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SEQUENTIAL ACTIVE LEARNING OF LOW-DIMENSIONAL
MODEL REPRESENTATIONS FOR RELIABILITY ANALYSIS\ast 

MAX EHRE\dagger , IASON PAPAIOANNOU\dagger , BRUNO SUDRET\ddagger , AND DANIEL STRAUB\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . To date, the analysis of high-dimensional, computationally expensive engineering
models remains a difficult challenge in risk and reliability engineering. We use a combination of
dimensionality reduction and surrogate modeling termed partial least squares--driven polynomial
chaos expansion (PLS-PCE) to render such problems feasible. Standalone surrogate models typically
perform poorly for reliability analysis. Therefore, in a previous work, we have used PLS-PCEs to
reconstruct the intermediate densities of a sequential importance sampling approach to reliability
analysis. Here, we extend this approach with an active learning procedure that allows for improved
error control at each importance sampling level. To this end, we formulate an estimate of the
combined estimation error for both the subspace identified in the dimension reduction step and
the surrogate model constructed therein. With this, it is possible to adapt the training set so
as to optimally learn the subspace representation and the surrogate model constructed therein.
The approach is gradient-free and thus can be directly applied to black box--type models. We
demonstrate the performance of this approach with a series of low- (2 dimensions) to high- (869
dimensions) dimensional example problems featuring a number of well-known caveats for reliability
methods besides high dimensions and expensive computational models: strongly nonlinear limit-state
functions, multiple relevant failure regions, and small probabilities of failure.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . reliability analysis, rare event simulation, PLS-PCE, dimensionality reduction,
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1. Introduction and previous work. An important challenge in the design,
analysis, and maintenance of engineering systems is the management of the associ-
ated uncertainties. It is common practice to analyze engineering systems by employing
computational models that aim at representing the physical processes relevant to the
system in consideration. These computational models take the form of an input-
output mapping. Therein, uncertainty is represented by equipping the model input
with an appropriate probabilistic model. Undesirable system responses are defined
through a limit-state function (LSF). Reliability analysis is concerned with quanti-
fying the probability of failure, which can be expressed as a d-fold integral of the
input probability mass over the failure domain defined by nonpositive values of the
LSF, where d is the number of uncertain model inputs (see section 2). In engineering,
target failure probabilities are typically small; hence, reliability analysis requires the
estimation of rare event probabilities. Reliability analysis approaches can be catego-
rized into approximation (e.g., the first- and second-order reliability methods FORM
and SORM [66, 27, 18]) and simulation methods. If the LSF is only weakly nonlinear
and the input dimension of the model is moderate, FORM and SORM perform well
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even for small failure probabilities. The simplest simulation method is the Monte
Carlo method [54]. The Monte Carlo method performs well independent of the prob-
lem input dimension, however its performance deteriorates as the failure probability
decreases if the computational budget is fixed. Various techniques such as importance
sampling (IS) [13, 24, 2] and line-sampling [30, 39] have been proposed to mitigate
this dependence on the magnitude of the failure probability. More recently, sequential
Monte Carlo methods such as subset simulation [3] and IS-based sequential methods
[41, 42, 83, 61, 68, 60] have been used successfully to efficiently solve high-dimensional
reliability problems with small failure probabilties. If the computational model is
expensive and a hierarchy of increasingly coarse and cheap models is accessible, mul-
tilevel and multifidelity [63] Monte Carlo methods can help alleviate computational
cost by performing most model evaluations on the cheaper models (e.g., a discretized
differential equation with coarser resolution). In [79], multilevel Monte Carlo is com-
bined with subset simulation, and recently [82] introduced multilevel sequential IS
based on the sequential IS approach in [61]. All of the above-mentioned approaches
are designed to work with the probabilistic computational model directly. However,
often this model encompasses a numerical solver for (sets of) partial differential equa-
tions such that a model evaluation is computationally expensive.

This has increasingly lead researchers to turn towards surrogate model--based reli-
ability methods. Such methods attempt to approximate the expensive computational
model with a cheap surrogate model, whose coefficients are identified based on a set of
original model evaluations: the training set. [25] used a polynomial response surface
method for performing reliability analysis as early as 1989. [28] proposed an improved
version of the response surface method. Since then, a variety of surrogate modeling
techniques has been applied in the context of reliability analysis such as artificial
neural networks [57, 34, 71], support vector machines [33, 12, 11], Gaussian process
regression-based models [22, 21], and projection to polynomial bases including polyno-
mial chaos expansions PCEs [47, 45, 44, 73] and low-rank tensor approximations [38].

Static, global surrogate models suffer from a decrease in accuracy in the tails of the
model response distribution such that they are of limited use for reliability analysis.
In this context, static refers to surrogate models that are constructed based on a fixed
training set, and global refers to surrogate models that are trained and evaluated on
the entire input space (as opposed to locally con- and re-fined models). Thus, one
can distinguish two strategies to overcome this limitation:

\bullet Locality : Surrogate models are coupled with sequential sampling techniques
which serve to focus the training set and accuracy in the relevant regions
around the failure hypersurface [56, 12, 11, 6, 58].

\bullet Adaptivity (in the training set): The training set is augmented with points
that are most informative with respect to the failure probability estimate
according to an ``in-fill criterion."" The refined surrogate model is then used
to estimate the probability of failure with a sampling method and a large
number of cheap samples. Such procedures are summarized under the term
active learning (AL) or optimal experimental design. AL in combination
with crude Monte Carlo have been applied in reliability-based optimization
and reliability analysis in [22, 53, 8, 65]. [71] investigates the performance
of splines and neural networks in combination with directional sampling and
IS, and [21, 14] combine Gaussian process models with IS. [70] proposes a
crude Monte Carlo procedure relying on a Gaussian process surrogate model
with PCE-based mean trend (PCE-Kriging) along with a novel termination
criterion for the AL.
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Often, both AL and sequential sampling techniques are combined using various com-
binations of in-fill criteria and sequential sampling techniques such as adaptive IS [5]
and subset simulation [12, 32, 6, 11]. [52] turns away from surrogate models that
naturally provide a measure of prediction uncertainty such as Gaussian processes or
support vector machines and demonstrate how an AL algorithm can be realized with
PCE using a bootstrap estimator of the PCE prediction uncertainty.

In spite of a plethora of existing approaches to surrogate-assisted reliability analy-
sis, the literature on high-dimensional problems (d \geq 100) in this context is scarce.
[36, 46] propose to perform reliability analysis with a static, global Kriging model con-
structed in a low-dimensional linear subspace of the original model input space, which
is identified by the active subspaces method [16] and autoencoders, respectively. Both
[36, 46] apply their methods to moderate-dimensional problems with up to d = 20
and d = 40 input variables, respectively. [55] uses sliced inverse regression to identify
a linear low-dimensional subspace and construct a static, global PCE in this space
based on which they perform reliability analysis directly. [89] develops these ideas
further by combining the active subspace-Kriging model with an AL approach and
applies this combination to a high-dimensional analytical problem of d = 300 that
possesses a perfectly linear low-dimensional structure.

In this work, we propose an importance sampler based on a dimensionality-
reducing surrogate model termed partial least squares--driven PCE (PLS-PCE) [59] to
efficiently solve high-dimensional reliability problems with underlying computation-
ally expensive, nonlinear models and small target probabilities (\scrO (10 - 9)). Similar
to sliced inverse regression and active subspaces, PLS-PCE achieves dimensionality
reduction by identifying a low-dimensional linear subspace of the original input space.
Our method is based on [58] but introduces AL to refine the PLS-PCE approximation
in each sequence of the IS procedure. In [58], PLS-PCE models are reconstructed in
each level of a sequential IS (SIS) scheme that is used to gradually shift the impor-
tance density towards the optimal importance density. In this work, we augment this
approach with two novel contributions to rare event simulation of computationally
expensive, potentially (but not necessarily) high-dimensional and nonlinear models:

1. We demonstrate how to perform AL with PCE models by deriving an in-fill
criterion from large-sample properties of the PCE coefficient estimates.

2. We use projection to linear subspaces to construct efficient surrogate models
for high-dimensional problems and include the subspace estimation error in
the in-fill criterion. This means, we are not only learning the surrogate model
but also the subspace itself.

Using AL in the context of PLS-PCE--based SIS provides effective error control and
benefits from the local confinement of the learning procedure of each subspace/
surrogate model combination to the support of the current importance density. Con-
structing local variance estimates for polynomial models in the way we propose here
creates new possibilities to design goal-oriented surrogate modeling approaches that
are driven by adaptive sampling based on such models (where so far, Gaussian pro-
cesses were the dominant tool).

In section 2, we set up the reliability problem and discuss the crude Monte Carlo
sampler of the probability of failure. Section 3 reviews IS and a variant of SIS [61]
that is at the base of our approach. Section 4 introduces PLS-PCE models and their
construction. Subsection 5.2 details the theoretical foundations of AL of PLS-PCE
models within SIS and summarizes our approach. In section 6, we present compre-
hensive investigations of the method's performance in two engineering examples and
provide a detailed discussion of the results. Conclusions are given in section 7.
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2. Reliability analysis. Consider a system represented by the computational
model \scrY : \BbbD \bfitX \rightarrow \BbbR with d-dimensional continuous random input vector \bfitX : \Omega \rightarrow 
\BbbD \bfitX \subseteq \BbbR d, where \Omega is the sample space of \bfitX and by F\bfitX (\bfitx ), we denote its joint
cumulative distribution function (CDF). \scrY maps to the system response Y = \scrY (\bfitx )
with the model input \bfitx \in \BbbD \bfitX . Based on the response Y , unacceptable system states
are defined by means of the LSF \~g(Y ). Defining g(\bfitx ) = \~g \circ \scrY (\bfitx ) and introducing the
convention

g(\bfitx ) =

\Biggl\{ 
\leq 0, failure,

> 0, safety,

the failure event of the system is defined as F = \{ \bfitx \in \BbbD \bfitX : g(\bfitx ) \leq 0\} . The probability
of failure is given by [19]

(2.1) p = \BbbP (F) =
\int 

\BbbD \bfitX 

I[g(\bfitx ) \leq 0]f\bfitX (\bfitx )d\bfitx = \BbbE f\bfitX [I(g(\bfitX ) \leq 0)] ,

where f\bfitX (\bfitx ) = \partial dF/(\partial x1 . . . \partial xd)| \bfitx is the joint probability density function of \bfitX 
and the indicator function I[\cdot ] equals 1 if the condition in the argument is true and
0 otherwise. Without loss of generality, one may formulate an equivalent reliability
problem with respect to the standard-normal probability space using the random
vector \bfitU : \Omega \rightarrow \BbbR d. Given an isoprobabilistic transformation T : \BbbD \bfitX \rightarrow \BbbR d such that
\bfitU = T (\bfitX ) (see, e.g., [29, 48]), and defining G(\bfitU ) = g(T - 1(\bfitU )), one can write (2.1)
as

(2.2) p =

\int 

\BbbR d

I[G (\bfitu ) \leq 0]\varphi d (\bfitu ) d\bfitu = \BbbE \varphi d
[I(G(\bfitU ) \leq 0)] ,

where \varphi d denotes the d-dimensional independent standard-normal probability density
function. The crude Monte Carlo estimate of (2.2) is

(2.3) \widehat pMC =
1

n

n\sum 

k=1

I[G(\bfitu k) \leq 0], \bfitu k i.i.d.\sim \varphi d,

where \bfitu k i.i.d.\sim \varphi d means that \{ \bfitu k\} nk=1 are n samples that are independent and iden-
tically distributed according to \varphi d. This estimate is unbiased and has coefficient of
variation (CoV)

(2.4) \delta MC =

\sqrt{} 
1 - p
np

.

The number of samples required to compute \widehat pMC at a prescribed CoV \delta 0 reads

(2.5) n0 =
1 - p
\delta 20p

p\ll 1\approx 1

\delta 20p
.

Therefore, crude Monte Carlo is inefficient for estimating rare event probabilities as,
by definition, p\ll 1, and thus n0 becomes large.

3. SIS for rare event estimation. Variance reduction techniques can be used
to reduce the CoV of the probability estimate at a fixed budget of samples compared
to crude Monte Carlo. One of the most commonly used variance reduction methods
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is the IS method. Let h be a density such that h (\bfitu ) > 0 whenever G (\bfitu ) \leq 0. Then,
one can rewrite (2.2):

(3.1) p =

\int 

\BbbR d

I(G (\bfitu ) \leq 0)

\omega (\bfitu )\underbrace{}  \underbrace{}  
\varphi d (\bfitu )

h (\bfitu )
h (\bfitu ) d\bfitu = \BbbE h [I(G(\bfitU ) \leq 0)\omega (\bfitU )] ,

which leads to the (unbiased) IS estimator

(3.2) \widehat pIS =
1

n

n\sum 

k=1

I[G(\bfitu k) \leq 0]\omega (\bfitu k), \bfitu k i.i.d.\sim h.

The efficiency of IS depends intimately on the choice of the IS density h, and numerous
techniques to construct it have been put forward. There exists an optimal importance
density h\ast in the sense that it leads to \BbbV [\widehat pIS] = 0:

(3.3) h\ast (\bfitu ) =
1

p
I[G (\bfitu ) \leq 0]\varphi d (\bfitu ) .

While this result is not immediately useful in estimating p as it requires knowledge of
p, it can be used to guide the selection of a suitable IS function h.

The SIS method proposed in [61] selects the IS density sequentially starting from
a known distribution h0 that is easy to sample from. It relies on a sequence of
distributions \{ hi (\bfitu )\} Mi=0,

(3.4) hi (\bfitu ) =
\eta i (\bfitu )

pi
, i = 1, . . . ,M,

where \{ \eta i (\bfitu )\} Mi=0 are nonnormalized versions of \{ hi (\bfitu )\} Mi=0 and \{ pi\} Mi=0 are the re-
spective normalizing constants. The goal is to arrive at hM , which is sufficiently close
to h\ast based on some criterion, and perform IS with hM . To this end, it is necessary
to estimate pM and obtain samples from hM . Based on the likelihood ratio of two
succeeding nonnormalized distributions \omega i (\bfitu ) = \eta i (\bfitu ) /\eta i - 1 (\bfitu ), we have

(3.5) si =
pi
pi - 1

=

\int 

\BbbR d

\eta i (\bfitu )

\eta i - 1 (\bfitu )
hi - 1 (\bfitu ) d\bfitu = \BbbE hi - 1 [\omega i (\bfitu )] .

Therefore, an estimate of pM is given by

(3.6) \widehat pM =

M\prod 

i=1

\widehat si with \widehat si =
1

n

n\sum 

k=1

\omega i

\bigl( 
\bfitu k
\bigr) 
, \bfitu k i.i.d.\sim hi - 1.

Samples from hi can be obtained using Markov chain Monte Carlo (MCMC) methods
given samples from hi - 1. More precisely, [61] proposes a resample-move scheme in
which Markov chain seeds are obtained as samples from hi - 1 that are then reweighted
(resampled with weights) according to \omega i (\bfitu ). In this way, the seed samples are already
approximately distributed according to the stationary distribution of the Markov
chain hi and long burn-in periods can be avoided. We adopt an adaptive conditional
MCMC sampler (aCS) to perform the move step due to its robust performance in
high-dimensional settings. Details can be found in [61].
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Fig. 1. Smooth approximations to the indicator function I(g(\bfitu ) \leq 0) (left) and importance
densities hi (\bfitu ) \propto \Phi ( - G (\bfitu ) /\sigma i)\varphi d (\bfitu ) based on this approximation (right).

The hi are chosen as smooth approximations of h\ast using the standard-normal
CDF \Phi (\cdot ) (compare Figure 1):

(3.7) hi (\bfitu ) =
1

pi
\Phi 

\biggl( 
 - G (\bfitu )

\sigma i

\biggr) 
\varphi d (\bfitu ) =

1

pi
\eta i (\bfitu ) ,

where pi = \BbbE \varphi d
[\Phi ( - G(\bfitU )/\sigma i)] is a normalizing constant and \sigma i is the smoothing

parameter. Prescribing \sigma 0 > \sigma 1 > \cdot \cdot \cdot > \sigma M ensures that the sequence \{ hi (\bfitu )\} Mi=0

approaches h\ast . In each level, to avoid degeneration of the weights \omega i (meaning \omega i

assuming values close to 0 at all current samples), hi - 1 (\bfitu ) and hi (\bfitu ) cannot be
too different in the sense that they share no support regions on which both have
considerable probability mass. This is avoided by prescribing an upper bound for

the estimated CoV of the weights \widehat \delta w,i = \widehat \BbbC \BbbO \BbbV [\omega i(\bfitU )], which provides a criterion for
determining \sigma i:

(3.8) \sigma i = argmin
\sigma \in [0,\sigma i - 1]

\Bigl( 
\widehat \delta \omega ,i(\sigma ) - \delta target

\Bigr) 2
.

[61] recommends \delta target = 1.5. The algorithm terminates when hi is close enough to
h\ast in the sense that
(3.9)

\widehat \BbbC \BbbO \BbbV 
\biggl[ 
h\ast (\bfitU )

hi(\bfitU )

\biggr] 
= \widehat \BbbC \BbbO \BbbV 

\biggl[ 
\varphi d(\bfitU )I(G(\bfitU ) \leq 0)

\varphi d(\bfitU )\Phi ( - G(\bfitU )/\sigma i)

\biggr] 
= \widehat \BbbC \BbbO \BbbV 

\biggl[ 
I(G(\bfitU ) \leq 0)

\Phi ( - G (\bfitu ) /\sigma i)

\biggr] 
\leq \delta target.

The final estimate of \BbbP (F) reads
(3.10)

\widehat pSIS = \widehat pM \widehat \BbbE \varphi d

\biggl[ 
I(G(\bfitU ) \leq 0)

\eta M (\bfitU )

\biggr] 
=

\Biggl( 
M\prod 

i=1

\widehat si
\Biggr) 

1

n

n\sum 

k=1

I(G(\bfitu k) \leq 0)

\Phi ( - G(\bfitu k)/\sigma M )
, \bfitu k i.i.d.\sim hM .

Algorithm 3.1 summarizes the complete SIS-aCS procedure.

4. Partial least squares--based PCEs.

4.1. PCEs. PCEs are a tool for forward modeling the relationship between an
input\bfitX and an output Y = \scrY (\bfitX ). With \scrH , we denote the Hilbert space of functions
that are square-integrable with respect to f\bfitX , i.e., \{ v : \BbbE f\bfitX [v(\bfitX )2] <\infty \} . \scrH admits
an inner product of two functions v, w \in \scrH :

(4.1) \langle v, w\rangle \scrH = \BbbE f\bfitX (\bfitx )[v(\bfitX )w(\bfitX )] =

\int 

\BbbR d

v(\bfitx )w(\bfitx )f\bfitX (\bfitx )d\bfitx .



B564 M. EHRE, I. PAPAIOANNOU, B. SUDRET, AND D. STRAUB

Algorithm 3.1 SIS-aCS [61]

1: Input LSF G (\bfitu ), target CoV \delta target, samples per level n, input dimension d,
burn-in period b, max. iterations imax

2:

3: Set i = 0, \sigma 0 =\infty , h0 (\bfitu ) = \varphi d (\bfitu )

4: Sample U0 = \{ \bfitu k, k = 1, . . . , n\} \in \BbbR n\times d  \triangleleft \bfitu k i.i.d.\sim h0 (\bfitu )
5: Compute G0 = G(U0) \in \BbbR n\times 1

6: for i\leftarrow 1, imax do
7: i\leftarrow i+ 1
8: Compute \sigma i according to (3.8)
9: Compute weights \bfitomega i = \{ \Phi [ - Gi - 1/\sigma i] /\Phi [ - Gi - 1/\sigma i - 1] , k = 1, . . . , n\} \in 

\BbbR n\times 1

10: Compute \widehat si according to (3.6)
11: Ui - 1 \leftarrow draw weighted resample from Ui - 1 with weights \bfitomega i  \triangleleft sample with

replacement
12: (Ui,Gi) = MCMC-aCS(Ui - 1,Gi - 1,b)  \triangleleft Details on MCMC-aCS in [61]
13: if (3.9) then
14: break
15: Set M \leftarrow i

16: Estimate failure probability \widehat pSIS = (
\prod M

i=1 \widehat si) 1n
\sum n

k=1

I(Gk
M\leq 0)

\Phi ( - Gk
M/\sigma M)

 \triangleleft (3.10)

17: return UM ,GM , \widehat pSIS.

Let \{ vj(\bfitX ), j \in \BbbN \} be a complete and orthonormal basis of \scrH so that \langle vj , v\ell \rangle \scrH = \delta j\ell ,
and let \scrY \in \scrH . Then,

(4.2) \scrY (\bfitX ) =

\infty \sum 

j=0

bjvj(\bfitX ),

where the coefficients bj are defined by projecting \scrY on the basis:

(4.3) bj = \langle \scrY , vj\rangle \scrH , j \in \BbbN .

Since \scrY \in \scrH , the truncation

(4.4) \widehat \scrY n(\bfitX ) =

n\sum 

j=0

bjvj(\bfitX )

asymptotically converges to \scrY as n\rightarrow \infty in the mean square sense. [87] demonstrates
how to construct complete orthonormal bases of \scrH as polynomial families for vari-
ous standard input distribution types. In particular, if F\bfitX (\bfitx ) = \Phi d(\bfitx ), where \Phi d

denotes the d-variate independent standard-normal CDF, the tensorized, normalized
probabilist's Hermite polynomials

(4.5) \Psi \bfitk (\bfitU ) =

d\prod 

i=1

\psi kj (Uj)

form a complete orthonormal basis of \scrH . \{ \psi j(U), j \in \BbbN \} are the univariate, normal-
ized (probabilist's) Hermite polynomials, and \bfitk = (k1, . . . , kd) \in \BbbN d. By means of
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the isoprobabilistic transformation T : \bfitX \rightarrow \bfitU introduced in the previous section,
we define PCEs in standard-normal space for the remainder of the paper. The PCE
of maximum total order p reads

(4.6) \widehat \scrY p(\bfitU ) =
\sum 

| \bfitk | \leq p

b\bfitk \Psi \bfitk (\bfitU ).

The total number of basis functions in the PCE, P , depends on the input dimension
d and the maximum total polynomial order p:

(4.7) P =

\biggl( 
d+ p

p

\biggr) 
.

The projection in (4.3) can be transformed into an equivalent ordinary least squares
problem [7]. PCEs become computationally intractable if d is large, i.e., they cannot
be used for problems with high-dimensional input due to the sheer number of basis
functions and corresponding coefficients. In particular, the computation is rendered
infeasible by the necessary number of operations to compute the set of P multi-indices
and the necessary number of model evaluations to obtain meaningful estimates of
the coefficients. Solution strategies to overcome these limitations (at least partially)
include a hyperbolic truncation of the index set (this means to replace the condition on

the \ell 1-norm in (4.6), | \bfitk | \leq p, with one on a general \ell q-norm of | \bfitk | \alpha = (
\sum d

i=1 p
q
i )

1/q \leq p
with q < 1) or enforcing a maximum interaction order (i.e., a maximum number of
nonzero entries in \bfitk ) [9]. These approaches result in more parsimonious models and
allow for PCEs to be applied in higher-dimensional problems; however, they do so at
the cost of decreased model expressivity. Sparsity-inducing solvers have been proposed
to relax the dimensionality constraint imposed by the size of the regression problem.
Approaches may be based on a variety of solvers for the \ell 1-regularized least squares
problem such as least-angle regression that is used for PCEs in [10], compressive
sensing [88], and orthogonal matching pursuit [62, 76, 20] as well as sparse Bayesian
learning methods [75, 35, 69, 78]. For a comprehensive overview, the reader is referred
to the recent literature review and benchmark study [51, 50].

4.2. Basis adaptation via partial least squares. In order to obtain a par-
simonious yet expressive model, we turn to low-dimensional model representations
rather than sparse solutions to the full-dimensional model. To achieve this, the PCE
representation is rotated onto a new basis defined by the variables \bfitZ = QT\bfitU , where
Q \in \BbbR d\times d and QTQ = I, with I denoting the identity matrix. This was first proposed
in [74]. The PCE with respect to the novel basis reads

(4.8) \widehat \scrY \bfQ 
p (\bfitU ) =

\sum 

| \bfitk | \leq p

a\bfitk \Psi \bfitk (\bfitZ ) =
\sum 

| \bfitk | \leq p

a\bfitk \Psi \bfitk 

\bigl( 
QT\bfitU 

\bigr) 
.

With \bfitU a standard-normal random vector and Q an orthogonal matrix, \bfitZ is a
standard-normal random vector. Therefore, both original and transformed input
space possess the same PCE basis, namely, the probabilist's Hermite polynomials.
Merely, a new set of coefficients a\bfitk enters the formulation in the adapted basis. The
columns of Q define linear combinations of the original input. We seek to choose Q
such that most of the relevant information to construct an accurate surrogate \scrY is
captured in the first m directions, where m < d leads to dimensionality reduction. We
retain only these first m columns of Q in the matrix Qm and define a corresponding
PCE of reduced dimension as

(4.9) \widehat \scrY \bfQ m
p (\bfitU ) =

\sum 

| \bfitk | \leq p

a\bfitk \Psi \bfitk 

\bigl( 
QT

m\bfitU 
\bigr) 
,
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where \bfitk \in \BbbN m. [74] computes the basis adaptation Qm by evaluating first- or second-
order PCE coefficients only with a sparse-grid numerical quadrature. [77] couples
this approach with compressive sensing to simultaneously identify Qm and the PCE
coefficients in the subspace. In [59], we show that important directions can be identi-
fied efficiently based on a set of original function evaluations via partial least squares
(PLS).

PLS establishes a linear relationship between variables \bfitU and Y based on n\scrE 
observations of both quantities [85]. By U\scrE \in \BbbR n\scrE \times d, we denote the matrix of n\scrE 
observations of \bfitU , and by Y\scrE \in \BbbR n\scrE \times 1 we denote the corresponding vector of scalar
responses. PLS sequentially identifiesm latent components \{ \bfitt j\} mj=1, where \bfitt j \in \BbbR n\scrE \times 1

such that they have maximum covariance with Y\scrE . After determining each \bfitt j , PLS
assumes a linear relationship between \bfitt j and Y\scrE and evaluates the corresponding co-
efficient aj of \bfitt j by ordinary least squares. After each iteration, the matrices U\scrE and
Y\scrE are deflated by the contribution of the jth PLS component. Components are ex-
tracted until a certain error criterion is met, which can be formulated, e.g., through the
norm of the residual response vector or via cross-validation. Dimensionality-reducing
regression methods such as PLS-based regression are known to shrink the regression
coefficients towards zero to produce biased estimates in exchange for reducing the es-
timator variances (bias-variance tradeoff). In this way, these dimensionality-reducing
methods are able to produce smaller overall mean squared estimation errors (see, e.g.,
[17] for PLS).

The nonlinear version of PLS in turn relaxes the assumption of a linear rela-
tionship between latent component and the response. A number of nonlinear PLS
algorithms have been proposed [67]. Here we employ the approach of [84, 4] that
introduces an additional loop into the algorithm for running a Newton--Raphson pro-
cedure iterating between the current latent component and the response. Ultimately,
we are interested in computing the orthogonal transformation matrix \bfitQ m in (4.9).
PLS produces two different matrices \bfitR and \bfitW that are suitable to this end, which
motivates two different flavors of PLS-PCE. In PLS-PCE-R as proposed in [59] (see
subsection 4.3), each nonlinear relationship between the \{ \bfitt j\} mj=1 and the response is
modeled as a univariate PCE. The coefficients of these univarate PCEs are computed
simultaneously with the latent structure, and the resulting model is a sum of uni-
variate PCEs. Alternatively, the univariate PCEs are discarded after the PLS-PCE
algorithm terminates, and a multivariate (sparse) PCE is constructed in the subspace
formed by the so-called weights \{ \bfitw j\} mj=1 leading to PLS-PCE-W (see subsection Sub-
section 4.4).

4.3. PLS-PCE-R. PLS-PCE-R identifies m latent components, and for each
component, it returns the direction \bfitr j and the univariate PCE along this direction.
The univariate PCEs are defined by their polynomial orders \{ qj\} mj=1 and the associated
coefficient vectors \{ \bfita j\} mj=1. The polynomial order is identified with leave-one-out
cross validation [15]. For each (jth) latent component, the nonlinear PLS iteration is
repeated for different polynomial orders, and qj is chosen as the order minimizing the
leave-one-out error. The PLS-PCE-R model reads

(4.10) \widehat \scrY (\bfitu ) = \widehat a0 +
m\sum 

j=1

\bigl( 
\widehat \bfita qj
j

\bigr) T
\bfitpsi qj

\bigl[ 
\bfitr Tj (\bfitu  - \bfitmu \bfU )

\bigr] 
,

where \widehat a0 = \widehat \BbbE [Y], \bfitpsi qj (\bfitU ) is a vector function assembling the evaluations of the one-
dimensional Hermite polynomials up to order qj , and \bfitmu \bfU is the columnwise sample
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Fig. 2. Structure of two different PLS-PCE models, where \bfPsi \bfW 
j = \bfPsi \bfitalpha j as defined in (4.12)

and \bfPsi \bfR 
j = (\widehat \bfita qj

j )T\bfitpsi qj as seen from (4.10). Essential differences exist in the choice of the reduced

space basis (layer 2) and the modeling of cross-terms when mapping from reduced to feature space
(layers 2 \& 3) with PLS-PCE-W (b).

mean of U\scrE . The model structure is illustrated in Figure 2. The PLS directions \bfitr j
can be evaluated in terms of the PLS weights \bfitw j and loads \bfitp j through the following
recursive relation [31]:

(4.11)
\bfitr 1 = \bfitw 1,

\bfitr j = \bfitw j  - \bfitr j - 1

\bigl( 
\bfitp Tj - 1\bfitw j

\bigr) 
.

R = [\bfitr 1, . . . , \bfitr m] \in \BbbR d\times m is a matrix collecting all PLS directions. R is not necessarily
orthogonal; i.e., in general RTR \not = I. However, in [59] it is shown that RTR \approx I
when n\scrE is large and UT

\scrE U\scrE is diagonal, which is the case if U\scrE is drawn from \varphi d. In
this case, (4.10) is equivalent to a PCE of the form (4.9), where only main effects in
the latent components are considered.

4.4. PLS-PCE-W. PLS-PCE-W definesW as basis of the subspace rather than
R, where W = [\bfitw 1, . . . ,\bfitw m] \in \BbbR d\times m. Within linear PLS, the columns of W form an
orthogonal basis. Within nonlinear PLS, the Newton--Raphson step may introduce
deviations from orthogonality, which are however negligible in all tested examples.
The univariate PCEs obtained through the Newton--Raphson step will be optimal
with respect to R, not W. Thus, in PLS-PCE-W these univariate polynomials are
discarded once W is identified and a multivariate (sparse) PCE is constructed in
the subspace defined by W using least-angle regression and a hyperbolic truncation
scheme for the multivariate PCE basis as proposed by [10]. In this way PLS-PCE-W
achieves more flexibility compared to PLS-PCE-R by including interactions of the
latent components in exchange for a departure from optimality in the match between
latent component and surrogate model. In analogy to (4.9), the PLS-PCE-W model
reads

(4.12) \widehat \scrY (\bfitu ) = \widehat a0 +
\sum 

\bfitk \in \bfitalpha 

\widehat a\bfitk \Psi \bfitk 

\bigl[ 
WT (\bfitu  - \bfitmu \bfU )

\bigr] 
,
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where \bfitalpha \in \BbbN P\times d is the multi-index set, which indicates the polynomial orders of
the d univariate polynomials in each of the P multivariate polynomials as obtained
with least-angle regression. Both PLS-PCE-R and PLS-PCE-W are summarized in
Algorithm 4.1. In the following, we will use the PLS-PCE-W model, as we observed a
superior performance for this model compared to PLS-PCE-R models in the context
of the proposed approach.

Algorithm 4.1 PCE-driven PLS algorithm [59]

1: Input Input matrix U\scrE and output vector Y\scrE , maximum polynomial order p
2:

3: Set E = U\scrE  - \bfitmu \bfU , F = Y\scrE  - \bfitmu \bfY , \epsilon w = 10 - 3, \epsilon y = 10 - 3, j = 1
4: repeat
5: Compute weight \bfitw 0

j = ETF/\| ETF\| 
6: for q \leftarrow 1, p do
7: Set \bfitw q

j = \bfitw 0
j

8: repeat
9: Compute score \bfitt qj = E\bfitw q

j

10: Fit a 1D PCE of order q \widehat \bfita q
j \leftarrow fit

\bigl[ 
F = (\bfita q

j)
T\bfitpsi q(\bfitt 

q
j) + \bfitepsilon 

\bigr] 

11: Set \widehat \scrM q
j(t) = (\widehat \bfita q

j)
T\bfitpsi q(\bfitt 

q
j)(t)

12: Compute the error \bfite = F - (\widehat \bfita q
j)

T\bfitpsi q(\bfitt 
q
j)

13: Compute \Delta \bfitw q
j = (ATA) - 1AT\bfite with A = \nabla \bfitw (\widehat \bfita q

j)
T\bfitpsi q(E\bfitw )

14: Set \bfitw q
j \leftarrow \bfitw q

j +\Delta \bfitw q
j

15: Normalize \bfitw q
j \leftarrow \bfitw q

j/\| \bfitw q
j\| 

16: until \| \Delta \bfitw q
j\| is smaller than \epsilon w

17: Evaluate the relative leave-one-out error \epsilon qLOO as in [10]
18: Set \{ qj , \widehat \bfita qj

j ,\bfitw 
qj
j \} as the triple \{ q, \widehat \bfita q

j ,\bfitw 
q
j\} with the smallest \epsilon qLOO

19: Compute score: \bfitt 
qj
j = E\bfitw 

qj
j

20: Compute load: \bfitp 
qj
j = ET\bfitt 

qj
j /((\bfitt 

qj
j )T\bfitt 

qj
j )

21: Deflate: E\leftarrow E - \bfitt qjj (\bfitp 
qj
j )T, F\leftarrow F - (\widehat \bfita qj

j )T\bfitpsi qj (\bfitt 
qj
j )

22: j \leftarrow j + 1
23: until change in \| F\| is smaller than \epsilon y
24: Compute R = [r1, r2, . . . , rm] according to (4.11)  \triangleleft For the R-based version of

PLS-PCE
25: Build \widehat \scrY (\bfitu ) according to (4.10)
26: Gather W = [\bfitw 1,\bfitw 2, . . . ,\bfitw m]  \triangleleft For the W -based version of PLS-PCE

27: Build \widehat \scrY (\bfitu ) according to (4.12) and [10]

28: return R/W, \widehat \scrY (\bfitu )

5. Learning PLS-PCE models in each SIS level.

5.1. The sequential subspace importance sampler. We recently proposed
to reconstruct low-dimensional PLS-PCE-Wmodels in each level of SIS to improve the
tractability of high-dimensional reliability analysis with computationally expensive
models [58]. We term this approach sequential subspace IS or SSIS. The efficiency
of SIS benefits from surrogate modeling through a considerable reduction of required
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model evaluations. The PLS-PCE model alone, being a global surrogate model, is
a relatively limited tool for reliability analysis. Combining it with SIS provides the
means to sequentially move the training set towards relevant regions in the input space
and thereby renders difficult reliability problems accessible to surrogate modeling. At
the ith SSIS level, a new local training set is sampled from the current importance
density hi through a resampling step on the N available samples from hi. The new
local training set is appended to the global training set comprising earlier designs from
levels 1 through i - 1. Based on the updated global training set, a new PLS-PCE model
is constructed and SIS is rerun for i+1 levels from h0 to obtain samples for the next
local training set. Due to this restart, it is sensible to let previously used local training
sets remain in the global training set such that the ith surrogate model accurately
predicts the LSF output along the entire path of samples moving from the nominal
distribution h0 to hi. The restart itself incurs no additional LSF evaluations and
serves to stabilize the method: Without restart, the computation of \sigma i+1 according to
(3.8) is based on two different surrogate models: the most recent model constructed
in level i appears in the numerator of the sample CoV of the weights and the model
constructed in level i  - 1 appears in the denominator. These models may however
be too different from one another to admit a solution in (3.8), i.e., to achieve the
prescribed CoV \delta target between two subsequent IS densities.

In an additional step, before propagating the intermediate importance density
to the next level of the SSIS algorithm, we introduce AL. This ensures a prescribed
surrogate model accuracy in regions of high probability mass of the current sampling
density. In turn, this refined surrogate model is used to propagate samples to the next
level. When the underlying SIS algorithm reaches convergence, a final AL procedure,
performed over samples of the final importance density, ensures that the probability
of failure is estimated with a surrogate model that captures the failure hypersurface
well. This approach is termed adaptive SSIS or ASSIS.

AL emerged in the late 1980s as a subfield of machine learning [72] and has been
known in the statistical theory of regression as optimal experimental design since the
early 1970s [26]. At its heart is the idea that supervised learning algorithms can
perform better if allowed to choose their training data. We consider a ``pool-based
sampling"" variant of AL, in which a large pool of unlabeled data points is made
available to the algorithm. Within SIS, one has n samples from hi available in the ith
level. The algorithm then selects nadd points that are labeled (i.e., for which the LSF
is evaluated) and added to the training set based on a measure of information gain.
This measure typically takes the form of a learning function \scrL that is maximized over
the sample pool to perform selection. The learning function employed in the context
of SSIS is discussed in subsection 5.2.

The probability of failure estimator for SSIS/ASSIS is analogous to (3.10) with

the difference that SIS is performed with an LSF approximation \widehat G that is based on
the final surrogate model:

(5.1) \widehat p =
\Biggl( 

M\prod 

i=1

\widehat si
\Biggr) 

1

n

n\sum 

k=1

I( \widehat G
\bigl( 
\bfitu k
\bigr) 
\leq 0)\varphi d

\bigl( 
\bfitu k
\bigr) 

\eta M (\bfitu k)
, \bfitu k i.i.d.\sim hM .

The ratio of normalizing constants \{ \widehat si\} Mi=1 is estimated as

(5.2) \widehat si =
1

n

n\sum 

k=1

\widehat \omega i

\bigl( 
\bfitu k
\bigr) 
=

1

n

n\sum 

k=1

\Phi ( - \widehat G
\bigl( 
\bfitu k
\bigr) 
/\sigma i)

\Phi ( - \widehat G (\bfitu k) /\sigma i - 1)
, \bfitu k i.i.d.\sim hi.
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provide δtarget, n, b, d, p, nE
set i = 1

sample training set: UE ∼ h0(u)
evaluate GE = G(UE)

construct surrogate
Ĝ = PLS-PCE(UE ,GE , p)

run i steps of SIS w/ Ĝ

Ui = SIS-aCS(Ĝ, δtarget, n, d, b, i)

Eq. (5.3)

resample
Utmp from Ui,

append
(Utmp, G(Utmp)) to E

p̂SSISno yes

i→ i+ 1

(a) SSIS

provide δtarget, n, b, d, p, , nE , εAL, nadd
set i = 1

sample training set: UE ∼ h0(u)
evaluate GE = G(UE)

construct surrogate
Ĝ = PLS-PCE(UE ,GE , p)

if i > 1: run i-1 steps of SIS w/ Ĝ

Ui-1 = SIS-aCS(Ĝ, δtarget, n, d, b, i-1)
set Upool = Ui-1

run i-th step of SIS using Ĝ
Ui = SIS-aCS(Ĝ, δtarget, n, d, b, i)

Eq. (5.3)

resample
Utmp from Ui,

append
(Utmp, G(Utmp)) to E

get nadd clusters cj in Upool

u?
j = argmax[L(Upool ∩ cj)]
add (u?, G(u?)) to E
remove u? from Upool

reconstruct surrogate
Ĝ = PLS-PCE(UE ,GE , p)

Eq. (5.14)

Eq. (5.3) p̂ASSIS
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no yes

i→ i+ 1

(b) ASSIS

Fig. 3. Comparison of SIS-PLS-PCE with (right) and without (left) AL.

The SSIS/ASSIS algorithms are stopped based on a similar criterion as for SIS given
in (3.9):

(5.3) \widehat \BbbC \BbbO \BbbV 

\Biggl[ 
I( \widehat G(\bfitU ) \leq 0)

\Phi ( - \widehat G (\bfitU ) /\sigma i)

\Biggr] 
\leq \delta target.

Figure 3 depicts flow diagrams of the SSIS and ASSIS algorithms.

5.2. AL of low-dimensional model representations. In the context of SSIS,
the learning function \scrL should express the prediction uncertainty at each sample of
the current IS density for a given PLS-PCE-W surrogate. This prediction uncertainty
is due to the estimation of both the subspace and the surrogate model with a finite-
sized training set. We describe this uncertainty with the variance of the LSF based
on the surrogate model conditional on \bfitu , \BbbV [ \widehat G| \bfitU = \bfitu ]. Note that, whenever the
distribution with respect to which \BbbE [\cdot ] or \BbbV [\cdot ] is evaluated is not made explicit as a
subscript, it is implicitly assumed as the distribution of the argument. For example,
\BbbV [ \widehat G| \bfitU = \bfitu ] = \BbbV f \widehat G| \bfitu 

[ \widehat G| \bfitU = \bfitu ].

Let \bfitxi 0 = \bfita \in \BbbR P\times 1 and \bfitxi j = \bfitw j \in \BbbR d\times 1, j = 1, . . . ,m, such that \bfitxi =
[\bfitxi T0 , \bfitxi 

T
1 . . . , \bfitxi 

T
m]T \in \BbbR (md+P )\times 1 is the collection of all md + P model parameters.

Further, let \bfitxi  \star denote their corresponding point estimates returned by Algorithm 4.1.
The first-order expansion of \widehat \BbbV [ \widehat G| \bfitu ] around \bfitxi  \star reads

(5.4) \widehat \sigma 2\widehat G(\bfitu ) = \widehat \BbbV [ \widehat G| \bfitu ] \approx 
\Biggl[ 
\partial \widehat G
\partial \bfitxi 

\Biggr] T

\bfitxi =\bfitxi  \star 

\widehat \Sigma \bfitxi \bfitxi 

\Biggl[ 
\partial \widehat G
\partial \bfitxi 

\Biggr] 

\bfitxi =\bfitxi  \star 

,

where \widehat \Sigma \bfitxi \bfitxi is an estimate of the parameter covariance matrix. Next, we neglect the
pairwise cross-covariance of PCE coefficients \bfita and the subspace components \bfitw j and
consider

(5.5) \widehat \sigma 2\widehat G(\bfitu ) = \widehat \BbbV [ \widehat G| \bfitu ] \approx 
m\sum 

j=0

\Biggl[ 
\partial \widehat G(\bfitu , \bfitxi )
\partial \bfitxi j

\Biggr] T

\bfitxi j=\bfitxi  \star 
j

\widehat \Sigma \bfitxi j\bfitxi j

\Biggl[ 
\partial \widehat G(\bfitu , \bfitxi )
\partial \bfitxi j

\Biggr] 

\bfitxi j=\bfitxi  \star 

.

This significantly reduces the number of \Sigma \bfitxi \bfitxi -entries that have to be estimated,
namely, from P 2+2Pmd+m2d2 to P 2+md2. More importantly, the coefficients of the
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PCE, \bfitxi 0, are obtained with linear regression while the subspace, \{ \bfitxi j\} mj=1, is obtained
in the inner loop of Algorithm 4.1 with nonlinear regression. Due to this sequential
estimation of the \{ \bfitxi j\} mj=0, there is no straightforward way of obtaining an estimate of
the full covariance matrix. In particular, we are not aware of such an estimate for the
parameters of nonlinear PLS. Hence, this simplification is not only convenient but also
necessary in practice. We do observe, however, that the off-diagonal elements of the
estimated componentwise cross-covariance matrices \widehat \Sigma \bfitxi j\bfitxi j

are several orders of mag-
nitude smaller compared to the the main diagonal elements. This indicates that the
model uncertainty estimate is dominated by parameter variances. In fact, in a more
radical approach that remains unexplored in this work, one may consider parameter
variances only (i.e., only P +md entries of the full covariance matrix are retained).
Such an approach is, e.g., used in [64]. Under some regularity conditions, the esti-
mator \bfitxi \ast j is consistent [86] and converges in distribution to a multivariate Gaussian
distribution with mean \bfitxi j and covariance \Sigma \bfitxi j\bfitxi j

. In analogy with linear regression,
an estimate of \Sigma \bfitxi j\bfitxi j

is given through

(5.6) \widehat \Sigma \bfitxi j\bfitxi j
= \widehat \sigma 2

\epsilon 

\bigl( 
AT

j Aj

\bigr)  - 1

with
(5.7)

Aj =

\Biggl[ 
\partial \widehat \scrY (\bfitu , \bfitxi )
\partial \bfitxi j

\Biggr] 

\bfitxi =\bfitxi  \star 

\bfitu =\bfU \scrE 

\in \BbbR n\scrE \times d and \widehat \sigma 2
\epsilon =

1

n\scrE  - md - P

n\scrE \sum 

k=1

\Bigl[ 
Yk

\scrE  - \widehat \scrY (Uk
\scrE )
\Bigr] 2
.

\widehat \sigma 2
\epsilon is the standard estimator for the error variance of the surrogate model. Aj is the

gradient of the surrogate model \scrY with respect to the model parameters evaluated at
each of the n\scrE points in the training set U\scrE . A0 is merely the design matrix and does
not require the computation of any derivatives. Note that computing the gradients
\{ Aj\} mj=0 does not require any model evaluations. For j = 0, it is

(5.8)
\partial \widehat \scrY (\bfitu , \bfitxi )
\partial \bfitxi 0

=
\bigl[ 
\Psi i

\bigl( 
WT (\bfitu  - \bfitmu \bfU )

\bigr) \bigr] P - 1

i=1
with W = [\bfitxi 1, \bfitxi 2, . . . , \bfitxi m] .

For j > 0 and recalling \bfitz = WT(\bfitu  - \bfitmu \bfU ), we have

\partial \Psi \bfitk (\bfitz )

\partial \bfitxi j
=

\partial 

\partial \bfitw j
\Psi \bfitk (W

T(\bfitu  - \bfitmu \bfU ))

= (\bfitu  - \bfitmu \bfU )
\partial \Psi \bfitk (zj)

\partial zj

= (\bfitu  - \bfitmu \bfU )

\left( 
  

m\prod 

i=1
i \not =j

\psi ki
(\bfitw T

i \bfitu )

\right) 
  
\partial \psi kj

(\bfitw T
j \bfitu )

\partial zj

= (\bfitu  - \bfitmu \bfU )

\left( 
  

m\prod 

i=1
i \not =j

\psi ki(\bfitw 
T
i \bfitu )

\right) 
  
\sqrt{} 
kj\psi kj - 1(\bfitw 

T
j \bfitu ).

(5.9)

In the last equality, we have used the following expression for derivatives of univariate
normalized Hermite polynomials:

(5.10)
d\psi n(x)

dx
=
\surd 
n\psi n - 1(x).
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\partial \widehat \scrY (\bfitu , \bfitxi )/\partial \bfitxi j for j > 0 follows as

(5.11)
\partial \widehat \scrY (\bfitu , \bfitxi )
\partial \bfitxi j

=
\partial \widehat \scrY (\bfitz )
\partial \bfitw j

=
\sum 

\bfitk \in \bfitalpha 

\widehat a\bfitk 
\partial \Psi \bfitk (\bfitz )

\partial \bfitxi j
, j > 0.

The partial derivative \partial \widehat G/\partial \bfitxi j in (5.5) can be evaluated using the chain rule of dif-
ferentiation, which yields

(5.12)
\partial \widehat G
\partial \bfitxi j

=
\partial \widehat G
\partial \widehat \scrY 

\partial \widehat \scrY 
\partial \bfitxi j

.

The first term on the right-hand side is typically easy to compute and often equals
\pm 1 (the sign is irrelevant as the gradient enters the quadratic form in (5.5)) if the
LSF returns the difference between the model output and a prescribed threshold. In
this case, the first factor on the right-hand side of (5.12) drops out. If, however, the
LSF is not continuously differentiable with respect to the model, we may construct
a surrogate model of G directly by using a training set containing LSF evaluations
rather than model evaluations in Algorithm 4.1. The second term on the right-hand
side can be obtained reusing the gradients from the Aj in (5.7) that---in this case---are
not evaluated at the training set and thus are functions of \bfitu .

When setting up the learning function, there is a distinction to be made between
an intermediate SIS level and the final SIS level: In the intermediate level, the goal
is to accurately estimate the ratios of normalizing constants and to propagate the
samples to the next level. In the final level, the goal is to build the probability of
failure estimator and thus to accurately approximate the true limit-state hypersurface.
With this in mind, the learning functions for adapting the surrogate models in levels
i = 1, . . . ,M , and after the final level are readily stated as

(5.13) \scrL G (\bfitu ) =

\Biggl\{ 
\sigma \widehat G(\bfitu ), intermediate SIS level,

\sigma \widehat G(\bfitu )/| \widehat G(\bfitu )| , after final SIS level.

After the final level, SIS has converged and we are using samples from the final bias-
ing density hM to refit a surrogate model that captures the failure hypersurface well.
The learning function in this case is defined in the spirit of the learning function put
forward in [22]. The denominator penalizes samples whose image under \widehat G is far away
from 0 assuming that therefore they are themselves far away from the failure hyper-
surface. Such samples are unlikely to be misclassified as safe if located in the failure
domain or vice versa. In all previous levels of SIS, there is no failure hypersurface to
be approximated but only importance weights and the resulting ratio of normalizing
constants. Here, the denominator in the learning function is dropped, as there is no
benefit to penalizing samples with large absolute image values under \widehat G.

In each AL iteration, the pool is searched for one or several points maximizing
\scrL (\bfitu ). If nadd > 1 new points are added per AL iteration, the current sample pool is
transformed to the low-dimensional subspace defined by W in order to identify nadd
clusters (e.g., with k-means). Clustering in the subspace circumvents the performance
deterioration most clustering methods experience in high dimensions [40]. The point
maximizing (5.13) in each cluster is added to the training set. In this way, the
algorithm avoids a local concentration of the training set in a single region and is also
able to handle problems with multiple disconnected failure domains as long as these
are contained in the subspace.
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The AL is terminated based on the maximum local standard deviation relative
to the target average in the intermediate levels or based on the relative change of the
probability of failure estimate after the final level:

(5.14)

\left\{ 
 
 

max
k=1,...,n

\Bigl( 
\sigma \widehat G(\bfitu k)\widehat \BbbE [ \widehat G(\bfitU )]

\Bigr) 
\leq \epsilon AL, intermediate SIS level,

\widehat p - \widehat plast\widehat p \leq \epsilon AL, after final SIS level

\right\} 
 
 ,

where appropriate choices for \epsilon AL lie in [10 - 2, 10 - 1]. \widehat p and \widehat plast denote the probability
of failure estimate based on the current and the last training set within the AL loop.
The probability of failure is estimated with a surrogate model--based run of SIS-
aCS in each AL iteration. This causes no additional cost in terms of original model
evaluations and ensures a reliable evaluation of the criterion even for extremely small
failure probabilities. The AL procedure is detailed in Algorithm 5.1, and the complete
method is detailed in Algorithm 5.2.

Algorithm 5.1 Active Learning

1: Input LSF G (\bfitu ), AL error level \epsilon AL, \# of AL clusters nadd, polynomial order p,
training set \{ U\scrE ,G\scrE \} , sample pool Upool

2:

3: while true do  \triangleleft AL loop
4: Run [W, \widehat G] = PLS-PCE(U\scrE ,G\scrE , p, \prime W\prime )  \triangleleft Algorithm 4.1
5: if (5.14) then
6: break
7: Identify nadd clusters among UpoolW  \triangleleft Clustering performed in the

subspace defined by W
8: for each cluster do
9: Ucluster = \{ u \in Upool : u \in cluster\} 

10: Evaluate u \star = argmax[\scrL (Ucluster)] according to (5.5)--(5.7), (5.12), and
(5.13)

11: Append U\scrE \leftarrow [U\scrE ,u \star ]
12: Append G\scrE \leftarrow [G\scrE , G(u \star )]
13: Remove u \star from Upool

14: return U\scrE , G\scrE , \widehat G

6. Numerical experiments.

6.1. Error measures. In the following, we examine a series of examples of low
to high input dimensionality characterized by varying degrees of nonlinearity of the
LSF and varying number of disconnected failure regions. The computational cost of
each approach is measured with the total number of required calls to the underlying
computational model. The accuracy of the estimator is measured in terms of relative
bias and CoV:

relative bias =
p - \BbbE [\widehat p]

p
,(6.1)

CoV =

\sqrt{} 
\BbbV [\widehat p]
\BbbE [\widehat p] ,(6.2)

where p is the known exact probability of failure or a reference solution computed
with a large number of samples as reported in the corresponding references in Table 1.
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Algorithm 5.2 ASSIS (with PLS-PCE-W)

1: Input LSF G (\bfitu ), target CoV \delta target, samples per level n, input dimension d,
training set size n\scrE , AL error level \epsilon AL, \# of AL clusters nadd, polynomial order p

2:

3:

4: Set i = 0, \sigma i =\infty , hi (\bfitu ) = \varphi d (\bfitu )
5: Initialize U\scrE = [\cdot ], G\scrE = [\cdot ]
6: Sample U0 = \{ \bfitu k\} nk=1 \in \BbbR n\times d  \triangleleft \bfitu k i.i.d.\sim hi (\bfitu )
7: while true do  \triangleleft SIS loop
8: i\leftarrow i+ 1

9: Sample Utmp = \{ \bfitu k\} n\scrE 
k=1 \in \BbbR n\scrE \times d  \triangleleft \bfitu k i.i.d.\sim hi (\bfitu )

10: Compute Gtmp = G(Utmp) \in \BbbR n\scrE \times 1

11: Append U\scrE \leftarrow [U\scrE ,Utmp]
12: Append G\scrE \leftarrow [G\scrE ,Gtmp]
13: if i > 1 then

14: Run \widehat G = PLS-PCE(U\scrE ,G\scrE , p, \prime W\prime )  \triangleleft Algorithm 4.1

15: Run Ui - 1,Gi - 1 = SIS-aCS( \widehat G, \delta target, n, d, i - 1)  \triangleleft Algorithm 3.1

16: Run U\scrE ,G\scrE , \widehat G = Active Learning(G (\bfitu ), \epsilon AL, nadd, p, U\scrE ,G\scrE , Ui - 1)  \triangleleft 
Algorithm 5.1

17: Compute Gi - 1 = \widehat G(Ui - 1) \in \BbbR n\times 1

18: Compute \sigma i according to (3.8)
19: Compute \widehat \omega i and \widehat si according to (5.2)
20: Ui - 1,Gi - 1 \leftarrow resample from Ui - 1,Gi - 1 with weights \widehat \omega i(Ui - 1)  \triangleleft sample

with replacement
21: Run Ui,Gi = SIS-aCS(Ui - 1,Gi - 1)  \triangleleft Perform a single MCMC step
22: if (5.3) then
23: Set M \leftarrow i

24: Run U\scrE ,G\scrE , \widehat G = Active Learning(G (\bfitu ), \epsilon AL, nadd, p, U\scrE ,G\scrE , Ui - 1)  \triangleleft 
Algorithm 5.1

25: break

26: Run (UM ,GM , \widehat pASSIS) = SIS-aCS( \widehat GM , \delta target, n, d,M)  \triangleleft Algorithm 3.1
27: return M,UM ,GM , \widehat pASSIS

Further, we compute the relative root mean squared error (RMSE) of the probability
of any failure estimate \widehat p, which combines bias and variability of the estimator as

(6.3) relative RMSE =

\sqrt{} 
\BbbE [(p - \widehat p)2]

p2
=

\sqrt{} 
relative bias2 +

\biggl( 
\BbbE [\widehat p]
p

\biggr) 2

CoV2.

The expectation and variance operators in the above equations are approximated
by repeating each analysis 100 times. Additionally, the relative estimation error is
defined as

(6.4) relative error =
\widehat p
p
.
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Table 1
Low- to medium-dimensional investigated benchmark problems.

Problem Failure probability Inputs Input variables Properties References

Hat 1.037 \cdot 10 - 4 2 Standard-normal Strongly nonlinear [70]

Cantilever 3.94 \cdot 10 - 6 2 Gaussian Strongly nonlinear [6]

4-Branch 5.60 \cdot 10 - 9 2 Standard-normal Multiple failure regions; [6, 81]

(acc. to [6]) extremely rare event

Borehole 1 \cdot 10 - 5 8 Log-normal, Strongly nonlinear, no underlying [1]

(276.7 m3

year ) uniform low-dimensional structure

Truss 1.6 \cdot 10 - 3 10 Log-normal, Mildly nonlinear [43]

(0.12m) Gumbel

Rare truss 1.02 \cdot 10 - 8 10 Log-normal, Extremely rare event; [43]

(0.18m) Gumbel nonlinear (modified)

Quadratic 6.62 \cdot 10 - 6 10 Standard-normal Strongly nonlinear; underlying [24, 80]

(\kappa = 5) low-dimensional structure

Quadratic 6.62 \cdot 10 - 6 100 Standard-normal Strongly nonlinear; underlying [24, 80]

(\kappa = 5) low-dimensional structure

6.2. Low- and medium-dimensional examples. The subspace importance
sampler is designed to tackle high-dimensional problems, yet its performance should
not deteriorate as the problem dimension decreases. We first investigate its perfor-
mance in eight exemplary problems with dimension 2 \leq d \leq 100. We demonstrate
how both SSIS and ASSIS cope with multiple failure domains, strong nonlinearities,
and extremely small target failure probabilities. In the interest of brevity, the ex-
amples are listed in Table 1 along with the problem dimension, target probability of
failure, and key characteristics of the problem. The references provided in Table 1
may be consulted for detailed descriptions of the problem setups.

We solve the example problems with SIS-aCS with n = 2 \cdot 103 samples per level
and a burn-in period of b = 5 samples within each MCMC chain. As suggested in [61],
we choose \delta target = 1.5 for the exit criterion (3.9) for SIS-aCS as well as our surrogate-
based samplers. We compare this reference to SSIS and ASSIS for which we use an
initial sample size of n\scrE = 5d. All underlying PLS-PCE-W models are computed
with a maximum number of subspace directions of m = 10 and a maximum total
polynomial degree of | q| \ell q \leq 7, where q = 0.75. To achieve a fair comparison between
ASSIS and SSIS, we run first ASSIS and then SSIS with n\scrE for the latter chosen such
that both methods use an approximately equal number of LSF evaluations. For both
SSIS and ASSIS, we choose n = 104 with a burn-in period of b = 30. For ASSIS, we
set \epsilon AL = 0.1. Within SSIS/ASSIS many samples per level and long burn-in periods
are affordable as sampling is performed with the surrogate model. For ASSIS we
select nadd = 1 unless prior knowledge of the problem structure suggests otherwise
(the only exception in the set of examples considered here is the 4-branch function
for which we select nadd = 4 as it features four relevant failure regions in the input
space). Figure 4 displays the performance of SIS, SSIS, and ASSIS for the examples
in Table 1 in terms of the error measures defined in (6.1)--(6.3) and the total number
of LSF evaluations (with the original model).

For all showcased examples, ASSIS yields equally or more accurate estimates com-
pared to SSIS at equal cost. It also either matches or outperforms SIS at significantly
reduced costs. Except for the easiest problems, i.e., those featuring well-behaved
(truss) or low-dimensional (two-dimensional hat) LSFs associated with comparatively
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Fig. 4. Low- and medium-dimensional examples: accuracy and cost comparison. Cost error
bars include \pm 2 standard deviations.

large failure probabilities, the in-level adaptivity of ASSIS leads to significant bias
correction (Figure 4, bottom right) and variance reduction (Figure 4, top right).

[61] discusses the choice of the MCMC sampler for SIS and Finds that aCS as
employed here is outperformed by a Gaussian mixture proposal in low-dimensional
problems, while the latter is the preferred choice as the problem dimension grows.
Our method is designed for the solution of high-dimensional reliability problems, and
we thus consistently use aCS.

Comparing the truss and the rare truss models, the additional number of SIS
levels required in the solution of the latter evidently leads to a deterioration of the
SSIS estimate (Figure 4, top left). This is due to single runs (less than 10 \%) among
the 100 repetitions in which the sampled training sets lead to extreme outliers in the
failure probability estimates (Figure 5). While this effect vanishes when increasing the
number of samples in the training set, ASSIS offers a more cost-effective alternative
to avoid such outliers by actively learning an informative augmentation of adverse
training sets. In this way, subspace identification and surrogate modeling errors can-
not propagate and accumulate across the levels of SIS, as they are controlled by the
AL procedure. In fact, the phenomenon of rather rare but all the more severe outliers
deteriorating the error mean and variability is a problem SSIS is facing not only in
the rare truss example but also in the cantilever and both quadratic examples. Con-
versely, it is seen that in the 4-branch example, SSIS consistently and considerably
overestimates the probability of failure while ASSIS captures the probability of failure
rather well.

The two quadratic LSF models with 10 and 100 input dimensions demonstrate
how the required number of LSF evaluations depends on the problem dimension in
both surrogate-based approaches. This is due to the fact that the PLS-PCE model
requires at least d (often more) samples to identify a suitable subspace. Thus, as
described above, we choose n\scrE as a multiple of d. Since the surrogate-free version of
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Fig. 5. Low- and medium-dimensional examples: violin plots of the relative error along with
means, interquartile ranges (IQR), and outliers. For the sake of clarity, kernel density estimates
are computed after excluding outliers based on the relative distance to the data median.

SIS-aCS does not possess such a dependence on a problem dimension at all, the ratio
of computational cost associated with SIS and ASSIS decreases as d increases. This
observation also indicates that if d grows large enough, SIS-aCS will outperform any
surrogate-based approach. This is expected for cases with d = \scrO (105) and above;
therefore, this observation is of little practical relevance for most engineering models,
where ASSIS will likely be the most cost-effective choice.

6.3. High-dimensional example: Steel plate. We consider a modified ver-
sion of the example given in [80, 49], which consists of a low-carbon steel plate of
length 0.32 m, width 0.32 m, thickness t = 0.01 m, and a hole of radius 0.02 m
located at the center. The Poisson ratio is set to \nu = 0.29, and the density of the
plate is \rho = 7850 kg/m3. The horizontal and vertical displacements are constrained
at the left edge. The plate is subjected to a random surface load that acts on the
right narrow plate side. The load is modeled as a log-normal random variable with
mean \mu q = 60 MPa and \sigma q = 12 MPa. The Young's modulus E(x, y) is considered
uncertain and spatially variable. It is described by a homogeneous random field with
lognormal marginal distribution, mean value \mu E = 2\times 105 MPa, and standard devi-
ation \sigma E = 3 \times 104 MPa. The autocorrelation function of the underlying Gaussian
field lnE is modeled by the isotropic exponential model

(6.5) \rho lnE(\Delta x,\Delta y) = exp

\Biggl\{ 
 - 
\sqrt{} 
\Delta x2 +\Delta y2

lE

\Biggr\} 

with correlation length llnE = 0.04m. The Gaussian random field lnE is discretized
by a Karhunen--Lo\`eve expansion with dE = 868, which yields a mean error variance
of 7.5\% and reads

(6.6) E(x, y) = exp

\Biggl\{ 
\mu lnE + \sigma lnE

dE\sum 

i=1

\sqrt{} 
\lambda Ei \varphi 

E
i (x, y)\xi i

\Biggr\} 
.

\mu lnE and \sigma lnE are the parameters of the log-normal marginal distribution of E,
\{ \lambda qi , \varphi E

i \} are the eigenpairs of the correlation kernel in (6.5), and \bfitxi \in \BbbR d\times 1 is a
standard-normal random vector. The most influential eigenfunctions (based on a
global output-oriented sensitivity analysis of the plate model performed in [23]) are
shown in Figure 6 on the right.
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Fig. 6. Left: Finite element mesh of two-dimensional plate model with control node of the first
principal stress \sigma 1.

The stress (\bfitsigma (x, y) = [\sigma x(x, y), \sigma y(x, y), \tau xy(x, y)]
T ), strain (\bfitepsilon (x, y) = [\epsilon x(x, y),

\epsilon y(x, y), \gamma xy(x, y)]
T ), and displacement (u(x, y) = [ux(x, y), uy(x, y)]

T ) fields of the
plate are given through elasticity theory, namely, the Cauchy--Navier equations [37].
Given the configuration of the plate, the model can be simplified under the plane
stress hypothesis, which yields

(6.7) G(x, y)\nabla 2u(x, y) +
E(x, y)

2(1 - \nu )\nabla (\nabla \cdot u(x, y)) + b = 0.

Therein, G(x, y) := E(x, y)/(2(1 + \nu )) is the shear modulus, and b = [bx, by]
T is the

vector of body forces acting on the plate. (6.7) is discretized with a finite-element
method. That is, the spatial domain of the plate is discretized into 282 eight-noded
quadrilateral elements, as shown in Figure 6. In a grid independence study, the plate's
probability of failure was found to slightly increase with decreasing mesh element size,
which is likely due to the reduction of averaging effects when integrating higher-order
Karhunen--Lo\`eve terms. However, for the purpose of testing ASSIS, the model is
sufficiently accurate and features two important properties: 1. It possesses a low-
dimensional structure that can be exploited with dimensionality-reducing surrogates.
2. It is truly high-dimensional in the sense that the solution does not only depend on
a small subset of the input variables (i.e., the low-dimensional structure is not a trivial
subspace of the original input space). The LSF is defined by means of a threshold for
the the first principal plane stress

\sigma 1 = 0.5(\sigma x + \sigma y) +
\sqrt{} 
[0.5(\sigma x + \sigma y)]2 + \tau 2xy

evaluated at node 11 (see green marker in Figure 6, left). Node 11 indicates a location
where maximum plane stresses occur frequently in this example. The LSF reads

(6.8) g(\bfitU ) = \sigma threshold  - \sigma 1(\bfitU ),

where \sigma threshold = 450 MPa. The target probability of failure is determined to p =
4.23\cdot 10 - 6 with CoV = 0.0119 as the average of 100 repeated runs of subset simulation
[3] with 104 samples per level.
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Table 2
Accuracy and cost of SIS, SSIS \& ASSIS for the plate example based on 100 repetitions of the

analysis. The reference pref = 4.23 \cdot 10 - 6 is computed with 100 repeated runs of subset simulation
with 104 samples per level with CoV = 0.0119 for the mean estimate.

Method \BbbE [p] relative RMSE CoV relative bias avg. \# LSF evaluations

SIS-aCS 3.88 \cdot 10 - 6 0.576 0.625 0.083 17000

SSIS 3.99 \cdot 10 - 6 0.061 0.021 0.058 1300

ASSIS 4.10 \cdot 10 - 6 0.036 0.021 0.030 1318
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Fig. 7. Steel plate reliability using ASSIS: parameter influence studies. Top: Error measures as
defined in (6.1)--(6.3) for ASSIS (green lines with markers). Bottom: Computational cost in terms of
total number of LSF evaluations with the true computational model (left y-axis; black solid lines with
diamond markers) and number of SIS levels to convergence (right y-axis; blue star markers). Top
left: CoV of a subset simulation reference run with n = 104 samples per level (red triangle marker).
Bottom left: Total number of required LSF evaluations of a subset simulation (SUS) reference run
with n = 104 samples per level (red triangle marker).

SIS-aCS is run with n = 2 \cdot 103 samples per level and a burn-in period of b = 5
samples within each MCMC chain. SSIS and ASSIS are run with n = 105 samples per
SIS level, a burn-in period b = 30, and an AL threshold of \epsilon AL = 0.1. In the first level
n\scrE = 900, and in each additional level only n\scrE = 100 samples are added in the initial
sampling phase. Table 2 lists the average estimated probabilities of failure along with
error measures and average number of required LSF evaluations. It is seen that both
SSIS and ASSIS alleviate computational cost by more than an order of magnitude
while at the same time reducing the relative RMSE by at least an order of magnitude.
The decomposition of the RMSE in CoV and relative bias reveals that this is mostly
due to variance reduction as SIS-aCS already yields a small bias.

A parameter study of important ``tweakable"" parameters of ASSIS is depicted
in Figure 7. Parameters that are not subject to a parametric study are chosen as
above, with the exception of n = 104 instead of n = 105. The estimation error and
computational cost of ASSIS are analyzed for varying AL threshold \epsilon AL, number of
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samples in the training set n\scrE , the number of samples per SIS level n, and the target
CoV \delta target used for the SIS procedure. The scaling of 10\% between the initial training
set and all subsequent training samples is kept constant.

The parameters \epsilon AL and n\scrE describe the behavior of the surrogate modeling and
AL procedures, while n and \delta target describe SIS itself. Figure 7 shows that increasing
the target CoV leads to a reduced number of levels in the SIS procedure, which is
directly associated with a reduction in computational cost. The reduction is relatively
small here as most of the samples are added in the first level. By design, the number of
required samples remains unaffected by varying the number of samples per SIS level,
while the estimation error depends reciprocally on it. Conversely, and also by design,
the computational cost depends monotonically on the choice of n\scrE . If a majority of the
used original LSF evaluations are added during an AL procedure, this relationship may
be nonlinear. For the plate example, however, the initially drawn training samples
at each level makes up for the majority of used original LSF evaluations, hence the
linear dependency. The estimation errors decrease slightly with increasing training set
size, although the effect is limited as high accuracy is already achieved with the first
training set of the lowest investigated size.The fact that the subspace does not change
significantly with increasing SIS level leaves little to be learned by adding more LSF
evaluations to the training set. This is also the reason for the competitive performance
of SSIS in this example. The estimation errors (as well as the computational cost in
this case) remain unaffected by varying AL thresholds \epsilon AL, which is in line with the
observation that a large fraction of the computational budget is spent on sampling
the initial training set rather than the AL-based training set augmentation.

7. Concluding remarks. This paper proposes a method for the cost-efficient
solution of high-dimensional reliability problems. We build on a recently introduced
dimensionality-reducing surrogate modeling technique termed PLS-PCE [59] and pre-
vious work, in which we use PLS-PCE surrogates to reconstruct biasing densities
within an SIS [58] (SSIS). We refine this approach by devising an AL procedure in
each SIS level, which serves to effectively control the estimation error introduced by
the surrogate-based importance density reconstructions. The learning procedure, i.e.,
the selection of new points for the training set, is driven by an estimate of both the
subspace and surrogate model estimation error. This criterion can be generally used
in PCE-based AL procedures.

We showcase the performance of SSIS and ASSIS in nine example applications
with input dimensionality ranging from d = 2 to 869. The examples feature differ-
ent typical caveats for reliability methods such as multiple failure domains, strongly
nonlinear LSFs, and extremely small target probabilities of failure. Depending on the
example, we achieve a cost reduction of one to over two orders of magnitude with
ASSIS compared to the reference method (SIS with the original model) at equal or
lower estimation errors. It is shown that SSIS is susceptible to the randomness of
the initial training set occasionally producing outliers if the training set is adverse.
The AL procedure (ASSIS) remedies this drawback and stabilizes the estimator by
augmenting potentially adverse training sets with informative additional samples.

The million dollar question, as with any surrogate model, is on the method's abil-
ity to generalize. Certainly, there exist examples that do not possess a suitable linear
subspace as required by PLS-PCE modeling. Further, cases of model misspecification
may arise if the computational model cannot be represented with PCEs (e.g., if it
is a rational function). Then, the probability of failure estimate produced by ASSIS
will be neither consistent nor unbiased. However, by means of coupling PLS-PCE



ACTIVE SEQUENTIAL SUBSPACE IMPORTANCE SAMPLING B581

with SIS, both requirements are relaxed somewhat, as only a locally accurate surro-
gate model is required to propagate samples from one intermediate biasing density to
the next. Hence, ASSIS can still be expected to perform well if the computational
model may be represented in terms of a sequence of local linear subspaces on which
the model can be approximated well with polynomials. Relaxing the orthogonality
or even the linearity assumption on the latent space transformation likely bears po-
tential to improve the performance of dimensionality-reduced PCEs. Doing so will
require methods to track the appropriate PCE basis upon determining the law of the
transformed input random vector (as these will not be standard-normal if the latent
space transformation is no longer subject to the orthogonality constraint).
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