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INVARIANT DOMAIN PRESERVING APPROXIMATIONS FOR THE EULER
EQUATIONS WITH TABULATED EQUATION OF STATE *

BENNETT CLAYTON' JEAN-LUC GUERMOND', AND BOJAN POPOVT

Abstract. This paper is concerned with the approximation of the compressible Euler equations supplemented
with an equation of state that is either tabulated or is given by an expression that is so involved that solving
elementary Riemann problems is hopeless. A robust first-order approximation technique that guarantees that the
density and the internal energy are positive is proposed. A key ingredient of the method is a local approximation of
the equation of state using a co-volume ansatz from which upper bounds on the maximum wave speed are derived
for every elementary Riemann problem.

Key words. Compressible Euler equations, tabulated equation of state, maximum wave speed, Riemann prob-
lem, Invariant domain preserving approximation, composite waves

AMS subject classifications. 65M60, 656M12, 65M22, 35L65

1. Introduction. In many important applications, the compressible Euler equations are sup-
plemented with an equation of state that is either tabulated or given by a complicated analytic
expression. Throughout the paper, we will refer to this type of equation of state as the ‘oracle’. In
this case, approximating the Euler equations while guaranteeing positivity of the density and posi-
tivity of the internal energy is problematic since no exact solution of elementary Riemann problems
can be a priori inferred. Solving a Riemann problem when the equation of state is analytically
well defined is feasible, though possibly expensive, (see e.g., Colella and Glaz [5, §1], Ivings et al.
[16], Quartapelle et al. [24]). This cannot be efficiently done with an oracle for this requires inter-
polating/approximating the equation of state, and to the best of our knowledge, there is no clear
technique to do so in the literature. Various methods to avoid this problem have been proposed in
the literature. For instance, one can use approximate Riemann solvers like in Dukowicz [7], [5, §2],
Roe and Pike [26], Pike [23], or simplify the Riemann problem by using flux splitting techniques
like in Toro et al. [28]. However, for most of these techniques very little is guaranteed besides
positivity of the density, which is not difficult to achieve. The objective of the paper is to address
these questions. More precisely, we propose an approximation method to solve the Euler equations
equipped with an oracle. This is done by adapting the technique from Guermond and Popov [12]
where invariant-domain properties are obtained by ascertaining that they hold true for elementary
Riemann problems. The key is to augment each elementary Riemann system with an additional
scalar equation and replace the oracle by a covolume equation of state where the coefficient v is
variable and obtained as the solution to the additional equation. This idea is adapted from Abgrall
and Karni [1]. A variation of this idea is also employed in [5, Eq. (37)] and Pantano et al. [22,
Eq. (22)]. The proposed algorithm is explicit in time and preserves the positivity of the density and
the internal energy under an appropriate CFL restriction on the time step. Additional properties
can be preserved depending on the nature of the oracle. As in Guermond et al. [14], the method is
agnostic to the space approximation. An interesting feature of the method is that it automatically
recovers the standard co-volume behaviour if the oracle is indeed a covolume equation of state. In

*This material is based upon work supported in part by the National Science Foundation grant DMS-1619892,
by the Air Force Office of Scientific Research, USAF, under grant/contract number FA9550-18-1-0397, the Army
Research Office, under grant number W911NF-15-1-0517, and the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contracts B640889.
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2 B. CLAYTON, J.-L. GUERMOND, B. POPOV

compliance with Godunov’s theorem, the method is first-order accurate in space, however, achieving
higher-order accuracy in space is out of the scope of this paper. This can be done by implementing
the convex limiting technique described in [13, 14]. This work is in progress and will be reported
elsewhere.

The paper is organised as follows. The problem and the notation are introduced in §2. The
space and time approximation method from [12] is also briefly recalled in this section. The main
motivation of the paper is given at the end of §2.2. We introduce an extended Riemann problem
in §3. The key point of this section is summarized in Remark 3.1. An exact weak solution to the
extended Riemann problem is constructed in §4. It is also shown in this section that this weak
solution satisfies the expected invariant domain-properties. The main results of §4 are Lemma 4.4,
Lemma 4.5 and Theorem 4.6. An upper bound on the maximum wave speed for the extended
Riemann problem is derived in §5. This upper bound is the key piece of information that is needed
for practitioners who may have little interest in the Riemann problem theory (see §5.2-§5.5). The
fact that this estimate of the maximum wave speed is a guaranteed upper bound implies that the
proposed numerical algorithm satisfies the invariant-domain properties stated in Theorem 4.6. The
technique introduced in the paper is illustrated in §6 with continuous finite elements and various
equations of states. Finally, the paper is supplemented with an appendix collecting technical results.
Various pieces of software are made publicly available to guarantee reproducibility (Clayton et al.
3, 4)).

2. Formulation of the problem. We formulate the problem and introduce notation in this
section. The main motivation for the theory developed in the paper is given at the end of §2.2.

2.1. The Euler equations. We consider a compressible inviscid fluid occupying a bounded,
polyhedral domain D in R?. Here d is the space dimension. We assume that the dynamics of the
system is modeled by the compressible Euler equations equipped with an equation of state that can
be either tabulated or given by a very complicated analytic expression. The dependent variable is
u = (p,m, E)T € R42 where p is the density, m the momentum, E the total mechanical energy.
In this paper w is considered to be a column vector. The velocity is given by v := p~'m. The
quantity e(u) := p~'E — 1|v||% is the specific internal energy. To simplify the notation later on we
introduce the flux f(u) := (m,v@m+p(u)ly, v(E +p))T € R+ where I is the dxd identity
matrix. The convention adopted in the paper is that for any vectors a, b, with entries {ax }re{1: 43,
{bk }re{1:4}, the following holds: (@ ® b)y = axb; and V-a = Zk:e{l:d} Oz, ar. Moreover, for any

second-order tensor g with entries {gkl}fe{{ll:ffi}_m}, we define (V-g), = Ele{l:d} O, Bki-

Given some initial time to and initial data wo(x) := (po, Mo, Eo)(x), we look for u(x,t) =
p,m, E)(x,t) solving the following system in some weak sense:

(
(2.1a) Owp+ V-(vp) =0 a.e. t >1tg, x € D,
(2.1b) om+V-(v@m+pu)ly) =0 ae. t>ty, €D,
(2.1c) OE +V-(v(E+p(u))) =0 a.e. t>ty, ¢ €D,
where p : 4 — R is the pressure, and A is the admissible set:

(2.2) A :={u=(p,m,E) e R™ | p>0, e(u) > 0}.

We refer to the mapping p : A — R as the oracle. For all 5§ > 0, we introduce the following convex
subset of A:

(2.3) B(B) == {u=(p,m,E) eR™ | p>0, 1—8p>0, e(u) > 0}.

This manuscript is for review purposes only.
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Euler equations with tabulated equation of state 3

We further assume in the paper that the oracle is such that there exists a number b > 0, henceforth
called the covolume constant, so that the following holds for all u € B(b):

(2.4) p(u) > 0.

The inverse of the covolume constant b is the maximal density the fluid can reach. We take b = 0
if this constant is not a priori known.

Our goal in the paper is to approximate (2.1) by adapting the technique described in Guer-
mond and Popov [12]. As explained in the next section, this is done by constructing an artificial
viscosity that ensures that some relevant invariant-domain properties can be established, thereby
guaranteeing that the approximation technique is robust (i.e., satisfies physical bounds under a
reasonable CFL condition). The two key difficulties that arise in this endeavor are that it is nearly
impossible to construct solutions to elementary Riemann problems (or at least highly nontrivial,
see e.g., Quartapelle et al. [24], Fossati and Quartapelle [9]), since the equation of state is either
not available or too complicated. We propose a solution to this problem in §3 and §4. Taking
inspiration from Colella and Glaz [5], Abgrall and Karni [1], Pantano et al. [22], we introduce a
technique consisting of approximating the oracle by a covolume ~-law, where -y solves an additional
conservation equation.

Remark 2.1 (Pressure). In practice there are many equations of state that cannot guarantee
(2.4) over the entire set B(b), but the algorithm proposed in the paper works properly as long as the
numerical states stay in a subset of B(b) where the pressure stays positive. This situation occurs
in many realistic applications. O

2.2. Space and time approximation. Let us first recall the space and time approximation
technique described in [12]. This method is in some sense a discretization-independent extension
of the scheme by Lax [18, p. 163]. Without going into the details, we assume that we have at
hand a fully discrete scheme where time is approximated by using the forward Euler time stepping
and space is approximated by using some “centered” approximation of (2.1) (i.e., without any
artificial viscosity to stabilize the approximation). We denote by ¢™ the current time, n € N, and
we denote by 7 the current time step size; that is t"*! := ¢” 4+ 7. Let us assume that the current
approximation is a collection of states {U] };c¢, where the index set ¥ is used to enumerate all
the degrees of freedom of the approximation. Here U € R¥*2 for all i € . We assume that the
centered update is given by US""*! with

m;

(2.5) —UFTT —UT) + ) £(UY)e; =0.

-
Jes(@)

The quantity m; is called lumped mass and we assume that m; > 0 for all ¢ € /. The vector
ci; € R? encodes the space discretization. The index set J(i) is called local stencil. This set
collects only the degrees of freedom in ¥ that interact with ¢ (i.e., 7 & 9(i) = ¢;; = 0). We view
mi jeaqiy E(U)eij as a Galerkin (or centered or inviscid) approximation of V-f(u) at time ¢" at
some grid point (or cell) i € . The super-index ¢ is meant to remind us that (2.5) is a Galerkin
(or inviscid or centered) approximation of (2.1). That is, we assume that the consistency error
in space in (2.5) scales optimally with respect to the meshsize for the considered approximation
setting. We do not need to be more specific at this point. The only requirement that we make on

This manuscript is for review purposes only.
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4 B. CLAYTON, J.-L. GUERMOND, B. POPOV

the coefficients c;; is that the method is conservative; that is to say, we assume that

(26) Cij; = —Cjj and Z Cij = 0.

jed(@)
An immediate consequence of this assumption is that the total mass is conserved: ., miUvG’”Jrl =
> ico miU;". Notice that for every ¢ € ¥, the update (2.5) invokes the oracle card(9(i)) times,
because computing £(U’) requires computing p(U7) for all j € 9(i).

Remark 2.2 (literature). The reader is referred to [12, 13] for realizations of the algorithm (2.5)
with continuous finite elements. Realizations of the algorithm with discontinuous elements and
with finite volumes are described in [14]. O

Of course, the approximation (2.5) is in general not appropriate if the solution to (2.1) is not
smooth. To recover some sort of stability (we are going to make a more precise stability statement
later in Theorem 4.6), we modify the scheme by adding an artificial graph viscosity based on the
stencil J(i); that is, we compute the stabilized update U?** by setting:

(2.7) (U”+1 UH+ > f(Ue; — Y. dy(U)—U7) =0
JE€I(2) JEI()\{3}

Here d% is the yet to be defined artificial graph viscosity. We assume that

(2.8) d?j = d;-‘i >0, if i#j.

The symmetry assumption is essential for the method to be conservative. The question addressed
in the paper is the following: how large should d; be for the scheme to preserve invariant sets (and
possibly be entropy satisfying for some finite collectlon of entropies)?

One key observation is that one can rewrite (2.7) as follows:

27dy; 2rd}
(2.9) U?Jrl = (1 - Z - >Un Z :nlj Ui
IEIOING B EJONG .
with the auxiliary states U defined as follows:
" n n n n Cij|e2
(2.10) U, = (U +U7) — (£(U}) — £(U))ni; H 2(;11‘ .
i

Hence, if the time step is small enough, (2.9) shows that U"+1 is a convex combination of the
following states (U?j)jeg(i) (with the convention Uj; := U?). Hence if one can prove that the
auxiliary states U;; are in the set B(b) for all j € (i), then the update U7+ is also in B(b), thereby
establishing one important invariant-domain property. (Notice in passing that it is essential here
to assume dj; # 0.)

The maln objective of the paper is to describe a technique to estimate d;; that guarantees that

UZ-]- € B(b) provided both states U;" and U} are in B(b). This is done by showmg that Uij is a
space average of a solution to a Riemann problem, and by showing that this solution does satisfy
the invariant-domain property we are after. Then dJ; is defined so that df; > Aij max||€ijl[¢2, where
Aijmax iS any upper bound on the maximum wave speed in the said Rlemann problem.

This manuscript is for review purposes only.
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Euler equations with tabulated equation of state 5

3. The extended Riemann problem. An important step in [12] toward proving that the
auxiliary state U?j defined in (2.10) is a “good” state, if A;;j max is an upper bound on the maximum

wave speed in the Riemann problem, consists of realizing that in this case UZ— is a space average
of the exact solution to the one-dimensional Riemann problem with flux f(v)n,;, left data U;, and
right data U;. The main difficulty we are facing in the present situation is that there is no analytical
way to estimate an upper bound \;j max since the pressure is given by an oracle. We show in this
section how to go around this difficulty.

3.1. Extension of the system and 1D reduction. To avoid having to refer to particular
states U] and U;’, we now assume that we are given a left and a right admissible states, u;, and ugy.
We also denote n;; by n. Instead of considering the Riemann problem where the pressure is given
by the oracle, we now consider an extended Riemann problem. First we make a change of basis
and introduce t1,...,t4—1 so that {n,¢,...,t4_1} forms an orthonormal basis of R¢. With this
new basis we have m = (m,mL)T, where m := pv, v := v-n, m* = ploty,...,vtg_1) = pvt.
Second, we augment the system by introducing a new scalar variable I' (and ~ := %), the augmented

state u := (u, )7, and the extend the flux as follows:

(3.1) £(a) == (m,v @ m + p(a)ly, v(E + p(a)), o))" = (£(u),vD)",

with the new pressure

3.2
(3:2) 1—bp 1—0bp’

2
m . . . .
where e(u) := %(E — %) Here b is either given to us because this parameter can be measured,

or b is set to be zero if one does not have any a priori knowledge on the nature of the fluid. Notice
that I is the last component of the extended variable w; neither I nor v = p~'T" are assumed to be
constant. The extended Riemann problem consists of seeking @ := (u, )T = (p,m, E,T")T so that

p m
B m N %mQ + p(u)
(3.3) O+ 0,(E@m) =0, a=|mt|, Fam=|" wmt |,
I o(E + p(@))
r ol

with left data and right data (pz,mz-n,m%,Ez,T'z)", where Z € {L, R}, and 'z is defined so
that p(uz) = p(uz) =: pz,ie, [z = pZ—l—%_ZbM)7 (notice that this means vz := 1+%).

As usually done in the literature, the above problem can be solved in two steps. First one solves

p m
1,2
m ot . ._7—1(_m72>
(3.4) Oy e + Oy Bgtp)| = 0, with p(p,m,8,T) = 10 &E—155),
T mnr
P
L2
with left data and right data (pz,mzn,8z,T2)T, where § := E — w Notice in passing

2
that £ — % =& - Tg—:, i.e., the internal energy does not depend on the change of basis. This,

This manuscript is for review purposes only.
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6 B. CLAYTON, J.-L. GUERMOND, B. POPOV

_ 2 _ s 2
oz (62— 552) = 1255, (B2 = 755,1) = pz.

Second, one obtains the full solution to the Riemann problem (3.3) by determining m". This field
is obtained by solving dym™* + 9,(vm*) = 0 with the appropriate left and right data. Just like
in the case of the Euler equations, one never solves the second step since it does not affect the
maximum wave speed and the structure of the Riemann problem. In the rest of this paper we
solely focus our attention on the system (3.4).

together with the definition of vz, implies that pz := =

Remark 3.1 (Invariant domain properties). At this point, it is important to notice that

f(uyz) = (F(uz),vzTz)T because, as already mentioned above, p(uz) = pz = p(uz). Then,

recalling (2.10), and setting A := ”cdﬁ and U R := U;;, the extended auxiliary state based on the
13 1le

extended flux E, say wrp, satisfies the following identity:

_ ULR
3.5 -
(3.5) ULR (%(FL_A'_FR)—21)\(’URFR_ULFL)-TL->

That is, the density, the momentum, and the total energy of the states @y and Ty are identical.
This implies that these two states have the same density and the same internal energy. As a result,
if one can prove that the density and the internal energy of the state @z are both positive, then
this conclusion automatically carries over to the state wyr. This remark is essential, and it is the
main motivation for our introducing the extended Riemann problem. (|

3.2. The invariant domain preserving properties. We will use the technique of Lax con-
sisting of piecing together elementary waves to construct a weak solution to the extended Riemann
problem (3.4). We will show that this weak solution preserves positivity of the density and the
internal energy (see Remark 3.1). We will also show that the local gamma constant is uniformly
bounded from bellow: v > min(yz,vr). The key tool we are going to invoke is the following lemma.

LEMMA 3.2 (Riemann average). Let m be a positive integer. Let A be a subset of R™. Let
g € CH(A;R™) be a one-dimensional flur. Let wr, wr € A. Assume that the following Riemann
problem

(3.6) dyw + d,g(w) =0, w(z,0) = {“’L z<0,
wr x>0,

has a weak solution w in L>(Rx(0,00); R™)NCY([0,00); Li. .(R; R™)). Assume that this Riemann
solution has a finite mazimum wave speed (meaning, there exists Amax > 0 s.t. w(x,t) = wy, if

T < —Amaxt and w(z,t) = wg if * > Anaxt.) Let B be a convex subset of A and assume that
1

w(z,t) € B for a.e. z € R and allt > 0. Let w := [2, w(x,t)dx. Then the following holds true

2

for all t € (0, ﬁ)

(i) w(t) = 5(wr +wr) — (g(wr) — g(wr))t;

(i) w(t) € B;

(iii) Let ¥ € CY(B;R) be a quasiconcave functional. Assume that V(w(x,t)) > 0 for a.e. x € R

and all t > 0. Then U(w(t)) > 0.

(iv) Let ¥ € CY(B;R) be a concave functional. Assume that ¥(w(z,t)) >0 for a.e. x € R and all

t > 0. Assume that there exists Xy, Ay € [—Amaxs Amax), A < Ay, so that U(w(z,t)) > 0 for a.e.

7€ (M, Ay). Then ¥(w(t)) > 0.

This manuscript is for review purposes only.



227
228

229

230

233

242
243
244
245

246
247
248
249
250

w N =

=

NN NN N
gt ot gt Ut Ot

[\

56

Euler equations with tabulated equation of state 7

Proof. (i) Let wy, ..., w, be the m components of w, and let gy, ..., g, be the m components
of the flux g. Let [ € {1:m}. Since w is a weak solution to (3.6), we have

0= [m/) (711}167—¢ - gl(W)ax¢) drdz — wi, L [m ¢(I, O) dr — wl’R/O ¢(IE,O) dz

for all ¢ € W (Rx[0, 00); R) with compact support in Rx [0, 00). Here w;, z is the I-th component
of wz. Now we define a sequence of smooth functions (¢¢)eso with ¢c(z,t) = @1 (Jz])P2,e(T)

1 0<z<3, 1 O=7<t,
h1,e(x) = %(—x+%+e) %§x§%+e, Po.(T) = %(7T+t+€) t<7<t+e,
0 %—i—egx, 0 t+e<T.

Using that w; € C°([0, 00); L{, . (R)), we infer that [*_ [° —wd-¢e dzdr — fél wy(z,t)dz as € —
2

0. Likewise, we have [*_ [ —gi(w)dre dzdr — [((g1(wr) — gi(wy)) dr = (gi(wr) — gi(wp))t

as € — 0. Finally, —w; 1, ff)oo be(z,0)dr — wy Rk fooo ¢e(2,0)dz — —%(wi L +wyr) as € — 0. In
conclusion, we have established that

0=w(t) + (g(wr) — g(wr))t — 3(wr + wg).

(ii) Since B is convex, w(x,t) € B for a.e. x € R and all ¢ > 0, and the length of the interval [f%, ]
is 1, we infer that w(t) € B.

(iii) Let ¥ € C*(B;R) be a quasiconcave functional. The quasiconcavity implies that ¥(w(t)) >
essinf e 1 1 U(w(z,t)) > 0.

(iv) Let ¥ € C'(B;R) be a concave functional. Jensen’s inequality implies

N[

1
2

Ayt
@) > [ v )de> [ vt n)de>o
7% Apt
where we used —% It <t < % This concludes the proof. ]

Remark 3.3 (Weak solution). Notice that Lemma 3.2 only requires us to have access to a weak
solution of (3.6) that satisfies an invariant-domain property (i.e., w(z,t) € B for a.e. z € R and all
t > 0). No entropy inequality or additional smoothness condition is needed. |

4. Solution of the extended Riemann problem. We now construct a weak solution to
the extended Riemann problem (3.4) using the technique described in Lax [19] (we also refer to
Holden and Risebro [15, Chap. 5], Godlewski and Raviart [10, Chap. 1], Toro [27, Chap. 4] for
further details on the Riemann problem). No originality is claimed on this construction, but we
give the details for completeness.

4.1. Definition of the star states. We first notice that the Jacobian matrix of (3.4) is

diagonalizable and has three distinct eigenvalues. The eigenvalue % has multiplicity 2. Then, as
usual, we postulate that the solution to (3.4) is self-similar and composed of three waves hereafter
called L-wave, C-wave, and R-wave. The L-wave and the R-wave are either shocks or expansions.
The L-wave will be generated using the covolume equation of state with vy and the R-wave will be

generated by using the covolume equation of state with yg. The C-wave is a contact discontinuity

This manuscript is for review purposes only.
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for the density and I'. Compared to the technique described in Toro [27, Chap. 4], the only new
feature here is that the dependent variable has a fourth component I'. The purpose of this section
is to introduce quantities that are useful to define the three waves in question: the intermediate
densities p}, pf, the intermediate velocities v}, vk, v*, and the intermediate pressure p*. The
actual construction of the solution is done in §4.2 and §4.3.

In the rest of this section we use the primitive variables: density p, velocity v, pressure p, and
v :=T/p. We use the symbol p to denote the pressure defined in (3.4). Notice that the oracle is
only invoked to compute the two states p;, and pr. We define the primitive state ¢ := (p, v, p,7)"

and set ¢y = (pZ,vZ,pZﬁL)T. Recalling that we have defined vz := 1+ % the oracle

assumption (2.4) implies that min(yr,yg) > 1.
We define the covolume sound speed az := , /#pbzpz), the parameters Ay := 20-bpz) 54

(vz+1)pz

By = Z+1pZ corresponding to the Z state (see e.g., Toro [27, §4.7], [11]), and introduce the

followmg function

(4.1) fz(p) = Fh) = e ((

Z) Q’YZ _1) 1f0<p<P27
f5(p) = (p—p2) (p+BZ>2 if pz <p.

The definition of fz(p) makes sense because 1 < vz and 0 < Byz. It is shown in Toro [27, §4.3.1]
that the function fz(p) is in C?(R;R), monotone increasing, and concave.
We also define the function ¢ € C?(R4;R),

(4.2) o(p) == fr(p) + fr(p) +vR —vr,  p€[0,00).
Notice in passing that assuming ¢(0) < 0 is equivalent to assuming that the following holds true:

QGL(]. — pr) + 2(1]3(1 — pr)

4.3 VR — v <
(43) yL—1 Yr—1

This condition is known in the literature as the non-vacuum condition (see Toro [27, (4.40), p. 127]).

LEMMA 4.1. If (4.3) holds, then ¢ has a unique positive root p*.

Proof. Since ¢(0) = vg—vr,— QGL%:?’)L) 2‘”2(; b2) the assumption (4.3) means that ¢(0) < 0.
We then conclude that ¢ has a unique positive root since ¢(p) € C?(R;R) is strictly monotone

increasing (and concave).

DEFINITION 4.2 (p*, p%, pks V5, v, v*). (1) If the non-vacuum condition (4.3) holds, we

denote by p* the unique root of ¢, and we set vy = v — fr.(p*), v = vr + fr(p*), v* = v} = vg.
(ii) If instead there is vacuum, we define p* := 0 and set v} := vy — fr(0), vy == vr + fr(0).

(iii) We set p;, = pj = 0 if p* = 0; otherwise we set p}, := (b + %(%)%)71, Z € {L,R}.

Notice that the definition of v* makes sense if the non-vacuum condition (4.3) holds since in
this case ¢(p*) = 0 = v}, — vj. The definition of p} is continuous with respect to p*, including at
p* = 0. To fully describe our weak solution, we introduce the following wave speeds:

. +1(p*— ?
AL(p*) :==wvp —ar 1+7; (p pL> )
YL PL +
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yr—1
_ *) 1-bpr (p"\ 2L se %
A (p*) == 4 VE fu(p®) — ari=pF (pL) if p* <pr,
Az (p*) if pr, <p*,
3
+1 (pF -
27r PR/
72R*1
* 1-bpr ( p" TR se ok
)\—(p*) = UR+fR(p )+G/R1,bp§ (PR) lfp < PR,
AR (P") if pr < p*,

LEMMA 4.3 (wave speeds). Assume 1 < min(yy,vg) and 0 < ap,ar. Then, the following
holds true:

(4.4) AL(P) S AL(PY) S vp S vk < AR(DY) < AR(Y)

Proof. We will only consider the case Z = L; the case Z = R is analogous. There are two
possibilities: either p* < pr, or pr, < p*. In the first case, p* < pr, we have

1- pr p* 7L * *
—_— < — =
= bpr (pL <wvp — fu(p®) = v,

ML) =vp —arL <AL(p*) =vL — fL(p®) —ar

where we used above that f,(p*) < 0,1 <+, 0<ag, p} < pr, 0 <p* <ppand 0 < }:ZZ% <1

In the second case, pr, < p*, we have

1
— (% % +1 * 3
AL(P") =M (") =vp —ag <1+7L (P pL>)

2L pL

and
1

v, =vp — fL(p®) =vL — (p* —pL) <p,k+L&:> :

Then proving the inequality Af (p*) < v} is equivalent to showing that

1 1
* 2(1—b 1 : 1 (p*— E
(p N 1) ( ( PLl)) P _ %_1> ca (1 N 7;+ (p pL)> .
PL (e +1) pr oL T T YL PL
Using the substitution x := I’)’—Z —1 and that ar, := , /%, we derive that the above inequality

is equivalent to proving that

2 : 29\ (7L +1 :
_ 1—-0 < 1
('YL('YL“FI)) (1 =bpr) ((x“LyLJrl)( 2y, U ))

where x > 0. Squaring both sides, and recalling that x > 0, we observe that the above is equivalent
to the inequality

1 2(1—bpr)? 2
O<(7L+ 2 f7L)>x2+2z+ 2
271 vyo(ve +1) L +1
This inequality holds true for all x > 0 since we assumed that 1 < vy and 0 <1 —bpy < 1. 0
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4.2. Definition of the L-wave and R-wave without vacuum. We assume in this section
that the non-vacuum condition (4.3) holds. The main result of this section is Lemma 4.4. The
solution with vacuum is given in §4.3.

Recalling the notation from Definition 4.2, the proposed solution to (3.4) is self-similar and has
the following form:

Ccy, if % < )\E7
crr(f) ifAp < <AL,
ct if AT <2 < px,
(4.5) cz,t) =1 7 Lo b
ch if vx < F < AR,
crr($) if Ap <% <R,
CRr if )\E < %
with ¢ = (p,v*,p*,v2)T and ¢k = (p%,v*,p*,yr)". The parameters p*, v*, p%, and p% are

defined in Definition 4.2. The two functions e, cgrr are going to be defined to make sure that
(4.5) is indeed a weak solution to (3.4). Notice that ¢ is uniquely defined owing to Lemma 4.3 (i.e.,
the waves are well ordered).

Let us first construct the L-wave, i.e., we construct the function err(§) where A} < § < )\z.
If pr, < p*, then A} (p*) = A} (p*) and the L-wave is a shock. In this case one does not need to
define ¢y, since the interval [A7, XE) is empty. If p* < pp, we postulate that the v-component of

cp 1 is constant and equal to ;. This means that the L-wave can be computed by assuming that

m2

the equation of state is a standard co-volume ~-law p(1 — bp) = (1, — 1)pe (with e = %(8 — Z))
In this case the L-wave is an expansion. The construction of this wave is well established, we refer
for instance to Toro [27, Chap. 4]. More precisely, the self-similarity parameter £ = ¢ (which is the

eigenvalue of the Jacobian of the flux, v — a) can be expressed in terms of the parameter p:

yp—1

(4.6) §L(p) ==vr — f(p) —a L= bo (p

2vp,
T 1. N\ ) p € p*7p )
“1=bp(p) pL) b il

where p(p) is defined as follows:

1 1 L
()
p(p) pL p
To simplify the notation we use the symbol (p) instead of £1,(p) when the context is unambiguous.
Notice in passing that A7 (p*) = £(pr) and AL (p*) = £(p*). Since the function £ is strictly deceasing

in the interval p € [p*, pr], the inverse function theorem implies that p can be uniquely expressed
in terms of £. We abuse the notation and denote by p(£) the inverse function. Over the interval

€ € [&(p2),6(")] = AL ("), AL (p")], we have (see Toro [27, §4.7.1])

4D ewn@ = (om0 b (25) ) o (€0 0000 )

Now we define ¢} . If p* < pr,, the L-wave is an expansion and cj, is defined to be the end point
of the L-wave: ¢} := cp(&(p*)). If pr < p*, the L-wave is a shock. We still postulate that the
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Euler equations with tabulated equation of state 11

v-component of ¢ is equal to v for ¥ < )\JLr(p*). In this case we define ¢} so that the Rankine-

Hugoniot relation holds between the two state ¢y, and ¢} (see Toro [27, §4.7.1]). In conclusion, we
have

crn(é(p*)) if p* <pr,
(1) ¢t = o (s 2 T
( 7L71+2beLﬁ_:L~,:ilf2pr , VL — fL(p*)vp*a’YL) if pr < p*.
vy +1 PL yL+1

We define cgr(€) similarly. If p* < pgr, the R-wave is an expansion, otherwise it is a shock.
Assuming that p* < pg, the self-similarity parameter ¢ = % can be expressed in terms of the

t
parameter p € [p*, pg:

(4.9) ¢r(p) == vr + fr(p) + aRll__bl;p(Z) (;;) -

o= (5 ()

To simplify the notation we use the symbol £(p) instead of £g(p) when the context is unambiguous.
Notice that in this case A\ = £(p¥), )\; = {(pr), and & is a strictly increasing function over the
interval [p*, pgr]. Over the interval £ € [£(p*), &(pRr)], we have

where we have defined

(4100 err(§) = (pR (bore+ (1= o) (75 ) o+ 1 (0(€).5(6). WR)T.

Now we define cy. If p* < pgr, the R-wave is an expansion and c} is defined to be the end
point of the wave: ¢ = crr(£(p*)). If pr < p*, the R-wave is a shock. We still postulate that
the y-component of ¢ is equal to yg for v* < $ < /\E. In this case we define ¢y so that the
Rankine-Hugoniot relation holds between the two state cg and ¢};. In conclusion, we have

crr(€(p7)) if p* <pr,
(4.11) ch = on(2tp2mmt T
< ’yR71+21:p(I:IZ* 15;27%9,2 ,UR + fR(p*)7p*>'7R> if Pr < p*-
Yrt+1 PR Yrt+1

The key result of this section is summarized in the following Lemma.

LEMMA 4.4. Assume that the non-vacuum condition (4.3) holds. The field (p,m, E,T')T defined
by (4.5) is a weak solution to (3.4).

Proof. In the domain {x < v*t}, we have v = 7r; hence, I' = vrp. This implies that the
last equation in (3.4) is equivalent to the first equation (the conservation of mass). Moreover,
the first three equations in (3.4) hold true in the weak sense since the field (p,m, &) defined in
(4.5) is by construction a weak solution to the regular Euler equations with the pressure law

p(1=0bp) = (v —1) ((‘o’ - ’;‘72)

Similarly, in the domain {x > v*t}, we have v = 7g; hence, I' = yrp and the last equation
in (3.4) is equivalent to the the conservation of mass equation. The first three equations in (3.4)
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hold true in the weak sense because the field (p,m, &) defined in (4.5) is by construction a weak
solution to the regular Euler equations with a pressure law p(1 — bp) := (yg — 1) (8 - m—2)

2p
To be able to conclude the proof, we now have to make sure that the two states that are
separated by the line {z = v*t} satisfy the Rankine-Hugoniot relation. Let ¢} = (p%, v}, p%,75)
and c§, = (p},v},p%,77) be the two constant states defined above. Recall that the construction of

c; and ¢}, is such that that pj = pj = p* (see (4.8) and (4.11)). We have to show that

*

v

PLVL — PRVR (PL = PR)
p1(vi)? +pr — pRr(vR)? — pr = v (pLv] — pRvR)
vi(EL —pL) — vr(ER — pR) = v" (EL — ER),
VYL — VRVR = U*('YL - ’YR)

*

Since the non-vacuum condition (4.3) holds, we have v* := v} = v}, (see Definition 4.2). Then it
follows that the above four equations indeed hold true. Therefore the field defined in (4.5) is a weak
solution to (3.4). O

4.3. Definition of the L-wave and R-wave when vacuum is present. When (4.3) fails,
the solution contains a vacuum state. In this case both the L-wave and the R-waves are expansions.
Recall that in Definition 4.2 we have set
(4.12)
2aL(1 — pr>

vr — 1

QaR(l — pr>

, vp :=vRr + fr(0) = vp —
ri=vr+ [r(0) = vg 1

p* =0, Uz =L — fL(O) =vr, +

The solution to the extended Riemann problem (3.4) we propose is as follows:

cy, if % <wvr—ar,
cre(%) if AL <% <o,
_ VR—F % TV : * z *
(4.13) c(z,t) = v —or CL T 30 CR if v] < 7 <k,
crr(F) if v, < § <vr +ag,
CRr if vg +ar < %

The definitions of the expansion waves e¢r; and cgrgr are the same as in the non-vacuum case.
We define the states ¢ and c% as in §4.2 by setting ¢ := cpr(vE) = (0,v,0,7.)" and ¢ =
crr(vh) = (0,v%,0,7r)". The key result of this section is the following Lemma.

LEMMA 4.5. Assume that the vacuum condition holds, i.e., p* = 0. The field (p,m, E,T)T
defined by (4.13) is a weak solution to (3.4).

Proof. We have already established that, once expressed in conserved variable, (4.13) is a weak
solution to (3.4) in the regions {x < vt} U {vjt < x}. In the region {vjt < z < vjt}, all the
conserved variables are zero by construction. Hence, (4.13) rewritten in conserved variables is also
weak solution to (3.4) in the region {vjt < z < vjt}. Let us verify now that the field defined
in (4.13) is continuous across the line {x = vit}. Denoting &1, (p) the function defined in (4.6), we
obtain £1,(0) = vp — fL( ) =: v, ie., p(vp) = 0. Hence limgpy: crr(§) = (0,v7,0,71). Moreover,

limg vli*‘ E*CL + i 3 ¢, = (0,v7,0,vz). This proves the assertion. This in turn establishes

that the conserved field is also continuous across {z = vjt}. The argument to prove continuity
across {x = vit} is similar. The conclusion follows readily. |

This manuscript is for review purposes only.



412
413
114

415

418
119

421

428
429
130
431
432
133
434
435
436
437
438
439
140
441
442
443
444
445
146

Euler equations with tabulated equation of state 13

4.4. Summary. In Sections §4.2 and §4.3 we have defined a weak solution to the extended
Riemann problem (3.4). Notice that this weak solution satisfies the assumption of Lemma 3.2,
e., it is in L=®(Rx(0,00); R™) N C°([0, 00); L . (R; R™)) with m = d + 2, and the maximum wave
speed Amax = max(|AL (p%)[, AL (p¥)]) = max(—AL (p*), Af(p*)) is finite. As a result, we can invoke
Lemma 3.2 for any quasiconcave functional. The following theorem is the main result of §4.
THEOREM 4.6. (i) Let U}, U} be two states in B(b) (with B(b) defined in (2.3)). Let p* be
defined as in Definition /.2 with left state U} and right state U’. Let p* be any upper bound on p*
(i.e., p* > p*). Let

(4.14a) A(nij, U, UT) = max(—A[ (5%), \L (")),
(4.14b) d?; = max(M(nij, UT, UD)leis ez, Almgi, U, UL leillez )

Let Uf] be defined by (2.10). Then UZ- € B(b).
(i) Let i € V. Assume that U} € B(b) for all j € 9(i). Assume that d7}; is defined as above in

(4.14Db) for all j € 9(i). Assume that T is small enough so that T3 cq(\ iy T 245 <1. Let UM be
the update defined in (2.7). Then U} e COHV{U” |jed(@)} C B).

Proof. (i) We first notice that 3\\(77,1]7 U7, U}) > max(—A7 (p*), A;(P*)) =: Amax since the func-
tions —A; and )\ are monotone 1ncreasmg and p* > p*. We now apply Lemma 3.2 with the flux
g(w) = f (w)n and the Riemann data U U . We observe that the Riemann solution defined in
(4.5) and (4.13) has nonnegatlve density and nonnegatlve internal energy (recall that the internal
energy pe is equal to o= 1)( — bp)p). Notice also that the only way to have zero density and zero
internal energy on a set of nonzero measure is when vacuum is present in the solution and vj < vg;
in this case, \} < )\z and A\ < )\ and the density and the internal energy are positive in the

regions § € [A}, )\JLr), L e (Mg, AR Con81der the concave functionals Wy : @ — 0, Uyt 1— bp,
and U3 : @& ~— pe. Notice that \Ill(UiL) > 0 for all j € J(¢) and all [ € {1:3} whether vacuum

occurs or not. We conclude that \IIZ(G ;) > 0 for all [ € {1:3} by invoking Item (iv) in Lemma 3.2.

But the identity (3.5) shows that the density and the internal energy of the states Uij and Uij
are identical; as a result, defining ¥y : u — p, Wo : w +— 1 —bp, and V3 : u — pe, we infer that
Uy(U;;) = ¥;(U,;) > 0 for all I € {1:3}. This establishes that U;; € B(b).

(ii) The assertlon follows from (i), the convexity of B(b), and the observation that (2.9) implies that
U is in the convex hull of {U” |7 € 9@} T3 50000} mr 24 < 1. This completes the proof. O

Theorem 4.6 says that the algorithm (2.7) is 1nvar1ant—doma1n preserving under the appropriate
CFL condition. To make this theorem useful, we now need to derive a computable upper bound on
the maximum wave speed in the extended Riemann problem (3.4). This task is achieved in §5.

5. Upper bound on the maximum wave speed. Setting Amax(p) := max(—A7 (p), \}(p)),
we recall that the maximum wave speed in the Riemann problem (3.4) is given by Apax(p*). Recall
also that p — Anax(p) is a nondecreasing function. Since we only need an upper bound on Ayax(p*),
we derive in this section an explicit upper bound on p*.

5.1. Motivation and notation. We recall that p* = 0 if vacuum is present, and the max-
imum speed of propagation is then Apax(0) = max(lvy — ar|,|vg + ag|). (The L-wave and the
R-wave are both expansions in this case.) If the non-vacuum condition holds (see (4.3)), p* solves
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14 B. CLAYTON, J.-L. GUERMOND, B. POPOV

the equation
o(p) = fu(p) + fr(p) + v —vL =0,  pe€ (0,00).

As proved in Guermond and Popov [11, Lem. 4.2], a simple upper bound for p* can be obtained by
using the so called double-rarefaction approximation (see also Pike [23]), which consists of finding
the unique root of the modified equation ¢prr(p) = 0, where

(5.1)  érr(p) = 2aL(1_pr)<( P )WZLWZ1 - 1) + %L(l_pr)(( P )72131;1 - 1) +vgp —vL.

v —1 pL R — 1 PR

It can be shown that ¢rr(p) < ¢(p) for all p € [min(pr,pr),o0) if max(yr,vr) € (1,3]. Using
the notation from (4.1), this result is proved in [11, Lem. 4.2] by showing that fJ(p) > fZ(p)
for all p > pz if vz € (1, %} We revisit this idea in the rest of §5 and remove the assumption
max(yz,vr) € (1,2]. More precisely, we use a result from Theorem A.2 proved in Appendix A:
there exists a function c(vyz) (defined in (A.3)) so that f3(p) > c(yz)fZ(p) for all p > pz. This
function is equal to 1 over the range vz € (1, g] and decreases monotonically to % as vz grows to

infinity. To simplify the notation, let us set ay := C(WZ)M. We then redefine ¢rp for all

vz—1
vz € (1,00) by setting
p\Er P\ En
(5.2) orr(p) == ar ((p) - 1) + ozR((p) - 1) +vg — vL.
L R

We then have ¢rr(p) < ¢(p) for all p € [min(py,pr),o0) and all vz € (1, c0).

When vy, = vg (i.e., the case of the ideal gas law) the equation ¢rr(p) = 0 can be easily solved
since it is linear up to a trivial change of variable. But solving ¢grr(p) = 0 in the general case (i.e.,
v # vr) is far more difficult since the equation is nonlinear. In the rest of §5 we extract further
lower bounds on ¢rpr to derive an explicit upper bound on p*.

To simplify the notation in many of the expressions used below, we introduce two indices in
the set {L, R} denoted by “min” and “max” and defined as follows:

: L ifpr <pg, R ifpr < pr,
(5.3) min := . max := )
{R if pr. > pr, {L if pr. > pr.

Notice that pmin = min(pr,pr), Pmax = max(pr,pr). For instance amin = az and ymin = 7z
if Pmin = Pz, and amax = az and Ymax = Yz if Pmax = pz. We also introduce the two indices
m € {L,R} and M € {L, R} defined as follows:

(5.4)

L ify, <, R if yp < g,
m = . M = )
R ifyp > g, L ifvyp > g

Notice that v, = min(vz,vr) and vas := max(vr,vr). However, Ymin and vymax may not coincide
with the values ~,, and 7y,s, respectively. We now propose an upper bound on p* based on the signs

of ¢(pmin) and (b(pmax)'

5.2. Case 0: vacuum. If the vacuum condition holds, i.e., vg —v >

2aL(17pr)+2aR(17pr)
YyL—1 YrR—1
we have p* = 0 and Apax(0) = max(|vr, — arl, |vg + agl)-
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5.3. Case 1: 0 < p* and 0 < @(pmin). This case corresponds to the L-wave and the R-wave
both being expansion waves. In this case p* < pmin, which means that we do not need to compute
p* as we have A\ (p*) = v;, — ar, and \j (p*) = vg + ar. But, if for some reason an upper bound
for p* is needed, one can use the root of the function

(5.5) orr(p) == ar ((P) e 1) +or ((p) L 1) TR ——

PR pL

Note that &RR(p) < ¢rr(p) = &(p) for all p € [0, pmin]. We give the root for completeness,

2Ynm
( ) v -1
QR+ o — (VR — UL
(56) ﬁ* = M1 M1
arpp ™M +arpp, M
We have that p* = p* < p*. In conclusion, an upper bound on p* is min(pmin, p*). This im-

plies that 0 < p* < min(pmin,p*). Notice in passing that A} (min(pmin,p*)) = vr — ar and
A3 (min(pmin, P*)) = vr + ag.

5.4. Case 2: ¢(Pmin) <0< d(Pmax). In this case the min-wave is a shock and the max-wave
is an expansion. Here we have ppin < p* < Pmax and so for p € (Pmin, Pmax) We have that

Ymin—1 Ymax —1
(5.7) drr(P) = amin<( P ) min 1) + amax<< P ) max 1) +vr — VL.

min max

We consider two cases to derive a lower bound on ¢rgr(p). If Ymin = Ym, we define

v —1 v —1

$1(p) = Oémjn((p) M 1> +ozmax<< L ) o
Pmin Pmax

Ym—1 Ym—1
- 2 m 2 m
¢2(p) = Omin ((pp ) K — 1> + Qmax ((pp ) K T — 1) + VR — UL,
min max

—Ym ~

where r := (M)wmww . We have max((,zAbl (p), 92(p)) < ¢rr(p) for all p € (Pmin, Pmax). Solving

Pmax

é1(p) = 0 and ¢ (p) = 0 gives

1) + v — v,

2v M 2vm

v —1 Ym —1
~ Qmin + Omax — (UR - UL) ~ Omin + Omax — (UR - UL)
p1= M-l TV ) Py = —ap=1 —m=1 :
2 2 Bl &
Taminpmian + OmaxPmax QminPin T TQmaxPmax "

Hence, an upper bound on p* is min(pmax,03,05) if Ymin = Ym. This implies that puin < p* <
min(Pmax, P, Ps)- In the other case, Ymin = Yar, we have Ymax = ¥m and two lower bounds on ¢(p)
are given by

Ym —1 Im—1
¢1(p) = amin<(p) o — 1) + amax(( P ) sm — 1) + VR — UL,
Pmin Pmax
oy =1 ypm =1
$2(p) = Qmin ((p) e 1) + amax(( P ) o 1) + VR — VL.
Pmin Pmax
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Again, the equations ¢, (p) =0, bo (p) = 0 are linear (up to a change of variable). The roots are

_Am~—1 _am~—1 _om—1 _om—1

27 M 2YMm
AminPin + QmaxPmax

2y 29m
OminPpin "o+ QmaxPmax

2’Ym1 2’71\/11
~ Q'min + Qmax — (UR - 'UL) o ~ Qmin + Qmax — (UR - UL) ™
P = s b2 = .
An upper bound on p* is min(Pmax, D5, P5) if Ymin = Yar- Hence pmin < p* < min(pmax, D7, Ps)-

5.5. Case 3: ¢(Pmax) < 0. In this case we have ppax < p* and the L-wave and the R-wave
are shocks. We bound ¢rg(p) from below by the function,

ik 0l

(5.8) o(p) == aL((i)x"‘l - 1> +aR<(p};)gml - 1) +op — vr.

~

The corresponding root for ¢(p) =0 is
29m

—1
ap +ar—(vg—vp)
(59) ]?Tl'< = ( ~ Am-—1 ~ Am-—1 .
OéLpL 29m + aRpR 29m

Another possibility consists of observing that ¢ is the sum of two shock curves plus the constant
vgp — vr. Observing that By < Bzpp,l for all p € (Pmax,00), we infer that the graph of the
following function is also below the graph of ¢:

1 1
~ p—pe( Ar \? p-pr{ Ar \*?
(5.10) o(p) == ( 5 > + < 5 +ovg — L.
VP A1+ 0 VP A1+ 0
1
Let w7 := (#) 2 a:=2x+ xR, b:=vg — v, ¢c:= —pLrp — PRTR, then the only positive
root of (E is
—b+ (b —dac)? \*
5.11 Dy = .
( ) P2 ( 2

An upper bound on p* is min(p7, p3). Hence pmax < p* < min(p3, ps).

5.6. Iterative solution. Another possibility to estimate p* from above consists of solving
¢(p) = 0 by using the iterative quadratic Newton method described in Guermond and Popov [11,
Alg. 1]. The method is guaranteed to be convergent since the function ¢ defined in (4.2) is concave.
Using the lower and upper bounds provided in §5.3—85.5, the method is also guaranteed to deliver
an upper bound on p* for every termination threshold since ¢”(£) > 0 for all £ > 0 (see the proof
of Lemma 4.5 in [11]). A source code for this method is publicly available at [3].

6. Numerical Results. We numerically illustrate in this section the algorithm (2.7) with the
viscosity defined in Theorem 4.6 using the explicit upper bound p* defined in §5.2-5.5.

6.1. Convergence tests. We use the van der Waals equation of state as the oracle to validate
the method. More precisely, we consider the solution to a Riemann problem and compare it to the
numerical approximation (2.7) where the viscosity dj; is defined in (4.14b) with p* being the upper
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bound on p* derived in §5.2—85.5. Recall that for the van der Waals equation of state, the pressure
is given by p(p,e) := (v — 1)% — ap?, where 7, a and b are constants depending on the nature
of the fluid (see e.g., Callen [2, §3.5], Fossati and Quartapelle [9, §6.3]). We select the parameters -,
a, b so that the problem is hyperbolic and the solution exhibits a composite wave structure: we use
v=1.02,a =1, b =1. With these parameters the isentropes in the (p, %) diagram are nonconvex.
The loss of convexity is necessary for the existence of composite waves. The initial left and right
states we choose are:

(pr,vr,pr) == (0.10, —0.475504638574729, 0.022084258693080),

6.1
(6.1) (pr, VR, pR) = (0.39, —0.121375781741349, 0.039073167077590).

The exact solution is a 3-wave composed of an expansion fan, a shock, and another expansion fan.
The details of the construction of the solution can be found in Cramer and Sen [6], Lai [17], and
Fossati and Quartapelle [9, §6.4]. For completeness and reproducibility, the construction of the
exact solution is given in the supplementary material and a code computing the exact solution is
available at Clayton et al. [4].

’ #dof\ 91(t) rate 02(t) rate
101 | 2.14E-01 — 2.67E-01 —
201 | 1.44E-01 0.58 2.07TE-01 0.37
401 | 9.40E-02 0.62 1.58E-01 0.39
801 | 5.96E-02 0.66 1.20E-01 0.40
1601 | 3.66E-02 0.70 8.96E-02 0.42

3201 | 2.18E-02 0.75 6.66E-02 0.43

6401 | 1.27E-02 0.78 4.93E-02 0.43

12801 | 7.26E-03 0.81 3.66E-02 0.43

25601 | 4.09E-03 0.83 2.72E-02 0.43

Table 1: Consolidated errors and convergence rates. Solution computed at ¢ = 5.0.

We approximate the solution with P; continuous finite elements in one dimension. The com-
putational domain is D := (—1,1) with CFL=0.5. The estimation of the maximum wave speed
(see (4.14a)) is done by using p* as explained in §5.2-§5.5. A series of computations is done on nested
uniform meshes to estimate the convergence rate of the method. Denoting by (pp(t), mp(t), Er(t))
the approximation at time ¢, we compute a consolidated error indicator by adding the relative error
in the L?-norm on the density, the momentum, and the total energy as follows:

on®) = o)y () — m@llzeoy - En(E) — Bz
62 )= e ) @z o) TE® 270,

The results of the convergence tests are reported in Table 1. The number of grid points is reported
in the leftmost column. The errors are computed at ¢ = 0.5. We observe that the method is
convergent, and the convergence rates are consistent with the approximation being formally first-
order accurate.

6.2. The two-expansion-wave-speed estimate. It is often reported in the literature that,
for practical purpose, one can use the two expansion wave speeds, vy, — cr, vg + cg, to estimate
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18 B. CLAYTON, J.-L. GUERMOND, B. POPOV

the maximum wave speed. Using the covolume equation of state, we have shown in [11, App. B]
that max(|v, — cr|, [vr + cg|) is not an upper bound on the maximum wave speed in the Riemann
problem. But the reader could legitimately be skeptical about this kind of theoretical result and
may wonder whether these academic arguments have any impact on practical computations. We
now illustrate that the two-expansion-wave-speed estimate is not robust: it can either lead to an
underestimation or to an overestimation of the viscosity with severe consequences in both cases.

0.03

03
0.24 0.029
400 ——
022 1600 0.028 0.25
6400
25600 —— 0.027 02
0.2 0.026 ’
0.025
0.18 015
0.024
0.16 0.023 0.1
0.022
0.14 0.05
0.021

01%7 02 0 o2 04 06 08 1 %7 02 0 02 04 06 08 1 & 02 0 02 04 06 08 1

Fig. 1: Test with the data (6.3), ¢t = 1.25. From left to right: density, pressure, sound speed.

0.03
0.25 ‘ 1600 05
6400 ——
éggg - 0.025 25600

0.2 25600 04
0.02

0.15 0.3
0.015

0.1 02
0.01

0.05 0.005 01

0 %4 02 0 02 04 06 08 1 0 04 02 0 02 04 06 08 1 0 04 02 0 02 04 06 08 1

Fig. 2: Test with the data (6.4), t = 0.4. From left to right: density, pressure, sound speed.

We start by showing that max(Jur — cr|,|vr + cgr|) can lead to an underestimation of the
viscosity and therefore lead to violations of important properties. Our oracle is the van der Waals
equation of state with a = 1, b = 1, v = 1.02. We solve two Riemann problems. The first one is
equipped with the following data set:

(pr,vr,pr) == (0.2450,0,2.9123894332846005x 10~ 2),

6.3
(6.3) (pr,vR,pR) := (0.1225,0,2.0685894810791836 x 10~2),

which gives the sound speeds (cr,cr) = (0.00399,0.306). The second one is equipped with the
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following data set:

(2.5x107%,0,3x1072),
(4.9x107°,0,5x107%),

(pr,vL,pL) =

. (PR, VR, PR) =

which gives the sound speeds (cr,cr) = (0.057,0.031). For each data set, we perform two series of
computations on the domain D = (—0.5,1). The computations are done up to ¢ = 1.25 for the first
data set and up to t = 0.4 for the second data set. In both cases we use CFL = 0.5. One series
of computations is done with the estimation of the maximum wave speed (see (4.14a)) using p* as
explained in §5.2-85.5 (no iteration is done). The other one is done using the two-expansion-wave-

speed estimate max(|vr, — cr.(pr, pr)|s |vr + cr(PL, pr)|) With ¢(p, p) = ('ypfz%ag’;) — 2ap)2
out that the computations done with the two-expansion-wave-speed estimate violates the invariant
domain property after a few time steps for both data sets: one obtains a complex sound speed
for the first data set and one obtains a negative internal energy for the second data set. These
violations occur no matter how small the CFL number is. The computations done with the method

proposed in the paper run without any problem. We show in Figure 1 the density, the pressure and

. It turns

the sound speed profiles for various mesh sizes (11(')50, io%v 1165’0, 2516%0) for the data set ( 3). The
results for the second data set (6.4) are shown in Figure 2 with the mesh sizes 1165’0, 5ico 400 Notice

that in both cases the R-wave is a composite wave composed of an expansion followed by a shock.

1.01 400 1800 —
— S [ N
[ | 1600 | A\
1 ‘ _ 350 \ 100 ——
f \ 1400 \| k0 —
J \ | 1600
300 \
0.99 ‘ \
250 1200 \
100 —— \
0.98 400 —— 1000
200 1600

0.97 800

150 \

600
0.96
100 ——
400 100 400
1600 L
0.95 50 200
0¥ 35— w05 0 05 1 045 1 ©5 0 05 1 0 A5 G 05 0 1

Fig. 3: Test with the data (6.5), ¢ = 0.005. From left to right: density, pressure, sound speed.

We now show that the two-expansion-wave-speed estimate can lead to a local overerestimation
of the viscosity and thereby to a reduction of the admissible range of time step sizes. We use again
the van der Waals equation of state with the same parameters as above for the oracle. We consider
the Riemann problem with the following data:

(PL,UL,PL)

(0.9932, 3,2),
(65) (PR, VR, PR) = (

0.9500, —3,2).

The corresponding sound speeds are (cr,cr) ~ (21.2,7.77). The computational domain is D =
(—1.7,1) and the computations are done up to ¢t = 0.005. For the computation with the two-
expansion-wave-speed, the CFL number needed to avoid producing negative internal energy is
about 0.06. The maximal admissible CFL number for the present method is about 0.71 (i.e., below
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this CFL number the sound speed is real and the internal energy is positive at every grid point and
for every time step). As a result the computational cost of the method using the two-expansion-
wave-speed estimate is almost 12 times higher than that of the present method. We show in Figure 3
the density, the pressure and the sound speed for various meshes using the present method. The
results obtained with the two-expansion-wave-speed estimate are almost identical (not shown).

6.3. Further illustrations. We continue by illustrating the proposed method by using a
cubic equation of state as the oracle, see Redlich and Kwong [25], Valderrama [29]. We refer the
reader to Dumbser and Casulli [8] where series of tests are done with this type of equation of state.
For a general cubic equation of state, the pressure is given by

RpT(p, e ap?
(6.6 p(p.c) = L) 7
1—bp T(p,e)(1 —brip)(1 —brap)
where T'(p, e) solves the following cubic equation:
3 1 1—bry p)
6.7 e=c,T + lo ( .
( ) ! 2b\/TT1 — T2 & 1 —brep
15
5 35 [
14 45
4 3 “
13 \
35 )
12 8 25 \
25 “
T i —
. 15 1600 ‘ 1600 E\
04 02 0 02 04 iz o oz od S o oz 0 oz oa

Fig. 4: Test with the data (6.8), t = 0.1. From left to right: density, pressure, temperature.

We take r; = 0 and ro = —1 (this corresponds to the so-called Redlich-Kwong equation). We
solve two of the problems from [8, §3.3] where R = 0.4, « = 0.5, b = 0.5. These are two Riemann

problems. For the first problem we take ¢, = 1 and the initial data are
(68) (pr,vr,pr) = (1,1,2),
(PR7 UR7pR) = (17 _la 1)

The computational domain is (—0.5,0.5) and the final time is ¢ = 0.1. For the second problem we
take

(pr,vr,pr) == (1,0,1000),
(prsvr,pr) = (1,0,0.01),

with ¢, = 1.5 (we suspect there is a typo in [8, §3.3], since the authors say that they use ¢, = 1 with
the above data, but this gives a negative internal energy for the right state.) The computational

(6.9)
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1000

1.8 1200 oSS
100 ——
400 ——
16 800 1600 1000
1.4 600 800
1.2 600 100
400 | 400 ——
1
1 400 600
200 \
0.8 200 \
\~
L 0 L

0‘§0.6 -0.4 -0.2 0 0.2 0.4 (-)0.6 -0.4 -0.2 0 0.2 0.4 -0.6 -0.4 -0.2 0 0.2 0.4

Fig. 5: Test with the data (6.9), ¢ = 0.008. From left to right: density, pressure, temperature.

domain is D = (—0.6,0.4) and the final time is ¢ = 0.008. In both cases, we take the covolume
constant in (3.2) to be b = 0.5 (using b = 0 in (3.2) gives similar results, not shown). The CFL
number is 0.5. The results obtained with various meshes are displayed in Figure 4, for the first
case, and in Figure 5, for the second case. In each case, we show the density, the pressure and the
temperature. These results are similar to those reported in [8, §3.3].

6.4. Two-dimensional illustration. To demonstrate that the proposed method is actually
independent of the space dimension, we illustrate it by using a finite element code which implements
the algorithm (2.7). The documentation of this program is found in Maier and Tomas [21]. We
replace the estimation of X(nij, U;,U;) used in this code (and described in [11]) by the estimation
(4.14a) with p* computed as explained in §5.2-§5.5. The oracle is the van der Waals equation of
state with v = 1.4, a = 0.3215, and b = 0.1. The computation of p* is done with the assumption
that b = 0. That is, we assume that the covolume constant b is unknown.

We simulate the flow around a cylinder in a two-dimensional channel. The computational
domain is D = (—0.9,3.1)x(—1,1)\C, with C being the disk of radius 0.15 centered at (0,0).
We enforce the density, the momentum and the total energy at the inflow boundary, {z = —0.9}:
(p,m,E) = (1.4,(4.2,0)7,9.154375). The primitive variable corresponding to these data are v =
(3,0)" and p = 1. The corresponding Mach number is 3. The slip boundary condition is enforced at
the top and at the bottom of the channel. Nothing is done at the outflow boundary condition (this
is a supersonic outflow boundary). We use continuous Q; finite elements. We refer the reader to
Maier and Tomas [21] for the implementation details. We show in Figure 6 the density computed
at time ¢t = 4 using a Schlieren-like representation. Letting >, pi'¢; be the approximation of
the density, we approximate the Euclidean norm of the gradient of the density as follows r}" :=
m; > jea(py) CiiP; llez, for all @ € ¥, The values of the Schlieren field are defined at the grid
points by exp(—A(r; —minjeg(;y 77)/(maxjeg( 77 — minjeg(;) r7)) where 8 = 10. For comparison,
we also show in the right panel of this figure the density obtained at the same time using the ideal
gas equation of state. The inflow boundary data is (p,m, E) := (1.4,(4.2,0)T,8.8) and v = 1.4.
This corresponds to the same primitive state, v = (3,0)7 and p = 1, as the simulation with the van
der Waals equation of state. The mesh used for these computations has 1.4x108 grid points.

Of course, these simulations are first-order accurate in space. Making the approximation higher-
order accurate can be done by implementing the convex limiting technique described in [13, 14].
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Fig. 6: Cylinder at Mach 3 in a channel. Density, ¢ = 4. Left: the oracle is the van der Waals
equation of state. Right: the oracle is the ideal gas equation of state with v = 1.4.

This however requires developing surrogate entropies functionals for the oracle. This task is under
way and the results of this work will be reported elsewhere. We are currently implementing the
technique in the massively parallel code documented in Maier and Kronbichler [20].

7. Conclusions. We have proposed in the paper an approximation technique for the com-
pressible Euler equations where the equation of state is given by an oracle. The key feature is
an artificial graph viscosity using an estimate on the maximum wave speed on each elementary
Riemann problem that guarantees the positivity of the density and of the internal energy. This
estimate also guarantees an upper bound on the density when a covolume constant in known. The
main theoretical result of the paper is Theorem 4.6. The guaranteed bounds developed in §5.2—
85.5 are easy to compute. These upper bounds can be used in any algorithm that is based on
approximate Riemann solvers. A computer code implementing all these bounds is freely available
at Clayton et al. [3]. All the simulations reported in the paper have been done with this code.

Acknowledgments. The authors thank Matthias Maier and Eric Tovar for stimulating dis-
cussions and the help they provided at various stages of this project.

Appendix A. Improvement on the v > % estimates. The objective of this a appendix
is to prove that ¢rr(p) < ¢(p) for all p € [min(pr,pr), o0), where we recall that the function ¢ is
defined in (4.2), the function ¢rp is defined in (5.1). For future reference we also recall that

1

—1 T2
Al S(p) = (p— ks ) Vi—b
(A1) 150) = - v o v+ g .
9. /xzPz ’Yzzfl
Pz Yz
(A.2) 7 () i (;;) —1)V1-bpz.

The functions f5(p) and f£ are, respectively, the shock and rarefaction curves introduced in (4.1).
The following lemma is one of the main result established in Guermond and Popov [11]:

LEMMA A.1 ([11, Lem. 4.2]). Let pz > 0, pz be such that 0 <1 —bpz <1, and vz € (1,00).

Assume that v € (1,2]. Then fr(p) < fs(p) for all p € (pz,00) and fr(pz) = fs(pz), i.e., the
shock curve is above the rarefaction curve.

THEOREM A.2. Assume v € (1, g] Let ppin and pmax be defined as in §5.1. For any p > 0,
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the graph of ¢(p) is above the graph of drr(p); more precisely, prr(p) = ¢(p) for all p € [0, Pmin]
and ¢rr(p) < ¢(p) for all p € (Pmin, 00).

Proof. Note that the two curves (p, ¢(p))and (p, prr(p)) coincide if p < ppin because both ¢
and ¢rgr are the sum of the two rarefaction curves plus the constant vg — vr. If pmin < P < Pmax
the function ¢(p) is the sum of one rarefaction curve and one shock curve plus the constant vg —vy,.
We then conclude by invoking Lemma A.1 with (pz, pz) = (Pmin, Pmin)- If Pmax < p the function
@(p) is the sum of two shock curves plus the constant vy — vy,. Now we invoke Lemma A.1 twice
to complete the proof, once with (pz,pz) = (Pmin, Pmin) and once with (pz, pz) = (Pmax, Pmax). O

The assertion in Lemma A.1 is false when % < 7vz. To remedy this deficiency, we now define a
new function that is guaranteed to be always under ¢(p) for all vz € (1,00) and all p € (Pmin, ).
Consider

1 ifl1<yz<2
1 .
(A.3) c(vz) =1 G+ 5554m)° if §<vz<3
4—2v4
(3+273721)% if3< 1z,

Notice that (1,00) 3 v, — ¢(7z) is continuous and c(vz) € (3,

1].
LEMMA A.3. Let pz > 0, pz be such that 0 < 1 —bpy < 1, and vz € (1,00). Then
c(v2) 5 (pz) = [5(pz) = 0 and c(vz) £ (p) < f5(p) for all p € (pz,00).

Proof. The proof of the assertion is in the supplementary material. 0
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