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Abstract

We study the learning of numerical algorithms for scientific computing, which
combines mathematically driven, handcrafted design of general algorithm struc-
ture with a data-driven adaptation to specific classes of tasks. This represents
a departure from the classical approaches in numerical analysis, which typically
do not feature such learning-based adaptations. As a case study, we develop a
machine learning approach that automatically learns effective solvers for initial
value problems in the form of ordinary differential equations (ODEs), based on
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the Runge-Kutta (RK) integrator architecture. We show that we can learn high-
order integrators for targeted families of differential equations without the need
for computing integrator coefficients by hand. Moreover, we demonstrate that
in certain cases we can obtain superior performance to classical RK methods.
This can be attributed to certain properties of the ODE families being identi-
fied and exploited by the approach. Overall, this work demonstrates an effective
learning-based approach to the design of algorithms for the numerical solution
of differential equations. This can be readily extended to other numerical tasks.

1 Introduction

In computational mathematics, one is interested in developing solvers for different
types of problems, such as algebraic equations, differential equations or optimization
problems. In an abstract setting, these can be written as

L(y, F ) = 0, (1)

where y ∈ Y is the unknown, F ∈ F is the problem instance and L : Y × F → X is
a mapping representing the problem type. The sets Y ,F ,X are usually some subsets
of normed vector spaces and can be finite or infinite dimensional, depending on the
application.

Here are some examples:

• An algebraic equation f(y) = 0 can be recast as

L(y, F ) = f(y) = 0,

where F = f .

• An optimization problem miny f(y) can be recast as

L(y, F ) = f(y)−min
z
f(z) = 0,

where F = f .

• A differential equation ẏ(t) = f(y(t)), y(0) = y0 on t ∈ [0, T ] can be recast as

L(y, F )(t) = y(t)− y0 −
∫ t

0

f(y(s))ds = 0,

where F comprises the ODE’s information related to vector field f and initial
condition y0. Note here that the extrinsic input is (f, y0) and the output of L is
a function of time.
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For a fixed problem type L, a solution operator is a mapping A : F → Y , which
produces the true solution y = A(F ) given a problem instance F , so that L(y, F ) = 0.
Often, we do not have an explicit means to represent A. Thus, for computational
purposes we design a numerical algorithm that computes an estimate solution y ≈
Â(F, h), where h > 0 denotes the accuracy of approximation. We call Â : F ×R+ → Y
an approximate solver, which is consistent if limh→0 Â(·, h) = A(·). In this work, we
also consider parametric approximate solvers Â : F ×R+×Θ→ Y where Θ is a set of
solver parameters that can be optimized according to problem settings.

Classical numerical methods design the solver Â(·, h) by requiring it to perform well
over a large and, in general, unstructured class F . For example, one might seek

sup
F∈F
‖L(Â(F, h), F )‖ = O(hα), α > 0. (2)

However, often in practice we are not interested in such a worst-case approach. In fact,
we may want to solve a special class of problems belonging to F (e.g. only integrate
symplectic ODEs), and we may only be interested in the average performance of our
method on this class of problems. Hence, instead of (2), we may require

Eµ[‖L(Â(F, h), F )‖] =

∫
F∈F
‖L(Â(F, h), F )‖dµ(F ) = O(hα), α > 0, (3)

where µ is a probability measure on F and may be supported on a very small subset.
This imparts structure in F through µ, and our algorithm is now only required to
perform well in expectation under this structure. In other words, we want to find an
approximate solver that is adapted to a restricted problem class.

One can think of this as “personalized” algorithm: one tuned to the class of prob-
lems, over the range of parameters of interest. This goes beyond algorithm parameter
tuning, to possibly include algorithm structure design and also combinations of multiple
algorithms. Success over large and unstructured classes or problems would, of course,
allow the algorithm (and the associated code) to be portable across many physical
models, and has long been an obvious advantage for scientific computation - both for
learning how to perform it, and for performing it. For specific applications there are
almost always some tuning involved: integrators for stiff vs. nonstiff problems; sym-
plectic integrators for Hamiltonian vs. “general” nonsymplectic ones, lower vs. higher
order optimization algorithms, etc. Yet, tuning the algorithm to the specific problem
was left to the practitioner interested in the specific problem: Which algorithm? What
order? What accuracy? How frequent the adaptation? - and has been mostly done
“by hand”. This is not surprising, since incorporating complex and varied structures
into algorithms requires a detailed understanding of the structure of the problem at
hand, and often has to be treated on a case by case basis. However, machine learning
allows us to contemplate delegating this task to the computer: we need to first choose
the class of problems of interest, and then devise sufficiently general superstructures
(in this case, superstructures for neural network architectures), that will perform the
personalized tuning. For example, we can parameterize the approximate solver as a
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neural network Â(·, ·;θ) where θ ∈ Θ is a vector of fitting parameters, that can be
determined from training using appropriate error metrics over a range of tasks of in-
terest. The parametrization Â(·, ·;θ) represents an architecture where θ specifies how
the algorithm can operate on the F to produce an approximate solution. The optimal
way that F is used to produce the solution will depend on the structure of the problem
induced by µ, and machine learning can help us find an approximately optimal way to
do so. This is also a form of multi-task learning in the broad sense, since we want a
solver that performs well on not just one task F , but on a distribution of tasks [30]. On
the algorithmic side, it also shares similarities with the MAML algorithm [20] in meta-
learning (see discussion in Section 5). This also connects with the use of optimization
(e.g., a Hamilton-Jacobi-Bellman approach) for the generation of optimal algorithms
(See [64], [63] and [41]). Such a use of optimization over superstructures for optimal
algorithm generation has been recently proposed and illustrated in [46]; we will return
to this in Section 6.

In this paper, we will investigate a particular realization of this general problem
by studying ODE integrators, which are approximate solvers for some initial value
problems. In particular, we develop a learning-based algorithm to generate effective
and specialized integrators adapted to specified problem settings.

The rest of the paper is organized as follows. In Section 2, we formulate the precise
problem of learning integrators. Next, in Section 3 we introduce our architecture
to achieve this, based on the Runge-Kutta family of integrators, and our learning
algorithm based on losses derived from Taylor expansions. In Section 4, we demonstrate
the effectiveness of our learned integrators on selected benchmark function families
and provide some analysis to understand the origin of the improvement over classical
methods. We conclude with discussions on related work in Section 5, together with
some general observations and future directions in Section 6.

2 Problem Formulation for Case Study

We focus on a particular realization of the general problem we discussed before: learn-
ing high-accuracy integrators adapted to integrating specific families of ordinary differ-
ential equations (ODEs). We begin by introducing the background and basic notions
of ODE integrators, with particular emphasis on the Runge-Kutta family of explicit
integrators, which form the basis of our neural network parameterization. We con-
clude this section with the precise mathematical formulation of our integrator learning
problem.
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2.1 Ordinary Differential Equations and Integrators

Consider a time-homogeneous ordinary differential equation describing an initial value
problem in Rd

d

dt
y(t) = f(y(t)), f : Rd → Rd, y(0) = y0 ∈ Rd. (4)

Here, f is a vector field driving the evolution equation. Instead of one specific f , we will
consider a family H of vector fields. For simplicity, we will assume that H contains
only Lipschitz-continuous functions, so that eq. (4) admits a unique solution. Note
that eq. (4) includes as a special case time-inhomogeneous equations dy/dt = f(t,y),
since we may always define an additional variable τ(t) such that dτ/dt = 1 and redefine
ỹ = (τ,y) and f̃(ỹ) = [1,f(τ,y)]. The only caveat is that this redefinition requires
f to be Lipschitz in t, whereas for general ODE theory this condition can be relaxed
[32]. Nevertheless, for numerical computation such a technical issue is less important,
and thus we will hereafter only consider the time-homogeneous case without loss of
generality.

For general f , eq. (4) does not admit an explicit closed-form solution, and one often
resorts to a numerical approximation via a solver. Let F = (f ,y0) define a problem
instance and the algorithm parameter h represents a desired level of precision of the
solution, then an integrator builds an approximate solution iteratively. In the simplest
case of explicit, one-step integrators, one iterates the following formula based on an
integrator IÂ that computes

ŷn+1 = IÂ(f , ŷn, h), ŷ0 = y0. (5)

This produces an approximate sequence ŷn ≈ y(nh). In fact, we can understand the
mapping from F = (y0,f) to a continuous-time interpolation of {(nh, ŷn)} as a solver
Â(·, h) : F → Y .

The accuracy of the integrator is measured by the local and global truncation errors.
We write the solution of eq. (4) with t = nh as yn := y(nh). The local truncation error
is defined as the one-step error between the integrator and the true solution, i.e.

Eh,1(y0) = ‖ŷ1 − y1‖. (6)

The integrator is called consistent if E1(y0) = o(h) for each y0 ∈ Rd. On the other
hand, the global truncation error is

Eh,n(y0) = ‖ŷn − yn‖. (7)

The integrator is said to be convergent if limh→0 maxm≤nEh,m(y0) = 0.
One has finer measures of performance in terms of the order of convergence. In

particular, we say that a convergent integrator is of global order p > 0 if

max
m≤n

Eh,m(y0) = O(hp). (8)
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2.2 Explicit Runge-Kutta Integrators

We use the prediction from the RK method with targeted order to ensure the order of
our method. In general, our approach is not restricted to the explicit RK family, and
other integration methods like multi-stage DAE solvers, etc. are also possible. Now,
let us introduce the family of integrators known as explicit Runge-Kutta integrators
(ERK) [32]. While these methods are well known, we give a brief account here in order
to motivate subsequent developments in our learning-based approach, which depends
on the structures of RK integrators.

Let us write the solution of the ODE eq. (4) as

y (tn+1) = y (tn) +

∫ tn+1

tn

f(y(τ))dτ = y (tn) + h

∫ 1

0

f (y (tn + hτ)) dτ. (9)

Then, an approximate solution can be found by applying quadrature to the last integral

yn+1 ≈ yn + h
m∑
i=1

bif (y (tn + cih)) , n = 0, 1, . . . (10)

It remains to approximate y (tn + cih) by vectors ξi, i = 1, 2, . . . ,m. We set c1 = 0,
then ξ1 = yn. The idea behind explicit Runge-Kutta (ERK) methods is to express each
ξi, i = 2, 3, . . . ,m, by updating yn with a linear combination of f (ξ1) , . . . ,f (ξi−1) .
This leads to the integrator

ξm = yn + h
m−1∑
j=1

am,jf (ξj) ,

ŷn+1 = yn + h
m∑
i=1

bif (ξi) .

(11)

Appropriate choices of the coefficients {ai,j, bi} then ensures that our approximation is
accurate to the desired level. To determine these coefficients, we expand and equate
the Taylor series of yn+1 with that of ŷn+1 about yn. Note that the conditions do not
define an ERK integrator uniquely, and any choices of the coefficients, from which the
same order accuracy can be obtained, are considered as ERK methods.

2.3 Learning Integrators

Because a large number of equations need to be solved to obtain the coefficients, de-
riving high-order ERK integrators is nontrivial. Moreover, the order of convergence p
is forced upon all (p + 1)-times continuously differentiable functions, which may be a
much larger family than what one might be interested in integrating in practice. Here,
we explore the following: Can one obtain better integrators adapted to a smaller,
structured family of problems F?
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To this end, we parameterize a family of approximate solvers

A(Θ) := {Â(·, ·;θ) : θ ∈ Θ}, (12)

where Θ is some subset of a Euclidean space representing the fitting parameters (train-
able weights).

Let µ be a probability measure on F , representing a particular distribution of tasks
F . Let L : Rd × Rd → R+ be a loss functions which is minimized when its first two
arguments are equal. Then, we consider the following optimization problem

min
θ∈Θ

EF∼µ,h∼ν
[
L(yn, ŷn) +R(Â(·, ·;θ), F, h)

]
s.t. yn = A(F )(nh) = y0 +

∫ nh

0

f(y(s))ds,

ŷn = Â(F, h;θ)(nh) = IÂ(f , ŷn−1, h;θ),

F = (f ,y0),

n ≥ 0.

(13)

Here we define a formula in the last term R(Â(·, ·;θ), F, h), which is independent of the
choice for h. We just consider the situation near t = 0, only depending on the structure
of the task F . This represents a regularization term that allows us to promote certain
order of accuracy, and we shall discuss its importance in section 3.2.

Problem eq. (13) is the central formulation of this paper, where we rephrase the
problem of finding an effective integrator as an optimization problem. Note that this
formulation takes explicit account of the fact that the problem instance F = (f ,y0) is
not generic, but rather belongs to a potentially structured function class F endowed
with a probability measure µ, representing the distribution of tasks. Moreover, note
that we also consider a measure over the step sizes h ∼ ν, indicating the fact that we are
not always looking for integrators that work equally well for all step sizes. Finally, we
note that eq. (13) is a population risk minimization problem in the language of machine
learning, and hence to solve it we often need to replace the respective expectations by
averages over samples from the respective probability measures. In the next section,
we will discuss the parameterization of RK-like integrators using neural networks and
the choice of loss functions and regularizers that enables one to solve eq. (13) to yield
novel integrators.

3 Model Architecture and Choice of Loss Functions

In this section, we outline our method for solving eq. (13). We begin with the parame-
terization of the family of solvers A(Θ) using neural networks, after which we introduce
the crucial choice of loss functions and regularizers which enable us to learn accurate
integrators.
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3.1 NN Architectures Parameterizing RK-like Integrators

Recall that the Runge-Kutta (RK) family of integrators form a sequential linear com-
bination of function evaluations to build the integrator via approximate quadrature.
Here, we can build a neural network that parameterizes the general form of RK-type
integrators. The integrator is constructed as k1 = f (id(ŷn)) where id is the identity

function, ki = hf
(
ŷn +

∑i−1
j=1 θi−1,jkj

)
for i = 2, . . . ,m, and ŷn+1 = ŷn +

∑m
i=1 θciki.

The neural network architecture based on the above formulation is given in the left
side of fig. 1.

…

…

Figure 1: RK-like Neural Network (RK-NN) Architecture.

There are two types of trainable components in the RK-like neural network (RK-
NN):

1. Submodels Ni, i = 1, 2, . . . ,m − 1, provide inputs to the function f , given ŷt, k
from the last step, time step h and parameters θi = (θi,1, θi,2, . . . , θi,i).

2. Combined model Nc has output as ŷn+1, given ŷn, all the variables km, time step
h and parameters θc = (θc1, θc2, . . . , θcm).

Each of these components is represented by a linear layer. If we set m = 3, the
architecture represents a generalized RK3 integrator.

Recall the similar architecture of the RK-m method, where each Ni(·, ·;θi) is con-
structed by ŷn +

∑i
j=1 θi,jkj. θi,j ∈ R, and ŷn, kj are d-dimensional vectors. The

trainable parameters are the coefficients before each kj. The transformation in the last
layer Nc of the whole RK network architecture has the form ŷn +

∑m
i=1 θciki. Thus,

the RK-NN parameterization retains the linear combination steps present in classical
RK methods. Alternatively, the RK-NN can be viewed as a feed-forward neural net-
work with linear layers (Ni and Nc) and the following modifications. First, we use the
vector field f of an ODE as a nonlinear module that can be interpreted as a custom,
vector-valued activation function on the layers. Second, the layers are not sequential
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but connected to all the previous kj’s. This viewpoint connects the RK-NN architec-
ture with techniques on exploiting integrators to learn continuous dynamical systems,
i.e., the module f , from data. See Section 5 for further discussion of this point.

Finally, to make sure that the sum of θci is equal to 1, we apply a softmax activation
θci = ezi∑m

j=1 e
zj for i = 1, . . . ,m, where zi ∈ R are the trainable variables in the final

layer. We use softmax to allow for direct application of unconstrained optimization
methods. The downside is that we always have positive values for the coefficients,
which cannot be exactly 0 or 1. However, the softmax activation can approach 0 or 1
quickly, and we found in practice that this did not pose a problem. The total number
of trainable parameters in RK-NN is m+

∑m−1
i=1 i = m(m+1)

2
.

An important point in the choice of architectures is that we want the integrators to
be consistent, i.e., the local truncation error should vanish as h → 0. This is ensured
by our parametric construction, as shown below.

Proposition 3.1 For any θ ∈ Θ, the NN parameterization in RK-NN (shown in fig. 1)
is consistent.

Proof 3.1 By the definition of explicit RK method and the Taylor expansion of f at ŷn,
we have k1 = hf(ŷn) and ki = hf(ŷn+

∑i−1
j=1 θi−1,jkj) = hf(ŷn)+o(h) for i = 2, . . . ,m.

Then the predicted value is ŷn+1 = ŷn +
∑m

i=1 θciki = ŷn +
∑m

i=1 θcihf(ŷn) + o(h). The
sum of θci is equal to 1 since θci = ezi∑m

j=1 e
zj . Thus, we obtain ŷn+1 = ŷn+hf(ŷn)+o(h).

The taylor expansion of the true solution is ỹ (tn+1) = ŷn + hf (ŷn) + o(h). We
observe that coefficients before the first order of h are the same, then E1(ŷn) = ‖ŷn+1−
ỹ (tn+1) ‖ = o(h), which shows this integrator is consistent.

3.2 Choice of Loss Function and Regularizer

To solve eq. (13), we need to define the loss function L and the regularizer R.

Loss function We make the simple choice of a scaled square loss

L(yn, ŷn) =
‖yn − ŷn‖2

‖yn − ŷ(RK)
n ‖2

, (14)

where F = (f ,y0), yn = A(F )(nh), ŷn = Â(F, h;θ)(nh) = IÂ(f , ŷn−1, h;θ) and

ŷ
(RK)
n = ÂRK(F, h)(nh) = IÂRK

(f , ŷ
(RK)
n−1 , h). ŷ is the prediction from our RK-NN

integrator and ŷ(RK) is from the RK method. Here, we consider one-step prediction by
setting n = 1. We use the difference between the RK prediction and the true solution
as a scale stabilization numerics, since the errors tend to be small for small h. If we
expect our RK-NN method to be trained to a specific order α, RK-α is chosen in
eq. (14) correspondingly. In the case where the true solution y1 ≡ y(h) is not known,
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we can compute its Taylor expansion near h = 0 up to appropriate order and use it as
a surrogate. Note that computing the Taylor expansion only requires f :

y(h) = y(0) +
n∑

m=1

1

m!

dmy(0)

dhm
hm +O

(
hn+1

)
, (15a)

dy

dh
= f(y), (15b)

dmy

dhm
= (

dmy1

dhm
, . . . ,

dmyd
dhm

)T ,
dmyi
dhm

=
d∑
j=1

∂
(

dm−1yi
dhm−1

)
∂yj

fj, (15c)

The appropriate order of the computed Taylor expansion depends on the desired inte-
grator accuracy. For example, to obtain a third-order integrator, n ≥ 3 in eq. (15a) is
chosen as a surrogate of the true solution and we choose RK3 as the reference algorithm.

Regularizer The loss function alone cannot ensure that we can achieve a desired
order of accuracy, since the mean squared loss has vastly different contributions from
different values of h. To overcome this issue, we introduce a regularizer that promotes
high order of convergence of the global truncation error over a span of integration
step sizes. Recall that to obtain an integrator with O(hα) global error, we need the

local truncation error to be O(hα+1). This is achieved by ensuring di

dhi

∣∣
h=0

(y1 − ŷ1) =

0,∀i = 1, . . . , α, or equivalently,
∑α

i=1 ‖
di

dhi
|h=0 (y1 − ŷ1) ‖2

2 = 0. The latter is scalar-
valued, thus convenient to turn into a regularizer

R(Â(·, ·;θ), F, h) =
α∑
i=1

∥∥∥∥ didhi
∣∣∣∣
h=0

(y1 − ŷ1)

∥∥∥∥2

2

, (16)

which promotes the desired order of convergence.
In implementation, the derivatives can be evaluated at exactly h = 0 through

automatic differentiation in Tensorflow. In the case where the true solution is not
known and we use the Taylor expansion surrogate eq. (15a), automatic differentiation
can still be applied at h = 0 to the surrogate.

3.3 Learning algorithm

Having defined the loss functions and regularizers, it remains to train the network using
standard stochastic gradient methods, with sample means to approximate the expecta-
tions in eq. (13). The performance of the RK-NN integrator is quantified by the relative
error γ compared with the reference RK method, γ < 1 implies an improvement. The
entire learning algorithm is summarized in Alg. 1. The code is open source and can be
found at https://github.com/GUOYUE-Cynthia/Learning-ODE-Integrators.

Remark 1 (Computational complexity and memory usage) In terms of infer-
ence (i.e. integrating a new ODE using the trained RK-NN), computational complexity
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Algorithm 1: Learning Algorithm.

Data: D = {Fj, hj}Nj=1;

Initialize: Random θ0 for operator Â(·, ·;θ0) : θ0 ∈ Θ, h > 0;
Set tolerance ε > 0; Optimizer Opt;

for k = 0, 1, . . . ,#Iterations do
for all Fj, hj do

Calculate y
(j)
n = A(Fj)(nhj);

Calculate ŷ
(j)
n = Â(Fj, hj;θ)(nhj);

Calculate ŷ
(RK)(j)
n = ÂRK(Fj, hj)(nhj);

Calculate the scaled loss: L(y
(j)
n , ŷ

(j)
n );

Calculate the regularizer: R(Â(·, ·;θ), Fj, hj);
end

Evaluate ` = 1
N

∑N
j=1

[
L(y

(j)
n , ŷ

(j)
n ) +R(Â(·, ·;θ), Fj, hj)

]
;

Update parameters θ using Opt to minimize `;

Compute the relative error: γ = 1
N

∑N
j=1 L(y

(j)
n , ŷ

(j)
n );

if γ < ε then
break;

end

end

return Operator Â(·, ·;θ).
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and memory usage are the same as the traditional RK method. This is because the dif-
ference between RK-NN and traditional RK methods lies only in the value of the learned
coefficients. During training, the memory cost of storing weights is independent of the
dimension of the ODE, because the number of parameters in RK-NN is determined by
the number of RK stages. The computational complexity of training is more delicate,
and depends on a variety of factors, including the form of the ODE family, the software
implementation of back-propagation, and hardware optimization. Instead of theoreti-
cal estimates, we show empirically (See supplementary material, SM4) that training
RK-NN integrator on an example linear family and a nonlinear family has favorable
scaling between O(d) and O(d2) as the number of dimensions d increases. Thus, it can
be applied to moderately sized integration problems.

4 Results

We now present the results of RK-NN on various test problems, with particular empha-
sis on how the learned integrators differ fundamentally from the classical RK methods.
In all experiments, we use the Adam optimizer [35] to train the RK-NN. To check the
accuracy order, we use the error defined in eq. (7), hereafter abbreviated as E, as the
evaluation standard to quantify the global error. Note that the order of accuracy from
different integrators can be inferred from the slopes of the log-scale plots.

4.1 Learning High-order Integrators

We first demonstrate that the learning algorithm indeed learns high-order integrators
for several test problem settings. In all experiments, the integration time step h used
for training is sampled uniformly in (0.01, 0.1).

Linear Task Family The simplest task family is the pairs of stable linear functions
and initial conditions (f ,y0) ∈ F , which has the form

F = {y 7→ −ay | a > 0} × {R},
µ = Distribution({y 7→ −ay; a ∼ U(1, 5)})× U(−5, 5).

(17)

In this case, the closed-form solution is y(t) = e−aty0.

Square Task Family f is a scaled element-wise square function f(y)i = −ay2
i and

y0 ∼ U(1, 3), thus F has the form

F = {y 7→ −ay2 | a > 0} × {R},
µ = Distribution({y 7→ −ay2; a ∼ U(0.1, 0.5)})× U(1, 3).

(18)

The true solution is y(t) = (at+ 1/y0)−1.
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Figure 2 compares the performance of the learned integrator to that of RK3. For
the sake of comparison, we will set m = 3 in our RK-like neural network (see fig. 1).
Moreover, we set α = 3 in the regularizer to promote a similar global truncation order
as RK3 integrator. We observe from fig. 2 that we can indeed learn integrators that
out-performs the RK3 method when h is in the training range, but becomes worse when
extending to a larger range of h. This is significant since we did not need to compute the
Butcher Tableau explicitly, and the coefficients of the RK-NN are chosen automatically
via machine learning. This makes the method easily scalable to higher order methods,
unlike explicitly derived RK integrators which can become very complex. It is also
evident that the learned RK-NN is different from a usual RK3 method computed from
the Butcher Tableau. Furthermore, to validate the importance of the regularizer defined
in eq. (16), we train RK-NN without the regularizer and compare its performance in
fig. 2. We observe that in this case, the global accuracy depends more sensitively on
h, and deteriorates rapidly outside the range of h used for training.
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(a) Linear Task Families.
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(b) Square Task Families.

Figure 2: Error comparison among RK3 method, three-stage RK-NN with and with-
out third-order Taylor-based loss as regularizer. The training time step range is
h ∈ (0.01, 0.1) whereas the testing range extends to h ∈ (0.001, 0.1).

4.2 Generalization Across Task Families

From the learning formulation, it is clear that our goal is to maximize the performance
of our integrator on a specific task family F . Hence, it is expected that the effectiveness
of the learned integrators may not generalize across different families. Figure 3 shows
that this is indeed the case. This is expected, since the learned integrator is adapted to
the family of integration tasks that it is trained on. Nevertheless, note that in all cases
the learned integrator maintains consistency, which is ensured by the construction of
the parametric NN family (See proposition 3.1). This shows in particular that we have
not learned a generic RK3 integrator.
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(a) Train on linear task families but test on
square task families.
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(b) Train on square task families but test on
linear task families.

Figure 3: Training and testing on different task families. Time steps h in these plots
are in the range (0.001, 0.1), which includes values both inside and outside the training
range.

Although the limited generalization ability may appear to be a limitation of the
approach, it turns out that this enables us to obtain very efficient integrators that out-
performs classical RK integrators on such restricted families. The next part discusses
this point in detail.

4.3 Outperforming Classical RK Integrators

In general, if an explicit m-stage Runge–Kutta method has order p, then it can be
proven that the number of stages must satisfy m ≥ p. In particular, for p ≥ 5 one
can show that we require m ≥ p + 1, so no five-stage RK method can reach order 5
global truncation accuracy [6]. However, we now show that if we limit our attention to
a specific task family, our approach can learn integrators that overcome this limitation,
at least within a limited range of integration step-sizes.

Training a two-stage RK-NN integrator to have third-order accuracy Here,
we set m = 2 (two-stage RK-NN), but we set α = 3 in the regularizer, which promotes
a third-order accuracy. The results are shown in fig. 4 for the nonlinear (square) task
family. We observe that we can indeed learn a two-stage RK-NN that has third-order
accuracy (the slope of the RK-NN error is 3) for this task family. This is not possible
for the general class of Lipschitz functions, for which a two-stage method can only
achieve second-order global accuracy.

For this specific family, we can in fact understand this phenomenon precisely. Recall
the two-stage RK method for equation eq. (4):

k1 = hf(yn), k2 = hf(yn + θ1k1), yn+1 = yn + θc1k1 + θc2k2, (19)
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Figure 4: Error analysis on square task families, training on h ∈ (0.01, 0.1) but
testing on h ∈ (0.001, 0.1), using two-stage RK-NN integrator with third-order
Taylor-based loss as the regularizer.

where θ1, θc1, θc2 are constants.
For the square task family with d = 1 , the right hand side of equation eq. (4) is

d

dt
y(t) = f(y) = −ay2, y(0) = y0 ∈ R. (20)

Then we can obtain

k1 = −ay2
nh, k2 = −ay2

nh+ 2θ1a
2y3
nh

2 − θ2
1a

3y4
nh

3,

yn+1 = yn − (θc1 + θc2) ay2
nh+ 2θ1θc2a

2y3
nh

2 − θ2
1θc2a

3y4
nh

3.
(21)

We expand the true solution at tn+1, subject to the initial condition yn at tn. Due
to Taylor’s theorem,

ỹ(tn+1) = yn + y′nh+
1

2
y′′nh

2 +
1

6
y′′′n h

3 +O(h4)

= yn − ay2
nh+ a2y3

nh
2 − a3y4

nh
3 +O(h4).

(22)

Comparison between eq. (21) and eq. (22) shows the conditions for obtaining a third-
order integrator by a two-stage RK method:

θc1 + θc2 = 1, 2θ1θc2 = 1, θ2
1θc2 = 1. (23)

Note that this relies on the fact that we are only considering the family of vector fields
of the form {−ay2

n}. In general, it is not possible to obtain third-order accuracy only
with a two-stage RK-type integrator. Indeed, the coefficients in the learned RK-NN,

θ1 = 2, θc1 = 0.75, θc2 = 0.25, (24)
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are consistent with conditions in eq. (23), while the standard RK2 coefficients,

θRK
1 = 1, θRK

c1 = 0.5, θRK
c2 = 0.5, (25)

are not.
In this example, two-stage RK-NN can provably achieve third-order accuracy, due

to the special structure in the task family. In general, one will not expect this to hold
for all values of h, especially those far out of the training regime. Similarly, we also
obtain a four-stage RK-NN integrator having sixth-order accuracy when training and
testing over h ∈ (0.01, 0.1), which is shown in supplementary material SM1.

4.4 Training a RK-NN Integrator on the Van der Pol Oscil-
lator and the Brusselator

Up to now, we studied the performance of our RK-NN method on 1-dimensional tasks.
Now we apply our method to multivariate instances.

Van der Pol Oscillator

d2u

dt2
− a

(
1− u2

) du

dt
+ u = 0, (26)

where the parameter a is a scalar parameter indicating the nonlinearity and the strength
of the damping. Another commonly used form based on the transformation v = u̇ leads
to:

u̇ = v,

v̇ = a
(
1− u2

)
v − u.

(27)

For the purposes of our method, y is vector-valued with y = (u, v).

The Brusselator

u̇ = 1− (b+ 1)u+ au2v,

v̇ = bu− au2v,
(28)

where a, b > 0 are constants and u, v ∈ R. u and v represent the dimensionless
concentrations of two of the reactants. Same as the notation in the Van der Pol
oscillator, the dynamic variable is also the vector y = (u, v) in our method.

Conducting experiments on the mentioned 2-dimensional tasks, we can obtain an
integrator better than the traditional RK method on specific ODE problems. The
highlight is that our trained integrator brings lower error between the true solution
and prediction value than the RK-method with the same accuracy order.

It is worth considering why we do not directly use Taylor series with the same
order truncation error as our integrator, now that we can leverage the ability to get

16



the differential of y or h during our training. When it comes to a third-order algorithm,
the integrator based on Taylor series is defined as y(h) = y(0) +

∑3
i=1

1
i!
y(i)(0)hi. We

will show the comparison among our RK-NN method, RK3 method and Taylor series
integrator in the following experiments.

fig. 5 shows that the learned integrator for each task can achieve third-order ac-
curacy respectively on the Van der Pol oscillator and the Brusselator families in the
training range. To make the comparison clear, we plot the geometric mean of the
relative errors with quantified uncertainties with respect to the RK method.

10 3 10 2 10 1

h

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

E

h in training range

h out of training range

Errors (RK3)
Errors (NN)
Slope=3

(a) Van der Pol oscillator.
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(b) The Brusselator.

Figure 5: Order Check after training for a third-order integrator by three-stage
RK-NN integrator.

For Van der Pol oscillator families, the inputs are sampled with a ∼ U(1, 2) as vector
field parameters and {y0 = (u0, v0);u0 ∼ U(−4,−3), v0 ∼ U(0, 2)} as initial conditions.
Better performance than with traditional RK integrators can be obtained within our
selected training range, but the performance can become worse when extrapolating
outside of the training range. For instance, fig. 6a demonstrates that the learned
integrators are adapted to the training range of step sizes h, but their convergence
order decreases as h attains smaller values. Further, when we test the RK-NN outside
of the training range of the parameter a, we observe ambiguous behavior. For a ∈ (0, 1),
fig. 7a, the accuracy of the trained RK-NN becomes worse, whereas the extrapolation to
a ∈ (2, 3) in fig. 7b behaves similarly to a in the training range, i.e., leading to improved
performance as long as h is also within the training range. Similar behavior occurs when
testing with initial values (u0, v0) outside of the training range, fig. 8. Altogether, the
observations in Figures 6-8 indicate that our RK-NN reliably outperforms traditional
RK integrators within the training range, but is not necessarily accurate outside it.

The RK-NN integrator on the Brusselator families is trained with b ∼ U(0.5, 2),
a = 1 and initial conditions {y0 = (u0, v0);u0 ∼ U(1.5, 3), v0 ∼ U(2, 3)}. Our method
performs favorably inside the training range in fig. 6b, but has worse performance if
the inputs are outside the training range, which is shown in supplementary material
SM2.
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(a) Van der Pol oscillator.
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(b) The Brusselator.

Figure 6: Relative error analysis of a three-stage RK-NN integrator compared to RK3.
The error of a third-order Taylor Series approximation is also shown.
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(a) a ∈ (0, 1).
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(b) a ∈ (2, 3).

Figure 7: Evaluation on the Van der Pol oscillator with a outside the training range.

To better understand the training process and the role of the two losses (MSE
without a scale, Taylor-based regularizer), the curves of losses during the training are
shown in fig. 9a. Notice that there is a minimum of MSE loss (epoch=300) for the Van
der Pol oscillator, and then it increases to a stable value (epoch from 300 to 900). The
performance at that minimum point and subsequent trend are shown in fig. 9b. Here,
the relative error is smaller compared with that from the final trained integrator when
h is around 0.1. Obviously, as h increases, the prediction will become more inaccurate.
Since the MSE error obtained in the training process is the average of the MSE losses at
different time steps, the errors obtained when h is large will dominate the average. With
this specific parameterization (at the MSE minimum point), the integrator performs
well when h is around 0.1, but its accuracy cannot be extended to the entire training
range. However, the final training results (fig. 6a) show that the integrator performs
slightly worse under the larger time step, but favorable performance is obtained for
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(a) u0 ∈ (−1, 1), v0 ∈ (−1, 1).
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(b) u0 ∈ (3, 4), v0 ∈ (−2, 0).

Figure 8: Evaluation on the Van der Pol oscillator with inputs (u0, v0) outside the
training range.

all h within the training range. This is enfoced by minimizing the Taylor loss, which
ensures the appropriate order of the integrator, despite increasing the MSE.
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(a) Training loss curve.
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Figure 9: The performance of the Van der Pol oscillator during training is depicted in
these two figures. The left hand side shows the loss curves of MSE between the pre-
dicted value and true value, Taylor-based regularizer, and the relative error compared
with the reference RK method. The right hand side illustrates relative error analysis
on the Van der Pol oscillator around the minimum point and later.

In summary, we observe that when applied to a problem coming from the family
RK-NN is trained on, the RK-NN can achieve higher accuracy compared with the
classical RK methods within the training range of h. In simple cases, this can be
proved theoretically (e.g., section 4.3). In general, we observe that RK-NN finds “per-
sonalized” RK-like schemes for each problem family with superior performance (See
supplementary material SM3 for more quantitative comparisons). To further illustrate
this point, we include table 1 that outputs the learned Butcher Tableau values for each
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problem and compares them with the corresponding coefficients in three generic RK3
methods. One can observe that in each problem, we obtain specialized values, which
illustrates the adaptiveness of our method.

Table 1: Parameter comparisons between three generic RK3 methods and three-stage
RK-NN integrators over different task families. We repeatedly trained our RK-NN
from multiple random initializations of neural networks and present three arbitrarily
selected sets of parameters here, which are denoted by serial numbers in the Van der
Pol oscillator and the Brusselator task families, as shown in this table.

θ1,1 θ2,1 θ2,2 θc1 θc2 θc3
Linear Task 0.9682 0.1036 1.0331 0.5124 0.3218 0.1657
Square Task 0.9206 0.8227 1.2625 0.5533 0.3704 0.0763
Van der
Pol(#1)

0.6880 0.3382 0.7205 0.4333 0.2746 0.2920

Van der
Pol(#2)

0.7224 0.2493 0.6112 0.3718 0.3203 0.3079

Van der
Pol(#3)

0.7607 0.3976 0.7357 0.4704 0.2749 0.2547

Brusselator(#1)0.7072 -
0.1350

0.7387 0.2462 0.4344 0.3194

Brusselator(#2)0.5459 -
0.1794

0.9770 0.2258 0.4672 0.3070

Brusselator(#3)0.6841 -
0.0699

0.7215 0.2536 0.4178 0.3286

RK3(#1) 0.6667 -0.5 0.5 -0.25 0.75 0.5
RK3(#2) 0.6667 0.1667 0.5 0.25 0.25 0.5
RK3(#3) 0.5 -1 2 0.1667 0.6667 0.1667

5 Related Work

In this section, we discuss related work in the literature. We divide them into four
categories, namely learning solvers by neural networks, learning continuous-time dy-
namical systems using integrator-embedded parametrization, learning the integrators
themselves, and finally meta-learning in general.

First, for learning the operators using ANNs have been proposed in [8, 50, 44]. This
can be applied in particular to learning anti-derivative operators that can be used for
the solution of differential equations. We parameterize the solvers using a generalized
integrator superstructure, for which we can derive novel loss functions that promote
high-order accuracy.
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In the second direction, integrators are useful in computing the solution of dy-
namical equations and neural networks are effective in approximating general vector
fields corresponding to dynamical models [37, 31, 36]. Integrator (super)structures
like the RK-NNs have traditionally inspired neural network architectures for effective
discovery of vector fields [55]. Originally, a crucial motivation for the introduction of
such methodologies was the approximation of bifurcation diagrams as well as the easy
integration of partial physical information (“grey boxes”). If the right-hand side of
equations is fitted, it is feasible to utilize this for tasks other than integration, such as
bifurcation calculations using the information included in this equation [59]. When the
right-hand side of equations is partially known (e.g., dx/dt = f(x) + g(x) with known
f and unknown g), the known component can be incorporated into the framework and
only the unknown part is left to learn, yielding a natural grey box [52, 43]. Using
fixed RK coefficients from classical Runge-Kutta schemes, the nonlinear vector fields
“f” can be approximated as neural network modules embedded in the surrounding
architecture described by the RK iterations. This approach allows for more accurate
approximation of the unknown vector field when the trajectory data comes from an
underlying continuous-time system, e.g., [54, 22, 66]. The resulting approximation er-
ror is even related to the specific integration scheme that provides the surrounding
architecture [68]. Consequently, other integrators than RK have also successfully been
used to promote the discovery of dynamics, e.g., the trapezoidal rule integrator [53, 2].
We emphasize here that from the learning viewpoint, all these methods have a strong
resemblance with the popular residual network (ResNet) [29]. ODE integrators com-
pute one-step predictions through perturbations of the identity mapping depending on
the vector field. If the vector field f is learned from data, this can be considered as a
residual network. For example, when we use Euler method to discretize dx/dt = f(x),
one-step prediction from tn to tn+1 = tn + h is xn+1 = xn + hf(xn), which corresponds
to the original ResNet structure. Our RK-NN approach can be viewed as a residual
network templated on the RK scheme. While ResNet is introduced to address gradient
vanishing during training through shortcut connections, RK-NN (when used to learn
vector fields defining the dynamics) is designed to recover faithful representation of
the continuous time dynamics. While identifying continuous-time models using the
structure of known integrators, fig. 10a, is thus a prominent research area, we consider
in this paper the opposite case: given a (family of) driving vector fields, we find the
structure of the (optimal) integrator through parametrization as a composite neural
network, fig. 10b. Recently, integrator-embedded neural network models have gained
a lot of attention as it was demonstrated also that implicit high-order RK methods
[49] and arbitrary differential equation solvers can be stacked onto a neural network,
extending the applicability of the approach even to tasks beyond the discovery of vec-
tor fields. Related work in this direction include the continuous-time interpretation
of residual networks [12], its connections to optimal control [25, 39, 40], and the now
popular neural ODEs [7] with applications in generative modelling.

In this reverse direction of designing integrator structures, there are a number of
previous related studies have addressed this problem setting [15, 16, 17, 18, 19, 60]. In
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(a) Learning vector field using embedded RK
integrator with Neural Net f(y0;θ).

……

……

(b) Learning the integrator parameterized by
general form of RK method.

Figure 10: Schematic representation of the implementation of RK method. Highlight
is approximated by neural networks. The vector field is trainable in fig. 10a and the
integrator is built by neural networks in fig. 10b. Here ŷ1 is the prediction by RK
integrator with initial condition y0. Nc and each Ni describe weighted summation.

these works, the authors numerically compute RK coefficients from analytically derived
constraints. With the combination of neural networks, the parameters in integrator
structures can be learned to meet specific requirements. To learn the coefficients in
RK4, one constructs the loss function by the scaled distance between true and ap-
proximated value [65]. [1] and [10] are respectively concerned with the RK2 and RK3
method and augment the loss function to penalize deviation of the coefficients from
the equations that are required for RK methods. However, the present method differs
in a number of ways. First, we introduce a new loss term, based on Taylor series,
which can automatically discover high-order integrators, without the need to manually
derive weight constraints, as is done in [32]. This makes our method easy to implement
and scalable to high orders of accuracy. Second, having trajectory data from the true
solution is not compulsory in our method, even though previous work always relies on
true labels to calculate the error, since the Taylor series expansion is a local property
and is entirely determined by the vector field f (See section 3.2).

Lastly, from the machine learning viewpoint, our approach aims to learn solvers
that perform well on a target family of tasks, rather than one fixed task. Our RK-NN
method is a form of multi-task learning in a broader sense. Multi-task learning focuses
on learning several tasks simultaneously so that the knowledge contained in one task
can be applied to other tasks [9, 67]. However, it is worth noting that there are some
important differences to the neural network architectures designed for multi-task learn-
ing [9]. The latter aims to find shared neural network feature extractors relevant for the
multiple pre-defined tasks, each of which is accompanied by specific task-dependent fi-
nal layers. While we also consider multiple tasks in our architecture, most importantly,
in our setting the algorithm must generalize to new unseen tasks in the task family. In
terms of the generalization, our problem setup is thus related to specific branches of
meta-learning [62] that are concerned with finding hyperparameters, neural networks
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architectures, parameter initializations etc. suited for a family of tasks [30, 20, 48, 51].
It is a worthwhile endeavor for future research to investigate how the extensive toolbox
of meta-learning methods available for neural network architectures can be leveraged
to integrate even further adaptation to problem instances into our approach.

6 Summary and Outlook

In this paper, we study how to effectively combine machine learning and numerical
analysis ideas to arrive at efficient and adapted algorithms. As a case study, we devel-
oped a method to automatically learn high-order integrators for specified ODE fam-
ilies, based on the RK algorithmic superstructure. A key idea is the definition of a
RK-like neural network architectural superstructure (RK-NN), together with a Taylor
series based regularizer that ensures high order accuracy and adaptivity to the prob-
lem class. Instead of computing the Butcher tableau, we focus on the performance
of our model under multiple tasks following some task distribution. Based on that,
we can sample and train RK-NN by minimizing the sum of the scaled least-squares
error and the regularizer. In the average sense under this distribution, the method
has superior performance to the classical RK method because it can exploit the struc-
ture that may be present. We apply this method to various examples, including the
Van der Pol oscillator and the Brusselator, where we demonstrate that RK-NN brings
lower global truncation error than the classical RK method. Overall, this represents
a basic step towards a systematic investigation of learning-based approaches towards
numerical algorithm design and adaptation.

Here, we considered minimizing the global errors among distinct integrators with
respect to some fixed time step. However, prior work has shown that numerical com-
putation can be improved if we adapt the step size during the evaluation. The order
of accuracy of a numerical integration scheme is a convergence statement for vanishing
step size. In practice, and with finite step size, the actual errors of the numerical solu-
tion compared to the true solution can vary widely. A typical approach to control this
is to use a higher-order method in each iteration to estimate the local error. The step
size will be reduced if this estimated error is above a user-defined tolerance. Seminal
work on this idea was done by Romberg [56] in the context of integration. Considering
the explicit forward Euler method as an example, the adaptive step size method uses
half of the current step size as a more accurate version. If the error estimate is below
the tolerance, we consider the step successful and continue with the next step. Else, we
adapt the step size through a specific equation. A particular challenge for adaptive step
size control is the increased computational cost due to the “second” evaluation of the
method in each iteration. To minimize the number of function evaluations, E. Fehlberg
developes multiple versions of the Runge-Kutta type integrators and minimizes the co-
efficients in the scheme while simultaneously minimizing the error of the fourth-order
scheme [15, 16, 17, 18, 19], leading to “Runge-Kutta-Fehlberg”. Dormand and Prince
later develop a scheme that optimizes the coefficients for a 5th-order method. They also
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use the first-same-as-last (FSAL) property to reduce the number of function evalua-
tions necessary for both a fourth and fifth order accurate scheme [33, 11]. In particular,
their method of combining six function evaluations to obtain results for a fourth- and
fifth-order accurate RK scheme simultaneously has been implemented in the ODE45
solver of MATLAB. Inspired by these studies, we can design an algorithm based on
the approach introduced in this paper to automatically learn the adaptive step size for
improved robustness in the future.

Throughout this paper we have considered a “fixed superstructure”: RK-NNs with
a fixed recurrent architecture, thus restricting the search space to RK integrators of
a fixed stage and with fixed zero entries in the Butcher tableau. In the future, we
envision that more choices will be left to the optimizer, i.e., the number of RK stages,
together with all entries in the corresponding Butcher tableau will be learned as part
of a meta-learning procedure. This in general includes implicit methods, as explored
in [2]. Such additional degrees of freedom would define a problem that encompasses
the general family of RK-based algorithms. We have started to work on more gen-
eral Krylov-inspired recurrent NN architectures. In order to find an optimal algorithm
within such a superstructure, the neural network architecture and its parameters need
to be optimized jointly. The use of global, mixed-integer optimization over superstruc-
tures in order to discover optimal algorithms has been advocated (and illustrated) in
[46], where the meta-learning problem was formulated as an optimal control problem. It
is interesting to summarize the experience of these authors with their approach, which
they called “optimal algorithm generation” rather than “meta-learning”: Depending
on the subclass of problems over which they optimized, they sometimes found standard
algorithms (that are documented in textbooks); at other times they found algorithms
unknown (to them), that, upon literature search, had been previously discovered; and
upon occasion, they found algorithms for the problem subclass that “made perfect
sense”, and that somebody could have discovered, but apparently had not yet been
discovered and documented. A major conclusion was that the optimal algorithm was
extremely sensitive to the fine scale details of the particular problem subclass, s.t. al-
gorithms both previously unknown and also general could not be found. Our argument
here is that this “generality weakness” is in effect a “personalized strength”: that we
will maybe have integrators (and more generally algorithms, and sometimes hardware
computers, like D.E.Shaw’s ANTON [58]) tuned to a particular class of equations, with
particular types/ranges of initial/boundary conditions, over particular scales. The re-
cent paper by Brenner and co-workers [4] on ML-discovered, problem-dependent PDE
discretizations also moves in the same overall direction. The more times a problem
needs to be solved repeatedly, the more the effort for discovering a “personalized”
optimal algorithm is justified.

In the context of machine learning, one particular type of meta-learning, called
neural architecture search (NAS) refers to a set of techniques for finding the optimal
network architecture for a given task [30]. Beyond the search space, which is herein
defined by the superstructure, NAS methods are categorized by their search strat-
egy and their performance estimation strategy [14]. Current research is focused on
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search strategies based on reinforcement learning [69] and Bayesian optimization (e.g.,
[34, 42]), while evolutionary algorithms have been employed in NAS for decades (e.g.,
[3]). Pruning, i.e., deletion of neural network parameters based on some importance
metric, can be interpreted as a widely used search strategy for NAS when the aim is to
discover sparse model representations. Early pruning methods were based on Taylor
series approximations of the sensitivity of the loss function with respect to network
parameters [38, 28]. For deep networks, pruning based on weight magnitude is an es-
tablished approach (e.g., [27, 57]), but recent work also considers information criteria
such as synaptic saliency to achieve the highest possible model sparsity [61]. To reduce
the complexity of the search space NAS methods can further exploit modularity within
the superstructure [70, 5, 47]. For instance, for the RK-NN, it is particularly useful
to think of all layers involving a function call and all skip connections between these
layers as prunable units.

Beyond NAS, meta-learning on a superstructure would facilitate optimizing algo-
rithms with respect to a metric that depicts an optimal trade-off between the com-
plexity and the accuracy of each algorithmic step. A prime example for such a metric
is the wall-clock performance of the algorithm for achieving some pre-defined stopping
criterion, which is determined by the number of iterations and the cost per iteration
(see [46]) Since the cost per iteration depends on the number and type of mathe-
matical operations it involves, e.g., function evaluations, matrix-vector products or
computations of a Jacobian, the corresponding superstructure optimization problem
constitutes a mixed-integer nonlinear program (MINLP). The NAS methods above are
capable of finding approximate solutions to this problem due to their heuristic nature
and are thus widely used. In contrast, integer programming (IP) algorithms search the
space of possible architectures in a more rigorous manner than NAS methods by con-
structing relaxations and introducing cutting planes. However, IP algorithms exhibit
prohibitive cost for larger networks and are thus not applied to training. One possible
exception is [13], in which the authors circumvent the full complexity of the discrete
problem by evaluating neuron importance with a binary value and training a network
to minimize the number of important neurons to achieve sparsity. For a smaller net-
work such as the one we used in this work, discrete optimization appears tractable.
However, we point out that the theory of IP algorithms requires global solution of all
relaxed subproblems with each subproblem corresponding to a neural network training
problem. While training may lead to global optima empirically [23], and under some
circumstances provably [26], this observation does not hold for all neural networks [21].
Therefore, to guarantee finding the best solution, deterministic global optimization is
necessary; [46] illustrate this. Neural network architectural superstructures allow for
more flexible function bases and may be optimized deterministically in similar fashion
by the algorithms for superstructure optimization given in [24] and [45]. We do not
envision (due to the tremendous computational difficulty of the problem) that mixed
integer global optimization over superstructures will soon become the standard tool
for optimal NN architecture generation for a “personalized” computational task over a
class of problems of interest. More practical tools, e.g., exploiting modular structure,
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and informed pruning, will certainly carry the day in the foreseeable future. Yet the
superstructure formulation of the optimization problem, and crucially the construction
of an intelligent and flexible superstructure, informed by calculus and traditional nu-
merical analysis, appears to us a truly worthy research task in this meta-learning quest
for personalized algorithm generation.
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A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, eds., vol. 32, Curran
Associates, Inc., 2019, https://proceedings.neurips.cc/paper/2019/file/

4ab50afd6dcc95fcba76d0fe04295632-Paper.pdf.

[48] A. Nichol, J. Achiam, and J. Schulman, On first-order meta-learning
algorithms, arXiv preprint arXiv:1803.02999, (2018).

[49] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics informed deep
learning (part ii): Data-driven, discovery of nonlinear partial differential
equations,”, arxiv e-prints, p, arXiv preprint arXiv:1711.10566, (2017).

[50] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential equations,
arXiv preprint arXiv:1711.10561, (2017).

[51] A. Rajeswaran, C. Finn, S. Kakade, and S. Levine, Meta-learning with
implicit gradients, arXiv preprint arXiv:1909.04630, (2019).

[52] R. Rico-Martinez, J. Anderson, and I. Kevrekidis, Continuous-time
nonlinear signal processing: a neural network based approach for gray box
identification, in Proceedings of IEEE Workshop on Neural Networks for Signal
Processing, IEEE, 1994, pp. 596–605.

[53] R. Rico-Martinez, I. Kevrekidis, and K. Krischer, Nonlinear system
identification using neural networks: dynamics and instabilities, Neural networks
for chemical engineers, (1995), pp. 409–442.

[54] R. Rico-Martinez and I. G. Kevrekidis, Continuous time modeling of
nonlinear systems: A neural network-based approach, in IEEE International Con-
ference on Neural Networks, IEEE, 1993, pp. 1522–1525.

[55] R. Rico-Martinez, K. Krischer, I. Kevrekidis, M. Kube, and
J. Hudson, Discrete-vs. continuous-time nonlinear signal processing of cu
electrodissolution data, Chemical Engineering Communications, 118 (1992),
pp. 25–48.

30

https://doi.org/https://doi.org/10.1016/j.compchemeng.2020.106808
https://doi.org/https://doi.org/10.1016/j.compchemeng.2020.106808
https://www.sciencedirect.com/science/article/pii/S0098135419313924
https://www.sciencedirect.com/science/article/pii/S0098135419313924
https://doi.org/10.1007/s10898-018-0611-8
https://proceedings.neurips.cc/paper/2019/file/4ab50afd6dcc95fcba76d0fe04295632-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4ab50afd6dcc95fcba76d0fe04295632-Paper.pdf


[56] W. Romberg, Vereinfachte numerische Integration, (1955), pp. 30–36.

[57] A. See, M.-T. Luong, and C. D. Manning, Compression of neural machine
translation models via pruning, in Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning, Berlin, Germany, Aug. 2016, Associ-
ation for Computational Linguistics, pp. 291–301, https://doi.org/10.18653/
v1/K16-1029, https://www.aclweb.org/anthology/K16-1029.

[58] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson,
J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, et al.,
Anton, a special-purpose machine for molecular dynamics simulation, Communi-
cations of the ACM, 51 (2008), pp. 91–97.

[59] C. Siettos, C. Pantelides, and I. Kevrekidis, Enabling dynamic process
simulators to perform alternative tasks: A time-stepper-based toolkit for
computer-aided analysis, Industrial & engineering chemistry research, 42 (2003),
pp. 6795–6801.
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SUPPLEMENTARY MATERIALS
We introduce some additional results in these supplementary materials. In SM1,

a four-stage RK-NN integrator is trained to sixth-order accuracy over a range of h in
a specific task family, which breaks the order barrier of the classic RK method. SM2
illustrates worse performance on the Brusselator is obtained when initial condition y0

or the equation parameter b is out of the training range. We also evaluate both the
Van der Pol oscillator and the Brusselator to see what happens when time step h is out
of training range in SM3. In SM4, RK-NN is compared to three classic RK3 methods
with different parameterization. Finally, we show the training complexity of a linear
task by plotting the wall-clock time required for one epoch in SM5.

SM1. Additional outperforming experiment results

We apply the same approach (Alg.1) to train a superior four-stage RK-NN with α = 6
and m = 4. It is well known that one requires a seven-stage RK method to obtain sixth-
order accuracy for generic ODEs. Figure 11 shows that we can obtain a sixth-order
integrator with four-stage RK-NN for square task family eq. (29) (detailed definition
is illustrated in section 4 of the main article).

F = {y 7→ −ay2 | a > 0} × {R},
µ = Distribution({y 7→ −ay2; a ∼ U(0.1, 0.5)})× U(1, 3).

(29)
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Figure 11: Error analysis on square task family, after training and testing on h ∈
(0.01, 0.1), using four-stage RK-NN integrator with sixth-order Taylor-based loss as
regularizer.
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SM2. Error analysis on the Brusselator with initial

conditions or parameters outside training range

Training RK-NN integrator on the Brusselator families with b ∼ U(0.5, 2) and a = 1,
we use {y0 = (u0, v0);u0 ∼ U(1.5, 3), v0 ∼ U(2, 3)} as initial condition. We test on the
initial condition u0 ∈ (0.5, 1), v0 ∈ (1, 2) or parameter values b ∈ (3.5, 4). Evaluation
results are shown in fig. 12.
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(b) b ∈ (3.5, 4).

Figure 12: Evaluation on the Brusselator by using inputs outside the training range.

SM3. Evaluation on the Van der Pol oscillator and

the Brusselator while time step h out of training

range

In the previous experiments, we train and test on h ∈ (0.01, 0.1). We test the trained
integrator on a larger time step range, such as h ∈ (0.001, 0.1), to study its generaliza-
tion in terms of time steps. Figure 13 and fig. 14 show that the performance worsens
when h goes to a smaller value. This demonstrates that the learned integrators are also
adapted to the range of step sizes during training. Note that for most applications,
the current range of step sizes gives sufficiently small errors, thus this is not a major
issue of the method.

SM4. Comparison with three different traditional

RK3 methods

In this paper, our goal is to find an approximate Butcher tableau for some given
problems and range of time step h. To figure out whether our method is better, we
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Figure 13: Evaluation on the relative error when h out of training range.
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Figure 14: Evaluation on the global error when h out of training range.

decide to calculate results by RK3 methods with different parameters on our examples.
Recall the formulation of RK3:

k1 = hf(yn), k2 = hf(yn + θ1,1k1), k3 = hf(yn + θ2,1k1 + θ2,2k2),

yn+1 = yn + θc1k1 + θc2k2 + θc3k3.
(30)

Here is shown three different parameterized RK3:

• RK3 (#1) θ1,1 = 2
3
, θ2,1 = −1

2
, θ2,2 = 1

2
, θc1 = −1

4
, θc2 = 3

4
, θc3 = 1

2
.

• RK3 (#2) θ1,1 = 2
3
, θ2,1 = 1

6
, θ2,2 = 1

2
, θc1 = 1

4
, θc2 = 1

4
, θc3 = 1

2
.

• RK3 (#3) θ1,1 = 1
2
, θ2,1 = −1, θ2,2 = 2, θc1 = 1

6
, θc2 = 2

3
, θc3 = 1

6
.

We define the error from RK3 as ERK and from RK-NN as ENN , then we have relative
error ENN

ERK
. RK-NN performs better if relative error is smaller than 1. fig. 15 illustrates

the relative errors by RK3 methods with distinct coefficients are almost the same and
our RK-NN has a better performance in the training range of time step h ∈ (0.01, 0.1).
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(a) Van der Pol oscillator.
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Figure 15: Comparison of RK-NN results with different parameterized RK3 methods.

SM5. Training Complexity for ODE systems of dif-

ferent dimension

In fig. 16, we investigate empirically the scalability of our method during training.
We plot the wall-clock time required for one epoch of training on an example linear
family and a nonlinear family as the dimension d of the ODE increases. We observe
that the training cost per epoch has a scaling between O(d) and O(d2), meaning that
our method can be effectively applied to moderately high dimensional systems. In the
problems we have tested, the number of epochs required to reach a specified testing
accuracy does not increase significantly with ODE dimension, and is in general problem
dependent (See table 2).

Table 2: Comparison of the number of training epochs for ODE systems of different
dimensions shown in fig. 16

Dimension 1 2 4 8 16 32
Linear Task 201 201 196 191 187 200
Nonlinear Task 2336 1831 1506 1511 1577 1527
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Figure 16: Training time per epoch for different dimensions. The equation of linear
tasks is dy

dt
= Ay,y(0) = y0, where A ∈ Rd×d is a square matrix. The elements of A are

independently and identically distributed with Aij ∼ U(− 1√
d
,− 2√

d
) and y0 ∼ U(−3, 3).

The equation of nonlinear tasks is dy
dt

= By2,y(0) = y0. B ∈ Rd×d is a diagonal matrix
whose diagonal elements are randomly generated from different distributions. The i-th
element Bii ∼ U(−2 + 0.05(i − 1),−2 + 0.05(i + 1)) and y0 ∼ U(1, 3). In this figure,
the x-axis is the dimension d and the y-axis is the wall-clock time required for each
training epoch.
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