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Abstract

Whitney proved in 1931 that every 4-connected planar triangulation is hamiltonian. Later
in 1979, Hakimi, Schmeichel and Thomassen conjectured that every such triangulation on n
vertices has at least 2(n — 2)(n — 4) hamiltonian cycles. Along this direction, Brinkmann,
Souffriau and Van Cleemput established a linear lower bound on the number of hamiltonian cy-
cles in 4-connected planar triangulations. In stark contrast, Alahmadi, Aldred and Thomassen
showed that every 5-connected triangulation of the plane or the projective plane has exponen-
tially many hamiltonian cycles. This gives the motivation to study the number of hamiltonian
cycles of 4-connected triangulations with few 4-separators. Recently, Liu and Yu showed that
every 4-connected planar triangulation with O(n/logn) 4-separators has a quadratic number of
hamiltonian cycles. By adapting the framework of Alahmadi et al. we strengthen the last two
aforementioned results. We prove that every 4-connected planar or projective planar triangula-
tion with O(n) 4-separators has exponentially many hamiltonian cycles.

1 Introduction

A classical theorem of Whitney in 1931 proved that every 4-connected planar triangulation has a
hamiltonian cycle [19]. In 1956, this result was extended by Tutte [18] to 4-connected planar graphs.
One may subsequently ask how many hamiltonian cycles a 4-connected planar triangulation or
planar graph may have. In 1979, Hakimi, Schmeichel and Thomassen [9] proposed the following
conjecture:

Conjecture 1 (]9]). Every 4-connected planar triangulation G on n vertices has at least 2(n —
2)(n —4) hamiltonian cycles, with equality if and only if G is the double-wheel graph on n vertices,
that is, the join of a cycle of length n — 2 and an empty graph on two vertices.

In the same paper, they also proved that every 4-connected planar triangulation on n vertices
has at least n/logs n hamiltonian cycles. This lower bound was recently improved by Brinkmann,
Souffriau and Van Cleemput [3] to a linear bound of 12(n — 2)/5, which was then refined to
161(n — 2)/60 for n > 7 by Cuvelier [6]. For 4-connected planar graphs, Sander [16] showed that
there exists a hamiltonian cycle containing any two prescribed edges in any 4-connected planar
graph. This implies that every 4-connected planar graph G has at least (%) hamiltonian cycles,
where A denotes the maximum degree of G. However, it assures only a constant lower bound
as there are infinitely many 4-connected planar graphs of maximum degree upper bounded by 4.
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Generalizing the method used in [3], Brinkmann and Van Cleemput [4] gave a linear lower bound
on the number of hamiltonian cycles in 4-connected planar graphs.

We will focus on the number of hamiltonian cycles of 4-connected triangulations of the plane
or the projective plane with a bounded number of 4-separators. Interestingly, if Conjecture 1 held,
we would have that a 4-connected planar triangulation has a minimum number of hamiltonian
cycles if and only if it has a maximum number of 4-separators, as the double-wheel graphs are
the 4-connected planar triangulations that maximize the number of 4-separators [8]. Trivially, 5-
connected planar triangulations have a minimum number of 4-separators among 4-connected planar
triangulations as they have no 4-separators. Indeed, Alahmadi, Aldred and Thomassen [1] proved
that every 5-connected triangulation embedded on the plane or on the projective plane has 22(%)
hamiltonian cycles. Following the approach of Alahmadi et al., it was shown in [12] that every 4-
connected planar triangulation has at least Q((n/logn)?) hamiltonian cycles if it has only O(logn)
4-separators. Recently, Liu and Yu [11] improved this result by showing that every 4-connected
planar triangulation with O(n/logn) 4-separators has (n?) hamiltonian cycles. These results, in
a sense, give evidence supporting that triangulations of the plane or the projective plane with fewer
4-separators may have more hamiltonian cycles. We will prove the following result, indicating that
a 4-connected planar or projective planar triangulation may have exponentially many hamiltonian
cycles as long as it has at most a linear number of 4-separators, thereby extending the results
mentioned above.

Theorem 2. Let G be a 4-connected planar or projective planar triangulation on n vertices and
let ¢ be an arbitrary constant less than 1/324. If G has at most cn 4-separators, then it has 282(n)
hamiltonian cycles.

2 Results

In this section we first prepare some lemmas which will be used to construct a vertex subset with
several properties (see also Lemma 8). The proof of Theorem 2 will be given at the end of this
section.

For notation and terminology not explicitly defined in this paper, we refer the reader to [2, 13].
A vertex subset or a subgraph of a connected graph is separating if its removal disconnects the
graph. We call a separating vertex set on k vertices a k-separator. A k-cycle is a cycle of length k.
Let S be an independent set. We say S saturates a 4- or 5-cycle C' if S contains two vertices of C. A
diamond-6-cycle is the graph depicted in Figure 1, where the white vertices are called crucial. We
say S saturates a diamond-6-cycle D if S contains three crucial vertices of D. Recall that the Fuler
genus eg(X) of a surface 3 is defined to be 2 — x(X), where x(X) denotes the Euler characteristic of
3. A graph H is d-degenerate if every induced subgraph of H has a vertex of degree at most d. It
is well known that every d-degenerate graph H is (d + 1)-colorable and hence has an independent
set of at least |V (H)|/(d + 1) vertices.

Figure 1: A diamond-6-cycle with six crucial vertices (white).



The following tool is due to Alahmadi et al. [1], which helps finding homotopic curves from a
sufficiently large family of curves.

Lemma 3 ([1, Corollary 2]). Let ¥ be a surface of Euler genus o and let C be a family of simple
closed curves on 3 with the property that every C € C can have at most one point that is contained
in other curves in C. Let r be a positive integer. If |C| > 5(r — 1)o + 1, then there are r homotopic
curves in C.

The number of the vertices adjacent to at least three vertices of a 4-cycle on a surface can be
bounded as follows.

Lemma 4. Let G be a triangulation of a surface of Fuler genus o, and C be a 4-cycle in G. Denote
Vo :={v e V(QG) : |[Ng(v)NV(C)| > 3}. Then |Vo| < 8(c +1).

Proof. Suppose to the contrary that [V| > 8(c +1). We have that G contains K3, as a subgraph,
where ¢ = 2(0 +1) + 1. This is however impossible since, by a theorem of Ringel [14, 15], the Euler
genus of K3, equals eg(K3,) = [‘%2] =o+1>o0. O

The next three lemmas aim at finding a vertex set that saturates no 4-cycle, or 5-cycle, or
diamond-6-cycle. The main idea of the proofs comes from [1].

Lemma 5. Let G be a triangulation of a surface of Euler genus o and let S C V(G) be an
independent set of vertices of degree at most 6. If S saturates mo separating 4-cycle in G, then S
has a subset of size at least |S|/c that saturates no 4-cycle, where ¢ := (g)(lOU +1)+1.

Proof. Let H be the graph on the vertex set S such that two vertices are adjacent if they saturate
some 4-cycle in G. It suffices to show that H has maximum degree at most d := c—1 = ($)(100+1)
and hence chromatic number at most ¢. Suppose, to the contrary, there exists v € S = V(H) with
dp(v) > d. As dg(v) < 6, there are u,w € Ng(v) such that the path uwvw are contained in at least
[(d+ 1)/(3)1 = (100 4+ 1) + 1 4-cycles in G. We may contract the path uwvw and apply Lemma 3 to
show that there are at least three homotopic 4-cycles containing the path uvw and saturated by S.
This yields a separating 4-cycle saturated by S and hence contradicts our assumption. Thus the
lemma follows. O

Lemma 6. Let G be a triangulation of a surface of Euler genus o and let S C V(G) be an
independent set of vertices of degree at most 6. If S saturates no 4-cycle in G, then S has a subset
of size at least |S|/c that saturates no 5-cycle, where ¢ := 2(2) (400 + 1) + 1.

Proof. Let H be the graph on the vertex set .S in which two vertices are adjacent if they saturate
some 5-cycle in G. Let d:=c—1= 2(g) (400 + 1). It suffices to show that H is d-degenerate. Let
K be any induced subgraph of H. We will show that K has a vertex of degree at most d.

We first consider the following. Let v be a vertex in K with dx(v) > d. Since dg(v) < 6,
there exist u,w € Ng(v), distinct vertices z1,...,x2% € Ng(v) and y1,...,y2 € V(G) \ S, where
t := 400 + 1, such that for every 1 < i < 2t either uvwz;y;u or uvwy;x;u is a 5-cycle saturated
by V(K). Denote by C; the 5-cycle saturated by v and z;, and denote by P; the path obtained
from C; by deleting v (1 < i < 2t). We claim that at least ¢ vertices of yi,...,y9 are distinct.
Otherwise there are 1 < ¢ < j < k£ < 2t such that y; = y; = yr. Then u or w is adjacent to
two of x4, x;,xy, say x;,2; € Ng(w). However, this implies that wx;y;z;w is a 4-cycle saturated
by V(K), which contradicts our assumption. Therefore, we may assume that the paths P, ..., P,
are pairwise internally disjoint. By contracting the path wvw and applying Lemma 3, we may
obtain nine homotopic curves from Pi,..., P, say Pi,...,Py. Relabelling if necessary, we may



further assume that the closed disc D, bounded by P, U Py contains P, ..., Py, and the closed disc
bounded by P, U Ps contains P, ..., Ps but not F,..., Ps.

We now show that K has minimum degree at most d. Suppose to the contrary that di (v) > d
for every v € V(K). We choose a vertex v € V(K) and the associated nine homotopic curves such
that the number of vertices of G contained in D, is minimum.

Let C be a 5-cycle in G containing x5 and another vertex v' € V(K) outside of D,. We claim
that v/ = v. Let P be the minimal path in C containing x5 with end-vertices in P; U Py. Notice
that C' has length five and x5 lies in the interior but not the boundary of the disc D,. So by the
arrangement of P, ..., Py, the end-vertices of P must be u and w. Since V(K) is an independent
set of G and v, 25 € V(K), we have v' ¢ Ng(xs5) U {u, w}. Therefore P has length less than four.
If P has length two, then wvwzsu would be a 4-cycle saturated by V(K) C S, which contradicts
our assumption. If P has length three, then we have v' = v (otherwise uwvwv'u would be a 4-cycle
saturated by V(K)). This thus establishes our claim.

Our previous claim implies that all 5-cycles in G containing x5 and another vertex of V(K)
other than v must lie in D,. As dx_,(x5) = di(x5) — 1 > d, we may apply our discussion above
to K — v and x5 (instead of K and v) to obtain nine homotopic curves associated with x5 and a
closed disc containing them. Then we may have D,, C D,. Moreover, it is not hard to see that
D, does not contain x;. Therefore the number of vertices in D, is strictly less than that of D,.
This contradicts our choice of v and D, and hence the result follows. O

The proof of following lemma is omitted as it can be readily deduced from the proof of [1,
Lemma 10].

Lemma 7 ([1, Lemma 10]). Let G be a triangulation of a surface of Euler genus o and let S C V(G)
be an independent set of vertices of degree at most 6. If S saturates no 4-cycle in G, then S has
a subset of size at least |S|/c that saturates no diamond-6-cycle, where ¢ is a positive constant
depending only on o.

One of the key ingredients of the proof of exponential lower bound on the number of hamiltonian
cycles in 5-connected triangulations given by Alahmadi et al. [1] is to find many edge sets F' C E(G)
so that G — F' is 4-connected. Their approach was refined by [12, 11] for 4-connected planar
triangulations. In order to prove our result for triangulations of the projective plane, we need to
generalize a lemma given by Liu and Yu [11] to surfaces of higher genus.

Let G be a triangulation of any surface and A C V(G) be a 3-separator of G. It is shown in the
proof of [1, Lemma 1] and its subsequent discussion that G[A] is a surface separating 3-cycle. Using
this fact and a theorem of Thomas and Yu [17] that every 4-connected projective planar graph is
hamiltonian, the proof of [11, Lemma 2.1] can be easily modified to show the following result. We
omit the proof.

Lemma 8 ([11, Lemma 2.1]). Let G be a 4-connected triangulation of a surface X of Euler genus
o. Let S CV(G) be a vertex subset satisfying the following conditions:

(i) dg(v) <6 for anyv e S;
(i) S is an independent vertex set;
(iii) no vertex in S is contained in any separating 4-cycle in G;
(iv) no vertex in S is adjacent to three vertices of any separating 4-cycle in G; and

(v) S saturates no 4-, 5- or diamond-6-cycle.



Let F C E(G) be any edge subset such that |F| = |S| and for any v € S there is precisely one edge
in F incident with v. Then G — F is 4-connected. Moreover, if X is the plane or the projective
plane, then G has 225D hamiltonian cycles.

We are now ready to prove Theorem 2.

Proof of Theorem 2. To prove the theorem, it suffices to construct a vertex set S C V(G) of size
Q(n) satisfying conditions (i) to (v) in Lemma 8.

Since G has average degree less than 6 and minimum degree at least 4, the set S1 of vertices of
degree at most 6 has size at least n/3. We may subsequently obtain a vertex set Sy C Sy of size at
least |S1|/6 > n/18 satisfying (i) and (ii) of Lemma 8, as planar and projective planar graphs are
6-colorable.

Let C be any separating 4-cycle in G. Since Sy is an independent set, it follows from Lemma 4
that S has at most 16 + 2 = 18 vertices that are contained in C' or adjacent to three vertices of C.
Deleting these vertices from Sy for every separating 4-cycle, we may obtain a vertex set S3 C Sy
satisfying (i) to (iv) of Lemma 8 and |S3| > n/18 — 18cn = (1/18 — 324¢/18)n. Recall that ¢
is a constant less than 1/324. This means that 1/18 — 324¢/18 is a positive constant and hence
1S5] = Qn).

Asno vertex in S3 is contained in any separating 4-cycle, no 4-cycle saturated by Ss is separating.
Successively applying Lemmas 5, 6 and 7, we obtain a vertex set S C S3 of size (n) satisfying (i)
to (v) of Lemma 8, implying that G has 22(n) hamiltonian cycles. This completes our proof. ]

We remark that Griinbaum [7] and Nash-Williams [5] independently conjectured that every
4-connected toroidal graph is hamiltonian. The truth of this conjecture (respectively, an analogue
for the Klein bottle) would extend Theorem 2 to triangulations of the torus (respectively, the Klein
bottle). Note that there are non-hamiltonian 4-connected graphs that are embedded in the double
torus or in the surface obtained from the sphere by attaching three crosscaps (see [10]).
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