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Abstract. We introduce a new preconditioner for a recently developed pressure-robust hy-
bridized discontinuous Galerkin (HDG) finite element discretization of the Stokes equations. A
feature of HDG methods is the straightforward elimination of degrees-of-freedom defined on the in-
terior of an element. In our previous work (J. Sci. Comput., 77(3):1936–1952, 2018) we introduced a
preconditioner for the case in which only the degrees-of-freedom associated with the element velocity
were eliminated via static condensation. In this work we introduce a preconditioner for the statically
condensed system in which the element pressure degrees-of-freedom are also eliminated. In doing
so the number of globally coupled degrees-of-freedom are reduced, but at the expense of a more
difficult problem to analyse. We will show, however, that the Schur complement of the statically
condensed system is spectrally equivalent to a simple trace pressure mass matrix. This result is
used to formulate a new, provably optimal preconditioner. Through numerical examples in two- and
three-dimensions we show that the new preconditioned iterative method converges in fewer iterations,
has superior conservation properties for inexact solves, and is faster in CPU time when compared to
our previous preconditioner.

Key words. Stokes equations, preconditioning, hybridized, discontinuous Galerkin, finite ele-
ment methods.
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1. Introduction. Hybridizable discontinuous Galerkin (HDG) methods were in-
troduced for elliptic problems to reduce cost of discontinuous Galerkin methods while
retaining favourable properties [7]. Static condensation can be applied to eliminate
degrees-of-freedom on cells, leading to global degrees-of-freedom that are associated
with functions that are defined only on the facets of the mesh. The resulting methods
have fewer global degrees of freedom than a discontinuous Galerkin method on the
same mesh, especially in three dimensions.

For large systems, preconditioned iterative methods are preferred over direct
solvers. In the case of HDG methods, new preconditioners need to be designed that are
effective for the reduced linear systems following static condensation. This has been a
topic of recent research with the design of scalable multigrid and domain decomposi-
tion methods for HDG discretizations of elliptic PDEs, see for example [8, 13, 18, 27].
See also [25, 26] for HDG preconditioners for hyperbolic problems and [9] and [33] for
preconditioning of statically condensed and hybridized finite element discretizations
by, respectively, algebraic multigrid and geometric multigrid.

In this paper we develop a new preconditioner for the pressure-robust HDG dis-
cretization of the Stokes equations introduced in [29, 30]. Pressure-robust discretiza-
tions have the advantage over other finite element discretizations that the a priori
error estimates for the velocity do not depend on the pressure. We refer to, respec-
tively, [17] and [20, 21, 22, 23] for an overview of pressure-robust discretizations and
alternative pressure-robust HDG discretizations. In [31] we developed a precondi-
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tioner for a pressure-robust HDG discretization of the Stokes problem, and showed
that the pressure Schur complement of the linear system obtained after eliminating
only the degrees-of-freedom associated to the element velocity is identical to the pres-
sure Schur complement of the original linear system. Together with a proof showing
spectral equivalence of the element/trace pressure Schur complement with an ele-
ment/trace pressure mass matrix, we were able to formulate a very simple scalable
preconditioner when the velocity only was statically condensed. However, a disad-
vantage of eliminating the cell-wise velocity degrees-of-freedom and not the cell-wise
pressure degrees-of-freedom is that the pointwise divergence-free (within cells) prop-
erty of the method is guaranteed only in the limit of the iterative solver convergence.
We address this issue in this work by formulating a preconditioner for a statically
condensed system after elimination of both the degrees-of-freedom associated to the
element velocity and the degrees-of-freedom associated to the element pressure. The
complication that arises in eliminating the degrees-of-freedom associated to the el-
ement pressure is that the lifting of the trace velocity unknowns to the element is
divergence-free. This requires a new proof to show spectral equivalence of the trace
pressure Schur complement with the trace pressure mass matrix. Given this result
we can then apply the general theory of Pestana and Wathen [28] for preconditioners
of saddle point problems to formulate a new scalable preconditioner for the statically
condensed problem. Compared to our previous work [31], there are less globally cou-
pled degrees-of-freedom and our new preconditioner results in a more efficient solver.

The outline of this paper is as follows. In section 2 we present the HDG method
for the Stokes equations and discuss some useful properties of the discretization. A
preconditioner for the statically condensed form of the HDG method is formulated in
section 3. By two- and three-dimensional numerical examples in section 4 we verify
our analysis. We draw conclusions in section 5.

2. HDG for the Stokes problem. Let Ω ⊂ Rd be a polygonal (d = 2) or
polyhedral (d = 3) domain with boundary ∂Ω. We consider the Stokes problem:
given a body force f : Ω→ Rd, find the velocity u : Ω→ Rd and (kinematic) pressure
p : Ω→ R such that

−∇2u+∇p = f in Ω,(2.1a)

∇ · u = 0 in Ω,(2.1b)

u = 0 on ∂Ω.(2.1c)

To obtain a unique solution to the pressure, we additionally impose that the mean of
the pressure over the domain Ω is zero.

2.1. Preliminaries. Consider a triangulation T := {K} of the domain Ω into
non-overlapping elements K. We introduce the following function spaces on Ω:

Vh :=
{
vh ∈ [L2(Ω)]

d
: vh ∈ [Pk(K)]

d
, ∀ K ∈ T

}
,

Qh :=
{
qh ∈ L2(Ω) : qh ∈ Pk−1(K), ∀ K ∈ T

}
,

(2.2)

where Pk(D) denotes the set of polynomials of degree at most k on a domain D. Two
adjacent elements K+ and K− share an interior facet F . A boundary facet is defined
as a facet of the boundary of an element, ∂K, that lies on ∂Ω. Denoting the set of
all facets by F = {F}, and the union of all facets by Γ0, we introduce the following



PRECONDITIONING HDG FOR THE STOKES EQUATIONS 3

function spaces on Γ0:

V̄h :=
{
v̄h ∈ [L2(Γ0)]

d
: v̄h ∈ [Pk(F )]

d ∀ F ∈ F , v̄h = 0 on ∂Ω
}
,

Q̄h :=
{
q̄h ∈ L2(Γ0) : q̄h ∈ Pk(F ) ∀ F ∈ F

}
.

(2.3)

For convenience, we introduce the spaces V h := Vh × V̄h, Qh := Qh × Q̄h, and
Xh := V h × Qh. Function pairs in V h and Qh will be denoted by boldface, e.g.,
vh := (vh, v̄h) ∈ V h and qh := (qh, q̄h) ∈ Qh.

For scalar-valued functions p and q, we write

(2.4) (p, q)T :=
∑
K∈T

(p, q)K , 〈p, q〉∂T :=
∑
K

〈p, q〉∂K ,

where (p, q)K :=
∫
K
pq dx and 〈p, q〉∂K :=

∫
∂K

pq ds. Similar inner-products hold for
vector-valued functions.

We also introduce the following mesh-dependent norms:

‖v̄h‖2h,0 :=
∑
K∈Th

hK‖v̄h‖2∂K ∀v̄h ∈ V̄h,(2.5a)

|||v̄h|||2h :=
∑
K∈Th

h−1
K

∥∥v̄h −mK(v̄h)
∥∥2

∂K
∀v̄h ∈ V̄h,(2.5b)

|||vh|||2v :=
∑
K∈T
‖∇vh‖2K +

∑
K∈T

αh−1
K ‖v̄h − vh‖

2
∂K ∀vh ∈ V h,(2.5c)

‖q̄h‖2p :=
∑
K∈T

hK‖q̄h‖2∂K ∀q̄h ∈ Q̄h,(2.5d)

|||qh|||
2
p :=‖qh‖2Ω +‖q̄h‖2p ∀qh ∈ Qh,(2.5e)

where hK is the length measure of an element K, α > 0 is a constant, and mK(v̄h) :=
1
|∂K|

∫
∂K

v̄h ds. We furthermore have the following Poincaré-type inequality (see [8,

Lemma 3.7] and [14, Proof of Theorem 2.3]) for the norms on V̄h:

(2.6) ‖v̄h‖h,0 ≤ c|||v̄h|||h ∀v̄h ∈ V̄h.

We will use the following reduced version of [16, Theorem 3.1].

Theorem 2.1. Let U , P1, and P2 be reflexive Banach spaces, and let b1 : P1 ×
U → R and b2 : P2 × U → R be bilinear and continuous. Let

(2.7) Zbi =
{
v ∈ U : bi(pi, v) = 0 ∀pi ∈ Pi

}
⊂ U, i = 1, 2,

then the following are equivalent:
i. There exists c > 0 such that

sup
v∈U

b1(p1, v) + b2(p2, v)

‖v‖U
≥ c

(
‖p1‖P1

+‖p2‖P2

)
(p1, p2) ∈ P1 × P2.

ii. There exists c > 0 such that

sup
v∈U

b1(p1, v)

‖v‖U
≥ c‖p1‖P1

, p1 ∈ P1 and sup
v∈Zb1

b2(p2, v)

‖v‖U
≥ c‖p2‖P2

, p2 ∈ P2.
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2.2. The HDG formulation of the Stokes problem. We consider the HDG
method of [19, 29, 30] for the Stokes problem (2.1), which reads: find (uh,ph) ∈Xh

such that

(2.8) ah(uh,vh) + bh(ph, vh) + bh(qh, uh) = (vh, f)T ∀(vh, qh) ∈Xh,

where

ah(wh,vh) := (∇wh,∇vh)T + 〈αh−1(wh − w̄h), vh − v̄h〉∂T(2.9a)

− 〈wh − w̄h, ∂nvh〉∂T − 〈∂nwh, vh − v̄h〉∂T ,
bh(qh, vh) :=− (qh,∇ · vh)T + 〈vh · n, q̄h〉∂T ,(2.9b)

and where n is the outward unit normal vector on ∂K.
The following properties of the bilinear forms will be useful when constructing a

preconditioner for the statically condensed version of (2.8). For sufficiently large α,
ah(·, ·) is coercive on V h and bounded, i.e., there exist constants csa > 0 and cba > 0,
independent of h, such that for all uh,vh ∈ V h,

(2.10) ah(vh,vh) ≥ csa|||vh|||
2
v and

∣∣ah(uh,vh)
∣∣ ≤ cba|||uh|||v|||vh|||v,

see [30, Lemmas 4.2 and 4.3]. Furthermore, there exist constants cbb > 0 and βp > 0,
independent of h, such that for all vh ∈ V h and for all qh ∈ Qh,

(2.11)
∣∣bh(qh, vh)

∣∣ ≤ cbb|||vh|||v|||qh|||p and βp|||qh|||p ≤ sup
vh∈V h

bh(qh, vh)

|||vh|||v
,

see [30, Lemma 4.8 and Eq. 102] and [31, Lemma 1], respectively. Next we note that
the velocity-pressure coupling term (2.9b) can be written as

(2.12) bh(qh, vh) := b1(qh, vh) + b2(q̄h, vh),

where

(2.13) b1(qh, vh) := − (qh,∇ · vh)T and b2(q̄h, vh) := 〈vh · n, q̄h〉∂T .

It follows immediately from (2.11) that

(2.14)
∣∣b2(q̄h, vh)

∣∣ ≤ cbb|||vh|||v‖q̄h‖p .
Furthermore, in [31, Lemma 3] we proved that there exists a constant β̄ > 0, inde-
pendent of h, such that for all q̄h ∈ Q̄h

(2.15) β̄‖q̄h‖p ≤ sup
vh∈V h

b2(q̄h, vh)

|||vh|||v
.

Stability of b2 holds also for velocities that are divergence-free on each element K ∈ T ,
i.e.

(2.16) β̄‖q̄h‖p ≤ sup
vh∈V 0

h

b2(q̄h, vh)

|||vh|||v

where V 0
h := V 0

h × V̄h and

V 0
h : =

{
vh ∈ Vh : b1(vh, qh) = 0 ∀qh ∈ Qh

}
=
{
vh ∈ Vh : (∇ · vh)|K = 0 ∀K ∈ T

}
.

(2.17)

Equation (2.16) is a direct consequence of the inf-sup condition in (2.11) and Theo-
rem 2.1. This result will play an important role in constructing a preconditioner in
section 3.
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2.3. The matrix formulation. To express (2.8) as a linear algebra problem,
we let u ∈ Rnu and ū ∈ Rn̄u be vectors of the discrete element and trace velocities
(degrees-of-freedom) with respect to the basis for Vh and V̄h, respectively. Similarly,
we let p ∈ Rnq and p̄ ∈ Rn̄q be the degrees-of-freedom associated with the basis for
Qh and Q̄h, respectively. We define also V := {v = [vT v̄T ]T : v ∈ Rnu , v̄ ∈ Rn̄u}
and Q := {q = [qT q̄T ]T : q ∈ Rnq , q̄ ∈ Rn̄q} and denote by u = [uT ūT ]T ∈ V and
p = [pT p̄T ]T ∈ Q.

Next, let A ∈ R(nu+n̄u)×(nu+n̄u) be the symmetric matrix defined by

(2.18) ah(vh,vh) = vTAv where A :=

[
Auu ATūu
Aūu Aūū

]
,

for any v ∈ V. Here Auu, Aūu and Aūū are the matrices obtained from the discretiza-
tion of ah((·, 0), (·, 0)), ah((·, 0), (0, ·)) and ah((0, ·), (0, ·)), respectively. Similarly, let
B1 ∈ Rnq×(nu+n̄u) and B2 ∈ Rn̄q×(nu+n̄u) be the matrices defined by

b1(qh, vh) = qTB1v where B1 :=
[
Bpu 0

]
,(2.19)

b2(q̄h, vh) = q̄TB2v where B2 :=
[
Bp̄u 0

]
,(2.20)

for any q ∈ Rnq and q̄ ∈ Rn̄q . Here Bpu and Bp̄u are the matrices obtained from the
discretization of bh((·, 0), ·) and bh((0, ·), ·), respectively. Finally we define Lu such
that

(2.21) (vh, f)T = vTL where L :=

[
Lu
0

]
.

We can now express (2.8) in block matrix form as

(2.22)


Auu ATūu BTpu BTp̄u
Aūu Aūū 0 0
Bpu 0 0 0
Bp̄u 0 0 0



u
ū
p
p̄

 =


Lu
0
0
0

 .
The matrices Auu and Bpu in (2.22) are block diagonal (one block per cell),

therefore u and p and can be eliminated locally via static condensation. This leads to
the two-field reduced system:

(2.23)

[
Ād −AūuA−1

uuPTBTp̄u
−Bp̄uPA−1

uuA
T
ūu −Bp̄uPA−1

uuPTBTp̄u

]
︸ ︷︷ ︸

Ā

[
ū
p̄

]
=

[
−AūuPA−1

uuLu
−Bp̄uPA−1

uuLu

]
,

with

(2.24) Ād := −AūuPA−1
uuA

T
ūu +Aūū,

and

(2.25) P := I −Π, Π := A−1
uuB

T
pu(BpuA

−1
uuB

T
pu)−1Bpu.

Note that Ād is symmetric, and we remark that P is an oblique projection matrix
into the null-space of Bpu. It is important to note that P can be assembled element-
wise and is therefore a local operator. Then, given the trace velocity ū and the trace
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pressure p̄, the element velocity u and pressure p can be computed element-wise in a
post-processing step by solving:

(2.26)

[
Auu BTpu
Bpu 0

] [
u
p

]
=

[
Lu −ATūuū−BTp̄up̄

0

]
,

resulting in

(2.27)

[
u
p

]
=

[
PA−1

uu (Lu −ATūuū−BTp̄up̄)
(BpuA

−1
uuB

T
pu)−1BpuA

−1
uuLu

]
.

It is clear that once ū and p̄ are known, u = PA−1
uu (Lu − ATūuū − BTp̄up̄) ∈ Ker Bpu

exactly (up to machine precision) due to the application of P to the vector A−1
uu (Lu−

ATūuū − BTp̄up̄). In other words, the discrete velocity uh is exactly divergence free on
each element.

2.4. Matrix properties. The following properties of the different matrices will
be useful when constructing a preconditioner for (2.23) in section 3.

Lemma 2.2. The matrix of the two-field reduced system (2.23) is invertible.

Proof. Write (2.22) as

(2.28)


Auu BTpu ATūu BTp̄u
Bpu 0 0 0
Aūu 0 Aūū 0
Bp̄u 0 0 0



u
p
ū
p̄

 =


Lu
0
0
0

 .
Define

(2.29) A =

[
Auu BTpu
Bpu 0

]
, B =

[
Aūu 0
Bp̄u 0

]
, C =

[
Aūū 0

0 0

]
.

We can then write the matrix in (2.28) as the following block triangular factorization:

(2.30) A =

[
A BT
B C

]
=

[
I 0

BA−1 I

] [
A 0
0 S

] [
I A−1BT
0 I

]
,

where the Schur complement S = C − BA−1BT is exactly the matrix of the two-field
reduced system (2.23). Since A is invertible (Auu is positive definite and Bpu is full
rank since it satisfies the inf-sup condition), we have that A is nonsingular if and only
if S is nonsingular. Since A is nonsingular (due to well-posedness of (2.8) [30]), the
result follows.

Next, let us recall the following result from [6, Chapter A.5.5].

Proposition 2.3. Consider the following symmetric matrix:

M =

[
A BT

B C

]
.

M is positive-definite ⇔ A and C −BA−1BT are positive-definite.
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This proposition is used now to prove the following lemma.

Lemma 2.4. The matrix Ā = Aūū −AūuA−1
uuA

T
ūu is symmetric-positive definite.

Proof. It is clear that Ā is symmetric. By Proposition 2.3 we know that A in
(2.18) is positive definite if and only if Auu and Ā are positive-definite. We know
that A is symmetric positive-definite by (2.10) so that Auu and Ā are symmetric
positive-definite.

Lemma 2.5. The matrix Ād in (2.24) is symmetric positive-definite.

Proof. The symmetry of Ād is clear. Using the definition of P in (2.25) we have:

(2.31) Ād = Ā+AūuΠA−1
uuA

T
ūu,

where Ā = −AūuA−1
uuA

T
ūu + Aūū. By Lemma 2.4 we know that Ā = −AūuA−1

uuA
T
ūu +

Aūū is symmetric positive-definite. Consider nowAūuΠA−1
uuA

T
ūu. Let Spp = BpuA

−1
uuB

T
pu

and note that Spp is symmetric and positive-definite (since Auu is symmetric positive-
definite and Bpu is full rank). Then

〈AūuΠA−1
uuA

T
ūux̄, x̄〉 = 〈AūuA−1

uuB
T
puS

−1
pp BpuA

−1
uuA

T
ūux̄, x̄〉

= 〈S−1
pp BpuA

−1
uuA

T
ūux̄, BpuA

−1
uuA

T
ūux̄〉

= 〈BpuA−1
uuA

T
ūux̄, BpuA

−1
uuA

T
ūux̄〉S−1

pp

≥ 0,

(2.32)

hence AūuΠA−1
uuA

T
ūu is symmetric positive semidefinite and Ād must be positive-

definite.

Lemma 2.6. The Schur complement of the matrix of the two-field reduced system
(2.23) is invertible.

Proof. The proof is the same as that of Lemma 2.2 but with

(2.33) A = Ād, B = −Bp̄uPA−1
uuA

T
ūu, C = −Bp̄uPA−1

uuB
T
p̄u.

By Lemma 2.2 we know that the matrix of the two-field reduced system (2.23) is
invertible and by Lemma 2.5 we know that A is symmetric positive-definite. The
result follows.

3. Preconditioning. We present now a provably optimal preconditioner for the
condensed problem in (2.23).

3.1. Block preconditioner. We first introduce some definitions. The (nega-
tive) trace pressure Schur complement of the matrix in (2.23) is given by

(3.1) S̄ := Bp̄uP
(
A−1
uu +A−1

uuA
T
ūu(Ād)−1AūuA

−1
uu

)
PTBTp̄u.

The element M and trace M̄ pressure mass matrices are defined by, respectively,

(3.2) ‖qh‖2Ω = qTMq, ‖q̄h‖2p = q̄T M̄ q̄.

We will also require the following matrix

(3.3) AP =

[
Auu PTATūu
AūuP Aūū

]
.
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Next, let V0 := {v ∈ V : v ∈ Ker Bpu}. It is then easy to show, using that Pv = v
for v ∈ V0, that

(3.4) 〈Av,v〉 = 〈APv,v〉 ∀v ∈ V0.

Lemma 3.1. The matrix AP in (3.3) is symmetric positive-definite.

Proof. We first note that Auu is symmetric and positive-definite. Second, we
note that the Schur complement of AP is Ād which, by Lemma 2.5 is symmetric
positive-definite. The result follows by Proposition 2.3.

In the following two lemmas we show that S̄ is spectrally equivalent to M̄ and
Bp̄uA

−1
uuB

T
p̄u.

Lemma 3.2. Let S̄ be the matrix defined in (3.1) and let M̄ be the trace pressure
mass matrix defined in (3.2). Let csa and cba be the constants given in (2.10) and let cbb
and β̄ be the constants given in (2.14) and (2.15), respectively. The following holds:

(3.5)
β̄2

cba
≤ q̄T S̄q̄

q̄T M̄ q̄
≤ (cbb)

2

csa
.

Proof. Stability of b2 (see (2.16)) and equivalence of ah with |||·|||v in V h (see
(2.10)) imply

(3.6)
β̄√
cba
≤ min
q̄h∈Rn̄q
q̄h 6=0

max
vh∈V 0

h

b2(q̄h, vh)

ah(vh,vh)1/2‖q̄h‖p
.

We may write (3.6) in matrix notation as:

(3.7)
β̄√
cba
≤ min
q̄h∈Rn̄q
q̄h 6=0

max
v∈V0

〈q̄, B2v〉
〈Av,v〉1/2〈M̄ q̄, q̄〉1/2

.

Let R be a 2× 2 block diagonal matrix with in the top left block P and the bottom
right block the identity matrix Īu ∈ Rn̄u×n̄u . Using (3.4) and the property 〈q̄, B2v〉 =
〈RTBT2 q̄,v〉 for v ∈ V0, following similar steps as in [11, Chapter 3],

β̄√
cba
≤ min
q̄h∈Rn̄q
q̄h 6=0

1

〈M̄ q̄, q̄〉1/2
max
v∈V0

〈RTBT2 q̄,v〉
〈APv,v〉1/2

≤ min
q̄h∈Rn̄q
q̄h 6=0

1

〈M̄ q̄, q̄〉1/2
max
v∈V

〈RTBT2 q̄,v〉
〈APv,v〉1/2

= min
q̄h∈Rn̄q
q̄h 6=0

1

〈M̄ q̄, q̄〉1/2
max
v∈V

〈RTBT2 q̄, A
−1/2
P A

1/2
P v〉

〈A1/2
P v, A

1/2
P v〉1/2

= min
q̄h∈Rn̄q
q̄h 6=0

1

〈M̄ q̄, q̄〉1/2
max

w=A
1/2
P v, v∈V

〈RTBT2 q̄, A
−1/2
P w〉

〈w,w〉1/2

= min
q̄h∈Rn̄q
q̄h 6=0

1

〈M̄ q̄, q̄〉1/2
max
w 6=0

〈A−1/2
P RTBT2 q̄,w〉
〈w,w〉1/2

.

(3.8)
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For a given q̄, the maximum is reached for w = A
−1/2
P RTBT2 q̄, hence

(3.9)
β̄√
cba
≤ min
q̄h∈Rn̄q
q̄h 6=0

〈B2RA−1
P RTBT2 q̄, q̄〉1/2

〈M̄ q̄, q̄〉1/2
.

By direct computation, and using that P2 = P and PA−1
uu = A−1

uuPT , we note that
B2RA−1

P RTBT2 = Bp̄uP(A−1
P )11PTBTp̄u = S̄, proving the lower bound in (3.5).

For the upper bound, from stability and (2.10) and boundedness (2.14) of ah on
V h,

(3.10) b2(q̄h, vh) ≤ cbb|||vh|||v‖q̄h‖p ≤
cbb√
csa
ah(vh,vh)1/2‖q̄h‖p .

In matrix form this reads as

(3.11) 〈q̄, B2v〉 ≤
cbb√
csa
〈Av,v〉1/2〈M̄ q̄, q̄〉1/2, ∀v ∈ V.

Set v = Rw for w ∈ V. Then, using (3.4) and since Rw ∈ V0, we find
(3.12)

〈q̄, B2Rw〉 ≤ cbb√
csa
〈ARw,Rw〉1/2〈M̄ q̄, q̄〉1/2 =

cbb√
csa
〈APRw,Rw〉1/2〈M̄ q̄, q̄〉1/2,

which holds for all w ∈ V. We next show that 〈APRw,Rw〉 ≤ 〈APw,w〉 for all
w ∈ V. By definition and using that PT = AuuPA−1

uu ,

〈APRw,Rw〉 =
[
wTPT w̄T

] [
Auu PTATūu
AūuP Aūū

] [
Pw
w̄

]
= wTPTAuuPw + w̄TAūuPw + (Pw)TAūuw̄ + w̄TAūūw̄

= wTAuuPw + w̄TAūuPw + (Pw)TAūuw̄ + w̄TAūūw̄

= wTAuu(I −Π)w + w̄TAūuPw + (Pw)TAūuw̄ + w̄TAūūw̄

= 〈APw,w〉 − 〈AuuΠw,w〉
= 〈APw,w〉 − 〈BTpuS−1

pp Bpuw,w〉
= 〈APw,w〉 − 〈Bpuw,Bpuw〉S−1

pp

≤ 〈APw,w〉,

(3.13)

where we used that Spp = BpuA
−1
uuB

T
pu is symmetric and positive-definite. Combining

(3.12) and (3.13) we obtain

(3.14) 〈q̄, B2Rw〉 ≤ cbb√
csa
〈APw,w〉1/2〈M̄ q̄, q̄〉1/2 ∀w ∈ V.

The result follows after dividing both sides by 〈APw,w〉1/2〈M̄ q̄, q̄〉1/2 and following
similar steps as used to obtain the lower bound.

Lemma 3.3. Let S̄ be the matrix defined in (3.1) and let Auu and Bp̄u be ma-
trices defined in, respectively, (2.18) and (2.20). Then S̄ is spectrally equivalent to
Bp̄uA

−1
uuB

T
p̄u.
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Proof. We first remark that a result of [31, Theorem 3] is that Bp̄uA
−1
uuB

T
p̄u is

spectrally equivalent to the trace pressure mass matrix M̄ defined in (3.2). Since M̄
is spectrally equivalent to S̄ by Lemma 3.2, the result follows.

We now formulate a preconditioner for the statically condensed linear system in
(2.23) using Lemmas 3.2 and 3.3.

Theorem 3.4 (A preconditioner for the statically condensed discrete Stokes prob-
lem). Let Ā be the matrix given in (2.23), let M̄ be the trace pressure mass matrix
defined in (3.2), let Auu and Bp̄u be matrices defined in, respectively, (2.18) and
(2.20), and let Ād be the matrix defined in (2.24). Let R̄d be an operator that is
spectrally equivalent to Ād and define

(3.15) P−1
M̄

=

[
(R̄d)−1 0

0 M̄−1

]
, P−1

BAB =

[
(R̄d)−1 0

0 (Bp̄uA
−1
uuB

T
p̄u)−1

]
.

There exist positive constants C1, C2, C3, C4, independent of h, such that eigenvalues
of both P−1

M̄
Ā and P−1

BABĀ satisfy λ ∈ [−C1,−C2] ∪ [C3, C4].

Proof. By Lemmas 3.2 and 3.3 we know that M̄ and Bp̄uA
−1
uuB

T
p̄u are spectrally

equivalent to the pressure Schur complement S̄ of Ā. Furthermore, S̄ is invertible (see
Lemma 2.6) and Ād is symmetric positive-definite (see Lemma 2.5). The result then
follows by direct application of [28, Theorem 5.2].

A consequence of Theorem 3.4 is that the number of MINRES iterations needed
to solve (2.23) when preconditioned by P−1

M̄
or by P−1

BAB to a given tolerance will be

independent of the size of the discrete problem. In other words, P−1
M̄

and P−1
BAB are

optimal preconditioners for (2.23).

3.2. Choosing (R̄d)−1. The preconditioners in (3.15) require an operator R̄d

that is spectrally equivalent to Ād. For notational purposes, let us denote by (·)MG

the application of multigrid to approximate the inverse of (·). In this section we
then discuss the following three choices: (R̄d)−1 = (Ād)−1, (R̄d)−1 = (Ād)MG, and
(R̄d)−1 = (Āγ)MG where Āγ will be defined to approximate Ād.

The optimal choice for (R̄d)−1 is (Ād)−1. However, computing the inverse (action)
of Ād is too costly in practice. The usual choice for Stokes solvers is to replace the
inverse of the discrete vector Laplacian by a V-cycle multigrid method. However,
as we show in the following two lemmas, standard multigrid methods designed for
H1-like operators are not guaranteed to perform well on Ād.

In what follows, we require the following definition of an orthogonal subspace Y ⊥

of a linear subspace Y of Rn: Y ⊥ := {x ∈ Rn : xT y = 0 ∀y ∈ Y }.
Lemma 3.5. Let P be given by (2.25). Then

Ker PT = Im BTpu,(3.16a)

Ker ΠT = Ker (BpuA
−1
uu ).(3.16b)

Proof. We first show (3.16a). We know that P is an oblique projector onto
Ker Bpu = (Im BTpu)⊥ (the equality is by [5, Theorem 3.1.1]), i.e., Im P = (Im BTpu)⊥.
Then, again using [5, Theorem 3.1.1],

(3.17) Ker PT = (Im P)⊥ = Im BTpu.

The proof for (3.16b) is similar and is given here for completeness. First, note
that Im Π = Im (A−1

uuB
T
pu) = (Ker (BpuA

−1
uu ))⊥ (see, e.g., [3, Page 19]). Then, using
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[5, Theorem 3.1.1],

(3.18) Ker ΠT = (Im Π)⊥ = Ker (BpuA
−1
uu ).

Lemma 3.6. For x̄ ∈ Rn̄u such that ATūux̄ ∈ Ker (BpuA
−1
uu ) the following holds:

(3.19) c1|||x̄h|||2h ≤ 〈Ā
dx̄, x̄〉 = 〈Āx̄, x̄〉 ≤ c2|||x̄h|||2h.

If x̄ ∈ Rn̄u is such that ATūux̄ ∈ Im BTpu = (Ker Bpu)⊥, then

(3.20) c1|||x̄h|||2h ≤ 〈Ā
dx̄, x̄〉 ≤ c2h−2|||x̄h|||2h.

Proof. We first note that the lower bound is always true because (see the proof
of Lemma 2.5)

(3.21) c1|||x̄h|||2h ≤ 〈Āx̄, x̄〉 ≤ 〈Āx̄, x̄〉+ 〈AūuΠA−1
uuA

T
ūux̄, x̄〉 = 〈Ādx̄, x̄〉 ∀x̄ ∈ Rn̄u ,

where the first inequality is by [31, Lemma 5].
To prove the upper bound in (3.19) we note that if x̄ is such that ATūux̄ ∈

Ker (BpuA
−1
uu ) then by Lemma 3.5

(3.22) 〈AūuΠA−1
uuA

T
ūux̄, x̄〉 = 〈AūuA−1

uuΠTATūux̄, x̄〉 = 0,

where we used that ΠA−1
uu = A−1

uuΠT . It follows that

〈Ādx̄, x̄〉 = 〈(Aūū −AūuPA−1
uuA

T
ūu)x̄, x̄〉 = 〈(Aūū −Aūu(I −Π)A−1

uuA
T
ūu)x̄, x̄〉

= 〈(Aūū −AūuA−1
uuA

T
ūu)x̄, x̄〉 = 〈Āx̄, x̄〉.

(3.23)

The result (3.19) then follows from [31, Lemma 5].
Next we prove the upper bound in (3.20). If x̄ is such that ATūux̄ ∈ Im BTpu, then

PA−1
uuA

T
ūux̄ = PA−1

uuPTATūux̄ = 0 by Lemma 3.5. Therefore,

(3.24) 〈Ādx̄, x̄〉 = 〈Aūūx̄, x̄〉.

It follows that

〈Aūūx̄, x̄〉 = ah((0, x̄h), (0, x̄h))

= α
∑
K∈∂T

h−1
K

∫
∂K

x̄h · x̄h ds

= α
∑
K∈∂T

h−2
K

(
hK

∫
∂K

x̄h · x̄h ds

)
≤ ch−2‖x̄h‖2h,0 .

(3.25)

The result follows after applying (2.6).

Lemma 3.6 implies that if x̄ ∈ Rn̄u is such that ATūux̄ ∈ Ker (BpuA
−1
uu ), then

standard multigrid designed for H1-like operators will be a good preconditioner for
Ād. However, if x̄ ∈ Rn̄u is such that ATūux̄ ∈ Im BTpu, we cannot conclude anything
about multigrid convergence. In fact, in numerical examples (see section 4) we see
deterioration in performance of the solver when the mesh is refined if we choose
(R̄d)−1 = (Ād)MG. The upper bound in (3.20) explains this deterioration. The
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main conclusion we can draw from Lemma 3.6 then is that we should not choose
(R̄d)−1 = (Ād)MG with multigrid methods designed for H1-like operators. In what
follows we introduce a new approximation to Ād.

We propose to set (R̄d)−1 = (Āγ)MG where

(3.26) Āγ = −AūuÂ−1
γ ATūu +Aūū,

and where,

Â−1
γ = (Auu + γBTpuM

−1Bpu)−1

= A−1
uu −A−1

uuB
T
pu(γ−1M +BpuA

−1
uuB

T
pu)−1BpuA

−1
uu ,

(3.27)

where the second equality is by the Woodbury matrix identity which holds for 0 < γ <
∞. The γBTpuM

−1Bpu term is often added toAuu in the discretization of the linearized
Navier–Stokes equations to construct augmented Lagrangian preconditioners (see, for
example, [4]). The γBTpuM

−1Bpu term is also similar to grad-div stabilization and
can be added to discretizations of incompressible flows to improve mass conservation
in the case that u ∈ Ker Bpu does not exactly imply ∇ · uh = 0. For example, it was
shown in [24] that the solution to the grad-div stabilized Taylor–Hood discretization
of the Navier–Stokes equations converges to the Scott–Vogelius solution as γ → ∞.
Here we note that Āγ → Ād when γ → ∞. We now show, for finite γ, that Āγ is
equivalent to an H1-operator.

Lemma 3.7. Let Āγ be as defined in (3.26) and let 0 < γ < ∞. Then Āγ is
equivalent to an H1-operator.

Proof. Consider the problem: find uh ∈ V h such that

(3.28) ah(uh,vh) + γ(∇ · uh,∇ · vh)T = (vh, f)T ∀vh ∈ V h.

Since γBTpuM
−1Bpu is the matrix representation of γ(∇ · uh,∇ · vh)T (see [12]), the

matrix form of (3.28) is given by

(3.29)

[
Auu + γBTpuM

−1Bpu ATūu
Aūu Aūū

] [
u
ū

]
=

[
Lu
0

]
.

Eliminating u from (3.29) we find the following problem for ū:

(3.30) Āγ ū = F̄γ ,

where F̄γ = −Aūu(Auu + γBTpuM
−1Bpu)−1F .

Let us now eliminate uh from (3.28). For this, let s ∈ [L2(Ω)]
d

and m̄h ∈ V̄h be
given and define on an element K

(3.31) aK(vh, wh) := (∇vh,∇wh)K + γ(∇ · vh,∇ · wh)K

− 〈∂nvh, wh〉∂K − 〈vh, ∂nwh〉∂K + 〈αh−1wh, vh〉∂K ,

and

(3.32) LK(wh) := (s, wh)K − 〈∂nwh, m̄h〉∂K + 〈αh−1wh, m̄h〉∂K .

Let vLh (m̄h, s) ∈ Vh be the function such that its restriction to element K satisfies the

following local problem: given s ∈ [L2(Ω)]
d

and m̄h ∈ V̄h,

(3.33) aK(vLh , wh) = LK(wh) ∀wh ∈
[
Pk(K)

]d
.
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Suppose now that uh ∈ V h satisfies (3.28) and that f ∈ [L2(Ω)]
d
. Define l(ūh) :=

vLh (ūh, 0) and ufh := vLh (0, f). Then uh = ufh + l(ūh) where ūh ∈ V̄h satisfies

(3.34) ah((l(ūh), ūh), (l(w̄h), w̄h)) + γ(∇ · l(ūh),∇ · l(w̄h)) = (f, l(w̄h))T ∀w̄h ∈ V̄h.

The steps to show that (3.34) holds are identical to the steps in the proof of [31,
Lemma 4], so are omitted here. We next remark that (3.30) is the matrix formulation
of (3.34). Let us define

(3.35) āh(ūh, w̄h) := ah((l(ūh), ūh), (l(w̄h), w̄h)) + γ(∇ · l(ūh),∇ · l(w̄h)),

then Āγ is the matrix obtained from the discretization of āh(ūh, w̄h). To conclude

this proof we need to show that āh(·, ·) is equivalent to |||·|||2h.
Since

∑
K∈T ‖∇ · vh‖K ≤ |||vh|||v it is clear from (2.10) that

(3.36) csa|||vh|||
2
v ≤ ah(vh,vh) + γ

∑
K∈T
‖∇ · vh‖K ≤ (cba + γ)|||vh|||v.

Following now identical steps as in the proof of [31, Lemma 5] (we omit these steps),
there exist positive constants C1 and C2 independent of hK such that

(3.37) C1|||w̄h|||2h ≤ āh(w̄h, w̄h) ≤ C2(1 + γ)|||w̄h|||2h,

so that the result follows.

Lemma 3.7 shows that Āγ is equivalent to an H1-operator for finite values of γ,
hence, standard algebraic multigrid is expected to be effective on Āγ . Lemma 3.7 also
shows that the larger we choose γ, i.e., the better Āγ approximates Ād, the weaker
the equivalence between Āγ and the H1-operator. We therefore expect multigrid to
be less effective for large values of γ. In our numerical simulations we therefore choose
small values for this parameter.

4. Numerical examples. We now examine the performance of MINRES com-
bined with the preconditioners PM̄ and PBAB introduced in Theorem 3.4. All exam-
ples in this section have been implemented in MFEM [10] and we use the PETSc [1, 2]
implementation of MINRES.

In the implementation of the application of PM̄ and PBAB , unless specified dif-
ferently, we use a direct solver to compute M̄−1 and (Bp̄uA

−1
uuB

T
p̄u)−1. Furthermore,

we consider different choices for (R̄d)−1 as will be discussed below. When we apply
multigrid, we use classical algebraic multigrid (four multigrid V-cycles) with one ap-
plication of a symmetric Gauss–Seidel smoother (pre and post) via the BoomerAMG
library [15]. In all examples the MINRES iterations are terminated once the relative
true residual reaches a tolerance of 10−8. We consider unstructured simplicial meshes
in two and three dimensions.

Let k be the polynomial degree in our function space Xh. In two dimensions
we set the penalty parameter α to α = 4k2 while it is set to α = 6k2 in three
dimensions. We compare the performance of PM̄ and PBAB also to the performance
of P3×3, a preconditioner we presented previously in [31]. Where PM̄ and PBAB
are preconditioners for the two-field reduced system (2.23) in which both u and p
have been eliminated from (2.22), P3×3 is a preconditioner for the three-field reduced
system (A.1) in which only u has been eliminated from (2.22). For convenience, we
summarize the 3× 3 preconditioner in Appendix A.
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4.1. Optimality assessment. We examine the number of required MINRES
iterations with mesh refinement for the two-dimensional lid-driven cavity problem for
polynomial degrees k = 2, k = 3 and k = 4. In particular, we consider the square
domain Ω := [−1, 1]2 and impose the Dirichlet boundary condition u = (1− x4

1, 0) on
the boundary with x2 = 1, and u = 0 on the remaining boundaries.

We first compare the performance of PM̄ and PBAB when making the following
choices for (R̄d)−1:

(4.1) (R̄d)−1 = (Ād)−1 and (R̄d)−1 = (Āγ)−1,

and with γ = 0 and γ = 0.1. The number of iterations required for MINRES to reach
convergence is listed in Table 4.1. We draw the following conclusions from this table:

• Choosing (R̄d)−1 = (Ād)−1 we are guaranteed that (R̄d)−1 is spectrally equiv-
alent to (Ād)−1. With this choice we observe that the iteration count for
MINRES to converge to a given tolerance is independent of h. This verifies
Theorem 3.4 that PM̄ and PBAB are optimal preconditioners.

• We observe that choosing (R̄d)−1 = (Āγ)−1, with γ = 0 and γ = 0.1, result
in optimal preconditioners PM̄ and PBAB . This verifies that Āγ for small γ
is a good approximation to Ād (as discussed in subsection 3.2).

• We observe that as the polynomial degree k increases, there is little variation
in iteration count when choosing (R̄d)−1 = (Ād)−1, however, there is a slight
increase in iteration count when choosing (R̄d)−1 = (Āγ)−1. Furthermore,
when using Āγ to approximate Ād, the iteration count using PBAB as pre-
conditioner is less than when using PM̄ as preconditioner when k = 3 and
k = 4.

A direct solver for inverting the blocks in (4.1) is prohibitively expensive in large
simulations. We therefore next compare the performance of PM̄ and PBAB when
replacing the direct solves by multigrid, i.e., making the following choices for (R̄d)−1:

(4.2) (R̄d)−1 = (Ād)MG and (R̄d)−1 = (Āγ)MG.

Again we consider γ = 0 and γ = 0.1. The number of iterations required for MINRES
to reach convergence are listed in Table 4.2. We draw the following conclusions from
this table:

• From Table 4.1 we observe that (R̄d)−1 = (Ād)−1 is the best choice, result-
ing in a solver that converges in three times fewer iterations than the next
best choice. However, computing (Ād)−1 is costly. If we replace (Ād)−1 by
(Ād)MG we observe in Table 4.2 that iteration count to convergence grows as
h decreases, both for PM̄ and for PBAB . This is as expected from Lemma 3.6,
in particular (3.20), which shows that Ād may not be an H1-like operator.
We therefore cannot expect standard multigrid to perform well on Ād.

• Since Āγ → Ā as γ → 0, we expect multigrid to be effective on Āγ when γ is
small. This is because Ā is an H1-like operator on which multigrid is expected
to perform well (see subsection 3.2). This is verified here by the observation
that the choice (R̄d)−1 = (Āγ)MG, with γ = 0 and γ = 0.1, results in an
optimal preconditioner for both PM̄ and PBAB .

• As we saw also in Table 4.1, when using Āγ to approximate Ād, there is a
slight increase in iteration count as k increases. Finally, we observe that when
k = 3 and k = 4, the iteration count using PBAB as preconditioner is less
than when using PM̄ as preconditioner.
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Table 4.1: Iteration counts for preconditioned MINRES for the relative true residual
to reach a tolerance of 10−8 for the lid-driven cavity problem for different polynomial
degrees. We compare different choices for (R̄d)−1, see (4.1), in PM̄ and PBAB . The
test case is described in subsection 4.1.

k = 2

PM̄ PBAB

Elements DOFs (Ād)−1 (Ā0)−1 (Ā0.1)−1 (Ād)−1 (Ā0)−1 (Ā0.1)−1

176 2574 31 90 84 54 87 82
704 9900 31 94 87 55 92 86
2816 38 808 31 96 89 54 95 88

11 264 153 648 29 93 86 54 95 87
45 056 611 424 29 93 86 54 95 87

k = 3

PM̄ PBAB

Elements DOFs (Ād)−1 (Ā0)−1 (Ā0.1)−1 (Ād)−1 (Ā0)−1 (Ā0.1)−1

176 3432 26 119 114 50 106 102
704 13 200 26 114 109 49 107 103
2816 51 744 24 114 109 49 107 103

11 264 204 864 24 114 109 47 107 103
45 056 815 232 24 106 101 47 101 97

k = 4

PM̄ PBAB

Elements DOFs (Ād)−1 (Ā0)−1 (Ā0.1)−1 (Ād)−1 (Ā0)−1 (Ā0.1)−1

176 4290 24 144 137 49 129 124
704 16 500 24 146 139 49 131 125
2816 64 680 22 137 140 49 131 126

11 264 256 080 22 137 130 49 128 123
45 056 1 019 040 20 137 130 47 125 120

4.2. Comparison HDG, EDG, and EDG-HDG. The analysis of the precon-
ditioner in Theorem 3.4 holds also for the embedded discontinuous Galerkin (EDG)
and embedded-hybridized discontinuous Galerkin (EDG-HDG) discretizations of the
Stokes problem [32]. The EDG-HDG discretization is given by replacing V̄h by the
continuous trace velocity space V̄h ∩ C0(Γ0) in (2.8). In the EDG method both the
trace velocity and trace pressure functions are continuous; in (2.8) V̄h and Q̄h are
replaced by, respectively, V̄h∩C0(Γ0) and Q̄h∩C0(Γ0). Both the EDG and the EDG-
HDG discretizations result in velocity approximations that are exactly divergence-free
on each cell.

We will compare results of the preconditioners PM̄ and PBAB , in which we choose
(R̄d)−1 = (Āγ)MG, with γ = 0 and γ = 0.1, to results obtained when using the
preconditioner P3×3 from [31]. We will apply these two preconditioners to HDG,
EDG, and EDG-HDG discretizations of the Stokes problem. We consider the two-
and three-dimensional lid-driven cavity problems. The two-dimensional problem is
described subsection 4.1. In three dimensions we consider the cube Ω := [0, 1]3 and
we impose u = (1− τ4

1 , (1− τ4
2 )/10, 0) with τi = 2xi− 1 on the boundary with x3 = 1

and u = 0 on the remaining boundaries. We consider only the case k = 2.
The number of iterations for MINRES to reach convergence are presented for

the two dimensional problem in Table 4.3 and for the three dimensional problem
in Table 4.4. From both tables it is clear that both PM̄ and PBAB are optimal
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Table 4.2: Iteration counts for preconditioned MINRES for the relative true residual
to reach a tolerance of 10−8 for the lid-driven cavity problem for different polynomial
degrees. We compare different choices for (R̄d)−1, see (4.2), in PM̄ and PBAB . The
test case is described in subsection 4.1.

k = 2

PM̄ PBAB

Elements DOFs (Ād)MG (Ā0)MG (Ā0.1)MG (Ād)MG (Ā0)MG (Ā0.1)MG

176 2574 37 90 84 60 87 82

704 9900 52 94 87 91 92 86

2816 38 808 91 96 85 163 94 88

11 264 153 648 174 93 87 334 95 87

45 056 611 424 358 95 88 >500 95 90

k = 3

PM̄ PBAB

Elements DOFs (Ād)MG (Ā0)MG (Ā0.1)MG (Ād)MG (Ā0)MG (Ā0.1)MG

176 3432 38 119 114 65 106 102

704 13 200 59 114 109 101 107 103

2816 51 744 101 115 110 193 107 103

11 264 204 864 190 116 110 388 107 103

45 056 815 232 374 110 105 >500 105 101

k = 4

PM̄ PBAB

Elements DOFs (Ād)MG (Ā0)MG (Ā0.1)MG (Ād)MG (Ā0)MG (Ā0.1)MG

176 4290 45 145 138 76 129 124

704 16 500 68 147 140 127 131 125

2816 64 680 121 138 132 258 131 126

11 264 256 080 230 139 133 >500 129 124

45 056 1 019 040 477 142 135 >500 130 124

preconditioners for HDG, EDG and EDG-HDG discretizations, i.e. the iteration count
does not grow systematically with increasing problem size. We also observe that
20-60% fewer iterations are required to solve the linear system using the two-field
preconditioners PM̄ and PBAB compared to using the three-field preconditioner P3×3

from [31]. Finally, we note that for all calculations, fewer iterations are required when
using γ = 0.1 than when using γ = 0.

4.3. The effect of viscosity. Consider the following modification of the Stokes
problem (2.1):

−ν∇2u+∇p = f in Ω,(4.3a)

∇ · u = 0 in Ω,(4.3b)

u = ud on ∂Ω,(4.3c)

where ν > 0 denotes a constant viscosity and ud a given Dirichlet boundary condition.
The discrete formulation for this problem is given by:

(4.4) νah(uh,vh) + bh(ph, vh) + bh(qh, uh) = (vh, f)T ∀(vh, qh) ∈Xh,

where ah(·, ·) and bh(·, ·) are defined in (2.9). Redefining the matrix A in (2.18) as
A← νA, the block matrix form of (4.4) is given by (2.22) and its statically condensed
form is given by (2.23). Redefining furthermore the element and trace pressure mass
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Table 4.3: Iteration counts for preconditioned MINRES for the relative true residual
to reach a tolerance of 10−8 for the lid-driven cavity problem in two dimensions.
A comparison between using PM̄ and PBAB with (R̄d)−1 = (Āγ)MG, with γ = 0
and γ = 0.1, and P3×3 for HDG, EDG, and EDG-HDG discretizations of the Stokes
problem. The test case is described in subsection 4.2. The iteration count when using
γ = 0.1 is given in brackets.

PM̄

HDG EDG EDG-HDG
Elements DOFs Its DOFs Its DOFs Its

176 2574 90 (84) 1191 86 (81) 1652 95 (86)
704 9900 94 (87) 4491 83 (79) 6294 92 (88)
2816 38 808 96 (85) 17 427 85 (80) 24 553 94 (85)

11 264 153 648 93 (87) 68 643 82 (77) 96 978 92 (86)
45 056 611 424 95 (88) 272 451 83 (78) 385 442 88 (83)

PBAB

HDG EDG EDG-HDG
Elements DOFs Its DOFs Its DOFs Its

176 2574 87 (82) 1191 61 (56) 1652 61 (58)
704 9900 92 (86) 4491 62 (59) 6294 64 (59)
2816 38 808 94 (88) 17 427 63 (60) 24 553 63 (60)

11 264 153 648 95 (87) 68 643 63 (58) 96 978 63 (60)
45 056 611 424 95 (90) 272 451 61 (58) 385 442 63 (60)

P3×3

HDG EDG EDG-HDG
Elements DOFs Its DOFs Its DOFs Its

176 3102 130 1719 124 2180 131
704 12 012 134 6603 127 8406 136
2816 47 256 136 25 875 124 33 002 131

11 264 187 440 138 102 435 125 130 770 135
45 056 746 592 132 407 619 118 520 610 127

matrices in (3.2) as, respectively, M ← ν−1M and M̄ ← ν−1M̄ , the preconditioners
again take on the forms presented in section 3.

In this section we consider the effect of the viscosity parameter on solving the
statically condensed problem. As test case we choose the source term f and the
Dirichlet boundary condition in (4.3) such that the exact solution on the domain
Ω := [−1, 1]2 is given by

(4.5) u =

[
sin(πx1) sin(πx2)
cos(πx1) cos(πx2)

]
, p = sin(πx1) cos(πx2).

In our simulations we choose polynomial degree k = 2.
In Table 4.5 we present the number of iterations for MINRES to reach convergence

for ν = 1 and ν = 10−6 for the HDG, EDG, and EDG-HDG discretizations. We also
present the L2-norm of the velocity error, pressure error, the cell-wise divergence error
as well as maxq∈Q |Ju · nK|, where Q is the set of all quadrature points on the facets.

The HDG and EDG-HDG discretizations result in a velocity field uh that is
pointwise divergence-free on the cells and H(div)-conforming. A consequence of these
properties is that the magnitude of the viscosity does not affect the L2-norm of the
velocity error [32, Theorem 3]. This ‘pressure-robustness’ is also observed in Table 4.5;
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Table 4.4: Iteration counts for preconditioned MINRES for the relative true residual
to reach a tolerance of 10−8 for the lid-driven cavity problem in three dimensions.
A comparison between using PM̄ and PBAB with (R̄d)−1 = (Āγ)MG, with γ = 0
and γ = 0.1, and P3×3 for HDG, EDG, and EDG-HDG discretizations of the Stokes
problem. The test case is described in subsection 4.2. The iteration count when using
γ = 0.1 is given in brackets.

PM̄

HDG EDG EDG-HDG
Elements DOFs Its DOFs Its DOFs Its

524 28 032 172 (160) 3884 99 (94) 9921 150 (143)
4192 212 736 161 (149) 26 452 91 (86) 73 023 133 (121)

33 536 1 655 808 151 (140) 194 724 80 (75) 559 995 117 (94)

PBAB

HDG EDG EDG-HDG
Elements DOFs Its DOFs Its DOFs Its

524 28 032 139 (129) 3884 62 (60) 9921 70 (67)
4192 212 736 142 (132) 26 452 61 (58) 73 023 66 (63)

33 536 1 655 808 139 (129) 194 724 57 (55) 559 995 60 (58)

P3×3

HDG EDG EDG-HDG
Elements DOFs Its DOFs Its DOFs Its

524 30 128 224 5980 151 12 017 223
4192 229 504 218 43 220 146 89 791 206

33 536 1 789 952 209 328 868 134 694 139 176

the L2-norm of the error of the velocity for ν = 1 and ν = 10−6 are more or less
identical. (Note that when viscosity decreases, the conditioning of the matrix worsens,
explaining the increase in the error in the divergence of the velocity and the error in the
jump of the normal component of the velocity across facets with decreasing viscosity.
This, however, does not affect the pressure-robustness of the discretization.)

The EDG method, on the other hand, results in a velocity field uh that is point-
wise divergence-free on the cells, but not H(div)-conforming. As a consequence, the
upper bound for the L2-norm of the error of the velocity is inversely proportional to
the viscosity (see also [32, Remark 1]). We indeed observe this in Table 4.5;‖∇ · uh‖Ω
is close to machine precision while the error in maxq∈Q |Ju · nK| is magnitudes larger.
Furthermore, we observe an increase in the L2-norm of the velocity error when vis-
cosity is decreased.

Finally, we observe for all discretizations that the viscosity has no effect on the
number of iterations for MINRES to reach convergence when using the preconditioner
PBAB . When using the preconditioner PM̄ there is a slight increase of 9-14% in
iteration count as the viscosity decreases from ν = 1 to ν = 10−6.

4.4. Performance comparison. In this final section we compare the perfor-
mance of PM̄ and PBAB , in which we choose (R̄d)−1 = (Āγ)MG, with γ = 0 and
γ = 0.1, to the performance of the P3×3 preconditioner. We do this for the HDG,
EDG, and EDG-HDG discretiations. As test case we consider the Stokes problem on
the three-dimensional domain Ω = [−1, 1]3, with Dirichlet boundary conditions and
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Table 4.5: L2-norm of the velocity error, pressure error, the cell-wise divergence er-
ror, the error in the jump of the normal component of the velocity across facets, and
iteration counts for preconditioned MINRES for the relative preconditioned residual
norm to reach a tolerance of 10−12 for the two dimensional test case described in
subsection 4.3. By Pγ=0

M̄
we mean that we solve (2.23) using MINRES with precon-

ditioner PM̄ in which we choose (R̄d)−1 = (Āγ)MG, with γ = 0. The other methods
are described similarly. The numbers listed with an asterisk are the number of iter-
ations required for the relative preconditioned residual norm to reach a tolerance of
10−11. The relative preconditioned residual stagnates shortly after unable to reach
10−12. This happens only for ν = 1 for the EDG and EDG-HDG discretizations on
the coarsest mesh.

Elements DOFs
∥∥∥u − uh∥∥∥

Ω

∥∥∥p − ph∥∥∥
Ω

∥∥∥∇ · uh∥∥∥
Ω

|Juh · nK| P
γ=0
M̄

P
γ=0
BAB P

γ=0.1
M̄

P
γ=0.1
BAB

HDG, ν = 1

11 264 153 648 6.1e-6 2.4e-3 1.1e-13 9.0e-14 157 148 146 140

45 056 611 424 7.6e-7 5.9e-4 2.2e-13 9.4e-14 159 152 148 142

180 224 2 439 360 9.5e-8 1.5e-4 4.5e-13 5.5e-14 158 155 146 146

HDG, ν = 10−6

11 264 153 648 6.1e-6 4.4e-4 1.0e-10 2.3e-9 171 150 159 140

45 056 611 424 7.8e-7 1.1e-4 1.0e-10 4.3e-10 173 154 161 145

180 224 2 439 360 1.4e-7 2.7e-5 1.1e-10 1.4e-9 172 157 162 148

EDG, ν = 1

11 264 68 643 1.1e-5 5.2e-3 1.1e-13 3.0e-7 136∗ 91∗ 129∗ 87∗

45 056 272 451 1.4e-6 1.3e-3 2.2e-13 1.9e-8 155 101 146 96

180 224 1 085 571 1.7e-7 3.3e-4 4.5e-13 1.2e-9 156 102 147 97

EDG, ν = 10−6

11 264 68 643 7.6e-3 4.4e-4 1.0e-10 3.8e-4 170 101 160 97

45 056 272 451 4.8e-4 1.1e-4 1.0e-10 1.2e-5 176 102 165 100

180 224 1 085 571 3.0e-5 2.7e-5 1.1e-10 3.7e-7 178 105 168 101

EDG-HDG, ν = 1

11 264 96 978 1.1e-5 5.3e-3 1.1e-13 1.5e-12 145∗ 93∗ 137∗ 89∗

45 056 385 442 1.4e-6 1.3e-3 2.2e-13 2.3e-13 164 103 155 98

180 224 1 536 834 1.7e-7 3.4e-4 4.4e-13 1.3e-13 166 104 157 99

EDG-HDG, ν = 10−6

11 264 96 978 1.1e-5 4.4e-4 1.0e-10 2.8e-9 184 102 174 97

45 056 385 442 1.4e-6 1.1e-4 1.0e-10 9.3e-10 187 104 177 100

180 224 1 536 834 1.9e-7 2.7e-5 1.1e-10 3.8e-10 189 105 179 101

a source term such that the exact solution to the Stokes problem is given by
(4.6)

u = π

sin(πx1) cos(πx2)− sin(πx1) cos(πx3)
sin(πx2) cos(πx3)− sin(πx2) cos(πx1)
sin(πx3) cos(πx1)− sin(πx3) cos(πx2)

 , p = sin(πx1) sin(πx2) sin(πx3)− 8
π3 .

In the implementation of the application of PM̄ and PBAB we now approximate
M̄−1 by (M̄)MG and (Bp̄uA

−1
uuB

T
p̄u)−1 by (Bp̄uA

−1
uuB

T
p̄u)MG as this is slightly more

efficient than using a direct solver for these terms.
In Table 4.6 we list the L2-norm of the velocity error, pressure error, the cell-wise

divergence of the velocity, and maximum value of the jump of the normal component
of the velocity across facets. These errors are computed on a mesh consisting of 33 536
tetrahedra. We also include the CPU time to convergence.

Considering first the error in the L2-norm, for all discretizations we observe that



20 SANDER RHEBERGEN AND GARTH N. WELLS

the L2-norm of the error in element velocity uh and element pressure ph are identical
when using the two-field (2.23) and three-field (A.1) reduced systems. The error
in the divergence of the element velocity, however, is different. In the three-field
reduced formulation the divergence of the element velocity is of the order of accuracy
at which the MINRES method was terminated. This implies that would we want
∇·uh on elements to be of the order of machine precision, the stopping criteria of the
MINRES method would need to be of the order of machine precision. On the other
hand, the error in the divergence of the element velocity is of the order of machine
precision when using the two-field reduced formulation. This is due to the element-
wise projection P in (2.25). Indeed, as we saw previously in subsection 2.3, u =
PA−1

uu (Lu −ATūuū−BTp̄up̄) ∈ Ker Bpu. Furthermore, for all discretizations considered
here, we have that u ∈ Ker Bpu implies ∇ · uh = 0 pointwise on each element. The
error in the divergence of the velocity therefore does not depend on the stopping
criteria used for MINRES. Finally, we note that the error in the jump of the normal
component of the velocity using the EDG discretization is magnitudes larger than
when using HDG or EDG-HDG (which are of the order of the stopping criteria of
the MINRES method). This is independent of whether the two-field or three-field
reduced systems are solved and independent of which preconditioner is used. The
higher error in the EDG method is expected as it is the only discretization that is not
pressure-robust [32].

Considering now the CPU time and number of iterations required for convergence,
we observe for all discretizations that using γ = 0.1 in PM̄ and PBAB results in fewer
iterations than when using γ = 0. However, the CPU time to convergence using
γ = 0.1 is greater than when using γ = 0. This is in part due to the construction of
Â−1
γ in (3.27), slowing down the construction of the preconditioner.

Consider now the case when γ = 0 in PM̄ and PBAB . We then observe for the
HDG discretization that both two-field preconditioners outperform the three-field pre-
conditioner P3×3 both in number of iterations (up to 27% fewer iterations) and CPU
time (up to 32% faster). For the EDG and EDG-HDG discretizations the performance
is even better; note, for example, that using PM̄ for the EDG discretization is up to
43% faster and PBAB is up to 51% faster than using the P3×3 preconditioner.

5. Conclusions. The linear system of an HDG discretization of the Stokes equa-
tions can efficiently be statically condensed in two ways: (i) eliminating the degrees-
of-freedom associated to the element approximation of the velocity (the three-field
reduced formulation); or (ii) eliminating the degrees-of-freedom associated to the el-
ement approximation of both the velocity and the pressure (the two-field reduced
formulation). In our previous work we proposed an optimal preconditioner for the
three-field reduced formulation. In this paper we proposed and analyzed a precondi-
tioner for the two-field reduced formulation. In the two-field reduced formulation the
lifting of the trace velocity to the elements is algebraically imposed to be divergence-
free. Although this complicates the analysis, it has been shown that the trace pressure
Schur complement is spectrally equivalent to a simple trace pressure mass matrix and
we used this to introduce a new preconditioner. Numerical examples in two and three
dimensions show that the new preconditioner is more efficient for solving a hybridized
discretization of the Stokes problem than our previous preconditioner.
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Appendix A. Eliminating the velocity element degrees-of-freedom.
Instead of eliminating both the velocity and pressure element degrees-of-freedom

from (2.22) it is possible also to eliminate only the velocity element degrees-of-freedom
u. This results in the three-field reduced system:
(A.1) Ā −AūuA−1

uuB
T
pu −AūuA−1

uuBp̄u
−BpuA−1

uuA
T
ūu −BpuA−1

uuB
T
pu −BpuA−1

uuB
T
p̄u

−Bp̄uA−1
uuA

T
ūu −Bp̄uA−1

uuB
T
pu −Bp̄uA−1

uuB
T
p̄u


ūp
p̄

 =

Lū −AūuA−1
uuLu

−BpuA−1
uuLu

−Bp̄uA−1
uuLu

 ,
where Ā = −AūuA−1

uuA
T
ūu + Aūū. Given the trace velocity ū, the element pressure p,

and the trace pressure p̄, the element velocity u can be computed element-wise in a
post-processing step.

In [31] we developed a preconditioner for (A.1). We proved [31, Theorem 2] that

(A.2) P3×3 =

R̄ 0 0
0 M 0
0 0 M̄

 ,
is an optimal preconditioner for (A.1) provided R̄ is an operator spectrally equivalent
to Ā. As discussed in subsection 3.2, Ā is an H1-like operator motivating the use of
multigrid for R̄−1, i.e., we set R̄−1 = (Ā)MG (see also [31, Section 3.3]).
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