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Abstract. Recently a continuous description of the particle swarm optimization (PSO) based on a system

of stochastic differential equations was proposed by Grassi and Pareschi in [27] where the authors formally

showed the link between PSO and the consensus-based optimization (CBO) through zero-inertia limit. This

paper is devoted to solving this theoretical open problem proposed in [27] by providing a rigorous derivation

of CBO from PSO through the limit of zero inertia, and a quantified convergence rate is obtained as well.

The proofs are based on a probabilistic approach by investigating both the weak and strong convergence of

the corresponding stochastic differential equations (SDEs) of Mckean type in the continuous path space and

the results are illustrated with some numerical examples.
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1. Introduction

Over the last decades, large systems of interacting particles are widely used in the investigation of complex

systems that model collective behavior (or swarming), an area that has attracted a great deal of attention;

see for instance [5, 14, 29, 46] and references therein. Such complex systems frequently appear in modeling

phenomena such as biological swarms [17], crowd dynamics [6], self-assembly of nanoparticles [30], and opin-

ion formation [46]. In the field of global optimization, similar particle models are also used in metaheuristics

[1, 4, 8, 26], which provide empirically robust solutions to tackle hard optimization problems with fast algo-

rithms. Metaheuristics are methods that orchestrate an interaction between local improvement procedures

and global/high level strategies, and combine random and deterministic decisions, to create a process capable

of escaping from local optima and performing a robust search of a solution space. In the sequel, we consider

the following optimization problem

x∗ ∈ argminx∈RdE(x) , (1.1)

where E(x) : Rd → R is a given continuous cost function.

One noble example of metaheuristics is the so-called Particle Swarm Optimization (PSO), which was

initially introduced to model the intelligent collective behavior of complex biological systems such as flocks

of birds or schools of fish [38, 39, 51], and it is now widely recognized as an efficient method for tackling

complex optimization problems [43, 49]. Certain convergence and stability analysis of PSO may be found,

for instance, in [10, 48, 50, 53] and readers would be referred to [54] for a review on the PSO method and

its variants and applications. The PSO method solves optimization problem (1.1) by considering a group

of candidate solutions, which are represented by particles. Then the algorithm moves those particles in the

search space according to certain mathematical relationships on the particle position and velocity. Each

particle is driven to its best known local location, which is updated once the particles find better positions.
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However, the mathematical understanding of PSO is still in its infancy. Recently Grassi and Pareschi [27]

took a significant first step towards a mathematical theory for PSO based on a continuous description in the

form of a system of stochastic differential equations: dXi,m
t = V i,mt dt,

dV i,mt = − γ
mV

i,m
t dt+ λ

m (Xα
t (ρN,m)−Xi,m

t )dt+ σ
mD(Xα

t (ρN,m)−Xi,m
t )dBit, i = 1, · · · , N ,

(1.2)

where the Rd-valued functions Xi,m
t and V i,mt denote the position and velocity of the i-th particle at time

t, m > 0 is the inertia weight, γ = 1−m ≥ 0 is the friction coefficient, λ > 0 is the acceleration coefficient,

σ > 0 is the diffusion coefficient, and {(Bit)t≥0}Ni=1 are N independent d-dimensional Brownian motions. We

also use the notations for the diagonal matrix

D(Xt) := diag{(Xt)1, . . . , (Xt)d} ∈ Rd×d ,

where (Xt)k is the k-th component of Xt, and the weighted average is given by

Xα
t (ρN,m) :=

∫
Rd xω

E
α(x)ρN,m(t, dx)∫

Rd ω
E
α(x)ρN,m(t, dx)

(1.3)

with the empirical measure ρN,m(t, dx) := 1
N

∑N
i=1 δXi,mt

(dx). So we can rewrite

D(Xα
t (ρN,m)−Xi,m

t )dBit =

d∑
k=1

(Xα
t (ρN,m)−Xi,m

t )kd(Bit)
kek , (1.4)

where ek is the unit vector in the k-th dimension for k = 1, . . . , d. Noise of the form (1.4) is called the

anisotropic component-wise noise, which was used in [15,23] to remove the dimensionality dependence for the

CBO method. Furthermore, the initial data (Xi
0, V

i
0 )Ni=1 are independent and identically distributed (i.i.d.)

with the common distribution f0 ∈ P4(R2d), where P4(R2d) denotes the space of probability measures with

finite fourth moment, endowed with the Wasserstein distance [3]. The choice of the weight function

ωEα(x) := exp(−αE(x))

comes from the well-known Laplace’s principle [19, 45], a classical asymptotic method for integrals, which

states that for any probability measure ρ ∈ P(Rd), there holds

lim
α→∞

(
− 1

α
log

(∫
Rd
ωEα(x)ρ(dx)

))
= inf
x∈supp(ρ)

E(x) . (1.5)

Thus for α large enough, one expects that

Xα
t (ρN,m) ≈ argmin {E(X1,m

t ), . . . , E(XN,m
t )} ,

which means that Xα
t (ρN,m) is a global best location at time t.

Before starting our analysis of the PSO dynamics (1.2), let us illustrate numerically the behavior of the

dynamics for the benchmark Ackley function

E(x) = −20 exp

(
− 0.2√

d
|x− x∗|

)
− exp

(
1

d

d∑
k=1

cos (2π (xk − x∗k))

)
+ e+ 20

in the case of d = 2, and with the global minimizer x∗ = (0, 0)T . In Figures 1 and 2, we initialize the particles

with a normal distribution around x∗ and then apply a discretization scheme (which will be explained in

Section 4) to the system (1.2). We can see that all the particles successfully find the global minimizer x∗,

and particles’ velocity converges to zero.
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Figure 1. Left: the Ackley function for d = 2 with the unique global minimum at the point

x∗ = (0, 0)T . Right: Particles trajectories of the PSO model (1.2) during the simulation for

the 2-d Ackley function with the global minimizer x∗. The simulation parameters are: time

discretization 0.01, number of particles 103, λ = 1, σ = 1√
3
, α = 30, m = 0.1. The initial

data are sampled from a normal bi-dimensional distribution.

Figure 2. Application of the PSO dynamics (1.2) to the 2-d Ackley function E(x) with

the global minimizer x∗ = (0, 0)T . Particles initially have a normal distribution around

x∗. Then all particles converge to one point, the global minimizer x∗, and they stop moving

eventually, i.e. velocity converges to zero. The simulation parameters are the ones described

below Figure 1.

As it has been shown in [27], in the zero-inertia limit (m → 0), one may expect to obtain the recent

developed Consensus-Based Optimization (CBO) dynamics [13,25,28,47] satisfying

dXi
t = λ(Xα

t (ρN )−Xi
t)dt+ σD(Xα

t (ρN )−Xi
t)dB

i
t, i = 1, · · · , N , (1.6)

where

Xα
t (ρN ) :=

∫
Rd xω

E
α(x)ρN (t, dx)∫

Rd ω
E
α(x)ρN (t, dx)

with ρN (t, dx) :=
1

N

N∑
i=1

δXit (dx) .

It has been proved that CBO is a powerful and robust method to solve many interesting non-convex high-

dimensional optimization problems in machine learning [15]. By now, CBO methods have also been gener-

alized to optimization over manifolds [22–24,40]. The objective of the present paper is to complete a theory

gap suggested in [27] by providing a rigorous proof of the zero-inertia limit.

On the one hand, as N → ∞, the mean-field limit results (see [9, 12, 31–33, 36, 52] for instance) indicate

that our PSO dynamics (1.2) converges to the solutions of the following mean-field nonlinear Mckean systems:

dX
m

t = V
m

t dt, (1.7a)

dV
m

t = − γ
m
V
m

t dt+
λ

m
(Xα

t (ρm)−Xm

t )dt+
σ

m
D(Xα

t (ρm)−Xm

t )dBt , (1.7b)
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where

Xα
t (ρm) =

∫
Rd xω

E
α(x)ρm(t, dx)∫

Rd ω
E
α(x)ρm(t, dx)

, ρm(t, x) =

∫
Rd
fm(t, x, dv) , (1.8)

and the initial data (X0, V 0) is the same as in (1.2). Here fm(t, x, v) is the distribution of (X
m

t , V
m

t ) at time

t , which makes the set of equations (1.7) nonlinear. We refer to [31] for a proof the well-posedness of the PSO

particle system (1.2) and its mean-field dynamic (1.7). A direct application of the Itô-Doeblin formula yields

that the law fmt := fm(t, ·, ·) at time t is a weak solution to the following nonlinear Vlasov-Fokker-Plank

equation

∂tf
m
t + v · ∇xfmt = ∇v ·

(
γ

m
vfmt +

λ

m
(x−Xα

t (ρm)) ft +
σ2

2m2
[D (x−Xα

t (ρm))]
2∇vfmt

)
, (1.9)

with the initial data fm0 (x, v) = Law(X0, V 0). On the other hand, taking N → ∞ in (1.6) leads to the

mean-field CBO dynamic of the form

dXt = λ(Xα
t (ρ)−Xt)dt+ σD(Xα

t (ρ)−Xt)dBt (1.10)

with ρt = Law(Xt) satisfying the corresponding CBO equation

∂tρt + λ∇x · (ρt(Xα
t (ρ)− x)) =

σ2

2

d∑
j=1

∂2

∂x2
j

(
ρt (xj − (Xα

t (ρ))j)
2
)
. (1.11)

In this paper, we prove that in the zero-inertia limit, as m → 0+, the processes {Xm} satisfying SDEs

(1.7) converge to the solution X to the SDE (1.10) in the continuous path space C([0, T ];Rd). A convergence

rate is obtained and the generalization to the case with memory effects is also addressed. This is related to

the study of the overdamped limit [16, 20, 41], or large friction limit [11, 21, 35] for Vlasov type equations.

However, the nonlinear term Xα
t (ρm) here makes our model very different from theirs, which is nonstandard

in the literature. Moreover, all of those results mentioned earlier are obtained through the investigation of

PDEs like (1.9) and (1.11), while in the present paper we adopt a probabilistic approach by investigating

the convergence of the non-Markovian stochastic processes {Xm} satisfying the SDE (1.7) to the solution

{X} to SDE (1.10)) in the continuous path space.

The rest of the paper is organized as follows: In Section 2 we verify the tightness of the PSO model (1.7)

through Aldous criteria, which allows us to obtain the zero-inertia limit from the PSO model (1.7) towards

the CBO model (1.10) as m → 0+; see Theorem 2.4. Then in Section 3 we generalize the result to the

PSO model with memory effects of the local best positions. Lastly we conclude this paper in Section 4 by

reporting a few instructive numerical experiments that aim to validating the zero-inertia limit.

2. Zero-inertia limit

Throughout this work, the letter C denotes a generic constant whose value may vary from line to line and

its dependence on certain model parameters will be specified whenever needed. We start this section with

the standing assumption on the cost function E .

Assumption 1. The given cost function E : Rd → R is locally Lipschitz continuous and satisfies the properties:

(1) There exists some constant L > 0 such |E(x)− E(y)| ≤ L(|x|+ |y|)|x− y| for all x, y ∈ Rd;
(2) E is uniformly bounded, i.e. −∞ < E := inf E ≤ E ≤ sup E =: E < +∞, and define Cα,E := eα(E−E) .

The following theorem gives the well-posedness of the mean-field PSO dynamics (1.7) whose proof is

analogous to [31, Theorem 2.3] and [13, Theorem 3.1], and thus omitted.
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Theorem 2.1. Let Assumption 1 hold. If (X
m

0 , V
m

0 ) = (X0, V 0) is distributed according to f0 with f0 ∈
P4(R2d), then for each m ∈ (0, 1] and T > 0, the nonlinear SDE (1.7) admits a unique strong solution up to

time T with the initial data (X
m

0 , V
m

0 ), and it holds further that

sup
t∈[0,T ]

E
[
|Xm

t |4 + |V mt |4
]
≤ eCT · E

[
|X0|4 + |V 0|4

]
, (2.1)

where C depends only on λ,m, σ, and Cα,E .

Solving (1.7b) for V
m

t gives

V
m

t = e−
γ
m t

(
V 0 +

λ

m

∫ t

0

e
γs
m (Xα

s (ρm)−Xm

s )ds+
σ

m

∫ t

0

e
γs
mD(Xα

s (ρm)−Xm

s )dBs

)
,

which implies that

X
m

t = X0 +

∫ t

0

V τdτ = X0 +

∫ t

0

e−
γ
m τV 0dτ +

λ

m

∫ t

0

e−
γ
m τ

∫ τ

0

e
γ
m s(Xα

s (ρm)−Xm

s )dsdτ

+
σ

m

∫ t

0

e−
γ
m τ

∫ τ

0

e
γ
m sD(Xα

s (ρm)−Xm

s )dBsdτ . (2.2)

Then X
m

t has the law ρmt for each t ≥ 0.

For each k ∈ N+, denote by C([0, T ];Rk) the space of all Rk-valued continuous functions on [0, T ] equipped

with the usual uniform norm ‖ · ‖0. Each continuous stochastic process X
m

may be seen as a C([0, T ];Rd)-
valued random function and it induces a probability measure (or law, denoted by ρm) on C([0, T ];Rd).
We shall use the convergence in the space of probability measures on C([0, T ];Rd). In what follows, we

write X
m
⇀ X or ρm ⇀ ρ with ρ being the law of X, if {ρm}m>0, as a sequence of probability mea-

sures, converges weakly to ρ, i.e., for each bounded continuous functional Φ on C([0, T ];Rd) , there holds

limm→0+ E
[
Φ(X

m
)
]

= E
[
Φ(X)

]
. The weak convergence X

m
⇀ X is stronger than, and actually implies

the convergence of {ρmt }m>0 to ρt with ρt being the law of Xt for each t ≥ 0, while the converse need not

hold. Moreover, due to the separability and completeness of the space C([0, T ];Rd), Prohorov’s theorem

implies that the relative compactness is equivalent to the tightness; see [7] for more details.

The proof of zero-inertia limit will proceed in two steps:

• The tightness of the sequence of probability distributions {ρm}0<m≤1 of {Xm}0<m≤1 is justified by

using Aldous tightness criteria.

• We will check that all the limit points of {Xm}0<m≤1 as m → 0 satisfy mean-field CBO dynamic

(1.10) which in fact admits a unique strong solution.

For the sake of completeness, we recall a result concluded directly from the Aldous tightness criteria [37,

Theorem 4.5]; it might have been existing somewhere which, however, we did not find, so its straightforward

proof is sketched below.

Lemma 2.1. Let {Xn}n∈N be a sequence of random variables defined on a probability space (Ω,F ,P) and

valued in C([0, T ];Rd). The sequence of probability distributions {µXn}n∈N of {Xn}n∈N is tight if the following

two conditions hold.

(Con1) For all t ∈ [0, T ], the set of distributions of Xn
t , denoted by {µXnt }n∈N, is tight in Rd.

(Con2) For all ε > 0, η > 0, there exists δ0 > 0 and n0 ∈ N such that for all n ≥ n0 and for all

(σ(Xn
s ; s ∈ [0, t]))t≥0-stopping times β satisfying 0 ≤ β + δ0 ≤ T , it holds that

sup
δ∈[0,δ0]

P
(
|Xn

β+δ −Xn
β | ≥ η

)
≤ ε . (2.3)
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Sketched proof. First, we note that the Aldous tightness criteria is normally stated for the tightness of

stochastic processes valued in the space of all càdlàg (right continuous with left limits) functions under the

so-called Skorokhod topology (see [2, Theorem 1], [7, Theorem 16.10, Page 178] or [37, Theorem 4.5, Page

356]). In fact, by the assertion at the beginning of the proof of [2, Theorem 1], the condition (Con2) implies

Hypothesis (A) therein (see [2, Pages 335 & 338]). Therefore, applying [2, Theorem 1] directly gives the

tightness of {Xn}n∈N in the space of all càdlàg functions under the Skorokhod topology.

Noteworthily, the condition (Con1) implies that

lim
η→∞

lim sup
n→∞

P(|Xn
t | > η) = 0, ∀ t ∈ [0, T ], (2.4)

Indeed, for each t ∈ [0, T ] and ε > 0, the tightness in condition (Con1) indicates that there exists a compact

set Kε ⊂ Rd such that supn∈N P(Xn
t /∈ Kε) < ε. Choosing ηε > 0 to be so big that Kε ⊂ {x ∈ Rd : |x| ≤ ηε},

we have supn∈N P(|Xn
t | > ηε) < ε, which by the arbitrariness of t and ε implies (2.4).

Further, by [37, Proposition 3.26 (i) & (iii), Page 351], because each Xn herein is valued in C([0, T ];Rd)
having continuous trajectories, we have the C-tightness of {Xn}n∈N which means the time-continuity of the

paths of the limit(s), whereas this is still under the Skorokhod topology. However, in view of the equivalence

of C-tightness in [37, Proposition 3.26 (i) & (ii), Page 351], the C-tightness implies further that for all ε > 0

and η > 0, there are N0 ∈ N and θ ∈ (0, T ] such that

sup
n≥N0

P

(
sup

r,s∈[0,T ], |r−s|≤θ
|Xn

s −Xn
r | > η

)
≤ ε. (2.5)

Combining (2.4) and (2.5), we may use the tightness criteria for probability measures on
(
C([0, T ];Rd), ‖ · ‖0

)
in [7, Theorem 7.3, Page 82] to obtain the tightness of {µXn}n∈N on

(
C([0, T ];Rd), ‖ · ‖0

)
that is endowed

with the uniform norm. �

Theorem 2.2 (Tightness). Let Assumption 1 hold and (Xm
t , V

m
t )t∈[0,T ] satisfy the system (1.7). For each

countable subsequence {mk}k∈N ⊂ (0, 1] with limk→∞mk = 0, the sequence of probability distributions

{ρmk}k∈N of {Xmk}k∈N is tight on
(
C([0, T ];Rd), ‖ · ‖0

)
.

Proof. It is sufficient to justify conditions (Con1) and (Con2) in Lemma 2.1.

• Step 1: Checking (Con1). First, for 0 < m ≤ 1
2 , recalling (2.2), we have by Fubini’s theorem (see

[18, Theorem 4.33] for the stochastic version)

X
m

t = X0 +

∫ t

0

e−
γ
m τV 0dτ +

λ

m

∫ t

0

∫ τ

0

e−
γ
m (τ−s)(Xα

s (ρm)−Xm

s )dsdτ

+
σ

m

∫ t

0

∫ τ

0

e−
γ
m (τ−s)D(Xα

s (ρm)−Xm

s )dBsdτ

= X0 +

∫ t

0

e−
γ
m τV 0dτ +

λ

m

∫ t

0

∫ t

s

e−
γ
m (τ−s)dτ(Xα

s (ρm)−Xm

s )ds

+
σ

m

∫ t

0

∫ t

s

e−
γ
m (τ−s)dτD(Xα

s (ρm)−Xm

s )dBs

= X0 +
m

γ
(1− e−

γ
m t)V 0 +

λ

γ

∫ t

0

(1− e−
γ
m (t−s))(Xα

s (ρm)−Xm

s )ds

+
σ

γ

∫ t

0

(1− e−
γ
m (t−s))D(Xα

s (ρm)−Xm

s )dBs . (2.6)
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Here, the time t ∈ [0, T ] is deterministic and the stochastic Fubini’s theorem is applicable as there holds the

following integrability:∫ t

0

(
E
[∫ τ

0

e−
2γ
m (τ−s)|Xα

s (ρm)−Xm

s |2ds
]) 1

2

dτ

≤
∫ t

0

(∫ τ

0

e−
2γ
m (τ−s)CE[|Xm

s |2]ds

) 1
2

dτ ≤ (C sup
r∈[0,T ]

E[|Xm

r |2])
1
2

∫ t

0

(∫ τ

0

e−
2γ
m (τ−s)ds

) 1
2

dτ

≤ (C sup
r∈[0,T ]

E[|Xm

r |2])
1
2T

1
2

(∫ t

0

∫ τ

0

e−
2γ
m (τ−s)dsdτ

) 1
2

= (C sup
r∈[0,T ]

E[|Xm

r |2])
1
2T

1
2

(∫ t

0

m

2γ
(1− e−

2γ
m τ )dτ

) 1
2

≤ (C sup
r∈[0,T ]

E[|Xm

r |2])
1
2T (

m

2γ
)

1
2 <∞ ,

where we have used the fact that for all real p ≥ 1,

E[|Xα
t (ρm)−Xm

t |p] =

∫
Rd

∣∣∣∣∣
∫
Rd xω

E
α(x)ρm(t, dx)∫

Rd ω
E
α(x)ρm(t, dx)

− y

∣∣∣∣∣
p

ρm(t, dy) =

∫
Rd

∣∣∣∣∣
∫
Rd(x− y)ωEα(x)ρm(t, dx)∫

Rd ω
E
α(x)ρm(t, dx)

∣∣∣∣∣
p

ρm(t, dy)

≤
∫
Rd
∫
Rd |x− y|

pωEα(x)ρm(t, dx)ρm(t, dy)∫
Rd ω

E
α(x)ρm(t, dx)

≤ 2pCα,EE[|Xm

t |p], ∀ t ∈ [0, T ]. (2.7)

Please note that in the stochastic integral

σ

γ

∫ t

0

(1− e−
γ
m (t−s))D(Xα

s (ρm)−Xm

s )dBs,

the integrand is not just a function of s but also a function of t. Thus, the above stochastic integral is

typically of the Volterra type and as a stochastic process of time t, it is not a local martingale except for

certain trivial cases, so the BDG and Doob’s inequalities for local martingales are not applicable herein. In

what follows, we use the fact that for any sequence {ai}ni=1 and p ≥ 1, there holds(∣∣∣ n∑
i=1

ai

∣∣∣)p ≤ np−1
n∑
i=1

|ai|p .

Note that the assumption on 0 < m ≤ 1
2 ensures that γ = 1 −m ∈ [ 1

2 , 1), so 1
γ is well defined. It follows

from Hölder’s inequality that

|Xm
t |4 ≤ 64|X0|4 +

64m4

γ4
|V 0|4 +

64λ4t3

γ4

∫ t

0

|Xα
s (ρm)−Xm

s |4ds+
64σ4

γ4

∣∣∣∣∫ t

0

(1− e−
γ
m

(t−s))D(Xα
s (ρm)−Xm

s )dBs

∣∣∣∣4 .
(2.8)

Using the moment inequality for stochastic integrals as in [44, Theorem 7.1], we have

E

[∣∣∣∣∫ t

0

(1− e−
γ
m (t−s))D(Xα

s (ρm)−Xm

s )dBs

∣∣∣∣4
]

≤ d3E

[
d∑
k=1

∣∣∣∣∫ t

0

(1− e−
γ
m (t−s))(Xα

s (ρm)−Xm

s )kdB
k
s ek

∣∣∣∣4
]

≤ 36d3t

∫ t

0

E

[
d∑
k=1

|(Xα
s (ρm)−Xm

s )k|4
]
ds ≤ 36d3t

∫ t

0

E
[
|Xα

s (ρm)−Xm

s |4
]
ds . (2.9)

Thus,

E[|Xm

t |4] ≤ 64E[|X0|4] +
64m4

γ4
E[|V 0|4] +

64(λ4t3 + 36d3tσ4)

γ4

∫ t

0

E[|Xα
s (ρm)−Xm

s |4]ds .
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Thus, we have

E[|Xm

t |4] ≤ 64E[|X0|4] +
64m4

γ4
E[|V 0|4] +

1024Cα,E(λ
4t3 + 36d3tσ4)

γ4

∫ t

0

E[|Xm

s |4]ds .

Using Gronwall’s inequality leads to

E[|Xm

t |4] ≤
(

64E[|X0|4] +
64m4

γ4
E[|V 0|4]

)
exp

(
1024Cα,E(λ

4T 3 + 36d3Tσ4)

γ4
T

)
, ∀ t ∈ [0, T ] . (2.10)

Recalling 0 ≤ m ≤ 1
2 and 1

γ = 1
1−m ≤ 2, from estimate (2.10) we obtain the boundedness:

sup
t∈[0,T ]

E[|Xm

t |4] ≤ C(E[|X0|4],E[|V 0|4], Cα,E , λ, d, σ, T ) . (2.11)

Next, we consider the case when 1
2 ≤ m ≤ 1. It is obvious that

|Xm

t |4 = |X0|4 + 4

∫ t

0

|Xm

s |2X
m

s · V
m

s ds ≤ |X
m

0 |4 + 2

∫ t

0

|Xm

s |2(|Xm

s |2 + |V ms |2)ds

≤ |Xm

0 |4 + 3

∫ t

0

(|Xm

s |4 + |V ms |4)ds . (2.12)

Using (1.7b), arguments similar to (2.8)-(2.9) give

|V mt |4 ≤ 64|V 0|4 +
64γ4

m4

∣∣∣∣∫ t

0

V
m
s ds

∣∣∣∣4 +
64λ4

m4

∣∣∣∣∫ t

0

(Xα
s (ρm)−Xm

s )ds

∣∣∣∣4 +
64σ4

m4

∣∣∣∣∫ t

0

D(Xα
s (ρm)−Xm

s )dBs

∣∣∣∣4
≤ 64|V 0|4 +

64γ4t3

m4

∫ t

0

|V ms |4ds+
64λ4t3

m4

∫ t

0

|Xα
s (ρm)−Xm

s |4ds+
64σ4 · 36d3t

m4

∫ t

0

|Xα
s (ρm)−Xm

s |4ds .

(2.13)

Collecting estimates (2.13) and (2.12), and recalling the fact 1
2 ≤ m ≤ 1 and 0 ≤ γ ≤ 1, we have

E[|Xm

t |4 + |V mt |4]

≤64E[|X0|4 + |V 0|4] + C

∫ t

0

E[|Xm

s |4 + |V ms |4]ds+ C

∫ t

0

E[|Xα
s (ρm)−Xm

s |4]ds

≤64E[|X0|4 + |V 0|4] + C(1 + 8Cα,E)

∫ t

0

E[|Xm

s |4 + |V ms |4]ds , (2.14)

where the estimate (2.7) is used in the last inequality. Applying Gronwall’s inequality yields that

E[|Xm

t |4 + |V mt |4] ≤ 64E[|X0|4 + |V 0|4] exp (C · (1 + 8Cα,E)t) , ∀ t ∈ [0, T ] . (2.15)

Finally, combining (2.11) and (2.15) yields that

sup
m∈(0,1]

sup
t∈[0,T ]

E[|Xm

t |4] ≤ C(E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, T ) =: C1 (2.16)

where the constant C1 > 0 is independent of m. Therefore, for any ε > 0, there exists a compact subset

Kε := {x : |x|4 ≤ C1

ε } such that by Markov’s inequality

ρmt ((Kε)
c) = P(|Xm

t |4 >
C1

ε
) ≤ εE[|Xm

t |4]

C1
≤ ε, ∀ m ∈ (0, 1]. (2.17)

This means that for each t ∈ [0, T ], each countable subset of {ρmt }0<m≤1 is tight, which verifies condition

(Con1) in Lemma 2.1.

• Step 2: Checking (Con2). Let β be a (σ(Xm
s ; s ∈ [0, t]))t≥0-stopping time such that β + δ0 ≤ T .

Without any loss of generality, we may assume that the concerned countable subsequence {mk}k∈N ⊂ [0, 1]

satisfies mk ≤ 1
2 for all k ∈ N; thus, we may just consider the case of 0 < m ≤ 1

2 which indicates 1
2 ≤ γ < 1.

Recall (2.2) and compute

X
m
β+δ −X

m
β
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=

∫ β+δ

β

V τdτ =

∫ β+δ

β

e−
γ
m
τV 0dτ +

λ

m

∫ β+δ

β

∫ τ

0

e−
γ
m

(τ−s)(Xα
s (ρm)−Xm

s )dsdτ

+
σ

m

∫ β+δ

β

e−
γτ
m

∫ β

0

e
γs
m D(Xα

s (ρm)−Xm
s )dBsdτ +

σ

m

∫ β+δ

β

e−
γτ
m

∫ τ

β

e
γs
m D(Xα

s (ρm)−Xm
s )dBsdτ

=

∫ β+δ

β

e−
γ
m
τV 0dτ +

λ

m

∫ β

0

∫ β+δ

β

e−
γ
m

(τ−s)dτ(Xα
s (ρm)−Xm

s )ds+
λ

m

∫ β+δ

β

∫ β+δ

s

e−
γ
m

(τ−s)dτ(Xα
s (ρm)−Xm

s )ds

+
σ

m

∫ β+δ

β

e−
γτ
m dτ

∫ β

0

e
γs
m D(Xα

s (ρm)−Xm
s )dBs +

σ

m

∫ β+δ

β

∫ β+δ

s

e−
γ
m

(τ−s)dτD(Xα
s (ρm)−Xm

s )dBs

=
m

γ
(e−

γ
m
β − e−

γ
m

(β+δ))V 0

+
λ

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))(Xα
s (ρm)−Xm

s )ds+
λ

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))(Xα
s (ρm)−Xm

s )ds

+
σ

γ
(e−

γβ
m − e−

γ(β+δ)
m )

∫ β

0

e
γs
m D(Xα

s (ρm)−Xm
s )dBs +

σ

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))D(Xα
s (ρm)−Xm

s )dBs, (2.18)

where the calculations have taken into account the fact that β is a stopping time.

Note that there holds |e−x − e−y| ≤ |x − y|ζ ∧ 1 for all x, y ∈ [0,∞) and ζ ∈ [0, 1]. Basic computations

further indicate that for each q ≥ 1, ζ ∈ [0, 1], and τ ∈ [0, T ],∫ τ

0

∣∣∣e− γ(τ−s)m − e−
γ(τ+δ−s)

m

∣∣∣q ds ≤ ∫ τ

0

(
e−

γ(τ−s)
m − e−

γ(τ+δ−s)
m

)
ds =

m

γ

(
1− e−

γδ
m

)
− m

γ

(
e−

γτ
m − e−

γ(τ+δ)
m

)
≤ m

γ
·
(
γδ

m

)ζ
=

(
m

γ

)1−ζ

δζ , (2.19)

and obviously, ∫ β+δ

β

(
1− e−

γ(β+δ−s)
m

)q
ds ≤

∫ β+δ

β

1 ds = δ.

Then, it is obvious that

E

[∣∣∣∣mγ (e−
γ
m
β − e−

γ
m

(β+δ))V 0

∣∣∣∣2
]
≤ m2

γ2
· γ

2δ2

m2

(
E[|V 0|4]

) 1
2 ≤ δ2 (E[|V 0|4]

) 1
2 .

Next, it follows that

E

[∣∣∣∣∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))(Xα
s (ρm)−Xm

s )ds

∣∣∣∣2
]

≤ E
[∫ β

0

|e−
γ
m

(β−s) − e−
γ
m

(β+δ−s)|2ds ·
∫ β

0

|Xα
s (ρm)−Xm

s |2ds
]

≤ δ · T sup
s∈[0,T ]

(
E
[
|Xα

s (ρm)−Xm
s |4
])1/2

,

and analogously,

E

[∣∣∣∣∫ β+δ

β

(1− e−
γ
m

(β+δ−s))(Xα
s (ρm)−Xm

s )ds

∣∣∣∣2
]
≤ E

[∫ β+δ

β

(
1− e−

γ(β+δ−s)
m

)2

ds ·
∫ β+δ

β

|Xα
s (ρm)−Xm

s |2ds

]

≤ δ · E
[∫ β+δ

β

|Xα
s (ρm)−Xm

s |2ds
]

≤ δ · T sup
s∈[0,T ]

(
E
[
|Xα

s (ρm)−Xm
s |4
])1/2

, .

Further, applying Itô’s isometry gives

E

∣∣∣∣∣
∫ β+δ

β

(1− e−
γ
m (β+δ−s))D(Xα

s (ρm)−Xm

s )dBs

∣∣∣∣∣
2
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= E

[∫ β+δ

β

|1− e−
γ
m (β+δ−s)|2|Xα

s (ρm)−Xm

s |2ds

]

≤

(
E

[∫ β+δ

β

|1− e−
γ
m (β+δ−s)|4ds

])1/2

·

(
E

[∫ T

0

|Xα
s (ρm)−Xm

s |4ds

])1/2

≤ (δT )1/2

(
sup

s∈[0,T ]

E
[
|Xα

s (ρm)−Xm

s |4
])1/2

.

Particularly, let us look at

Zm,δt := (e−
γt
m − e−

γ(t+δ)
m )

∫ t

0

e
γs
mD(Xα

s (ρm)−Xm

s )dBs, t ∈ [0, T ],

and try to derive an estimate on Zm,δβ . Here, we note that the main difficulty in estimating Zm,δβ arises from

the fact that for a general stopping time β (in fact, unless β is σ(X0, V 0)-measurable in our setting), the

multiplier (e−
γβ
m − e−

γ(β+δ)
m ) cannot enter the stochastic integral due to the nonanticipativity required for

Itô integrals and associated moment estimates. Basic calculations as above yield that

E

[∫ T

0

∣∣∣Zm,δt

∣∣∣4dt] = E

[∫ T

0

∣∣∣ ∫ t

0

(e−
γ(t−s)
m − e−

γ(t+δ−s)
m )D(Xα

s (ρm)−Xm

s )dBs

∣∣∣4dt]

≤ C
∫ T

0

E
[(∫ t

0

∣∣∣(e− γ(t−s)m − e−
γ(t+δ−s)

m )(Xα
s (ρm)−Xm

s )
∣∣∣2ds)2

]
dt

≤ C
∫ T

0

∫ t

0

(
e−

γ(t−s)
m − e−

γ(t+δ−s)
m

)4

ds · E
[∫ t

0

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣4ds] dt
≤ C δ

∫ T

0

E
[∫ t

0

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣4ds] dt
≤ C δ sup

s∈[0,T ]

E
[
|Xα

s (ρm)−Xm

s |4
]
, (2.20)

where we have used the so-called Burkholder-Davis-Gundy (BDG) inequality for martingales and the estimate

(2.19) with ζ = 1 and the constant C is independent of m and δ. Thus, the process

Mm,δ
t :=

∫ t

0

(Zm,δs )′D(Xα
s (ρm)−Xm

s )dBs, t ∈ [0, T ],

is a square-integrable continuous martingale; indeed, Doob’s martingale inequality gives

E
[

max
t∈[0,T ]

∣∣∣Mm,δ
t

∣∣∣2] ≤ CE[∫ T

0

∣∣∣(Zm,δs )′D(Xα
s (ρm)−Xm

s )
∣∣∣2 ds]

≤ C

(
E

[∫ T

0

∣∣Zm,δs

∣∣4 ds]E[∫ T

0

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣4 ds])1/2

≤ Cδ1/2 sup
s∈[0,T ]

E
[
|Xα

s (ρm)−Xm

s |4
]
, (2.21)

with C being independent of m and δ. On the other hand, it is easy to see that Zm,δ satisfies the following

SDE

dZm,δt = − γ
m
Zm,δt dt+ (1− e−

γδ
m )D(Xα

t (ρm)−Xm

t ) dBt, t > 0; Zm,δ0 = 0.

By Itô-Doeblin formula, it holds that for all t ∈ [0, T ],

|Zm,δt |2 =

∫ t

0

∣∣∣(e− γ(t−s)m − e−
γ(t+δ−s)

m )(Xα
s (ρm)−Xm

s )
∣∣∣2ds+ 2

∫ t

0

e−
2γ(t−s)
m (1− e−

γδ
m )dMm,δ

s
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≤
(∫ t

0

∣∣∣(e− γ(t−s)m − e−
γ(t+δ−s)

m

∣∣∣4ds∫ t

0

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣4ds)1/2

+ 2(1− e−
γδ
m )Mm,δ

t

− 4

∫ t

0

γ

m
e−

2γ(t−s)
m (1− e−

γδ
m )Mm,δ

s ds

≤

(
δ

∫ T

0

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣4ds)1/2

+ 2
∣∣∣Mm,δ

t

∣∣∣+
4 γ

m
max
s∈[0,T ]

∣∣Mm,δ
s

∣∣ ∫ t

0

e−
2γ(t−s)
m ds

≤

(
δ

∫ T

0

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣4ds)1/2

+ 4 max
s∈[0,T ]

∣∣Mm,δ
s

∣∣ , a.s., (2.22)

where the integration by parts formula is applied to the stochastic integral in the first line and in the second

inequality, we used estimate (2.19) with ζ equal to 1. Combined with (2.21), it yields that

E
[∣∣∣Zm,δβ

∣∣∣2] ≤ E
[

max
t∈[0,T ]

∣∣∣Zm,δt

∣∣∣2] ≤ C (δ1/2 + δ1/4
)(

sup
s∈[0,T ]

E
[
|Xα

s (ρm)−Xm

s |4
])1/2

,

where the constant C is independent of β,m, and δ.

Therefore, summing up the above estimates and recalling 0 < m ≤ 1
2 , 1

γ ≤ 2, and the relations (2.7) and

(2.16), we arrive at

E[|Xm

β+δ −X
m

β |2] ≤ 5δ2(E[|V 0|4])
1
2 +

5

γ2
·
(
λ2δT + σ2C(δ1/2 + δ1/4)

)
sup

s∈[0,T ]

(
E
[
|Xα

s (ρm)−Xm

s |4
])1/2

≤ C
(
E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, T

) (
δ

1
4 + δ

1
2 + δ + δ2

)
.

Hence, for any ε > 0, η > 0, there exists some δ0 > 0 such that for all 0 < m ≤ 1
2 it holds that

sup
δ∈[0,δ0]

P(|Xm

β+δ −X
m

β |2 ≥ η) ≤ sup
δ∈[0,δ0]

E[|Xm

β+δ −X
m

β |2]

η
≤ ε . (2.23)

This justifies condition Con2 in Lemma 2.1. �

In a similar way to (2.7), it holds that for all real p ≥ 1 and τ ∈ [0, T ],

E

[
sup
t∈[0,τ ]

|Xα
t (ρm)−Xm

t |p
]

= E

[
sup
t∈[0,τ ]

∣∣∣∣∣
∫
Rd(x−Xm

t )ωEα(x)ρm(t, dx)∫
Rd ω

E
α(x)ρm(t, dx)

∣∣∣∣∣
p]

≤ E

[
sup
t∈[0,τ ]

∫
Rd |x−X

m

t |pωEα(x)ρm(t, dx)∫
Rd ω

E
α(x)ρm(t, dx)

]

≤ 2p−1Cα,EE

[
sup
t∈[0,τ ]

(
E[|Xm

t |p] + |Xm

t |p
)]

≤ 2pCα,EE

[
sup
t∈[0,τ ]

|Xm

t |p
]
. (2.24)

Furthermore, the obtained uniform boundedness (2.16) may be strengthened as follows.

Corollary 2.3. Let Assumption 1 hold and (Xm
t , V

m
t )t∈[0,T ] satisfy the system (1.7) in Theorem 2.2. We

have the following uniform boundedness

sup
m∈(0,1]

E
[

max
t∈[0,T ]

|Xm

t |4
]
≤ C(E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, T ) <∞. (2.25)
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Proof. For the unique strong solution (X
m
, V

m
) to SDE (1.7), applying the standard martingale inequalities

(e.g., see [34, Chapter III, Page 110]) to the stochastic integrals in SDE (1.7), we may use the estimate

(2.7) with standard arguments (see [42, Section 5 of Chapter 2] for instance) to conclude that the solution

(X
m
, V

m
) has continuous trajectories and satisfies

E
[

max
t∈[0,T ]

(
|Xm

t |4 + |V mt |4
)]
≤ C E

[
|X0|4 + |V 0|4

]
, (2.26)

where the constant C depends only on λ,m, σ, T , and Cα,E . Also, we recall the uniform boundedness (2.16).

When 0 < m ≤ 1
2 , we may start with (2.8) and consider the involved stochastic integral:∫ t

0

(1− e−
γ
m (t−s))D(Xα

s (ρm)−Xm

s )dBs =:

∫ t

0

D(Xα
s (ρm)−Xm

s )dBs − θt, t ∈ [0, T ].

The Burkholder-Davis-Gundy (BDG) inequality gives that

E

[
max
τ∈[0,t]

∣∣∣∣∫ τ

0

D(Xα
s (ρm)−Xm

s )dBs

∣∣∣∣4
]
≤ C E

[(∫ t

0

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣2 ds)2
]
≤ CT 2C1 <∞. (2.27)

On the other hand, it is obvious that θt =
∫ t

0
e−

γ
m (t−s)D(Xα

s (ρm)−Xm

s )dBs satisfies uniquely the SDE:

dθt = − γ
m
θtdt+D(Xα

t (ρm)−Xm

t )dBt, t > 0; θ0 = 0. (2.28)

Straightforward calculation implies that

E
[
|θt|4

]
= E

[∣∣∣ ∫ t

0

e−
γ(t−s)
m D(Xα

s (ρm)−Xm

s )dBs

∣∣∣4]
≤ CE

[(∫ t

0

∣∣∣e− γ(t−s)m (Xα
s (ρm)−Xm

s )
∣∣∣2ds)2

]
(by (2.7)) ≤ C

∫ t

0

e−
4γ(t−s)
m ds ·

∫ t

0

E
[∣∣∣Xm

s

∣∣∣4] ds
(by (2.16)) ≤ Cm, ∀ t ∈ [0, T ]. (2.29)

Set

ξt =

∫ t

0

|θs|2(θs)
′D(Xα

s (ρm)−Xm

s )dBs, t ∈ [0, T ]

with (θs)
′ being the transpose of θs. Then for each ε ∈ (0, 1), we have

8E
[

max
s∈[0,t]

|ξs|
]
≤ CE

[(∫ t

0

|θs|6
∣∣∣Xα

s (ρm)−Xm

s

∣∣∣2 ds)1/2
]

(by (2.24)) ≤ C√
ε
E
[∫ t

0

|θs|4ds
]

+
1

4
E
[

max
s∈[0,t]

|θs|4
]

+ εE
[

max
s∈[0,t]

∣∣∣Xm

s

∣∣∣4]
(by (2.29)) ≤ C√

ε
+

1

4
E
[

max
s∈[0,t]

|θs|4
]

+ εE
[

max
s∈[0,t]

∣∣∣Xm

s

∣∣∣4] , ∀ t ∈ [0, T ]. (2.30)

By Itô-Doeblin formula, it holds that for all t ∈ [0, T ],

|θt|4 =

∫ t

0

2e−
4γ(t−s)
m

(
|θs|2

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣2 + 2 |θ′sD(Xα
s (ρm)−Xm

s )|2
)
ds+ 4

∫ t

0

e−
4γ(t−s)
m dξs

≤ C

ε

(∫ t

0

e−
4γ(t−s)
m ds

)2

max
s∈[0,t]

|θs|4 +
ε

16Cα,E
max
s∈[0,t]

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣4 + 4ξt −
16γ

m

∫ t

0

e−
4γ(t−s)
m ξs ds

≤ C̃m2

ε
· max
s∈[0,t]

|θs|4 +
ε

16Cα,E
max
s∈[0,t]

∣∣∣Xα
s (ρm)−Xm

s

∣∣∣4 + 8 max
s∈[0,t]

|ξs|, a.s., (2.31)
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where C̃ > 0 is independent of (t,m, ε). Choosing m̃ = ε1/2

2C̃1/2
∧ 1

2 so that C̃m2

ε ≤ 1
4 and combining (2.24),

(2.30) and (2.31), we have

E
[

max
s∈[0,t]

|θs|4
]
≤ C√

ε
+ 4εE

[
max
s∈[0,t]

∣∣∣Xm

s

∣∣∣4] , ∀m ∈ (0, m̃], (2.32)

which together with (2.27) and (2.16) inserted into (2.8) implies that

E
[

max
s∈[0,t]

∣∣Xm

s

∣∣4] ≤ C +
C√
ε

+ CεE
[

max
s∈[0,t]

∣∣∣Xm

s

∣∣∣4] , ∀ t ∈ [0, T ], (2.33)

where the constant C > 0 is independent of (t,m, ε). Therefore, by choosing ε = 1
2C and setting m̃

accordingly, we obtain the desired uniform boundedness for m ∈ (0, m̃]. When m̃ < m < 1, the proof is

standard (see [42, Section 5 of Chapter 2] for instance) and it is omitted. �

Next we shall identify the limit process, before which we recall a lemma on the stability estimate of the

nonlinear term Xα(ρ).

Lemma 2.2. [13, Lemma 3.2] Assume that ρ, ρ̂ ∈ P4(Rd). Then the following stability estimate holds

|Xα(ρ)−Xα(ρ̂)| ≤ CW2(ρ, ρ̂) , (2.34)

where W2 is the 2-Wasserstein distance, and C depends only on α,L,
∫
Rd |x|

4ρ(dx), and
∫
Rd |x|

4ρ̂(dx).

Theorem 2.4 (Zero-inertia limit). Let Assumption 1 hold and (Xm
t , V

m
t )t∈[0,T ] satisfy the system (1.7).

Then as m → 0+, the sequence of stochastic processes {Xm}0<m≤1 converge weakly to X, which is the

unique solution to the following SDE:

Xt = X0 + λ

∫ t

0

(Xα
s (ρ)−Xs)ds+ σ

∫ t

0

D(Xα
s (ρ)−Xs)dBs . (2.35)

Moreover, we have the following convergences:

E
[

max
t∈[0,T ]

|Xm

t −Xt|2
]
≤ C

√
m, max

t∈[0,T ]
E
[
|Xm

t −Xt|2
]
≤ Cm, (2.36)

where the constant C depends on E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, and T .

Remark 2.1. By (2.36), it follows from the definition of Wasserstein distance that

sup
t∈[0,T ]

W 2
2 (ρmt , ρt) ≤ max

t∈[0,T ]
E
[
|Xm

t −Xt|2
]
≤ Cm , (2.37)

which is consistent with the result obtained in [16, Theorem 1.3], where the authors obtained a quanti-

fied overdamped limit (with the same rate m) of the singular Vlasov-Poisson-Fokker-Planck system to the

aggregation-diffusion equation. Besides, the obtained (strong) convergence of X
m

to X in the path space

C([0, T ];Rd) implies and is obviously stronger than the convergence of {ρmt }m>0 to ρt for each time t ≥ 0.

Proof. By Theorem 2.2, each subsequence {Xmk}k∈N with mk ≤ 1/2 converging to 0 as k → ∞ admits a

subsequence (denoted w.l.o.g. by itself) that converges weakly. By Skorokhod’s representation theorem (see

[7, Theorem 6.7 on page 70]), we may find a common probability space (Ω,F ,P) on which the quadruple

{(X0, X
mk
, X,B)}k∈N converge to some (X̂0, X̂,X,B) as random variables valued in Rd × C([0, T ];R3d)

almost surely. Here B is an identical d-dimensional Wiener process on (Ω,F ,P). In particular, we have

P
(

lim
k→∞

‖Xmk − X̂‖0 = 0

)
= 1, (2.38)

where we recall the uniform norm ‖Xmk − X̂‖0 = maxt∈[0,T ] |X
mk
t − X̂t|. It is obvious that X0 = X̂0 a.s. In

the following, we shall verify that the limit X̂ is indeed the unique solution X to SDE (2.35).
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Recall that the unique strong solution to an SDE may be regarded as a function of the initial value and the

driving Wiener process (see [34, Chapter IV]). Thus, due to the uniqueness and existence of strong solution

to SDE (2.6) in Theorem 2.1, on the above probability space (Ω,F ,P) we must have

X
mk
t = X0 +

mk

γ
(1− e−

γ
mk

t
)V 0 +

λ

γ

∫ t

0

(1− e−
γ
mk

(t−s)
)(Xα

s (ρmk)−Xmk
s )ds

+
σ

γ

∫ t

0

(1− e−
γ
mk

(t−s)
)D(Xα

s (ρmk)−Xmk
s )dBs . (2.39)

By the estimates in Corollary 2.3 and Fatou’s lemma, there exists a constant C2 such that

sup
k∈N

E
[

max
t∈[0,T ]

|Xmk
t |4

]
+ E

[
max
t∈[0,T ]

∣∣∣X̂t

∣∣∣4] ≤ C2 := C(E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, T ) <∞. (2.40)

As a straightforward consequence of the above boundedness, it holds that

sup
k∈N,t∈[0,T ]

P(|Xmk
t − X̂t| > A) ≤ 24C2

A4
, ∀A > 0. (2.41)

Thus, the dominated convergence theorem gives that for each A > 0,

lim sup
k→∞

E

[∫ T

0

|Xmk
t − X̂t|2 dt

]

≤ lim sup
k→∞

(
E

[∫ T

0

|Xmk
t − X̂t|2 ∧A2 dt

]
+ E

[∫ T

0

|Xmk
t − X̂t|21{|Xmkt −X̂t|>A}

dt

])

≤ lim sup
k→∞

E

[∫ T

0

|Xmk
t − X̂t|2 ∧A2 dt

]
+ T · sup

k∈N

(
E
[

max
t∈[0,T ]

|Xmk
t − X̂t|4

])1/2 ∣∣∣P(|Xmk
t − X̂t| > A)

∣∣∣1/2
≤ lim sup

k→∞
E

[∫ T

0

|Xmk
t − X̂t|2 ∧A2 dt

]
+

24 C2T

A2

=
24 C2T

A2
,

which by the arbitrariness of A > 0 indicates that

lim
k→∞

E

[∫ T

0

|Xmk
t − X̂t|2 dt

]
= 0. (2.42)

Letting ρ(t, dx) be the probability distribution of X̂t for t ∈ [0, T ], we have

|Xα
t (ρ)| =

∣∣∣∣∣
∫
Rd xω

E
α(x)ρ(t, dx)∫

Rd ω
E
α(x)ρ(t, dx)

∣∣∣∣∣ ≤ Cα,E
∫
Rd
|x|ρ(t, dx) ≤ Cα,E(E[|X̂t|4])

1
4 ,

and

sup
k∈N

sup
t∈[0,T ]

|Xα
t (ρmk)| ≤ Cα,E(C2)

1
4 , and sup

t∈[0,T ]

|Xα
t (ρ)| ≤ Cα,E(C2)

1
4 . (2.43)

Then we compute the limit of (2.39) term by term. By Lemma 2.2, it holds that

|Xα
t (ρmk)−Xα

t (ρ)|2 ≤ CW 2
2 (ρmkt , ρt) ≤ CE[|Xmk

t − X̂t|2],

and thus, by recalling that 1 ≥ γ = 1−mk ≥ 1
2 , we have for each t ∈ [0, T ],

E

[
max
τ∈[0,t]

∣∣∣∣λγ
∫ τ

0

(1− e−
γ
mk

(t−s)
)(Xα

s (ρmk)−Xmk
s )ds− λ

∫ τ

0

(Xα
s (ρ)− X̂s)ds

∣∣∣∣2
]

≤ 2tE

[
λ

1−mk

∫ t

0

∣∣∣∣(1− e− 1−mk
mk

(t−s)
)(Xα

s (ρmk)−Xα
s (ρ) + X̂s −X

mk
s )

∣∣∣∣2 ds
]
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+ 2tE

λ ∫ t

0

∣∣∣∣∣∣
1− e−

1−mk
mk

(t−s)

1−mk
− 1

 (Xα
s (ρ)− X̂s)

∣∣∣∣∣∣
2

ds


≤ CE

[∫ t

0

∣∣∣X̂s −X
mk
s

∣∣∣2 ds]+ Cλ2

∫ t

0

∣∣∣∣∣∣1− e
− 1−mk

mk
(t−s)

1−mk
− 1

∣∣∣∣∣∣
2

ds · E

[∫ T

0

∣∣∣Xα
s (ρ)− X̂s

∣∣∣2 ds]

≤ CE
[∫ t

0

∣∣∣X̂s −X
mk
s

∣∣∣2 ds]+ C

∫ t

0

∣∣∣∣∣∣1− e
− 1−mk

mk
(t−s) − (1−mk)

1−mk

∣∣∣∣∣∣
2

ds

≤ CE
[∫ t

0

∣∣∣X̂s −X
mk
s

∣∣∣2 ds]+ C

∫ t

0

(
|mk|2 + e

− 2(1−mk)

mk
(t−s)

)
ds

≤ CE
[∫ t

0

∣∣∣X̂s −X
mk
s

∣∣∣2 ds]+ C

(
t |mk|2 +

mk

2(1−mk)

)
, (2.44)

where the constants Cs are independent of (k, t).

For the stochastic integrals, using Doob’s inequality gives

E

[
max
τ∈[0,t]

∣∣∣∣σγ
∫ τ

0

D(Xα
s (ρmks )−Xmk

s )dBs − σ
∫ τ

0

D(Xα
s (ρ)− X̂s)dBs

∣∣∣∣2
]

≤ CE

[∫ t

0

∣∣∣∣ 1γ (Xα
s (ρmk)−Xmk

s )− (Xα
s (ρ)− X̂s)

∣∣∣∣2 ds
]

≤ CE
[∫ t

0

1

γ2

∣∣∣(Xα
s (ρmk)−Xmk

s )− (Xα
s (ρ)− X̂s)

∣∣∣2 ds]+ CE

[∫ t

0

∣∣∣∣( 1

γ
− 1

)
(Xα

s (ρ)− X̂s)

∣∣∣∣2 ds
]

≤ CE
[∫ t

0

∣∣∣Xmk
s − X̂s

∣∣∣2 ds]+ C|mk|2, ∀ t ∈ [0, T ]. (2.45)

Meanwhile, putting

Zkt :=
σ

γ

∫ t

0

e
− γ
mk

(t−s)
D(Xα

s (ρmk)−Xmk
s )dBs, t ∈ [0, T ],

we use Itô’s isometry and the relations (2.24) and (2.40) to obtain

max
t∈[0,T ]

E
[∣∣Zkt ∣∣2] = max

t∈[0,T ]
E
[
σ2

γ2

∫ t

0

e
− 2γ
mk

(t−s)
∣∣∣Xα

s (ρmk)−Xmk
s

∣∣∣2 ds]

≤ max
t∈[0,T ]

σ2

γ2

(
sup

s∈[0,T ]

E
[∣∣∣Xα

s (ρmk)−Xmk
s

∣∣∣4])1/2 ∫ t

0

e
− 2γ
mk

(t−s)
ds

≤ Cmk, (2.46)

where C is independent of (mk, t). Then the process

ξt :=

∫ t

0

(Zks )′D(Xα
s (ρmk)−Xmk

s )dBs, t ∈ [0, T ] (2.47)

with (Zks )′ being the transpose of Zks , defines a continuous martingale with

E
[

max
s∈[0,T ]

|ξs|
]
≤ CE

[(∫ T

0

|Zks |2
∣∣∣Xα

s (ρmk)−Xmk
s

∣∣∣2 ds)1/2
]

≤ C

(
E

[∫ T

0

|Zks |2ds

])1/2

·

(
E

[
sup

s∈[0,T ]

∣∣∣Xα
s (ρmk)−Xmk

s

∣∣∣4])1/4

(by (2.24), (2.40), and (2.46)) ≤ C |mk|1/2. (2.48)
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Using the Itô-Doeblin formula as in (2.31) gives that

|Zkt |2 =

∫ t

0

e
− 2γ(t−s)

mk

∣∣∣Xα
s (ρmk)−Xmk

s

∣∣∣2 ds+ 2

∫ t

0

e
− 2γ(t−s)

mk dξs (2.49)

≤ C
∫ t

0

e
− 2γ(t−s)

mk ds · sup
s∈[0,t]

∣∣∣Xα
s (ρmk)−Xmk

s

∣∣∣2 + 2ξt −
4γ

mk

∫ t

0

e
− 2γ(t−s)

mk ξs ds

≤ Cmk sup
s∈[0,t]

∣∣∣Xα
s (ρmk)−Xmk

s

∣∣∣2 + 4 max
s∈[0,t]

|ξs|, a.s. (2.50)

Putting (2.24), (2.40), (2.48), and (2.50) together, we obtain that

E
[

max
τ∈[0,t]

∣∣Zkτ ∣∣2] ≤ C√mk. (2.51)

In addition, it is obvious that ∣∣∣∣mk

γ
(1− e−

γ
mk

t
)V 0

∣∣∣∣ ≤ Cmk

∣∣V 0

∣∣ . (2.52)

As the constants Cs are independent of (k, t), combining the estimates (2.44), (2.45), (2.51) and (2.52),

letting k tend to infinity on both sides of (2.39) and recalling 1
2 ≥ mk → 0+ and the relation (2.42), we have

X̂t = X0 + λ

∫ t

0

(Xα
s (ρ)− X̂s)ds+ σ

∫ t

0

D(Xα
s (ρ)− X̂s)dBs.

Therefore, the limit X̂ turns out to be a (strong) solution to SDE (2.35). Meanwhile, in view of the continuity

of Xα(ρ) in Lemma 2.2, we can easily verify the uniqueness of the strong solution with standard arguments

as in [13, Theorem 3.1]. Thus, we must have X̂ = X that is the unique strong solution to SDE (2.35) with

E
[
maxt∈[0,T ] |Xt|4

]
≤ C2. Further, due to the arbitrariness of the subsequence {Xmk}k∈N, we conclude that

as m → 0+, the sequence of stochastic processes {Xm}0<m≤1 converge weakly to the unique solution X to

SDE (2.35).

Finally, to measure the distance between X
m

and the limit X̂ = X, we may replace X̂ with X in the

calculations (2.44), (2.45), (2.51), and (2.52) and arrive at

E
[

max
τ∈[0,t]

|Xm

τ −Xτ |2
]
≤ C

∫ t

0

E[|Xm

s −Xs|2]ds+ C
√
m, t ∈ [0, T ],

where the constant C is independent of (m, t); if we adopt the estimate (2.46) instead of (2.51) in the above,

it holds that

E
[
|Xm

t −Xt|2
]
≤ C

∫ t

0

E[|Xm

s −Xs|2]ds+ Cm, t ∈ [0, T ],

with C independent of (m, t). By Gronwall’s inequality, we may have

E
[

max
t∈[0,T ]

|Xm

t −Xt|2
]
≤ C

√
m, max

t∈[0,T ]
E
[
|Xm

t −Xt|2
]
≤ Cm, (2.53)

where the constants Cs depend on E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, and T . �

Remark 2.2. When proving the convergence of {Xm} satisfying SDEs (1.7) to the solution X of (1.10), we

cannot expect the convergence of the associated velocity processes {V m} due to the indifferentiability of the

limit {Xt}t≥0 with respect to time t if σ 6= 0. Therefore, we do not investigate the convergence of the joint

Markovian process {(Xm
, V

m
)} and consider instead solely the process {Xm} which satisfies a stochastic

equation (2.39) of Volterra type, being path-dependent and thus non-Markovian. This non-Markovianity

prevents us from using the usual techniques for weak convergence with martingale problems but prompts us

to identify the limit by measuring directly the distance between X
mk

and X̂ = X in the above proof.
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Regarding to the rate of convergence in (2.53), the L2-estimate of the uniform norm of the paths of X
m−X

is on the order of
√
m while the L2-estimate for each time t ∈ [0, T ] has order of m. Such a difference stems

from the relation (2.49) which also reads

|Zkt |2 =

∫ t

0

e
− 2γ(t−s)

mk

∣∣∣Xα
s (ρmk)−Xmk

s

∣∣∣2 ds+ 2

∫ t

0

e
− 2γ(t−s)

mk (Zks )′D(Xα
s (ρmk)−Xmk

s )dBs.

Here the stochastic integral has mean zero and taking expectation on both sides can directly give us the

order of m as seen in the first term on the right hand side of (2.50); however, when considering the uniform

norm, we cannot ignore the stochastic integral and its linear dependence on (Zks )s∈[0,T ] leads to the order
√
m. In addition, in the above proof, because both X

mk
and X are the strong solutions to associated SDEs

with pathwise uniqueness and a strong solution is a functional of the initial value and the driving Wiener

process (see [34, Chapter IV]), the following convergence

P
(

lim
k→∞

‖Xmk −X‖0 = 0

)
= 1, (2.54)

actually holds for strong solutions to SDEs (1.7) and (2.35) on any given probability space (Ω,F ,P) equipped

with augmented filtration generated by a d-dimensional Wiener process B. Indeed, some experiments con-

ducted at the end of Section 4 (see Figures 9, 10, and 11) numerically support the convergences established

here.

3. Generalization to the case with memory effects

In [27], the authors considered a PSO model which involves the memory of the local best positions, and

it is of the form

dX
m
t = V

m
t dt, (3.1)

dY
m
t = ν

(
X
m
t − Y

m
t

)
Sβ
(
X
m
t , Y

m
t

)
dt, (3.2)

dV
m
t = − γ

m
V
m
t dt+

λ1

m

(
Y
m
t −X

m
t

)
dt+

λ2

m

(
Y αt (ρm)−Xm

t

)
dt

+
σ1

m
D
(
Y
m
t −X

m
t

)
dB1

t +
σ2

m
D
(
Y αt (ρm)−Xm

t

)
dB2

t , (3.3)

where B1 and B2 are two mutually independent d-dimensional Wiener processes, and similarly to the

previous section, we introduce the following regularization of the global best position

Y αt (ρm) =

∫
Rd yωα(y)ρm(t, dy)∫
Rd ωα(y)ρm(t, dy)

, ρm(t, y) =

∫∫
Rd×Rd

fm(t, dx, y, dv) . (3.4)

Here the equation (3.2) of Y
m

is the time continuous approximation to the evolution of the local best position,

and Sβ with β � 1 is the hyperbolic tangent Sβ(x, y) = 1 + tanh(β(E(y)−E(x)). The corresponding mean-

field PSO equation is

∂tf
m
t + v · ∇xfmt +∇y · (ν(x− y)Sβ(x, y)fmt ) = ∇v ·

(
γ

m
vfmt +

λ1

m
(x− y)fmt +

λ2

m
(x− Y αt (ρm))fmt

+
( σ2

2

2m2
D(x− Y αt (ρm))2 +

σ2
1

2m2
D(x− y)2

)
∇vfmt

)
. (3.5)

We want to prove that the zero-inertia limit (m→ 0) leads to the following mean-field CBO dynamicXt = X0 + λ1

∫ t
0
(Y s −Xs)ds+ σ1

∫ t
0
D(Y s −Xs)dB

1
s + λ2

∫ t
0
(Y αs (ρ)−Xs)ds+ σ2

∫ t
0
D(Y αs (ρ)−Xs)dB

2
s ,

Y t = Y 0 + ν
∫ t

0

(
Xs − Y s

)
Sβ
(
Xs, Y s

)
ds ,

and its corresponding partial differential equation is

∂tρt +∇x · (λ1(y − x) + λ2(Y αt (ρ)− x)ρt) +∇y ·
(
ν(x− y)Sβ(x, y))ρt

)
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=
1

2

d∑
j=1

∂2

∂x2
j

(
ρt(σ

2
1(x− y)2

j + σ2
2(x− Y αt (ρ))2

j )
)
, (3.6)

where ρ(t, y) =
∫
Rd ρ(t, dx, y).

Since the proof of the zero-inertia limit for the PSO dynamics with memory effects follows similar argu-

ments as developed in the previous section and no essential innovation is needed to be explained, we only

sketch the proof for the tightness.

Theorem 3.1 (Tightness). Let Assumption 1 hold and (X
m

t , Y
m

t , V
m

t )t∈[0,T ] satisfy the system (3.1)-(3.3).

For each countable subsequence {mk}k∈N ⊂ [0, 1] with limk→∞mk = 0, the sequence of probability distribu-

tions {ρmk}k∈N of {(Xmk
, Y

mk
)}k∈N is tight.

Proof. The proof is similar to Theorem 2.2.

• Step 1: Checking (Con1). For 0 < m ≤ 1
2 , we first solve (3.3) for V

m
and obtain

V
m

t = e−
γ
m tV 0 +

λ1

m

∫ t

0

e−
γ
m (t−s)(Y

m

s −X
m

s )ds+
σ1

m

∫ t

0

e−
γ
m (t−s)D(Y

m

s −X
m

s )dB1
s

+
λ2

m

∫ t

0

e−
γ
m (t−s)(Y αs (ρm)−Xm

s )ds+
σ2

m

∫ t

0

e−
γ
m (t−s)D(Y αs (ρm)−Xm

s )dB2
s .

Here ρm(t, y) =
∫
Rd ρ

m(t, dx, y). By Fubini’s theorem, similar arguments as in (2.6) yield that

X
m

t = X0 +
m

γ
(1− e−

γ
m t)V 0 +

λ1

γ

∫ t

0

(1− e−
γ
m (t−s))(Y

m

s −X
m

s )ds+
σ1

γ

∫ t

0

(1− e−
γ
m (t−s))D(Y

m

s −X
m

s )dB1
s

+
λ2

γ

∫ t

0

(1− e−
γ
m (t−s))(Y αs (ρm)−Xm

s )ds+
σ2

γ

∫ t

0

(1− e−
γ
m (t−s))D(Y αs (ρm)−Xm

s )dB2
s . (3.7)

Following the same computations as in Theorem 2.2 gives

E[|Xm

t |4] ≤ CE[|X0|4 + |V 0|4] + C

∫ t

0

E[|Y αs (ρm)−Xm

s |4]ds+ C

∫ t

0

E[|Y ms −X
m

s |4]ds ,

where C depends only on λ1, σ2, λ2, σ2, d, and T . Put ρ̃m(t, x) =
∫
Rd ρ

m(t, x, dy). In a similar way to (2.7)

we have

E[|Y αt (ρm)−Xm

t |4] =

∫
Rd

∣∣∣∣∣
∫
Rd yω

E
α(y)ρm(t, dy)∫

Rd ω
E
α(y)ρm(t, dy)

− x

∣∣∣∣∣
4

ρ̃m(t, dx) =

∫
Rd

∣∣∣∣∣
∫
Rd(y − x)ωEα(y)ρm(t, dy)∫

Rd ω
E
α(y)ρm(t, dy)

∣∣∣∣∣
4

ρ̃m(t, dx)

≤
∫
Rd
∫
Rd |x− y|

4ωEα(y)ρm(t, dy)ρ̃m(t, dx)∫
Rd ω

E
α(y)ρm(t, dy)

≤ 8Cα,EE[|Xm

t |4 + |Y mt |4] .

Thus it yields that

E[|Xm

t |4] ≤ CE[|X0|4 + |V 0|4] + C

∫ t

0

E[|Y ms |4 + |Xm

s |4]ds , (3.8)

where C depends only on λ1, σ2, λ2, σ2, d, T and Cα,E .

Recall that

Y
m

t = Y 0 + ν

∫ t

0

(
X
m

s − Y
m

s

)
Sβ
(
X
m

s , Y
m

s

)
ds

with Sβ(x, y) = 1 + tanh(β(E(y)− E(x)). Using the fact that |Sβ | ≤ 2 then it follows

E[|Y mt |4] ≤ CE[|Y 0|4] + C

∫ t

0

E[|Y ms |4 + |Xm

s |4]ds ,

where C depends only on ν and T . This together with (3.8) implies

E[|Xm

t |4 + |Y mt |4] ≤ CE[|X0|4 + |Y 0|4 + |V 0|4] + C

∫ t

0

E[|Y ms |4 + |Xm

s |4]ds .
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By Gronwall’s inequality, it yields that

sup
t∈[0,T ]

E[|Xm

t |4 + |Y mt |4] ≤ C(E[|X0|4 + |Y 0|4 + |V 0|4], λ1, σ2, λ2, σ2, d, T, Cα,E , ν) , (3.9)

which verifies (Con1) for the case of 0 < m ≤ 1
2 . We omit the discussions for the case of 1

2 < m ≤ 1.

• Step 2: Checking (Con2). Let β be a σ(Xm
s ; s ∈ [0, T ])-stopping time such that β + δ0 ≤ T . Set

m0 = 1
2 w.l.o.g.. Then for all 0 < m ≤ m0, one has 1

2 ≤ γ < 1. Similar to (2.18), one has

X
m
β+δ −X

m
β

=
m

γ
(e−

γ
m
β − e−

γ
m

(β+δ))V 0

+
λ2

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))(Y αs (ρm)−Xm
s )ds+

λ2

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))(Y αs (ρm)−Xm
s )ds

+
σ2

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))D(Y αs (ρm)−Xm
s )dB2

s +
σ2

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))D(Y αs (ρm)−Xm
s )dB2

s

+
λ1

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))(Y
m
s −X

m
s )ds+

λ1

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))(Y
m
s −X

m
s )ds

+
σ1

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))D(Y
m
s −X

m
s )dB1

s +
σ1

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))D(Y
m
s −X

m
s )dB1

s . (3.10)

Using the estimate (3.9) it follows from the same computations as in Theorem 2.2 that

E[|Xm

β+δ −X
m

β |2] ≤ C
(
δ

1
4 + δ2

)
, (3.11)

where C depends only on E[|X0|4 + |Y 0|4 + |V 0|4], λ1, σ2, λ2, σ2, T, Cα,E , and ν.

Having a look at

Y
m

β+δ − Y
m

β = ν

∫ β+δ

β

(
X
m

s − Y
m

s

)
Sβ
(
X
m

s , Y
m

s

)
ds,

we have

|Y mβ+δ − Y
m

β |2 ≤ ν2δ

∫ T

0

|Xm

s − Y
m

s |2dt .

By estimate (3.9), we have

E[|Y mβ+δ − Y
m

β |2] ≤ ν2δ

∫ T

0

E[|Xm

s − Y
m

s |4]
1
2 dt ≤ Cδ , (3.12)

where C depends on E[|X0|4 + |Y 0|4 + |V 0|4], λ1, σ2, λ2, σ2, T, Cα,E and ν. This together with (3.11) justifies

(Con2). �

Let us recall

X
m

t = X0 +
m

γ
(1− e−

γ
m t)V 0 +

λ1

γ

∫ t

0

(1− e−
γ
m (t−s))(Y

m

s −X
m

s )ds+
σ1

γ

∫ t

0

(1− e−
γ
m (t−s))D(Y

m

s −X
m

s )dB1
s

+
λ2

γ

∫ t

0

(1− e−
γ
m (t−s))(Y αs (ρm)−Xm

s )ds+
σ2

γ

∫ t

0

(1− e−
γ
m (t−s))D(Y αs (ρm)−Xm

s )dB2
s (3.13)

and

Y
m

t = Y 0 + ν

∫ t

0

(
X
m

s − Y
m

s

)
Sβ
(
X
m

s , Y
m

s

)
ds . (3.14)

Then following the lines of the proof in Theorem 2.4, one can easily obtain the following theorem.
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Theorem 3.2 (Zero-inertia limit). Let Assumption 1 hold and (X
m

t , Y
m

t )t∈[0,T ] satisfy the system (3.13)–

(3.14). Then as m→ 0+, the sequence of stochastic processes {(Xm
, Y

m
)}0<m≤1 converge weakly to (X,Y )

which is the unique solution to the following coupled SDE:

Xt = X0 + λ1

∫ t

0

(Y s −Xs)ds+ σ1

∫ t

0

D(Y s −Xs)dB
1
s + λ2

∫ t

0

(Y αs (ρ)−Xs)ds+ σ2

∫ t

0

D(Y αs (ρ)−Xs)dB
2
s ,

Y t = Y 0 + ν

∫ t

0

(
Xs − Y s

)
Sβ
(
Xs, Y s

)
ds .

Moreover, we have the following convergences

E
[

max
t∈[0,T ]

(∣∣Xm

t −Xt

∣∣2 +
∣∣Y mt − Y t∣∣2)] ≤ C√m, max

t∈[0,T ]
E
[∣∣Xm

t −Xt

∣∣2 +
∣∣Y mt − Y t∣∣2] ≤ Cm. (3.15)

where the constants Cs depend on E[|X0|4 + |Y 0|4 + |V 0|4], λ1, σ2, λ2, σ2, β, T, Cα,E , d, and ν.

4. Numerical examples on the zero-inertia limit

We conclude this paper with a few instructive numerical experiments on validating the zero-inertia limit.

We will focus on the mono-dimensional case since it allows us to see more clearly how the distribution

of particles evolves in time depending on the inertia parameter m, and hence show the zero-inertia limit.

Different benchmark functions have been used and tested, but we will report here the case of the Ackley

function shown in Figure 3. Following the same structure of the paper, we will first analyze the case without

memory effect and then we will generalize as in Section 3 to the case with memory. Extensive discussions

on other numerical implementations and experiments are presented in [27].

Figure 3. Ackley function in a big (left) and small (right) domain with its many local

minima.

4.1. Small inertia limit without memory. Given the system of stochastic differential equations in (1.2),

the particle system can be solved by using a semi-implicit discretization schemeXi,m
n+1 = Xi,m

n + ∆tV i,mn+1,

V i,mn+1 = m
m+γ∆tV

i,m
n + λ∆t

m+γ∆t (X
α,m
n −Xi,m

n ) + σ
√

∆t
m+γ∆tD(Xα,m

n −Xi,m
n )θin, i = 1, · · · , N ,

(4.1)

where Xi,m
n and V i,mn are, respectively, the position and velocity of the i-th particle at the discrete time

n∆t with ∆t being the time discretization, and the diagonal matrix D(Xα,m
n −Xi,m

n ) simply coincides with

Xα,m
n −Xi,m

n as we are considering the mono-dimensional case. Moreover, Xα,m
n is defined as in (1.3) and

θin ∼ N (0, 1) ∀i, n. We compare this particle system with the CBO dynamic of the form (1.10), which can

be solved using the Euler-Maruyama scheme

Xi
n+1 = Xi

n + ∆tλ(Xα
n −Xi

n) +
√

∆tσ(Xα
n −Xi

n)θin . (4.2)

As already mentioned, we consider the minimization of the Ackley function with minimum at x = 0 and,

starting from the same initial distribution of particles, we solve the PSO system (4.1) for different inertia
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Figure 4. Comparison of the CBO (4.2) and PSO (4.1) dynamics for different inertia

values (which are changing over the rows) and at many time steps (changing over columns),

starting from a normal distribution.

values. Then, we compare the evolution of the distribution of particles with the one of the particles moving

according to the CBO system (4.2). In order to be able to compare the results, we fix the parameters λ = 1,

σ = 1√
3

and α = 30, while θin are sampled from N (0, 1) and fixed for each i = 1, ..., N and n ∈ [0, T/∆t].

Moreover, T is set to 1 and the time discretization is ∆t = 0.01, with a total number of particles N = 104.

Figure 4 shows in each row the evolution of the CBO distribution and the one of the PSO system with

m fixed that is decreasing over rows. The initial particles are always sampled from the same distribution,

which is in this case a Gaussian centered in 0 with variance 1. Clearly, the PSO system with m = 0.8 leads

to the correct minimum in 0 at the final time step t = 1, but the distribution of the particles is different

from the one of the CBO. While, for any t ∈ [0, T ], if the inertia value is decreased to 0.1, or even to 0.001,

the two distributions, namely the one obtained via CBO and the PSO one, are indistinguishable, as the last
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Figure 5. Left: Wasserstein distance over time ; Right: Wasserstein distance and Kullback-

Leibler divergence (in mean) over the inertia values.

two rows of Figure 4 show.

These considerations are confirmed in Figure 5 where we compare the distributions obtained in Figure 4 using

the Wasserstein 2 distance between the CBO distribution and the PSO distribution. On the left of Figure

5, the Wasserstein distance is plotted for each time step. Moreover, since we want to show the influence of

the inertia parameter, we take the mean value of the Wasserstein distance over all time steps and plot it as

a function of the inertia values. This is shown on the right of Figure 5 where we also add the mean value

of the Kullback-Leibler divergence since the latter is a well-known measure used to compare distributions,

especially in statistics. Moreover, since it is necessary to start with an initial distribution that is close to

the global minimizer, we also try to see what happens when the initial distribution is a uniform distribution

between −3 and 3 and compare the evolution of its particles according to the CBO and PSO dynamics, with

varying inertia parameters. The result is shown in Figure 6. In this case, the difference between the CBO

distribution and the one of the PSO dynamics is way higher in the case of big inertia value, but, as before,

goes to zero as soon as m converges to 0.

4.2. Small inertia limit with memory effect. The PSO model which involves the memory of the local

and global best positions, underlying (3.1)–(3.3), can similarly be solved via

Xi,m
n+1 = Xi,m

n + ∆tV i,mn+1, i = 1, · · · , N

Y i,mn+1 = Y i,mn + ν∆t(Xi,m
n+1 − Y i,mn )Sβ(Xi,m

n+1, Y
i,m
n ),

V i,mn+1 = m
m+γ∆t

V i,mn + λ1∆t
m+γ∆t

(Y i,mn −Xi,m
n ) + λ2∆t

m+γ∆t
(Y α,mn −Xi,m

n )

+ σ1
√

∆t
m+γ∆t

D(Y i,mn −Xi,m
n )θ1,i

n + σ2
√

∆t
m+γ∆t

D(Y α,mn −Xi,m
n )θ2,i

n ,

(4.3)

where Y i,mn is the local best that the i-th particle has memory of, and Y α,mn is the regularized global best,

defined as in (3.4). Clearly, the corresponding CBO dynamics is the followingXi
n = Xi

n + λ1∆t(Y in −Xi
n) + λ2∆t(Y αn −Xi

n) + σ1

√
∆tD(Y in −Xi

n)θ1,i
n + σ2

√
∆t(Y αn −Xi

n)θ2,i
n

Y in = Y in + ν∆t(Xi
n − Y in)Sβ(Xi

n, Y
i
n)

(4.4)

Once again, since we want to show the convergence of the PSO distribution obtained from (4.3) with a small

inertia value to the one attained via the CBO system (4.4), we need to set some of the parameters to the

same values in order to be able to compare the results. Their values are the following

λ1 = λ2 = 1 σ1 = σ2 =
1√
3

α = 30 β = 30 ν =
1

2
(4.5)

and, as before, the effect of the Brownian motion leads to θ1,i
n , θ2,i

n which are sampled from a normal distri-

bution and set to a fixed value ∀i = 1, .., N and ∀n ∈ [0, T/∆t]. The time discretization and the number of
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Figure 6. Evolution of an initial uniform distribution according to CBO (4.2) and PSO

(4.1) dynamics and their comparison for different time steps (on the columns) and different

inertia values (on the rows).

particles are set to the same values as in the case without memory, namely T = 1, ∆t = 0.01, and N = 104.

The difference with the previous case is that now the distribution of which we want to show convergence,

is actually a function of both the particles’ position and their local best and, as such, it is bi-dimensional.

The result of the evolution of the particles according to the CBO dynamics (4.4) is shown in the first row

of Figure 7, while the second row represents the evolution according to the PSO dynamics (4.3) with a big

inertia parameter, e.g. m = 0.8. This is compared with the evolution presented in the third row in which

the inertia is set to a very low value, e.g. m = 0.001.

In the case without memory, it is easy to see the convergence at each time step of the PSO system with

small inertia to the CBO, but it’s not as clear now that the distribution we are interested in is bi-dimensional.

To be able to compare the evolution and to check how similar the distributions are at every time step, we
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Figure 7. First Row: evolution in time of the initial gaussian distribution according to

CBO dynamics (4.4); Second Row: evolution in time of the initial Gaussian distribution

according to PSO dynamics (4.3) with m = 0.8; Third Row: evolution produced by the

PSO dynamics (4.3) with m = 0.001.

Figure 8. Left: mean particles’ position with their standard deviation; Center: mean

particles’ local best with the standard deviation too; Right: plot of the Wasserstein distance

and Kullback–Leibler divergence between the distribution obtained via CBO dynamics (4.4)

and the one obtained through PSO system (4.3) with small inertia value, i.e. 0.001.

show in Figure 8 different plots: we look at the particles’ mean positions (left) and their local best (center)

for each time step and, in both cases, show their standard deviation as a colored area around the mean. It

is interesting to see how the particles are moving and where they are attracted to, especially because the

pattern of the PSO dynamics with small inertia is the same as the one of CBO. Finally, on the right plot

of Figure 8, we show how both our similarity measures, namely the Wasserstein distance and the Kullback-

Leibler divergence, are decreasing along with the inertia parameter, validating the small inertia limit also in

the general case with memory.

Finally, we want to numerically investigate the convergence in path space given in Theorem 2.4 and

Remark 2.2. Figure 9 shows on the left the trajectory of a random particle which is moving according to the

CBO system (4.2) and the PSO system (4.1) with different inertia values. Using all the N = 104 particles,
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Figure 9. Left: given a random particle, its trajectory according to CBO (4.2) is compared

with the ones obtained via PSO (4.2) with different inertia values ; Right: verification of

limit (4.6), i.e. plot of 1
N

∑N
i=1 maxn∈[0,T/∆t]

∣∣Xi,m
n −Xi

n

∣∣2 for every decreasing value of m

(in blue) and of the quantity maxn∈[0,T/∆t]

∣∣Xi0,m
n −Xi0

n

∣∣2 for the same random particles

considered on the left (orange color).

Figure 10. Left: random particle’s trajectories according to CBO (4.4) and PSO (4.3) with

decreasing inertia values; Center: random particle’s memory of the local best according to

CBO (4.4) and PSO (4.3) with decreasing inertia values; Right: verification of limit of
1
N

∑N
i=1 maxn∈[0,T/∆t]

(∣∣Xi,m
n −Xi

n

∣∣2 +
∣∣Y i,mn − Y in

∣∣2) for every decreasing value of m (in

blue) and of the quantity maxn∈[0,T/∆t]

(∣∣Xi0,m
n −Xi0

n

∣∣2 +
∣∣Y i0,mn − Y i0n

∣∣2) for the same

random particles considered on the left (orange color).

we take

lim
k→∞

1

N

N∑
i=1

max
n∈[0,T/∆t]

∣∣Xi,m
n −Xi

n

∣∣2 , (4.6)

namely the squared L2-norm of the vector containing the sup-norm in time of the distances between the

CBO and PSO solutions. On the right of Figure 9, the numerical verification of formula (2.54) is presented:

for every inertia value m, the quantity maxn∈[0,T/∆t]

∣∣∣Xi0,m
t −Xi0

n

∣∣∣2 is plotted, where i0 indicates the same

random particles whose trajectories are plotted on the left of Figure 9. Moreover, the quantity in (4.6) is

also plotted for every inertia value m and the convergence to the limit 0 is clear.

Both the plots in Figure 9 represent the particles moving according to the discrete systems (4.1), (4.2) in

the case without memory effect. In the more general case with memory, the systems (4.1), (4.2) become the

ones in (4.3) and (4.4), but the convergence in path space still holds and it’s numerically shown in Figure

10. Here, not only the trajectories of a random particle are plotted (on the left), but also the evolution of

the local bests according to both the discretized systems and with different inertia values are shown in the

central image of Figure 10. Once again, even in the case with memory effect, the strong convergence in path

space is shown for the random particle previously considered and also for all of the particles in terms of the

quantity 1
N

∑N
i=1 maxn∈[0,T/∆t]

(∣∣Xi,m
n −Xi

n

∣∣2 +
∣∣Y i,mn − Y in

∣∣2), on the right of Figure 10.



26 CRISTINA CIPRIANI, HUI HUANG, AND JINNIAO QIU

Figure 11. Left: case without memory, comparison of 1
N

∑N
i=1 maxn∈[0,T/∆t]

∣∣Xi,m
n −Xi

n

∣∣2
(orange) and maxn∈[0,T/∆t]

1
N

∑N
i=1

∣∣Xi,m
n −Xi

n

∣∣2 (blue) for every inertia

value, where the curve
(

1
N

∑N
i=1 maxn∈[0,T/∆t]

∣∣Xi,m
n −Xi

n

∣∣2)2

(green) is also

plotted as a function of m; Right: case with memory, comparison of

quantity 1
N

∑N
i=1 maxn∈[0,T/∆t]

(∣∣Xi,m
n −Xi

n

∣∣2 +
∣∣Y i,mn − Y in

∣∣2) (orange) with

maxn∈[0,T/∆t]
1
N

∑N
i=1

(∣∣Xi,m
n −Xi

n

∣∣2 +
∣∣Y i,mn − Y in

∣∣2) (blue) for every decreasing value of

m, where the square
(

1
N

∑N
i=1 maxn∈[0,T/∆t]

(∣∣Xi,m
n −Xi

n

∣∣2 +
∣∣Y i,mn − Y in

∣∣2))2

(green) is

also plotted.

Figure 11 shows a comparison between L2-estimate of the form (4.6) and the one of the following form

lim
k→∞

max
n∈[0,T/∆t]

1

N

N∑
i=1

∣∣Xi,m
n −Xi

n

∣∣2 , (4.7)

in order to check their convergence rate. On the left, both the quantities in formula (4.6) and (4.7) are

plotted for every inertia value in the case without memory effect. While on the right, the corresponding

formulas (indicated in the caption of Figure 11) are plotted for the case with memory effect. In both cases,

our numerical experiments indicate that just like the rate of convergence given in (2.53) (resp. (3.15)), the

L2-estimate of the uniform norm of the paths of X
m−X (resp. (X

m−X, Y mt −Y )) is on the order of
√
m

while the L2-estimate for each time t ∈ [0, T ] has order of m.
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