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Abstract

Whitney proved in 1931 that every 4-connected planar triangulation is hamiltonian. Later
in 1979, Hakimi, Schmeichel and Thomassen conjectured that every such triangulation on n
vertices has at least 2(n − 2)(n − 4) hamiltonian cycles. Along this direction, Brinkmann,
Souffriau and Van Cleemput established a linear lower bound on the number of hamiltonian cy-
cles in 4-connected planar triangulations. In stark contrast, Alahmadi, Aldred and Thomassen
showed that every 5-connected triangulation of the plane or the projective plane has exponen-
tially many hamiltonian cycles. This gives the motivation to study the number of hamiltonian
cycles of 4-connected triangulations with few 4-separators. Recently, Liu and Yu showed that
every 4-connected planar triangulation with O(n/ logn) 4-separators has a quadratic number of
hamiltonian cycles. By adapting the framework of Alahmadi et al. we strengthen the last two
aforementioned results. We prove that every 4-connected planar or projective planar triangula-
tion with O(n) 4-separators has exponentially many hamiltonian cycles.

1 Introduction
A classical theorem of Whitney in 1931 proved that every 4-connected planar triangulation has a
hamiltonian cycle [19]. In 1956, this result was extended by Tutte [18] to 4-connected planar graphs.
One may subsequently ask how many hamiltonian cycles a 4-connected planar triangulation or
planar graph may have. In 1979, Hakimi, Schmeichel and Thomassen [9] proposed the following
conjecture:

Conjecture 1 ([9]). Every 4-connected planar triangulation G on n vertices has at least 2(n −
2)(n−4) hamiltonian cycles, with equality if and only if G is the double-wheel graph on n vertices,
that is, the join of a cycle of length n− 2 and an empty graph on two vertices.

In the same paper, they also proved that every 4-connected planar triangulation on n vertices
has at least n/ log2 n hamiltonian cycles. This lower bound was recently improved by Brinkmann,
Souffriau and Van Cleemput [3] to a linear bound of 12(n − 2)/5, which was then refined to
161(n − 2)/60 for n ≥ 7 by Cuvelier [6]. For 4-connected planar graphs, Sander [16] showed that
there exists a hamiltonian cycle containing any two prescribed edges in any 4-connected planar
graph. This implies that every 4-connected planar graph G has at least

(∆
2

)
hamiltonian cycles,

where ∆ denotes the maximum degree of G. However, it assures only a constant lower bound
as there are infinitely many 4-connected planar graphs of maximum degree upper bounded by 4.
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Generalizing the method used in [3], Brinkmann and Van Cleemput [4] gave a linear lower bound
on the number of hamiltonian cycles in 4-connected planar graphs.

We will focus on the number of hamiltonian cycles of 4-connected triangulations of the plane
or the projective plane with a bounded number of 4-separators. Interestingly, if Conjecture 1 held,
we would have that a 4-connected planar triangulation has a minimum number of hamiltonian
cycles if and only if it has a maximum number of 4-separators, as the double-wheel graphs are
the 4-connected planar triangulations that maximize the number of 4-separators [8]. Trivially, 5-
connected planar triangulations have a minimum number of 4-separators among 4-connected planar
triangulations as they have no 4-separators. Indeed, Alahmadi, Aldred and Thomassen [1] proved
that every 5-connected triangulation embedded on the plane or on the projective plane has 2Ω(n)

hamiltonian cycles. Following the approach of Alahmadi et al., it was shown in [12] that every 4-
connected planar triangulation has at least Ω((n/ logn)2) hamiltonian cycles if it has only O(logn)
4-separators. Recently, Liu and Yu [11] improved this result by showing that every 4-connected
planar triangulation with O(n/ logn) 4-separators has Ω(n2) hamiltonian cycles. These results, in
a sense, give evidence supporting that triangulations of the plane or the projective plane with fewer
4-separators may have more hamiltonian cycles. We will prove the following result, indicating that
a 4-connected planar or projective planar triangulation may have exponentially many hamiltonian
cycles as long as it has at most a linear number of 4-separators, thereby extending the results
mentioned above.

Theorem 2. Let G be a 4-connected planar or projective planar triangulation on n vertices and
let c be an arbitrary constant less than 1/324. If G has at most cn 4-separators, then it has 2Ω(n)

hamiltonian cycles.

2 Results
In this section we first prepare some lemmas which will be used to construct a vertex subset with
several properties (see also Lemma 8). The proof of Theorem 2 will be given at the end of this
section.

For notation and terminology not explicitly defined in this paper, we refer the reader to [2, 13].
A vertex subset or a subgraph of a connected graph is separating if its removal disconnects the
graph. We call a separating vertex set on k vertices a k-separator. A k-cycle is a cycle of length k.
Let S be an independent set. We say S saturates a 4- or 5-cycle C if S contains two vertices of C. A
diamond-6-cycle is the graph depicted in Figure 1, where the white vertices are called crucial. We
say S saturates a diamond-6-cycle D if S contains three crucial vertices of D. Recall that the Euler
genus eg(Σ) of a surface Σ is defined to be 2−χ(Σ), where χ(Σ) denotes the Euler characteristic of
Σ. A graph H is d-degenerate if every induced subgraph of H has a vertex of degree at most d. It
is well known that every d-degenerate graph H is (d+ 1)-colorable and hence has an independent
set of at least |V (H)|/(d+ 1) vertices.

Figure 1: A diamond-6-cycle with six crucial vertices (white).
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The following tool is due to Alahmadi et al. [1], which helps finding homotopic curves from a
sufficiently large family of curves.

Lemma 3 ([1, Corollary 2]). Let Σ be a surface of Euler genus σ and let C be a family of simple
closed curves on Σ with the property that every C ∈ C can have at most one point that is contained
in other curves in C. Let r be a positive integer. If |C| ≥ 5(r− 1)σ+ 1, then there are r homotopic
curves in C.

The number of the vertices adjacent to at least three vertices of a 4-cycle on a surface can be
bounded as follows.

Lemma 4. Let G be a triangulation of a surface of Euler genus σ, and C be a 4-cycle in G. Denote
VC := {v ∈ V (G) : |NG(v) ∩ V (C)| ≥ 3}. Then |VC | ≤ 8(σ + 1).

Proof. Suppose to the contrary that |VC | > 8(σ+ 1). We have that G contains K3,q as a subgraph,
where q = 2(σ+ 1) + 1. This is however impossible since, by a theorem of Ringel [14, 15], the Euler
genus of K3,q equals eg(K3,q) = d q−2

2 e = σ + 1 > σ.

The next three lemmas aim at finding a vertex set that saturates no 4-cycle, or 5-cycle, or
diamond-6-cycle. The main idea of the proofs comes from [1].

Lemma 5. Let G be a triangulation of a surface of Euler genus σ and let S ⊆ V (G) be an
independent set of vertices of degree at most 6. If S saturates no separating 4-cycle in G, then S
has a subset of size at least |S|/c that saturates no 4-cycle, where c :=

(6
2
)
(10σ + 1) + 1.

Proof. Let H be the graph on the vertex set S such that two vertices are adjacent if they saturate
some 4-cycle in G. It suffices to show that H has maximum degree at most d := c−1 =

(6
2
)
(10σ+1)

and hence chromatic number at most c. Suppose, to the contrary, there exists v ∈ S = V (H) with
dH(v) > d. As dG(v) ≤ 6, there are u,w ∈ NG(v) such that the path uvw are contained in at least
d(d+ 1)/

(6
2
)
e = (10σ+ 1) + 1 4-cycles in G. We may contract the path uvw and apply Lemma 3 to

show that there are at least three homotopic 4-cycles containing the path uvw and saturated by S.
This yields a separating 4-cycle saturated by S and hence contradicts our assumption. Thus the
lemma follows.

Lemma 6. Let G be a triangulation of a surface of Euler genus σ and let S ⊆ V (G) be an
independent set of vertices of degree at most 6. If S saturates no 4-cycle in G, then S has a subset
of size at least |S|/c that saturates no 5-cycle, where c := 2

(6
2
)
(40σ + 1) + 1.

Proof. Let H be the graph on the vertex set S in which two vertices are adjacent if they saturate
some 5-cycle in G. Let d := c− 1 = 2

(6
2
)
(40σ + 1). It suffices to show that H is d-degenerate. Let

K be any induced subgraph of H. We will show that K has a vertex of degree at most d.
We first consider the following. Let v be a vertex in K with dK(v) ≥ d. Since dG(v) ≤ 6,

there exist u,w ∈ NG(v), distinct vertices x1, . . . , x2t ∈ NK(v) and y1, . . . , y2t ∈ V (G) \ S, where
t := 40σ + 1, such that for every 1 ≤ i ≤ 2t either uvwxiyiu or uvwyixiu is a 5-cycle saturated
by V (K). Denote by Ci the 5-cycle saturated by v and xi, and denote by Pi the path obtained
from Ci by deleting v (1 ≤ i ≤ 2t). We claim that at least t vertices of y1, . . . , y2t are distinct.
Otherwise there are 1 ≤ i < j < k ≤ 2t such that yi = yj = yk. Then u or w is adjacent to
two of xi, xj , xk, say xi, xj ∈ NG(w). However, this implies that wxiyixjw is a 4-cycle saturated
by V (K), which contradicts our assumption. Therefore, we may assume that the paths P1, . . . , Pt

are pairwise internally disjoint. By contracting the path uvw and applying Lemma 3, we may
obtain nine homotopic curves from P1, . . . , Pt, say P1, . . . , P9. Relabelling if necessary, we may
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further assume that the closed disc Dv bounded by P1∪P9 contains P1, . . . , P9, and the closed disc
bounded by P1 ∪ P5 contains P1, . . . , P5 but not P6, . . . , P9.

We now show that K has minimum degree at most d. Suppose to the contrary that dK(v) > d
for every v ∈ V (K). We choose a vertex v ∈ V (K) and the associated nine homotopic curves such
that the number of vertices of G contained in Dv is minimum.

Let C be a 5-cycle in G containing x5 and another vertex v′ ∈ V (K) outside of Dv. We claim
that v′ = v. Let P be the minimal path in C containing x5 with end-vertices in P1 ∪ P9. Notice
that C has length five and x5 lies in the interior but not the boundary of the disc Dv. So by the
arrangement of P1, . . . , P9, the end-vertices of P must be u and w. Since V (K) is an independent
set of G and v, x5 ∈ V (K), we have v′ /∈ NG(x5) ∪ {u,w}. Therefore P has length less than four.
If P has length two, then uvwx5u would be a 4-cycle saturated by V (K) ⊆ S, which contradicts
our assumption. If P has length three, then we have v′ = v (otherwise uvwv′u would be a 4-cycle
saturated by V (K)). This thus establishes our claim.

Our previous claim implies that all 5-cycles in G containing x5 and another vertex of V (K)
other than v must lie in Dv. As dK−v(x5) = dK(x5) − 1 ≥ d, we may apply our discussion above
to K − v and x5 (instead of K and v) to obtain nine homotopic curves associated with x5 and a
closed disc containing them. Then we may have Dx5 ⊆ Dv. Moreover, it is not hard to see that
Dx5 does not contain x1. Therefore the number of vertices in Dx5 is strictly less than that of Dv.
This contradicts our choice of v and Dv and hence the result follows.

The proof of following lemma is omitted as it can be readily deduced from the proof of [1,
Lemma 10].

Lemma 7 ([1, Lemma 10]). Let G be a triangulation of a surface of Euler genus σ and let S ⊆ V (G)
be an independent set of vertices of degree at most 6. If S saturates no 4-cycle in G, then S has
a subset of size at least |S|/c that saturates no diamond-6-cycle, where c is a positive constant
depending only on σ.

One of the key ingredients of the proof of exponential lower bound on the number of hamiltonian
cycles in 5-connected triangulations given by Alahmadi et al. [1] is to find many edge sets F ⊆ E(G)
so that G − F is 4-connected. Their approach was refined by [12, 11] for 4-connected planar
triangulations. In order to prove our result for triangulations of the projective plane, we need to
generalize a lemma given by Liu and Yu [11] to surfaces of higher genus.

Let G be a triangulation of any surface and A ⊆ V (G) be a 3-separator of G. It is shown in the
proof of [1, Lemma 1] and its subsequent discussion that G[A] is a surface separating 3-cycle. Using
this fact and a theorem of Thomas and Yu [17] that every 4-connected projective planar graph is
hamiltonian, the proof of [11, Lemma 2.1] can be easily modified to show the following result. We
omit the proof.

Lemma 8 ([11, Lemma 2.1]). Let G be a 4-connected triangulation of a surface Σ of Euler genus
σ. Let S ⊆ V (G) be a vertex subset satisfying the following conditions:

(i) dG(v) ≤ 6 for any v ∈ S;

(ii) S is an independent vertex set;

(iii) no vertex in S is contained in any separating 4-cycle in G;

(iv) no vertex in S is adjacent to three vertices of any separating 4-cycle in G; and

(v) S saturates no 4-, 5- or diamond-6-cycle.
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Let F ⊆ E(G) be any edge subset such that |F | = |S| and for any v ∈ S there is precisely one edge
in F incident with v. Then G − F is 4-connected. Moreover, if Σ is the plane or the projective
plane, then G has 2Ω(|S|) hamiltonian cycles.

We are now ready to prove Theorem 2.

Proof of Theorem 2. To prove the theorem, it suffices to construct a vertex set S ⊆ V (G) of size
Ω(n) satisfying conditions (i) to (v) in Lemma 8.

Since G has average degree less than 6 and minimum degree at least 4, the set S1 of vertices of
degree at most 6 has size at least n/3. We may subsequently obtain a vertex set S2 ⊆ S1 of size at
least |S1|/6 ≥ n/18 satisfying (i) and (ii) of Lemma 8, as planar and projective planar graphs are
6-colorable.

Let C be any separating 4-cycle in G. Since S2 is an independent set, it follows from Lemma 4
that S2 has at most 16 + 2 = 18 vertices that are contained in C or adjacent to three vertices of C.
Deleting these vertices from S2 for every separating 4-cycle, we may obtain a vertex set S3 ⊆ S2
satisfying (i) to (iv) of Lemma 8 and |S3| ≥ n/18 − 18cn = (1/18 − 324c/18)n. Recall that c
is a constant less than 1/324. This means that 1/18 − 324c/18 is a positive constant and hence
|S3| = Ω(n).

As no vertex in S3 is contained in any separating 4-cycle, no 4-cycle saturated by S3 is separating.
Successively applying Lemmas 5, 6 and 7, we obtain a vertex set S ⊆ S3 of size Ω(n) satisfying (i)
to (v) of Lemma 8, implying that G has 2Ω(n) hamiltonian cycles. This completes our proof.

We remark that Grünbaum [7] and Nash-Williams [5] independently conjectured that every
4-connected toroidal graph is hamiltonian. The truth of this conjecture (respectively, an analogue
for the Klein bottle) would extend Theorem 2 to triangulations of the torus (respectively, the Klein
bottle). Note that there are non-hamiltonian 4-connected graphs that are embedded in the double
torus or in the surface obtained from the sphere by attaching three crosscaps (see [10]).
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