
Approximating optimal feedback controllers of

finite horizon control problems using hierarchical

tensor formats

Mathias Oster1

oster@math.tu-berlin.de

Leon Sallandt1

sallandt@math.tu-berlin.de

Reinhold Schneider1

schneidr@math.tu-berlin.de

1Technische Universität Berlin

April 14, 2021

Abstract

Controlling systems of ordinary differential equations (ODEs) is ubiq-
uitous in science and engineering. For finding an optimal feedback con-
troller, the value function and associated fundamental equations such
as the Bellman equation and the Hamilton-Jacobi-Bellman (HJB) equa-
tion are essential. The numerical treatment of these equations poses
formidable challenges due to their non-linearity and their (possibly) high-
dimensionality.

In this paper we consider a finite horizon control system with associ-
ated Bellman equation. After a time-discretization, we obtain a sequence
of short time horizon problems which we call local optimal control prob-
lems. For solving the local optimal control problems we apply two different
methods, one being the well-known policy iteration, where a fixed-point
iteration is required for every time step. The other algorithm borrows
ideas from Model Predictive Control (MPC), by solving the local optimal
control problem via open-loop control methods on a short time horizon,
allowing us to replace the fixed-point iteration by an adjoint method.

For high-dimensional systems we apply low rank hierarchical tensor
product approximation/tree-based tensor formats, in particular tensor
trains (TT tensors) and multi-polynomials, together with high-dimensional
quadrature, e.g. Monte-Carlo.

We prove a linear error propagation with respect to the time discretiza-
tion and give numerical evidence by controlling a diffusion equation with
unstable reaction term and an Allen-Kahn equation.
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1 Introduction

We consider a finite horizon optimal control problem on a d-dimensional state
space. In our applications the constraining dynamical systems are spatial dis-
cretizations of partial differential equations (PDE) and thus d can become large.
Opposed to open-loop controls, feedback laws provide controls for all initial val-
ues simultaneously and in many cases produce stabilizing controls even under
perturbations. For finding an optimal feedback law, a mapping from the state
to the optimal control is needed. In order to allow online usage of the feedback
law fast evaluation of this map is critical.

One popular approach for finding an optimal feedback law is to calculate the
value function v∗ : Rd × [0, T ] → R, which is a mapping from the state space
to the real numbers. This function obeys a fundamental equation, the Bellman
equation [Bel57; BC97]. For given time-points the Bellman equation is solved
recursively by a sequence of optimal control problems with short time horizon
τ � T , where τ is the step size in a time discretization of the value function.

We treat these time-local optimal control problems using two different meth-
ods, one being an open-loop/adjoint approach and the other being the policy
iteration algorithm [How60].

The open-loop ansatz is motivated by the observation that the value function
can be computed point-wise using traditional methods from optimal control such
as open-loop control/adjoint methods [Pon+62].

In order to obtain such point-evaluations of the value function, the optimal
control problem has to be solved for an initial value. The dimension of this
optimal control problem scales with the time-horizon and for every gradient
step the ODE has to be solved in a forward and a backward way. In that
sense, computing an optimal control and thus the value function can become
expensive for long time horizons. However, due to short time horizons τ of
the local optimal control problems the open-loop approach is efficient for our
approach.

Using these point measurements we perform an interpolation/regression to
obtain the value function for every initial state. This yields a backwards iteration
w.r.t. time. Note that in our numerical tests computing the local open-loop
control problems is the numerical bottleneck and this step can be parallelized
perfectly.

In the second approach we use the policy iteration algorithm combined with
a regression to solve the local optimal control problems. This yields a similar
backwards iteration with a nested fixed-point equation. In this approach several
regression problems have to be solved for every time-point. However, generating
samples is less expensive, shifting the numerical bottleneck from generating the
samples to solving the equations.

As the dimension of the state space increases, traditional methods to rep-
resent the function, like Galerkin approximation by splines, finite elements or
multi polynomials suffer from the so-called curse of dimensionality, which means
that their complexity increases exponentially with the dimension of the state
space. To alleviate this problem we use a non-linear model class, namely low
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rank hierarchical tensor product approximation/tree-based tensor formats, in
particular tensor trains (TT tensors) and multi-polynomials, together with high
dimensional Monte-Carlo quadrature. By this approach we compute a low-
fidelity/complexity representation of the required optimal feedback control such
that it is easily applied in online computations. We prove a linear error propa-
gation with respect to the time discretization in Theorem 6.

Finally, we provide numerical evidence for both approaches by testing a
feedback law computed for a diffusion equation with unstable reaction term as
well as a Allen-Kahn equation. Moreover, we propose possible extensions of the
methods where more information about the system is used.

Previous Work

The Bellman equation, also known as dynamic programming, was introduced
in the 1950s by R. Bellman [Bel66]. Note that in addition to the Bellman equa-
tion, there exists an infinitesimal version, the Hamilton-Jacobi-Bellman (HJB)
equation, see e.g. [BC97; FF13]. Both equations can be approximated by
the policy iteration [How60], which is a widely used tool in optimal feedback
control, see e.g. [KK18; AFK15] Other popular methods for solving the HJB
equation are semi-Lagrangian methods [TAK17; DJ14; Fal87], Domain splitting
algorithms [FLS94], variational iterative methods [KDK13], data based meth-
ods with Neural Networks [Luo+14], actor-critic methods [ZHL21], tree-based
methods [AS20] and tropical algorithms [AGL09; AF18].

Simultaneously to the work of Bellman, Pontryagin developed a set of neces-
sary conditions for optimal problems [Pon+62], the so-called Pontryagin maxi-
umum principle (PMP) This approach naturally leads to adjoint methods, from
where feedback control is not immediately applicable.

Despite its open-loop nature, the PMP has already been used to find feed-
back controls, see e.g. [BTB00; KW17; NGK19; AKK20]. However, in contrast
to our open-loop approach, these approaches do not use the Bellman equation
and thus the PMP approach can suffer from long time-horizons.

Another approach, closely related to our open-loop ansatz, where the con-
cept of adjoint methods and feedback control are combined is Model Predictive
Control (MPC). Model predictive control originates for simple applications in
the 1970s for stabilizing linear systems, see i.e. [Kle70], and later reformulated
for non-linear systems, see e.g. [GP17]. For surveys on MPC w.r.t. theoreti-
cal results and industrial applications we refer to [GPM89; QB03]. The MPC
approach replaces the optimal control problem with short and overlapping time
horizon and obtains a feedback control by solving this short time horizon prob-
lem, to obtain a sub-optimal online controller. However, due to its short time
horizon, this optimal control problem can be solved in real-time. Our open-loop
method can be characterized as a MPC approach with optimal final condition,
leading to an optimal controller. This combination of MPC and the Bellman
equation has already been considered in the context of reinforcement learning
[Atk+94; Zho+13]. In these applications, low-dimensional systems are consid-
ered.
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The second approach we consider in this paper is an application of the policy
iteration algorithm.

In order to control higher-dimensional systems, memory efficient methods
have to be applied to circumvent the curse of dimensionality. Hierarchical ten-
sor products such as tensor trains have also been recently used in this context.
Rooted in quantum physics under the name matrix product states, tensor trains
have been introduced to the mathematical community in [Ose11] to tackle the
curse of dimensionality. Note that tensor trains are a special case of a more
general framework - hierarchical tensor networks. These networks have been de-
veloped in [HK09] where a well-founded mathematical framework is introduced.
For surveys and more details, see [Hac14; HS14; Sza+15; BSU16]. Tensor trains
have already been applied to represent the value function of infinite horizon
control problems [DKK19; OSS19] and stochastic control problems [HDB14;
Fac+20; GKM18].

Instead of this ansatz space it is possible to use other methods from ma-
chine learning such as neural networks, see e.g., [DLM20; NR20; IRZ20], kernel
methods or sparse polynomials, as it is done in [AKK20].

Finally, our regression/Least-Squares-based approach is closely related with
empirical risk minimization [Vap92; SC08] and classical machine learning tasks
with one fundamental twist. In classical tasks from statistical and machine
learning the data is noisy and samples are prescribed and biased. In our ap-
proach, we are able to compute the data with close to arbitrary precision due
to the adjoint method approach and advanced ODE solvers. Moreover, we are
able to generate or data points arbitrarily. Due to the precision of the adjoint
approach, computing the data can be understood as a so-called high-fidelity
computation. In contrast to that, our approximation of the value function can
be seen as a low-fidelity representation of the value function, enabling real-time
evaluations of the gradient and thus of the (approximative) optimal control.

While the generalization to controlling stochastic systems is straight-forward
in the case of the policy iteration, the generalization of the open-loop approach
to stochastic control is more complex. Here, possible approaches are the so-
lution of forward-backward stochastic differential equations (FBSDE) [BT04;
GLW+05], for an optimal control context see e.g. [Pha+05]. We want to high-
light recent groundbreaking successes in the treatment of FBSDEs using deep
learning, see e.g. [EHJ17]. It was also shown that tensor trains are efficiently
applicable in this context [RSN21].

Structure

The rest of the paper is organized as follows. In the preliminaries Section 2 we
introduce the optimal control problem, and fundamental concepts such as the
value function and the Bellman equation.

Section 3 is devoted to reinterpreting the Bellman equation as an optimal
control problem and the corresponding open-loop ansatz. In the following sec-
tions we treat the Bellman equation via the policy iteration algorithm. Then, we
clarify the numerical feasibility by introducing the regression method in com-
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bination with our ansatz set, the tensor trains. In Section 7 we give several
ideas on how to improve the approach and in the final section we give numerical
evidence.

2 The Optimal Control Problem

In this section we formulate the optimal control problem in open-loop and closed-
loop form. Furthermore, we define basic notions of control theory and formulate
governing equations.

We consider a deterministic, finite time horizon optimal control problem of
the following form. For x ∈ Ω ⊂ Rd minimize w.r.t. u ∈ L2(0, T ;Rm) the cost
functional J : [0, T ]× Ω× L2(0, T ;Rm)→ R, defined as,

J (t0, x, u(·)) :=

∫ T

t0

c(t, y(t)) + u(t)′R(t)u(t) dt+ cT (y(T )), (1)

where

ẏ(t) = f(t, y(t)) + g(t, y(t))u(t) (2)

y(0) = x. (3)

We assume c : [0, T ] × Ω → R≥0 and cT : Ω → R≥0 are non-negative, coercive
and smooth. Further, let R : [0, T ] → Rm,m be a family of positive definite
matrices continuous in time. Note that u(t)′ denotes the transpose of u(t). For
initial data x ∈ Ω and fixed control u(·) ∈ A, we denote by yx(t, u) ∈ Ω the
evaluation of the trajectory at time t. If the context is clear we just write y(t).
We further assume that f : [0, T ]× Ω → Ω and g : [0, T ]× Ω → Rn,m are (non
linear) smooth functions. We define the value function as

v∗ : [0, T ]× Ω→ R, (t, x) 7→ inf
u∈L2(0,T ;Rm)

J (t, x, u) (4)

and the corresponding Bellman equation takes the following form.

Theorem 1. [BC97; BD97] Set `(t, x, u) = c(t, x) + u′R(t)u. Then for all
x ∈ Ω and 0 ≤ t0 < t1 ≤ T we have

v∗(t0, x) = inf
u∈L2(t0,t1;Rm)

[ ∫ t1

t0

`(y(t), u(t)) dt+ v∗(t1, y(t1)),
]

(5)

where y(·) is the trajectory corresponding to (2) with control u and initial value
y(t0) = x.

We further have the following HJB equation

Theorem 2. [BC97; BD97] Assume there are σ, δ ≥ 1 with σ < δ, `0 > 0 and
for every compact K ⊂ Rd some fK > 0 such that

‖f(x, u)‖ ≤ fK(1 + ‖x‖σ) ∀(x, u) ∈ K × Rm,
|`(x, u)| ≥ `0‖a‖δ ∀(x, u) ∈ Rd × Rm.
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Then the value function v∗(t, x) is the unique viscosity solution of

∂

∂t
v∗(t, x) + sup

u∈Rm

[
−∇v∗(t, x) · (f(t, x) + g(t, x)u)− `(t, x, u)

]
= 0 (6)

with final condition v(T, ·) = cT (·).
In the following, we refer to the collection (1) and (2) as the open-loop control

problem. In contrast to that, in the closed-loop formulation, the parameter u(t)
is replaced by a mapping α : Ω → Rm, such that the closed-loop system takes
the form.

ẏ = f(t, y) + g(t, y)α(t, y), y(t0) = x (7)

for any policy α : [0, T ]× Ω→ Rm continuous on [0, T ] and Lipschitz in Ω and
denote the policy evaluation function

J α(t0, x) :=

∫ T

t0

c(t, yα(t)) + α(x(t))′R(t)α(x((t)) dt+ cT (yα(T )). (8)

Here, yα(t) is the trajectory of the closed-loop system (7) evaluated at time
t. We refer to the collection (8), (7) as the closed-loop problem. If the value
function is known and differentiable, we can use it to explicitly compute an
optimal feedback law.

Theorem 3. [BC97] An optimal feedback control is given by

α∗(t, x) = −1

2
R−1g(t, x)′∇v∗(t, x), (9)

if ∇v∗ exists.

For τ ≥ 0 we define the flow Φατ : [0, T ] × Ω → [τ, T + τ ] × Ω such that
Φατ (t0, x) = (t0 + τ, y(t0 + τ)), where y(t0 + τ) is the evaluation of the trajectory
at time τ + t0 with initial condition y(t0) = x w.r.t (7).

3 Reformulation as a series of Open-Loop con-
trol Problems

In this section we reinterpret the Bellman equation as a series of open-loop
control problems. These open-loop control problems are defined on a small
subset of [tl, tl+1) ⊂ [0, T ], which is why we refer to them as local open-loop
control problems. To this end, we consider a discrete set of time points 0 = t1 <
· · · < tL = T . We notice that the Bellman equation has essentially the same
structure as the finite horizon control problem and that we can interpret it as
such. For convenience we repeat the Bellman equation below

v∗(tl, x) = inf
u∈L2(tl,tl+1;Rm)

[ ∫ tl+1

tl

`(y(t), u(t)) dt+ v∗(tl+1, y(tl+1))
]
, (10)
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and notice that v∗(tl+1, y(·)) can be interpreted as a final condition and `(y(·), u(·))
as the running cost with governing ODE system (2).

The local open-loop control problem can be solved by adjoint methods. Re-
call that the Pontryagin Maximum Principle (PMP) gives as necessary condi-
tions for a minimal control

ẏ(t) = f(t, y) + g(t, y)λ(t), y(0) = x

λ̇(t) = −∂yH(y, u, λ) λ(T ) = ∂ycT (y(T ))

H(y, u, λ) = min
ũ
H(y, ũ, λ)

where H(y, u, λ) = `(y, u) + λT (f(t, y) + g(t, y)u), [Pon+62; Don+95]. After
introducing a time discretization, this system is solved by standard gradient
decent methods, see e.g. [HK10]. Note that in this formulation the gradient of
the final condition appears, which means that by setting the value function to
be the final condition we might run into regularity issues. However, we ignore
this problem for now and assume that the value function is differentiable. We
alleviate this problem in Section 5.

Traditionally, open-loop control methods suffer from long time horizons.
However, due to our time-discretization, we can assume that the time-horizon
is small. This results in the following algorithm for the continuous case.

Algorithm 1: Backwards solution to the Bellman equation - continu-
ous case

input : Time points 0 = t0 < · · · < tL < T .
output: The value function v∗ evaluated at the time points

1 Set v∗(tL, ·) = cT (·)
2 for l = L− 1 to 0 do
3 Calculate v∗(tl, ·) by solving the local open-loop control problem

(10) with final condition v∗(tl+1, ·).
4 end

We observe that within this formulation we have not done any discretization
other than setting time points where we want to compute the value function.
The next step is usually a time-discretization of the underlying ODE (2), such
that the optimal control problem can be solved. This time-discretization does
not have to be on the same time-grid as the time-points where the value function
shall be evaluated. In fact, it can be finer. In this case we use linear interpolation
of the value function to obtain the value function at the intermediate points

v∗(t, x) ≈ tl+1 − t
τ

v∗(tl, x) +
t− tl
τ

v∗(tl+1, x) for t ∈ [tl, tl+1), x ∈ Ω. (11)

Note that this interpolation does not affect Algorithm 1 as in this algorithm
the value function is only evaluated at the time-points tl. This is only relevant
when the value function is used to compute a feedback-law via Theorem 3. We
also make use of this interpolation for the policy iteration approach in Section
4.
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Assuming an equidistant discretization of the ODE, the dimension of the
local open-loop control problems increases only linearly in time and does not
increase with the spatial dimension. However, the dimension of the regression
problem is problematic and is covered in Section 6. Note that solving the local
optimal control problems for every initial value is computationally not feasible.
We instead draw samples xi ∈ Ω and use a regression type approach as described
in Section 5.

4 Policy Iteration approach

Another popular approach is the Policy iteration algorithm. This Newton-type
method is an iterative scheme that alternates between solving a linearized Bell-
man equation and improving a policy.

As in the previous chapter, we use the same time subdivision 0 = t0 <
· · · < tL = T . We use the policy iteration to approximate the value function by
solving the local optimal control problems on our time-grid in the following way.
For a fixed policy α defined on [tl, tl+1), the corresponding linearized Bellman
equation takes the linearized form

vα(tl, ·) =

∫ tl+1

tl

`αt−tl(tl, ·)dt+ v∗(tl+1,Φ
α
τ (tl+1, ·)), vα(tl+1, ·) = v∗(tl+1, ·).

(12)

Note that plugging in the optimal policy recovers the Bellman equation (5).
In this formulation the policies are depending on the time t. However, if we
only compute vα(tl, x) for every l, the policy using the optimality condition in
Theorem 3 cannot be evaluated at times other than tl. Thus, we again make
use of interpolation between the time-points

vα(t, ·) =
tl+1 − t

τ
vα(tl, ·) +

t− tl
τ

v∗(tl+1, ·) for t ∈ [tl, tl+1). (13)

The policy iteration algorithm is then given by Algorithm 2.
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Algorithm 2: Policy Iteration for approximating the local optimal
control problem.

input : A Policy α0, 0 ≤ tl < tl+1 ≤ T and an approximation of
v∗(tl+1, ·), denoted by v̂(tl+1, ·)

output: An approximation of v∗(tl, ·) and α∗(tl, ·), denoted by v̂(tl+1, ·)
and α̂(tl+1, ·).

1 Set k = 0.
2 while not converged do
3 Solve the linear equation

vk+1(x) =

∫ tl+1

tl

`αk
t−tl(tl, x)dt+ v̂(tl+1,Φ

αk
τ (tl, x)) (14)

and use linear interpolation between vk+1 and v̂(tl+1, ·) as in (13)
to obtain vk+1(t, ·) for t ∈ [tl, tl+1). Then update the policy
according to

αk+1(t, x) = −1

2
B(t)−1g(t, x)T∇vk+1(t, x), t ∈ [tl, tl+1).

4 k = k + 1.

5 end
6 Set v̂(t, ·) = vk(t, ·) and α̂(t, ·) = αk for t ∈ [tl, tl+1).

In [PB79; SG77] the convergence of the exact Policy iteration is analyzed and
in [LB98] extended to Galerkin methods. The convergence and error estimates
are still open problems in the Least-Squares setting. Due to the policy update
where the gradient of v appears within the fixed-point iteration, this method
can be prone to overfitting. We address this issue by adding a regularization
term, as described in (28).

Note that the right-hand-side of (14) can be computed point wise without
knowledge of the underlying dynamical system. Only a black-box solver for Φαtl
and a function for evaluation of `αtl is needed. We also observe, that the time-
discretization of the value function does not not necessarily have to be the same
as the time discretization of the ODE. The above algorithm is used to solve the
Bellman equation on the complete time frame.

5 Formulation of the Regression Problem

For solving (10, 14), computing the value function for every point x is not fea-
sible. Moreover, we cannot expect to have access to the exact value function
v∗(tl+1, ·) as final condition, but only an approximation. We compute the ap-
proximation of the value function by a regression ansatz, which is very similar
for both approaches. We first describe the procedure for the local open-loop
ansatz and thereafter comment on the policy iteration approach.

We replace the value function as a final condition with an approximation
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v̂l+1(·) that we computed in the step before, i.e. we replace the local optimal
control problem (10) by

ṽl(x) = inf
u∈L2(tl,tl+1;Rm)

∫ tl+1

tl

`(y(t), u(t)) dt+ v̂l+1(y(tl+1)). (15)

Note that we write ṽl on the l.h.s. and v̂l+1 on the r.h.s. of the equation.
We do not use the same notation because we are not be able to find the

exact minimizer ṽl for every initial value x. Instead we find an approximation,
which we again denote by v̂l. In order to find this approximation we observe
that ṽl ∈ L2(Ω) =: V . Choosing an ansatz space M ⊂ V and we seek an
approximation in the sense of a Least-Squares method

inf
v∈M

‖v − ṽl‖2V . (16)

As we cannot compute the norm, we replace this equation by a discrete version
using empirical risk minimization [CS01]. To this end we consider a set of
samples {x1, . . . xJ} ⊂ Ω and compute ṽl(xi) for all 1 ≤ j ≤ J , which is a
regression problem. In particular we set

v̂l = arg min
v∈M

1

J

J∑
j=1

|v(xj)− ṽ(xj)|2. (17)

In this paper we consider tensor networks as ansatz space. Error estimates
w.r.t. the number of samples are given in [Eig+20] for our ansatz space. At
this point we notice that the problem of a potentially irregular value function
can be solved here. By replacing the final condition v∗(tl, ·) ∈ L2(Ω) by the
approximation v̂l ∈ M we can enforce a smooth final condition by choosing an
ansatz space M consisting of smooth functions. This results in the following
discrete version of Algorithm 1.

Algorithm 3: Backwards solution to the Bellman equation - discrete
case

input : Time points 0 = t0 < · · · < tL < T and samples x1, . . . , xJ ∈ Ω
output: An approximation v̂l of the value function v∗(tl, ·) evaluated at

the time points
1 Set v̂L = cT
2 for l = L− 1 to 0 do
3 Calculate ṽl(xj) by solving the local open-loop control problem (15)

with initial values xj and final condition v̂l+1.
4 Compute v̂l by solving the regression problem

v̂l = arg min
v∈M

1

J

L∑
j=1

|v(xj)− ṽ(xj)|2. (18)

5 end
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Remark 4. Up until now we have not specified the ansatz set M. Note that
here, any ansatz set where (18) is computable can be used. In low dimension, tra-
ditianal ansatz sets such as finite elements, splines or polynomial ansatz spaces
are feasible. In higher dimension, other ansatz sets such as neural networks
or tensor networks, as considered here, are possible. Note that computing this
algorithm consists of L equations that have to be solved where J samples have
to be generated. This formulation is especially viable if solving the regression
problems is particularly expensive and if the local open-loop control problems can
be solved efficiently.

For the policy iteration approach the discrete version of the algorithm is very
similar. Here, we simply replace (14) by a discrete version

vk+1 = arg min
v∈m

1

J

J∑
j=1

∫ tl+1

tl

|v(xj)− `αk
t−tl(tl, xj)dt− v̂(tl+1,Φ

αk
τ (tl, xj))|2. (19)

We finalize this section by giving an error propagation under the assumption
that we can bound the difference between ṽ and v̂ in the L∞(Ω) norm.

We first prove that for optimal control problems of similar form, the value
functions are similar.

Lemma 5. Let v1, v2 be value functions to optimal control problems of the form

v1(x) = inf
u

∫ t1

t0

`(y, u)dt+ c1(y(t1)), v2(x) = inf
u

∫ t1

t0

`(y, u)dt+ c2(y(t1)),

with the same underlying ODEs, y(·) be the solution to the ODEs with initial
condition x and |c1(x)− c2(x)| ≤ δ for all x. Then

|v1(x)− v2(x)| ≤ δ

as well.

The proof is given in the appendix. This Lemma allows us to prove an error
propagation within our discrete algorithm. The main idea is that the solution
ṽl to the local optimal control problem (15) can be seen as an intermediate
between the exact value function v∗(tl, ·) and the computable approximation v̂l.

Theorem 6. By ṽ denote the solution to the local optimal control problem (15)
with terminal condition v̂l+1. Assume that |ṽl(x)− v̂l(x)| ≤ δ for all x ∈ Ω and
all 1 ≤ l ≤ L. Then

‖v̂L−l(·)− v∗(T − lτ, ·)‖L∞(Ω) ≤ lδ

for all 0 ≤ l ≤ L.

Proof. We prove the theorem inductively. First note that we have v∗(T, ·) =
v̂L(·). Thus,

‖v̂L−1(·)− v∗(T − τ, ·)‖L∞(Ω) ≤ δ

11



by assumption.
Now assume that

‖v̂L−l(·)− v∗(T − lτ, ·)‖L∞(Ω) < lδ. (20)

Finally, we have

‖v̂L−(l+1)(·)− v∗(T − (l + 1)τ, ·)‖L∞(Ω) (21)

≤ ‖v̂L−(l+1)(·)− ṽL−(l+1)(·)‖L∞(Ω)︸ ︷︷ ︸
≤δ by assumption

+ ‖ṽL−(l+1)(·)− v∗(T − (l + 1)τ, ·)‖L∞(Ω)︸ ︷︷ ︸
≤lδ by (20) plugged into Lemma 5

(22)

≤ (l + 1)δ. (23)

This finishes the proof.

This theorem yields an error bound in the L∞(Ω) norm. Using a regression
approach, however does only yield bounds in the L2(Ω) norm. Here, we make
use of our finite-dimensional model set. As the model set M is continuously
embedded into its span, i.e. M ↪→ span(M), this space is a finite-dimensional,
and thus closed, subspace of L2(Ω). Due to the boundedness of Ω and the
regularity of the ansatz functions this subspace can also be equipped with the
L∞(Ω) norm and as a finite dimensional space these norms are equivalent, which
means that a bound in the L2(Ω) norm is in fact also a bound in the L∞(Ω)
norm.

6 Representation of the Value Function

The question of how to represent the approximation of the value function v̂l ∈
M and how to find it within the ansatz space is remaining. For the sake of
readability we drop the subscript l in this section.

Traditional methods such as finite elements, splines or multi-variate polyno-
mials leads to a computational complexity that scales exponentially in the state
space dimension d. However, interpreting the coefficients of such ansatz func-
tions as entries in a high-dimensional tensor allows us to use tensor compression
methods to reduce the number of parameters. To this end, we define a set of
functions {φ1, . . . , φm} with φi : R → R , e.g. one-dimensional polynomials or
finite elements. The approximation v̂ : Rd → R takes the form

v̂(x1, . . . , xd) =

m∑
i1=1

· · ·
m∑
id=1

ci1,...,idφi1(x1) · · ·φid(xd). (24)

Note that this is a standard formulation for finite elements or multivariate poly-
nomial bases. For the sake of simplicity we choose the set of ansatz functions to

be the same in every dimension. The coefficient tensor c ∈ Rm×m×···×m ≡ Rmd

suffers from the curse of dimensionality since the number of entries increases
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exponentially in the dimension d. In what follows, we review the tensor train
format to compress the tensor c.

For the sake of readability we will henceforth write ci1,...,id = c[i1, . . . , id]
and represent the contraction of the last index of a tensor w1 ∈ Rr1×m×r2 with
the first index of another tensor w2 ∈ Rr2×m×r3 by

w = w1 ◦ w2 ∈ Rr1×m×m×r3 , (25a)

w[i1, i2, i3, i4] =

r2∑
j=1

w1[i1, i2, j]w2[j, i3, i4]. (25b)

In the literature on tensor methods, graphical representations of general tensor
networks are widely used. In these pictorial descriptions, the contractions ◦ of
the component tensors are indicated as edges between vertices of a graph. As
an illustration, we provide the graphical representation of an order-4 tensor and
a tensor train representation (see Definition 7 below) in Figure 1.

u1 u2 u3 u4c =
r1 r2 r3

m m m mm

m
m
m

Figure 1: An order 4 tensor and a tensor train representation.

Tensor train representations of c can now be defined as follows [Ose11].

Definition 7 (Tensor Train). Let c ∈ Rm×···×m. A factorization

c = u1 ◦ u2 ◦ · · · ◦ ud, (26)

where u1 ∈ Rm×r1 , ui ∈ Rri−1×m×ri , 2 ≤ i ≤ d − 1, ud ∈ Rrd−1×m, is called
tensor train representation of c. We say that ui are component tensors. The
tuple of the dimensions (r1, . . . , rd−1) is called the representation rank and is
associated with the specific representation (26). In contrast to that, the tensor
train rank (TT-rank) of c is defined as the minimal rank tuple r = (r1, . . . , rd−1),
such that there exists a TT representation of c with representation rank equal to
r. Here, minimality of the rank is defined in terms of the partial order relation
on Nd given by

s � t ⇐⇒ si ≤ ti for all 1 ≤ i ≤ d,
for r = (r1, . . . , rd), s = (s1, . . . , sd) ∈ Nd.

It can be shown that every tensor has a TT-representation with minimal
rank, implying that the TT-rank is well defined [HRS12b]. An efficient al-
gorithm for computing a minimal TT-representation is given by the Tensor-
Train-Singular-Value-Decomposition (TT-SVD) [OT09]. Additionally, the set
of tensor trains with fixed TT-rank forms a smooth manifold, and if we include
lower ranks, an algebraic variety is formed [Lan12].
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The TT-representation of (24) is then given as

v̂(x) =

m∑
i1

· · ·
m∑
id

r1∑
j1

· · ·
rd−1∑
jd−1

u1[i1, j1]u2[j1, i2, j2] · · ·

· · ·ud[jd−1, id]φi1(x1) · · ·φid(xd). (27)

Introducing the compact notation

φ : R→ Rm, φ(x) = [φ1(x), . . . , φm(x)],

the corresponding graphical TT-representation (with d = 4 for definiteness) is
then given as in Figure 2.

u1 u2 u3 u4

φ(x1) φ(x2) φ(x3) φ(x4)

v̂(x) =
r1 r2 r3

m m m m

Figure 2: Graphical representation of vn : R4 → R.

Within the TT format regression problems can be solved by using the alter-
nating least squares (ALS) algorithm [HRS12a], where the regression problem,
suffering from the curse of dimensionality is reduced to a sequence of linear
sub-problems, whose dimensionality is given by the size of a single component
tensor. The routine is based on the observation, that fixing all component ten-
sors but one reduces the multilinear ansatz to a linear problem, that can be
solved by standard linear regression models, c.f. Figure 3. Note that we replace
the integral in Figure 3 by Monte-Carlo quadrature, c.f. Section 5. Iteratively
updating the component tensors produces a monotone sequence, that converges
at least locally. In our version of the ALS algorithm we update the component

u1 u3 u4

φ(x1) φ(x2) φ(x3) φ(x4)

min
ũ∈Rr1×m×r2

∫
Ω

|
ũ

−r(x1, . . . , x4)|2dx1 . . . x4

Figure 3: Graphical representation of ALS algorithm. In this linear sub-problem
the second component tensor is being optimized, while component tensors
u1, u3, u4 are fixed (from previous iterations).

tensors from left to right. We say that after every component tensor is updated
once, one sweep is complete. In order to circumvent overfitting, we further add
a penalization term to the loss functional (18), such that the regression problem
becomes

v̂ = arg min
v∈M

1

J

J∑
j=1

|v(xj)− ṽ(xj)|2 + δ‖v‖H2
mix(Ω), (28)
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where H2
mix(Ω) is the tensor product of one-dimensional H2 Sobolev spaces

[SU09], assuming that Ω can be written as Ω =
⊗d

i=1[a, b], where a < b. Choos-
ing the one-dimensional ansatz functions to be orthonormal w.r.t. H2(a, b), this
regularization term is realized via Parseval’s identity, by penalizing the Frobe-
nius norm of the component tensors. As H2

mix(Ω) is continuously embedded into
W 1,∞(Ω) [SU09] we are penalizing the L∞(Ω) norm of the gradient of v, which
prevents overfitting. Note that in order to reduce the impact of the regularizer
we reduce δ within the iteration of the ALS. After every completion of a sweep,
we set δ to be the 10−3 times the residual of the loss functional (28). In our
numerical tests we have noticed that this regularizer is integral to the success
of our method.

6.1 Complexity calculations for the evaluation and gradi-
ent of the function

In the following we cover the evaluation of v and the computation of the gradient
of v within the TT-format. Note that for fast evaluation of the feedback law,
efficient computation of the gradient is critical. In the following complexity
considerations we assume that ri = r for all i.

Evaluating v in the TT format. First, we consider the mapping x 7→ v(x)
under the assumption that v is in TT-format. This operation can be denoted
using the ◦ operation as

v(x1, . . . , xd) = u1 ◦ · · · ◦ ud ◦ φ(xd) ◦ · · · ◦ φ(x1). (29)

We notice that in order to evaluate v at a certain point x ∈ Rd, we have to com-
pute φ(xi) for all i. This corresponds to m · d evaluations of one-dimensional
functions, where we assume that these evaluations are O(1) each. The contrac-
tion is performed from left-to-right (or from right-to-left) and is of complexity
O(dmr2), because for every component tensor of dimension r×m×r one vector
of size r and one vector of size m has to be contracted, leaving a vector of size
r.

Evaluating ∇v in the TT format. In order to evaluate ∇v at a certain
point x ∈ Rd, we have to compute φ(xi) and φ′(xi) for all i, where φ′(xi) ∈ Rm is
the derivative of the one-dimensional functions φi stacked into a vector. Next we
observe that because of the tensor structure of our basis, the partial derivative
∂v
∂xi

is given by

∂v

∂xi
(x1, . . . , xd) =

u1 ◦ · · · ◦ ud ◦ φ(xd) ◦ · · · ◦ φ(xi+1) ◦ φ′(xi) ◦ φ(xi−1) ◦ · · · ◦ φ(x1). (30)

Noticing the similarity of the above formulas with (29) we can again estimate
the complexity of computing a partial derivative to be similar to the previous
case. A naive implementation of the gradient then yields another factor d in
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the complexity estimation, obtaining a total complexity of O(d2mr2). How-
ever, in the TT-format the naive implementation computes many redundant
contractions, which means that we can save some complexity here. As shown in
Appendix B it is possible to reduce the complexity to O(dmr2) via a recurrent
scheme.

7 Comparing both approaches and possible im-
provements

In this section we compare both approaches and give rise to possible improve-
ments/adaptions of the algorithms.

Comparison

We notice that both algorithms share the same backwards iteration to approxi-
mate v∗(tl, ·) for all tl. Thus, we have to compare how the local optimal control
problems are solved.

Within the policy iteration approach the value function is approximated
in an iterative scheme, where for every iteration step trajectories of length τk
have to be computed and then a linear equation has to be solved. In contrast
to that, for the open-loop approach, an optimal control problem has to be
solved for every sample point. After that a single linear equation has to be
solved. Consequently, generating the samples for the open-loop approach is more
expensive, provided that the policy iteration does not need too many iterations,
while solving the linear equation is more expensive in the policy iteration case
due to the iteration scheme. In [Fac+20] first ideas to the formal scaling w.r.t.
the spatial dimension are described for the Policy Iteration combined with Least-
Squares methods in the context of stochastic exit time problems. As indicated
there within, the complexity of deterministic systems is in a similar but reduced
fashion since the stochastic behaviour does not need to be resolved.

For both approaches, we draw samples xi ∈ Ω and keep the same samples
during the complete iteration. Within the backwards iteration we have to choose
initial data for both approaches. In the policy iteration approach, an initial
policy has to be chosen. Due to the short time-horizon of the local optimization
problems it is in most cases possible to choose the 0 policy. However, in many
cases choosing the policy from the previous step is valid as well, i.e. setting
v0(t, ·) = v̂(tl+1, ·), t ∈ [tl, tl+1) and obtaining α0 using the optimality condition
from Theorem 3. In our numerical tests we use the latter approach.

For the open-loop approach we do not need an initial policy. Instead, we have
to choose initial controls for the open-loop solver. Here, it is again possible to
choose the 0 control. However, using the data that was generated in the previous
time step can increase the convergence rate tremendously. More exactly, we
denote by ui,l the initial guess, to emphasize its dependency on the sample xi
and on the initial time tl. We use use the control that was computed in the
previous time step, i.e. ui,l = u∗i,l+1, which is close to optimal if the difference
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between the final conditions is small. After optimizing ui,l we denote the optimal
control by u∗(i, l).

For both approaches we notice that generating the samples can be paral-
lelized perfectly. In the case of the policy iteration approach we have to solve
an ODE on a short time frame, whereas in the open-loop approach an opti-
mal control problem has to be solved, which involves a gradient descent scheme
where several forward and backward ODEs have to be solved.

Possible improvements

The first improvement we propose is based on the error propagation from The-
orem 6 and the Bellman equation. We first observe that the Bellman equation
does not only hold for initial time tl and final time tl+1, but instead for every
final time larger than tl. Assuming that we obtain the same error δ for the
regression w.r.t. every end-point larger than tl, larger time-horizon decreases
the error propagation. By setting the end-point to be tl+2, the error bound
from Theorem 6 is halved. Setting the final time to be T for every initial time tl
prevents any error propagation. Of course, solving the open-loop control prob-
lems with longer time-horizon becomes increasingly difficult. Here, a balance
between time-horizon and error propagation has to be found.

In a similar way it is possible to increase the time horizon for the policy
iteration approach. This is done by integrating along longer trajectories as
indicated in Figure 4

evaluate v̂

tl tl+1 tl+3 T time

optimize vk and αk evaluate α̂

integrate `

Figure 4: Visualization of increased integration horizons. The red part is opti-
mized via the policy iteration, the green part is only evaluated and the evaluate
or black part is estimated by evaluating v̂ at time tl+3 . Note that α̂ and v̂ are
already computed and thus fixed.

The second proposed improvement can only be used by the open-loop ap-
proach. The idea is using the optimal controls u∗i,l that we compute via the
gradient descent method. Due to Theorem 3, we know that

u∗i,l(tl) = −1

2
R−1g(t, xi)

′∇v∗(tl, xi). (31)

This additional information can be incorporated to a modified regression prob-
lem, where we add a quadratic loss term containing the control

v̂l = arg min
v∈M

1

L

L∑
l=1

|v(xl)−ṽ(xl)|2+η|u∗i,l(tl)+
1

2
R−1g(t, xi)

′∇v(xi)|2+δ‖v‖H2
mix(Ω),

(32)
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where η ≥ 0. Adding the loss w.r.t. to the gradient of v is closely related
to the so-called physical informed neural network (PINN) approach known in
deep learning [RPK19] and we also want to highlight that in [AKK20] a similar
adaption of the loss functional is done, where improved performance is reported.

Finally, another improvement is again motivated by MPC. Instead of com-
puting the feedback law by using the optimality condition in Theorem 3 we can
compute it by an MPC approach using the value function as final condition. De-
pending on the length of the time horizon this can be done in real-time, yielding
an optimal feedback law. Due to the error propagation (backwards in time) it
can be expected that the error in the value function is lower at later time steps.
Moreover, the gradient of the value function does not appear directly in the
feedback law, but only indirect in the adjoint method within the MPC method.

A possible adaption of the open-loop algorithm is to decouple the value
function and the controller. In the open-loop approach it is possible to solve
separate regression problems for approximating ṽ and u∗. As the information on
u∗ is a byproduct of the open-loop ansatz this does not increase the complexity
of generating the data. However, instead of one regression problem for the value
function, two regression problems have to be solved with one being the value
function and the other being the controller.

8 Numerical Results

We present results of numerical tests for different optimal control problems. For
the implementation of the tensor networks we use the library xerus [HW17].
The calculations were performed on a AMD Ryzen 5 PRO 3500U 8x 2.60GHz,
16 GB RAM Fedora 33 Linux distribution and the code is available on https:

//github.com/lsallandt/finitehorizon_bellman. In every test we consider
a cost functional of the form

arg min
u∈L2((0,∞);Rm)

J (x, u) =

∫ T

0

‖y(t)‖2 + 0.1‖u(t)‖2 + c‖y(T )‖2dt, (33)

where c ≥ 0 and a PDE

ẏ = f(y) + g(y)u, y ∈ L2(−1, 1).

As the first step we discretize the PDE in space, such that we obtain a finite
dimensional system of ODEs, which we also denote as

ẏ = f(y) + g(y)u, y ∈ Rn.

For this discretization we use simple finite differences methods. We implement
our algorithms for the spatially discretized PDE. As polynomial ansatz spaces
we use the tensor product of one-dimensional H2-orthogonal polynomials of
degree smaller than 4 and we use the loss functional with regularizer (28). We
benchmark the controllers obtained by our optimization by comparing it to the
optimal open-loop control over the whole time-horizon [0, T ]. We compute this
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optimal control by using the same gradient descent method used for the local
optimal control problems. In fact, we use a simple fixed step-size and for the
update direction we use the current gradient and the gradient of the previous
step. In particular for Test 1 finding the optimal control over the whole time
horizon without a good initial control is non-trivial, and computing the first
gradient fails, due to the instability of the system. Thus, we use the control
generated by our feedback controllers as initial controls. This problem did not
occur for the local optimal control problems due to their short time horizon.
We further compare our controllers to the linear quadratic regulator (LQR), a
closed-loop controller that is obtained by linearizing the systems around 0 and
then solving the Riccati equation. We denote this controller by αLQR. In the
numerical tests we discretize the time-dependency of the value function using
τ = τl = tl+1 − tl = 0.01. The ODE is discretized using a different step-size,
namely 0.001 and the explicit Runge-Kutta 4 method, which means that for
every step in the value function, 10 steps of the ODE are computed. Here, we
use linear interpolation of the value function to obtain the value function at
the steps between our discretization points tl. We state that this uncoupling
is integral for the numerical success of our method. Setting τ = τl = 0.001
we obtain worse results. This effect can be attributed to the error propagation
from Theorem 6.

Remark 8. In the following tests, we distinguish between the policy α, the
corresponding cost estimator v and the real generated cost J (·, α(·)). For fixed
x, we obtain v(x) by simply evaluating v. Here, no trajectory has to be computed.
We obtain J (x, α(x)) by numerically integrating along the trajectory with initial
condition x. Note that J (x, α(x)) is basically the numerical approximation of
the cost functional with respect to a feedback law, defined in (8).

8.1 Test 1: Diffusion with Unstable Reaction Term

We consider a diffusion equation with unstable reaction term and Neumann
boundary condition, c.f. [KK18, Test 2]. Solve (33) with c = 1 and T = 0.3 for
y ∈ L2(−1, 1) subject to

ẏ = σ∆y + y3 + χωu

y(0) = x

with Neumann boundary condition and χω is the characteristic function w.r.t.
ω = [−0.4, 0.4] ⊂ [−1, 1]. We choose σ = 1 and use a finite differences grid
with d ∈ N grid points to discretize the spatial domain. We denote by A this
finite difference discritization of the Laplace operator and by G ∈ {0, 1}d the
discritization of the characteristic function χω. Then we obtain a system of d
ordinary differential equations

ẏ = σAy + y3 +Gu

y(0) = x
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Using the step-size h = 1
d+1 we get a finite dimensional approximation of the

term ‖y(t)‖2H in the cost functional. For this test we choose a spatial dimension
of d = 32. As the underlying equation is non linear, our ansatz for the value
function is the tensor product of polynomials up to degree 4. The internal ranks
chosen are

[3, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 3].

We solve the HJB equation in 32 dimensions on the set [−2, 2]d. While the full
ansatz space has dimension 532, the TT has 5395 degrees of freedom. For the
calculations we use 32370 uniformly distributed Monte-Carlo samples.

Remark 9. We stress that the number of Monte-Carlo samples is extremely
small when comparing it to the dimension of the ambient space
32370 � 532 ≈ 1022 and only when comparing it to the degrees of freedom
in the TT representation the numbers become comparable, 32370 = 6 · 5395.
This further indicates, that the curse of dimensionality is broken by our ansatz.
Additional studies, where the minimal number of samples is compared to the
dimensions of the underlying systems have to be done.

We first test the feedback controllers for certain initial values, visualized in
Figure 5. For both controllers, significant improvement in cost is noticeable,
with the greatest being approximately 38% of the cost saved compared to the
LQR controller. Moreover, we see that the computed feedback laws generate
close to optimal costs for the tested initial values. We further investigate the
performance of the controller by choosing initial values of the type [x, x, . . . , x],
where x ∈ [0, 2]. In Figure 6 we see that for small x every controller is close to
optimal. For x larger than 1 the LQR controller performs significantly worse
than the other controllers. By increasing the initial values beyond 1.5, the LQR
controller fails to stabilize the system, while the our controllers still stabilize the
system. However, for such values the computed feedback laws differs evidently
from the optimal control. For such large initial values the present setting was to
coarse to achieve better accuracy. Note that for computing the optimal control
for such extreme initial values a good initial guess is needed. In particular,
due to the blow-up, it is not possible to use the control generated by the LQR
controller as initial guess. We were only able to find the optimal control by using
the controls generated by our feedback controllers as initial guesses. Next we test
the feedback law for random initial values. Note that because of the diffusion,
equally distributed samples and normally distributed samples yield low cost on
average and in this case no improvements of the cost is to be expected. Thus,
we use a special distribution of initial values that we specify now. For every
initial value we choose an equally distributed integer between 2 and 20. This
number is the degree of a random polynomial. Next we choose a polynomial
with normal distributed coefficients of the degree we chose. We further modify
the polynomial in the following way p(x) := p̃(x)(x − 1)(x + 1), such that we
have p(−1) = p(1) = 0. Finally, we rescale p such that its maximum in [−1, 1] is
1.9. In order to have an idea how these initial values look, we plotted 10 initial
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(a) Initial values x0 and x1.
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(b) Generated controls, initial value x0.
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(c) Generated controls, initial value x1.
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Figure 5: The generated controls and cost for different initial values.

values in Figure 7 and report the results in Table 1. We report that for these
initial values the LQR controller failed to obtain cost smaller than 100 in 65 out
of 1000 initial values, while our controllers were not only stabilizing for every
initial value, but also close to optimal. On the set of initial values that the LQR
controller did not fail we see an average improvement of 32% while being close to
optimal. Finally, we report that on the whole set of initial values, which means
that these where the LQR controller failed are included, the average difference
to the optimal control was 1%. We note that out of all 1000 samples, the largest
relative difference between the optimal control and our feedback controllers is
≈ 34%, which was also observed in Figure 6 for values close to the boundary of
our integration area.
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Figure 6: Cost of initial values of the type [x, x, . . . , x].
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Figure 7: Examples of samples drawn from the polynomial distribution.

controller % cost < 100 avg. cost max. rel. diff. to opt. avg. Bellman error
LQR 93.5 4.453 nan 39.67

open-loop 100 2.61 0.3419 0.048
pol. it. 100 2.61 0.3381 0.047
optimal 100 2.60 0

Table 1: Performance of the different controllers for 1000 samples drawn from
the polynomial distribution. The averaged values are only taken from the subset
of initial values that the LQR succeeded in stabilizing.
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8.2 Test 2: Allen-Kahn equation

As underlying equation we use a one-dimensional Allen-Kahn equation similar
to [KK18, Test 3]. Solve (33) for y ∈ L2(−1, 1) subject to

ẏ = σ∆y + y − y3 + χωu

y(0) = x

with Neumann boundary condition. Here, we use the same discretization as in
Section 8.2. The constants are the same except for σ = 0.2, ω = [−0.5, 0.2].
Again, an ansatz of polynomials up to degree 4 is used. We choose the same
ranks as in the last test

[3, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 3]

and solve the HJB on [−2, 2]32.
From Figure 8 we deduce that for certain initial values, significant improve-

ment of cost is possible for both controllers with the greatest improvement being
25% of the cost. Again, the open-loop and the policy iteration approach yield
similar performance. We again notice that for these initial values our calculated
value functions are more accurate than the predictions from the LQR-based
value function.

We again further investigate the performance of the controller by choosing
initial values of the type [x, x, . . . , x], where x ∈ [0, 2]. In Figure 9 we see
that for small x every controller is close to optimal. For x larger than 0.5 the
LQR controller yields significantly worse performance than the other controllers.
However, in this case the LQR controller stabilizes the system for every initial
value.

Next we again test random initial values using the same setup as in the
previous test. In Table 2 we compare the performance of the controllers for
1000 random initial values drawn from the polynomial distribution. Again, the
open-loop and the policy iteration approach yield close to optimal performance,
while the LQR generates 22% more cost. Moreover, the the open-loop and the
policy iteration approaches predict the generated cost accurately.

controller % cost < 100 avg. cost max. rel. diff. to opt. avg. Bellman error
LQR 100 2.434 0.4234 24172

open-loop 100 1.985 0.0146 0.03267
pol. it. 100 1.988 0.0152 0.030593
optimal 100 1.981 0

Table 2: Performance of the different controllers for 1000 samples drawn from
the polynomial distribution. The averaged values are only taken from the subset
of initial values that the LQR succeeded in stabilizing.
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(b) Generated controls, initial value x0.
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Figure 8: The generated controls and cost for different initial values.

Conclusion

We have compared two methods for finding optimal controllers for finite horizon
optimal control problems. In numerical tests we have observed similar perfor-
mance for both methods. In contrast to the linear quadratic regulator we have
obtained close to optimal costs for many initial states. Moreover, in none of the
tests blow-ups occurred for our controllers. By encoding an approximation of
the value function in a low-rank tensor model we have obtained a low-fidelity
representation that allows fast evaluation of the feedback law. If even higher
accuracy is needed, it is possible to take the control generated by our low-fidelity
model as initial guess for further improvements via an open-loop optimization,
where the control generated by the LQR controller fails.
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Tensor Representation”. English. In: Journal of Fourier Analysis
and Applications 15.5 (2009), pp. 706–722. issn: 1069-5869. doi:
10.1007/s00041-009-9094-9. url: http://dx.doi.org/10.
1007/s00041-009-9094-9.

[HK10] Roland Herzog and Karl Kunisch. “Algorithms for PDE-constrained
optimization”. In: GAMM-Mitteilungen 33.2 (2010), pp. 163–176.

[How60] Ronald A Howard. “Dynamic programming and markov processes.”
In: (1960).

[HRS12a] S. Holtz, T. Rohwedder, and R. Schneider. “The Alternating Linear
Scheme for Tensor Optimization in the Tensor Train Format”. In:
SIAM J. Sci. Comput. 34.2 (2012), A683–A713. doi: 10.1137/
100818893. eprint: https://doi.org/10.1137/100818893. url:
https://doi.org/10.1137/100818893.

[HRS12b] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider.
“On manifolds of tensors of fixed TT-rank”. In: Numerische Math-
ematik 120.4 (2012), pp. 701–731.

[HS14] Wolfgang Hackbusch and Reinhold Schneider. Tensor Spaces and
Hierarchical Tensor Representations. Cham: Springer International
Publishing, 2014, pp. 237–261. isbn: 978-3-319-08159-5. doi: 10.
1007/978-3-319-08159-5_12. url: https://doi.org/10.1007/
978-3-319-08159-5_12.

[HW17] Benjamin Huber and Sebastian Wolf. Xerus - A General Purpose
Tensor Library. https://libxerus.org/. 2014–2017.

[IRZ20] Kazufumi Ito, Christoph Reisinger, and Yufei Zhang. “A Neural
Network-Based Policy Iteration Algorithm with Global Hˆ 2 H 2-
Superlinear Convergence for Stochastic Games on Domains”. In:
Foundations of Computational Mathematics (2020), pp. 1–44.

28

https://doi.org/10.1017/S0962492914000087
https://doi.org/10.1017/S0962492914000087
https://doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1137/100818893
https://doi.org/10.1137/100818893
https://doi.org/10.1137/100818893
https://doi.org/10.1137/100818893
https://doi.org/10.1007/978-3-319-08159-5_12
https://doi.org/10.1007/978-3-319-08159-5_12
https://doi.org/10.1007/978-3-319-08159-5_12
https://doi.org/10.1007/978-3-319-08159-5_12


[KDK13] B. Kafash, A. Delavarkhalafi, and S.M. Karbassi. “Application
of variational iteration method for Hamilton-Jacobi-Bellman”. In:
Applied Mathematical Modelling 37.6 (2013), pp. 3917–3928. issn:
0307-904X. doi: https://doi.org/10.1016/j.apm.2012.08.
013. url: http://www.sciencedirect.com/science/article/
pii/S0307904X12004696.

[KK18] Dante Kalise and Karl Kunisch. “Polynomial approximation of
high-dimensional Hamilton-Jacobi-Bellman equations and applica-
tions to feedback control of semilinear parabolic PDEs”. In: SIAM
J. Sci. Comput. 40.2 (2018), A629–A652. issn: 1064-8275. doi: 10.
1137/17M1116635. url: https://doi.org/10.1137/17M1116635.

[Kle70] David Kleinman. “An easy way to stabilize a linear constant sys-
tem”. In: IEEE Transactions on Automatic Control 15.6 (1970),
pp. 692–692.

[KW17] Wei Kang and Lucas C Wilcox. “Mitigating the curse of dimen-
sionality: sparse grid characteristics method for optimal feedback
control and HJB equations”. In: Computational Optimization and
Applications 68.2 (2017), pp. 289–315.

[Lan12] Joseph M Landsberg. “Tensors: geometry and applications”. In:
Representation theory 381.402 (2012), p. 3.

[LB98] J. Lawton and R. W. Beard. “Numerically efficient approximations
to the Hamilton-Jacobi-Bellman equation”. In: Proceedings of the
1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).
Vol. 1. June 1998, 195–199 vol.1. doi: 10.1109/ACC.1998.694657.

[Luo+14] Biao Luo et al. “Data-based approximate policy iteration for affine
nonlinear continuous-time optimal control design”. In: Automatica
50.12 (2014), pp. 3281–3290. issn: 0005-1098. doi: https://doi.
org/10.1016/j.automatica.2014.10.056. url: http://www.
sciencedirect.com/science/article/pii/S0005109814004373.

[NGK19] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. “Adaptive
deep learning for high-dimensional Hamilton-Jacobi-Bellman equa-
tions”. In: arXiv preprint arXiv:1907.05317 (2019).
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A Proof

proof of Lemma 5. Towards a contradiction assume that there exists an initial
value x such that |v1(x)− v2(x)| > δ. W.l.o.g. assume that v1(x)− v2(x) > δ.
Due to the definition of v2, for every ε > 0 there is a control u2 such that∫ t1

t0

`(y2, u2)dt+ c2(y2(t1))− ε ≤ v2(x),

where y2 is the trajectory corresponding to u2. Plugging u2 into the first cost
functional yields

v1(x) <

∫ t1

t0

`(y, u2)dt+ c1(y(t1)) := ṽ1(x).

Now it follows that

δ < v1(x)− v2(x) ≥ ṽ1(x)− v2(x) ≤
∫ t1

t0

`(y2, u2)dt+ c1(y2(t1))− (

∫ t1

t0

`(y2, u2)dt+ c2(y2(t1))) + ε

= c1(y2(t1))− c2(y2(t1)) + ε.

Since this holds for every ε > 0, this contradicts ‖c1 − c2‖∞ < δ.
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B Fast gradient evaluation

We now show how to compute the gradient of a function in TT-representation
in complexity O(dmr2). For this, we define the contractions

ψ+
i (xi+1, . . . , xd) = ui+1 ◦ · · · ◦ ud ◦ φ(xd) · · · ◦ φ(xi+1) (34)

ψ−i (x1, . . . , xi−1) = u1 ◦ · · · ◦ ui−1 ◦ φ(xi−1) · · · ◦ φ(x1). (35)

Note that ψ+
i is the contraction of every component tensor with larger index

than i, while ψ−i is the contraction of every component tensor with smaller index
than i. We observe that ψ+

i (xi+1 . . . , xd) ∈ Rr, ψ−i (x1 . . . , xi−1) ∈ Rr and that

∂v

∂xi
(x1, . . . , xd) = ψ−i ◦ ui ◦ ψ+

i ◦ φ′(xi). (36)

Finally, the recursive properties

ψ+
i = ui+1 ◦ ψ+

i+1 ◦ φ(xi+1), ψ−i = φ(xi−1) ◦ (ψ−i−1 ◦ ui−1) (37)

yields Algorithm 4.

Algorithm 4: Computing the gradient of a function v in TT-format.

input : A function v in TT-format, component tensor u1, . . . , ud,
one-dimensional basis functions φ1, . . . , φn, point
x = (x1, . . . , xd) ∈ Rd.

output: The gradient ∇v(x)
1 for µ = 1, . . . , d− 1 do
2 Calculate ψ−i using the recursive formula (37).
3 end
4 for µ = d, . . . , 1 do
5 Calculate ψ+

i using the recursive formula (37).
6 end
7 for µ = d, . . . , 1 do
8 Calculate ∇v(x)[i] = ∂v

∂xi
(x) by using (36).

9 end

Note that the computational complexity of (36) and (37) is O(mr2). Thus,
Algorithm 4 has computational complexity of O(dmr2). This complexity com-
pares to the complexity of the naive implementation O(d2mr2).
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