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Abstract Golden ratio primal-dual algorithm (GRPDA) is a new variant of the classical Arrow-
Hurwicz method for solving structured convex optimization problem, in which the objective func-
tion consists of the sum of two closed proper convex functions, one of which involves a composition
with a linear transform. The same as the Arrow-Hurwicz method and the popular primal-dual
algorithm (PDA) of Chambolle and Pock, GRPDA is full-splitting in the sense that it does not
rely on solving any subproblems or linear system of equations iteratively. Compared with PDA,
an important feature of GRPDA is that it permits larger primal and dual stepsizes. However, the
stepsize condition of standard GRPDA requires that the spectral norm of the linear transform
is known, which can be difficult to obtain in some applications. Furthermore, constant stepsizes
prescribed by the stepsize condition are usually overconservative in practice.

In this paper, we propose a linesearch strategy for GRPDA, which not only does not require
the spectral norm of the linear transform but also allows adaptive and potentially much larger
stepsizes. Within each linesearch step, only the dual variable needs to be updated, and it is thus
quite cheap and does not require any extra matrix-vector multiplications for many special yet
important applications, e.g., regularized least squares problem. Global convergence and O(1/N)
ergodic convergence rate results measured by the primal-dual gap function are established, where
N denotes the iteration counter. When one of the component functions is strongly convex, faster
O(1/N2) ergodic convergence rate results are established by adaptively choosing some algorithmic
parameters. Moreover, when both component functions are strongly convex, nonergodic linear
converge results are established. Numerical experiments on matrix game and LASSO problems
illustrate the effectiveness of the proposed linesearch strategy.

Keywords Saddle point problem · golden ratio primal-dual algorithm · acceleration · linesearch ·
ergodic convergence rate · spectral norm
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1 Introduction

Let Rp and Rq be finite-dimensional Euclidean spaces, each endowed with an inner product and
the induced norm denoted by 〈·, ·〉 and ‖ · ‖ =

√
〈·, ·〉, respectively. Let f : Rp → (−∞,+∞]

and g : Rq → (−∞,+∞] be extended real-valued closed proper convex functions, K ∈ Rp×q
be a linear transform from Rq to Rp. Denote the Legendre-Fenchel conjugate of f by f∗, i.e.,
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f∗(y) = supx∈Rp{〈y, x〉 − f(x)}, y ∈ Rp. In this paper, we focus on the following saddle point
problem with a bilinear coupling term

min
x∈Rq

max
y∈Rp

L(x, y) := g(x) + 〈Kx, y〉 − f∗(y). (1)

Since the biconjugate of f is itself, i.e., (f∗)∗ = f , see [23], problem (1) reduces to the following
primal minimization problem

min
x∈Rq

g(x) + f(Kx). (2)

On the other hand, by swapping the “min” and the “max”, problem (1) can be transformed to the
following dual maximization problem

max
y∈Rp

−f∗(y)− g∗(−K>y), (3)

where K> denotes the matrix transpose or adjoint operator of K. Under regularity conditions,
e.g., Assumption 2.1 given below, strong duality holds between (2) and (3).

Problems (1)-(3) naturally arise from abundant interesting applications, including signal and
image processing, machine learning, statistics, mechanics and economics, and so on, see, e.g.,
[3,4,6,14,27] and the references therein. To solve (1)-(3) simultaneously, popular choices include the
well known alternating direction method of multipliers (ADMM) [12,13], the primal-dual algorithm
(PDA) of Chambolle and Pock [6,16,22], and their accelerated and generalized variants [18,20]. The
focus of this paper is primal-dual type full-splitting algorithms1 for solving (1)-(3). We emphasize
that the literature on numerical algorithms for solving (1)-(3) has become fairly vast and a thorough
overview is not only impossible but also far beyond the focus of this work. Instead, we review only
some primal-dual type algorithms that are most closely related to this work. Before going into
details, we define our notation.

1.1 Notations

As already mentioned above, the transpose operation of a matrix or a vector is denoted by su-
perscript “>”. The spectral norm of K is denoted by L, i.e., L := ‖K‖ = sup{〈Kx, y〉 : ‖x‖ =
‖y‖ = 1, x ∈ Rq, y ∈ Rp}. Let h be any extended real-valued closed proper convex function
defined on a finite dimensional Euclidean space Rm. The effective domain of h is denoted by
dom(h) := {x ∈ Rm : h(x) < +∞}, and the subdifferential of h at x ∈ Rm is denoted by
∂h(x) := {ξ ∈ Rm : h(y) ≥ h(x) + 〈ξ, y− x〉 for all y ∈ Rm}. Furthermore, for λ > 0, the proximal
operator of λh is given by

Proxλh(x) := arg min
y∈Rm

{
h(y) +

1

2λ
‖y − x‖2

}
, x ∈ Rm.

The relative interior of C is denoted by ri(C). Finally, throughout this paper, we denote the golden

ratio by φ, i.e., φ =
√
5+1
2 , which is a key parameter in golden ratio type algorithms. Other notations

will be specified in the context.

1 An algorithm is said to be full-splitting if it does not rely on solving any subproblems or linear system of
equations iteratively and the main computations per iteration are matrix-vector multiplications and the evaluations
of proximal operators.
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1.2 Related works

The theme of this paper is to incorporate linesearch into the golden ratio primal-dual algorithm,
which was originally introduced in [8] for solving (1)-(3). A main feature of primal-dual type
algorithms is that the three problems (1)-(3) are solved simultaneously by alternatingly updating
the primal and the dual variables. Among others, the classical augmented Lagrangian method and
its variants such as ADMM [10,12,13,17] are most popular. However, ADMM is not full-splitting
since at each iteration it requires to solve a subproblem of the form minx∈Rq

1
2‖Kx− bn‖

2 + g(x),
where bn ∈ Rp varies with the iteration counter n. Note that even if the proximal operator of g is
easy to evaluate, this problem needs to be solved iteratively, unless K is the identity operator. On
the other hand, for regularized least-squares problem, ADMM requires to solve a linear system of
equations at each iteration, which could be prohibitive for large scale applications.

The most classical and simple full-splitting algorithm designed in the literature for solving (1)-
(3) goes back to [26], which is nowadays widely known as the Arrow-Hurwicz method. Started at
x0 ∈ Rq and y0 ∈ Rp, the Arrow-Hurwicz method iterates for n ≥ 1 as{

xn = Proxτg(xn−1 − τK>yn−1),
yn = Proxσf∗(yn−1 + σKxn),

where τ, σ > 0 are stepsize parameters. Since f and g, as well as their conjugate functions, are closed
proper and convex, their proximal operators are uniquely well defined everywhere. The heuristics of
Arrow-Hurwicz method is to solve the minimax problem (1) by alternatingly minimizing with the
primal variable x and maximizing with the dual variable y and, meanwhile, incorporating proximal
steps by taking into account the latest information of each of the variables. Convergence of the
Arrow-Hurwicz method with small stepsizes was studied in [11], and a sublinear convergence rate
result, measured by primal-dual gap function, was obtained in [6, 21] when dom(f∗) is bounded.
Though intuitively make sense, the Arrow-Hurwicz method does not converge in general. In fact,
a divergent example has been constructed in [15]. Nonetheless, this method has been popular in
image processing community and is known as primal-dual hybrid gradient method [6, 11,28].

To obtain a convergent full-splitting algorithm under more general setting, Chambolle and
Pock [6,7] modified the Arrow-Hurwicz method by adopting an extrapolation step. Specifically, xn
is replaced by the extrapolated point zn := xn + δ(xn − xn−1) in the computation of yn, where
δ ∈ (0, 1] is an extrapolation parameter, resulting the following iterative schemexn = Proxτg(xn−1 − τK>yn−1),

zn = xn + δ(xn − xn−1),
yn = Proxσf∗(yn−1 + σKzn).

(4)

The convergence of (4) with δ = 1 was established in [6] under the condition τσL2 < 1. Later, it
was shown in [16] that the iterative scheme (4), with δ = 1, is an application of a weighted proximal
point algorithm to solve an equivalent mixed variational inequality of the optimality conditions
of (1). Furthermore, the scheme (4), again with δ = 1, is also referred to as split inexact Uzawa
method in [11], where the connection of PDA with preconditioned or linearized ADMM has been
revealed, see [6, 24]. Note that, without taking a correction step as done in [16], the convergence
of (4) with δ ∈ (0, 1) is still open. The overrelaxed, inertial and accelerated versions of (4) were
investigated in [7], and its stochastic extension was studied in [5].

Recently, based on a seminal convex combination technique originally introduced by Malitsky
[19] for variational inequality problem, we proposed a golden ratio primal-dual algorithm (GRPDA)
in [8]. Instead of an extrapolation step as taken in (4), a convex combination of essentially all the
primal iterates generated till far, i.e., {xi : i = 0, 1, . . . , n − 1}, is used in the n-th iteration of
GRPDA. Specifically, given x0 ∈ Rq and let z0 := x0, GRPDA iterates for n ≥ 1 as

zn = ψ−1
ψ xn−1 + 1

ψ zn−1,

xn = Proxτg(zn − τK>yn−1),

yn = Proxσf∗(yn−1 + σKxn).

(5)
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Here ψ ∈ (1, φ] determines the convex combination coefficients. Global iterative convergence and
ergodic convergence rate results are established under the condition τσL2 < ψ in [8]. Since ψ ∈
(1, φ] and φ =

√
5+1
2 , this stepsize condition is much relaxed than that of the Chambolle and Pock’s

PDA (4), which is τσL2 < 1. Therefore, GRPDA permits larger primal and dual stepsizes, which is
essential for fast practical convergence. The experimental results given in [8] confirmed the benefits
of allowing larger stepsizes.

1.3 Motivations and contributions

The main contribution of this work is to introduce a linesearch strategy into GRPDA (5). Our
motivations have two aspects. First, in many applications, especially when the matrix K is large
and dense, e.g., CT image reconstruction [1,25], the exact spectral norm of K can be very expensive
to compute or estimate. On the other hand, even if the spectral norm of K can be obtained, the
stepsizes governed by the condition τσ‖K‖2 < ψ is usually too conservative for fast practical
convergence. Hence, our goal in this paper is to incorporate linesearch into GRPDA which can
significantly accelerate the convergence while still theoretically guarantees convergence with desired
convergence rate.

In general, linesearch requires extra evaluations of proximal operators and/or matrix-vector
multiplications in every linesearch iteration. Interestingly, for many special yet important applica-
tions as pointed out in [20], the proximal operator of f∗ is extremely simple, and as a result the
linesearch procedure does not require any additional matrix-vector multiplications. So, motivated
by [20], which introduced linesearch into the PDA (4), we propose in this paper to incorporate line-
search into the GRPDA (5). However, as will be seen in later sections, our theoretical analysis on
the stepsize behaviors generated by the linesearch is fundamentally different from those presented
in [20] or given in other literature. In particular, our algorithm combining with linesearch not only
does not assume a priori knowledge about the spectral norm of K, but also generates adaptive
and potentially much larger stepsizes. We establish global convergence as well as ergodic O(1/N)
sublinear convergence rate in the general convex case, where N denotes the iteration counter.
When either one of the component functions is strongly convex, GRPDA with linesearch can be
shown to converge at the faster O(1/N2) ergodic sublinear rate. Furthermore, if both component
functions are strongly convex, iterative and nonergodic linear convergence results are established.
Hence, even with the stepsize relaxations by the proposed linesearch, the global convergence as well
as theoretical convergence rates are still guaranteed to remain consistent with their counterparts
without using linesearch. In addition, our numerical experiments show much practical benefits can
be obtained from the proposed linesearch strategies.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we make our assumptions, provide some
useful facts and further define some notations. Section 3 is devoted to the GRPDA with linesearch
in the general convex case, while the cases when either one or both of the component functions
are strongly convex are discussed in Section 4. Our numerical results on minimax matrix game
and LASSO problems are reported in Section 5 to show the benefits obtained by adopting the
linesearch strategy. Finally, some concluding remarks are drawn in Section 6.

2 Assumptions and preliminaries

2.1 Assumptions and further notation

Throughout the paper, we make the following blanket assumptions.
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Assumption 2.1 Assume that the set of solutions of (2) is nonempty and, in addition, there
exists x̃ ∈ ri(dom(g)) such that Kx̃ ∈ ri(dom(f)).

Under Assumption 2.1, it follows from [23, Corollaries 28.2.2 and 28.3.1] that x̄ ∈ Rq is a
solution of (2) if and only if there exists ȳ ∈ Rp such that (x̄, ȳ) is a saddle point of L(x, y), i.e.,
L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ) for all (x, y) ∈ Rq × Rp. As such, (x̄, ȳ) is a solution of the minimax
problem (1) and ȳ is a solution of the dual problem (3). We denote the set of solutions of (1) by
Ω, which is nonempty under Assumption 2.1 and characterized by

Ω := {(x̄, ȳ) ∈ Rq × Rp : 0 ∈ ∂g(x̄) +K>ȳ and 0 ∈ ∂f∗(ȳ)−Kx̄}.

Hereafter, we let (x̄, ȳ) ∈ Ω be a generic saddle point. When g (resp. f∗) is strongly convex, the
primal optimal solution x̄ (resp. the dual optimal solution ȳ) is unique. Define

P (x) := g(x)− g(x̄) + 〈K>ȳ, x− x̄〉, ∀x ∈ Rq,
D(y) := f∗(y)− f∗(ȳ)− 〈Kx̄, y − ȳ〉, ∀y ∈ Rp.

By subgradient inequality, it is clear that P (x) ≥ 0 and D(y) ≥ 0 for all x ∈ Rq and y ∈ Rp.
Apparently, P (x) and D(y) are convex in x and y, respectively. The primal-dual gap function is
defined by G(x, y) := L(x, ȳ)− L(x̄, y) for (x, y) ∈ Rq × Rp. It is easy to verify that

G(x, y) = P (x) +D(y) ≥ 0, ∀(x, y) ∈ Rq × Rp. (6)

Note that the functions P (·) and D(·) depend on the saddle point (x̄, ȳ) ∈ Ω. Nonetheless, we
omit this dependence in the notation P (·) and D(·) since it is always clear from the context which
saddle point is under consideration, and similarly for the primal-dual gap function G(·, ·). This
measure of primal-dual gap function has been used in, e.g., [6,7,20], to establish convergence rate
results for primal-dual type methods. We also adopt the measure in this paper.

Assumption 2.2 Assume that the proximal operators of the component functions f and g either
have closed form formulas or can be evaluated efficiently.

In applications such as signal and image processing and machine learning, the component
functions f and g usually enforce data fitting and regularization and hence, often preserve simple
structures so that their proximal operators can be computed efficiently or just have closed form
formulas. Examples of such functions are abundant, see, e.g., [2, Chapter 6]. Therefore, Assumption
2.2 is fulfilled in diverse applications. Note that the proximal operators of f∗ and g∗ are also easily
computable under Assumption 2.2 due to the Moreau decomposition theorem [23, Theorem 31.5].

2.2 Facts and identities

The following simple facts and identities will be used repeatedly in the convergence analysis.

Fact 2.1 Let h : Rm → (−∞,+∞] be an extended real-valued closed proper and γ-strongly convex
function with modulus γ ≥ 0. Then for any τ > 0 and x ∈ Rm, it holds that z = Proxτh(x) if and
only if h(y) ≥ h(z) + 1

τ 〈x− z, y − z〉+ γ
2 ‖y − z‖

2 for all y ∈ Rm.

Fact 2.2 Let {an : n ≥ 1} and {bn : n ≥ 1} be real and nonnegative sequences. If an+1 ≤ an − bn
for all n ≥ 1, then limn→∞ an exists and limn→∞ bn = 0.

For any x, y, z ∈ Rm and α ∈ R, there hold

2〈x− y, x− z〉 = ‖x− y‖2 + ‖x− z‖2 − ‖y − z‖2, (7)

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2. (8)

Verifications of these identities are elementary.
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3 GRPDA with linesearch — Convex case

As pointed out in Section 1, in some applications it can be very expensive to estimate the spectral
norm of K. Furthermore, the stepsizes governed by the condition τσ‖K‖2 < ψ ∈ (1, φ] are usually
too conservative in the applications. To address these issues, we introduce a linesearch strategy
into GRPDA to choose stepsizes adaptively. Within each linesearch step, only the dual variable
needs to be updated. The resulting algorithm, called GRPDA-L, is stated in Algorithm 3.1.

Algorithm 3.1 (GRPDA-L)

Step 0. Choose x0 = z0 ∈ Rq, y0 ∈ Rp, ψ ∈ (1, φ), σ ∈ (0, 1), β > 0, µ ∈ (0, 1) and τ0 > 0. Set
ϕ = 1+ψ

ψ2 ∈ (1, 2) and n = 1.
Step 1. Compute

zn =
ψ − 1

ψ
xn−1 +

1

ψ
zn−1, (9)

xn = Proxτn−1g(zn − τn−1K>yn−1). (10)

Step 2. Let τ = ϕτn−1 and compute

yn = Proxβτnf∗(yn−1 + βτnKxn), (11)

where τn = τµi and i is the smallest nonnegative integer such that√
βτn‖K>yn −K>yn−1‖ ≤ σ

√
ψ/τn−1‖yn − yn−1‖. (12)

Step 3. Set n← n+ 1 and return to Step 1.

From Step 2 of Algorithm 3.1, the linesearch procedure may require to compute Proxβτnf∗ and
K>yn repeatedly to find a proper τn at each iteration. However, as pointed out in [19, Remark
2], the linesearch procedure becomes extremely simple when the proximal operator of λf∗, where
λ > 0, is linear or affine. Some examples are listed below.

(a) Proxλf∗(u) = u− λc when f∗(y) = 〈c, y〉 for some c ∈ Rp,
(b) Proxλf∗(u) = 1

1+λ (u+ λb) when f∗(y) = 1
2‖y − b‖

2 for some b ∈ Rp,
(c) Proxλf∗(u) = u + b−〈u,a〉

‖a‖2 a when f∗(y) is the indicator function of the hyperplane H = {u :

〈a, u〉 = b} for some a ∈ Rp and b ∈ R.

In all these cases, the evaluation of Proxλf∗ is very simple, and it is unnecessary to compute K>yn
repeatedly since it can be obtained by combining some already computed quantities. Therefore,
in these cases the linesearch step is quite cheap and does not require any additional matrix-vector
multiplications. Furthermore, if necessary, one can always exchange the roles of the primal and the
dual variables in problem (1) to take advantage of the above mentioned structure. Also note that at
each iteration the increasing ratio of stepsizes {τn} is upper bounded by ϕ ∈ (1, 2) as τn ≤ ϕτn−1,
and as suggested in [19], one default choice could let ψ = 1.5 so that ϕ = (1 +ψ)/ψ2 = 10/9. Here,
the parameter β > 0 in Algorithm 3.1, also appeared in Algorithm 4.2, is introduced to scale the
primal and the dual variables so that they will converge in a weighted balance way. Similar settings
has also been done in [8] for GRPDA without linesearch.

The following lemma shows that the linesearch step of Algorithm 3.1 is well-defined. In addition,
it establishes some important properties on sequences {τn : n ≥ 1} and {δn : n ≥ 1}, with
δn := τn/τn−1, which are essential for establishing the convergence results of Algorithm 3.1. Since
the proof of Lemma 3.1 is rather technical and complicated, for fluency of the overall paper, we
put the proof in Appendix A.
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Lemma 3.1 Let τ := σ
√
ψ

L
√
βϕ

> 0. Then, we have the following properties. (i) The linesearch step

of Algorithm 3.1, i.e., Step 2, always terminates. (ii) For any ρ ∈ (0, 1), there exists an infinite
subsequence {nk : k ≥ 1} ⊆ {1, 2, . . .} such that τnk

≥ τ and δnk
≥ ρ. (iii) For any integer N > 0,

we have |KN | ≥ ĉN for some constant ĉ > 0, where KN = {1 ≤ n ≤ N : τn ≥ τ} and |KN | is the

cardinality of the set KN , which implies
∑N
n=1 τn ≥ cN with c = ĉτ .

We emphasize that the linesearch procedure adopted by Algorithm 3.1 is motivated but theo-
retically very different from that of [20, Algorithim 1]. In fact, the sequence {τn : n ≥ 1} generated
by [20, Algorithim 1] is uniformly bounded below by some positive constant, see [20, Lemma 3.3
(ii)]. In contrast, as seen in (iii) of Lemma 3.1, only a subsequence {τnk

: k ≥ 1}, a fraction of
{τn : n ≥ 1}, is guaranteed to have uniform lower bound τ > 0. Similar arguments also apply to
Algorithms 4.1 and 4.2 in Section 4.1.

3.1 Useful lemmas

We next present two useful lemmas, which play critical roles in the convergence analysis. Hereafter,
we always fix (x̄, ȳ) ∈ Ω arbitrarily without further mentioning.

Lemma 3.2 Let {(zn, xn, yn) : n ≥ 1} be generated by Algorithm 3.1. Then, for any (x̄, ȳ) ∈ Ω,
there holds

τnG(xn, yn) ≤ 〈xn+1 − zn+1, x̄− xn+1〉+
1

β
〈yn − yn−1, ȳ − yn〉+ ψδn〈xn − zn+1, xn+1 − xn〉

+τn
〈
K>(yn − yn−1), xn − xn+1

〉
. (13)

Proof. It follows from (10), (11) and Fact 2.1 that〈
xn+1 − zn+1 + τnK

>yn, x̄− xn+1

〉
≥ τn

(
g(xn+1)− g(x̄)

)
, (14)

〈xn − zn + τn−1K
>yn−1, xn+1 − xn〉 ≥ τn−1

(
g(xn)− g(xn+1)

)
, (15)〈 1

β
(yn − yn−1)− τnKxn, ȳ − yn

〉
≥ τn

(
f∗(yn)− f∗(ȳ)

)
. (16)

Multiplying (15) by δn = τn/τn−1 and using the fact xn − zn = ψ(xn − zn+1), which follows from
(9), we obtain〈

ψδn(xn − zn+1) + τnK
>yn−1, xn+1 − xn

〉
≥ τn

(
g(xn)− g(xn+1)

)
. (17)

Direct calculations show that a summation of (14), (16) and (17) gives

〈xn+1 − zn+1, x̄− xn+1〉+
1

β
〈yn − yn−1, ȳ − yn〉+ ψδn〈xn − zn+1, xn+1 − xn〉

+τn
〈
K>(yn − yn−1), xn − xn+1

〉
− τn

〈
K>ȳ, xn − x̄

〉
+ τn〈Kx̄, yn − ȳ〉

≥τn
(
f∗(yn)− f∗(ȳ)

)
+ τn

(
g(xn)− g(x̄)

)
,

which, by the definition of G(·, ·) in (6), implies (13) immediately. �

Lemma 3.3 Let {(zn, xn, yn) : n ≥ 1} be generated by Algorithm 3.1. For n ≥ 1, define

an :=
ψ

ψ − 1
‖zn+1 − x̄‖2 +

1

β
‖yn−1 − ȳ‖2, (18)

bn := ψδn‖zn+1 − xn‖2 + (1− σ)
(
ψδn‖xn+1 − xn‖2 +

1

β
‖yn − yn−1‖2

)
. (19)

Then, it holds that an+1 ≤ an − bn for n ≥ 1.
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Proof. Fix n ≥ 1. First, it is easy to verify from ϕ = (1 + ψ)/ψ2 and δn = τn/τn−1 ≤ ϕ that

1 +
1

ψ
− ψδn ≥ 1 +

1

ψ
− ψϕ = 0. (20)

It follows from (12) and Cauchy-Schwarz inequality that

2τn‖K>yn −K>yn−1‖‖xn+1 − xn‖ ≤ σ
(
ψδn‖xn+1 − xn‖2 +

1

β
‖yn − yn−1‖2

)
. (21)

Furthermore, by Lemma 3.2, identity (7) and Cauchy-Schwarz inequality, we have

‖xn+1 − x̄‖2 +
1

β
‖yn − ȳ‖2 + 2τnG(xn, yn)

≤ ‖zn+1 − x̄‖2 +
1

β
‖yn−1 − ȳ‖2 + 2τn‖K>yn −K>yn−1‖‖xn+1 − xn‖ (22)

−ψδn‖zn+1 − xn‖2 − (1− ψδn)‖xn+1 − zn+1‖2 − ψδn‖xn+1 − xn‖2 −
1

β
‖yn − yn−1‖2.

Since xn+1 = ψ
ψ−1zn+2 − 1

ψ−1zn+1, which follows from (8) and (9), we deduce

‖xn+1 − x̄‖2 =
ψ

ψ − 1
‖zn+2 − x̄‖2 −

1

ψ − 1
‖zn+1 − x̄‖2 +

ψ

(ψ − 1)2
‖zn+2 − zn+1‖2

=
ψ

ψ − 1
‖zn+2 − x̄‖2 −

1

ψ − 1
‖zn+1 − x̄‖2 +

1

ψ
‖xn+1 − zn+1‖2, (23)

where the second equality is due to zn+2 − zn+1 = ψ−1
ψ (xn+1 − zn+1). Combining (23) with (22),

we obtain

ψ

ψ − 1
‖zn+2 − x̄‖2 +

1

β
‖yn − ȳ‖2 + 2τnG(xn, yn)

≤ ψ

ψ − 1
‖zn+1 − x̄‖2 +

1

β
‖yn−1 − ȳ‖2 + 2τn‖K>yn −K>yn−1‖‖xn+1 − xn‖

−ψδn‖zn+1 − xn‖2 − (1 +
1

ψ
− ψδn)‖xn+1 − zn+1‖2 − ψδn‖xn+1 − xn‖2 −

1

β
‖yn − yn−1‖2.

≤ ψ

ψ − 1
‖zn+1 − x̄‖2 +

1

β
‖yn−1 − ȳ‖2 − ψδn‖zn+1 − xn‖2

−(1− σ)ψδn‖xn+1 − xn‖2 −
1− σ
β
‖yn − yn−1‖2, (24)

where the second inequality follows from (20) and (21). Finally, by the definitions of an and bn
in (18) and (19), respectively, and the fact that G(xn, yn) ≥ 0, (24) implies an+1 ≤ an − bn
immediately. �

3.2 Convergence results

Now, we are ready to establish global convergence and ergodic sublinear convergence rate of Algo-
rithm 3.1.

Theorem 3.1 (Global convergence) Let {(zn, xn, yn) : n ≥ 1} be generated by Algorithm 3.1.
Then {(xn, yn) : n ≥ 1} converges to a solution of (1).
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Proof. Let ρ ∈ (0, 1) and τ > 0 be defined in Lemma 3.1. By (ii) of Lemma 3.1, there exists an
infinite sequence {nk : k ≥ 1} such that τnk

≥ τ and δnk
≥ ρ. By Lemma 3.3, we have

∞∑
k=1

δnk

(
‖znk+1 − xnk

‖2 + (1− σ)‖xnk+1 − xnk
‖2
)
≤
∞∑
n=1

bn <∞. (25)

Since limk→∞
∑∞
k=1 δnk

=∞, which together with (25) implies that there exists a subsequence of
{nk : k ≥ 1}, still denoted as {nk : k ≥ 1}, such that

lim
k→∞

‖znk+1 − xnk
‖ = 0 and lim

n→∞
‖xnk+1 − xnk

‖ = 0. (26)

In addition, it follows from Lemma 3.3 and Fact 2.2 that lim
n→∞

‖yn+1 − yn‖ = 0, lim
n→∞

‖zn − x̄‖
and lim

n→∞
‖yn − ȳ‖ exist. Thus, {zn : n ≥ 1} and {yn : n ≥ 1} are bounded and, by (9), so is

{xn : n ≥ 1}. Therefore, there exist a subsequence of {nk : k ≥ 1}, still denoted as {nk : k ≥ 1},
and (x∗, y∗) such that lim

k→∞
xnk

= x∗ and lim
k→∞

ynk
= y∗, which together with (26) also implies that

limk→∞ xnk+1 = limk→∞ znk+1 = x∗. Now, similar to (14) and (16), for any (x, y), there hold{
〈xnk+1 − znk+1 + τnk

K>ynk
, x− xnk+1〉 ≥ τnk

(
g(xnk+1)− g(x)

)
,〈

1
β (ynk

− ynk−1)− τnk
Kxnk

, y − ynk

〉
≥ τnk

(
f∗(ynk

)− f∗(y)
)
.

(27)

Then, dividing τnk
≥ τ > 0 from both sides of (27), taking into account that both g and f∗ are

closed (and thus lower semicontinuous) and letting k →∞, we obtain

〈K>y∗, x− x∗〉 ≥ g(x∗)− g(x) and − 〈Kx∗, y − y∗〉 ≥ f∗(y∗)− f∗(y). (28)

Since (28) holds for any (x, y) ∈ Rq×Rp, we have (x∗, y∗) ∈ Ω. Note that Lemma 3.3 holds for any
(x̄, ȳ) ∈ Ω. Therefore, (x̄, ȳ) can be replaced by (x∗, y∗) in the definition of {an : n ≥ 1} in (18). As
such, we have limk→∞ ank

= 0 since limk→∞ znk+1 = x∗ and limk→∞ ynk−1 = limk→∞ ynk
= y∗.

Since {an : n ≥ 1} is monotonically nonincreasing, it follows that limn→∞ an = 0. Therefore,
limn→∞(zn, yn) = (x∗, y∗). Again by (9), we have limn→∞ xn = x∗. This completes the proof. �

We now establish an O(1/N) ergodic sublinear convergence rate of Algorithm 3.1.

Theorem 3.2 (Sublinear convergence) Let {(zn, xn, yn, τn) : n ≥ 1} be the sequence generated
by Algorithm 3.1 and c > 0 be the constant given in Lemma 3.1. For any N ≥ 1, define

XN =
1

SN

N∑
n=1

τnxn and YN =
1

SN

N∑
n=1

τnyn with SN =

N∑
n=1

τn. (29)

Then, it holds that

G(XN , YN ) ≤ 1

2cN

( ψ

ψ − 1
‖z2 − x̄‖2 +

1

β
‖y0 − ȳ‖2

)
. (30)

Proof. First, it follows from (24) and the definition of bn in (19) that

2τnG(xn, yn) ≤ ψ

ψ − 1

(
‖zn+1 − x̄‖2 − ‖zn+2 − x̄‖2

)
+

1

β

(
‖yn−1 − ȳ‖2 − ‖yn − ȳ‖2

)
.

By taking summation over n = 1, . . . , N , we obtain

2

N∑
n=1

τnG(xn, yn) ≤ ψ

ψ − 1
‖z2 − x̄‖2 +

1

β
‖y0 − ȳ‖2. (31)
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Since G(x, y) = P (x) +D(y) and P (·) and D(·) are convex, it follows that

N∑
n=1

τnG(xn, yn) =

N∑
n=1

τnP (xn) +

N∑
n=1

τnD(yn) ≥ SN
(
P (XN ) +D(YN )

)
, (32)

where SN , XN and YN are defined in (29). Combining (31) and (32), we obtain

G(XN , YN ) = P (XN ) +D(YN ) ≤ 1

2SN

( ψ

ψ − 1
‖z2 − x̄‖2 +

1

β
‖y0 − ȳ‖2

)
.

By property (iii) in Lemma 3.1, we have SN =
∑N
n=1 τn ≥ cN . Hence, (30) holds. �

4 GRPDA with linesearch — Strongly convex case

In this section, we introduce linesearch strategy into GRPDA (5) when either g or f∗ or both are
strongly convex. When g or f∗ is strongly convex, it was shown in [6] that one can adaptively
choose the primal and the dual stepsizes, as well as the inertial parameter, so that the PDA (4)
achieves a faster O(1/N2) convergence rate. Similar results have been obtained in [20] for the PDA
with linesearch. In this section, we propose an adaptive linesearch strategy for GRPDA (5).

Apparently, the minimax problem (1) is equivalent to

max
x∈Rq

min
y∈Rp

f∗(y) + 〈−K>y, x〉 − g(x). (33)

Then, by swapping “maxx∈Rq” with “miny∈Rp” and (g,K, x, q) with (f∗,−KT , y, p), (33) is re-
ducible to (1). Therefore, we only present the analysis for the case when g is strongly convex in
Section 4.1, while the case when f∗ is strongly convex can be treated similarly and is thus omitted.
Finally, we establish in Section 4.2 nonergodic linear convergence results when both g and f∗ are
strongly convex.

4.1 The case when g is strongly convex

In this subsection, we assume that g is γg-strongly convex, i.e., it holds for some γg > 0 that

g(y) ≥ g(x) + 〈u, y − x〉+
γg
2
‖y − x‖2, ∀x, y ∈ Rq, ∀u ∈ ∂g(x),

where the strongly convex parameter γg > 0 is known in our algorithm. Then, the following
algorithm that incorporates linesearch into GRPDA (5) and exploits the strong convexity of g
achieves faster convergence.

Algorithm 4.1 (Accelerated GRPDA with linesearch when g is γg-strongly convex)

Step 0. Let ψ0 = 1.3247... be the unique real root of ψ3 − ψ − 1 = 0. Choose ψ ∈ (ψ0, φ), β0 > 0,
τ0 > 0 and µ ∈ (0, 1). Choose x0 = z0 ∈ Rq and y0 ∈ Rp. Set ϕ = 1+ψ

ψ2 and n = 1.
Step 1. Compute

zn =
ψ − 1

ψ
xn−1 +

1

ψ
zn−1, (34)

xn = Proxτn−1g(zn − τn−1K>yn−1), (35)

ωn =
ψ − ϕ

ψ + ϕγgτn−1
, (36)

βn = βn−1(1 + γgωnτn−1). (37)
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Step 2. Let τ = ϕτn−1 and compute

yn = Proxβnτnf∗(yn−1 + βnτnKxn), (38)

where τn = τµi and i is the smallest nonnegative integer such that√
βnτn‖K>yn −K>yn−1‖ ≤

√
ψ/τn−1‖yn − yn−1‖. (39)

Step 3. Set n← n+ 1 and return to Step 1.

Remark 4.1 As in [8, Algorithm 4.1], ωn is used to update βn, which plays a key role in estab-
lishing the O(1/N2) ergodic convergence rate of Algorithm 4.1. The condition ψ > ψ0, where ψ0

is the unique real root of ψ3 − ψ − 1 = 0, ensures that ψ > (1 + ψ)/ψ2 = ϕ. Therefore, we have
ωn > 0 and βn > βn−1 > 0 for all n ≥ 1.

Next, we state a key lemma with respect to Algorithm 4.1, whose detailed proof is left to
Appendix B since it takes similar spirit with that of Lemma 3.1.

Lemma 4.1 Let {(τn, βn) : n ≥ 0} be the sequence generated by Algorithm 4.1. Then, we have the
following properties. (i) The linesearch step of Algorithm 4.1, i.e., Step 2, always terminates. (ii)
There exists constant c > 0 such that βn ≥ cn2 for all n ≥ 1. (iii) There exists a constant c̃ > 0 such

that for any N ≥ 1, we have
∑N
n=1 τn ≤ c̃

∑
n∈SN τn, where SN :=

{
1 ≤ n ≤ N :

√
βnτn ≥ 1/L

}
.

We next establish the promised O(1/N2) ergodic convergence rate. Note that in this case x̄ is
unique and will be simply denoted as x∗.

Theorem 4.1 (Accelerated sublinear convergence) Let {(zn, xn, yn, βn, τn) : n ≥ 1} be the
sequence generated by Algorithm 4.1. Then, the following holds:
(a) there exist constants C1, C2 > 0 such that ‖zn+1 − x∗‖ ≤ C1/n and ‖xn+1 − x∗‖ ≤ C2/n for
all n ≥ 1;
(b) the sequence {yn : n ≥ 1} is bounded and there exists a subsequence of {yn : n ≥ 1} converging
to y∗ such that (x∗, y∗) is a solution of (1);
(c) there exist a constant C3 > 0 such that G(XN , YN ) ≤ C3/N

2 for any integer N ≥ 1, where

SN =

N∑
n=1

βnτn, XN =
1

SN

N∑
n=1

βnτnxn and YN =
1

SN

N∑
n=1

βnτnyn. (40)

Proof. Since g is strongly convex, it follows from (35) and Fact 2.1 that

〈xn − zn + τn−1K
>yn−1, x− xn〉 ≥ τn−1

(
g(xn)− g(x) +

γg
2
‖xn − x‖2

)
, ∀x. (41)

By passing n+ 1 to n and x̄ to x in (41), we obtain

〈xn+1 − zn+1 + τnK
>yn, x̄− xn+1〉 ≥ τn

(
g(xn+1)− g(x̄) +

γg
2
‖xn+1 − x̄‖2

)
. (42)

Similarly, by passing xn+1 to x in (41) and multiplying both sides by δn = τn/τn−1, we obtain

〈δn(xn − zn) + τnK
>yn−1, xn+1 − xn〉 ≥ τn

(
g(xn)− g(xn+1) +

γg
2
‖xn+1 − xn‖2

)
. (43)

Similar to (16), it follows from (38) that〈 1

βn
(yn − yn−1)− τnKxn, ȳ − yn

〉
≥ τn

(
f∗(yn)− f∗(ȳ)

)
. (44)
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From (34), it is easy to derive xn−zn = ψ(xn−zn+1). Then, by adding (42)-(44) and using similar
arguments as in Lemma 3.2, we obtain

τnG(xn, yn) ≤ 〈xn+1 − zn+1, x̄− xn+1〉+
1

βn

〈
yn − yn−1, ȳ − yn

〉
+ ψδn

〈
xn − zn+1, xn+1 − xn

〉
+τn〈K>yn −K>yn−1, xn − xn+1〉 −

γgτn
2
‖xn+1 − x̄‖2 −

γgτn
2
‖xn+1 − xn‖2. (45)

By removing −γgτn2 ‖xn+1 − xn‖2 ≤ 0, using (7) and Cauchy-Schwarz inequality, we obtain from
(45) that

(1 + γgτn)‖xn+1 − x̄‖2 +
1

βn
‖yn − ȳ‖2 + 2τnG(xn, yn)

≤ ‖zn+1 − x̄‖2 +
1

βn
‖yn−1 − ȳ‖2 − ψδn‖zn+1 − xn‖2 + (ψδn − 1)‖xn+1 − zn+1‖2

−ψδn‖xn+1 − xn‖2 −
1

βn
‖yn − yn−1‖2 + 2τn‖K>(yn − yn−1)‖‖xn+1 − xn‖. (46)

Plugging in (23) and using Cauchy-Schwarz inequality, we deduce

(1 + γgτn)
ψ

ψ − 1
‖zn+2 − x̄‖2 +

1

βn
‖yn − ȳ‖2 + 2τnG(xn, yn)

≤ ψ + γgτn
ψ − 1

‖zn+1 − x̄‖2 +
1

βn
‖yn−1 − ȳ‖2 +

(
ψδn − 1− 1 + γgτn

ψ

)
‖xn+1 − zn+1‖2

−ψδn‖zn+1 − xn‖2 − ψδn‖xn+1 − xn‖2 −
1

βn
‖yn − yn−1‖2

+2τn‖K>yn −K>yn−1‖‖xn+1 − xn‖. (47)

Recall that δn = τn/τn−1. It follows from (39) and Cauchy-Schwarz inequality that

2τn‖K>yn −K>yn−1‖‖xn+1 − xn‖ ≤ ψδn‖xn+1 − xn‖2 +
1

βn
‖yn − yn−1‖2. (48)

Furthermore, ψδn−1− 1+γgτn
ψ ≤ ψϕ−1− 1

ψ −
γgτn
ψ = −γgτnψ since δn ≤ ϕ. Therefore, (47) implies

(1 + γgτn)
ψ

ψ − 1
‖zn+2 − x̄‖2 +

1

βn
‖yn − ȳ‖2 + 2τnG(xn, yn)

≤ ψ + γgτn
ψ − 1

‖zn+1 − x̄‖2 +
1

βn
‖yn−1 − ȳ‖2 −

γgτn
ψ
‖xn+1 − zn+1‖2. (49)

Note that (1 + γgτn) ψ
ψ−1 =

ψ(1+γgτn)
ψ+γgτn+1

ψ+γgτn+1

ψ−1 . It follows from τn+1 ≤ ϕτn that

ψ(1 + γgτn)

ψ + γgτn+1
≥ ψ(1 + γgτn)

ψ + γgϕτn
= 1 +

ψ − ϕ
ψ + γgϕτn

γgτn = 1 + ωn+1γgτn, (50)

and thus

(1 + γgτn)
ψ

ψ − 1
≥ (1 + ωn+1γgτn)

ψ + γgτn+1

ψ − 1
=
βn+1

βn

ψ + γgτn+1

ψ − 1
. (51)

Define An :=
ψ+γgτn
2(ψ−1) ‖zn+1 − x̄‖2 + 1

2βn
‖yn−1 − ȳ‖2. Combining (49) and (51), we deduce

βn+1An+1 + βnτnG(xn, yn) ≤ βnAn −
βnγgτn

2ψ
‖xn+1 − zn+1‖2. (52)
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By summing (52) over n = 1, . . . , N , we obtain

βN+1AN+1 +

N∑
n=1

βnτnG(xn, yn) +

N∑
n=1

βnγgτn
2ψ

‖xn+1 − zn+1‖2 ≤ β1A1. (53)

Then, the convexity of G(·, ·), G(xn, yn) ≥ 0, the definition of An, (40) and (53) imply that

G(XN , YN ) ≤ 1

SN

N∑
n=1

βnτnG(xn, yn) ≤ β1A1

SN
, (54)

‖zN+2 − x̄‖2 ≤
2(ψ − 1)

ψ + γgτN+1

β1A1

βN+1
≤ 2β1A1

βN+1
. (55)

From Lemma 4.1, there exists c > 0 such that βn ≥ cn2 for all n ≥ 1. Taking x∗ = x̄, then (55)
implies ‖zN+1− x∗‖ ≤ C1/N with C1 :=

√
2β1A1/c > 0. Thus, (34) implies ‖xN+1− x∗‖ ≤ C2/N

for some C2 > 0. Hence, property (a) holds and the convergence of {zn : n ≥ 1} and {xn : n ≥ 1}
to x∗ follows immediately.

Let S = {n ∈ Z+ :
√
βnτn ≥ 1/L}. Properties (ii) and (iii) in Lemma 4.1 imply that |S| =∞.

We next show by contradiction that there exists a subsequence {nk : k ≥ 1} ⊆ S such that

lim
k→∞

‖xnk+1 − znk+1‖/τnk
= 0. (56)

Let N ≥ 1 be arbitrarily fixed and θ = (ψ − ϕ)γg/ψ > 0. By Lemma 4.1 (ii) and (37), we have

c(N + 1)2 ≤ βN+1 = βN

(
1 +

(ψ − ϕ)γgτN
ψ + ϕγgτN

)
≤ βN

(
1 + θτN

)
≤ β1

N∏
n=1

(1 + θτn) .

Then, by Lemma 4.1 (iii) we deduce

2 ln(N + 1)− ln(β1/c) ≤
N∑
n=1

ln(1 + θτn) ≤ θ
N∑
n=1

τn ≤ θc̃
∑
n∈SN

τn. (57)

On the other hand, it follows from (53) that

2ψβ1A1

γg
≥
∑
n∈S

βnτ
3
n

(
‖xn+1 − zn+1‖

τn

)2

≥ 1

L2

∑
n∈S

τn

(
‖xn+1 − zn+1‖

τn

)2

,

from which the existence of a subsequence {nk : k ≥ 1} ⊆ S such that (56) holds is guaranteed
since (57) indicates that

∑
n∈S τn = limN→∞

∑
n∈SN τn =∞.

Now, it follows from (53) that {βnAn : n ≥ 1} is bounded, which implies that {yn : n ≥ 1} is
bounded. Let {nk : k ≥ 1} ⊆ S be the subsequence satisfying (56), which then has a subsequence,
still denoted as {nk : k ≥ 1} ⊆ S, such that limk→∞ ynk

= y∗. Similar to (27), for any (x, y) ∈
Rq × Rp, we have{

〈xnk+1 − znk+1 + τnk
K>ynk

, x− xnk+1〉 ≥ τnk

(
g(xnk+1)− g(x)

)
,〈

1
βnk

(ynk
− ynk−1)− τnk

Kxnk
, y − ynk

〉
≥ τnk

(
f∗(ynk

)− f∗(y)
)
.

(58)

Since nk ∈ S, we have
√
βnk

τnk
≥ 1/L, which together with βn ≥ cn2 for some c > 0 implies

limk→∞ βnk
τnk

= ∞. Hence, limk→∞ ‖ynk
− ynk−1‖/(βnk

τnk
) = 0 since {yn : n ≥ 1} is bounded.

Then, dividing τnk
from both sides of the two inequalities in (58), taking k → ∞, it follows from

limn→∞ xn = x∗, limk→∞ ynk
= y∗, lower semicontinuous of g and f∗, and (56) that (28) holds,

which implies (x∗, y∗) is a saddle point of (1). Hence, property (b) holds.
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Finally, it follows from (37) and ωn+1 < 1 that

βnτn =
βn+1 − βn
ωn+1γg

≥ βn+1 − βn
γg

.

Hence, we have from βn ≥ cn2 that SN =
∑N
n=1 βnτn ≥

βN+1−β1

γg
≥ c1N

2 for some c1 > 0.

Consequently, G(XN , YN ) ≤ C3/N
2 with C3 = β1A1/c1 follows from (54). Hence, property (c)

holds. We complete the proof. �

4.2 Linear convergence when g and f∗ are strongly convex

In this section, we assume that both g and f∗ are strongly convex, with modulus γg > 0 and
γf > 0, respectively, and establish nonergodic linear convergence rate of GRPDA with linesearch.
Note that when only one of the component function is strongly convex, say g, the strong convexity
parameter γg is used in the algorithm, see (37). However, when both g and f∗ are strongly convex,
the strong convexity modulus γg and γf do not need to be known in advance since they are only
used in the analysis and play no role in the algorithm itself. We now summarize the modified
algorithm as follows.

Algorithm 4.2 (GRPDA with linesearch when g and f∗ are strongly convex)

Step 0. Let ψ0 = 1.3247... be the unique real root of ψ3 − ψ − 1 = 0. Choose ψ ∈ (ψ0, φ), β > 0,
τ0 > 0 and µ ∈ (0, 1). Choose x0 = z0 ∈ Rq and y0 ∈ Rp. Set ϕ = 1+ψ

ψ2 and n = 1.
Step 1. Compute

zn =
ψ − 1

ψ
xn−1 +

1

ψ
zn−1, (59)

xn = Proxτn−1g(zn − τn−1K>yn−1). (60)

Step 2. Let τ = ϕτn−1 and compute

yn = Proxβτnf∗(yn−1 + βτnKxn), (61)

where τn = τµi and i is the smallest nonnegative integer such that√
βτn‖K>yn −K>yn−1‖ ≤

√
ψ/τn−1‖yn − yn−1‖. (62)

Step 3. Set n← n+ 1 and return to Step 1.

With respect to Algorithm 4.2, we have the following key lemma.

Lemma 4.2 Let {τn : n ≥ 0} be the sequence generated by Algorithm 4.2. Then, we have the
following properties. (i) The linesearch step of Algorithm 4.1, i.e., Step 2, always terminates. (ii)

There exists a constant θ > 1 such that for any N ≥ 1, we have ΓN+1 :=
∏N+1
n=2 θn ≥ θN with

θn = min {1 + ωnγgτn−1, 1 + βγfτn−1} , n ≥ 2, (63)

where ωn = ψ−ϕ
ψ+γgϕτn−1

is defined in (36)
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Proof. The conclusion (i) follows from the same proof of conclusion (i) in Lemma 3.1 with setting
σ = 1. We next prove conclusion (ii). Given any integer N ≥ 1, it follows from the same proof of
conclusion (iii) in Lemma 3.1 with setting σ = 1 that |KN | ≥ ĉN for some constant ĉ > 0, where

KN = {1 ≤ n ≤ N : τn ≥ τ̂} with τ̂ =
1

L

√
ψ√
βϕ

> 0 (64)

and |KN | is the cardinality of the set KN . Then, by the definition of ΓN and θn, we have

ΓN+1 =

N+1∏
n=2

θn =

N+1∏
n=2

min

{
1 +

(ψ − ϕ)γgτn−1
ψ + γgϕτn−1

, 1 + βγfτn−1

}
≥
∏
n∈KN

min

{
1 +

(ψ − ϕ)γgτn
ψ + γgϕτn

, 1 + βγfτn

}
≥ θ̃|KN | ≥ θ̃ĉN = θN ,

where θ = θ̃ĉ > 1 and θ̃ = min
{

1 +
(ψ−ϕ)γg τ̂
ψ+γgϕτ̂

, 1 + βγf τ̂
}
> 1. �

Based on Lemma 4.2, we have the following iterative and nonergodic linear convergence results.

Theorem 4.2 (Linear convergence) Let {(zn, xn, yn) : n ≥ 1} be the sequence generated by
Algorithm 4.2. Then, the following holds:
(a) {(zn, yn) : n ≥ 1} converge to the unique primal and dual optimal solutions (x̄, ȳ);
(b) there exit constants C1, C2 > 0 and θ > 1 such that for all n ≥ 1 there hold ‖zn+2− x̄‖ ≤ C1/θ

n

and ‖yn − ȳ‖ ≤ C2/θ
n;

(c) there exist constants C3 > 0 and θ̂ > 1 such that min
1≤n≤N

G(xn, yn) ≤ C3/θ̂
N .

Proof. Following the line of proof of Theorem 4.1, similar to (45), one can easily show that

τnG(xn, yn) ≤ 〈xn+1 − zn+1, x̄− xn+1〉+
1

β

〈
yn − yn−1, ȳ − yn

〉
+ ψδn

〈
xn − zn+1, xn+1 − xn

〉
+τn〈K>yn −K>yn−1, xn − xn+1〉 −

γgτn
2
‖xn+1 − x̄‖2 −

γfτn
2
‖yn − ȳ‖2,

where δn = τn/τn−1. Then, by the same arguments as in (46)-(49), we have

(1 + γgτn)
ψ

ψ − 1
‖zn+2 − x̄‖2 +

(
1/β + γfτn

)
‖yn − ȳ‖2 + 2τnG(xn, yn)

≤ ψ + γgτn
ψ − 1

‖zn+1 − x̄‖2 +
1

β
‖yn−1 − ȳ‖2. (65)

From (50) and the definition of θn+1, it holds that

ψ(1 + γgτn)

ψ − 1
=
ψ(1 + γgτn)

ψ + γgτn+1

ψ + γgτn+1

ψ − 1
≥
(
1 + ωn+1γgτn

)ψ + γgτn+1

ψ − 1
≥ θn+1

ψ + γgτn+1

ψ − 1
, (66)

where ωn and θn are defined in (36) and (63), respectively. Let

An :=
ψ + γgτn
ψ − 1

‖zn+1 − x̄‖2 +
1

β
‖yn−1 − ȳ‖2. (67)

Then, we have from (65), (66) and G(xn, yn) ≥ 0 that

θn+1An+1 ≤ θn+1An+1 + 2τnG(xn, yn) ≤ An, (68)

which implies
(∏N+1

n=2 θn
)
AN+1 ≤ A1. By (ii) of Lemma 4.2, we have ΓN+1 =

∏N+1
n=2 θn ≥ θN for

some θ > 1. Hence, we have AN+1 ≤ A1/θ
N , which implies conclusions (a) and (b). Finally, let
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KN = {1 ≤ n ≤ N : τn ≥ τ̂ > 0} be defined in (64) and N̂ = max{n : n ∈ KN}. Then, we have
N̂ ≥ |KN | ≥ ĉN for some ĉ > 0. Thus, it follows from (b) and (68) that

min
1≤n≤N

G(xn, yn) ≤ G(xN̂ , yN̂ ) ≤
AN̂
2τ̂
≤ A1

2τ̂ θN̂−1
≤ A1

2τ̂ θĉN−1
:=

C3

θ̂N
,

where C3 = θA1/(2τ̂) and θ̂ = θĉ > 1. So, (c) holds. We complete the proof. �

5 Numerical results

In this section, numerical results are presented to demonstrate the performance of the proposed
Algorithm 3.1 (GRPDA-L) and Algorithm 4.1 (AGRPDA-L). We set σ = 0.99 for GRPDA-L and
ψ = 1.5 and µ = 0.7 for both algorithms. First, choose y−1 arbitrarily in a small neighborhood of
the starting point y0 such that K>y−1 6= K>y0 and compute

m =
‖y−1 − y0‖

‖K>y−1 −K>y0‖
≥ 1

L
. (69)

Then, set τ0 =
√
ψ√
β
m ≥

√
ψ√
βL

for GRPDA-L and τ0 =
√
ψ√
β0
m ≥

√
ψ√
β0L

with some β0 > 0 for

AGRPDA-L. We compare the proposed algorithms with their corresponding counterparts without

linesearch, i.e., GRPDA [8, Algoirthm 3.1] with τ =
√
ψ√
βL

and ψ = 1.618, as well as the state-of-the-

art primal-dual algorithm with linesearch PDA-L, i.e., [20, Algorithm 1], with µ = 0.7, δ = 0.99
and τ0 = ‖y−1 − y0‖/(

√
β‖K>y−1 −K>y0‖). Other parameters will be specified in the following.

All experiments were performed within Python 3.8 on an Intel(R) Core(TM) i5-4590 CPU
3.30GHz PC with 8GB of RAM running on 64-bit Windows operating system. For reproducible
purpose, the codes are provided at https://github.com/cxk9369010/GRPDA-Linesearch. We
solve the minimax matrix game problem and the LASSO problem for comparison.

Problem 5.1 (Minimax matrix game) The minimax matrix game problem is given by

min
x∈∆q

max
y∈∆p

〈Kx, y〉 , (70)

where K ∈ Rp×q, ∆q = {x ∈ Rq :
∑
i xi = 1, x ≥ 0} and ∆p = {y ∈ Rp :

∑
i yi = 1, y ≥ 0} denote

the standard unit simplex in Rq and Rp, respectively.

Clearly, (70) is a special case of (1) with g = ι∆q
and f∗ = ι∆p

, where ιC denotes the indicator
function of a set C. Since neither g nor f∗ is strongly convex, only the non-accelerated algorithms
GRPDA, GRPDA-L and PDA-L are relevant here. For (x, y) ∈ ∆q × ∆p, the primal-dual gap
function is given by G(x, y) := maxi(Kx)i −minj(K

>y)j . Initial points for all the algorithms are
set to be x0 = 1

q (1, . . . , 1)> ∈ Rq and y0 = 1
p (1, . . . , 1)> ∈ Rp. The projection onto the unit simplex

is computed by the algorithm from [9]. We set ψ = 1.618 and τ = σ = 1/‖K‖ for GRPDA and
β = 1 for PDA-L and GRPDA-L. As in [20], we generated K ∈ Rp×q randomly in the following
four different ways with random number generator seed = 50:

(i) All entries of K were generated independently from the uniform distribution in [−1, 1], and
(p, q) = (100, 100);

(ii) All entries ofK were generated independently from the normal distributionN (0, 1), and (p, q) =
(100, 100);

(iii) All entries of K were generated independently from the normal distribution N (0, 10), and
(p, q) = (500, 100);

(iv) The matrix K is sparse with 10% nonzero elements generated independently from the uniform
distribution in [0, 1], and (p, q) = (1000, 2000).

https://github.com/cxk9369010/GRPDA-Linesearch


Golden ratio primal-dual algorithm with linesearch 17

For a given ε > 0, we terminate the algorithms when G(xn, yn) < ε or n = nmax, where
nmax is the maximum number of iterations allowed. In this section, we set nmax = 3 × 105 and
examine how the values of the primal-dual gap function G(x, y) decrease as CPU time proceeds.
Table 1 presents the total CPU time (Time, in seconds), the number of iterations (Iter) and the
number of extra linesearch trial steps (#LS) of PDA-L and GRPDA-L as compared with their
counterparts without linesearch. We emphasize that for each trial of linesearch a projection onto
the unit simplex is required for this example. The decreasing behavior of the primal-dual gap
function values (abbreviated as PD gap G(xn, yn)) versus CPU time is shown in Figure 1 for the
compared algorithms with ε = 10−10.

Table 1 Results of GRPDA, PDA-L and GRPDA-L on problem 5.1. In the table, “—” represents that the algorithm
reached the maximum number of iterations without satisfying the stopping condition.

ε Test
GRPDA PDA-L GRPDA-L

Iter Time Iter #LS Time Iter #LS Time

10−7

(i) 25688 3.7 18612 18376 4.5 11010 3250 2.1
(ii) 103788 14.9 40676 40209 10.2 32656 9646 7.0
(iii) — 79.7 73197 72903 32.4 64628 19088 23.4
(iv) — 486.5 45705 44633 118.7 30356 8961 65.5

10−10

(i) 151134 20.2 58282 57561 16.0 45645 13481 9.8
(ii) 245612 33.5 89644 88622 24.4 75467 22292 15.9
(iii) — 79.9 155281 154655 69.3 145527 42985 51.2
(iv) — 486.5 — 292982 699.6 — 88613 617.7

It can be seen from Table 1 that PDA-L requires approximately one extra linesearch trial step
per outer iteration, while GRPDA-L requires roughly one extra linesearch trial step per three
outer iterations. As a result, GRPDA-L consumed less CPU time than PDA-L. From the results
in Figure 1, for all the four tests GRPDA-L performs the best, followed by PDA-L, both are faster
than GRPDA. It can be seen from Figure 1 that test (iv) is a difficult case, which makes all the
compared algorithms fail to reduce the primal-dual gap function value to less than 10−10 within
the prescribed maximum number of iterations.

Problem 5.2 (LASSO) Let K ∈ Rp×q be a sensing matrix and b ∈ Rp be an observation vector.
One form of the LASSO problem is to recover a sparse signal via solving

min
x
F (x) := µ‖x‖1 +

1

2
‖Kx− b‖2, (71)

where µ > 0 is a regularization parameter.

It is easy to verify that the LASSO problem (71) can be represented as the saddle point problem
(1) with g(x) = µ‖x‖1 and f∗(y) = 1

2‖y‖
2+〈b, y〉. Thus, the proximal operator Proxτf∗(·) is linear.

In fact, it holds that

yn = Proxβnτnf∗(yn−1 + βnτnKxn) =
yn−1 + βnτn(Kxn − b)

1 + βnτn
.

Therefore, there is no extra matrix-vector multiplications introduced within a linesearch step for
GRPDA-L as K>yn can always be obtained via a convex combination of the already computed
quantities K>yn−1 and K>(Kxn − b). On the other hand, problem (1) is equivalent to

max
x∈Rq

min
y∈Rp

f∗(y) + 〈−K>y, x〉 − g(x).

Then, by swapping “maxx∈Rq” with ”miny∈Rp” and (g,K, x, q) with (f∗,−KT , y, p), the strong
convexity of 1

2‖y‖
2 + 〈b, y〉 (previously f∗) can be transferred to g, which enables the application of
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(c) Test (iii).
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(d) Test (iv).

Fig. 1 Comparison results of GRPDA, GRPDA-L and PDA-L on Problem 5.1: PD gap versus CPU time.

the accelerated version, i.e., AGRPDA-L. Therefore, the algorithms to compare in this experiment
are GRPDA-L, AGRPDA-L and PDA-L (i.e., [20, Algorithm 1]). GRPDA without linesearch will
not be compared since it is the most inefficient.

We set seed = 100 and generate a random vector x∗ ∈ Rq for which s random coordinates are
drawn from N (0, 1) and the rest are set to be zero. Then, we generate ω ∈ Rp with entries drawn
from N (0, 0.1) and set b = Kx∗ + ω. The matrix K ∈ Rp×q is constructed in the following ways:

(i) All entries of K are generated independently from N (0, 1). The s entries of x∗ are drawn from
the uniform distribution in [−10, 10];

(ii) First, we generate a matrix A ∈ Rp×q, whose entries are independently drawn from N (0, 1).
Then, for a scalar v ∈ (0, 1) we construct the matrix K column by column as follows: K1 =
A1/
√

1− v2 and Kj = vKj−1 + Aj , j = 2, . . . , q. Here Kj and Aj represent the jth column of
K and A, respectively. As v ∈ (0, 1) becomes larger, K becomes more ill-conditioned. In this
experiment we take v = 0.5 and v = 0.9, respectively. The sparse vector x∗ is generated in the
same way as in case (i).

In both cases, the regularization parameter µ was set to be 0.1. Similar to [20], we set β = 400
for PDA-L and GRPDA-L. For AGRPDA-L, we set γ = 0.01 and β0 = 1 as in [8]. The initial
points for all algorithms are x0 = (0, . . . , 0)> and y0 = Kx0 − b.

In this experiment, we first ran all the algorithms by a sufficiently large number of iterations
and then chose the minimum attainable function value as an approximation of the optimal value F ∗

of (71). Again, for a given ε > 0, we terminate the algorithms when F (xn)− F ∗ < ε or n = nmax.
In this experiment, we set ε = 10−12 and nmax = 8× 104 to examine their convergence behavior.

It can be seen from the results in Table 2 that similar conclusion can be drawn, i.e., PDA-L
requires approximately one extra linesearch trial step per outer iteration, while GRPDA-L and
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Table 2 Results of GRPDA-L, PDA-L and AGRPDA-L on the LASSO problem (71).

ε Test
PDA-L GRPDA-L AGRPDA-L

Iter #LS Time Iter #LS Time Iter #LS Time

10−8
(i) 4757 4688 14.7 4043 1186 12.5 2450 723 10.9

(ii) v = 0.5 6167 6130 21.3 5213 1532 17.1 1759 517 8.1
(ii) v = 0.9 27899 27889 94.2 26080 7697 86.7 7480 2208 34.5

10−12
(i) 11234 11082 34.8 9287 2735 28.8 3539 1043 15.8

(ii) v = 0.5 14913 14831 49.1 12330 3634 40.3 3124 922 14.3
(ii) v = 0.9 64003 64007 213.8 55758 16464 183.1 12216 3608 55.6

AGRPDA-L require roughly one extra linesearch trial step per three outer iterations. Since the
proximal operator Proxτf∗(·) is linear and does not incur extra computations, GRPDA-L and
PDA-L perform similarly in terms of outer iteration and CPU time. In comparison, AGRPDA-
L performs the best, i.e., takes much less number of iterations and CPU time. The evolution of
function value residuals F (xn)−F ∗ versus CPU time is given in Figure 2, from which it can be seen
that AGRPDA-L, which takes advantage of strong convexity, is much faster than GRPDA-L and
PDA-L, which do not. These results lead to the conclusion that strong convexity of the component
functions, if properly explored, helps to improve the performance of primal-dual type algorithms.
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(a) Case (i).
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(b) Case (ii) with v = 0.5.
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(c) Case (ii) with v = 0.9.

Fig. 2 Experimental results on the LASSO problem. Decreasing behavior of function value versus CPU time. From
left to right: Case (i) with (p, q, s) = (1000, 2000, 100), Case (ii) with (p, q, s, v) = (1000, 2000, 10, 0.5), and Case (ii)
with (p, q, s, v) = (1000, 2000, 10, 0.9).

6 Conclusions

In this paper, we have incorporated linesearch strategy into the golden ratio primal-dual algorithm
(GRPDA) recently proposed in [8]. Global convergence and O(1/N) ergodic convergence rate
measured by primal-dual function gap are established in the general convex case. When either one
of the component functions is strongly convex, accelerated GRPDA with linesearch is proposed,
which achieves O(1/N2) ergodic rate of convergence. Furthermore, when both component functions
are strongly convex, nonergodic linear convergence results are obtained. The proposed linesearch
strategy does not require to evaluate the spectral norm of K and adopts potentially much larger
stepsizes. In cases such as regularized least-squares problem, the proposed linesearch strategy
only requires minimal extra computational cost and thus is particularly useful. Our numerical
experimental on minimax matrix game and LASSO problems demonstrate the benefits gained by
taking advantage of strong convexity and incorporating our proposed linesearch. Experimentally,
the extra linesearch trial steps used by golden ratio type primal-dual algorithms are about one-third
of those proposed by Malitsky [20] and larger stepsizes can be accepted, which could be significant
when the evaluations of proximal operators are nontrivial.
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A Proof of Lemma 3.1

Proof. (i) Since (12) is fulfilled whenever τn satisfies
√
βτnL ≤ σ

√
ψ/τn−1, we have from τn = ϕτn−1µi that (12) is

fulfilled whenever
√
µi ≤ τ/τn−1. Hence, (12) will be fulfilled by the linesearch procedure in Step 2 since µ ∈ (0, 1).

(ii) We consider two cases.
Case 1: There exists a k̄ such that τn ≥ τ for all n ≥ k̄. If there is no infinite subsequence {nk : k ≥ 1} ⊆ {1, 2, . . .}
such that δnk ≥ ρ, we have δn < ρ < 1 for all n sufficiently large. Then, we will have from τn = τ0

∏n
i=1 δi and

ρ < 1 that limn→∞ τn = 0, which contradicts with τn ≥ τ for all n ≥ k̄ Hence, in this case, property (ii) holds.
Case 2: There exists an infinite subsequence {ni : i ≥ 1} such that τni < τ . By the linesearch procedure in Step
2, for any τn ≤ τ , the initial trial τn+1 = ϕτn will satisfy (12) and be accepted by the linesearch. Hence, defining
`(t) = blogϕ(τ/t)c where t < τ , we have the following property:

If τn < τ , then with k′ := n+ `(τn) we have

τk < τ and τk+1 = ϕτk for all k = n, n+ 1, . . . , k′, and τ ≤ τk′+1 < ϕτ. (72)

Here, btc is the largest integer less or equal to t. So, for any τni < τ , we have τk′+1 ≥ τ , where k′ = ni + `(τni ). In
addition, we have δk′+1 = τk′+1/τk′ = ϕ > ρ. Hence, in this case property (ii) also holds.

(iii) First, if τ0 < τ , by property (72), we have τs = τ0ϕs ≥ τ , where s = `(τ0) + 1. Hence, without losing of
generality, to show property (iii), we can simply assume τ1 ≥ τ .

Now, we show the following property:

For any τn−1 ≥ τ and τn < τ , we have (74) and (75) hold. (73)

Since τn < τn−1, by the linesearch procedure in Step 2, we have τn = ϕτn−1µj with j ≥ 1 and
√
βϕτn−1µj−1L >

σ
√
ψ/τn−1, which is equivalent to

τn−1 > τµ−(j−1)/2. (74)

On the other hand, by (74) and j ≥ 1, we have

1 + `(τn) = 1 + blogϕ(τ/τn)c = 1 + blogϕ(τ/(ϕτn−1µ
j))c

= blogϕ(τ/(τn−1µ
j))c ≤

⌊
j + 1

2
logϕ(1/µ)

⌋
≤ j logϕ(1/µ). (75)

Let Z+ := {1, 2, 3, . . .} be the set of positive integers. Given two integers i1 ≤ i2, let interval [i1, i2] := {i ∈
Z+ : i1 ≤ i ≤ i2} and interval [i1,∞) := {i ∈ Z+ : i1 ≤ i < ∞}. Then, based on properties (72), (73) and

the assumption τ1 ≥ τ , there exist a set of positive integers K := ∪|K|i=1{ki} ⊆ Z
+ and an associated integer set

M := ∪|K|−1
i=1 {mi} ⊆ Z+, where |K| ≥ 1 denotes the cardinality of K that is either a finite number or infinity, such

that they partition Z+, i.e., Z+ = ∪∞i=1[ki, ki+1−1] if |K| =∞ or Z+ = ∪|K|−1
i=1 [ki, ki+1−1]∪ [k|K|,∞) if |K| <∞,

and the following properties hold:

(a) k1 = 1 and ki < mi < ki+1 for all i;
(b) τk ≥ τ for all k ∈ [ki,mi − 1] and τk < τ for all k ∈ [mi, ki+1 − 1], see the diagram below

︷ ︸︸ ︷
. . . , ki − 1,

tk≥τ, (mi−ki) times︷ ︸︸ ︷
ki, . . . , mi − 1,

tk<τ, (ki+1−mi) times︷ ︸︸ ︷
mi, . . . , ki+1 − 1,

︷ ︸︸ ︷
ki+1, . . .

(c) If |K| <∞, τk ≥ τ for all k ≥ k|K|; Otherwise, |K| =∞ and Z+ = ∪∞i=1[ki, ki+1 − 1];
(d) τki < ϕτ by property (72) for all ki ∈ K \ {k1};
(e) τmi−1 > τµ−(j−1)/2 by (74) and ki+1−mi = `(τmi ) + 1 ≤ j logϕ(1/µ) by (75) for all mi ∈M and some j ≥ 1

depending on mi.

Now, we consider any interval [ki, ki+1 − 1] = [ki,mi − 1] ∪ [mi, ki+1 − 1]. Let j ≥ 1 be the integer associated with
mi such that property (e) holds. Since τk+1 ≤ ϕτk for all k, we have

τmi−1 < τkiϕ
mi−1−ki .

Then, by properties (d) and (e), for ki 6= k1 = 1, we have τki < ϕτ and τmi−1 ≥ τµ−(j−1)/2, which together with

the above inequality gives τµ−(j−1)/2 ≤ τmi−1 < τkiϕ
mi−1−ki < τϕmi−ki , which is equivalent to

(j − 1) logϕ(1/
√
µ) < mi − ki.

For ki = k1 = 1, we have τµ−(j−1)/2 < τ1ϕmi−2, or (j− 1) logϕ(1/
√
µ) ≤ logϕ

(
τ1/τ

)
+mi − 2. So, there exists an

integer constant j̄ ≥ 1, which does not depend on either ki or mi, such that

mi − ki ≥ j
4

logϕ(1/µ) whenever j ≥ j̄. (76)
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Next, we show that there exists a constant c̄ > 0, which does not depend on mi or the interval [ki, ki+1 − 1], such
that

mi − ki ≥ c̄ (ki+1 −mi). (77)

Noticing that by property (e), we have ki+1 −mi ≤ j logϕ(1/µ). Hence, it follows from (76) that if j ≥ j̄ we have

mi − ki ≥
logϕ(1/µ)

4 logϕ(1/µ)
(ki+1 −mi) =

1

4
(ki+1 −mi).

On the other hand, if 1 ≤ j < j̄, we have from ki+1 −mi ≤ j logϕ(1/µ) that

mi − ki ≥ 1 > j/j̄ ≥
ki+1 −mi
j̄ logϕ(1/µ)

.

Hence, (77) holds with c̄ = min{1/(j̄ logϕ(1/µ)), 1/4} > 0.
Apparently, if follows from (77) that mi − ki ≥ ĉ (ki+1 − ki) with ĉ := c̄/(1 + c̄) > 0. If |K| = ∞, given

any N ≥ 1, it follows from property (c) that N ∈ [ki, ki+1 − 1] for certain i ≥ 1. Hence, by the definition of
KN = {1 ≤ n ≤ N : τn ≥ τ}, we have KN = ∪ij=1 (KN ∩ [kj , kj+1 − 1]). Then, it follows from (77) and property

(b) that

|KN | =

i∑
j=1

|KN ∩ [kj , kj+1 − 1]| ≥
i∑

j=1

|KN ∩ [kj ,mj − 1]|

= min{N,mi} − ki +

i−1∑
j=1

|[kj ,mj − 1]| = min{N,mi} − ki +

i−1∑
j=1

(mj − kj)

≥ ĉ(N − ki) + ĉ

i−1∑
j=1

(kj+1 − kj) = ĉN, (78)

where ĉ = c̄/(1 + c̄). If |K| <∞, by property (c), for all n ≥ k|K| we have τn ≥ τ . This property together with (78)
implies |KN | ≥ ĉN for any N ≥ 1. �

B Proof of Lemma 4.1

Proof. (i) This conclusion follows almost from an identical proof of conclusion (i) in Lemma 3.1 except by replacing
β by βn and setting σ = 1.

(ii) Let h(τ) := 1 +
(ψ−ϕ)γgτ
ψ+ϕγgτ

. Since h(τ) is strictly increasing with respect to τ > 0, we have that 1 <

1 + γgωnτn−1 = h(τn−1) < ς := ψ/ϕ. So, by (37), βn−1 < βn = βn−1h(τn−1) < ςβn−1. Therefore, for any√
βn−1τn−1 ≤ 1/L, we have

√
βnτn−1 ≤

√
ςβn−1τn−1 ≤

√
ς/L = 1

L

√
ψ
ϕ

, which by the linesearch procedure in

Step 2 implies that the initial trial τn = ϕτn−1 will satisfy (39) and be accepted by the linesearch. Hence, analogous
to property (72), we have the following property:

If
√
βnτn <

1
L

, then there exists an integer `n ≥ 0 such that k′ := n+ `n satisfies:
√
βkτk <

1
L

and τk+1 = ϕτk for all k = n, n+ 1, . . . , k′, and
√
βk′+1τk′+1 ≥ 1

L
, (79)

which, by βn < βn+1 < ςβn and τn+1 ≤ ϕτn for all n ≥ 1, also implies

`n ≤ ϑ
(√

βnτn
)

and
√
βk′+1τk′+1 <

√
ςβk′ϕτk′ =

√
ψϕ
√
βk′τk′ < θ, (80)

where ϑ(t) := blogϕ(1/(Lt))c for t < 1/L and θ :=
√
ψϕ/L.

Analogous to property (73), we show the following property:

For any
√
βn−1τn−1 ≥ 1

L
and
√
βnτn <

1
L

, we have (82) and (83) hold. (81)

Since βn > βn−1 and
√
βnτn <

√
βn−1τn−1, by the linesearch procedure in Step 2, we have τn = ϕτn−1µj with

j ≥ 1 and
√
βnϕτn−1µj−1L >

√
ψ/τn−1, which gives

√
βnτn−1 ≥

√
ψ

ϕ

µ−
j−1
2

L
and

√
βn−1τn−1 >

√
βn/ςτn−1 ≥

µ−
j−1
2

L
. (82)
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It follows from (80), ψ > ϕ > 1, j ≥ 1 and (82) that

1 + `n ≤ 1 + ϑ(
√
βnτn) = 1 +

⌊
logϕ

(
1/(L

√
βnτn)

)⌋
= 1 +

⌊
logϕ

(
1/(L

√
βnϕτn−1µ

j)
)⌋

=
⌊
logϕ(1/(L

√
βnτn−1µ

j))
⌋

≤
⌊
j + 1

2
logϕ(1/µ) +

1

2
logϕ(ϕ/ψ)

⌋
≤ j logϕ(1/µ). (83)

Let Z+ := {1, 2, 3, . . .} be the set of positive integers. Given two integers i1 ≤ i2, let interval [i1, i2] := {i ∈
Z+ : i1 ≤ i ≤ i2} and interval [i1,∞) := {i ∈ Z+ : i1 ≤ i < ∞}. To show this lemma, without losing of
generality, by property (79), we can simply assume

√
β1τ1 ≥ 1/L. Then, based on properties (79) and (81), there

exist a set of positive integers K := ∪|K|i=1{ki} ⊆ Z
+ and an associated integer set M := ∪|K|−1

i=1 {mi} ⊆ Z+, where
|K| ≥ 1 denotes the cardinality of K that is either a finite number or infinity, such that they partition Z+, i.e.,

Z+ = ∪∞i=1[ki, ki+1−1] if |K| =∞ or Z+ = ∪|K|−1
i=1 [ki, ki+1−1]∪ [k|K|,∞) if |K| <∞, and the following properties

hold:

(a) k1 = 1 and ki < mi < ki+1 for all i;
(b)
√
βkτk ≥ 1/L for all k ∈ [ki,mi − 1] and

√
βkτk < 1/L for all k ∈ [mi, ki+1 − 1];

(c) If |K| <∞,
√
βkτk ≥ 1/L for all k ≥ k|K|; Otherwise, |K| =∞ and Z+ = ∪∞i=1[ki, ki+1 − 1];

(d)
√
βkiτki < θ by (80) for all ki ∈ K \ {k1}, where θ =

√
ψϕ/L;

(e)
√
βmi−1τmi−1 > µ−(j−1)/2/L by (82) and ki+1 −mi = `mi + 1 ≤ j logϕ(1/µ) by (83) for all mi ∈ M and

some j ≥ 1 depending on mi, where `mi is defined in property (79) associated with
√
βmiτmi .

Now, we consider any interval [ki, ki+1 − 1] = [ki,mi − 1] ∪ [mi, ki+1 − 1]. Let j ≥ 1 be the integer associated with
mi such that property (e) holds. Since

√
βk+1τk+1 <

√
ςβkϕτk =

√
ψϕ
√
βkτk for all k, we have√

βmi−1τmi−1 <
√
βkiτkiρ

(mi−1−ki)/2,

where ρ := ψϕ > 1. By properties (d) and (e), for ki 6= k1 = 1, we have
√
βkiτki < θ and

√
βmi−1τmi−1 ≥

µ−(j−1)/2/L, which together with the above inequality gives

µ−(j−1)/2/L < θρ(mi−1−ki)/2 ⇐⇒ j logρ(1/µ) < logρ
(
(θL)2/(µρ)

)
+mi − ki

= logρ
(
1/µ

)
+mi − ki.

For ki = k1 = 1, we have j logρ(1/µ) ≤ logρ
(
(θ1L)2/(µρ)

)
+mi − 1, where θ1 :=

√
β1τ1. So, there exists an integer

constant j̄ ≥ 1, which does not depend on either ki or mi, such that

mi − ki ≥ j
2

logρ(1/µ) whenever j ≥ j̄. (84)

Next, we show that there exists a constant c̄ > 0, which does not depend on mi, such that

mi − ki ≥ c̄ (ki+1 −mi + 1). (85)

Noticing that by property (e), we have

ki+1 −mi + 1 ≤ j logϕ(1/µ) + 1 ≤ j (logϕ(1/µ) + 1). (86)

Hence, it follows from (84) and (86) that whenever j ≥ j̄ we have

mi − ki ≥
logρ(1/µ)

2(logϕ(1/µ) + 1)
(ki+1 −mi + 1).

On the other hand, if 1 ≤ j < j̄, then by (86) we have

mi − ki ≥ 1 > j/j̄ ≥
ki+1 −mi + 1

j̄
(

logϕ(1/µ) + 1
) .

Hence, (85) holds with c̄ = min{1/(j̄(logϕ(1/µ)) + 1)), logρ(1/µ)/(2(logϕ(1/µ) + 1))} > 0.

Now, by (37) we have βn+1 = βnh(τn) = βn(1 + tn), where tn =
(ψ−ϕ)γgτn
ψ+ϕγgτn

. Then, we have

√
βn+1 −

√
βn =

βn+1 − βn√
βn+1 +

√
βn

=
tnβn√

βn+1 +
√
βn

≥
tnβn

(
√
ς + 1)

√
βn
≥ c̃min{τn, 1}

√
βn, (87)
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where c̃ > 0 is some constant. Consider any k ∈ [ki, ki+1 − 1] = [ki,mi − 1] ∪ [mi, ki+1 − 1]. If k ∈ [mi, ki+1 − 1],
by (85) we have

mi − ki
ki+1 − ki + 1

=
mi − ki

(mi − ki) + (ki+1 −mi + 1)
≥

1

1 + 1/c̄
=

c̄

1 + c̄
, (88)

and it thus follows from (87), property (b), βn ≥ β0 > 0 and (88) that

√
βk −

√
βki =

k−1∑
n=ki

(√
βn+1 −

√
βn
)
≥ c̃

k−1∑
n=ki

min{τn, 1}
√
βn

≥ c̃

mi−1∑
n=ki

min{τn, 1}
√
βn ≥ c̃

mi−1∑
n=ki

min{1/L,
√
β0}

= c̃(mi − ki) min{1/L,
√
β0} ≥ ĉ(ki+1 − ki + 1) ≥ ĉ (k − ki + 1), (89)

where ĉ := c̃ c̄min{1/L,
√
β0}/(1 + c̄) > 0, c̄ and c̃ are constants given in (85) and (87), respectively. On the other

hand, if k ∈ [ki,mi − 1], similar to (89) we can show√
βk −

√
βki ≥ c̃min{1/L,

√
β0}(k − ki) ≥ ĉ (k − ki). (90)

If |K| = ∞, given any n ≥ 1, it follows from property (c) that n ∈ [ki, ki+1 − 1] for certain i ≥ 1. Hence, by (89),
(90) and 0 < βj < βj+1 for any j ≥ 1, we have

√
βn =

√
βn −

√
βki +

i−1∑
j=1

(
√
βkj+1

−
√
βkj ) +

√
βk1

=
√
βn −

√
βki +

i−1∑
j=1

[(√
βkj+1−1 −

√
βkj

)
+
(√

βkj+1
−
√
βkj+1−1

)]
+
√
βk1

≥
√
βn −

√
βki +

i−1∑
j=1

(√
βkj+1−1 −

√
βkj

)

≥ ĉ
[
(n− ki) +

i−1∑
j=1

(kj+1 − kj)
]

= ĉ (n− 1). (91)

If |K| <∞, by property (c), for any k ≥ k|K| we have
√
βkτk ≥ 1/L and thus√

βk −
√
βk|K| ≥ ĉ(k − k|K|).

This together with (89) and property (c) also implies (91) holds for any n ≥ 1. Then, conclusion (ii) follows from
(91).

(iii). Note that for any
√
βpτp ≥

√
βqτq with p ≤ q, we have from βp ≤ βq that τp ≥ τq . So, based on property

(b) in (ii) and (85), we have the property:

(b’) τp ≥ τq for all p ∈ [ki,mi − 1], q ∈ [mi, ki+1 − 1] and therefore
∑mi−1
n=ki

τn ≥ c̄
∑ki+1−1
n=mi

τn,

where c̄ > 0 is the constant in (85).
Let K ⊂ Z+ be the set given in the proof of (ii). If |K| = ∞, then for any N ≥ 1 it follows from property (c)

that N ∈ [kj , kj+1 − 1] for certain j ≥ 1 = k1. Hence, we have from property (b’) that

N∑
n=1

τn =
N∑

n=kj

τn +

j−1∑
s=1

ks+1−1∑
n=ks

τn =
N∑

n=kj

τn +

j−1∑
s=1

ms−1∑
n=ks

τn +

ks+1−1∑
n=ms

τn


≤ (1 + 1/c̄)

min{N,mj−1}∑
n=kj

τn +

j−1∑
s=i

ms−1∑
n=ks

τn + 1/c̄

ms−1∑
n=ks

τn


= (1 + 1/c̄)

min{N,mj−1}∑
n=kj

τn +

j−1∑
s=1

ms−1∑
n=ks

τn

 = (1 + 1/c̄)
∑
n∈SN

τn.

When |K| <∞, we can also similarly prove that
∑N
n=1 τn ≤ (1 + 1/c̄)

∑
n∈SN τn for any N ≥ 1, because

√
βnτn ≥

1/L for all n ≥ k|K|. The proof is completed by letting c̃ = 1 + 1/c̄. �
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