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Abstract. The magnetohydrodynamics (MHD) equations are generally known to be difficult to
solve numerically, due to their highly nonlinear structure and the strong coupling between the elec-
tromagnetic and hydrodynamic variables, especially for high Reynolds and coupling numbers. In this
work, we present a scalable augmented Lagrangian preconditioner for a finite element discretization
of the B-E formulation of the incompressible viscoresistive MHD equations. For stationary problems,
our solver achieves robust performance with respect to the Reynolds and coupling numbers in two
dimensions and good results in three dimensions. We extend our method to fully implicit methods for
time-dependent problems which we solve robustly in both two and three dimensions. Our approach
relies on specialized parameter-robust multigrid methods for the hydrodynamic and electromagnetic
blocks. The scheme ensures exactly divergence-free approximations of both the velocity and the mag-
netic field up to solver tolerances. We confirm the robustness of our solver by numerical experiments
in which we consider fluid and magnetic Reynolds numbers and coupling numbers up to 10,000 for
stationary problems and up to 100,000 for transient problems in two and three dimensions.
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1. Introduction. In this work, we consider the incompressible viscoresistive
magnetohydrodynamics (MHD) equations on a simply-connected polytopal domain
Ω ⊂ Rd, d ∈ {2, 3}. In the stationary three-dimensional setting, we investigate the
formulation

− 2

Re
div ε(u) + u · ∇u +∇p+ SB× (E + u×B) = f ,(1.1a)

divu = 0,(1.1b)

E + u×B− 1

Rem
curlB = 0,(1.1c)

curlE = 0,(1.1d)

divB = 0.(1.1e)

Here, u : Ω→ R3 denotes the velocity, p : Ω→ R the fluid pressure, B : Ω→ R3 the
magnetic field, E : Ω→ R3 the electric field, Re the fluid Reynolds number, Rem the
magnetic Reynolds number, S the coupling number, f : Ω → R3 a source term and
ε(u) = 1

2 (∇u +∇u>). The system is completed with the boundary conditions

(1.2) u = 0, E× n = 0, B · n = 0 on ∂Ω,

where n is the unit outer normal vector. The above formulation based on the electric
and magnetic fields was first rigorously analyzed by Hu et al. [31].
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In two dimensions, the electric field is a scalar field and hence denoted as E. The
curl operators and cross products are interpreted depending on whether the arguments
are scalar- or vector-valued corresponding to the definitions

(1.3) curlB = ∂xB2 − ∂yB1, curlE =

(
∂yE
−∂xE

)
and

(1.4) u×B = u1B2 − u2B1, B× E =

(
B2E
−B1E

)
.

Moreover, the boundary conditions for the electric field change to E = 0 on ∂Ω in
two dimensions.

Other formulations include the current density j = E+u×B [32] as an unknown
or eliminate the electric field using equation (1.1c). In addition to the stationary case,
we also consider the time-dependent version of (1.1) where the time-derivatives ∂u

∂t

and ∂B
∂t are added to (1.1a) and (1.1d) respectively with suitable initial conditions

u(x, 0) = u0(x) and B(x, 0) = B0(x)∀x ∈ Ω. Note that MHD models neglect
displacement currents ∂E

∂t [27, Sec. 1.5].
The main contribution of this work is to provide block preconditioners for lin-

earizations of (1.1) with good convergence even at high Reynolds and coupling num-
bers. The performance relies on the following three (novel) approaches:

1.) We consider a fluid-Reynolds-robust augmented Lagrangian preconditioner
for an H(div) × L2-discretization of the Navier–Stokes equations that relies
on a specialized multigrid method.

2.) We introduce a new monolithic multigrid method for the electromagnetic
block.

3.) We discover that using the outer Schur complement which eliminates the
(u, p) block instead of the (E,B) block has crucial advantages for ensuring
robustness for high parameters.

Furthermore, we show that our preconditioners extend in a straightforward man-
ner to the time-dependent version of (1.1). This has the substantial advantage that
the choice of the time-stepping scheme is no longer restricted by the ability to solve
the linear systems. In particular, it allows the use of fully implicit methods for high
Reynolds numbers and coupling parameters.

An important point for discretizations is the enforcement of the magnetic Gauss’
law divB = 0 in the weak formulation, achieved in most cases by a non-physical
Lagrange multiplier r [47]. However, in general a Lagrange multiplier only enforces
the divergence constraint in a weak sense, which can cause severe problems for the
discretization and numerical simulations [13, 19]. For the B-E formulation (1.1) Hu
et al. [31] show that both a Lagrange multiplier and an augmented Lagrangian term
lead to a point-wise preservation of Gauss’ law with appropriate choices of discrete
spaces. In this work, we consider the latter approach by replacing (1.1d) with

(1.5)
1

Rem
∇ divB + curlE = 0.

The literature proposes numerous numerical schemes and preconditioning strate-
gies for the numerical solution of the different formulations. The most common ap-
proach is based on block preconditioners in both the stationary [35, 40, 41, 53, 52]
and time-dependent [16, 18, 42] cases. Here, the main challenges are to find suitable
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approximations of one or more Schur complements and robust linear solvers for the
inner auxiliary problems. Phillips et al. [42] simplify the Schur complement by the
use of vector identities and approximate the remaining parts based on a spectral anal-
ysis. They report iteration counts for a stationary three-dimensional lid-driven cavity
problem up to Re = Rem = 100. A similar approach is used by Wathen and Greif in
[52] where they construct an approximate inverse block preconditioner by sparsifying
a derived formula for the exact inverse and drop low order terms. Here, results for
Hartmann numbers Ha =

√
SRemRe up to 1,000 are reported for stationary problems.

Other approaches include fully-coupled geometric [1, 2] and algebraic [49, 50] mono-
lithic multigrid methods. In [1], Adler et al. present results for a two-dimensional
Hartmann problem for parameters up to Re = Rem = 64.

However, the performance of most of these preconditioners deteriorates signifi-
cantly for high Reynolds and coupling numbers. To the best of our knowledge, a
practical robust preconditioner for the stationary MHD equations has not yet been
proposed. The common problem for high magnetic Reynolds numbers and coupling
numbers for the stationary case is that all available Schur complement approximations
become less accurate for Newton-type linearizations, causing the linear solver to fail
to converge. Conversely, Picard-type linearizations can allow an exact computation
of the Schur complement but fail to converge in the nonlinear iteration.

In this work, we consider two different linearizations. The first is the Picard
iteration proposed by Hu et al. [31]. We compute an approximation to the outer
Schur complement of the arising block system and introduce a robust linear solver for
the different blocks. This scheme works well for small magnetic Reynolds numbers
but the nonlinear iteration fails to converge for higher Rem, as anticipated in the
analysis of [31]. The second is a full Newton linearization, which converges well for
high Reynolds numbers and coupling numbers. However, our approximation of the
Schur complement deteriorates slightly for high parameters.

Ma et al. [36] have developed Reynolds-robust preconditioners for the time-depen-
dent MHD equations that are based on norm-equivalent and field-of-values equivalent
approaches. To the best of our knowledge, their strategy does not extend to the
stationary case; in general, the time-dependent case offers crucial advantages for the
development of robust solvers. For example, Ma et al. treat complicated terms like
the hydrodynamic convection term u · ∇u explicitly in the time-stepping scheme,
which can cause problems for convection-dominated problems and does not apply in
the stationary case. The discretization of the time derivative causes mass matrices
with a scaling of 1/∆t, where ∆t denotes the time step size, to appear in the block
matrix on the diagonal blocks. As we will see also in our numerical results for the
time-dependent problems, these extra terms dominate the scheme for small ∆t and
hence simplify the development of robust solvers.

Most applications are in the regime of high Reynolds and coupling numbers and
hence it is of great interest to build robust solvers with respect to these parameters.
For liquid metals, the fluid Reynolds number Re tends to be much larger than Rem.
For example, the flow of liquid mercury is characterized by a ratio of 107 between these
two constants; typical values in aluminium electrolysis are Rem = 10−1 and Re = 105

[27]. High magnetic Reynolds numbers occur on large length scales, as in geo- and
astrophysics. The magnetic Reynolds number of the outer Earth’s core is in the range
of 103 and of the sun is in the range of 106 [20]. Magnetic Reynolds numbers between
101 − 103 have been used in several dynamo experiments that investigate planetary
magnetic fields [37]. The coupling number S is around 100 for aluminium electrolysis
[27] and Armero & Simo [4] define strong coupling for S in the range of 102 − 109.
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The remainder of this work is outlined as follows. In Section 2, we derive an aug-
mented Lagrangian formulation for (1.1) and describe the finite element discretization
and linearization schemes. In Section 3, we introduce block preconditioners for these
schemes, present a calculation of the corresponding (approximate) Schur complements
and describe robust linear multigrid solvers for the different blocks. Numerical exam-
ples and a detailed description of the algorithm are presented in Section 4.

2. Formulation, linearization, and discretization.

2.1. An augmented Lagrangian formulation. We modify (1.1) by introduc-
ing two augmented Lagrangian terms: −γ∇ divu for γ > 0 is added to (1.1a), and (as
previously discussed) −1/Rem ∇divB is added to (1.1d). Note that both terms leave
the continuous solution of the problem unchanged. We use the first term to control
the Schur complement of the fluid subsystem [11, 24] and the second term to enforce
the divergence constraint divB = 0, as shown in [31, Thm. 9].

Following these modifications, we consider the following system

− 2

Re
div ε(u) + u · ∇u− γ∇ divu +∇p+ SB× (E + u×B) = f ,(2.1a)

divu = 0,(2.1b)

E + u×B− 1

Rem
curlB = 0,(2.1c)

− 1

Rem
∇divB + curlE = 0,(2.1d)

subject to the boundary conditions (1.2). For convenience, we consider homogeneous
boundary conditions in this section but all the results extend in a straightforward
manner to inhomogeneous boundary conditions. However, there are subtle technical-
ities for the implementation of the degrees of freedom in the finite element method in
the inhomogeneous case, which are explained in detail in Section 4.2.

The weak formulation of (2.1) seeks U := (u, p,E,B) ∈ Z := V × Q ×R ×W
with

(2.2) V := H1
0(Ω), Q := L2

0(Ω), R := H0(curl,Ω), W := H0(div,Ω).

In two dimensions, the space for the electric field is scalar-valued and can be identified
with R := H1

0 (Ω). The weak formulation is to find U ∈ Z such that for all V :=
(v, q,F,C) ∈ Z and F = (f , 0,0,0) there holds

(2.3) R(U ,V) := N (U ,V)− (F ,V) = 0

with

N (U ,V) =
2

Re
(ε(u), ε(v)) + (u · ∇u,v) + γ(divu,divv)

− (p, divv) + S(B×E,v) + S(B× (u×B),v)

− (divu, q)

+ (E,F) + (u×B,F)− 1

Rem
(B, curlF)

+
1

Rem
(divB,divC) + (curlE,C).

(2.4)
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All boundary integrals that result from integration by parts vanish because of the
choice of the boundary conditions (1.2).

Note that W and R are chosen from the de Rham complex [5]

(2.5) R id−→ H1
0 (Ω)

grad−−−→ H0(curl,Ω)
curl−−−→ H0(div,Ω)

div−−→ L2
0(Ω)

null−−→ 0,

which is exact for the simply connected domains we consider. The corresponding
complex in two dimensions is given by

(2.6) R id−→ H0(curl,Ω)
curl−−−→ H0(div,Ω)

div−−→ L2
0(Ω)

null−−→ 0.

This ensures that formulation (2.1) enforces the divergence constraint divB = 0 and
curlE = 0. To see this, we test (2.3) with V = (0, 0,0, curlE) and conclude that
curlE = 0. Here, V is a valid test function because the above exact sequence implies
that curl(R) = W. Similarly, testing with V = (0, 0,0,B) results in divB = 0.

2.2. Linearization: Newton and Picard. The Newton linearization of (2.3)
for the initial guess Un = (un, pn,En,Bn) is to find an update δU such that

NN(δU ,Un,V) = R(Un,V) ∀ V ∈ Z,(2.7)

Un+1 = Un + δU ,(2.8)

with the weak form of the nonlinear residual R(Un,V) evaluated at Un and

NN(δU ,Un,V) =
2

Re
(ε(δu), ε(v)) + (un · ∇δu,v) + (δu · ∇un,v)

+ γ(div δu,divv)− (δp,divv)

+ S(Bn × δE,v) + S(δB×En,v)

+ S(Bn × (δu×Bn),v) + S(δB× (un ×Bn),v)

+ S(Bn × (un × δB),v)

− (div δu, q)

+ (δE,F) + (un × δB,F) + (δu×Bn,F)

− 1

Rem
(δB, curlF)

+
1

Rem
(div δB,divC) + (curl δE,C).

(2.9)

The bilinear form for the Picard iteration that we consider is given by

NP(δU ,Un,V) =NN (δU ,Un,V)− S(δB×En,v)− S(Bn × (un × δB),v)

− S(δB× (un ×Bn),v)− (un × δB,F).
(2.10)

Note that in contrast to definition of the Picard iteration in [31], we do not scale
the term (curl δE,C) with S/Rem and consider the full Newton linearization of the
advection term (u · ∇)u. The advantage of the Picard linearization (2.10) in compar-
ison to the Newton linearization (2.9) is that it allows an exact Schur complement
computation in two dimensions and converges well for high Re. However, its major
disadvantage is the failure of nonlinear convergence for high Rem.
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2.3. Discretization. For a finite element discretization, we seek Uh := (uh, ph,
Eh,Bh) ∈ Zh := Vh ×Qh ×Rh ×Wh such that

(2.11) N (Uh,Vh) = (F ,Vh) ∀Vh ∈ Zh.

We choose Raviart–Thomas elements of degree k RTk [44] for Wh, Nédélec elements
of first kind NED1k [38] for Rh in 3D and continuous Lagrange elements CGk for Rh
in 2D. Note that these elements belong to a discrete subcomplex of (2.5)

(2.12) CGk
grad−−−→ NED1k

curl−−−→ RTk
div−−→ DGk−1

null−−→ 0,

and of (2.6)

(2.13) CGk
curl−−−→ RTk

div−−→ DGk−1
null−−→ 0.

This implies that we enforce divBh = 0 and curlEh = 0 pointwise with the same
proof as for the continuous case. These identities also hold for inhomogeneous bound-
ary conditions, since the interpolation operator IhWh

into the Raviart–Thomas space
satisfies for all divergence-free B ∈ H0(div,Ω) [12, Prop. 2.5.2]

(2.14) div(IhWh
B) = 0.

Moreover, following [21], we add the following stabilization term to address the
problem that the Galerkin discretization of advection-dominated problems problems
can be oscillatory [22]

(2.15)
∑

K∈Mh

1

2

∫
∂K

µh2
∂KJ∇uhK : J∇vhK ds.

Here, J∇uhK denotes the jump of the gradient, h∂K is a function giving the facet size,
and µ is a free parameter that is chosen according to [15].

Note that a fully robust discretization should also include a stabilization term for
the magnetic field B in the case of dominating magnetic advection. The literature
does not propose many stabilization types for this problem. The most promising work
by Wu and Xu [54] uses the so-called SAFE-scheme for stabilization which is based
on an exponential fitting approach. While the original SAFE-scheme is only a first
order method, it can be extended to higher order as shown in [55]. We aim to include
this stabilization in future work.

For the hydrodynamic part, we consider the H(div) × L2-conforming element
pair BDMk × DGk−1 with the Brezzi-Douglas-Marini element BDMk of order k [14,
39]. This discretization ensures that divuh = 0 holds pointwise since divVh ⊂ Qh.
Additionally, it exhibits pressure robustness, i.e. the error estimates do not degrade
for high Reynolds numbers [33].

Since the discretization is nonconforming, we must consider a discontinuous Galer-
kin formulation of the hydrodynamic advection and diffusion terms [26, section 7]. We
denote by Fh = F ih ∪ F∂h all facets of the triangulation, which consists of the interior
facets F ih and the Dirichlet boundary facets F∂h . We assign to each F ∈ Fh its diameter
hF and unit normal vector nF . The jump and average operators across a facet are
denoted by J·K and {{·}} respectively and are defined as JΦK = Φ+ − Φ− and {{Φ}} =
1
2 (Φ+ + Φ−). The penalization parameter is chosen as σ = 10k2. Inhomogeneous
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boundary data are described by gD. We then add the following bilinear forms to
(2.11):

aDGh (uh,vh) =− 2

Re

∑
F∈Fh

∫
F

{{ε(uh)}}nF · JvhK ds

− 2

Re

∑
F∈Fh

∫
F

JuhK · {{ε(vh)}}nF ds

+
1

Re

∑
F∈Fh

σ

hF

∫
F

JuhK · JvhK ds

− 1

Re

∑
F∈F∂

h

σ

hF

∫
F

gD · vh ds +
2

Re

∑
F∈F∂

h

∫
F

gD · ε(vh)nF ds,

(2.16)

cDGh (uh,vh) =
1

2

∑
F∈Fi

h

∫
F

J(uh · nF + |uh · nF |)uhK · JvhK ds

+
1

2

∑
F∈F∂

h

∫
F

(uh · nF + |uh · nF |)uh · vh ds

+
1

2

∑
F∈F∂

h

∫
F

(uh · nF − |uh · nF |)gD · vh ds.

(2.17)

Hu et al. prove in [31, Theorem 4] that (2.11) is well-posed and has at least one
solution. The solution is unique for suitable source and boundary data. While the
well-posedness and convergence of the Newton iteration remains an open problem,
Hu et al. prove that the Picard iteration converges to the unique solution of (2.11) if

both Re2‖f‖−1 and ReRem
3
2 ‖f‖−1 are small enough.

For the Newton linearization (2.9), we must solve the following linear system at
each step:

(2.18)


F +D B> J J̃ + D̃1 + D̃2

B 0 0 0

G 0 ME G̃ − 1
Rem
A

0 0 A> C



xu
xp
xE
xB

 =


Ru

Rp
RE

RB

 ,
where xu, xp, xE and xB are the coefficients of the discretized Newton corrections
and Ru, Rp, RE and RB the corresponding nonlinear residuals. The correspondence
between the discrete and continuous operators is illustrated in Table 2.1. We have
chosen the notation that operators that include a tilde are omitted in the Picard
linearization (2.10). Moreover, we introduce η ∈ {0, 1} to distinguish between the
stationary (η = 0) and transient (η = 1) cases.

For the time-dependent equations, we concentrate here on the implicit Euler
method, but the following computations are straightforward to adapt to other im-
plicit multi-step methods. We use the same finite element discretization as in the
stationary case. Note that in the transient case, the equation

(2.19) ∂tB + curlE = 0

immediately implies divB = 0 if the initial condition satisfies divB0 = 0, and this
remains true on the discrete level up to solver tolerances; see [30, Theorem 1] for
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a proof for implicit Euler which can be extended to other multi-step methods in
a straightforward manner, provided all starting values are divergence-free. Hence,
the augmented Lagrangian term − 1

Rem
∇ divB is no longer necessary to enforce the

divergence constraint and could therefore be omitted. Nevertheless, we retain it in
our scheme since we employ the identity

(2.20)
1

Rem
curl curl u− 1

Rem
∇ divu = − 1

Rem
∆u

in our derivation of Schur complement approximations below.

Discrete Continuous Weak form

Fu η
∆tu−

2
Re div ε(u) + un · ∇u η

∆t (u,v) + 2
Re (ε(u), ε(v)) + (un · ∇u,v)

+u · ∇un − γ∇ divu +(u · ∇un,v) + γ(divu,divv)
Du SBn × (u×Bn) S(Bn × (u×Bn),v)
JE SBn ×E S(Bn ×E,v)

J̃B SB×En S(B×En,v)

D̃1B SB× (un ×Bn) S(B× (un ×Bn),v)

D̃2B SBn × (un ×B) S(Bn × (un ×B),v)
MEE E (E,F)
Gu u×Bn (u×Bn,F)

G̃B un ×B (un ×B,F)
AB curlB (B, curlF)
CB η

∆tB−
1

Rem
∇ divB η

∆t (B,C) + 1
Rem

(divB,divC)

A>E curlE (curlE,C)
B>p ∇p −(p,divv)
Bu −divu −(divu, q)

Table 2.1: Overview of operators. Terms that include a tilde are dropped in the
Picard iteration. The stationary and transient cases are distinguished by η ∈ {0, 1}.

3. Derivation of block preconditioners. We now consider block precondi-
tioners for (2.18). The inverse of a 2x2 block matrix can factorized as [10, 22]

(3.1)

(
M K
L N

)−1

=

(
I −M−1K
0 I

)(
M−1 0
0 S−1

)(
I 0

−LM−1 I

)
provided the top-left block M and the Schur complement S = N − LM−1K are
invertible. Since the Schur complement is usually a dense matrix, the main task is
find a suitable approximation S̃ for the Schur complement S as well as efficient solvers
for M and S̃.

In Sections 3.1 and 3.2 we derive approximations of the Schur complements for two
different block elimination strategies. We briefly introduce the theory of parameter-
robust multigrid relaxation in Section 3.3, and then describe the multigrid methods
that we use to solve the top-left block and the Schur complement approximations in
Sections 3.4 and 3.5.

Both block preconditioners we consider gather the variables as (Eh,Bh) and
(uh, ph). They differ in the order of block elimination: the first takes the Schur
complement that eliminates (inverts) the (Eh,Bh) block, while the second takes the
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Schur complement that eliminates the (uh, ph) block. The first choice appears several
times in the literature [35, 42], while it seems that the second choice has not yet
been investigated. As we will see, for small Rem and S both preconditioners perform
similarly, while for more difficult parameter regimes the second choice notably out-
performs the first. We therefore recommend the second strategy and mainly report
numerical results for this choice. Nevertheless, we also investigate the first option,
both for comparison and because it allows a much more detailed description of the
Schur complement. In two dimensions it even allows an exact computation of the
Schur complement. The two strategies are compared in Section 4.4.1 below.

3.1. Outer Schur complement eliminating the (Eh,Bh) block. Reordering
(2.18) for convenience, we consider

(3.2)


ME G̃ − 1

Rem
A G 0

A> C 0 0

J J̃ + D̃1 + D̃2 F +D B>
0 0 B 0



xE
xB
xu
xp

 =


RE

RB

Ru

Rp

 .
In the following, we refer to the Schur complement of the 4x4 matrix as the outer
Schur complement, while we call the Schur complements of the resulting 2x2 blocks
inner Schur complements. The outer Schur complement eliminating the (Eh,Bh)
block is given by

(3.3) S(E,B) =

[
F +D B>
B 0

]
−
[
J J̃ + D̃1 + D̃2

0 0

] [
ME G̃ − 1

Rem
A

A> C

]−1 [G 0
0 0

]
.

We simplify S(E,B) by applying the identity (3.1) to the top-left electromagnetic
block

(3.4) M =

[
ME G̃ − 1

Rem
A

A> C

]
.

This results in

(3.5) S(E,B) =

[
F +D − JM−1

1,1G − (J̃ + D̃1 + D̃2)M−1
2,1G B>

B 0

]
with
(3.6)

M−1
1,1 =M−1

E +M−1
E

(
G̃ − 1

Rem
A
)(
C − A>M−1

E

(
G̃ − 1

Rem
A
))−1

A>M−1
E

and

(3.7) M−1
2,1 = −

(
C − A>M−1

E

(
G̃ − 1

Rem
A
))−1

A>M−1
E .

We precondition S(E,B) for both linearizations in the stationary case by

(3.8) S̃(E,B) =

[
F +D B>
B 0

]
,
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and in the transient case by

(3.9) S̃(E,B)
α :=

[
F + αD B>
B 0

]
, α =

∆t

∆t+ Remh2 + δRemh‖un‖L2∆t
.

In the following, we motivate this choice of preconditioners and emphasize the
cases in which these Schur complement approximations are exact. Therefore, we
mainly follow [42], but adapt the computations for our formulation which includes
the electric field E instead of a Lagrange multiplier r.

For the simplification of the outer Schur complement S(E,B) we must find approx-
imations for

(3.10) K1 := D − JM−1
1,1G and K2 := −(J̃ + D̃1 + D̃2)M−1

2,1G.

Note that the first summand of JM−1
1,1G is JM−1

E G which equals D. Hence, K1

simplifies to the second summand of JM−1
E G, i.e.,

(3.11) K1 = −JM−1
E

(
G̃ − 1

Rem
A
)(
C − A>M−1

E

(
G̃ − 1

Rem
A
))−1

A>M−1
E G

which corresponds on a continuous level to
(3.12)

−SBn ×

((
δ un × · − 1

Rem
curl

)(
η

∆t
I − 1

Rem
∆− δ curl(un × ·)

)−1

curl(u×Bn)

)
,

where · denotes a placeholder for the input of the corresponding operators. Moreover,
we have used δ ∈ {0, 1} to distinguish between the Picard (δ = 0) and Newton
(δ = 1) linearizations. In the discrete counterpart (3.11), the matrix arising in the
Picard iteration is made by dropping all terms with a tilde.

The continuous expression for K2 is given by

δ S (· ×En + · × (un ×Bn) + Bn × (un × ·))(
η

∆t
I − 1

Rem
∆− δ curl(un × ·)

)−1

curl(u×Bn).
(3.13)

Note that K2 vanishes for the Picard iteration.

3.1.1. The two-dimensional case. For the Picard linearization, expression
(3.11) simplifies to D in the stationary case. This follows immediately from the two-
dimensional analogue of (2.20) and the identity [41]

(3.14) curl(−∆)−1 curlϕ = ϕ

which implies for our structure-preserving discretization that

(3.15) A(C +A>M−1
E A)−1A> =ME.

That means in the two-dimensional stationary case the outer Schur complement for
the Picard iteration is exactly given by (3.8), i.e., the Navier–Stokes block with the
linearized Lorentz force.

In the transient case, the Schur complement for the Picard linearization can no
longer be calculated exactly. The behavior of the Schur complement now depends on
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which of the terms 1
∆tI and 1

Rem
∆ dominates in (3.12). If 1

∆t is small in comparison to
1

Remh2 , a good approximation of (3.12) is given, as in the stationary case, by S̃(E,B).

If 1
∆t dominates over 1

Remh2 , (3.12) is approximately given by

(3.16) SBn ×

(
1

Rem
curl

(
1

∆t
I

)−1

curl(u×Bn)

)
.

Hence, its magnitude can be approximated by S‖Bn‖2∆t
Rem h2 � 1 for moderate coupling

numbers and therefore we neglect this term by using the approximation

[
F BT
B 0

]
for

the Schur complement in this case.
To also include the intermediate regime, we use the approximation of Phillips et

al. [42] who suggest to use (3.9). The expression for α interpolates between the above
mentioned dominating cases, since α ≈ 0 if 1

∆t �
1

Remh2 and α ≈ 1 if 1
∆t �

1
Remh2 .

For the Newton linearization, the simplification of S(E,B) is not straightforward,

but our numerical tests suggest that S̃(E,B) and S̃(E,B)
α are acceptable preconditioners

for S(E,B) in the stationary and transient cases, deteriorating only for high S and Rem.
This can be explained by the fact that for small Rem or ∆t the terms 1

Rem
curl

and η
∆tI −

1
Rem

∆ dominate over δun × · and δ curl(un × ·) in (3.12). Remember
that the terms that include a δ do not appear in the Picard iteration and were hence
neglected in the previous derivation for the Picard iteration. Moreover, the term K2

is not included in our preconditioner for the Newton scheme which should deteriorate
the performance for large S.

3.1.2. The three dimensional case. The main difficulty in three dimensions
is that the identity (3.14) no longer holds. Therefore, S̃(E,B) is not the exact outer
Schur complement for the Picard linearization in the stationary case. In [42] the same
approximation from the two dimensional case is used in three dimensions. Based on
the argument for the two-dimensional case in the previous subsection, we expect this
approximation to work well when the term ∆t dominates and to deteriorate in the
other cases, especially in the stationary case. The three dimensional performance of
this preconditioner could be substantially improved with a better approximation of
curl∆−1 curl than a scaled identity.

We briefly comment on the main part of the outer Schur complement in the
stationary case, given by

(3.17) SBn ×
[
curl∆−1 curl(u×Bn)

]
.

As shown in [40, Chapter 4] one can rewrite curl∆−1 curl as I − ∇∆−1
r ∇·, where

∆r denotes a scalar Laplacian. These two representations show that the operator is
the identity on divergence-free functions and maps curl-free functions to zero. Hence,
this operator corresponds to the orthogonal L2-projection of a vector field onto its
divergence-free part, which we denote by P. Thus, the weak form of (3.17) is given
by

(3.18) S(P(u×Bn),P(v ×Bn)).

The key challenge is then to find a sparse approximation of (3.18). We do not further
address this challenge here and focus instead on the outer Schur complement that
eliminates the (uh, ph) block.
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3.2. Outer Schur complement eliminating the (uh, ph) block. The outer
Schur complement eliminating the (uh, ph) is given by

(3.19) S(u,p) =

[
ME G̃ − 1

Rem
A

A> C

]
−
[
G 0
0 0

] [
F +D B>
B 0

]−1 [J J̃ + D̃1 + D̃2

0 0

]
.

Formula (3.1) implies that the outer Schur complement for the Newton iteration is
given by

(3.20) S(u,p) =

[
ME − GN−1

1,1J G̃ − 1
Rem
A− GN−1

1,1 (J̃ + D̃1 + D̃2)

A> C

]
,

where

(3.21) N−1
1,1 = (F +D)−1 − (F +D)−1B>(−B(F +D)−1B>)−1B(F +D)−1.

For this strategy, further simplifications of the Picard or Newton linearizations are
not straightforward. Our numerical results in the next section show that

(3.22) S̃(u,p) =

[
ME G̃ − 1

Rem
A

A> C

]
works very well as a preconditioner for both schemes. Indeed, in contrast to the
previous order of elimination, this approximation works qualitatively the same in two
and three dimensions. We expect the approximation to deteriorate in the stationary
case for very high Rem, since the missing term −GN−1

1,1 (J̃ + D̃1 + D̃2) in the Schur

complement approximation gains more influence in comparison to − 1
Rem
A. We also

observe this numerically in the next section.
However, good approximation of the outer Schur complement is maintained for

high coupling numbers S, which will clearly be seen in our numerical results in Section
4.4.1 below. This behavior is perhaps explained by the fact that N−1

1,1 also includes
a factor S in the inverse of (F + D), which cancels the factor of S in the matrices
J , J̃ , D̃1 and D̃2.

To use these block preconditioners in practice, we must develop robust precondi-
tioners for the electromagnetic and hydrodynamic subsystems.

3.3. Parameter-robust relaxation. The equations in the hydrodynamic and
electromagnetic blocks become difficult to solve in the parameter regimes of interest
at high Reynolds and coupling numbers both due to the non-symmetric linearised
advection and Lorentz force terms, and the addition of the symmetric positive semi-
definite (SPSD) augmented Lagrangian terms. Standard multigrid methods are known
to perform poorly for these kinds of problems.

The key components for a robust multigrid method for the SPSD augmented La-
grangian terms are a parameter-robust relaxation method, that efficiently damps error
modes in the kernel of the singular operators, and a kernel-preserving prolongation
operator, as revealed in the seminal work of Schöberl [46]. The non-symmetric terms
are more troublesome, but numerical results have shown [24, 25] that subspace correc-
tion methods can still perform well for the Navier–Stokes equations at high Reynolds
numbers.

A recent summary of the theory of robust relaxation methods can be found in [23].
Briefly, we consider the multigrid relaxation methods in the framework of subspace



PRECONDITIONERS FOR MHD 13

correction methods [56]. These decompose a (finite-dimensional) trial space V as

(3.23) V =
∑
i

Vi,

where the sum is not necessarily direct. The parallel subspace correction method
applied to a linear variational problem a(u, v) = (f, v) ∀v ∈ V computes for an
initial guess uk an correction δui to the error e = u − uk in each subspace Vi by
solving

(3.24) a(δui, vi) = (f, vi)− a(uk, vi) for all vi ∈ Vi,

and sets uk+1 = uk +
∑
i wiδui for damping parameters wi. A rigorous statement

regarding the properties the decomposition (3.23) and the considered bilinear form
a must fulfil to yield a robust relaxation method can be in found in [46, Theorem
4.1]. A key property is that the kernel N of the SPSD terms is decomposed over the
subspaces, i.e.,

(3.25) N =
∑
i

(Vi ∩N ).

This property means that it must be possible to write any kernel function as the sum
of kernel functions in the subspaces Vi. This implies that the subspaces Vi must be
at least rich enough to support nonzero kernel functions. The choice of the space
decomposition (3.23) is often made by consideration of the discrete Hilbert complexes
underpinning the discretization.

3.4. Solver for the hydrodynamic block. In order to implement the block
factorization (3.1) as the outer preconditioner, we need a solver for the Navier–Stokes
subsystem. To do this, we will apply ideas of parameter-robust multigrid relaxation
described in Section 3.3, albeit without a theoretical guarantee of success. The vari-
ational statement of the PDE we wish to solve is

2

Re
(ε(u), ε(v)) + (un · ∇u,v) + (u · ∇un,v) + γ(divu,divv)

+S(Bn × (u×Bn),v)− (p,divv) = (f ,v)∀v ∈ H1
0(Ω),(3.26)

−(divu, q) = 0 ∀ q ∈ L2(Ω).

This corresponds to the standard Newton linearization of the Navier–Stokes equations
with an augmented Lagrangian term, plus the linearization of the Lorentz force D.
We follow the approach of [29, 25, 24] to solve this system. The first idea is to use the
augmented Lagrangian term −γ∇divu to approximate the inner Schur complement
of the hydrodynamic block by choosing a large γ, e.g. γ ≈ 104. One can show [8,
Theorem 3.2] that the inner Schur complement of the augmented system S̃NS satisfies

(3.27) S̃−1
NS = S−1

NS − γM
−1
p

where S−1
NS denotes the Schur complement of the system without the augmented La-

grangian term and Mp denotes the pressure mass matrix. Therefore, for large γ the

pressure mass matrix scaled by −1/(1/Re + γ) is a good approximation for S̃NS. As
the discretization considered in this work uses discontinuous pressures, the pressure
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mass matrix is block-diagonal and hence directly invertible. In the transient case S−1
NS

can be further approximated by the inverse of the stationary Schur complement plus
an extra term −∆tL−1

p [28], where Lp corresponds to the Poisson problem for p with
Neumann boundary conditions. In our numerical examples this extra term makes
little difference as we only consider timesteps 1

∆t � γ, and we therefore neglect it.
Since the augmented Lagrangian term has a large kernel that consists of all

solenoidal vector fields, a robust multigrid scheme as described in Section 3.3 must
be used to solve the augmented momentum block. For the H(div) × L2-conforming
discretization the star iteration [25, section 4] can be used as a robust relaxation
method. The subspace decomposition is defined as

(3.28) Vi = {v ∈ Vh : supp(v) ⊂ Ki}

where Ki is the patch of elements sharing the vertex i in the mesh. Example patches
are shown in Figure 3.1. Since we use a structure-preserving discretization, the prop-
erties of the de Rham complexes (2.12) and (2.13) imply that (3.28) fulfils the kernel
decomposition property (3.25). This property was also used in [6] to construct a
robust smoother for the H(div) and H(curl) Riesz maps and in [29] for the Stokes
equations. In this case we may employ the standard prolongation operator induced
by the finite element discretization, because the uniformly-refined mesh hierarchy we
consider is nested.

Fig. 3.1: Star patch for BDM2-elements.

The velocity block further includes terms given by the convection-diffusion term
(u · ∇)u, the linearization of the Lorentz force SBn × (u×Bn) and the stabilization
term (2.15). Numerical experiments in [24] and in the next Section 4 show that
these terms only degrade the performance of the preconditioner at high Reynolds
and coupling numbers. As we have mentioned before, these somewhat surprising
numerical observations are not backed up by theory since these terms do not fit in
the framework of Section 3.3, and applying geometric multigrid methods to problems
with strong advection typically requires special care. The kernel of the stabilization
ST (u,v) consists of all C1 vector fields. Therefore, the stabilization term slightly
degrades the performance of the solver, but the impact is not very significant as the
factor µh2

∂K is small.
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3.5. Solver for the electromagnetic block. The weak formulation of the
electromagnetic block is given by

(3.29)

(E,F)− 1

Rem
(B, curlF) + δ (un ×B,F) = 0 ∀F ∈ H0(curl,Ω),

η

∆t
(B,C) + (curlE,C) +

1

Rem
(divB,divC) = (f ,C) ∀C ∈ H0(div,Ω).

Recall that η, δ ∈ {0, 1} distinguish between the stationary (η = 0) and transient
(η = 1) cases and the Picard (δ = 0) and Newton (δ = 1) linearizations. Eliminating
E, this corresponds to a mixed formulation of

(3.30)

η

∆t
B +

1

Rem
(curl curlB−∇ divB) + δ curl(un ×B) = f in Ω,

B · n = 0 on ∂Ω,

1

Rem
curlB− δ un ×B = 0 on ∂Ω.

For the Picard linearization, this problem simplifies to the mixed formulation for the
standard vector Laplace problem [7] with boundary conditions B · n = curlB = 0
on ∂Ω. Chen et al. [17] propose a Schur complement solver and Arnold et al. [7, §10]
propose a norm-equivalent block diagonal preconditioner for the mixed formulation.
We also found that the star multigrid solver applied monolithically to the electromag-
netic block (3.30) results in an efficient solver and employ this solver in our numerical
examples. All of the solvers described show Rem-robust performance.

In contrast, the presence of the additional term curl(un ×B) in the Newton lin-
earization, which has a non-trivial kernel, makes the problem almost singular for high
Rem in the stationary case and hence requires a special multigrid method. Unfor-
tunately the troublesome term curl(un ×B) is not symmetric and thus does not fit
the available analytical framework of Schöberl. Our considerations on this point are
therefore necessarily heuristic. Some insight may be gained by employing the vector
identity

(3.31) curl(A×B) = (B · ∇)A− (A · ∇)B + A(∇ ·B)−B(∇ ·A)

to rewrite (3.30) to

(3.32)
η

∆t
B− 1

Rem
∆B− (B · ∇)un + (un · ∇)B− un(∇ ·B)−B(∇ · un).

The last term −B(∇ · un) vanishes since we exactly enforce ∇ · un = 0 in each step.
The terms −(B · ∇)un + (un · ∇)B are reminiscent of the Newton linearization of
the advection term (u · ∇)u of the Navier–Stokes equation, for which it has been
demonstrated that a star multigrid method is effective [25]. Numerical experiments
with these approaches applied monolithically do indeed yield a robust solver for the
stationary and transient cases in two dimensions, and in the transient case in three
dimensions for sufficiently small ∆t. We observe in our numerical tests that in three
dimensions the solver breaks down for Rem ≈ 700 for a stationary lid-driven cavity
problem.

4. Numerical results. In this section, we present numerical results for the
Picard and Newton linearization described in the previous sections. We investigate
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three test problems: the stationary and transient version of a lid-driven cavity problem
and a transient island-coalescence problem. The numerical results were produced on
ARCHER2, the UK national supercomputer, which consists of 5,860 compute nodes
each built of two AMD Zen2 7742 processors with 64 2.25GHz cores and 256GB of
memory.

4.1. Algorithm details. The algorithm is implemented in Firedrake [43] and
uses the solver packages PETSc [9] and PCPATCH [23]. The latter includes the imple-
mentation of the multigrid relaxation method described in Section 3. It is well-known
that the convergence of the nonlinear scheme depends heavily on the initial guess
and might fail to converge for high Reynolds numbers with poor initial guesses. To
circumvent this problem we perform continuation in the Reynolds numbers and cou-
pling number, for the stationary problems. In the presented tables we always apply
continuation to the variable in the column first and use each solution as the starting
point for the continuation over the rows. We use the steps 1, 100, 1000, 5000, 10000 for
S and 1, 500, 1000, 3000, 5000, 7000, 9000, 10000 for Re and Rem. The reported non-
linear and linear iteration numbers correspond to the final solve in the continuation;
however, the extra cost for the continuation should be kept in mind for stationary
problems. For time-dependent problems, continuation is not necessary.

We use flexible GMRES [45] as the outermost Krylov solver since we apply GM-
RES in the multigrid relaxation. Moreover, we apply a block upper triangular pre-
conditioner [10]

(4.1) P =

(
I −M̃−1K
0 I

)(
M̃−1 0

0 S̃−1

)

to (2.18), where we denoted (2.18) here as

(
M K
L N

)
. We also investigated a full

block-LDU preconditioner without notable improvements in terms of iteration counts,
which fits with the recent theoretical results in [51].

Both the block matrixM and the outer Schur complement approximation S̃(u,p)

are inverted approximately with two iterations of preconditioned FGMRES (denoted
M̃−1 and S̃−1 respectively). The former uses the block preconditioner for the hydro-
dynamic block described in Section 3.4, the latter the monolithic multigrid method
described in Section 3.5. In the numerical results we focus on taking the outer Schur
complement that eliminates the hydrodynamic block, except for one case in Section
4.4.1. In both multigrid methods we use six preconditioned GMRES iterations as the
smoother on each level and the direct solver MUMPS [3] to solve the problem on the
coarsest grid. Since this relaxation is quite expensive, convergence in a very small
number of outer iterations is required for efficiency. See Figure 4.1 for a graphical
representation of the solver.

We have chosen relative and absolute tolerances of 10−10 and 10−6 for the non-
linear solver and 10−7 and 10−7 for the outermost linear solver, measured in the Eu-
clidean norm. We use the H(div)×L2-conforming elements BDM2×DG1 for (uh, ph).
Moreover, we apply CG2 × RT2 elements for (Eh,Bh) in 2D and NED12 × RT2 el-
ements for (Eh,Bh) in 3D. When we consider a manufactured solution we always
subtract

∫
Ω
p dx from the pressure to fix the average of p to be zero.

For time-dependent problems, we apply the second-order, L-stable BDF2 method
with a fixed time-step. We compute the first time-step with Crank-Nicolson to provide
the second starting value for BDF2. For the transient lid-driven cavity problem, we
use a time-step of ∆t = 0.01 and a final time of T = 0.1. We did not choose a
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Continuation in Rem and Re (in stationary case)

Newton/Picard iteration with line search

Krylov solver (FGMRES)

Block preconditioner with (u, p) and (E,B)-block

Solver for (u, p)-block

Schur complement approximation with S̃(u,p)

Solver for S̃(u,p)

Solver for (u, p)-block

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

Exact pressure mass matrix inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Solver for S̃(u,p)

Krylov solver (FGMRES)

Monolithic F-cycle multigrid

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Fig. 4.1: Graphical outline of the solver.

higher final time T because of budget limitations. However, we confirmed that the
reported numbers are representative for higher T by computing the solution for a few
parameters until T = 1 without noticeable changes in the iteration counts. Moreover,
we confirm the efficiency for more time-steps in the island coalescence problem where
we iterate in the finest run until T = 15 in 2400 timesteps.

4.2. Interpolating boundary data. The theory from the previous sections
has been formulated for homogeneous boundary conditions, but the generalisation is
straightforward for non-homogeneous boundary conditions. However, there is a subtle
technicality in the implementation if one wants to enforce the divergence constraint
divBh = 0 pointwise. Strong boundary conditions are enforced in a finite element
code by interpolating the given boundary data onto the corresponding finite element
space. If the interpolation of the boundary values g were exact, identity (2.14) would
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imply that divBh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a non-polynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on ∂Ω holds exactly.

To circumvent this problem we use high-order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the effect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute ‖ divBh‖0 for different quadrature
degrees. Moreover, we have plotted the L2-norm over ∂Ω of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not sufficient to enforce divBh = 0 up to machine
precision. A higher quadrature degree preserves the divergence of the boundary data
more accurately and leads to the point-wise enforcement of divBh = 0.

2 3 4 5 6 7 8
Quadrature degree

10−12

10−10

10−8

10−6

10−4

10−2 ||divBh||L2(Ω)
||div Ih(B)||L2(∂Ω)

Fig. 4.2: L2-norm of the divergence of the solution Bh and the interpolant of the
boundary condition for different quadrature degrees in the evaluation of the degrees
of freedom for the Raviart–Thomas space.

4.3. Two-dimensional results.

4.3.1. Stationary lid-driven cavity in two dimensions. First, we consider
a lid-driven cavity problem posed over Ω = (−1/2, 1/2)2 for a background magnetic
field B0 = (0, 1)> which determines the boundary conditions B · n = B0 · n on ∂Ω,
and set f = 0 [36]. We impose the boundary condition u = (1, 0)> at the boundary
y = 0.5 and homogeneous boundary conditions elsewhere. The problem models the
flow of a conducting fluid driven by the movement of the lid at the top of the cavity.
The magnetic field imposed orthogonal to the lid creates a Lorentz force that perturbs
the flow of the fluid.

For the multigrid hierarchy we use a coarse mesh of 16× 16 cells and six levels of
refinement in 2D resulting in a 1024× 1024 grid with 73.4 million degrees of freedom
(DoFs). For both linearizations we observe fairly constant Krylov iteration counts
for Re and S in the range of 1 to 10,000 in Table 4.1. In terms of the nonlinear
convergence, the Picard linearization takes sometimes slightly more iterations than
the Newton linearizations, with slightly better linear iteration numbers.
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Picard Newton

S\Re 1 1,000 10,000 1 1,000 10,000

1 ( 3) 5.3 ( 4) 3.5 ( 3) 4.3 ( 2) 6.5 ( 4) 3.5 ( 3) 4.3
1,000 ( 4) 3.5 ( 3) 4.7 ( 2) 8.5 ( 2) 5.5 ( 3) 4.7 ( 2) 6.5

10,000 ( 3) 5.0 ( 3) 4.3 ( 2) 7.0 ( 2) 6.5 ( 2) 6.0 ( 2) 7.0

Table 4.1: (Nonlinear iterations) Average outer Krylov iterations per nonlinear step
for the stationary lid-driven cavity problem in 2D.

As mentioned earlier, our scheme does not include a stabilization for high mag-
netic Reynolds numbers. However, we have verified that our solutions do not exhibit
oscillations in this regime. A plot of the streamlines for different Re and Rem can be
found in Figure 4.3. One can clearly observe the phenomenon that for high magnetic
Reynolds numbers the magnetic field lines are advected with the fluid flow. Iteration
counts for varying Re and Rem are displayed in Table 4.2.

For the Picard linearization we observe that the nonlinear scheme already fails to
converge for a magnetic Reynolds number of 100. The poor nonlinear convergence of
the Picard iteration for high Rem even with continuation was previously observed for
other formulations [40, 41].

For the Newton linearization the linear iterations increase slightly since the ap-

proximation of the Schur complement S(u,p)
N by S̃(u,p) becomes less accurate for high

Reynolds numbers. On the other hand, the number of nonlinear iterations remains
fairly constant which seems to indicates that the linear solver for the (Eh,Bh) block
described in Section 3.5 works very well for high Rem in two dimensions.

Picard Newton

Rem\Re 1 1,000 10,000 1 1,000 10,000

1 ( 3) 5.3 (4) 3.5 (3) 4.3 ( 2) 6.0 ( 3) 4.3 ( 3) 4.3
1,000 - - - ( 2) 4.5 ( 3) 3.0 ( 3) 3.0

10,000 - - - ( 2) 4.5 ( 4) 5.5 ( 3) 5.7

Table 4.2: Iteration counts for the stationary lid-driven cavity problem in 2D with
H(div)× L2-discretization for different Rem and Re.

Picard Newton

Rem\Re 1 1,000 10,000 1 1,000 10,000

1 ( 2) 4.0 ( 2) 2.5 ( 2) 8.5 ( 2) 4.0 ( 2) 2.5 ( 3) 9.7
1,000 - - - ( 5) 1.8 ( 3) 3.0 ( 2) 4.0

10,000 - - - ( 8) 5.2 ( 4) 6.2 ( 2) 5.5

Table 4.3: Iteration counts for the stationary lid-driven cavity problem in 2D with
Scott–Vogelius elements for different Rem and Re.
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Re = Rem = 1 Re = Rem = 500 Re = Rem = 5,000

Fig. 4.3: Streamlines for the two-dimensional stationary lid-driven cavity problem for
u (upper row) and B (lower row).

4.3.2. Scott–Vogelius discretization for (uh, ph). Thus far we have consid-
ered a H(div)×L2 discretization for the hydrodynamic variables. For comparison, in
this subsection we include results for Scott–Vogelius elements [48], i.e. (CGk)d×DGk−1

elements. A fluid-Reynolds-robust preconditioner for this element pair was recently
developed in [24]. While this conforming discretization does not require stabilization
terms to weakly enforce continuity, it is only stable on certain types of meshes. For
this reason, the mesh hierarchy is barycentrically refined, and the specialized multigrid
method of [24] exploits this structure. This barycentric refinement ensures stability
for polynomial order k = d [58].

The results are shown in Table 4.3. We observe that the Krylov iteration counts
are in general similar for the Scott–Vogelius element, making this an attractive alter-
native for those wishing to employ conforming schemes. However, one must keep in
mind that the work per Krylov iteration is substantially higher for this element, due
to the use of larger patches in the so-called macrostar relaxation method.

To summarize the two-dimensional stationary results, both schemes considered
provide Re-robust solvers and also perform very well for large coupling numbers S.
The Picard iteration is unsuitable for high magnetic Reynolds number because the
nonlinear iteration fails to converge. The Newton scheme performs well for high Rem

with good nonlinear convergence and a slight increase in the linear iteration numbers.

4.3.3. Time-dependent lid-driven cavity problem in two dimensions.
We next consider the time-dependent lid-driven cavity problem. We choose the same
boundary conditions and right-hand side as in the stationary case. The numerical
results for varying S and Re are shown in Table 4.4. As in the stationary case, the
Krylov iteration counts remain almost constant for the two linearizations. We notice
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that the Picard iteration fails to converge for high S and Rem for the chosen ∆t = 0.01.
However, we tested that one can get the Picard iteration to converge in most cases
by choosing a smaller ∆t in the first timesteps. We do not report these results here
to keep the tables consistent.

Table 4.4 also shows iteration counts for varying Re and Rem. The linear solver
is robust for most parameter values, with iteration counts only increasing for Re = 1
and Rem = 100, 000.

For completeness, we also study the case of high Rem and S at the same time in
Table 4.4, which we expect to be the most challenging case. Again the slight increase
of the Krylov iterations in the Newton iteration is due to inaccurate outer Schur
complement approximation. However, the solvers perform very well, considering the
difficulty of the problem.

Picard Newton

S\Re 1 10,000 100,000 1 10,000 100,000

1 (2.0) 3.0 (2.2) 3.6 (3.1) 3.3 (1.6) 3.6 (2.2) 3.6 (3.1) 3.3
1,000 (3.0) 4.0 (3.0) 3.3 (2.7) 3.0 (2.1) 4.7 (2.2) 3.9 (2.3) 3.3

10,000 - - - (2.2) 6.5 (2.5) 5.0 (2.3) 5.6

Picard Newton

Rem\Re 1 10,000 100,000 1 10,000 100,000

1 (2.0) 3.0 (2.2) 3.6 (3.1) 3.3 (1.6) 3.6 (2.2) 3.6 (3.1) 3.3
10,000 - - - (2.0) 3.1 (2.3) 3.6 (3.1) 3.3

100,000 - - - (2.2)10.9 (3.0) 3.2 (3.3) 3.2

Picard Newton

Rem\S 1 1,000 10,000 1 1,000 10,000

1 (2.0) 3.0 (3.0) 4.0 - (1.6) 3.6 (2.1) 4.7 (2.2) 6.5
1,000 (3.0) 2.5 - - (2.0) 3.1 (2.2) 5.6 (2.8)11.0

10,000 - - - (2.0) 3.1 (2.2) 6.3 (3.1)11.8

Table 4.4: Iteration counts for the transient lid-driven cavity problem in 2D.

4.3.4. Time-dependent island coalescence problem in two dimensions.
Next, we consider a two-dimensional island coalescence problem to demonstrate the
effectiveness of our method for a physically relevant model that shows behaviour which
is unique to MHD problems. Furthermore, we report results for a weak scalability
test with up to 256 processors and 18.3M DoFs to examine the performance of our
algorithm.
The island coalescence problem is used to model magnetic reconnection processes in
large aspect ratio tokamaks. For a strong magnetic field in the toroidal direction,
the flow can be described in a two-dimensional setting by considering a cross-section
of the tokamak. We consider the same problem as in [1, Section 4.2]. The domain
Ω = (−1, 1)2 results from the unfolding of an annulus in the cross-sectional direction
where the left and right edges are mapped periodically. The equilibrium solution for
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k = 0.2 is given by

ueq = 0, peq(x, y) =
1− k2

2

(
1 +

1

(cosh(2πy) + k cos(2πx))2

)
,

Beq(x, y) =
1

cosh(2πy) + k cos(2πx)

(
sinh(2πy)
k sin(2πx)

)
, Eeq =

1

Rem
curlBeq − ueq ×Beq,

which results in right-hand sides f = 0 and g for (1.1c) given by

(4.2) g =
−8π2(k2 − 1)

Rem(cosh(2πy) + k cos(2πx))3

(
sinh(2πy)
k sin(2πx)

)
.

The initial condition for Beq is given by perturbing it for ε = 0.01 with

(4.3) ∆B =
ε

π

(
− cos(πx) sin(πy/2)
2 cos(πy/2) sin(πx)

)
.

The authors believe that the reported ∆B in [1] includes a typographical error, as it
is not divergence-free, and amended the second component appropriately. Therefore,
the problem setup is not exactly identical and hence we might see slightly different
solutions. The reconnection rate can be computed as the difference between curlB
evaluated at (0, 0) at the current time and the initial time, divided by

√
Rem. Note

that in our formulation B ∈ H(div, 0) and therefore we apply the curl weakly by
solving a problem for j0 ∈ H0(curl,Ω) such that

(4.4) (j0, k) = (B, curl k) ∀ k ∈ H0(curl,Ω).

In order to make the point evaluation of j0 at (0,0) well-posed we project j0 to the
space CG1 as in [1].

Figure 4 shows the reconnection rates for Re = Rem = 1, 000, Re = Rem = 5, 000
and Re = Rem = 10, 000 for three different spatial and temporal resolutions. We
have fixed a coarse grid of 16 × 16 cells and compute results for three (1.1M DoFs),
four (4.6M DoFs) and five (18.4M DoFs) levels of refinement. For the three levels
of refinement, we chose ∆t = 0.025 and halved it with each refinement. We iterated
until T = 15 which results in 2400 timesteps for the finest resolution.

One can observe a decreasing height of the peak for increasing Reynolds numbers
and the so-called “sloshing” [34] effect that results in further peaks after the main
peak with higher Reynolds numbers. Convergence for our considered meshes can be
observed for Re = Rem = 1, 000 and Re = Rem = 5, 000 while a further refinement
is needed for Re = Rem = 10, 000. Nevertheless, our finest grid results match the
results of [1, Fig. 4] where finer meshes of up to 2560 × 2560 cells and ∆t = 0.0016
have been considered. For example, our finest result for Re = Rem = 10, 000 clearly
reproduces the second peak in the reconnection rate.

Furthermore, we performed a weak parallel scaling test for nine different combi-
nations of the Reynolds numbers. We chose a coarse grid of 16× 16 cells with three
(1.1M DoFs), four (4.6M DoFs) and five (18.4M DoFs) levels of refinement. All tests
were performed with 16 cores per node on 1, 4 and 16 nodes resulting in 16, 64 and
256 cores for the different refinements. We observed (not reported here) that scaling
over the nodes with a fixed number of cores per node provides better results than in-
creasing the number of cores per node. This seems to indicate that our code is mainly
limited by the memory bandwidth. Furthermore, we ensured that the numbers of
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Fig. 4.4: Reconnection rates for the island coalescence problem.

cores used in our simulations evenly divide the number of cells in the 16x16 coarse
grid to minimize load imbalances. For an optimal scaling of the patch smoother in
the multigrid relaxation, the number of patches (and hence vertices) per processor
should also be evenly balanced, but this was not implemented.

In Table 4.5, we report the average runtimes per linear iteration rather than the
total runtime to take into account that the numbers of linear and nonlinear iterations
change slightly between the different refinements. The runtimes only show a slight
increase the more cores are used and hence indicate good weak scaling of our method.

As for the lid-driven cavity problem, we observe excellent robustness of the linear
and nonlinear iteration counts with respect to the Reynolds numbers. Both linear
and nonlinear solvers converge in either 1 or 2 iterations in the investigated ranges of
Re and Rem. We therefore do not report a table here that shows each iteration count.

128× 128 on 16 cores 256× 256 on 64 cores 512× 512 on 256 cores

Rem\Re 1 1,000 10,000 1 1,000 10,000 1 1,000 10,000

1 0.13 0.12 0.13 0.14 0.14 0.14 0.17 0.17 0.17
1,000 0.13 0.12 0.12 0.14 0.13 0.13 0.15 0.14 0.15

10,000 0.12 0.11 0.12 0.14 0.13 0.13 0.15 0.15 0.15

Table 4.5: Average time per linear iteration in minutes for the two-dimensional island
coalescence problem.

4.4. Three-dimensional results. In three dimensions, we observe in general
that the stationary problems are harder to solve for high parameters than in two
dimensions. We believe that the following three points are mainly responsible for
this behavior. First of all, the discretization of the electric field changes from a
scalar-valued CG-function to a vector-valued NED1-function with tangential bound-
ary conditions. Moreover, the kernel of the term curl(un × B) is larger in three
dimensions which degrades the performance of the monolithic solver for the (Eh,Bh)
block for high Rem. Furthermore, the grids we consider are much coarser than in two
dimensions because of computational costs.

4.4.1. Stationary lid-driven cavity problem in three dimensions. We
adapt the two-dimensional lid-driven cavity problem to three dimensions by consider-
ing the domain Ω = (−1/2, 1/2)3 and the boundary conditions u = (1, 0, 0)> on the
boundary y = 0.5 and u = (0, 0, 0)> on the other faces. The background magnetic
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field B0 = (0, 1, 0)> determines the boundary conditions for B. We use a coarse grid
of 8 × 8 × 8 cells with 3 levels of refinement which results in a 64 × 64 × 64 grid
with 59.1 million DoFs. For the three-dimensional problem, we only investigate the
Newton linearization as we have seen in two dimensions that the Newton iteration
outperforms the Picard iteration in nearly all cases. The results on the left in Table
4.6 show a good control over the linear iteration numbers for the lid-driven cavity
problem, where the case of S = 1 and Re = 10, 000 seems to be the most challenging
case.

On the right of Table 4.6 we report a comparison to taking the outer Schur
complement that eliminates the (Eh,Bh) block. As mentioned in Section 3, we can
clearly see that this choice performs worse for high values of Re and S where no
convergence in 50 linear iterations was reached. We observed similar behavior for
unreported experiments on transient and two-dimensional problems.

We do not include a full table for high Rem, as in this case the monolithic multigrid
solver cannot deal with the term curl(un ×Bn) that occurs in the Newton lineariza-
tion. As in two dimensions, this term is crucial for the convergence of the nonlinear
iteration. For Newton, the iteration counts increase very slightly from Re = Rem = 1
by 8.0 Krylov iterations per nonlinear step to 10.0 iterations for Rem = 500 and
Re = 1 and fails to converge for higher Rem. We want to emphasize that in this case
the failure of convergence is indeed caused by the inner multigrid method and not
by an inaccurate outer Schur complement approximation. To the best of our knowl-
edge, preconditioning methods that robustly treat the vector Laplace operator with
an additional curl(un ×B) term in three dimensions are not known, and we intend
to investigate this problem further in future work.

Using S̃(u,p) for order (u, p,E,B)

S\Re 1 1,000 10,000

1 ( 3) 6.0 ( 3) 7.0 ( 4)20.0
1,000 ( 3) 7.3 ( 2) 9.5 ( 2) 6.5

10,000 ( 3) 9.0 ( 2)13.0 ( 2)12.5

Using S̃(E,B) for order (E,B,u, p)

S\Re 1 1,000 10,000

1 ( 3) 6.0 (4)14.7 (-)>50
1,000 ( 3)12.7 (-)>50 (-)>50

10,000 ( 3)20.0 (-)>50 (-)>50

Table 4.6: (left) Iteration counts for the stationary lid-driven cavity problem in 3D for
the Newton linearization. (right) Iteration counts for the stationary lid-driven cavity
problem in 3D for taking the outer Schur complement that eliminates the (Eh,Bh)
block.

4.4.2. Time-dependent lid-driven cavity problem in three dimensions.
Finally, we consider the time-dependent version of the three-dimensional lid-driven
cavity problem, which was also investigated in detail in [36]. The numerical results in
Table 4.7 show good control of the iteration counts and the linear iteration numbers
only notably increases for very high values of S. Moreover, we observe robust con-
vergence of the monolithic multigrid solver for the (Eh,Bh) block for high Rem. As
mentioned before in Section 3.5, this can be explained by the fact that the problem
does not become nearly singular for high Rem due to the extra mass matrix. There-
fore, the fact that the kernel of curl(un ×B) is not fully captured by the multigrid
method has less influence.
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S\Re 1 10,000 100,000

1 (2.1) 7.3 (3.2) 2.1 (3.3) 2.0
1,000 (3.0) 8.6 (3.3) 2.8 (3.5) 2.6

10,000 (4.0)11.3 (4.0) 7.0 (4.0) 6.2

Rem\Re 1 10,000 100,000

1 (2.1) 7.3 (3.2) 2.1 (3.3) 2.0
10,000 (2.5) 7.1 (3.2) 2.0 (3.3) 2.0

100,000 (3.0)15.1 (3.2) 2.6 (3.3) 2.0

Rem\S 1 100 1,000

1 (2.1) 7.3 (2.1) 7.3 (3.0) 8.6
1,000 (3.0) 7.6 (3.0) 6.8 (3.1) 9.5

10,000 (2.5) 7.1 (3.1) 7.1 (3.2) 9.7

Table 4.7: Iteration counts for the transient lid-driven cavity problem in 3D for the
Newton linearization.

5. Conclusion and outlook. We have presented scalable block precondition-
ers for an augmented Lagrangian formulation of the incompressible MHD equations
that exhibit parameter-robust iteration counts in most cases. We described how to
control the outer Schur complement of two linearization types and introduced a spe-
cial monolithic multigrid method to solve the electromagnetic block. This method
is fully Rem-robust in two dimensions; in three dimensions, it is able to efficiently
compute results for higher parameters than was previously possible. Furthermore,
our solvers allow the use of fully implicit methods for time-dependent problems. We
aim to include stabilization techniques for high magnetic Reynolds numbers in future
work and further investigate how to develop a robust multigrid method for the prob-
lem including the term curl(un × B). This would enable a more robust solver for
the most difficult case of stationary problems in three dimensions at high magnetic
Reynolds numbers.
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[27] J.-F. Gerbeau, C. L. Bris, and T. Lelièvre, Mathematical Methods for the Magnetohydrody-

https://doi.org/10.1017/S0962492906210018
https://doi.org/10.1017/S0962492906210018
https://doi.org/10.1137/050630714
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1137/050646421
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1016/0021-9991(80)90079-0
https://doi.org/10.1007/bf01389710
https://doi.org/10.1007/bf01389710
https://doi.org/10.1016/j.cma.2005.05.009
https://doi.org/10.1088/1742-6596/125/1/012041
https://doi.org/10.1088/1742-6596/125/1/012041
https://doi.org/10.1007/s10915-018-0697-7
https://doi.org/10.1137/12088879x
https://doi.org/10.1086/305176
https://doi.org/10.1038/ngeo2492
https://doi.org/10.1007/BFb0120591
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1145/3445791
https://doi.org/10.5802/smai-jcm.72
https://doi.org/10.1137/18m1219370
https://doi.org/10.1137/18m1219370
https://doi.org/10.5802/smai-jcm.44


PRECONDITIONERS FOR MHD 27

namics of Liquid Metals, Oxford University Press, 2006, https://doi.org/10.1093/acprof:
oso/9780198566656.001.0001.

[28] T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Os-
een problem using grad-div stabilization, Internat. J. Numer. Methods Fluids, 71 (2013),
pp. 118–134, https://doi.org/10.1002/fld.3654.

[29] Q. Hong, J. Kraus, J. Xu, and L. Zikatanov, A robust multigrid method for discontinuous
Galerkin discretizations of Stokes and linear elasticity equations, Numerische Mathematik,
132 (2015), pp. 23–49, https://doi.org/10.1007/s00211-015-0712-y.

[30] K. Hu, Y. Ma, and J. Xu, Stable finite element methods preserving ∇ · B = 0 exactly for
MHD models, Numerische Mathematik, 135 (2016), pp. 371–396, https://doi.org/10.1007/
s00211-016-0803-4.

[31] K. Hu, W. Qiu, and K. Shi, Convergence of a B-E based finite element method for MHD
models on Lipschitz domains, Journal of Computational and Applied Mathematics, 368
(2020), p. 112477, https://doi.org/10.1016/j.cam.2019.112477.

[32] K. Hu and J. Xu, Structure-preserving finite element methods for stationary MHD models,
Mathematics of Computation, 88 (2018), pp. 553–581, https://doi.org/10.1090/mcom/
3341.

[33] V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz, On the divergence constraint
in mixed finite element methods for incompressible flows, SIAM Review, 59 (2017), pp. 492–
544, https://doi.org/10.1137/15m1047696.

[34] D. A. Knoll and L. Chacón, Coalescence of magnetic islands, sloshing, and the pressure
problem, Physics of Plasmas, 13 (2006), p. 032307, https://doi.org/10.1063/1.2173515.

[35] L. Li and W. Zheng, A robust solver for the finite element approximation of stationary incom-
pressible MHD equations in 3D, Journal of Computational Physics, 351 (2017), pp. 254–
270, https://doi.org/10.1016/j.jcp.2017.09.025.

[36] Y. Ma, K. Hu, X. Hu, and J. Xu, Robust preconditioners for incompressible MHD models,
Journal of Computational Physics, 316 (2016), pp. 721–746, https://doi.org/10.1016/j.jcp.
2016.04.019.

[37] S. Molokov, R. Moreau, and K. Moffatt, Magnetohydrodynamics, Springer Netherlands,
2007, https://doi.org/10.1007/978-1-4020-4833-3.
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