁt) +AT
(
mt,−DHT (mt)

)
dt ≤ HT (m0). (2.12)

The discrete counterpart of (2.7) is the discrete Fisher information IT (m) given by

IT (m) := 2AT
(
m,−DHT (m)

)
, m ∈P(T ).

3. Statement of the results

In this section we present our main result, the evolutionary Γ-convergence of
the gradient flow structures in the discrete-to-continuum limit for Fokker-Planck
equations on a bounded convex domain Ω ⊂ Rd.

Let T be an admissible mesh on Ω. To compare measures on different spaces we
introduce the canonical projection and embedding operators PT and QT defined by

PT :M(Ω)→M(T )
(
PT µ

)
(K) = µ(K) for K ∈ T ,

QT :M(T )→M(Ω) QTm =
∑
K∈T

m(K)UK for m ∈P(T ). (3.1)

Here, UK denotes the uniform probability measure on K ⊂ Ω, andM(X ) denotes
the set of finite measures on the space X . In particular, QT is a right-inverse of PT
and both mappings are mass and positivity preserving. By construction we have
πT := PTm.
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It is also useful to introduce an operator for the piecewise constant embedding of
functions:

QT : RT → L∞(Ω),
(
QT f

)
(x) = f(K) for x ∈ K, K ∈ T .

Let us now consider a sequence of admissible, ζ-regular meshes TN with mesh size
[TN ] → 0 as N → ∞. To avoid towers of subscripts, we simply write AN := ATN ,
PN := PTN , etc.

3.1. Evolutionary Γ-convergence of discrete Fokker-Planck equations. In
this subsection we fix a reference probability m ∈ P(Ω) with density σ(x) = dm

dx
=

1
ZV
e−V (x) as in (2.2). For neighbouring cells K,L ∈ TN we fix SKL > 0 such that

min
{
σ(xK), σ(xL)

}
≤ SKL ≤ max

{
σ(xK), σ(xL)

}
(3.2)

as in Section 2.
We start by collecting some conditions of the densities that will be imposed in

the sequel.

Definition 3.1 (Assumptions on approximating sequences). Let (TN)N be a van-
ishing sequence of ζ-regular meshes for some ζ > 0. For a sequence of measures
mN ∈P(TN) with densities rN = dmN

dπN
, we consider the following conditions:

(i) The density lower bound holds if, for some k > 0,

inf
K∈TN

rN(K) ≥ k > 0 ∀N ∈ N. (lb)

(ii) The density upper bound holds if, for some k̄ <∞,

sup
K∈TN

rN(K) ≤ k̄ < +∞ ∀N ∈ N. (ub)

(iii) The neighbour continuity bound holds if

lim
N→∞

sup
K,L∈TN
K∼L

|rN(K)− rN(L)| = 0. (nc)

(iv) The pointwise condition holds if there exists a measure µ ∈P(Ω) with density
ρ = dµ

dm
such that µN := QNmN ⇀ µ and, for a.e. x0 ∈ Ω:

lim
ε→0

lim inf
N→∞

sup
x∈Qε(x0)

ρN(x) ≤ ρ(x0) ≤ lim
ε→0

lim sup
N→∞

inf
x∈Qε(x0)

ρN(x). (pc)

Here, Qε(x0) denotes the open cube of side-length ε > 0 centered at x0, and
ρN(x) := rN(K) for x ∈ K.

Remark 3.2. These conditions do not depend on the reference measure m, except
for the value of the constants k and k. Clearly, the pointwise condition holds if ρ
belongs to C(Ω) and ρn converges uniformly to ρ. Moreover, this condition implies
subsequential pointwise convergence of ρN to ρ.

We now present the crucial Γ-liminf inequalities for the functionals in the EDI
(2.12).

Theorem 3.3 (Lower bounds for functionals). Let (TN)N be a vanishing sequence of
ζ-regular meshes for some ζ > 0. The following assertions hold for any µ ∈ P(Ω)
and mN ∈P(TN) such that QNmN ⇀ µ as N →∞:
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(i) The relative entropy functionals satisfy the liminf inequality

lim inf
N→∞

HN(mN) ≥ H(µ). (3.3)

(ii) Assume (nc). The Fisher information functionals satisfy the liminf inequality

lim inf
N→∞

IN(mN) ≥ I(µ). (3.4)

(iii) Assume (lb), (ub), and (pc). For any η ∈ L2(Ω) and any eN ∈ RTN such that
QNeN ⇀ η in L2(Ω) we have

lim inf
N→∞

A∗N(mN , eN) ≥ A∗(µ, η). (3.5)

The same bound holds without assuming (lb) if (eN)N satisfies the additional
assumption lim supN→∞A∗N(πN , eN) < +∞.

Remark 3.4. We emphasize that the lower bound (lb) is not required to obtain (3.3)
and (3.4).

Remark 3.5. The bound (3.5) can be obtained without assuming (ub) and (pc) if
the mesh satisfies the so-called asymptotic isotropy condition (3.14); cf. Definition
3.11 and Proposition 3.12 below.

Remark 3.6. If µ ∈ P(Ω) is absolutely continuous with respect to the Lebesgue
measure and mN = PNµ, (3.5) can be proved under the assumptions that η ∈M(Ω)
and eN ∈ RTN satisfies QNeN ⇀ η in D′

(Ω). This is a consequence of an explicit
construction of a recovery sequence for the action AN(mN , ·) (as in the isotropic
case in Proposition 3.12); cf. Remark 6.7.

Using Theorem 3.3 we obtain our main result, the evolutionary Γ-convergence of
the discrete gradient flow structures. The following result shows that one can pass
to the limit in each of the terms of the discrete gradient flow formulation (2.12) and
recover the Wasserstein gradient flow structure as a consequence.

Theorem 3.7 (Evolutionary Γ-convergence). Let T > 0 and consider a vanishing
sequence of ζ-admissible meshes (TN)N . Fix an initial measure µ0 ∈ P(Ω) such
that H(µ0) < +∞, together with measures mN

0 ∈ P(TN) for N ≥ 1, that are
well-prepared in the sense that

QNm
N
0 ⇀ µ0 and lim

N→∞
HN(mN

0 ) = H(µ0).

For each N ≥ 1, let (mN
t )t∈[0,T ] be the solution to the discrete Fokker-Planck equation

(2.9) with initial datum mN
0 , which satisfies the EDI

HN(mN
t ) +

ˆ T

0

A∗N(mN
t , ṁ

N
t ) +AN

(
mN
t ,−DHN(mN

t )
)

dt ≤ HN(mN
0 ).

Then:
(i) The sequence of curves (µN)N defined by µNt := QNm

N
t is compact in the space

C
(
[0, T ]; (P(Ω),W2)

)
. Thus, up to a subsequence, we have

sup
t∈[0,T ]

W2

(
µNt , µt

)
→ 0 as N →∞. (3.6)
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(ii) The following estimates hold:

Entropy: lim inf
N→∞

HN(mN
t ) ≥ H(µt) ∀t ∈ [0, T ], (3.7a)

Fisher I.: lim inf
N→∞

ˆ T

0

AN
(
mN
t ,−DHN(mN

t )
)

dt ≥
ˆ T

0

A
(
µt,−DH(µt)

)
dt, (3.7b)

Speed: lim inf
N→∞

ˆ T

0

A∗N(mN
t , ṁ

N
t ) dt ≥

ˆ T

0

A∗(µt, µ̇t) dt. (3.7c)

(iii) The curve (µt) solves the EDI (2.8), and hence, the Fokker-Planck equation
(1.1).

Remark 3.8. The well-preparedness assumption holds in the special case where the
discrete measures are defined by mN

0 := PNµ0 as in (3.1). Indeed, in that case
we have HN(mN

0 ) = H(QNPNµ0), so that the convergence of the relative entropy
functionals follows from Jensen’s inequality.

The proofs of Theorem 3.3 and Theorem 3.7 appear in Section 4. They rely on
a Mosco convergence result for discrete energy functionals of independent interest,
which we will now describe.

3.2. Mosco convergence of Dirichlet energy functionals. Fix an absolutely
continuous probability measure µ ∈ P(Ω), and assume that its density υ with
respect to the Lebesgue measure on Ω satisfies the two-sided bounds

0 < c ≤ υ(x) ≤ c <∞ for all x ∈ Ω.

We consider the continuous Dirichlet energy Fµ : L2(Ω)→ R+ ∪ {+∞} given by

Fµ(ϕ) := A(µ, ϕ) =


1

2

ˆ
Ω

|∇ϕ|2 dµ if ϕ ∈ H1(Ω),

+∞ otherwise
(3.8)

where A is defined in (2.6).
Similarly, for a ζ-regular mesh T and a probability measure m ∈ P(T ), we

consider the discrete Dirichlet energy FT : RT → R+ defined by

FT (f) =
1

4

∑
K,L∈T

(
f(K)− f(L)

)2
UKL

H d−1(ΓKL)

|xK − xL|
(3.9)

where min
{
m(K)
|K| ,

m(L)
|L|

}
≤ UKL ≤ max

{
m(K)
|K| ,

m(L)
|L|

}
. In the special case where

UKL is defined in terms of the logarithmic mean of rK and rL, namely, UKL =
rK−rL

log rK−log rL
SKL with rK = m(K)

πT (K)
, this functional is related to the functional AT by

FT (f) := AT (m, f). (3.10)
To compare the discrete and the continuous functionals we consider the embedded
funtionals F̃T : L2(Ω)→ R+ ∪ {+∞} defined by

F̃T (ϕ) :=

{
FT
(
PT ϕ

)
if ϕ ∈ PCT ,

+∞ otherwise,
(3.11)

where PCT denotes the space of all functions in L2(Ω) that are constant a.e. on each
cell K ∈ T , and (

PT ϕ
)
(K) := ϕ(xK) for ϕ : Ω→ R. (3.12)
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We then obtain the following convergence result. For the definition of Mosco
convergence we refer to Definition 5.1 below.

Theorem 3.9 (Mosco convergence). Let (TN)N be a vanishing sequence of ζ-regular
meshes, and suppose that µ and (mN)N satisfy (lb), (ub), and (pc). Then we have
Mosco convergence F̃TN

M−→ Fµ with respect to the L2(Ω)-topology.

The proof of this result follows the strategy developed in [AlC04], where similar
Γ-convergence results have been obtained for more general energy functionals on a
particular mesh (the cartesian grid). In that paper, the authors do not explicitly
characterise the limiting functional, except in special situations, such as the periodic
setting. For our application to evolutionary Γ-convergence, a characterisation of the
limiting functional is crucial.

Remark 3.10. Mosco convergence of Dirichlet energy functionals is equivalent to
strong convergence of the associated semigroups [Mos94]; see also [KuS03] for a
generalisation to Dirichlet forms defined on different spaces.

3.3. Related work. We close this section with some comments on related work.

Convergence of the discrete Fokker-Planck equations. It is well known that the dis-
crete heat flow converges to the continuous heat flow for any sequence of admissible
meshes with vanishing diameter. The authors in [EGH00], [BHO18] exploit clas-
sical Sobolev a priori estimates and pass to the limit in the weak formulation of
the equation, in dimension 2 and 3 (see [BHO18, Lemma 8]). A unified frame-
work for discretisation of partial differential equations in higher dimension can be
found in [DE∗18]. Convergence results for finite-volume discretisations of Fokker-
Planck equations based on different Stolarsky means have recently been obtained in
[HKS20].

Entropy gradient flows in discrete settings. Entropy gradient flow structures for dis-
crete dynamics have been intensively studied in discrete settings following the papers
[CH∗12, Maa11, Mie11]. Many subsequent works deal with connections to curva-
ture bounds and functional inequalities [ErM12, Mie13, ErM14, EMT15, FaM16,
EMW19]. Entropy gradient flow structures have also been exploited to analyse
the discrete-to-continuum limit from several perspectives, see, e.g., [CaG17, CG∗19,
CM∗19, BBC20].

Evolutionary Γ-convergence for Fokker-Planck in 1D. Evolutionary Γ-convergence
of the discrete gradient flow structures for Fokker-Planck equations has been proved
in the one-dimensional setting under additional geometric conditions using methods
that do not extend straightforwardly to higher dimensions [DiL15].

In particular, the authors work with meshes that satisfy the center of mass con-
dition

–
ˆ

ΓKL

x dH d−1 =
xK + xL

2
, for all K ∼ L ∈ T . (3.13)

This condition implies the Gromov-Hausdorff convergence of the associated trans-
port metrics [GKM20]. Here, we work with more general meshes for which Gromov-
Hausdorff convergence of the associated transport metrics does not always hold.

Moreover, in one dimension, it is possible to construct explicit solutions to the
continuity equation from discrete vector fields using linear interpolation techniques.
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As such methods are not available in higher dimensions, we take a more variational
approach in this paper.

Scaling limits for discrete optimal transport in any dimension. The crucial liminf
inequality (3.5) can be proved under weaker assumptions on the approximating
sequence of measures if the meshes satisfy a suitable isotropy condition, which we
will now recall.

Definition 3.11 (Asymptotic isotropy). A vanishing sequence of meshes (TN)N is
said to satisfy the asymptotic isotropy condition if, for every N ∈ N,

1

2

∑
L∈TN

wKL (xK − xL)⊗ (xK − xL) ≤ πN(K)
(
Id + ηTN (K)

)
∀K ∈ TN , (3.14)

where sup
K∈TN

‖ηT (K)‖ → 0 as N →∞.

Under this condition, the following following version of (3.5) has been proved in
[GKM20, Proposition 6.6]. In that paper the reference measure is the Lebesgue
measure. Here we formulate a slight generalisation with the reference measure m.

Proposition 3.12 (Action bounds). Let (TN)N be a vanishing sequence of meshes
satisfying the asymptotic isotropy condition (3.14). Let µ ∈P(Ω) and η ∈M0(Ω),
and suppose that mN ∈P(TN) and eN ∈M0(TN) satisfy QNmN ⇀ µ and QNeN ⇀
η as N →∞. Then we have the lower bound

lim inf
N→∞

A∗N(mN , eN) ≥ A∗(µ, η). (3.15)

It has also been shown in [GKM20] that Gromov–Hausdorff convergence of the
associated transport distances holds under the asymptotic isotropy condition; see
also [GK∗20] for a study of the limiting metric in the one-dimensional periodic
setting. In the current paper we do not assume that the discrete meshes satisfy an
isotropy condition.

Notation. Throughout the paper we use the notation a . b (or b & a) if a ≤ Cb
with C <∞ depending only on Ω, ζ, and m. We write a h b if a . b and a & b.

4. Proof of the main result: the Wasserstein evolutionary
Γ-convergence

In this section we prove our main result, the evolutionary Γ-convergence of the
discrete gradient flow structures (Theorem 3.7). The section is divided into three
parts: the first subsection concerns the proof of Theorem 3.3, which relies on Theo-
rem 3.9. The second subsection contains a proof of compactness for the continuously
embedded discrete solutions. In the third and final part we complete the proof of
Theorem 3.7.

4.1. Asymptotic lower bounds for the functionals. Let µ and mN be as in
the statement of Theorem 3.3. Write µN := QNmN and let ρN be the density of µN
with respect to m.

Proof of Theorem 3.3. The proof consists of three parts.
(i) Lower bound for the entropy. Note that HN(mN) = Ent(µN |QNπN) and

H(µ) = Ent(µ|m), where Ent(·|·) denotes the relative entropy. Since µN ⇀ µ and
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QNπN ⇀ m, the result follows immediately from the joint weak lower semicontinuity
of Ent(·|·), see, e.g., [AGS08, Lemma 9.4.3].

(ii) Lower bound for the Fisher information. Assume that (nc) holds. We first
prove the lower bound (3.4) under the additional assumption (lb). This assumption
will be removed at the end of the proof. The key identity for the Fisher information
is

ÃN
(
mN ,−DHN(mN)

)
= 4EN

(√
rN
)
, (4.1)

where EN(f) := AN(πN , f) is the discrete Dirichlet energy with reference measure
πN , and ÃN is defined by replacing the logarithmic mean θlog in the definition of
AN by θ̃(a, b) := θlog(

√
a,
√
b)2. Since min{a, b} ≤ θ̃(a, b), θlog(a, b) ≤ max{a, b}, we

have

|θlog(a, b)− θ̃(a, b)| ≤ |a− b| ≤ |a− b|
min{a, b}

θ̃(a, b).

The assumptions (nc) and (lb) yield

εN := sup
K,L∈TN
K∼L

|rN(K)− rN(L)| → 0 and inf
K∈TN

rN(K) ≥ k, (4.2)

Using these estimates and the identity (log a − log b)2θ̃(a, b) = 4
(√

a −
√
b
)2 we

obtain∣∣1
2
IN(mN)− 4EN(

√
rN)
∣∣ =

∣∣(AN − ÃN)(mN ,−DHN(mN)
)∣∣

=
1

4

∑
K,L∈TN

wKL
(

log rN(K)− log rN(L)
)2

×
(
θlog

(
rN(K), rN(L)

)
− θ̃log

(
rN(K), rN(L)

))
≤ 4εN

k
EN
(√

rN
)
.

(4.3)

Let us now assume that supN IN(mN) < ∞ along a subsequence; if this were
not the case, the result holds trivially. The previous bound implies that also
supN EN

(√
rN
)
< ∞, hence

(√
ρN
)
N

has a subsequence that converges strongly in
L2(Ω,m) by Proposition 6.5 below. Let g ∈ L2(Ω,m) be its limit. Since ‖ρN −
g2‖L1 ≤ ‖√ρN − g‖L2‖√ρN + g‖L2 , we infer that ρN → g2 in L1(Ω,m). As
µN = ρNm ⇀ µ in P(Ω) by assumption, we infer that µ = ρm with ρ := g2.
Now we apply (4.3) and the Mosco convergence from Theorem 3.9 to obtain

lim inf
N→∞

IN(mN) ≥ lim inf
N→∞

8EN
(√

rN
)
≥ 8A

(
m,
√
ρ
)

= I(µ),

which concludes the proof.
Let us now show how to remove the assumption (lb). The argument is based on

the convexity of m 7→ IN(m), which is a consequence of the joint convexity of the
map (a, b) 7→ (a− b)(log a− log b) on (0,∞)× (0,∞).

Pick δ ∈ (0, 1) and set mδ
N := (1− δ)mN + δπN . Note that mδ

N satisfies (lb) with
k = δ. Moreover, QNm

δ
N ⇀ µδ := (1 − δ)µ + δm. Applying the first part of the

result we obtain

I(µδ) ≤ lim inf
N→∞

IN(mδ
N) ≤ (1− δ) lim inf

N→∞
IN(mN)
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for every δ ∈ (0, 1], where the last inequality uses the convexity of IN and the fact
that IN(πN) = 0. Since µδ ⇀ µ, the result follows from the lower semicontinuity of
I with respect to the weak convergence in P(Ω); see [GST09, Lemma 2.2].

(iii) Lower bound for A∗N . Assume first that (lb), (ub), and (pc) hold. Fix η ∈
L2(Ω,m) and let eN ∈ L2(TN , πN) be such that QNeN ⇀ η in L2(Ω,m). Theorem 3.9
(in particular, the existence of a recovery sequence) implies that for every ϕ ∈ Cc(Ω)
there exist fN ∈ L2(TN , πN) such that QNfN → ϕ in L2(Ω,m) and

lim sup
N→∞

AN(mN , fN) ≤ A(µ, ϕ).

Since QNeN ⇀ η in L2(Ω,m), it follows that 〈eN , fN〉L2(TN ,πN ) → 〈η, ϕ〉L2(Ω,m) and

〈η, ϕ〉L2(Ω,m) −A(µ, ϕ) ≤ lim inf
N→∞

〈eN , fN〉L2(TN ,πN ) −AN(mN , fN)

≤ lim inf
N→∞

A∗N(mN , eN).

Taking the supremum over ϕ, we infer that A∗(µ, η) ≤ lim infN→∞A∗N(mN , eN), as
desired.

Assume now that (ub), (pc) hold, and that E := lim supN→∞A∗N(πN , eN) < +∞,
instead of (lb). The key observation is that the map mN 7→ A∗N(mN , eN) is convex:
indeed, the concavity of θlog implies the concavity ofmN 7→ A(mN , fN), and thus the
convexity of its Legendre dual as a supremum of convex maps. To take advantage
of this fact, we fix δ ∈ (0, 1) and define mδ

N := (1 − δ)mN + δπN . Note that
QNm

δ
N ⇀ µδ := (1− δ)µ+ δm and mδ

N satisfies (lb) with k = δ. We may thus apply
the first part of the result and the convexity to obtain

A∗(µδ, η) ≤ lim inf
N→∞

A∗N(mδ
N , eN)

≤ lim inf
N→∞

(1− δ)A∗N(mN , eN) + δA∗N(πN , eN)

≤ (1− δ)
(

lim inf
N→∞

A∗N(mN , eN)
)

+ δE.

Using the weak lower semicontinuity of A∗(·, η), we obtain the desired inequality
(3.5) by passing to the limit δ → 0. �

4.2. Compactness and space-time regularity. In this section we prove the com-
pactness of the family of embedded discrete gradient flow curves (t 7→ µNt )N in the
space C

(
[0, T ]; (P(Ω),W2)

)
.We follow the strategy of [LM∗17, Theorem 3.1], which

is based on a metric Ascoli-Arzelá theorem. The corresponding one-dimensional re-
sult has been obtained in [DiL15] using explicit interpolation formulas that are not
available in the multi-dimensional setting.

Our proof is based on the following coarse energy bound from [GKM20, Lemma
3.4]. Here and below, (Ht)t≥0 denotes the Neumann heat semigroup on Ω. Moreover,
M0(T ) denotes the space of signed measure on T with zero total mass.

Lemma 4.1 (Coarse energy bound). Fix ζ ∈ (0, 1]. There exists a constant C <∞
such that for any ζ-regular mesh T , for any m ∈ P(T ) and any σ ∈ M0(T ), we
have

A∗
(
H[T ]QTm,H[T ]QT σ

)
≤ CA∗T (m,σ). (4.4)

Let us stress that this result holds without any isotropy assumption on the mesh.
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Lemma 4.2 (W2-Equi-continuity). Let {TN}N be a vanishing sequence of ζ-regular
meshes. For each N ∈ N, let (mN

t )t∈[0,T ] be a continuous curve in P(TN), and
suppose that the following uniform energy bound holds:

A := sup
N

ˆ T

0

A∗N
(
mN
t , ṁ

N
t

)
dt < +∞. (4.5)

Then the curves µ̃N : [0, T ] →
(
P(Ω),W2

)
defined by µ̃Nt := H[TN ]QNm

N
t are

equi-1
2
-Hölder continuous, i.e., for 0 ≤ s < t ≤ T we have

W2

(
µ̃Nt , µ̃

N
s

)
.
√
A(t− s). (4.6)

Proof. For 0 ≤ s ≤ t ≤ T we invoke the Benamou-Brenier formula (2.3) and Lemma
4.1 to obtain

W2
2

(
µ̃Nt , µ̃

N
s

)
≤ (t− s)

ˆ t

s

A∗
(
µ̃Nh , ∂hµ̃

N
h

)
dh

. (t− s) sup
N

ˆ T

0

A∗N
(
mN
h , ∂hm

N
h

)
dh ≤ A(t− s),

which concludes the proof. �

A corollary of Lemma 4.2 is the following compactness and regularity result.

Proposition 4.3 (Compactness and regularity). For t ∈ [0, T ] and N ≥ 1, let
µNt := QNm

N
t ∈ P(Ω) be defined as in Theorem 3.7, and let ρNt be the density

of µNt with respect to m. There exists a W2-continuous curve t 7→ µt ∈ P(Ω)
satisfying, up to a subsequence,

sup
t∈[0,T ]

W2

(
µNt , µt

)
→ 0 as N → +∞.

Proof. We apply Lemma 4.2 to the family of discrete gradient flow solutions (t 7→
mN
t )N . In this case, the required estimate (4.5) follows directly from the discrete EDI

(2.12) and the well-preparedness of the initial conditions (mN
0 )N . Thus, Lemma 4.2

implies the W2-equi-continuity of the curves (µ̃N)N defined by µ̃Nt := HεNQNm
N
t ,

where εN := [TN ]. The metric Arzelá-Ascoli Theorem [AGS08, Proposition 3.3.1]
yields the existence of a limiting curve t 7→ µt satisfying suptW2(µ̃Nt , µt) → 0 as
N → ∞. Using the well-known heat flow bound W2(µ̃Nt , µ

N
t ) ≤ C

√
εN (see, e.g.,

[GKM20, Lemma 2.2(iii)] for a proof), we obtain the desired result. �

4.3. Proof of the Wasserstein evolutionary Γ-convergence. We are finally
ready to give the proof of the main result. In order to apply the liminf inequalities
from Theorem 3.3 we use regularity properties of the discrete Fokker-Planck equation
that can be derived from much more general results; see [CKW19] for Harnack
inequalities and [CKW16, Theorem 1.20] for ultracontractivity.

Proposition 4.4 (Regularity of the discrete flows). Let T be a ζ-regular mesh,
let (mt)t ⊂ P(T ) be a solution to the discrete Fokker-Planck equation, and set
rt := dmt

dπ
.

(i) For any t > 0 there exist C = C(Ω,m, ζ, t) < ∞ and λ = λ(Ω,m, ζ) > 0 such
that the following Hölder estimate holds:

|rt(K)− rt(L)| ≤ C|xK − xL|λ sup
K′∈T

|rt/2(K ′)| ∀K,L ∈ T . (4.7)
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(ii) For any t > 0 the ultracontractivity estimate

‖rt‖L∞(πT ) ≤ C
(
1 ∨ t−

d
2

)
‖r0‖L1(πT ) (4.8)

holds with C = C(Ω,m, ζ) <∞.

We stress that the constants depend only on the aforementioned parameters.
We will also use the following auxiliary result from [Ste08, Corollary 4.4].

Proposition 4.5 (Evolutionary Γ-liminf inequality). Let X be a separable Hilbert
space and fix T > 0. Let gN , g∞ : (0, T ) × X → [0,+∞] be such that, for a.e.
t ∈ (0, T ),
(i) gN(t, ·), g∞(t, ·) are convex and lower semicontinuous;
(ii) g∞(t, ϕ) ≤ inf

{
lim inf
N→∞

gN(t, ϕN) : ϕN ⇀ ϕ in X
}
for all ϕ ∈ X .

Then, for any ϕN , ϕ ∈ L2(0, T ;X ) with ϕN ⇀ ϕ in L2(0, T ;X), we haveˆ T

0

g∞
(
t, ϕ(t)

)
dt ≤ lim inf

N→∞

ˆ T

0

gN
(
t, ϕN(t)

)
dt. (4.9)

Proof of Theorem 3.7. (i): The compactness of (µN) in C
(
[0, T ]; (P(Ω),W2)

)
fol-

lows from Proposition 4.3.
(ii): We prove the inequalities in (3.7). The inequalities (3.7a) and (3.7b) follow

straightforwardly from the bounds of Theorem 3.3. More work is required to prove
(3.7c), as we only have time-averaged bounds on A∗N(mN

t , ṁ
N
t ) along the discrete

flows. Here we proceed using Proposition 4.5.
Evolutionary lower bound for the relative entropy (3.7a). In view of the weak

convergence QNm
N
t ⇀ µt, this bound follows from the liminf inequality for the

entropies (3.3) obtained in Theorem 3.3.
Evolutionary lower bound for the Fisher information (3.7b). It follows from the

Hölder regularity result in Proposition 4.4 that the sequence of discrete measures
(mN

t )N satisfies (nc) for any t ∈ (0, T ]. Consequently, lim infN→∞ IN(mN
t ) ≥ I(µt)

by the liminf inequality for the relative Fisher information (3.4) obtained in Theorem
3.3. Therefore, the desired inequality (3.7b) follows from Fatou’s Lemma.

Evolutionary lower bound for the metric derivative (3.7c). To ensure that our
densities are bounded away from 0, we set

mN,α
t := (1− α)mN

t + απN and µαt := (1− α)µt + αm

for α ∈ (0, 1). Fix 0 < δ < (1 ∧ T ) and define gN , g∞ : (δ, T )× L2(Ω,m)→ [0,+∞]
by

gαN(t, ϕ) :=

{
A∗N
(
mN,α
t , (PNϕ)πN

)
if ϕ ∈ PCN

+∞ otherwise
, gα∞(t, ϕ) := A∗(µαt , ϕm).

We will check that the conditions (i) and (ii) of Proposition 4.5 are satisfied.
Step 1. Verification of conditions (i) and (ii).

Clearly, the maps gαN(t, ·) are convex and lower semicontinuous in L2(Ω,m) for
every t ∈ (δ, T ), which shows that condition (i) holds.

To verify condition (ii), we pick η ∈ L2(Ω) and eN ∈ RTN such that QNeN ⇀ η in
L2(Ω). We have to show that lim infN→∞A∗N(mN,α

t , eN) ≥ A∗(µαt , η). To show this,
we will check the conditions (ub), (lb), and (pc) of Theorem 3.3(iii).
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Step 2. Verification of (ub), (lb), and (pc).
By construction, (mN,α

t )N clearly satisfies (lb). Moreover, the hypercontractivity
estimate from Proposition 4.4 implies that (mN,α

t )N satisfies (ub). Therefore, it
remains to show that (mN,α

t )N satisfies (pc). Clearly, it suffices to prove that this
property holds for (mN

t ).
To show this, we fix x0 ∈ Ω and ε > 0. Let ρNt be the density of µNt with respect to

m. Using the Hölder regularity and the hypercontractivity result from Proposition
4.4, we infer that

|ρNt (x)− ρNt (y)| ≤ Ct

(
ε
√
d+ 2[TN ]

)λ
=: EN

t (ε)

for any x, y ∈ Qε(x0), for a suitable t-dependent constant Ct <∞ and λ ∈ (0, 1]. It
follows that(

sup
Qε(x0)

ρNt

)
− EN

t (ε) ≤ –
ˆ

Qε(x0)

ρNt dm ≤
(

inf
Qε(x0)

ρNt

)
+ EN

t (ε). (4.10)

Taking into account that rNt is a probability density, it follows from the Hölder
bound (4.7) that the famility (ρNt )N≥1 is uniformly bounded in L∞(Ω,m). Hence,
the Banach-Alaoglu Theorem yields the existence of a subsequential weak∗-limit
ρt ∈ L∞(Ω,m). Since W2(µNt , µt)→ 0, we infer that µt = ρtm and

´
Qε(x0)

ρNt dm→
µt(Qε(x0)). Therefore, (4.10) yields(

lim sup
N→∞

sup
Qε(x0)

ρNt

)
− Ct

(
ε
√
d
)λ ≤ µt(Qε(x0))

m(Qε(x0))
≤
(

lim inf
N→∞

inf
Qε(x0)

ρNt

)
+ Ct

(
ε
√
d
)λ
.

Passing to the limit ε→ 0 we obtain

lim
ε→0

lim inf
N→∞

sup
x∈Qε(x0)

ρNt (x) ≤ ρt(x0) ≤ lim
ε→0

lim sup
N→∞

inf
x∈Qε(x0)

ρNt (x),

which is the desired result (pc).
Therefore, we can apply Theorem 3.3(iii) to obtain the desired inequality

lim inf
N→∞

A∗N(mN,α
t , eN) ≥ A∗(µαt , η),

which implies that condition (ii) of Proposition 4.5 is satisfied.
Step 3. Weak convergence of the time derivatives.

In order to apply Proposition 4.5 we will now show that the sequence of time
derivatives ṁN is weakly convergent in L2

(
(δ, T );L2(Ω,m)

)
.

Indeed, by self-adjointness of the discrete generator LN in L2(TN , πN) we have

‖ṙNt ‖L2(TN ,πN ) = ‖LNrNt ‖L2(TN ,πN ) ≤ (t− δ/2)−1‖rNδ/2‖L2(TN ,πN )

for any t > δ/2; see, e.g., [Bre10, Theorem 7.7]. Moreover, from (4.8) we infer that

‖rNt ‖L∞(TN ,πN ) . 1 ∨ t−
d
2

for t > 0. As δ < 1, it follows from these bounds thatˆ T

δ

‖ρNt ‖2
L2(Ω,m) dt . Tδ−d and

ˆ T

δ

‖ρ̇Nt ‖2
L2(Ω,m) dt . Tδ−(d+1).

The Banach-Alaoglu theorem implies that any subsequence of (ρN)N has a subse-
quence converging weakly in H1

(
(δ, T );L2(Ω,m)

)
. Since W2(µNt , µt) → 0, we infer

that ρN ⇀ ρ in H1
(
(δ, T );L2(Ω,m)

)
, and ρt = dµt

dm
, as desired.
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Applying Proposition 4.5 with ϕN(t) := ρ̇Nt and ϕ(t) := ρ̇t, we obtain
ˆ T

δ

A∗(µαt , µ̇t) dt ≤ lim inf
N→∞

ˆ T

δ

A∗N
(
mN,α
t , ṁN

t

)
dt.

Step 4. Removal of the regularisation.
Using the weak convergence µαt ⇀ µt as α→ 0 and the weak lower-semicontinuity

of A∗(·, µ̇t), an application of Fatou’s lemma yields
ˆ T

δ

A∗(µt, µ̇t) dt ≤ lim inf
α→0

lim inf
N→∞

ˆ T

δ

A∗N
(
mN,α
t , ṁN

t

)
dt.

By convexity, we obtain

A∗N
(
mN,α
t , ṁN

t

)
≤ (1− α)A∗N

(
mN
t , ṁ

N
t

)
+ αA∗N

(
πN , ṁ

N
t

)
.

We claim that A := supN supt≥δA∗N
(
πN , ṁ

N
t

)
< ∞. Indeed, in view of the self-

adjointness of the discrete generator LN and the ultracontractivity bound (4.8), we
infer that

A∗N(πN , ṁ
N
t ) = A(πN , r

N
t ) = EN(rNt ) ≤ t−1‖rNt ‖2

L2(TN ,πN ) ≤ Ct−1
(
1 ∨ t−d

)
,

which yields the claim. Consequently, we obtain
ˆ T

δ

A∗(µt, µ̇t) dt ≤ lim inf
N→∞

ˆ T

δ

A∗N
(
mN
t , ṁ

N
t

)
dt.

The final result follows by passing to the limit δ → 0.
(iii): This follows immediately by combining the inequalities from (ii). �

5. Mosco convergence of discrete energies: proof strategy

In this section we give a sketch of the proof of the Mosco convergence of the
discrete energy functionals (Theorem 3.9). This result is a key tool in the proof of
evolutionary Γ-convergence; cf. Section 4. Let us first recall the relevant definitions.

Definition 5.1 (Γ- and Mosco convergence). Let F ,FN : X → R ∪ {+∞} be
functionals defined on a complete metric space X . The sequence (FN)N is said to
be Γ-convergent to F if the following conditions hold:
(i) For every sequence (xN)N ⊆ X such that xN → x ∈ X we have the liminf

inequality

lim inf
N→∞

FN(xN) ≥ F(x). (5.1)

(ii) For every x̄ ∈ X there exists a recovery sequence (x̄N)N ⊆ X , i.e., xN → x
and

lim sup
N→∞

FN(xN) ≤ F(x). (5.2)

If X is a complete topological vector space, we say that (FN)N is Mosco conver-
gent to F if the same conditions hold, with the modification that weakly convergent
sequences are considered in the liminf inequality.
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We use the notation FN
Γ−→ F and FN

M−→ F to denote Γ- and Mosco convergence.
Let us now fix the setup, which remains in force throughout Sections 5, 6, and 7.

Consider a family of ζ-regular meshes (TN)N with [TN ] → 0 as N → ∞. We then
consider a measure µ ∈P(Ω), and let υ ∈ L1(Ω) be its density with respect to the
Lebesgue measure. At the discrete level we consider measures mN ∈ P(TN). We
define the corresponding energy functionals FN , F̃N , and Fµ as in Section 3. The
goal is to prove the Mosco convergence in L2(Ω) of F̃N to Fµ as N →∞ under the
assumptions (lb), (ub), and (pc).

Our strategy is based on a compactness and representation procedure, following
ideas from [AlC04]. A key ingredient in the proof is a representation result from
[BF∗02, Theorem 2], for which we need to perform a localisation procedure. Let
O(Ω) be the collection of all open subsets of Ω. For A ∈ O(Ω) we then introduce
the functionals FT : L2(T , πT )×O(Ω)→ [0,+∞) by

FT (f, A) :=
1

4

∑
K,L∈T |A

(
f(K)− f(L)

)2
UKL
|ΓKL|
dKL

,

where, for any subset A ⊆ Ω,

T |A :=
{
K ∈ T : K ∩ A 6= ∅

}
(5.3)

and UKL is as in Section 3. The corresponding embedded functional F̃T : L2(Ω) ×
O(Ω)→ [0,+∞] is given by

F̃T (ϕ,A) :=

{
FT (PT ϕ,A) if ϕ ∈ PCT
+∞ otherwise,

where PT is the projection defined in (3.12).
The proof of Theorem 3.9 consists of the following steps:

(Step 1) We show first, as in [AlC04, Proposition 3.4], that any subsequential Γ-
limit point F(·, A) of the sequence

(
F̃N(·, A)

)
N

is only finite on H1(Ω).
This result is a prerequisite for performing Step 3. We also show that
Γ-convergence implies Mosco convergence in this situation.

(Step 2) For any subsequential Γ-limit point F(·, A), we prove an inner regular-
ity result. Using this result, we can apply a compactness result [BrD98,
Theorem 10.3] to infer that there exists a subsequence, such that, for any
A ∈ O(Ω), the functionals

(
F̃N(·, A)

)
N

Γ-converge to a limiting functional
F(·, A).

(Step 3) We prove the applicability of a representation theorem [BF∗02, Theorem
2], which allows us to deduce the following expression

F(ϕ) =

ˆ
Ω

F (x, ϕ,∇ϕ) dx. (5.4)

(Step 4) In view of the previous steps, it remains to show that F (x, u, ξ) = υ(x)|ξ|2.

Steps 1 and 2 will be carried out in Section 6, while Steps 3 and 4 will be performed
in Section 7.
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6. Mosco convergence of the localised functionals

In this section we perform Steps 1 and 2 of the proof strategy described above. As
before, we consider a vanishing sequence of ζ-regular meshes (TN)N and a sequence
of discrete measures mN ∈P(TN). We will prove the following results.

Theorem 6.1 (Regularity of Γ-limits). Assume (lb). For A ∈ O(Ω), let F(·, A)

be a subsequential Γ-limit of the sequence
(
F̃N(·, A)

)
N

in the L2(Ω)-topology. Then
F(ϕ,A) = +∞ for any ϕ /∈ H1(Ω). Moreover, the subsequence is also convergent in
the Mosco sense.

The proof of this result is contained in Section 6.1 and relies on an L2-Hölder
continuity result (Proposition 6.5).

Theorem 6.2 (Localised Mosco compactness). Assume (lb) and (ub). There exists
a subsequence of (F̃N)N such that, for any A ∈ O(Ω), the sequence

(
F̃N(·, A)

)
N

is
Mosco convergent in L2(Ω)-topology.

The proof of this result is contained in Section 6.2 and relies on an inner regularity
result (Proposition 6.8). The latter result will be proved using a Sobolev upper
bound (Proposition 6.6).

6.1. Regularity of finite energy sequences. In this subsection we prove that
any subsequential Γ-limit F of the sequence

(
F̃N(·, A)

)
N

is only finite on Sobolev
maps, which allows us to work with Theorem 7.3. A corresponding result was proved
on the cartesian grid in [AlC04, Proposition 3.4], using affine interpolations of vector
fields that are not available in the present context.

For h ∈ Rd we write K h∼ L if K ∩ (L+ h) 6= ∅.
Lemma 6.3 (Existence of good paths). Let T be a ζ-regular mesh. Then there
exists a family of paths {γKL}K,L∈T , where
γKL = {γKL(i) : i = 0, . . . , nKL}, K = γKL(0) ∼ γKL(1) ∼ . . . ∼ γKL(nKL) = L,

such that the following properties hold:
(1) For all K,L ∈ T we have

nKL .
|xK − xL|

[T ]
and

nKL∑
i=0

|xγKL(i) − xγKL(i+1)| . |xK − xL|; (6.1)

(2) For any h ∈ Rd and M,N ∈ T with M ∼ N we have

#
{

(K,L) ∈ T 2 : K
h∼ L, {M,N} ⊂ γKL

}
. 1 ∨ |h|

[T ]
. (6.2)

The implied constants depend only on Ω and ζ.

Proof. Part (1) has been proved in [GKM20, Lemma 2.12], so we focus on (2).
Fix h ∈ Rd and M,N ∈ T with M ∼ N . Without loss of generality we may

assume that xM = 0 and h is parallel to the d-th unit vector in Rd. Let S be the set
whose cardinality we would like to bound, and let S1 be the collection of all K ∈ T
such that (K,L) ∈ S for some L ∈ T .

We claim that ⋃
K∈S1

K ⊂ Cyl(r, `) (6.3)
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for some r . [T ] and ` . |h| + [T ]. Here, Cyl(r, `) denotes the cylinder of radius
r > 0 and height 2` > 0, i.e.,

Cyl(r, `) :=
{
v ∈ Rd : v∗ ∈ Bd−1

r , vd ∈ [−`, `]
}
.

where Bd−1
r denotes the closed ball of radius r around the origin in Rd−1.

Indeed, by the construction in [GKM20], M ∪ N is contained in the cylinder of
radius 2[T ], whose central axis is obtained by extending the line segment between
xK and xL by a distance [T ] in both directions, for all cells K,L ∈ T . The claim
follows using the fact that K h∼ L.

Next we use a simple volume comparison. Using ζ-regularity, it follows that

L d
( ⋃
K∈S1

K
)

=
∑
K∈S1

L d(K) & [T ]d(#S1), (6.4)

where #S1 denotes the cardinality of S1. Combining (6.3) and (6.4) we infer that
#S1 . 1 ∨ |h|

[T ]
.

To conclude the proof, it remains to show that #S . #S1. To see this, note
that for every K ∈ S1, there exists a universally bounded number of cells L ∈ T
such that (K,L) ∈ S. This is due to the fact that if L,L′ ∈ T are such that
(K,L), (K,L′) ∈ S, we deduce that dL,L′ . [T ] by the triangle inequality. The
desired result follows from this observation by ζ-regularity. �

The following lemma is the crucial estimate needed to deduce L2-strong com-
pactness of sequences with bounded energy. A similar result has been obtained in
dimension d = 2, 3 in [EGH00, Lemma 3.3] with bounds in terms of discrete Sobolev
norms.

Lemma 6.4 (L2-Hölder continuity). Assume (lb). Fix A ∈ O(Ω) and set Aδ :=
{x ∈ A : dist(x, ∂Ω) > δ} for δ > 0. Let T be a ζ-regular mesh, let f ∈ L2(T |A)
and define ϕ := QT f ∈ L2(A). For any h ∈ Rd we have the L2-bound

‖τhϕ− ϕ‖2
L2(A|h|)

.
|h|
k

(
|h| ∨ [T ]

)
FT (f, A), (6.5)

where τhϕ(·) := ϕ(· − h), and k > 0 is the lower bound in (lb).

Proof. For any h ∈ Rd we have

‖τhϕ− ϕ‖2
L2(A|h|)

=

ˆ
A|h|

(
ϕ(x− h)− ϕ(x)

)2
dx ≤

∑
K,L∈T |A

|CKL|
(
f(L)− f(K)

)2
,

(6.6)

where CKL = {x ∈ K : x − h ∈ L}. For K,L ∈ T |A we use Lemma 6.3 and the
Cauchy-Schwarz inequality to write(

fN(K)− fN(L)
)2 ≤ nKL

nKL∑
i=1

(
fN(Ki−1)− fN(Ki)

)2
, (6.7)

where K = K0 ∼ K1 ∼ . . . ∼ KnKL = L, and nKL .
dKL
[T ]

. Observe that dKL .
[T ] ∨ |h| whenever CKL 6= ∅.

To estimate the measure of CKL, we pick a hyperplane H that separates K and L
(which exists by the Hahn-Banach theorem, in view of the convexity of the cells). By
construction, CKL is contained in the strip between H and H+h. Moreover, we have
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CKL ⊆ K, which means that CKL is contained in a ball of radius . [T ]. Combining
these two facts, we infer that |CKL| . [T ]d−1|h|, hence |CKL| . [T ]d−1

(
|h| ∧ [T ]

)
by

ζ-regularity.
Putting these estimates together, we obtain

|CKL|
(
f(K)− f(L)

)2
. [T ]d−1|h|

nKL∑
i=1

(
f(Ki−1)− f(Ki)

)2
. (6.8)

Let αKL denote the left-hand side in (6.2). Using (6.6) and (6.8) we find that

‖τhϕ− ϕ‖2
L2(A|h|)

. [T ]d−1|h|
∑

K,L∈T |A
L∼K

αKL
(
f(L)− f(K)

)2
.

On the other hand, in view of the ζ-regularity and the assumption (lb), we have

FT (f, A) & k[T ]d−2
∑

K,L∈T |A
L∼K

(
f(K)− f(L)

)2
.

The desired result follows, since αKL ≤ 1 ∨ |h|
[T ]

by Lemma 6.3. �

The compactness result now follows easily.

Proposition 6.5 (Compactness). Fix A ∈ O(Ω) and assume that the lower bound
(lb) holds. Let (TN)N be a vanishing sequence of ζ-regular meshes. Let fN ∈
L2(TN |A) be such that

α := sup
N∈N
FN(fN , A) < +∞,

and define ϕN := QNfN ∈ L2(A). Then the sequence (ϕN)N is relatively compact in
L2(A). Moreover, any subsequential limit ϕ belongs to H1(A) and satisfies

‖∇ϕ‖L2(A) .

√
α

k
.

Proof. The L2-compactness follows from (6.5) in view of the Kolmogorov-Riesz-
Frechét theorem [Bre10, Theorem 4.26]. Let ϕ be any subsequential limit point of
ϕN as [TN ]→ 0. Another application of (6.5) yields, for any h ∈ Rd and δ > 0,

‖τhϕ− ϕ‖2
L2(Aδ)

= lim
N→∞

‖τhϕN − ϕN‖2
L2(Aδ)

.
α

k
|h|2,

which implies that ϕ ∈ H1(A) by the characterisation of H1(A) as the space of
functions which are Lipschitz continuous in L2-norm (see, e.g., [Bre10, Proposition
9.3]). �

Proof of Theorem 6.1. Proposition 6.5 shows that ϕ ∈ H1(Ω) whenever F(ϕ) <
∞. It also follows from Proposition 6.5 that every L2-weakly convergent sequence
ϕN = QNfN with bounded energy supN FN(fN , A) < +∞ converges strongly in L2.
Therefore, Mosco and Γ-convergence are equivalent in this situation. �
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6.2. Sobolev bound and inner regularity. This part focuses on a Sobolev upper
bound for subsequential Γ-limit functionals, which will be useful in Proposition 6.8
and in Theorem 7.3 below.

Proposition 6.6 (Sobolev upper bound). Assume (ub) and let A ∈ O(Ω). For any
subsequential Γ-limit F(·, A) of the sequence

(
F̃N(·, A)

)
N

in the L2(Ω)-topology, we
have the Sobolev upper bound

F(ϕ,A) . k̄

ˆ
A

|∇ϕ|2 dx (6.9)

for any ϕ ∈ H1(Ω).

Here and in the proof, the implied constants depend only on Ω and the regularity
parameter ζ.

Proof. Let us first prove (6.9) for ϕ ∈ C∞c (Rd). For N ∈ N, define fN : TN → R by
K ∈ TN , define

fN(K) := ϕ(xK) for K ∈ TN .
Write νKL := xK−xL

dKL
. By smoothness of ϕ and σ, we have

εN := sup
K,L∈TN

∣∣∣∣(fN(K)− fN(L)

dKL

)2

−
(
∇ϕ(xK) · νKL

)2

∣∣∣∣→ 0.

Using this estimate, assumption (ub), and the ζ-regularity, we obtain

F̃N(QNfN , A) =
1

4

∑
K,L∈TN |A

(
fN(K)− fN(L)

dKL

)2

UKLdKL|ΓKL|

. k
∑

K∈TN |A

((
∇ϕ(xK) · νKL

)2
+ εN

)( ∑
L:L∼K

dKL|ΓKL
)

. k
∑

K∈TN |A

(
|∇ϕ(xK)|2 + εN

)
|K|.

The smoothness of the function |∇ϕ|2 and the identity
∑

K∈TN |K| = |Ω| now yield

lim sup
N→∞

F̃N(QNfN , A) . k̄

ˆ
A

|∇ϕ|2 dx.

Since QNfN converges to ϕ in L2(A), the Γ-convergence of F̃N(·, A) to F(·, A) yields
the desired bound (6.9).

It remains to extend the result to H1(Ω) by a density argument. Indeed, for any
ϕ ∈ H1(Ω) there exists a sequence (ϕi)i ⊆ C∞c (Rd) such that ϕi → ϕ in H1(Ω). As
F(·, A) is lower semicontinuous in L2(Ω), we can apply (6.9) to ϕi to obtain

F(ϕ,A) ≤ lim inf
i→∞

F(ϕi, A) . k̄ lim inf
i→∞

ˆ
A

|∇ϕi|2 dx = k̄

ˆ
A

|∇ϕ|2 dx,

which shows (6.9) for ϕ ∈ H1(Ω). �

Remark 6.7. In the case where mN = PN(ρ dx) for a continuous density ρ, it is
possible to prove the sharp upper bound F ≤ Fµ by a similar argument with a bit
more effort. However, we are not aware of a simple argument for the corresponding
liminf inequality. Therefore, we pass through the compactness and representation
scheme, which yields the sharp upper bound as a byproduct.
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We now focus on the inner regularity of subsequential Γ-limit functionals. We
will prove something slightly stronger than the classical inner regularity, namely, an
inner approximation result with sets of Lebesgue measure 0. This sharpening will
be useful in the proof of the locality in Proposition 7.5 below.

For any A,B ⊂ Ω, we write A b B as a shorthand for A being relatively compact
in B.

Proposition 6.8 (Inner regularity). Assume (ub). For A ∈ O(Ω), let F(·, A) be a
subsequential Γ-limit of the sequence

(
F̃N(·, A)

)
N

in the L2(Ω)-topology. Then the
function A 7→ F(ϕ,A) is inner regular on O(Ω), i.e.,

sup
A′bA

L d(∂A′)=0

F(ϕ,A′) = sup
A′bA

F(ϕ,A′) = F(ϕ,A). (6.10)

for any ϕ ∈ H1(Ω) and A ∈ O(Ω).

Proof. Fix ϕ ∈ H1(Ω) and A ∈ O(Ω). It immediately follows from the definitions
that (6.10) holds with “≤” (twice) instead of “=”. It thus suffices to prove that

F(ϕ,A) ≤ sup
A′bA

L d(∂A′)=0

F(ϕ,A′).

We adapt the proof for the cartesian grid as given in [AlC04, Proposition 3.9].
Fix δ > 0 and consider a non-empty set A′′ ∈ O(Ω) such that A′′ b A andˆ

A\A′′
|∇ϕ|2 dx < δ.

Let εN := QNeN be a recovery sequence for F(ϕ,A \ A′′), i.e.,
εN → ϕ in L2(Ω) and lim sup

N→∞
FN(eN , A \ A′′) ≤ F(ϕ,A \ A′′) . k̄δ, (6.11)

where the last bound is a consequence of Proposition 6.6.
Take A′ ∈ O(Ω) such that A′′ b A′ b A and L d(∂A′) = 0. Note that this can

always be done, since one can pick a compact set K satisfying A′′ ⊂ K b A, and
then choose A′ as the union of any finite open cover of K by balls whose closures
are contained in A. Let ϕN := QNfN be a recovery sequence for F(ϕ,A′), so that

ϕN → ϕ in L2(Ω) and lim sup
N→∞

FN(fN , A
′) ≤ F(ϕ,A′). (6.12)

Fix M ∈ N and suppose that [TN ] < 1
5(M+1)

. Define A′′ ⊂ A1 ⊂ A2 ⊂ . . . ⊂
A5(M+1) ⊂ A′ by

Aj :=

{
x ∈ A′ : d(x,A′′) <

j

5(M + 1)
d
(
(A′)c, A′′

)}
.

Moreover, for i ∈ {1, . . . ,M} we consider a cutoff function ρi ∈ C∞(Rd) satisfying

ρi|A5i+2
= 1, ρi|Ω\A5i+3

= 0, 0 ≤ ρi ≤ 1, |∇ρi| .M. (6.13)

Set riN(K) := ρi(xK) for K ∈ TN , and define

f iN := riNfN + (1− riN)eN , so that ϕiN := QNf
i
N → ϕ

as N →∞, uniformly for i ∈ {1, . . . ,M}. As [TN ] < 1
5(M+1)

, we have by (6.13),

f iN ≡ fN on TN |A5i+1
, f iN ≡ eN on TN |(A\A5i+4). (6.14)
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Using these identities and the inclusions A5i+1 ⊂ A′ and A′′ ⊂ A5i+4 we obtain

FN(f iN , A) ≤ FN(f iN , A5i+1) + FN(f iN , A5(i+1) \ A5i) + FN(f iN , A \ A5i+4)

≤ FN(fN , A
′) + FN(f iN , A5(i+1) \ A5i) + FN(eN , A \ A′′).

(6.15)

To estimate the middle term, let ∇g(K,L) := g(L) − g(K) denote the discrete
derivative and observe that

∇f iN(K,L) = riN(L)∇fN(K,L) +
(
1− riN(L)

)
∇eN(K,L)

+
(
fN(K)− eN(K)

)
∇riN(K,L)

for any K,L ∈ TN . Consequently,

|∇f iN(K,L)|2 . |∇fN(K,L)|2 + |∇eN(K,L)|2 +M2d2
KL|fN(K)− eN(K)|2.

Using this bound and the ζ-regularity of the mesh, we obtain
M∑
i=1

FN(f iN , A5(i+1) \ A5i)

.
M∑
i=1

(
FN(fN , A5(i+1) \ A5i) + FN(eN , A5(i+1) \ A5i) + k̄M2‖ϕN − εN‖2

L2(Ω)

)
≤ 2
(
FN(fN , A

′ \ A′′) + FN(eN , A
′ \ A′′)

)
+ k̄M3‖ϕN − εN‖2

L2(Ω).

Taking into account that that ϕN , εN → ϕ in L2, we can pass to the limsup as
N →∞, using (6.11), (6.12), and Proposition 6.6, to obtain

lim sup
N→∞

M∑
i=1

FN(f iN , A5(i+1) \ A5i) . lim sup
N→∞

FN(fN , A
′) + lim sup

N→∞
FN(eN , A \ A′′)

. F(ϕ,A′) + F(ϕ,A \ A′′)

. k

ˆ
A

|∇ϕ|2 dx.

Using this bound and (6.11), (6.12) once more, it follows from (6.15) that

lim sup
N→∞

(
1

M

M∑
i=1

FN(f iN , A)

)
≤ F(ϕ,A′) + Ck

(
1

M

ˆ
A

|∇ϕ|2 dx+ δ

)
.

where C <∞ depends only on Ω, ζ.
Clearly, for each N , there exists iN ∈ {1, . . . ,M} such that

FN(f iNN , A) ≤ 1

M

M∑
i=1

FN(f iN , A),

Since sup1≤i≤M ‖ϕiN − ϕ‖L2(Ω) → 0 as N →∞, we have ϕiNN → ϕ in L2(Ω). There-
fore, using the Γ-convergence we obtain

F(ϕ,A) ≤ lim inf
N→∞

FN(f iNN , A) ≤ F(ϕ,A′) + Ck

(
1

M

ˆ
A

|∇ϕ|2 dx+ δ

)
.

As δ > 0 and M <∞ are arbitrary, this is the desired result. �
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Proof of Theorem 6.2. By Proposition 6.8 and [BrD98, Theorem 10.3], there ex-
ists a subsequence such that, for any A ∈ O(Ω), the functionals

(
F̃N(·, A)

)
N

are Γ-converging in L2(Ω)-topology to a limit functional F(·, A). The fact that
Γ-convergence implies Mosco convergence has already been observed in Theorem
6.1. �

7. Representation and characterisation of the limit

We fix the same setup as in Section 6. We thus consider a vanishing sequence of
ζ-regular meshes (TN)N and a sequence of discrete measures mN ∈P(TN).

We show the following representation formula for the Γ-limits from Section 6:

Theorem 7.1 (Representation of the Γ-limit). Assume (lb) and (ub), and suppose
that, for every A ∈ O(Ω), the functionals

(
F̃N(·, A)

)
N

are L2(Ω)-Mosco convergent
to a functional F(·, A). Then the functional F can be represented as

F(ϕ,A) =


ˆ
A

F (x, ϕ,∇ϕ) dx for ϕ ∈ H1(Ω),

+∞ for ϕ ∈ L2(Ω) \H1(Ω),
(7.1)

for some measurable function F : Ω× R× Rd → [0,+∞).

Combined with the following result, this will complete the proof of Theorem 3.9.

Theorem 7.2 (Characterisation of F ). Assume (lb), (ub), and (pc). Then the
function F : Ω× Rd → [0,+∞) defined in Theorem 7.1 is given by

F (x, u, ξ) = |ξ|2υ(x) ∀x ∈ Ω, u ∈ R, ξ ∈ Rd.

In particular, the sequence
(
F̃N(·, A)

)
N

is L2(Ω)-Mosco convergent to Fµ(·, A).

To prove Theorem 7.1, we use a representation result for functionals on Sobolev
spaces [BF∗02]. In our application, we have E(·, A) := F(·, A), where F(·, A) is a
subsequential Γ-limit point of

(
F̃N(·, A)

)
N
.

Theorem 7.3. Let E : H1(Ω) × O(Ω) → [0,+∞] be a functional satisfying the
following conditions:
(i) locality: E is local, i.e., for all A ∈ O(Ω) we have E(ϕ,A) = E(ψ,A) if ϕ = ψ

a.e. on A.
(ii) measure property: For every ϕ ∈ H1(Ω) the set map E(ϕ, ·) is the restriction

of a Borel measure to O(Ω).
(iii) Sobolev bound: There exists a constant c > 0 and a ∈ L1(Ω) such that

1

c

ˆ
A

|∇ϕ|2 dx ≤ E(ϕ,A) ≤ c

ˆ
A

(
a(x) + |∇ϕ|2

)
dx

for all ϕ ∈ H1(Ω) and A ∈ O(Ω).
(iv) lower semicontinuity: E(·, A) is weakly sequentially lower semicontinuous in

H1(Ω).
Then E can be represented in integral form

E(ϕ,A) =

ˆ
A

f(x, ϕ,∇ϕ) dx,



EVOLUTIONARY Γ-CONVERGENCE FOR FOKKER-PLANCK EQUATIONS 25

where the measurable function f : Ω×R×Rd → [0,+∞) satisfies the self-consistent
formula

f(x, u, ξ) := lim sup
ε→0+

M
(
u+ ξ(· − x), Qε(x)

)
εd

, (7.2)

where Qε(x) is the open cube of side-length ε > 0 centred at x, and

M(ψ,A) := inf
{
E(ϕ,A) : ϕ ∈ H1(Ω), ϕ− ψ ∈ H1

0 (A)
}

(7.3)

for any ψ ∈ H1(Ω) and any open cube A ⊆ Ω.

Remark 7.4 (Equivalence of definitions). The paper [BF∗02] contains the statement
of Theorem 7.3 with M(ψ,A) replaced by

M̄(ψ,A) := inf
{
E(ϕ,A) : ϕ ∈ H1(Ω), ϕ = ψ in a neighbourhood of A

}
.

We claim that M = M̄ . As any competitor ϕ for M is a competitor for M̄ , it
is clear that M ≥ M̄ . To show the opposite inequality, we fix ε > 0 and take
ϕ ∈ H1(A) such that E(ϕ,A) ≤ M̄(ψ,A) + ε. It follows that ϕ − ψ ∈ H1

0 (A), and
there exists a sequence (ηn)n ⊆ C∞c (A) such that ηn → ϕ− ψ in H1(Ω) as n→∞.
Set ϕn := ψ + ηn, so that ϕn → ϕ in H1(Ω). Note that ϕn is a competitor for
M(ψ,A), as it coincides with ψ on A \ spt(ηn), hence M(ψ,A) ≤ E(ϕn, A) for all
n ∈ N. Using continuity of E(·, A) with respect to the strong H1(Ω) convergence
(as follows from (iii)), we may pass to the limit to obtain

M(ψ,A) ≤ lim
n→∞

E(ϕn, A) = E(ϕ,A) ≤ M̄(ψ,A) + ε.

As ε > 0 is arbitrary, the claim follows.

In the remainder of this section we will verify that the functional F from Theorem
6.2 satisfies the conditions of Theorem 7.3. In particular, we will prove the locality
(Section 7.1) and the subadditivity (Section 7.2). The proof of Theorem 7.1 will
be completed at the end of Section 7.2. The proof of Theorem 7.2 is contained in
Section 7.3.

7.1. Locality. A consequence of the inner regularity result from Proposition 6.8 is a
simple proof of the locality of F. An analogous result appears in [AlC04, Proposition
3.9] on the cartesian grid. The proof in our setting is much simpler due to the short
range of interactions.

Proposition 7.5 (Locality). Assume that (ub) holds. Suppose that
(
F̃N(·, A)

)
N

is
L2(Ω)-Mosco convergent to some functional F(·, A) for every A ∈ O(Ω). Then F is
local, i.e., for any A ∈ O(Ω) and ϕ, ψ ∈ L2(Ω) such that ϕ = ψ a.e. on A, we have
F(ϕ,A) = F(ψ,A).

Proof. Let A ∈ O(Ω) and take ϕ, ψ ∈ L2(Ω) such that ϕ = ψ a.e. on A. In view of
the inner regularity result from Proposition 6.8 we may assume that L d(∂A) = 0.
By symmetry, it suffices to prove that F(ϕ,A) ≥ F(ψ,A).

Define CN :=
⋃
{K : K ∈ TN |A} and C :=

⋃
N CN , so that C ⊇ A. We claim

that
C \ A ⊆ BN , where BN :=

{
x ∈ Ω : d(x, ∂A) < 2[TN ]

}
. (7.4)

Indeed, for every x ∈ C \ A there exists N ≥ 1 and K ∈ TN such that x ∈ K \ A
and K ∩ A 6= ∅. Therefore, d(x, ∂A) = d(x,A) ≤ diam(K) ≤ [TN ], which implies
(7.4).



26 DOMINIK FORKERT, JAN MAAS, AND LORENZO PORTINALE

Let (ϕN)N be a recovery sequence for F(ϕ,A), i.e., ϕN → ϕ in L2(Ω) and

lim
N→∞

F̃N(ϕN , A) = F(ϕ,A). (7.5)

Fix ψ̂N ∈ PCN such that ψ̂N → ψ in L2(Ω) as N →∞, and define ψN : Ω→ R by

ψN(x) :=

{
ϕN(x) if x ∈ C,
ψ̂N(x) if x ∈ Ω \ C.

We claim that ψN → ψ in L2(Ω) as N → ∞. Indeed, since ϕ = ψ a.e. on A, we
have

‖ψN − ψ‖2
L2(Ω) = ‖ψ̂N − ψ‖2

L2(Ω\C) + ‖ϕN − ψ‖2
L2(C\A) + ‖ϕN − ϕ‖2

L2(A). (7.6)

The first and the last term on the right-hand side vanish as N →∞, since ϕN → ϕ
and ψ̂N → ψ in L2(Ω). On the other hand, (7.4) yields

lim sup
N→∞

‖ϕN − ψ‖L2(C\A) ≤ lim sup
N→∞

(
‖ϕ‖L2(BN ) + ‖ψ‖L2(BN )

)
= ‖ϕ‖L2(∂A) + ‖ψ‖L2(∂A) = 0,

since L d(∂A) = 0. Therefore, using (7.6) we infer that ψN → ψ in L2(Ω) as
N → ∞. Using this fact, the Γ-convergence of F̃N in L2, the fact that ϕN = ψN
a.e. on C, and (7.5), we obtain

F(ψ,A) ≤ lim sup
N→∞

F̃N(ψN , A) = lim sup
N→∞

F̃N(ϕN , A) = F(ϕ,A),

which concludes the proof. �

7.2. Subadditivity. We now prove subadditivity of the functional A 7→ F(ϕ,A)
for any ϕ ∈ H1(Ω). This is the first step towards the verification of (ii) in Theorem
7.3. The proof is inspired by [AlC04, Proposition 3.7] and follows similar ideas as
in the proof of Proposition 6.8.

Proposition 7.6 (Subaddivity). Assume (ub). Suppose that
(
F̃N(·, A)

)
N
is L2(Ω)-

Mosco convergent to some functional F(·, A) for every A ∈ O(Ω). Then the func-
tional F(ϕ, ·) is subadditive for any ϕ ∈ H1(Ω), in the sense that

F(ϕ,A ∪B) ≤ F(ϕ,A) + F(ϕ,B) for all A,B ∈ O(Ω). (7.7)

Proof. Fix A,B ∈ O(Ω). For all A′ b A, B′ b B, and ϕ ∈ H1(Ω) we will prove that

F(ϕ,A′ ∪B′) ≤ F(ϕ,A) + F(ϕ,B).

In view of the the inner regularity (Proposition 6.8), this implies (7.7).
Pick A′ b A and B′ b B and let (ψN)N , (ϕN)N be recovery sequences for F(ϕ,A)

and F(ϕ,B) respectively, which we can assume to be finite. FixM ∈ N and suppose
that [TN ] < 1

5(M+1)
. We define the sets

Aj :=

{
x ∈ A : d(x,A′) <

j

5(M + 1)
d(A′, Ac)

}
⊂ A

for j ∈ {1, . . . , 5(M + 1)}. Moreover, for i ∈ {1, ...,M} let ρi be a cutoff function
ρi ∈ C∞(Rd) satisfying

ρi|A5i+2
= 1, ρi|Ω\A5i+3

= 0, 0 ≤ ρi ≤ 1, |∇ρi| .M.
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We then consider the L2(Ω)-convergent sequences

ϕiN := QNPN

(
ρiψN + (1− ρi)ϕN

)
−−−→
N→∞

ϕ, ∀i ∈ {1, . . . ,M}.

By definition, we have ϕiN ≡ ψN in A5i+1 and ϕiN ≡ ϕN in Ω \A5i+4. Arguing as in
the proof of Proposition 6.8, one deduces the bound

F̃N(ϕiN , A
′ ∪B′) ≤ F̃N(ψN , A) + F̃N

(
ϕiN , (A5(i+1) \ A5i) ∩B′

)
+ F̃N(ϕN , B) (7.8)

for i ∈ {1, . . . ,M}, as well as the bound

1

M

M∑
i=1

F̃N

(
ϕiN , (A5(i+1) \ A5i) ∩B′

)
.

E

M
+ k̄M2‖ψN − ϕN‖2

L2(Ω),

where we used that (A5(i+1) \A5i)∩B′ ⊂ A∩B and that the energy of the recovery
sequences ψN and ϕN is bounded from above, thus

sup
N∈N

F̃N(ψN , A) ∨ sup
N∈N

F̃N(ϕN , B) ≤ E = E(A,B) < +∞.

We then plug the error estimates above into (7.8) and deduce

1

M

M∑
i=1

F̃N(ϕiN , A
′ ∪B′)− F̃N(ψN , A)− F̃N(ϕN , B) .

E

M
+ k̄M2‖ψN − ϕN‖2

L2(Ω).

Using the fact that ψN , ϕN → ϕ are recovery sequences, we may pass to the limit
N →∞ in the previous bound and obtain, for fixed M ∈ N,

lim sup
N→∞

1

M

M∑
i=1

F̃N(ϕiN , A
′ ∪B′)− F(ϕ,A)− F(ϕ,B) .

E

M
. (7.9)

Arguing again as in the proof of Proposition 6.8, we note that, for fixed M ∈ N,
there exists a sequence ϕiNN satisfying ϕiNN → ϕ in L2(Ω) as N →∞ and

F̃N(ϕiNN , A
′ ∪B′) ≤ 1

M

M∑
i=1

F̃N(ϕiN , A
′ ∪B′).

Together with (7.9), this yields

F(ϕ,A′ ∪B′) ≤ lim sup
N→∞

F̃N(ϕiNN , A
′ ∪B′) ≤ F(ϕ,A) + F(ϕ,B) + C

E

M

for every M ∈ N, for some C = C(d, ζ) and E = E(A,B) ∈ R+. Taking the limit
M →∞, we infer that

F(ϕ,A′ ∪B′) ≤ F(ϕ,A) + F(ϕ,B)

and the proof is complete. �

The following additivity property turns out to be much easier to prove than the
corresponding result on the grid in [AlC04], due to inner regularity in combination
with the very short range of interaction (nearest neighbours on a scale of order [TN ]).

Proposition 7.7 (Additivity on disjoint sets). Assume (ub). For any ϕ ∈ H1(Ω)
the function F(ϕ, ·) is additive on disjoint sets, i.e.,

F(ϕ,A ∪B) = F(ϕ,A) + F(ϕ,B) (7.10)

for all A,B ∈ O(Ω) such that A ∩B = ∅.



28 DOMINIK FORKERT, JAN MAAS, AND LORENZO PORTINALE

Proof. In view of the subadditivity result from Proposition 7.6, it remains to show
superadditivity on disjoint sets. Fix A,B ∈ O(Ω) with A ∩ B = ∅. By inner
regularity (Proposition 6.8) we may assume that d(A,B) > 0. Consequently, for N
sufficiently large we have

F̃N(ϕ,A ∪B) = F̃N(ϕ,A) + F̃N(ϕ,B) ∀ϕ ∈ H1(Ω).

Fix ϕ ∈ H1(Ω) and let (ϕN)N be a recovery sequence for F(ϕ,A ∪B). Using the
previous identity we obtain

F(ϕ,A) + F(ϕ,B) ≤ lim inf
N→∞

F̃N(ϕN , A) + lim inf
N→∞

F̃N(ϕN , B)

≤ lim inf
N→∞

(
F̃N(ϕN , A) + F̃N(ϕN , B)

)
= lim inf

N→∞
F̃N(ϕN , A ∪B)

= F(ϕ,A ∪B),

which is the desired superadditivity inequality. �

We are now in a position to collect the pieces for the proof of Theorem 7.1.

Proof of Theorem 7.1. In view of Theorem 6.1, we know that F = +∞ outside of
H1(Ω). To obtain the desired result on H1(Ω) we check that F(·, A) satisfies the
conditions of Theorem 7.3.

The locality (i) has been shown in Proposition 7.5.
To prove (ii), we apply the De Giorgi-Letta criterion, cf. [DeL77], [BrD98]. For

any ϕ ∈ H1(Ω), it follows from Propositions 6.8, 7.6, and 7.7 that F(ϕ, ·) is the
restriction of a Borel measure to O(Ω).

The Sobolev upper bound (iii) has been proved in Proposition 6.6, whereas the
corresponding lower bound follows from Proposition 6.5.

Finally, to prove (iv) we note that lower semicontinuity with respect to strong
L2(Ω)-convergence follows from the fact any Γ-limit is lower semicontinuous; see
[Bra02, Proposition 1.28]. Since H1(Ω) is compactly embedded in L2(Ω), the result
follows. �

7.3. The characterisation of the Γ-limit. To prove Theorem 3.9 it remains to
characterise the Γ-limit F obtained in Theorem 7.1. It thus remains to compute the
function F appearing in Theorem 7.1. From (7.2) it follows that for x ∈ Ω, u ∈ R
and ξ ∈ Rd,

F (x, u, ξ) = lim sup
ε→0+

M
(
u+ ξ(· − x);Qε(x)

)
εd

, (7.11)

where Qε(x) denotes the open cube of side-length ε centred at x and

M(ϕ,A) := inf
ψ

{
F(ψ,A) : ψ ∈ H1(Ω) s.t. ψ − ϕ ∈ H1

0 (A)
}

for any Lipschitz function ϕ : Ω → R and any open set A ⊆ Ω with Lipschitz
boundary. As we will computeM by discrete approximation, we consider its discrete
counterpartMT defined by

MT (f, A) := inf
g
{FT (g, A) : g ∈ RT s.t. f = g on T |Ac}

for f : T → R, where T |A for A ⊂ Ω is defined in (5.3).
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Remark 7.8 (Strong continuity of F(·, A) in H1(Ω)). The quadratic nature of the
discrete problems allows us to infer more information about the limit density. In
fact, it follows that F (x, u, ξ) = 〈a(x)ξ, ξ〉 for some bounded matrix-valued function
a; see [AlC04, Remark 3.2]. Consequently, for every A ∈ O(Ω), the Γ-limit F(·, A)
is continuous for the strong topology of H1(Ω). This fact will be used in the proof
of Lemma 7.9 below.

The following result is crucial in the proof of Theorem 7.2.

Lemma 7.9. Assume (ub), and suppose that F̃N(·, B)
Γ−→ F(·, B) in L2(Ω) as N →

∞ for any B ∈ O(Ω). Then, for any A ∈ O(Ω) with Lipschitz boundary and any
Lipschitz function ϕ : Ω→ R, we have

MN(PNϕ,A)→M(ϕ,A). (7.12)

Proof. First we embed the discrete functionals in the continuous setting. For any
Lipschitz function ϕ : Ω→ R and any open set A ⊆ Ω we set

PCN(ϕ,A) := {ψ ∈ PCN : ψ(xK) = ϕ(xK) ∀K ∈ TN |Ac}. (7.13)

We consider the embedded discrete energies F̃ϕ
N : L2(Ω)→ [0,+∞] defined by

F̃ϕ
N(ψ,A) :=

{
FN(PNψ,A) if ψ ∈ PCN(ϕ,A),

+∞ otherwise,

and their continuous counterpart Fϕ : L2(Ω)→ [0,+∞] defined by

Fϕ(ψ,A) :=

{
F(ψ,A) if ψ − ϕ ∈ H1

0 (A),

+∞ otherwise.

We claim that

F̃ϕ
N(·, A)

Γ−→ Fϕ(·, A), ∀A ⊆ Ω with Lipschitz boundary, ϕ ∈ Lip(Rd),

which implies, together with Proposition 6.5 and by a basic result from the theory
of Γ-convergence [Bra02, Theorem 1.21], the desired convergence of the minima in
(7.12). To prove the claim, we argue as in [AlC04, Theorem 3.10].

To prove the liminf inequality, we consider a sequence ψN ⇀ ψ in L2(Ω) satisfying
supN F̃ϕ

N(ψN , A) < +∞. In particular, this implies that ψN ∈ PCN(ϕ,A) and
F̃ϕ
N(ψN , A) = F̃N(ψN , A). Since F̃N(·, A)

Γ−→ F(·, A), it remains to prove that ψ−ϕ ∈
H1

0 (A). In view of the boundary condition and the fact that ϕ ∈ Lip(Rd), we have

F̃N(ψN ,Ω) ≤ F̃N(ψN , A) + F̃N(ϕ,Ω) . F̃N(ψN , A) + k Lip(ϕ)2.

It follows from this bound and Proposition 6.5 that ψN → ψ strongly in L2(Ω) and
ψ ∈ H1(Ω). Moreover, by construction we have ψN → ϕ in L2(Ω \ A). Since A has
Lipschitz boundary, we conclude that ψ − ϕ ∈ H1

0 (A).
Let us now prove the limsup inequality. Pick ψ ∈ L2(Ω) such that Fϕ(ψ,A) <

+∞. In particular, ψ − ϕ ∈ H1
0 (A). Without loss of generality, we may assume

that supp(ψ − ϕ) b A, as the general case follows from this by a density argument
using the continuity of F in the strong H1(Ω)-topology; see Remark 7.8. Consider
a recovery sequence ψN → ψ in L2(Ω) such that F̃N(ψN , A)→ F(ψ,A) = Fϕ(ψ,A)
as N → ∞. Now we argue as in the proof of Proposition 6.8. For any δ > 0 there
exists a cutoff function ζδ with the following properties:
(i) supp(ψ − ϕ) b supp ζδ b A;
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(ii) the functions ψδN := QN ◦ PN
(
ζδψN + (1− ζδ)ϕ

)
satisfy

lim sup
N→∞

F̃ϕ
N(ψδN , A) = lim sup

N→∞
F̃N(ψδN , A)

≤ lim sup
N→∞

F̃N(ψN , A) + δ = Fϕ(ψ,A) + δ.

Passing to the limit δ → 0 using a diagonal subsequence ψδ(N)
N → ψ in L2(Ω), the

result follows. �

Proof of Theorem 7.2. We split the proof into two parts.

Step 1. We first suppose that µ is the normalised Lebesgue measure andmN(K) =

πN(K) = |K|
|Ω| , and we fix ε > 0. For fixed b ∈ R, z ∈ Ω, and ξ ∈ Rd we will compute

MN

(
fN , Qε(z)

)
, where fN(K) := ϕξb,z(xK) and ϕξb,z(·) := u+ ξ(· − z)

As a shorthand we write Qε := Qε(z). Recall that

MN(f,Qε) = inf
g

{
FN(g,Qε) : g ∈ RTN and g(K) = f(K) for K ∈ TN |Qcε

}
.

In other words, we minimise the discrete Dirichlet energy localised on Qε with
Dirichlet boundary conditions given by the discretised affine function f . As follows
by computing the first variation of the action, the unique minimiser is given by the
solution h : TN → R of the corresponding discrete Laplace equation{

LNh(K) = 0 for K ∈ TN \ TN |Qcε ,
h(K) = fN(K) for K ∈ TN |Qcε .

(7.14)

We claim that the function fN solves (7.14). Indeed, the boundary conditions hold
trivially. Moreover, writing τKL := xK−xL

|xK−xL|
we obtain for any K ∈ TN \ TN |Qcε ,

πN(K)LNfN(K) =
∑
L∼K

|ΓKL|
dKL

(
fN(L)− fN(K)

)
= −

∑
L∼K

|ΓKL|〈ξ, τKL〉

=

ˆ

∂K

〈ξ, νext〉 dH d−1 = 0,

where νext denotes the outward normal unit normal and in the last step we used
Stokes’ theorem. This computation shows the optimality of f and hence

MN(fN , Qε) = FN(fN , Qε).

For the asymptotic computation of FN(fN , Qε) we use the average isotropy prop-
erty of any regular mesh (see [GKM20, Lemma 5.4]) to obtain∣∣FN(fN , Qε)− εd|ξ|2

∣∣ =

∣∣∣∣(1

4

∑
K,L∈TN
K,L∩Qε 6=∅

dKL|ΓKL|〈ξ, τKL〉2
)
− |ξ|2|Qε|

∣∣∣∣
≤
∣∣B(∂Qε, 5[TN ]

)∣∣→ 0 as N →∞,

where B(C, r) := {x ∈ Ω : d(x,C) < r}. Note that we get |B(∂Qε, 5[TN ])| instead
of |B(∂Qε, 4[TN ])| as in [GKM20, Lemma 5.4] because we take into account all the
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cells whose closure intersects the cube Qε and not only the ones contained in it.
Together with Lemma 7.9, we obtain, for all ξ ∈ Rd and ε > 0,

M(ϕξb,z, Qε) = lim
N→∞

MN(f,Qε) = lim
N→∞

FN(f,Qε) = εd|ξ|2, (7.15)

hence

F (x, u, ξ) = lim sup
ε→0+

M(ϕξb,z, Qε)

εd
= |ξ|2,

which concludes the proof in the special case σ, ρ ≡ 1, mN = πN .

Step 2. Let us now consider the general case where mN and µ satisfy (lb), (ub),
and (pc). We write F̄N ,M̄N for the analogues of FN ,MN in the special case where
µ is the normalised Lebesgue measure and mN = πN , which we considered in Step
1.

Fix b ∈ R, z ∈ Ω, and ξ ∈ Rd, and let Qε, ϕξb,z, and f be as above. Furthermore,
let υN be the density of QNmN with respect to the Lebesgue measure. For all
g : TN → R we have by construction,(

inf
Q2ε

υN

)
F̄N(g,Qε) ≤ FN(g,Qε) ≤

(
sup
Q2ε

υN

)
F̄N(g,Qε),

hence, in particular,(
inf
Q2ε

υN

)
M̄N(f,Qε) ≤MN(f,Qε) ≤

(
sup
Q2ε

υN

)
M̄N(f,Qε).

As a consequence of the first part of the proof and (7.15), taking the limit as N →∞
and applying (7.12), we deduce(

lim sup
N→∞

inf
Q2ε

ρN

)
|ξ|2εd ≤M(ϕξb,z, Qε) ≤

(
lim inf
N→∞

sup
Q2ε

ρN

)
|ξ|2εd.

Taking the limsup as ε→ 0, we deduce from (7.11) and the condition (pc),

F (x, u, ξ) = lim sup
ε→0

M(ϕξb,z, Qε)

εd
= |ξ|2υ(x) for a.e. z ∈ Ω,

which concludes the proof. �
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