
DATA-DRIVEN ALGORITHMS FOR SIGNAL PROCESSING WITH
TRIGONOMETRIC RATIONAL FUNCTIONS∗

HEATHER WILBER† , ANIL DAMLE‡ , AND ALEX TOWNSEND§

Abstract. Rational approximation schemes for reconstructing periodic signals from samples
with poorly separated spectral content are described. These methods are automatic and adaptive,
requiring no tuning or manual parameter selection. Collectively, they form a framework for fit-
ting trigonometric rational models to data that is robust to various forms of corruption, including
additive Gaussian noise, perturbed sampling grids, and missing data. Our approach combines a
variant of Prony’s method with a modified version of the AAA algorithm. Using representations
in both frequency and time space, a collection of algorithms is described for adaptively computing
with trigonometric rationals. This includes procedures for differentiation, filtering, convolution, and
more. A new MATLAB software system based on these algorithms is introduced. Its effectiveness
is illustrated with synthetic and practical examples drawn from applications including biomedical
monitoring, acoustic denoising, and feature detection.

Key words. rational functions, signal processing, AAA algorithm, Prony’s method

AMS subject classifications. 41A20, 94A12

1. Introduction. Recovering functions from noisy, incomplete, or corrupted
samples is a ubiquitous task in signal and data processing [39]. Here, we recover
underlying signals that contain impulses, shocks, or other algebraic singularities that
can cause traditional Fourier-based methods to underperform or fail. Examples where
these signals appear include sensor monitoring and event detection tasks in seismology
and oceanography [14, 41], biomedical signal processing [23, 25], and time evolution
along rays in nonsmooth media [13, 51]. We present a novel computing framework
based on data-driven approximation with two complementary representations: (1)
barycentric trigonometric rational approximations and (2) their Fourier transforms,
which take the form of short sums of complex exponentials. Toggling between these
two representations lets us overcome computational and data-related challenges.

Several families of functions, including rationals, wavelets, and radial basis func-
tions, are well-suited for resolving sharp features in data and modeling phenomena
with slow-decaying spectral content [55, 57]. However, methods that employ these
functions often require the a priori selection of shape parameters [52], mother/father
wavelets [17], initial pole configurations [29], or special rational basis functions [23].
One must carefully select parameters to avoid numerical instability and computa-
tional inefficiency. In contrast, we introduce flexible, data-driven, general-purpose
software tools that can be applied without special knowledge about the locations or
types of singularities in the signal. Our methods construct trigonometric rational
representations of signals, and we develop a collection of algorithms for computing
adaptively and efficiently with them. Our approach combines adaptations of two pri-
mary approximation methods, the AAA algorithm for rational approximation [45] and
a Fourier inversion technique based on Prony’s method [10]. Both of these methods

∗Funding: This work is partly supported by National Science Foundation grants DMS-2103317,
DMS-1818757, DMS-1830274, DMS-2045646, DMS-1952757, and DGE-1650441.
†Oden Institute for Computational and Engineering Sciences, University of Texas at Austin,

Austin, TX , 78712-1229, United States (heather.wilber@oden.utexas.edu).
‡Department of Computer Science, Cornell University, Ithaca, NY 14853-4201, United States

(damle@cornell.edu).
§Department of Mathematics, Cornell University, Ithaca, NY 14853-4201, United States

(townsend@cornell.edu).

1

ar
X

iv
:2

10
5.

07
32

4v
2

 [
m

at
h.

N
A

]
 9

 D
ec

 2
02

1

mailto:heather.wilber@oden.utexas.edu
mailto:damle@cornell.edu
mailto:townsend@cornell.edu

Barycentric form Exponential sums
Differentiation (closed-form formula) [7] Filtering and recompression [34]

Imputing missing data [45] Pole symmetry preservation [10]
Stable evaluation [2, 36] Robustness to noise [49]

Rootfinding [45], identifying extrema convolution [49], cross-correlations
Table 1

Operations that are efficient and robust in the two representations. Having both representations
and toggling between them allows us to compute a range of operations in signal processing.

can automatically construct near-optimal rational approximations to functions, and
we develop a framework that unifies the representations they construct. The result
is an automatic rational approximation method that enjoys two main advantages:
(1) it is more robust to various forms of corruption than either method alone, and
(2) taken collectively, the two representations are efficient for performing a range of
post-processing operations (see Table 1).

Periodicity is a common assumption encountered in the practical analysis of sig-
nals, and the trigonometric rational functions we use arise naturally from this assump-
tion. However, with some adjustments, our ideas can also be applied using rational
functions in the non-periodic setting (see subsection 5.9). One might also consider
settings where rational functions are fit to samples in frequency space, rather than
signal space. Extensive literature on this topic is available from the digital filtering
and optimal control communities [22, 46].

1.1. The approximation problem. Let f : [0, 1)→ R be an unknown contin-
uous periodic function of bounded variation, and suppose that for some integer N , we
observe 2N+1 noisy samples of f at T := {xj}2Nj=0, i.e., yj = f(xj)+sj for 0 ≤ j ≤ 2N .
Here, sj can be: (i) additive white Gaussian noise (i.i.d. normally distributed), (ii)
popcorn noise (sparsely corrupted or arbitrarily large errors), or (iii) bounded deter-
ministic errors. Throughout, we assume ‖f‖∞ = 1, where ‖ · ‖∞ is the infinity norm
on [0, 1), and that the mean value of f over [0, 1) is 0. Our central approximation
problem is to fit a special class of trigonometric rational functions (see section 2) to
the 2N+1 samples to construct rm, a type (m−1,m) trigonometric rational where m is
selected adaptively so that the sampling error satisfies maxxj∈T |f(xj)− rm(xj)| ≤ ε,
where 0 < ε < 1 is a tolerance parameter.

In practice, samples of f are often available under far from ideal circumstances.
For example, T may consist of poorly distributed (i.e., not equally-spaced) points
due to missing or corrupted data, N may be too small to adequately resolve features
of interest, or frequencies of interest may be cut off or otherwise distorted during
observations. We are interested in how well f can be recovered under such conditions.

1.2. Software. Once an approximant is constructed, we want to compute with
it reliably. Answering the following questions has shaped our software’s development:

1. Which applications are of importance? Our methods supply a general-purpose
approach for working with noisy samples from periodic, univariate signals. They
require no a priori knowledge about locations or types of singularities, and they
are designed to be flexible enough for use in a range of applications that involve the
detection and identification of events (e.g., ECG and geophone monitoring tasks,
engineering and financial applications where change-point detection is important,
and in the analysis of dynamical systems, such as periodic contagion modeling).

2. What properties should our approximants have? Like f , we want approximants

2

to be periodic, real-valued, and continuous on [0, 1). We employ trigonometric
rational functions, which are the periodic analogue of rational functions.

3. What form of approximant should we use? Trigonometric rationals can be ex-
pressed in many forms, but not all of these forms are numerically stable. For
stable evaluation and rootfinding, we use the barycentric formula [6]. For effi-
cient recompression and operations carried out in Fourier space, we represent the
Fourier transforms of our trigonometric rational approximants using short sums
of weighted complex exponentials (see Lemma 2.1).

4. Which tools should we provide? We offer a basic set of computational tools. This
includes simple algebraic operations (addition, products), calculus-based oper-
ations (integration, differentiation), and tools for filtering, (de)convolving, and
rootfinding/polefinding. Whenever possible, we automatically recompress rep-
resentations as trigonometric rationals/exponential sums to maintain efficiency.
One can combine these tools to perform more complicated tasks.

Accompanying this work is the open-source code REfit [59], which is written
in MATLAB and uses two classes called rfun and efun. An rfun object stores a
representation of f as a barycentric trigonometric rational function. An efun object
stores a representation of the Fourier transform of f as a weighted sum of complex
exponentials. After an rfun or efun object is constructed, it can be manipulated
and analyzed through the operations implemented in the package (see Table 2). The
commands are overloaded so that they can be applied to either type of object, and
binary operators can be used between objects of different type.

Table 2
A selection of REfit commands.

command Operation

+, -, .*, ./ basic arithmetic
diff(·), cumsum(·) differentiation, indefinite integration

conv(·) convolution
corr(·,·) cross-correlation

1.2.1. Connections to other work. In addition to the AAA algorithm [45]
and a large body of work on Prony’s method [9, 10, 47, 49, 50], several recent de-
velopments in rational computing are related to our work. In [18], the authors also
develop approximation methods that combine Prony’s method with the AAA algo-
rithm. Their work focuses on the recovery of parameters for extended models of
exponential sums with polynomial coefficients1 that can also include purely oscilla-
tory terms, whereas our focus is on the development of general-purpose software and
rational approximation tools. We consider the setting where exponential sums are
applied in Fourier space (corresponding to trigonometric rationals in signal space),
and in contrast, they use barycentric rational approximations in Fourier space to re-
cover sums of exponentials in signal space. For this reason, they do not make use of
trigonometric rational functions. While the models proposed here for the recovery of
signals are different from those in [18], the developments in [18] are relevant to our
setting. For example, the derivatives of a trigonometric rational function correspond

1This corresponds to using rational functions with poles of higher multiplicity. We find that it
is sufficient for our purposes to use clusters of simple poles.

3

to exponential sums in Fourier space with polynomial coefficients. The parameters of
such a model can be exactly recovered using the ideas in [18].

In [3], a trigonometric variant of AAA is introduced in the context of conformal
mapping. It is similar to the pronyAAA method we introduce in subsection 2.3.1.
However, a key difference is that it is not modified to account for any special con-
nection to approximations in Fourier space. Other popular and effective rational
approximation methods include the RKFIT algorithm (and software package) [5], the
vector fitting method [29], and the Loewner framework of Mayo and Antoulas [38],
which is closely connected to the AAA algorithm. These methods have not been ex-
plicitly adapted to the periodic setting, and the first two methods are not suited to
our needs as they require and can be sensitive to a set of initialization parameters
(e.g., guesses of the location of the poles). Recently, AAA has been combined with
RKFIT to overcome this difficulty [20]. The development of our software package
is largely inspired by Chebfun [19, 60], which is primarily designed for computing
automatically and adaptively with smooth functions. In some respects, our software
serves as an analogue to Chebfun for computing with non-smooth functions.

The rest of this paper is organized as follows: In section 2 we briefly review
trigonometric rational functions and the barycentric form. We introduce the trigono-
metric variant of the AAA algorithm that we use to construct barycentric trigono-
metric interpolants (see subsection 2.3). In subsection 2.4, we apply the regularized
Prony’s method (RPM) to construct approximations in Fourier space. In section 3, we
introduce stable Fourier and inverse Fourier transform methods for moving between
representations in the time and frequency domains. In sections 4 and 5, we give ex-
amples and descriptions of the algorithms for computing with these representations.

2. Trigonometric rational functions and their Fourier transforms. The
trigonometric rationals are the periodic analogue of rational functions [35, 37]. A
trigonometric rational of period 1 is the quotient of two trigonometric polynomials of
period 1, i.e., a function of the form

(2.1) r(x) =
p`(x)

qm(x)
=

∑`
j=−` aje

2πijx∑m
j=−m bje

2πijx
, x ∈ [0, 1).

We call r a type (`,m) trigonometric rational function. We follow the convention that
unless stated explicitly, a type (`,m) function is in reduced form, meaning that p`
and qm have no zeros in common. We restrict our interest to the family of period
1 trigonometric rationals rm of type (m−1,m) that are real-valued and continuous
on [0, 1). Furthermore, we assume that the roots of the denominator qm are simple.
Under these assumptions, if ηj is a root of qm, then so is its complex conjugate ηj , as
well as ηj ±K, where K is any integer. We say that a pole of rm is any root, ηj , of
qm such that 0 ≤ Re(ηj) < 1. In the same way, any root of pm−1 with a real part in
the interval [0, 1) is called a zero of rm.

2.1. Why trigonometric rationals?. Three key properties of this family of
functions make them ideal for our setting. First, like standard rational functions,
they are especially effective at resolving singularities. For example, for particular
choices of f , such as f(x) = |x− 1/2| − 1/4, it is known that trigonometric rationals
of type (m,m) can converge to f at a root-exponential rate with respect to m [55].
Second, these functions can be represented efficiently in Fourier space. We make
extensive use of the following fact:

4

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

Re

Im

Fig. 1. Left: A trignometric rational function rm (m = 44) approximating the shifted and
scaled cubic B-spline on the interval [0, 1) is constructed and plotted. The knots of the spline occur
at the dotted vertical lines. Away from the singularities, the absolute approximation error is on the
order of 10−11. Approximate knot locations (black dots) are automatically computed using the poles
of the rational r̃m(z) = rm(x), where z = e2πix (see (2.3)). Right: The poles of r̃m of magnitude
≤ 1 are plotted in the unit disk in the complex plane. They cluster toward the points e2πixk on the
unit circle, where each xk is a knot in the spline.

Lemma 2.1. Let rm(x) be a type (m−1,m) nonzero trigonometric rational func-
tion that is real-valued and continuous on [0, 1) with exactly 2m simple poles. Let
{ηj}mj=1 denote the collection of poles with Im(ηj) > 0. If the Fourier coefficients of
rm are given by {(r̂m)k}∞k=−∞, then there exist ωj such that

(2.2) (r̂m)k = Rm(k) :=

{∑m
j=1 ωje

αjk, k ≥ 0,∑m
j=1 ωje

−αjk, k < 0,

where αj = 2πiηj. Here, ωj is the complex conjugate of ωj.

Proof. See [53, Ch. 4].

Lemma 2.1 shows that the Fourier series of rm can be represented as sum of m
weighted decaying exponentials. We say that F(rm) = Rm is the Fourier transform
of rm, and similarly, F−1(Rm) = rm is the inverse Fourier transform of Rm.

Third, trigonometric rationals can be used for feature detection. For example, in
Figure 1, we plot the poles zj = e2πiηj , Im(ηj) > 0, of the rational function

(2.3) r̃m(z) =
zmpm−1(z)

zmqm(z)
, z = e2πix,

where rm(x) = pm−1(x)/qm(x) is a trigonometric rational approximation to a shifted
and scaled uniform cubic B-spline [16] f with knots at x = {1/6, . . . , 5/6}. The knots
are not easily identifiable in a plot of f , but the poles of r̃m, which are chosen adap-
tively via Algorithm 2.3, cluster toward the singularities and reveal their locations.
Using the five poles in {zj}mj=1 with the largest magnitudes, estimates of the knot loca-
tions are given by x̃k = arg(zk)/2π for 1 ≤ k ≤ 5. The radial coordinates of the poles
in Figure 1 also encode information about f in the frequency domain. The Fourier
coefficient f̂k is well-approximated by (r̂m)k = Rm(k), where Rm is as in (2.2). The
terms in Rm with |zj | � 1 have negligible influence when k is small, so they capture
aspects of the signal that are only observable at low frequencies.

5

2.2. Barycentric trigonometric rational functions. Large numerical errors
can be incurred when evaluating trigonometric rationals that are numerically con-
structed using (2.1) directly [21, 55]. Another natural way to represent rm is in a
pole-residue format with respect to the pairs of poles (zj = e2πiηj , 1/zj) of the ratio-
nal function r̃m in (2.3). Evaluation using this format is often reliable in practice, but
it can potentially result in catastrophic cancellation if the evaluation point is too close
to the poles. In the non-periodic setting, the AAA algorithm [45] safeguards against
such instabilities by using barycentric rational interpolants with backward-stable eval-
uation on the interval of approximation [2, 36]. Type (m−1,m−1) barycentric rational
interpolants of a function f on [0, 1) have the form

(2.4) vγ,tm =
ñm(x)

d̃m(x)
=

m∑
j=1

γj
x− tj

f(tj)

/
m∑
j=1

γj
x− tj

,

where for 1 ≤ j ≤ m, tj ∈ [0, 1). The trigonometric analogue of these interpolants is
described in [35], and more recently, in [3, 37]. Type (m−1,m) barycentric trigono-
metric rationals on [0, 1) take the following form:

(2.5) rγ,tm (x) =
nm−1(x)

dm(x)
=

∑2m
j=1 γjfj cot (π(x− tj))∑2m
j=1 γj cot (π(x− tj))

,

2m∑
j=1

γjfj = 0.

The interpolating points t = {t1, . . . , t2m}, always assumed to be distinct, are called
barycentric nodes, γ = {γ1, . . . , γ2m} are called barycentric weights, and fj = f(tj).
It is easily shown that rγ,tm (tj) = fj whenever each γj is nonzero [6], but it is not
obvious from (2.5) that rγ,tm is in fact a type (m− 1,m) trigonometric rational. This
can be seen by using the trigonometric polynomial `t(x) =

∏2m
j=1 sin(π(x− tj)), and

rewriting rγ,tm as `tnm−1/`tdm (see [35]). The condition
∑2m
j=1 γjfj = 0 enforces that

the numerator is a trigonometric polynomial of degree m−1, rather than m. It is not
clear from (2.5) where the poles of rγ,tm lie, and in particular, whether they lie off [0, 1)
(see subsection 2.3). Stability properties (and other advantages) of the barycentric
form were popularized in the context of polynomial interpolation [8], where γ is always
chosen so that dm(x) = 1. Analyses can be found in [2, 36], with discussion on stability
properties in the more general case, where dm(x) 6= 1, in [21, Sec. 2.2–2.3].

2.3. Approximations in time. In the noiseless setting, the barycentric ratio-
nal rγ,tm can be directly constructed from samples of f using an analogue of the AAA
algorithm (pronyAAA) that we introduce here. This supplies a fast, automated way
to construct trigonometric rational representations of signals. A major advantage of
AAA-type methods over other approximation schemes is that they can be blithely
applied to samples from non-uniform grids and can even be used for recovering func-
tions defined on disjoint sets of support [45]. In particular, these methods are robust
to missing samples. In Figure 2, we use pronyAAA to recover a function from data
that has been deleted in several corrupted regions.

2.3.1. Constructing barycentric trigonometric interpolants. Our con-
struction algorithm is a straightforward extension of the AAA algorithm (see Al-
gorithm 2.1), with differences being the use of trigonometric basis functions, the
restriction that the numerator is always of degree m−1, and the requirement that
the constructed interpolant has an even number of interpolating points.2 These re-
strictions are so that the approximant corresponds to a length m exponential sum

2This is so that rγ,tm may have an even number of simple poles.

6

am
p

li
tu

d
e

x

er
ro

r

x
Fig. 2. Left: 3000 samples from a function f are taken on an equally spaced grid from [0, 1).

However, the data inside the grey regions are corrupted and thus deleted from the sample (a total
of 609 observations are missing). The available data are plotted (blue, upper panel) and used to
construct a type (34, 35) trigonometric barycentric rational interpolant r35 via pronyAAA. The re-
sulting approximant, evaluated on an equally spaced grid and plotted (black, lower panel), imputes
the missing data in the grey regions. Right: The absolute error |f(x)− r35(x)| is plotted in black on
a logarithmic scale against the original grid of sampled points. The absolute error when pronyAAA
is applied to an uncorrupted sample of f with no missing data is also displayed (red).

in Fourier space. As with AAA, pronyAAA employs a greedy residual minimization
method to select interpolating points and iteratively build up an interpolant. We
briefly discuss the process here, and refer to [45] for details.

Let {f0, . . . , f2N} be the samples of a function f we seek to approximate, where
T = {xj}2Nj=0 ⊂ [0, 1) are the sample locations and f(xj) = fj . We first describe

how the barycentric weights are updated at each iteration. Suppose that at the mth

iteration, the barycentric support points for rγ,tm (x) in (2.5) are t = {t1, . . . , t2m} ⊂ T .

Let T̃ = T \ {t1, . . . , t2m}. We must now choose {γj}2mj=1. Let γ = (γ1, . . . , γ2m)T . As
in (2.5), rγ,tm = nm−1/dm, where nm−1, dm are trigonometric polynomials. We select
γ as the solution to the following constrained optimization problem:

(2.6) min
γ∈C

∑
xj∈T̃

(f(xj)dm(xj)− nm−1(xj))
2
, s.t.

2m∑
j=1

f(tj)γj = 0, ‖γ‖2 = 1.

This is similar to the constraint applied in the standard AAA algorithm (see step 2,
line (iii), of Algorithm 2.1), except that it additionally requires nm−1 to be of degree
m−1. The constraint is satisfied if we select a vector of the form γ = Qγ̃, ‖γ̃‖2 = 1,
where Q is a 2m × (2m−1) matrix with orthonormal columns that span the space

orthogonal to the vector (f(t1), . . . , f(t2m)). Since for each xj ∈ T̃ ,

(2.7) f(xj)dm(xj)− nm−1(xj) =

2m∑
`=1

(f(xj)− f(t`)) γ` cot(πxj − πt`),

we see that γ̃ is given by the last right singular vector of the matrix CQ, where

C ∈ R|T̃ |×2m has entries of the form Cj` = (f(xj)− f(t`)) cot(πxj − πt`), where each
xj is a unique member of T̃ .

Once γ is computed, we have constructed rγ,tm and the iteration is complete. If
the error maxxj∈T̃ |f(xj)− rγ,tm (xj)| is not sufficiently small, we begin the next iter-
ation by choosing two additional interpolating points (as we require an even num-

ber of interpolating points) from T̃ . It is not clear how to efficiently choose two

7

Algorithm 2.1 The standard AAA algorithm.

Input: tolerance parameter ε, sample locations T = {x0, . . . , x2N}, samples
{f(x0), . . . , f(x2N)}.
Output: barycentric support points t and weights γ defining vγ,tm in (2.4).

1. Set err = 1, m = 0, t = {}, T̃ = T , vγ,t0 = 0.

2. while err > ε
(i) Set tm+1 = argmaxxj∈T̃ {|f(xj)− vm(xj)|}.
(ii) t← t ∪ {tm+1}, T̃ ← T \ t.
(iii) With ñm+1, d̃m+1 as in (2.4), choose γ = (γ1, . . . , γm+1)T such that it
solves the following constrained optimization problem:

minimize
∑|T̃ |
j=1

(
f(xj)ñm+1(xj)− d̃m+1(xj)

)2
s.t. ‖γ‖2 = 1.

(iv) Set err ← maxxj∈T̃ |f(xj)− vγ,tm+1(xj)|.
(v) m← m+ 1.

end while
4. Compute poles and residues (see subsection 5.7 and [45, eq. 3.11]).
5. If there are spurious poles, apply cleanup (see subsection 2.3.2 and [45, sec. 4]).

points in a single step, so we introduce an interim step. The first point is cho-
sen as t2m+1 = argmaxxj∈T̃ |f(xj)− rγ,tm (xj)|, and then t and T̃ are updated appro-
priately. To pick the second point, we construct an interim trigonometric inter-
polant rγ,tm+1/2 with an odd number of interpolating points, using the basis func-
tions csc(π(x− tj)) instead of cot(π(x− tj)). The different basis functions ensure
that rγ,tm+1/2 is a trigonometric rational: see [35]. The weights in rγ,tm+1/2 are up-
dated by solving a problem similar to (2.6), though the constraint differs due to
the different basis functions [35]. The second interpolating point is then chosen as
t2m+2 = argmaxxj∈T̃ |f(xj)− rγ,tm+1/2(xj)|. A different strategy for choosing the sec-
ond point at each step is used in [3], but we find that such a choice adversely impacts
convergence in our setting.3

2.3.2. Spurious poles. As with AAA, nothing in the pronyAAA algorithm
directly controls where the poles of rγ,tm occur. The advantage of this approach is
that, unlike fixed-pole approximation methods, the pole locations are adaptively de-
termined and automatically cluster in patterns that are highly effective for resolving
singularities [56]. However, one drawback to this approach is that the conjugate-pair
symmetry of the poles is not explicitly enforced. A more problematic issue is that
so-called “spurious poles” may appear on the interval of approximation.

Poles that are undesirable or unnecessary are called spurious [6, 45]. They arise as
artifacts related to numerical error, but can also appear within mathematically valid
solutions to an interpolation problem constrained by (2.6). For example, a spurious
pole may co-occur with a nearby zero that effectively cancels out its influence except
within a small interval I, where I ⊂ [xj , xj+1] for some neighboring sample locations
xj < xj+1, so that for x /∈ I it holds that |rγ,tm (x) − f(x)| < ε. This is a perfectly

3One might wonder if it is possible to choose the interpolation points so that the pole locations are
restricted (or symmetries in pole locations are enforced). Such a challenge is of interest in rational-
based numerical methods [15, 61]. The Floater–Hormann interpolants are one such example [7], but
they have slower convergence rates than AAA-based interpolants.

8

Algorithm 2.2 The pronyAAA algorithm.

Input: tolerance parameter ε, sample locations T = {x0, . . . , x2N}, samples
{f(x0), . . . , f(x2N)}.
Output: barycentric support points t and weights γ defining rγ,tm in (2.5).

1. Set m = 1, t = {t1 = argmaxxj∈T |f(xj)|, t2 = argmaxxj∈T\t1 |f(xj)|}, T̃ = T \ t.
2. Solve for γ as in (2.7) to define rγ,t1 . Set err = maxxj∈T̃ |f(xj)− r1(xj)|.

3. While err > ε
for ` = 1, 2

(i) Set t2m+` = argmaxxj∈T̃ |f(xj)− rγ,tm+(`−1)/2|.
(ii) t← {t1, . . . , t2m+`}, T̃ ← T̃ \ t2m+`.
(iii) Update γ = (γ1, . . . , γ2m+`)

T by solving a constrained

optimization problem on T̃ (see (2.7) and discussion).
end for
err ← maxxj∈T̃ |f(xj)− rγ,tm+1(xj)|.
m← m+ 1.

end while

4. Compute poles and residues (see subsection 5.7).
5. If there are spurious poles, apply cleanup routine (see subsection 2.3.2).

acceptable way to solve (2.6), but it leads to a solution where ‖rγ,tm −f‖∞ is unbounded.
Spurious poles are eliminated in the standard AAA algorithm with an additional

cleanup routine [45], which we adapt to our setting. Pairs of spurious poles are de-
tected via their small residues or by the fact that they are real-valued. The barycentric
nodes nearest to the spurious poles are eliminated. This forces the degree of the in-
terpolant to decrease and requires the barycentric weights to be recomputed, which
changes the number and location of the poles. When poles cannot be eliminated with-
out destroying the approximation, it is usually because the function being interpolated
is not well-approximated by low to moderate type (m−1,m) trigonometric rationals.
We observe this, for example, when pronyAAA is applied to samples perturbed by
additive Gaussian noise. An example is described in subsection 4.2 that involves the
reconstruction of ECG data from 645 samples. The direct application of pronyAAA
to the noisy data is problematic. It results in 62 spurious poles appearing on [0, 1)
that create artificial peaks in the signal reconstruction. To overcome this, we need a
method of rational approximation that is robust to Gaussian noise.

2.4. Approximations in Fourier space. The pronyAAA algorithm constructs
trigonometric rational representations to signals directly from samples, but its exclu-
sive use is inadequate in many practical settings. For example, one cannot apply it in
the presence of Gaussian noise, and the barycentric form is not conducive to efficient
recompression techniques (see subsection 5.1). These issues can often be remedied by
representing f in Fourier space using the exponential sums in (2.2).

To construct the sums, we require the Fourier coefficients of f . We use the fast
Fourier transform (FFT) to compute the coefficients v = (f̂0, . . . , f̂N)T associated
with samples {f(xj)}2Nj=0, where xj = j/(2N + 1). When f is not a bandlimited
function (or has a bandlimit > N), this process introduces error into the Fourier
coefficients. We describe the error with the following notion:

9

Definition 2.2 (ε-resolution). For 0 < ε < 1, the ε-resolution of f is the smallest
non-negative integer Nε such that

‖f − ftrunc‖∞ ≤ ε,

where ftrunc is the best L∞([0, 1)) projection of f onto the functions of bandlimit Nε.

For bandlimited functions, N0 is the bandlimit of f . The ε-resolution for non-
bandlimited functions can be understood in relation to the smoothness of f and its
region of analyticity in the complex plane [55]. In our setting, the assumption is that
Nε is large. However, when f is well-approximated by a type (m−1,m) trigonometric
rational, Lemma 2.1 indicates that F(f) can be represented with far fewer degrees of
freedom via the exponential sum Rm. One way to find Rm is by fitting the nonlinear
model Rm(k) =

∑m
j=1 ωje

αjk to the Fourier coefficients f̂k, 0 ≤ k ≤ N . We emphasize
that m is unknown in the general setting and must be determined adaptively.

2.4.1. Regularized Prony’s method. To construct Rm, we follow an idea
in [10] and use the regularized version of Prony’s method (RPM) from [9]. Variants
of this method go by many names across various disciplines, and we refer to [49] for
an overview. The problem of finding Rm can be recast as a structured low rank ap-
proximation problem involving Hankel matrices. One can understand the connection
using the following lemma, a version of which was first proven by Prony in 1795 [50].

Lemma 2.3. Let N be an even integer.4 Let Rm be as in Lemma 2.1 and let
HRm be an (N/2 + 1)× (N/2 + 1) Hankel matrix with entries (HRm)k` = Rm(k+ `),
0 ≤ k, ` ≤ N/2, where N ≥ 2m. Let Pm(z) =

∑m
j=0 cjz

j be a polynomial with roots
zk = eαk , 1 ≤ k ≤ m. Then, rank(HRm) = m, and the null space of HRm is spanned
by {c, Sc, . . . , SN/2−mc}, where c = (c0, . . . , cm, 0, . . . , 0)T and S is the forward shift
matrix.

Proof. See [48, Lem. 2.1].

In our case, we seek Rm ≈ F−1(f). Lemma 2.3 indicates that this is equivalent

to finding a Hankel matrix HRm of rank m so that HRm ≈ Hv, where (Hv)jk = f̂j+k,
0 ≤ j, k ≤ N/2. Moreover, it shows that the complex exponentials in (2.2) are the
roots of a special polynomial, often referred to as Prony’s polynomial [49], whose
coefficients form a vector in the null space of HRm . The regularized Prony’s method
(RPM), described in pseudocode in Algorithm 2.3, finds a vector c of polynomial
coefficients in the numerical null space of Hv, i.e., c such that ‖Hvc‖2 ≤ ε. Unlike
in Lemma 2.3, Hv is not exactly of rank m, so the polynomial P(z) with monomial
coefficients given by the entries of c generally has N/2 roots. Since we only want
decaying exponentials in Rm, we keep only the m roots with modulus < 1. The
exponents {αj}mj=1 for Rm are determined from these roots, and a least squares fit to
a subset of Fourier coefficients of f supplies the weights {ωj}mj=1 (see Algorithm 2.3).

A qualitative error bound in terms of the singular values of Hv and more details
about the RPM are given in [9]. In some settings, such as in the example in Figure 3,
a good choice for the tolerance parameter ε may be unclear. In this case, we modify
Algorithm 2.3 so that ε is chosen automatically by detecting gaps in the small singular
values of Hv that indicate the presence of a numerical null space. Algorithm 2.3
naively implemented has an O(N3) cost because it requires finding the singular value
decomposition (SVD) of Hv. This is improved if one finds the SVD with an algorithm

4The statement and proof can be adjusted to account for odd N [9].

10

Algorithm 2.3 The regularized Prony method.

Input: tolerance parameter ε and Fourier coefficients v = (f̂0, . . . , f̂N)T .

Output: {(ωj , αj)}mj=1 defining Rm in (2.2), so that |Rm(j)− f̂j | ≈ ε.

1. Construct the Hankel matrix Hv, where (Hv)j+k = f̂j+k for 0 ≤ j, k ≤ N/2.
2. Compute the SVD of Hv to find c, where ‖Hvc‖2 ≤ ε, ‖c‖2 = 1.

3. Set P(z) =
∑N/2
`=0 c`z

`.
4. Find the m ≤ N/2 roots {zj}mj=1 of P(z) with |zj | < 1. Set αj = log zj .

5. Compute the least-squares solution to V ω = v, where Vjk = zjk+1, 0 ≤ j ≤ N ,
0 ≤ k ≤ m−1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.2

-0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 3. Left: A noisy recording of the trill portion of a Pacific blue whale’s song. The sample
consists of 6001 equally spaced observations recorded over 1.5 seconds [42]. Right: A type (274, 275)
trigonometric rational approximation to the signal. The approximant is constructed by applying
Algorithm 2.3 directly to the data with the tolerance parameter ε = (2×10−4)‖Hv‖2. We additionally
omit any terms in Rm with weights smaller than ε. The RPM filters out highly oscillatory noise
that is not well-captured by trigonometric rationals, making it easier to identify the time-localized
pulses in the trill. Once the approximant is constructed, one can toggle between a barycentric
representation and the RPM-constructed representation as a sum of complex exponentials to perform
various postprocessing tasks (see Table 2).

that takes advantage of fast matrix-vector products for Hankel matrices (e.g., the
randomized SVD [31] and Lanczos-based methods [26]).

2.4.2. The regularized Prony method as a filter. In practice, one expects
that samples of f are corrupted by noise. The RPM has a natural interpretation as a
type of filter. Rather than, for example, filtering out the high-frequency components
of a signal, it separates a signal into the sum of two parts by splitting the Hankel
matrix Hv into the sum Hv = HRm + HN . The first term encodes a sequence of
coefficients that are well–approximated in Fourier space by a length m sum of expo-
nentials (and thus correspond to a trigonometric rational). The second term encodes
a sequence of coefficients that are not well approximated by such an expression. This
is referred to as an annihilating filter in the literature on signals with so-called finite
rates of innovation [58]. The example in Figure 3 displays noisy data collected by a hy-
drophone. The noise is not well represented by low to moderate degree trigonometric
rationals, so this structured low rank approximation process filters it out.

3. Fourier and inverse Fourier transforms. The RPM and pronyAAA au-
tomatically construct compressed representations of f , but these representations are
very different from one another. This section describes Fourier/inverse Fourier trans-
forms that allow us to move between these representations. If Rm is a length m sum of
exponentials, the existence of a trigonometric rational rm = F−1(Rm) is guaranteed
by Lemma 2.1. However, the lemma does not reveal if or how rm can be expressed in
barycentric form. In the same way, given a trigonometric barycentric interpolant rγ,tm ,

11

it is not clear from (2.5) how one can recover the sum of exponentials Rm = F(rγ,tm).
In fact, the exact recovery of one representation from the other is an ill-conditioned
problem. With this in mind, we develop lossy but stable transform routines. In the
REfit software [59], these transforms are accessed with the commands ft and ift.

3.1. The forward transform. Given rγ,tm as in (2.5), we seek

Rm(k) = F(rγ,tm)(k) =

m∑
j=1

ωje
αjk, k ≥ 0.

The parameters of interest can be expressed explicitly in terms of the poles and
residues of rγ,tm . For each j, αj = 2πiηj and ωj = e−ηjRes(rγ,tm (z), eηj), where z = e2πix

and {ηj}mj=1 are those poles of rγ,tm with Im(ηk) > 0 [10]. However, using these formu-
las requires the accurate computation of the poles ηj , 1 ≤ j ≤ m, and their residues.
In general, this is an ill-conditioned problem involving extrapolation off the interval of
approximation. Trigonometric rationals with different pole configurations can behave
almost indistinguishably on [0, 1), so it is often hopeless to recover the pole locations
from observations on the interval. Known stability results depend on the poles of rγ,tm
being sufficiently well-separated from one another and the residues Res(rγ,tm (z), eηj)
being bounded well away from zero [Sec. 2][43]. In our setting we assume that rγ,tm is
an approximation to a function f that has algebraic singularities. Good resolution of
these features is possible precisely because rγ,tm has poles that cluster up near the sin-
gularities (see Figure 1). For this reason, we do not expect that one can compute the
pole locations or residues with high accuracy. The exact recovery of the parameters
of Rm from samples is a related problem that is also ill-conditioned [49, 54].

Instead of trying to recover Rm exactly, we apply a regularization that finds
R̃m̃ ≈ Rm, where m̃ ≤ m.5 The poles of rγ,tm can be approximately computed by solv-
ing a (2m+1)× (2m+1) generalized eigenvalue problem (see subsection 5.7). Suppose
{η̃k}mk=1 are the computed poles with Im(η̃k) > 0. We set α̃k = 2πiη̃k. Then, instead
of computing {ω1, . . . , ωm} using the explicit formula, we find a vector of weights
ω̃ = (ω̃1, . . . , ω̃m)T by solving the overdetermined linear system Vα̃ω̃ = r̂, where
r̂ = [(r̂γ,tm)0 · · · (r̂γ,tm)M]T is a vector of Fourier coefficients of rγ,tm , and (Vα̃)j,k = eα̃k+1j ,

0 ≤ j ≤M , 0 ≤ k ≤ m−1. All of the Fourier coefficients of r̃m̃ = F(R̃m̃) are exactly
produced by a length m sum of exponentials with exponents α̃k = 2πiη̃k. (Some of
the weights in the sum may vanish, and if so we reduce the length of the sum ap-
propriately.) In infinite precision, we would only need m̃ Fourier coefficients of r̃m̃ to
solve for the weights ω̃ (see Lemma 2.3). Instead, we must fit to the coefficients of the
nearby rational rγ,tm , and so apply a modest level of oversampling. We then test the
accuracy of R̃m̃ against a randomized sample of the Fourier coefficients of rγ,tm , and
systematically increase M as needed. It is typically sufficient to choose M = 2m.

Since finding {eα̃j}mj=1 and solving Vα̃ω̃ = r̂ are each O(m3) operations, the cost
for computing R̃m̃ is dominated by procuring an accurate sample r̂. This is done first
by evaluating 2Nε+1 samples of rγ,tm , where Nε is the ε-resolution of rγ,tm , on an equally
spaced grid, and then applying an FFT. By default, ε is taken to be near machine
precision, and Nε can be approximately found automatically using, for example, an
adaptation of Chebfun’s chop algorithm [1]. In total, computing R̃m from rγ,tm requires
O(Nε logNε +Nεm+m3) operations.

5If one allows for some of the weights in Rm to be zero, then one can construct sums of expo-
nentials where it is always true that m̃ = m.

12

3.2. The inverse transform. We now assume Rm(k) =
∑m
j=1 ωje

αjk is given,
where each αj is distinct, Re(αj) < 0, ωj 6= 0, and k ≥ 0. We seek an efficient
representation for rm = F−1(Rm), which is defined to be

rm(x) =

−1∑
k=−∞

Rm(−k)e2πixk +

∞∑
k=0

Rm(k)e2πixk.

It is not always true that rm is a type (m− 1,m) trignometric rational function.
However, this result does hold under the additional assumption that Rm(0) = 0, or,
equivalently,

´ 1
0
rm(x)d(x) = 0. We take this to be the case, and our objective is to

construct a barycentric interpolant rγ,tm to rm. We show in the next lemma that for
any set of distinct points t = {t1, . . . , t2m} ⊂ [0, 1), there is γ such that rγ,tm = rm.

Lemma 3.1. Let rm be a type (m− 1,m) trigonometric rational function with
simple poles that is real-valued, continuous, and periodic on [0, 1). Let t ⊂ [0, 1) be a
set of 2m distinct interpolating points. Then, there is a set of weights γ such that the
trigonometric barycentric interpolant rγ,tm recovers rm exactly.

Proof. Consider the denominator qm in rm = pm−1/qm, and assume that qm has
no shared zeros with pm−1. Since qm is a trigonometric polynomial, we can write it
in barycentric form with respect to the interpolating points in t:

(3.1) qm(x) = `t(x)

2m∑
j=1

wjqm(tj) cot(π(x− tj)), `t(x) =

2m∏
j=1

sin(π(x− tj)),

where wj = 1/
∏2m
k=1,j 6=k sin(π(tk − tj)) are the polynomial barycentric weights [8] as-

sociated with t. By setting γj = qm(tj)wj and fj = rm(tj), we have via (2.5) that there
is rγ,tm (x) = n(x)`t(x)/qm(x) for some function n, where for each j, rγ,tm (tj) = rm(tj).
We must now show that n(x)`t(x) = pm−1(x).

The barycentric trigonometric polynomial interpolant to pm−1 on t exists and is
given by pm−1(x) = `t(x)

∑2m
j=1 wjpm−1(tj) cot(π(x − tj)). Expanding this in expo-

nential form, we have that pm−1(x) = cme
2πimx + . . .+ c−me

−2πimx, where

cm =
1

4i
exp

−πi 2m∑
j=1

tj

 2m∑
j=1

wjpm−1(tj), c−m = −exp

2πi

2m∑
j=1

tj

 cm.

Since pm−1 is of degree m−1, cm = c−m = 0, so
∑2m
j=1 wjpm−1(tj) = 0. This implies

that
∑2m
j=1 γjrm(tj) = 0, as rm(tj) = pm−1(tj)/qm(tj). Now it is clear that n(x)`t(x)

is also a trigonometric polynomial of degree m−1. Since n`t interpolates pm−1 at 2m
points, they must agree everywhere.

The computation of γ as in Lemma 3.1 via polynomial barycentric weights and
the evaluation of qm is numerically unstable except in very special cases [55]. The
stable computation of γ and subsequently, the error ‖rm − rγ,tm ‖∞, depends strongly
on the choice of t. Some of the more obvious methods for selecting the nodes perform
poorly and lead to instabilities in the form of spurious poles. The following discussion
is somewhat technical, but it introduces an effective heuristic for choosing a “good”
set of barycentric nodes and then stably constructing rγ,tm ≈ rm.

3.2.1. A modified pronyAAA for rational recovery. A simple strategy for
choosing nodes is to evaluate rm on a fine enough grid and then apply m steps of

13

pronyAAA to construct the interpolant rγ,tm . This method does not usually exactly
recover rm (see the discussion of exact recovery in subsection 3.1), and it can be the
case that the error ‖rγ,tm − rm‖∞ is unacceptably large. A few additional steps of
pronyAAA may drive the error down, though this results in a trigonometric rational
interpolant with more poles than rm. However, a more pernicious problem with this
approach is that demanding accuracy close to machine precision from AAA-based
methods can result in spurious poles on the interval of approximation that cannot be
eliminated without adversely impacting accuracy [45].

To avoid introducing spurious poles, we use the poles of rm, which are known
explicitly from Rm via Lemma 2.1. There is no hope of exactly preserving the poles.
However, if m is fixed and rγ,tm is constructed such that it approximately preserves
the given poles, then it cannot also admit arbitrary spurious poles. This motivates
a three-step procedure for constructing rγ,tm that mixes a pole-preservation strategy
involving a type (m+K−1,m+K) trigonometric rational with a data-driven strategy:

(1) A candidate set t̃ of 2m + 2K barycentric nodes is chosen, where K ≥ 0 is
an oversampling parameter. Subsets of t̃ admit type (m−1,m) barycentric
trigonometric interpolants with poles close to those of rm.

(2) The interpolant rγ̃,t̃m+2K is constructed via a pole-preserving least-squares fit
to samples of rm (discussed below), so that it has 2m poles close those of rm.

(3) The pronyAAA cleanup procedure (see subsection 2.3.2) is applied to remove
the 2K poles of rγ̃,t̃m+2K with the smallest residues. This selects t, a set of 2m
barycentric nodes, from t̃. The barycentric weights {γ1, . . . , γ2m} are then
computed via (2.6). Note that the poles of rγ,tm must be recomputed.

A version of this method without oversampling (i.e., with K = 0, t̃ = t, and γ̃ = γ)
is useful for motivating how the barycentric nodes in Step (1) are selected. In such
a setting, Step (2) simplifies substantially and Step (3) is not needed. However, it
is more stable to choose K > 0, and in practice, we usually take K = 1. We first
describe the K=0 case, and then use it to explain the method for K > 0.

Case 1: K = 0. Suppose that T , the discretization of [0, 1) from which t is
chosen, consists of points x0 < x1 < . . . < x2N . Let P = {η1, . . . , η2m} be the poles of
rm. Ideally, rγ,tm can be constructed so that its poles are given by P . Noting that the
poles of rγ,tm are the zeros of the denominator polynomial dm(x) =

∑2m
j=1 cot(π(x− tj))

in (2.5), we introduce the matrix DT ∈ C(2m+1)×(2N+1):

(3.2) DT =

`1,0 · · · · · · `1,2N

...
...

`2m,0 · · · · · · `2m,2N
rm(x0) · · · · · · rm(x2N)

 , `j,k = cot(π(ηj − xk)).

Using DT , we relate the selection of barycentric nodes to a column subset selection
problem. Indexing from 0, denote by (DT)k the kth column of DT . The kth column
is associated with the point xk in T . The set of nodes t = {xk1 , xk2 , . . . xk2m} then
corresponds to a set of columns that forms the submatrix Dt = [(DT)k1 , . . . , (DT)k2m].
From Lemma 3.1, there is γ = (γ1, . . . , γ2m)T such that rγ,tm = rm, and γ is in the
null space of Dt. The first 2m entries of Dtγ are evaluations of dm at its zeros.
The last entry of Dtγ is also zero, since numerator of rγ,tm is of degree m−1 (see
subsection 2.2). If γ can be computed from Dt accurately, then clearly t is an excellent
set of interpolating points. However, the accuracy of this computation depends on
properties of Dt. In particular, there are stable ways to compute γ if 2m−1 of the
columns of Dt form a well-conditioned matrix [28].

14

This suggests that we choose the points t by choosing a subset of columns from DT

that are close to orthogonal. Several kinds of rank-revealing algorithms can be applied
to DT to approximately solve this problem, including the column-pivoted QR (CPQR)
algorithm. This constructs the factorization DTP = QTR, where P is a permutation
matrix, and the leading ` ≤ rank(DT) columns of DTP have been greedily selected to
minimize their linear dependence on one another [26, Sec. 6.4]. As a consequence of
Lemma 3.1, any submatrix of DT consisting of 2m or more columns is rank-deficient,
so rank(DT) ≤ 2m−1.6 We choose 2m−1 points in t by performing CPQR on DT .
In principle, the final point in the set t should be chosen so that the accuracy of the
computed right singular vector in the nullspace of Dt in (3.2) is maximized. Instead,
we choose the point associated with the column in the trailing (|T |−2m+1) columns
of DTP that has the smallest 2-norm. Though they are selected quite differently,
these CPQR-selected barycentric nodes concentrate around singularities, just like the
nodes selected by pronyAAA (see subsection 3.2.2 and Figure 4).

If one can compute the vectors in the null space of Dt accurately, then γ can be
taken as the last right singular vector of Dt. However, this is rarely the case. The
accurate recovery of γ from Dt can be problematic even with the best possible choice
t ⊂ [0, 1). For this reason, we require a strategy that additionally incorporates a fit
to samples. The simplest idea is to use the 2m points as selected above and then find
the barycentric weights via (2.6). However, this strategy does not seem to eliminate
spurious poles or reduce error as effectively as the procedure we describe below.

Case 2: K 6= 0. Typically, it is sufficient to take K = 1, though one can also
choose a larger K. Construct an oversized candidate set t̃ = {xk1 , . . . , xk2m+2K

} using
the CPQR-based method from Case 1. Then Dt̃ is of size (2m+ 1)× (2m+ 2K) and
has a numerically detectable null space. We compute the barycentric weights of the

interpolant rt̃,γ̃2m+2K by requiring that γ̃ = Q̃η, where the columns of Q̃ are orthogonal
and approximately span the null space of Dt̃. We select η to minimize ‖CQ̃η‖2, with
C constructed as in (2.7). Approximate poles and residues of rt̃,γ̃2m+2K can then be
computed in O(m3) operations (see subsection 5.7). It is almost always the case in
practice that 2K poles of rt̃,γ̃2m+2K are negligible in that they have residues with tiny
magnitudes. With this in mind, we sort the poles by the magnitude of their residues.
As in the pronyAAA cleanup routine, for each of the 2K poles with the smallest
residues, we eliminate the point in t̃ that is nearest to the pole. The remaining points
in t̃ are taken as t, and the set of barycentric weights are found as in a standard step
of pronyAAA, i.e., as the minimizer of (2.6).

This strategy first selects a set of interpolating points for which an interpolant
with good properties (e.g., poles off [0, 1)) is known to exist, and then fits the inter-
polant to samples of rm. We remark that this is a heuristic. There is no guarantee
that spurious poles are avoided or the original poles of rm are preserved. It remains
unclear why the solution in Step (3) often inherits the good pole properties associated
with the initial solution in Step (2), and under what circumstances this inheritance
can be assured. Nonetheless, we find that the method works extremely well in many
cases where simply applying pronyAAA fails.

Implementational details. In practice, we start with K = 0. When γ can be
recovered with high accuracy directly from Dt , we recover it and end the procedure.
This can be checked by computing the singular values of Dt or by using estimates
related to the CPQR routine [28]. When this isn’t possible, we set K = 1 and
enlarge our selection of candidate barycentric nodes, which requires no additional

6If we assume that rm has a denominator of exactly degree m, then rank(DT) = 2m−1.

15

0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Re

Im

0 0.2 0.4 0.6 0.8 1

x

10
-4

10
-3

10
-2

10
-1

10
0

dj = |ηj − .5|

Fig. 4. Left: poles of rbary (blue) and rift (orange) are plotted in the complex plane.
Here, rbary is a type (18, 19) barycentric interpolant to f constructed via pronyAAA, and
rift = F−1(R19) ≈ f , where R19 is an exponential sum as in (2.2), and rift is constructed by
applying the inverse Fourier transform from subsection 3.2.1 to R19. The function f is given by
f(x) = | sin(π(x − 1/2))| − π/2, and has a singularity at x = 1/2. Right upper: The locations of
the barycentric nodes for rbary (blue) and rift (orange). Right lower: The distances dj = |ηj − .5|
from the singularity, where each ηj is a pole with Im(ηj) > 0, are sorted by size and plotted on a
logarithmic scale (shown in blue for rbary, orange for rift). This shows that both the pronyAAA-
constructed interpolant and the CPQR-based interpolant have poles that exhibit the tapered-type
clustering associated with quasi-optimal rational approximation schemes [56].

computation. Then, we move on to Steps (2) and (3). If the method fails and spurious
poles are detected, we first try enlarging t̃ by setting K = 2 and trying again. If this
fails, it can often be remedied by resampling rm on a denser grid and starting over
at Step (1). When resampling does not solve the issue, we instead construct a stable
barycentric interpolant using pronyAAA by accepting a lower level of accuracy.

3.2.2. Example: Two types of barycentric interpolants. In Figure 4,
we compare the properties of two types of rational approximations to the function
f(x) = | sin(π(x− 1/2))| − π/2. First, we apply pronyAAA to a set of 6000 sam-
ples of f taken on an equally-spaced grid T . This constructs rbary, a type (18, 19)
trigonometric rational, where away from the singularity, |f(x)−rbary(x)| ≈ 10−8. The
locations of the barycentric nodes selected by pronyAAA are plotted (blue) in the up-
per right panel of Figure 4. In the left panel, a subset of the poles of rbary are plotted
(blue) in the complex plane. Both the nodes and the poles cluster up near the sin-
gularity x = 1/2. Shown in red in the same plots are the CPQR-selected barycentric
nodes from subsection 3.2.1, and the poles of the barycentric trigonometric rational
rift = F−1(Rm), where m = 19. Here, Rm is an exponential sum constructed via
the RPM using samples of f on T , and rift is constructed using the procedure in
subsection 3.2.1. The nodes and poles of rift also cluster near x = 1/2, but in spatial
patterns that are quite different from those of rbary. A closer investigation of the pole
clustering patterns (see Figure 4, lower right) reveals that in both cases, the sets of
distances d1 ≤ d2 ≤ . . . ≤ d19 from the singularity, where dj = |ηj − 1/2| and each ηj
is a pole with Im(ηj) > 0, have the tapered-type spacing on a logarithmic scale that
is associated with best (and near-best) convergence rates [56]. In addition to reveal-
ing that these functions have properties associated with quasi-optimal approximation
power, the locations and clustering patterns of the nodes or poles can be used to
identify singularities, extract features, or classify signals.

16

0 0.2 0.4 0.6 0.8 1
10

-15

10
-10

10
-5

Time domain
er

ro
r

(Prony’s method alone)

(pronyAAA + Fourier transform)

0 500 1000 1500 2000 2500
10

-9

10
-8

10
-7

10
-6

Frequency domain

(Prony’s method alone)

(pronyAAA + Fourier transform)

Fig. 5. Left: The absolute error in approximating f(x) = | sin(2πx)/4+exp(sin(2πx))|/4+c with
two different rational approximants, F(Rb) (blue) and F(Rr) (red), is plotted on a logarithmic scale
at 3000 equally-spaced points: Rb is an exponential sum of length 14 that was adaptively constructed
via the RPM (see Algorithm 2.3) from a sample consisting of only 1401 equally-spaced points. The
tolerance parameter is set to ε = 10−10, but the coarseness of the sample limits the achievable
accuracy of the representation. Rr (red) is constructed by first applying pronyAAA in signal space

to construct a barycentric interpolant rγ,tr , and then using the Fourier transform function to compute
Rr = F(rγ,tr). Right: The absolute errors in Fourier space between accurately computed Fourier
coefficients of f and the exponential sums Rb (blue) and Rr (red) are plotted on a logarithmic scale
against the Fourier modes 0, 1, . . . , 2500.

4. Signal reconstruction in time and frequency space. With the Fourier
and inverse Fourier transforms available, we can combine the advantages of pronyAAA
and the RPM to overcome various issues, such as undersampling or noise. We illus-
trate this idea with two examples. Then in section 5, we describe a collection of
algorithms for computing with trigonometric rational functions and exponential sums
that exploits our ability to move stably between the representations.

4.1. An undersampled function. In this example, we consider a function
f(x) = | sin(2πx)/4 + exp(sin(2πx))|/4 + c, which has Fourier coefficients that decay
asymptotically like O(|k|−2), where k denotes the kth Fourier mode. Here, c is a
normalization parameter ensuring that the mean value of f over [0, 1) is zero. We
suppose that f is sampled at 1401 equally spaced points, and that an exponential sum
representing F(f) is desirable for downstream tasks. The direct application of Prony’s
method performs poorly because f is undersampled. We denote the constructed
exponential sum as Rb. The error in the computation of the Fourier coefficients via
the FFT is on the order of 10−6, so we cannot expect accuracy much better than
that. An alternative approach is to apply pronyAAA to construct the barycentric
interpolant rγ,tr , and then compute Rr = F(rγ,tr) as in subsection 3.1.

In Figure 5 (left), we use the pole-residue format to directly evaluate the values of
the rationals associated with the two types of constructed exponential sums. There is
a tiny band around the two singularities where the errors incurred by the two meth-
ods are approximately the same. Elsewhere, the accuracy achieved by first applying
pronyAAA is nearly double that attained by Prony’s method alone. The error in
recovering the Fourier coefficients of f is diffuse and more accurate, especially in the
extrapolation of the tail (see Figure 5, right). The exponential sum Rr, with only 13
terms, represents f with highly localized error behavior, and it is in a form efficient
for storage, convolution, and other tasks (see section 5).

4.2. Reconstruction of an ECG signal. Rational approximation methods
are effective in many biomedical monitoring tasks, including the processing of elec-

17

trocardiogram (ECG) signals [23, 25]. In [23], rational functions constructed in the
orthogonal rational Malmquist–Takenaka basis are used to reconstruct ECG signals
and then classify them. The rationals perform with better overall compression prop-
erties and have several other advantages when compared to wavelets, splines, and
other families of functions [40]. We do not expect to outperform such a highly spe-
cialized scheme with our approach. However, this example illustrates that our more
general-purpose method effectively constructs a denoised representation of the signal.

In this example, we apply the RPM and fit a rational function directly to noisy
ECG data taken from the PhysioNet MIT BIH arrhythmia database [44]. As in [23],
the location of its poles can be used for classification and feature recognition tasks.
Using the inverse Fourier transform function described in subsection 3.2.1, we can
construct a barycentric trigonometric rational representation of the function, which
is a convenient format for identifying local extrema (see section 5). This can all be
done with three lines of code in REfit:

R = efun(data, ’tol’, 1e-3);

r = ift(R);

extrema = [min(r); max(r)];

If one tries to use pronyAAA directly, the result is a trigonometric rational with
200 poles, and the data set only contains 645 samples. Of these poles, 62 are spuri-
ous and lie on the interval of approximation. This happens because the pronyAAA
algorithm does not distinguish between the signal and the noise, and it tries to induce
a fit to noise by adding poles. A better approach is first to apply the RPM. Within
the first two lines of the above code, several tasks are being executed: First, the ex-
ponential sum Rm (here, m = 35) stored in R is constructed via the RPM. The RPM
automatically filters out additive noise on the sample with magnitudes approximately
at or below the tolerance level ε = 10−3. Then, R is used to extrapolate high-frequency
information that lies beyond the noise limitation (see Figure 6, left). This provides
an enriched sample for selecting interpolating points and constructing the barycentric
interpolant r. The construction of r in this way can be viewed as a form of super-
resolution [12]. If one tries to construct a barycentric interpolant without enriching
the sample by extrapolation in frequency space, then spurious poles appear that one
cannot eliminate without destroying the accuracy of the approximation. This is be-
cause the signal is not well-resolved in the time domain at the original sample rate.
Once r is available, one can then automatically and efficiently perform a variety of
processing tasks, such as rootfinding and the detection of maxima and minima.

5. Algorithms for computing with rationals and exponential sums. This
section gives an overview of several of the algorithms used in our software [59] to
compute with trigonometric rationals and exponential sums. The Fourier and inverse
Fourier transform functions are used to move between representations as needed. For
operations on trigonometric rationals that return trigonometric rationals, we represent
the resulting function using exponential sums or barycentric forms when possible.

5.1. Compression for suboptimal sums of exponentials. Exponential sums
are closed under addition and multiplication, but a sum Rm resulting from the naive
application of these and other operations is often suboptimal in the sense that a
shorter sum R̃m̃ exists, where |Rm(j)− R̃m̃(j)| < ε for j ≥ 0. A major advantage of
the exponential sum format is that R̃m̃ can be constructed with a cost that usually
depends on m, rather than the ε-resolution parameter Nε associated with Rm. Using

18

-500 0 500

10
-6

10
-4

10
-2

10
0

extrapolated Fourier data

original Fourier data

Frequency domain
m

a
gn

it
u

d
e

of
co

effi
ci

en
ts

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time domain

a
m

p
li

tu
d

e
o
f

th
e

si
gn

a
l

Fig. 6. Left: The magnitude of the Fourier coefficients of the original signal (orange). The
decay of the coefficients stagnates due to noise in the signal, and this pollutes the higher frequencies.
Once an exponential sum representation Rm is constructed, we can extrapolate to higher frequencies
by evaluating Rm, and thereby super–resolve the signal (blue). Right: A barycentric rational approx-
imant (blue) in the time domain is computed using the extrapolated Fourier data. It is a denoised
version of the original ECG signal (orange). Local extrema are identified (black dots) using the
differentiation and rootfinding algorithms from section 5.

AAK theory for finite rank Hankel operators, one can show (see [47, Thm. 3.2]) that
there is a length m̃ ≤ m approximation that satisfies

‖F−1(Rm)−F−1(R̃m̃)‖L2
≤ 2σm̃(ΓR),

where ΓR is the infinite matrix with entries (ΓR)j+k = Rm(j+k), j, k ≥ 0. In [47], an

O(m3) algorithm for recovering R̃m̃ directly from the parameters of Rm is developed;
a closely-related approach using only properties of finite-dimensional Hankel matrices
is described in [9]. This method is successfully employed in [33] within a scheme that
uses rational approximations to solve Burger’s equation. However, the implementation
requires the judicious use of high-precision arithmetic, which we wish to avoid.

Instead, we note that when a length m̃ < m recurrence is approximately satisfied
by the sequence {Rm(0), Rm(1), . . .}, this fact is often captured well with a modified
Prony’s method that involves only a small sample of 2M + 1 observations of Rm,
where M > m. Specifically, we construct a small (M+1)× (m+1) rectangular Hankel
matrix H with entries Hjk = Rm(j+k). Then, we apply the RPM from Algorithm 2.3

on H to construct R̃m̃. We check the error |Rm(j)− R̃m̃(j)| on a random sample of
integers 0 ≤ j ≤ N , where N is the ε-resolution parameter used in the original
construction of Rm. When the error is too large, we increase M and try again. The
cost to compute R̃m̃ is O(Mm2). In a worst-case scenario, M can grow as large as N .
We observe experimentally that this approach is often very effective, but more work
is needed to understand the conditions under which it is guaranteed that M � N .

5.2. Sums of trigonometric rationals. If S` and Gn are exponential sums,
then Rm = S` + Gn can be constructed straightforwardly. However, Rm may be
of suboptimal length. We apply the compression algorithm with ε ≈ εmach to
Rm, where m = ` + n, to find R̃m̃. This “compression–plus” method is espe-
cially useful for tasks that involve repeated summations and require many recom-
pressions. The compression–plus algorithm is applied in REfit when the ‘+’ operator
is used between efun objects. For summing trigonometric rationals s` and gn rep-
resented as rfuns, we simply evaluate the sum and then apply pronyAAA to find

19

0 0.2 0.4 0.6 0.8 1

-1

0

1

x

0 0.2 0.4 0.6 0.8 1

0

Re

I
m

0 0.2 0.4 0.6 0.8 1

-1

0

1

x

0 0.2 0.4 0.6 0.8 1

0

Re

I
m

Fig. 7. Left (top): an exponential sum S` representing a function f with singularities (inspired
by Chebfun’s “wild” function [19]) is constructed as an efun, and s` = F−1(S`) ≈ f is plotted in
the time domain. Here, ` = 116 and ‖s` − f‖∞ ≈ 10−9‖f‖∞. Left (bottom): Locations of poles of
s` occurring in a small strip of width .2 around the real line are plotted in the complex plane. Right
(top): The convolution rm = s` ∗ gn is computed (m = 53), stored as an efun, and plotted in the
time domain. Here, gn (n = 13) is a trigonometric rational approximation to a narrow Gaussian.
Right (bottom): The poles of rm still cluster near the singularities of f , but less tightly, reflecting
the fact that f ∗ gn is a smoothed version of f .

rm = s` + gn.7 The rfun and efun objects can also be combined in various ways. The
syntax r = s + g adds two rfuns and returns an rfun by default. The expression
[r, R] = s + g automatically retrieves the efun R = ft(r) in addition to r. When
an rfun and efun are summed together, both rfun and efun outputs are returned.

5.3. Convolutions of trigonometric rationals. The convolution of trigono-
metric rationals s` and gn (denoted s` ∗ gn) can be constructed in Fourier space by
finding the exponential sum Rm0

= (Fs`)(Fgn) = S`Gn. The product can be com-
puted directly in a closed form, but this results in a large sum with m0 = `n. To find
a shorter sum R̃m̃, we first find an upper bound m on m̃ by determining how many
terms in Rm0 have a negligibly small influence. We also check the decay in the tail
of the first m0 Fourier coefficients given by S`Gn to determine if even fewer samples
are needed. Then, we apply the compression algorithm using rectangular Hankel ma-
trices of the form Hjk = S`(j + k)Gn(j + k). For efuns, this operation is accessed by
typing S.*G. For rfuns, the command conv(s,g) uses the Fourier and inverse Fourier
transform functions to apply the above scheme. Figure 7 displays an example where
s` (` = 116) is an approximation to a function f with several singularities, and gn
(n = 13) is an approximation to the normalized Gaussian g(x) = 1√

2πσ
e−x

2/2σ2 − 1,
with σ = .01. Our convolution algorithm constructs rm ≈ f ∗ g, a smoothed version
of f . The method automatically chooses m = 53, about half the degrees of free-
dom required for approximating f with s`. Little accuracy is lost in this process:
‖Rm − S`Gn‖∞ ≈ 10−11‖S`Gn‖∞.

5.4. Products of trigonometric rationals. The product of two trigonometric
rationals r` and sn in the time domain is equivalent to their convolution in Fourier

7If this proves difficult due to spurious poles, we use the Fourier and inverse Fourier transforms
to convert to efuns, perform the addition, and then convert back to an rfun.

20

space. If R` = F(r`) and Sn = F(sn) are each sums of complex exponentials, then

(5.1) F(r`sn)(k) = (R` ∗ Sn)(k) =

∞∑
j=−∞

R`(k − j)Sn(j) ≈
Nε∑

j=−Nε

R`(k − j)Sn(j),

where Nε is the ε-resolution parameter for Sn. The evaluation of (5.1) at M consecu-
tive points requires a matrix-vector multiply with a Toeplitz matrix. Since r`sm is a
trigonometric rational with at most 2`+2n poles, we apply the compression algorithm
to find Gm ≈ F(r`sn)(k), with m = ` + n. If R and S are efuns, this command is
accessed by typing conv(R,S). If r` and sn are represented with rfuns r and s, respec-
tively, then r.*s simply applies pronyAAA to the function r`(x)sn(x)to construct a
new rfun representing r`sn.8

5.5. Differentiation. The kth derivative of rm, denoted r
(k)
m , is a trigonometric

rational of type (km−1, km). However, r
(k)
m is fundamentally of a different form

than the trigonometric rationals constructed via pronyAAA and the RPM. It has m
conjugate pairs of poles, and each pole is of multiplicity k. It is possible to represent
derivatives with trigonometric rationals with simple poles, but it isn’t always sensible.
By default, REfit returns a function handle for evaluating derivatives (or their Fourier
transforms) whenever diff(·,k) is applied to an rfun (or an efun). However, one can
also use diff(·,k,‘type’), to specify that an efun or rfun should be returned.

Differentiation in Fourier space. When rm is represented by the complex ex-
ponential sum Rm in Fourier space, the Fourier coefficients of r

(k)
m are given by

F(r
(k)
m)(j) = (2πij)kRm(j). The command h=diff(R,k) by default returns a han-

dle for evaluating this function in Fourier space. If instead, for example, one types
diff(R,k,‘efun’), the RPM is applied to construct a representation of F(r

(k)
m) as a

sum of weighted complex exponentials (without polynomial coefficients).
Differentiation in the time domain. Derivatives of barycentric trignometric ratio-

nal interpolants satisfy a recurrence relation and can be expressed in a simple closed
form. To see this, consider the linearization of rγ,tm = nm−1/dm, which can be differ-
entiated as (rγ,tm dm)′ = (nm−1)′. Plugging in the definitions from (2.5) results in the
following formula, which holds everywhere on [0, 1) except at the interpolating points:

(5.2) (rγ,tm)′(x) = −π
∑2m
j=1 γj csc2(πx− πtj) (fj − rγ,tm (x))∑2m

j=1 γj cot(πx− πtj)
.

To evaluate (rγ,tm)′ at the interpolating points t = (t1, . . . , t2m)T , we use the special
differentiation matrices introduced in [4]. Explicit descriptions of recursive formulas
for computing higher derivatives are also found in [4]. All of this is encoded within a
function handle that is accessed in REfit by applying the command diff to an rfun.

5.6. Integration. The indefinite integral of a trigonometric rational rm is not
itself a trigonometric rational. In Fourier space, if Rm = F(rm) is a sum of complex
exponentials as in (2.2), then except at k = 0, the Fourier coefficients of F(g), where
g(y) =

´ y
0
rm(x)dx, are given by ĝk = Rm(k)/2πik. A function handle for evaluating

F(g) is returned when cumsum is applied to an efun. One can also fit a new complex
exponential to F(g) by typing cumsum(·,‘efun’), though it may not be an efficient
representation.

8If this proves difficult due to spurious poles, we use the Fourier and inverse Fourier transforms
to convert to efuns, perform the convolution in Fourier space, and then convert back to an rfun.

21

If cumsum is applied to an rfun, we supply a handle for g that applies Gauss-
Legendre quadrature [30]. The stable evaluation property of the barycentric form is
advantageous here, which is why we do not instead make use of the pole-residue form
of the rational rm(z) in (2.3). To integrate rm over a finite interval [a, b] ⊂ [0, 1), the
command sum(·,a,b) can be applied to an rfun or an efun.

5.7. Rootfinding and polefinding. The roots of the barycentric trigonometric
rational rγ,tm coincide with the generalized eigenvalues of a matrix pencil. Specifically,
if rγ,tm (ζj) = 0 and µ = e2πiζj , then there is nonzero y such that Ey = µBy, where

(5.3) E =

e2πix1 iω1e

2πix1

. . .
...

e2πix2m iω2me
2πix2m

f1 · · · f2m 0

 , B =

1 iω1

. . .
...

1 iω2m

0 · · · 0 0

 .
The pencil (E,B) has at least two infinite eigenvalues and one eigenvalue at µ0 = 0
corresponding to ζ0 = −∞ (this captures the asymptotic behavior of rγ,tm). Once the
remaining 2m−2 eigenvalues are found, the zeros of rγ,tm are immediate. The command
roots applied to rfuns or efuns applies this algorithm and returns real-valued roots.
For efuns, this requires first converting to an rfun via the Fourier transform. The
command roots(·,‘all’) additionally returns complex-valued roots.

The poles of rγ,tm can be found in a similar way: the pencil (Ẽ, B), where Ẽ is
identical to E except that each fj in the last row is replaced by 1, has at least one
infinite eigenvalue. If µ̃j is one of the remaining finite eigenvalues, then ηj = log µ̃j/2πi
is a pole of rγ,tm . If it is important to preserve the pole symmetry, it is better to
represent rm with an exponential sum Rm.

Residues. We compute the residues of the barycentric interpolant rγ,tm using the
fact that rγ,tm = nm−1/dm, where nm−1 and dm are trigonometric polynomials as
in (2.5). Since the poles of rγ,tm are simple, the residue at the pole ηj is given by
Res(rγ,tm , ηj) = nm−1(ηj)/d

′
m(ηj). The residues of the poles of F−1(Rm), where Rm is

an exponential sum, have a closed form formula (see subsection 3.1).
Minima and Maxima. The commands min or max a return the local minima (or

maxima) attained by the represented trigonometric rational on the interval [0, 1). The
global minimum, for example, can be found by typing min(min(·)). To compute the
extrema, we use a rfun and apply the differentiation formula in (5.2) to evaluate its
derivative. We use this to construct a rfun representing (rγ,tm)′, find its roots, and
then test for concavity. For an application, see subsection 4.2.

5.8. Additional commands. The REfit package includes commands for data
visualization and common tasks in signal processing, such as filtering and cross-
correlation. Commands related to the pole–residue format of the rational r̃m(z)
from (2.3) are also available, as this format is closely related to the notion of the
z-transform [46] and is useful for interpretation and analysis.

5.9. Nonperiodic representations. It is natural to consider the extension of
these ideas and algorithms to non-periodic signals. In signal space, a slight modifica-
tion of the standard AAA algorithm can be used to construct type (k−1, k) barycentric
rational interpolants with basis functions as in (2.4). A type (k−1, k) rational function
with simple poles that have nonzero imaginary parts can be associated with a Laurent
expansion, and the Laurent coefficients can be expressed in terms of two short sums
of complex exponentials [53, Ch. 4]. The method in subsection 3.1 can be used to

22

find the parameters of the exponential sums, though one requires a scheme for com-
puting the Laurent coefficients accurately from data samples. Modifications of the
algorithms in section 5 can then be applied to compute with Laurent coefficients and
the associated rational barycentric interpolants.

A general approach favored by many practitioners is to apply windowing strate-
gies [24, 27, 32] to compute the Fourier transform of the non-periodic signal, or to
use Fourier extension methods [11]. If the signal is first represented by a barycentric
rational interpolant using AAA, then the pole or barycentric node locations can be
used to adaptively select parameters for determining windows and designing quadra-
ture schemes. We hope in future work to develop these observations into strategies
for computing with time-frequency representations of general rational functions.

6. Conclusion. We have introduced a framework for signal reconstruction and
automated computing that employs efficient representations in both time and fre-
quency space. Our work integrates ideas from the harmonic analysis community
involving exponential sums and Hankel operator theory [9, 47] with developments in
adaptive barycentric rational interpolation [6, 35, 45]. An implementation of all of
the described methods is publicly available in the REfit software package [59].

Acknowledgements. We thank Marc Aurèle Gilles and Nick Trefethen for read-
ing an early draft of this manuscript. We also thank Yuji Nakatsukasa and Nick Tre-
fethen for several valuable conversations, and we thank two anonymous referees for
their helpful suggestions.

REFERENCES

[1] J. L. Aurentz and L. N. Trefethen, Chopping a Chebyshev series, acmtoms, 43 (2017),
pp. 1–21.

[2] A. P. Austin and K. Xu, On the numerical stability of the second barycentric formula for
trigonometric interpolation in shifted equispaced points, IMA J. Numer. Anal., 37 (2017),
pp. 1355–1374.

[3] P. J. Baddoo, The AAAtrig algorithm for rational approximation of periodic functions, SIAM
J. Sci. Comput., 43 (2021), pp. A3372–A3392.

[4] R. Baltensperger, Some results on linear rational trigonometric interpolation, Comp. Math.
Appl., 43 (2002), pp. 737–746.

[5] M. Berljafa and S. Güttel, The RKFIT algorithm for nonlinear rational approximation,
SIAM J. Sci. Comput., 39 (2017), pp. A2049–A2071.

[6] J. Berrut, Rational functions for guaranteed and experimentally well-conditioned global in-
terpolation, Comp. Math. Appl., 15 (1988), pp. 1–16.

[7] J.-P. Berrut, R. Baltensperger, and H. D. Mittelmann, Recent developments in barycen-
tric rational interpolation, in Trends and Applications in Constructive Approximation,
Springer, 2005, pp. 27–51.

[8] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46
(2004), pp. 501–517.

[9] G. Beylkin and L. Monzón, On approximation of functions by exponential sums, Appl. and
Comp. Harmonic Analysis, 19 (2005), pp. 17–48.

[10] , Nonlinear inversion of a band-limited Fourier transform, Appl. and Comp. Harmonic
Analysis, 27 (2009), pp. 351–366.

[11] O. P. Bruno, Fast, high-order, high-frequency integral methods for computational acoustics and
electromagnetics, in Topics in computational wave propagation, Springer, 2003, pp. 43–82.

[12] E. J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution,
Comm. Pure Appl. Math., 67 (2014), pp. 906–956.

[13] V. Červenỳ, M. M. Popov, and I. Pšenč́ık, Computation of wave fields in inhomogeneous
media—Gaussian beam approach, Geophys. J. Int., 70 (1982), pp. 109–128.

[14] A. Cichowicz, An automatic s-phase picker, Bulletin of the Seismological Society of America,
83 (1993), pp. 180–189.

23

[15] S. Costa and L. N. Trefethen, AAA-least squares rational approximation and solution of
Laplace problems, arXiv preprint arXiv:2107.01574, (2021).

[16] C. De Boor, On calculating with B-splines, J. Approx. Theory, 6 (1972), pp. 50–62.
[17] L. Debnath, Wavelets and signal processing, Springer Science & Business Media, 2003.
[18] N. Derevianko and G. Plonka, Exact reconstruction of extended exponential sums using ra-

tional approximation of their Fourier coefficients, arXiv preprint arXiv:2103.07743, (2021).
[19] T. A. Driscoll, N. Hale, and L. N. Trefethen, eds., Chebfun Guide, Pafnuty Publications,

Oxford, 2014.
[20] S. Elsworth and S. Güttel, Conversions between barycentric, RKFUN, and Newton repre-

sentations of rational interpolants, Lin. Alg. Appl., 576 (2019), pp. 246–257.
[21] S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, and B. Beckermann, Rational minimax

approximation via adaptive barycentric representations, SIAM J. Sci. Comput., 40 (2018),
pp. A2427–A2455.

[22] B. Francis, A course in H-infinity control theory, Lecture notes in Control and Information
Sciences, 88 (1987), p. R5.

[23] S. Fridli, L. Lócsi, and F. Schipp, Rational function systems in ECG processing, in Int.
Conf. Comp. Aided Sys. Theory, Springer, 2011, pp. 88–95.

[24] D. Gabor, Theory of communication. part 1: The analysis of information, J. Inst. of Electrical
Engineers-Part III: Radio and Comm. Engineering, 93 (1946), pp. 429–441.

[25] Z. Gilián, ECG-based heart beat detection using rational functions, in Conf. Dyadic Anal. Rel.
Fields Appl., vol. 13, 2014.

[26] G. H. Golub and C. F. Van Loan, Matrix Computations, vol. 3, John Hopkins University
Press, 2012.

[27] D. Gottlieb and C.-W. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev., 39
(1997), pp. 644–668.

[28] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[29] B. Gustavsen and A. Semlyen, Rational approximation of frequency domain responses by
vector fitting, IEEE Trans. Power Deliv., 14 (1999), pp. 1052–1061.

[30] N. Hale and A. Townsend, Fast and accurate computation of Gauss–Legendre and Gauss–
Jacobi quadrature nodes and weights, SIAM J. Sci. Comput., 35 (2013), pp. A652–A674.

[31] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[32] F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform,
Proc. IEEE, 66 (1978), pp. 51–83.

[33] T. Haut and G. Beylkin, Fast and accurate con-eigenvalue algorithm for optimal rational
approximations, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 1101–1125.

[34] T. Haut, G. Beylkin, and L. Monzón, Solving Burgers’ equation using optimal rational
approximations, Appl. Comp. Harm. Appl., 34 (2013), pp. 83–95.

[35] P. Henrici, Barycentric formulas for interpolating trigonometric polynomials and their con-
jugates, Num. Math., 33 (1979), pp. 225–234.

[36] N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer.
Anal., 24 (2004), pp. 547–556.

[37] M. Javed, Algorithms for trigonometric polynomial and rational approximation, PhD thesis,
University of Oxford, 2016.

[38] D. Karachalios, I. V. Gosea, and A. C. Antoulas, The Loewner framework for system
identification and reduction, in Model Reduction Handbook: Volume I: System-and Data-
Driven Methods and Algorithms, De Gruyter, 2021, pp. 181–228.

[39] S. M. Kay, Fundamentals of statistical signal processing, Prentice Hall PTR, 1993.
[40] P. Kovács, S. Fridli, and F. Schipp, Generalized rational variable projection with application

in ECG compression, IEEE Trans. Sig. Proc., 68 (2019), pp. 478–492.
[41] E. R. Martin, A linear algorithm for ambient seismic noise double beamforming without

explicit crosscorrelations, Geophysics, 86 (2021), pp. F1–F8.
[42] Mathworks, MATLAB Signal Processing Toolbox: (v R2020b), MathWorks, 2020.
[43] K. Miller, Stabilized numerical analytic prolongation with poles, SIAM J. Appl. Math., 18

(1970), pp. 346–363.
[44] G. Moody, R. Mark, and A. Goldberger, Physionet: A research resource for studies of

complex physiologic and biomedical signals, in Computers in Cardiology 2000. Vol. 27
(Cat. 00CH37163), IEEE, 2000, pp. 179–182.

[45] Y. Nakatsukasa, O. Sète, and L. Trefethen, The AAA algorithm for rational approxima-
tion, SIAM J. Sci. Comput., 40 (2018), pp. A1494–A1522.

24

[46] A. V. Oppenheim, J. R. Buck, and R. W. Schafer, Discrete-time signal processing. Vol. 2,
Upper Saddle River, NJ: Prentice Hall, 2001.

[47] V. Pototskaia and G. Plonka, Application of the AAK theory and Prony-like methods for
sparse approximation of exponential sums, Proc. Appl. Math. Mech., 17 (2017), pp. 835–
836.

[48] D. Potts and M. Tasche, Nonlinear approximation by sums of nonincreasing exponentials,
Applicable Anal., 90 (2011), pp. 609–626.

[49] , Parameter estimation for nonincreasing exponential sums by Prony-like methods, Lin.
Alg. Appl., 439 (2013), pp. 1024–1039.

[50] G. Prony, Essai experimental et analytique, J. de l’Ecole Polytechnique, 2 (1795).
[51] N. Ricker, Transient waves in visco-elastic media, vol. 10, Elsevier, 2012.
[52] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function

interpolation, Adv. in Comp. Math., 11 (1999), pp. 193–210.
[53] E. M. Stein and R. Shakarchi, Complex analysis, vol. 2, Princeton University Press, 2010.
[54] M. K. Transtrum, B. B. Machta, and J. P. Sethna, Why are nonlinear fits to data so

challenging?, Phys. Rev. Letters, 104 (2010), p. 060201.
[55] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, 2013.
[56] L. N. Trefethen, Y. Nakatsukasa, and J. Weideman, Exponential node clustering at sin-

gularities for rational approximation, quadrature, and PDEs, Numer. Math., 147 (2021),
pp. 227–254.

[57] M. A. Unser and T. Blu, Wavelets and radial basis functions: A unifying perspective, in
Wavelet Appl. Sig. Im. Proc. VIII, vol. 4119, Int. Soc. Opt. Phot., 2000, pp. 487–493.

[58] M. Vetterli, P. Marziliano, and T. Blu, Sampling signals with finite rate of innovation,
IEEE Trans. Sig. Proc., 50 (2002), pp. 1417–1428.

[59] H. Wilber, https://github.com/heatherw3521/refit, 2021.
[60] G. B. Wright, M. Javed, H. Montanelli, and L. N. Trefethen, Extension of Chebfun to

periodic functions, SIAM J. Sci. Comput., 37 (2015), pp. C554–C573.
[61] K. Xu and S. Jiang, A bootstrap method for sum-of-poles approximations, J. of Sci. Comp.,

55 (2013), pp. 16–39.

25

	1 Introduction
	1.1 The approximation problem
	1.2 Software
	1.2.1 Connections to other work

	2 Trigonometric rational functions and their Fourier transforms
	2.1 Why trigonometric rationals?
	2.2 Barycentric trigonometric rational functions
	2.3 Approximations in time
	2.3.1 Constructing barycentric trigonometric interpolants
	2.3.2 Spurious poles

	2.4 Approximations in Fourier space
	2.4.1 Regularized Prony's method
	2.4.2 The regularized Prony method as a filter

	3 Fourier and inverse Fourier transforms
	3.1 The forward transform
	3.2 The inverse transform
	3.2.1 A modified pronyAAA for rational recovery
	3.2.2 Example: Two types of barycentric interpolants

	4 Signal reconstruction in time and frequency space
	4.1 An undersampled function
	4.2 Reconstruction of an ECG signal

	5 Algorithms for computing with rationals and exponential sums
	5.1 Compression for suboptimal sums of exponentials
	5.2 Sums of trigonometric rationals
	5.3 Convolutions of trigonometric rationals
	5.4 Products of trigonometric rationals
	5.5 Differentiation
	5.6 Integration
	5.7 Rootfinding and polefinding
	5.8 Additional commands
	5.9 Nonperiodic representations

	6 Conclusion
	References

