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REGULARITY OF BOLTZMANN EQUATION WITH CERCIGNANI-LAMPIS

BOUNDARY IN CONVEX DOMAIN.

HONGXU CHEN

Abstract. The Boltzmann equation is a fundamental kinetic equation that describes the dynamics of dilute
gas. In this paper we study the regularity of both dynamical and steady Boltzmann equation in strictly convex
domain with the Cercignani-Lampis (C-L) boundary condition. The C-L boundary condition describes the
intermediate reflection law between diffuse reflection and specular reflection via two accommodation coefficients.
We construct local weighted C1 dynamical solution using repeated interaction through the characteristic. When
we assume small fluctuation to the wall temperature and accommodation coefficients, we construct weighted C1

steady solution.

1. Introduction

In this paper we consider the classical Boltzmann equation, which describes the dynamics of dilute particles.
Denoting F (t, x, v) the phase-space-distribution function of particles at time t, location x ∈ Ω moving with
velocity v ∈ R

3, the equation writes:

∂tF + v · ∇xF = Q(F, F ) . (1.1)

The collision operator Q describes the binary collisions between particles:

Q(F1, F2)(v) = Qgain −Qloss = Qgain(F1, F2)− ν(F1)F2

:=

¨

R3×S2

B(v − u, ω)F1(u
′)F2(v

′)dωdu − F2(v)

(
¨

R3×S2

B(v − u, ω)F1(u)dωdu

)

.
(1.2)

In the collision process, we assume the energy and momentum are conserved. We denote the post-velocities:

u′ = u− [(u − v) · ω]ω, v′ = v + [(u − v) · ω]ω , (1.3)

then they satisfy:

u′ + v′ = u+ v , |u′|2 + |v′|2 = |u|2 + |v|2 . (1.4)

In equation (1.2), B is called the collision kernel. In this paper we only consider the hard sphere case, which is
given by

B(v − u, ω) = |v − u|Kq0(
v − u

|v − u| · ω) , with K = 1 , 0 ≤ q0(
v − u

|v − u| · ω) ≤ C
∣
∣
∣
v − u

|v − u| · ω
∣
∣
∣ .

To describe the boundary condition for F , we denote the collection of coordinates on phase space at the
boundary:

γ := {(x, v) ∈ ∂Ω× R
3}.

And we denote n = n(x) as the outward normal vector at x ∈ Ω. We split the boundary coordinates γ into the
incoming (γ−) and the outgoing (γ+) set:

γ∓ := {(x, v) ∈ ∂Ω× R
3 : n(x) · v ≶ 0} .

The boundary condition determines the distribution on γ−, and shows how particles back-scattered into the
domain. In our model, we use the scattering kernel R(u → v;x, t):

F (t, x, v)|n(x) · v| =
ˆ

n(x)·u>0

R(u → v;x, t)F (t, x, u){n(x) · u}du, on γ− . (1.5)

R(u → v;x, t) represents the probability of a molecule striking in the boundary at x ∈ ∂Ω with velocity u, and
to be sent back to the domain with velocity v at the same location x and time t. In this paper we consider a
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scattering kernel proposed by Cercignani and Lampis in [7, 8]:

R(u → v;x, t)

:=
1

r⊥r‖(2− r‖)π/2

|n(x) · v|
(2Tw(x))2

exp

(

− 1

2Tw(x)

[ |v⊥|2 + (1− r⊥)|u⊥|2
r⊥

+
|v‖ − (1− r‖)u‖|2

r‖(2 − r‖)

])

× I0

(
1

2Tw(x)

2(1− r⊥)1/2v⊥u⊥
r⊥

)

,

(1.6)

where Tw(x) is the wall temperature for x ∈ ∂Ω and

I0(y) := π−1

ˆ π

0

ey cosφdφ . (1.7)

In the formula, v⊥ and v‖ denote the normal and tangential components of the velocity respectively:

v⊥ = v · n(x) , v‖ = v − v⊥n(x) . (1.8)

Similarly u⊥ = u · n(x) and u‖ = u − u⊥n(x). There are other derivations of C-L model besides the original
one, and we refer interested readers to [13, 7, 6].

The Cercignani-Lampis(C-L) model satisfies the following properties:

• the reciprocity property:

R(u → v;x, t) = R(−v → −u;x, t)
e−|v|2/(2Tw(x))

e−|u|2/(2Tw(x))

|n(x) · v|
|n(x) · u| , (1.9)

• the normalization property(see Lemma 1)
ˆ

n(x)·v<0

R(u → v;x, t)dv = 1 . (1.10)

The normalization (1.10) property immediately leads to null-flux condition for F :
ˆ

R3

F (t, x, v){n(x) · v}dv = 0 , for x ∈ ∂Ω. (1.11)

This condition guarantees the conservation of total mass:
ˆ

Ω×R3

F (t, x, v)dvdx =

ˆ

Ω×R3

F (0, x, v)dvdx for all t ≥ 0 . (1.12)

Remark 1. The C-L model encompasses pure diffusion and pure reflection.
The pure diffuse boundary condition is given by

F (t, x, v) =
2

π(2Tw(x))2
e−

|v|2

2Tw(x)

ˆ

n(x)·u>0

F (t, x, u){n(x) · u}du on (x, v) ∈ γ−, (1.13)

R(u → v;x, t) =
2

π(2Tw(x))2
e−

|v|2

2Tw(x) |n(x) · v|.

It corresponds to the scattering kernel in (1.6) with r⊥ = 1, r‖ = 1.
Other basic boundary conditions can be considered as a special case with singular R: specular reflection

boundary condition:

F (t, x, v) = F (t, x,Rxv) on (x, v) ∈ γ−, Rxv = v − 2n(x)(n(x) · v),

R(u → v;x, t) = δ(u−Rxv),

where r⊥ = 0, r‖ = 0.
Bounce-back reflection boundary condition:

F (t, x, v) = F (t, x,−v) on (x, v) ∈ γ−,

R(u → v;x, t) = δ(u + v),

where r⊥ = 0, r‖ = 2.
2



Due to the generality of the C-L model, it has been vastly used in many field, on the rarefied gas flow
in [30, 31, 35, 36, 37]; extension to the gas surface interaction model in fluid dynamics [33, 32, 40]; on the
linearized Boltzmann equation in [19, 39, 34, 18]; on S-model kinetic equation in [38] etc.

In this paper we will study the regularity of both the dynamical and steady Boltzmann equation with C-L
boundary. The Boltzmann equation with scattering type boundary condition (1.5) has been studied in many
aspects. [21, 20, 28, 27, 29] studied the dynamical solution with diffuse, specular and bounce back boundary
condition. With such boundary condition, [25, 24, 17, 3] studied the fluid limit of the Boltzmann equation.
Moreover, a unique stationary solution has been constructed in [15, 16, 14]. Inspired by these studies, in [9]
the author constructed a unique local dynamical solution and a unique steady solution with C-L boundary in
bounded domain.

In non-convex domain the Boltzmann equation possess a boundary singularity [26], and BV is the best
estimate we can expect [22]. In convex domain [23] proposed a kinetic weight to construct a unique C1 and
W 1,p dynamical solution. With convex domain the kinetic weight can be further applied to study the Vlasov-
Poisson-Boltzmann system [5, 11, 4, 1, 2]. In terms of the steady solution, [12] studied the regularity of the
stationary linearized Boltzmann equation. Recently a unique weighted C1 steady solution in convex domain has
been constructed in [10]. Our work in this paper originate from these studies and focus on both the dynamical
and steady solution.

Throughout this paper we assume the domain is C2 and defined as Ω = {x ∈ R
3 : ξ(x) < 0} via a C2 function

ξ : R3 → R. We further assume that the domain is strictly convex in the following sense:

3∑

i,j=1

ζiζj∂i∂jξ(x) & |ζ|2 for all x ∈ Ω̄ and ζ ∈ R
3. (1.14)

Without loss of generality we may assume that ∇ξ 6= 0 near ∂Ω.
Denote the maximum and minimum wall temperature as:

TM := max{Tw(x)} < ∞ Tm := min{Tw(x)} > 0. (1.15)

It is well known that singularity propagates for the derivative in the boundary value problem [26]. In order
to control the generic singularity at the boundary we adopt the following weight of [23]:

Definition 1. For sufficiently small 0 < ε ≪ ‖ξ‖C2 , we define a kinetic distance:

α(x, v) := χε(α̃(x, v)), α̃(x, v) :=
√

|v · ∇xξ(x)|2 − 2ξ(x)(v · ∇2
xξ(x) · v), (x, v) ∈ Ω̄× R

3, (1.16)

where χa : [0,∞) → [0,∞) stands for a non-decreasing smooth function such that

χα(s) = s for s ∈ [0, a], χa(s) = 2a for s ∈ [4a,∞], and |χ′
a(s)| ≤ 1 for τ ∈ [0,∞). (1.17)

The definition of ξ in (1.14) implies that ξ(x) = 0, x ∈ ∂Ω,

when x ∈ ∂Ω and |n(x) · v| ≪ 1, α(x, v) ∼ n(x) · v. (1.18)

We will use this kinetic weight to cancel the singularity on the boundary. Lemma 6 indicates that such weight
is almost invariant along the trajectory.

Denote

wθ := eθ|v|
2

, (1.19)

〈v〉 :=
√

|v|2 + 1. (1.20)

1.1. Result of dynamical Boltzmann equation. Define the global Maxwellian using the maximum wall
temperature:

µ := e
− |v|2

2TM , (1.21)

and weight F in (1.1) with it: F =
√
µf . Then f satisfies

∂tf + v · ∇xf = Γ(f, f) , (1.22)

where the collision operator becomes:

Γ(f1, f2) = Γgain(f1, f2)− ν(F1)F2/µ =
1√
µ
Qgain(

√
µf1,

√
µf2)− ν(F1)f2 . (1.23)

The weighted C1 estimate is given in the following theorem.
3



Theorem 1. Assume Ω ⊂ R
3 is bounded, convex and C2. Let 0 < θ < 1

4TM
. Assume

0 < r⊥ ≤ 1, 0 < r‖ < 2 , (1.24)

Tm

TM
> max

(1− r‖
2− r‖

,

√
1− r⊥ − (1− r⊥)

r⊥

)

, (1.25)

where TM , Tm are defined in (1.15).
Also assume the initial condition has bound

‖α∇x,vf0‖∞ < ∞. (1.26)

Then for some
t∞ = t∞(‖wθf‖∞, r⊥, r‖, θ, TM , Tm,Ω) ≪ 1,

we can construct a unique solution F =
√
µf satisfies

sup
0≤t≤t∞

‖e−λ〈v〉tα∇x,vf‖∞ . ‖α∇x,vf0‖∞. (1.27)

Here α is the kinetic weight defined in (1.16), λ ≥ 1 is a constant specified in (3.8), ‖wθf‖∞ is the L∞ estimate

given in Theorem 3 with wθ(v) = eθ|v|
2

.

Remark 2. The well-posedness of the solution F =
√
µf and L∞ estimate ‖wθf‖∞ are proved in [9], in this

paper we will focus on the weighted C1 estimate (1.27). We record the well-posedness and L∞ estimate in
Theorem 3 in section 2.

Remark 3. In Theorem 1 the accommodation coefficient can be any number except r⊥ = 0, r‖ = 0, 2, which
corresponds to pure reflection or bounce back reflection. For wall temperature we have a relaxed condition (1.25)
rather than the small fluctuation. In particular, for the pure diffuse reflection, i.e, r‖ = r⊥ = 1, there is no
constraint to the temperature(except TM < ∞, Tm > 0).

1.2. Result of steady Boltzmann equation. We also establish the weighted C1-estimate for the steady
problem. The steady Boltzmann equation is given as

v · ∇xFs = Q(Fs, Fs), (x, v) ∈ Ω× R
3, (1.28)

with Fs satisfying the C-L boundary condition. Here we note that we use Fs to represent the steady solution.
We use the short notation µ0 to denote the global Maxwellian with temperature T0,

µ0 :=
1

2π(T0)2
exp

(

− |v|2
2T0

)

.

Here we mark that µ0 is the global Maxwellian for the steady problem while the µ defined in (1.21) is the global
Maxwellian for the dynamical problem.

Let Fs = µ0 +
√
µ0fs. The equation of fs reads

v · ∇xfs + Lfs = Γ(fs, fs). (1.29)

Here L is the standard linearized Boltzmann operator

Lfs := − 1√
µ0

[
Q(µ0,

√
µ0fs) +Q(

√
µ0fs, µ0)

]
= ν(v)fs −Kfs (1.30)

with the collision frequency ν(v) ≡
˜

R3×S2
B(v − v∗, w)µ0(v∗)dwdv∗ ∼ {1 + |v|}. When we assume small

fluctuation of the wall temperature and the accommodation coefficient, the steady problem is well-posed [9].
In this paper we also derive the weighted-C1 regularity of the steady solution in the following theorem.

Theorem 2. For given T0 > 0, there exists δ0 > 0 such that if

sup
x∈∂Ω

|Tw(x)− T0| < δ0, max{|1− r⊥|, |1− r‖|} < δ0, (1.31)

then we can construct a unique steady solution Fs = µ0 +
√
µ0fs satisfies:

‖α∇xfs‖∞ . ‖wϑfs‖∞ . 1. (1.32)

Here wϑ = eϑ|v|
2

for some ϑ > 0.

Remark 4. The well-posedness of fs and the L∞ bound ‖wϑfs‖∞ of the steady solution Fs = µ0 +
√
µ0fs is

proved in [9], we record the result in Corollary 4 in section 2. In this paper we focus on proving the regularity
estimate (1.32).
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Remark 5. In Theorem 2, different to Theorem 1, we need to restrict these two coefficients to be close to 1
in (1.31). To be more specific, we require the C-L boundary to be close to the diffuse boundary condition.

1.3. Difficulty and proof strategy. Dynamical solution. First we illustrate the difficulty and strategy
for the dynamical solution in Theorem 1. A common approach for the boundary value problem is to iterate
along the backward characteristic until hitting the boundary or the initial datum. In order to clearly state and
address the difficulty, we briefly recall the strategy for the well-posedness of the dynamical solution as stated
in [9]. We define the stochastic cycle vk, vk−1, · · · , v1 in Definition 2. The backward characteristic may hit the
boundary for k-times before reaching the initial datum. The boundary condition (3.1) will generate a k-fold
integration. Due to the probability measure dσ(vk, vk−1) ( see (3.2)), the integral of vk is roughly

ˆ

n(x)·vk>0

e
−[ 1

4TM
− 1

2Tw(x)
]|vk|2dσ(vk, vk−1). (1.33)

Indeed the integrand is of the form of exponential, we can explicitly compute the above integration as a function
of vk−1 and adapt the result to the integration over vk−1. In such way we can derive an induction formula to
compute the k-fold integration.

For the rest stochastic cycle, i.e, vk+1, vk+2, · · · , for large k, physically it means the characteristic does not
reach the initial datum after a large number of interaction with boundary. We follow the idea in [23] to introduce
the grazing set

γδ
+ = {u ∈ γ+ : |n · u| > δ, |u| ≤ δ−1}.

In such subspace characteristic need to take certain time to reach the boundary. One can derive the lower bound
of the time as O( 1

δ3 ). For bounded t there can be at most N = O( 1
δ3 ) many vi belong to such subspace. For

the rest vi ∈ γ+\γδ
+, the integration over such subspace results in a small magnitude number O(δ). Thus for

large k, we get a large power of O(δ) and thus derive that the measure of the rest cycle vk+1, vk+2, · · · is small.
Hence we will choose a proper k depend on N = O( 1

δ3 ).
When it comes to the regularity, it is well-known that singularity occurs at the backward exit position

xb(x, v) := x− tb(x, v)v which is defined through a backward exit time tb:

tb(x, v) := sup{s > 0 : x− sv ∈ Ω}. (1.34)

Thus while estimating the regularity, the singularity occurs at the boundary. In Theorem 1 we include the
kinetic weight (1.16) since such weight can cancel the singularity as stated in Lemma 6. Besides the singularity
the boundary condition for ∂f actually has a nice form as stated in Lemma 13, which looks similar to the
boundary condition of f in (3.1).

Even though the boundary condition in our case is similar to the case of f , the extra term 〈v〉2 in Lemma 13,
brings difficulty to our analysis. Since the computation involves various integration with exponential, it is natural
to bound polynomial term 〈v〉 by exponential and adapt it into the computation. For a single integration such
upper bound does not have big effect. However, as stated above, we trace back along the characteristic for large
k times. Thus in order to follow the induction formula for the k-fold integration, we need to bound

〈v〉2 .
1

ε
eε|v|

2

(1.35)

with small enough coefficient ε. Such extra exponential term eε|v|
2

will slightly increase the coefficient of the
exponential after an integration. With a k-fold integration we need to impose the k-dependence on ε. Since
k depends on N = O(1/δ3), the term 1

ε(k) in (1.35) depends on δ as well. It will be combined with the small

magnitude number O(δ) for the nongrazing set γ+\γδ
+. Then in order to derive the smallness, we need to ensure

δ ≪ ε(δ). Unfortunately, with such properties, the k-fold integration does not remain bounded.
To overcome such difficulty a key observation is: since we consider local-in-time [0, t], we can obtain a better

bound for N as O( t
δ3 ). Thus we can write δ = t1/3δ′ for some δ′ ≪ 1. Since we are considering local-in-time

regularity, t can be finally designed to be small and depend on all the other variables k, δ, · · · . In such setting
k = k(N) = k(δ′), which does not depend on t. With the extra t1/3 we can choose proper ε to satisfy the
condition δ ≪ ε as follow: instead of imposing the k dependence on ε, we directly impose the t dependence as
in Lemma 5. Then we assume ε = tc for some 1

3 > c > 0 and incorporate 1
tc with δ = t1/3δ′ in the computation.

Finally, we choose t to be small to ensure the k-fold integration is bounded. In order to obtain the smallness
for the rest cycle vk+1, vk+2, · · · in (3.137), we specify c = 1/15.

Steady solution. Then we come to the steady solution in Theorem 2. We express the steady solution as

perturbation around a global Maxwellian F = µ0 +
√
µ0f, µ0 = e−

|v|2

2T0 and trace back along the characteristic
5



as (4.14)-(4.18). The weighted C1 regularity with pure diffuse boundary condition is established in [10], we use
the same method to deal with the collision term(not related to the boundary). Then the new difficulty comes
from the boundary term. The boundary condition for f can be computed as in Lemma 21. Thus the most
singular term from the boundary reads

∇xxbe
[ 1
4T0

− 1
2Tw(x

b
)
]|v|2
ˆ

n(xb)·v1>0

∇xb
f(xb, v1)e

−[ 1
4T0

− 1
2Tw(x

b
)
]|v1|2dσ(v1, v). (1.36)

Using the characteristic once again for f(xb, v1), the contribution of the collision operator (ignoring the
singularity of Q for simplicity) can be viewed as

∇xxbe
[ 1
4T0

− 1
2Tw(x

b
) ]|v|

2
ˆ

n(xb)·v1>0

ˆ tb(xb,v1)

0

∇xf(xb − sv1, v1)e
−[ 1

4T0
− 1

2Tw(x
b
) ]|v1|

2

dudsdσ(v1, v). (1.37)

We can exchange the x−derivative into v1-derivative as

∇xf(xb − (t1 − s)v1, u) =
∇v1 [F (xb − (t1 − s)v1, u)]

−(t1 − s)
. (1.38)

Since the accommodation coefficient and wall temperature are assumed to have a small fluctuation as in (1.31),
such integration is “close” to the integration of the pure diffuse boundary condition. Then we can apply the
change of variable to remove the v1-derivative completely from f . Different to the pure diffuse boundary con-
dition, the C-L boundary will generate more polynomial factors due to the normal and tangential components
in (1.6). Thanks to exponential decay term in the integrand, the polynomial factors will not affect the integra-
bility. In Lemma 22 we compute these integration with extra polynomial terms, extra derivative in detail. Thus
the integration can be bounded by ∇xxb‖f‖∞.

Another singular term is the boundary contribution of (1.36) along the characteristic:

∇xxbe
[ 1
4T0

− 1
2Tw(x

b
)
]|v|2
ˆ

n(xb)·v1>0

∇xb
f(xb(x1, v1), v1)e

−[ 1
4T0

− 1
2Tw(x

b
)
]|v1|2dσ(v1, v). (1.39)

The key idea is to convert v1-integration to the integration in (x2, tb(x1, v1)) = (xb(x1, v1), tb(x1, v1)), with
Jacobian given in Lemma 11. Then we are able to remove ∇xb

-derivative from f via the integration by parts.
Similar to the collision term (1.37), the integration by parts will generate more polynomial factors. These
factors won’t affect the integrability. Thus we can again remove the derivative and bound such contribution by
∇xxb‖f‖∞.

1.4. Outline. In section 2 we list several lemmas as preparation. In section 3 we derive the weighted C1 bound
for the dynamical solution and conclude Theorem 1. In section 4 we derive the weighted C1 bound for the
steady solution and conclude Theorem 2.

2. Preliminary

2.1. Basic setting. Throughout this paper we will use the following notation:

f . g ⇔ there exists 0 < C < ∞ such that f ≤ Cg. (2.1)

f = O(g) ⇔ there exists 0 < C < ∞ such that f = Cg. (2.2)

f = o(g) ⇔ there exists c ≪ 1 such that f = cg. (2.3)

First we record the local well-posedness of the dynamical Boltzmann equation with the C-L boundary.

Theorem 3. Assume Ω ⊂ R
3 is bounded and C2. Let 0 < θ < 1

4TM
. Assume wall temperature satisfies (1.24)

and (1.25). If F0 =
√
µf0 ≥ 0 and f0 satisfies

‖wθf0‖∞ < ∞, (2.4)

then there exists a unique solution F (t, x, v) =
√
µf(t, x, v) ≥ 0 to (1.1) and (1.5) in [0, tdym]×Ω×R

3 for some
tdym ≪ 1. Moreover, the solution F =

√
µf satisfies

sup
0≤t≤tdym

‖wθe
−|v|2tf(t)‖∞ . ‖wθf0‖∞. (2.5)

Then we record the well-posedness of the steady Boltzmann equation with the C-L boundary.
6



Corollary 4. For given T0 > 0, if the wall temperature and accommodation coefficient satisfies (1.31), then
there exists a unique non-negative solution Fs = µ0 +

√
µ0fs ≥ 0 with

˜

Ω×R3 fs
√
µ0dxdv = 0 to the steady

problem (1.28). And for some ϑ > 0,

‖eϑ|v|2fs‖∞ . δ0 ≪ 1.

Definition 2. Let
(
X1(s; t, x, v), v

)
be the location and velocity along the backward trajectory before hitting the

boundary,

d

ds

(
X1(s; t, x, v)

v

)

=

(
v
0

)

. (2.6)

Therefore, from (2.6), we have

X1(s; t, x, v) = x− (t− s)v.

Define the back-time cycle as

t1(t, x, v) = sup{s < t : X1(s; t, x, v) ∈ ∂Ω},

x1(t, x, v) = X1 (t1(t, x, v); t, x, v) ,

v1 ∈ {v1 ∈ R
3 : n(x1) · v1 > 0}.

Also define

V1 = {v1 : n(x1) · v1 > 0}, x1 ∈ ∂Ω.

Inductively, before hitting the boundary for the k-th time, define

tk(t, x, v, v1, · · · , vk−1) = sup{s < tk−1 : Xk(s; tk−1, xk−1, vk−1) ∈ ∂Ω},

xk(t, x, v, v1, · · · , vk−1) = Xk (tk(t, x, v, vk−1); tk−1(t, x, v), xk−1(t, x, v), vk−1) ,

vk ∈ {vk ∈ R
3 : n(xk) · vk > 0},

Vk = {vk : n(xk) · vk > 0},

Xk(s; tk−1, xk−1, vk−1) = xk−1 − (tk−1 − s)vk−1.

Here we set

(t0, x0, v0) = (t, x, v).

For simplicity, we denote

Xk(s) := Xk(s; tk−1, xk−1, vk−1)

for the rest lemmas and propositions.

2.2. Properties of the C-L scattering kernel. In this subsection we list some basic properties of the scat-
tering kernel (1.6).

Lemma 1. (Lemma 10 in [9])
For R(u → v;x, t) given by (1.6) and any u such that n(x) · u > 0, we have

ˆ

n(x)·v<0

R(u → v;x, t)dv = 1. (2.7)

Lemma 2. (Lemma 11 in [9])
For any a > 0, b > 0, ε > 0 such that a+ ε < b, we have

b

π

ˆ

R2

eε|v|
2

ea|v|
2

e−b|v−w|2dv ≤ b

b− a− ε
e

(a+ε)b
b−a−ε |w|2 . (2.8)

And when δ ≪ 1,

b

π

ˆ

|v− b
b−a−εw|>δ−1

eε|v|
2

ea|v|
2

e−b|v−w|2dv ≤ e−(b−a−ε)δ−2 b

b− a− ε
e

(a+ε)b
b−a−ε |w|2

≤ δ
b

b− a− ε
e

(a+ε)b
b−a−ε |w|2 . (2.9)
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Lemma 3. (Lemma 12 in [9])
For any a > 0, b > 0, ε > 0 with a+ ε < b,

2b

ˆ

R+

eεv
2

eav
2

e−bv2

e−bw2

I0(2bvw)dv ≤ b

b− a− ε
e

(a+ε)b
b−a−εw

2

. (2.10)

And when δ ≪ 1,

2b

ˆ

0<v<δ

eεv
2

eav
2

e−bv2

e−bw2

I0(2bvw)dv ≤ δ
b

b− a− ε
e

(a+ε)b
b−a−εw

2

. (2.11)

Lemma 4. (Lemma 13 in [9])
For any m,n > 0, when δ ≪ 1, we have

2m2

ˆ ∞

n
mu⊥+δ−1

v⊥e
−m2v2

⊥I0(2mnv⊥u⊥)e
−n2u2

⊥dv⊥ . e−
m2

4δ2 . (2.12)

In consequence, for any a > 0, b > 0, ε > 0 with a+ ε < b,

2b

ˆ ∞

b
b−a−εw+δ−1

veεv
2

eav
2

e−bv2

e−bw2

I0(2bvw)dv ≤ e
−(b−a−ε)

4δ2
b

b− a− ε
e

(a+ε)b
b−a−εw

2

(2.13)

≤ δ
b

b− a− ε
e

(a+ε)b
b−a−εw

2

. (2.14)

To tackle the difficulty mentioned in (1.35), we bound the polynomial by exponential in the following lemma.

Lemma 5. For 0 < c < 1 and λ > 1 we have the following the upper bound:

〈v〉4eλ〈v〉t ≤ 2t−c/2et
c|v|2 ≤ t−cet

c|v|2 . (2.15)

Proof. For t < tc ≪ 1 and c < 1, we bound

eλ〈v〉t ≤ eλteλ|v|t ≤ 2et
c/2(|v|2+λ2) ≤ 4et

c/2|v|2 ,

〈v〉4 ≤ t−c/2et
c/2|v|2 .

In the first inequality we have used t ≪ 1 to have

eλt < et
c/2λ2

< 2, λ|v| < λ2 + |v|2.
In the second inequality we have used

〈v〉 = 1 + |v| ≤ 2 + |v|2 ≤ t−c/8 + |v|2 ≤ t−c/8et
c/8|v|2 ,

where we have used the Taylor expansion for et
c
8 |v|2 in the last step.

Thus with t ≪ 1 we conclude the lemma.
�

2.3. Properties of the collision kernel and kinetic weight. The next lemma indicates the invariant prop-
erty of α under the operator v · ∇x.

Lemma 6. (Lemma 2 in [23])
When the transport operator acts on α, we have an upper bound

v · ∇xα .ξ |v|α(x, v). (2.16)

Moreover, there exists C = C(ξ) such that for all 0 ≤ s1, s2 ≤ t,

e−C|v||s1−s2|α(s1; t, x, v) ≤ α(s2; t, x, v) ≤ eC|v||s1−s2|α(s1; t, x, v). (2.17)

We summarize the properties of the collision operator in the following lemma.

Lemma 7. (Lemma 12 in [10])
The linearized Boltzmann operator in (1.30) has the following form:

ν(v) ≡
¨

R3×S2

B(v − u,w)µ0(u)dwdu ∼ 1 + |v|, (2.18)

|∇vν(v)| . 1, (2.19)

Kfs =

ˆ

R3

k(v, u)fs(u)du, (2.20)
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where k(v, u) . k̺(v, u) with

k̺(v, u) =
e−̺|v−u|2

|v − u| for some ̺ > 0. (2.21)

The k̺(v, u) satisfies the following condition:

k̺(v, u) ∈ L1
u,

k(v, u)

|v − u| ∈ L1
u. (2.22)

In consequence,

‖Kfs‖∞ . ‖wϑfs‖∞. (2.23)

The derivative of k(v, u) satisfies the following condition:

|∇uk(v, u)| .
k̺(v, u)

|v − u| . (2.24)

For (i, j) = (1, 2) or (i, j) = (2, 1), the nonlinear Boltzmann operator can be bounded as

Γgain(f1, f2) . ‖wθfi‖∞
ˆ

R3

k̺(v, u)|fj(x, u)|du. (2.25)

In consequence, we have

‖Γ(fs, fs)‖∞ . ‖wϑfs‖2∞, (2.26)

|∂x,vΓgain(f, f)| . ‖wθf‖∞
ˆ

R3

k̺(v, u)|∂x,vf(x, u)|du+ ‖wθfs‖2∞, (2.27)

|∇xΓ(fs, fs)(x, v)| . ‖wϑfs‖∞
‖α∇xfs‖∞
α(x, v)

+ ‖wϑfs‖∞
ˆ

R3

k̺(v, u)|∇xfs(x, u)|du. (2.28)

Lemma 8. (Lemma 13 in [10])

If 0 < θ̃
4 < ̺, if 0 < ˜̺< ̺− θ̃

4 ,

k̺(v, u)
eθ̃|v|

2

eθ̃|u|2
. k ˜̺(v, u), (2.29)

where k̺ is defined in (2.21).

When we integrate the collision operator ∂Γgain(f, f) given in (2.25), to construct α−weighted C1 bound,
the extra weight α appears in the denominator. The following lemma is desired to bound the integration of 1

α .

Lemma 9. (Lemma 14 in [10])
ˆ t

0

e−ν(t−s)

ˆ

R3

k̺(v, u)

α(x − (t− s)v, u)
du .

t

α(x, v)
. (2.30)

ˆ t

t−ε

e−ν(t−s)

ˆ

R3

k̺(v, u)

α(x − (t− s)v, u)
du .

O(ε)

α(x, v)
. (2.31)

2.4. Reparametrization of boundary and stochastic cycle. In this subsection we reparametrize the
boundary and stochastic cycle in Definition 2. We will mainly use the reparametrization in section 4 to prove
Theorem 2.

We assume that for all q ∈ ∂Ω, there exists 0 < δ1 ≪ 1

ηq : B+(0; δ1) ∋ xq := (xq,1,xq,2,xq,3) → Oq := ηq(B+(0; δ1)) is one-to-one and onto for all q ∈ ∂Ω, (2.32)

and ηq(xq) ∈ ∂Ω if and only if xq,3 = 0 within the range of ηq.
Since the boundary is compact and C2, for fixed 0 < δ1 ≪ 1 we may choose a finite number of p ∈ P ⊂ ∂Ω

and 0 < δ2 ≪ 1 such that Op = ηp(B+(0; δ1)) ⊂ B(p; δ2)∩ Ω̄ and {Op} forms a finite covering of ∂Ω. We define
a partition of unity

∑

p∈P
ιp(x) =

{
1, for x ∈ ∂Ω
0 for x /∈ Op

such that 0 ≤ ιp(x) ≤ 1. (2.33)

Without loss of generality (see [28]) we can always reparametrize ηp such that ∂xp,iηp 6= 0 for i = 1, 2, 3 at
xp,3 = 0, and an orthogonality holds as

∂xp,iηp · ∂xp,jηp = 0 at xp,3 = 0 for i 6= j and i, j ∈ {1, 2, 3}. (2.34)
9



For simplicity, we denote

∂iηp(xp) := ∂xp,iηp. (2.35)

Definition 3. For x ∈ Ω̄, we choose p ∈ P as in (2.32). We define

gp,ii(xp) = 〈∂iηp(xp), ∂iηp(xp)〉 for i ∈ {1, 2, 3}, (2.36)

Txp =
(

∂1ηp(xp)√
gp,11(xp)

∂2ηp(xp)√
gp,22(xp)

∂3ηp(xp)√
gp,33(xp)

)t

. (2.37)

Here At stands the transpose of a matrix A. Note that when xp,3 = 0, Txp

∂iηp(xp)√
gp,ii(xp)

= ei for i = 1, 2, 3 where

{ei} is a standard basis of R3.
We define

vj(xp) =
∂jηp(xp)
√

gp,jj(xp)
· v. (2.38)

We note that from (2.34), the map Txp is an orthonormal matrix when xp,3 = 0. Therefore both maps
v → v(xp) and v(xp) → v have a unit Jacobian. Now we reparametrize the stochastic cycle using the local
chart defined in Definition 2.

Definition 4. Recall the stochastic cycles in Definition 2. For each cycle xk let us choose pk ∈ P in (2.32).
Then we denote

xk
pk := (xk

pk,1,x
k
pk,2, 0) such that ηpk(xk

pk) = xk, for k = 1, 2,

vk
pk,i :=

∂iηpk(xk
pk)

√

gpk,ii(x
k
pk)

· vk for k = 1, 2.
(2.39)

From chain rule we define

∂
xk

pk,i

[a(ηpk(xk
pk), vk)] :=

∂ηpk(xk
pk ,i)

∂xk
pk,i

· ∇xa(ηpk(xk
pk), vk), i = 1, 2. (2.40)

When we study the regularity we will need to take derivative to the stochastic cycle. We summarize the
derivative in the following lemma.

Lemma 10. (Lemma 1 in [10])
For the tb and xb defined in (1.34), the derivative reads

∇xtb(x, v) =
n(xb)

n(xb) · v
, ∇vtb(x, v) = − tbn(xb)

n(xb) · v
,

∇xxb(x, v) = Id3×3 −
n(xb)⊗ v

n(xb) · v
, ∇vxb(x, v) = −tbId+

tbn(xb)⊗ v

n(xb) · v
.

(2.41)

For i = 1, 2, j = 1, 2,

∂x2
p2,i

∂x1
p1,j

=
1

√

gp2,ii(x
2
p2)




∂iηp2(x2

p2 )
√

gp2,ii(x
2
p2)

−
v2
p2,i

v2
p2,3

∂3ηp2(x2
p2)

√

gp2,33(x
2
p2)



 · ∂jηp1(x1
p1). (2.42)

∂x1
p1,i

∂[x]j
=

1
√

gp1,ii(x
1
p1)




∂iηp1(x1

p1 )
√

gp1,ii(x
1
p1 )

− vp1,i

vp1,3

∂3ηp1(x1
p1)

√

gp1,33(x
1
p1)



 · ej. (2.43)

Here [x]j is defined as the j-th coordinate of x as specified in (4.13).

Lemma 11. (Lemma 3 in [10])
The following map is one-to-one

v1 ∈ {n(x1) · v1 > 0 : xb(x1, v1) ∈ B(p2, δ2)} 7→ (x2
p2,1,x

2
p2,2, t

1
b), (2.44)

with

det

(

∂(x2
p2,1,x

2
p2,2, t

1
b
)

∂v1

)

=
1

√

gp2,11(x
2
p2 )gp2,22(x

2
p2 )

|t1
b
|3

|n(x2) · v1|
. (2.45)
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Here t1
b
is the as the backward exit time starting from (x1, v1):

t1
b
= tb(x1, v1). (2.46)

Lemma 12. (Lemma 4 in [10])
Given a C2 convex domain defined in (1.14),

|npj (xj
pj ) · (x1 − ηp2(x2

p2))| ∼ |x1 − ηp2(x2
p2)|2, j = 1, 2. (2.47)

For j′ = 1, 2,
∣
∣
∣
∣

∂[npj (xj
pj ) · (x1 − ηp2(x2

p2))]

∂x2
p2,j′

∣
∣
∣
∣
. ‖η‖C2 |x1 − ηp2(x2

p2)|, j = 1, 2. (2.48)

3. Weighted C1-estimate of the dynamical solution.

In this section we prove Theorem 1. We will mainly prove the weighted C1 estimate of the iteration equa-
tion (3.4) in Proposition 5.

First we derive the boundary condition for F =
√
µf . By the boundary condition of F (1.5) and the

reciprocity property (1.9), the boundary condition for f becomes, for (x, v) ∈ γ−,

f(t, x, v)|n(x) · v| = 1√
µ

ˆ

n(x)·u>0

R(u → v;x, t)f(t, x, u)
√

µ(u){n(x) · u}du

=
1√
µ

ˆ

n(x)·u>0

R(−v → −u;x, t)
e−|v|2/(2Tw(x))

e−|u|2/(2Tw(x))
f(t, x, u)

√

µ(u)
|n(x) · v|
|n(x) · u| {n(x) · u}du.

Thus

f(t, x, v)|γ− = e
[ 1
4TM

− 1
2Tw(x)

]|v|2
ˆ

n(x)·u>0

f(t, x, u)e
−[ 1

4TM
− 1

2Tw(x)
]|u|2

dσ(u, v). (3.1)

Here we denote

dσ(u, v) := R(−v → −u;x, t)du, (3.2)

which is a probability measure in the space {(x, u), n(x) · u > 0} (well-defined due to (1.10)).
We consider the following iteration equation:

∂tF
m+1 + v · ∇xF

m+1 = Qgain(F
m, Fm)− ν(Fm)Fm+1, Fm+1|t=0 = F0, (3.3)

with boundary condition

Fm+1(t, x, v)|n(x) · v| =
ˆ

n(x)·u>0

R(u → v;x, t)Fm(t, x, u){n(x) · u}du.

For m ≤ 0 we set

Fm(t, x, v) = F0(x, v).

We pose Fm+1 =
√
µfm+1, the equation for fm+1 reads

∂tf
m+1 + v · ∇xf

m+1 + ν(Fm)fm+1 = Γgain (f
m, fm) . (3.4)

Taking the derivative ∂ = [∇x,∇v] with the weight e−λ〈v〉tα we obtain

[∂t + v · ∇x + νm]e−λ〈v〉tα(x, v)∂fm+1(t, x, v) = Gm,

h(0, x, v) = α(x, v)∂f0(x, v).
(3.5)

In (3.5) νm and Gm are defined as

νm = ν(Fm) + λ〈v〉 − α−1[v · ∇xα] (3.6)

Gm(t, x) = e−λ〈v〉tα(x, v)
[
− [∂v] · ∇xf

m+1 − ∂[ν
√
µfm]fm+1 + ∂[Γgain(f

m, fm)]
]
. (3.7)

We choose λ = λ(ξ) ≫ 1 and apply (2.16) to have

(3.6) = νm ≥ λ〈v〉 −Oξ(1)|v| ≥ |v|. (3.8)

The boundary condition is given by the following lemma.
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Lemma 13. (Lemma 12 in [11])
For (x, v) ∈ γ−, we have the following bound for e−λ〈v〉tα(x, v)∂fm+1 on the boundary:

|e−λ〈v〉tα(x, v)∂fm+1(t, x, v)| . P (‖wθf
m‖∞) + 〈v〉2e[

1
4TM

− 1
2Tw(x)

]|v|2 × (3.10) (3.9)

with
ˆ

n(x)·u>0

〈u〉2|∂fm(t, x, u)|e−[ 1
4TM

− 1
2Tw(x)

]|u|2
dσ(u, v). (3.10)

Then we establish the weighted L∞ bound of the sequence ∂fm in the following proposition.

Proposition 5. Assume ∂fm+1 satisfies (3.5) with the boundary condition (3.9) and the wall temperature
satisfies (1.24), (1.25). Also assume the initial condition has bound

‖α∂f0‖L∞ < ∞.

There exists t∞ ≪ 1 such that if

sup
t≤t∞

sup
i≤m

‖e−λ〈v〉tα∂f i(t, x, v)‖L∞ ≤ C∞[‖α∂f0‖L∞ + P (sup
m

‖wθf
m‖∞)], (3.11)

then
sup

0≤t≤t∞

‖e−λ〈v〉tα∂fm+1(t, x, v)‖L∞ ≤ C∞[‖α∂f0‖L∞ + P (sup
m

‖wθf
m‖∞)]. (3.12)

Here C∞ is a constant defined in (3.139) and

t ≤ t∞ = t∞(TM , Tm, r⊥, r‖,Ω, sup
m

‖wθf
m‖∞) ≪ 1. (3.13)

Remark 6. The parameters in (3.13) guarantee that the small time only depends on the temperature, accom-
modation and L∞ bound ‖wθf

m‖. The uniform-in-m L∞ bound is concluded in [9]:

sup
m

‖wθf
m‖∞ < ∞. (3.14)

The Proposition 5 implies the uniform-in-m L∞ estimate for e−λ〈v〉tα∂fm(t, x, v),

sup
m

‖e−λ〈v〉tα∂fm(t, x, v)‖∞ < ∞. (3.15)

The strategy to prove Proposition 5 is to express e−λ〈v〉tα∂fm+1(t, x, v) along the characteristic using the C-L
boundary condition. We present the characteristic formula in Lemma 14. We will use Lemma 15 and Lemma 16
to bound the formula.

We represent e−λ〈v〉tα∂fm+1(t, x, v) with the stochastic cycles defined as follows.

Lemma 14. Assume e−λ〈v〉tα∂fm+1(t, x, v) satisfies (3.5) with the Cercignani-Lampis boundary condition (3.9).
If t1 ≤ 0, then

|e−λ〈v〉tα(x, v)∂fm+1(t, x, v)| ≤ |α(x, v)∂f0(X1(0), v)|+
ˆ t

0

|Gm(s,X1(s), v)|ds. (3.16)

If t1 > 0, for k ≥ 2, then

|e−λ〈v〉tα(x, v)∂fm+1(t, x, v)| ≤
ˆ t

t1

Gm(s,X1(s), v)ds + P (‖wθf
m‖∞)

+ 〈v〉2e[
1

4TM
− 1

2Tw(x1)
]|v|2
ˆ

∏k−1
j=1 Vj

H,

(3.17)

where H is bounded by

k−1∑

l=1

1{tl>0,tl+1≤0}|α∂f0
(
X l+1(0), vl

)
|dΣk

l

+
k−1∑

l=1

ˆ tl

max{0,tl+1}
|Gm−l(s,X l+1(s)|dΣk

l ds

+

k−1∑

l=2

1{tl>0}P (‖wθf
m−l+1‖∞)dΣk

l−1

+ 1{tk>0}|e−λ〈vk〉tkα∂fm−k+2 (tk, xk, vk−1) |dΣk
k−1,

(3.18)
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with

dΣk
l,m =

{ k−1∏

j=l+1

dσ (vj , vj−1)
}

×
{

eλ〈vl〉tl〈vl−1〉2e−[ 1
4TM

− 1
2Tw(xl)

]|vl|2 1

n(xl) · vl
dσ(vl, vl−1)

}

×
{ l−1∏

j=1

eλ〈vj〉tj 〈vj〉4e
[ 1
2Tw(xj)

− 1
2Tw(xj+1)

]|vj |2 1

n(xj) · vj
dσ (vj , vj−1)

}

.

(3.19)

Proof. From (3.4), for 0 ≤ s ≤ t, we apply the fundamental theorem of calculus to get

d

ds

ˆ t

s

−νmdτ =
d

ds

ˆ s

t

νmdτ = νm.

Thus based on (3.5),

d

ds

[

e−
´ t
s
νmdτe−λ〈v〉sα(X1(s), v)∂fm+1(s,X1(s), v)

]

= e−
´ t
s
νmdτGm(s,X1(s), v). (3.20)

By (3.8),

e−
´

t
s
νmdτ ≤ e−|v|(t−s) ≤ 0. (3.21)

Combining (3.20) and (3.21), we derive that if t1 ≤ 0, then we have (3.16).
If t1(t, x, v) > 0, then

|e−λ〈v〉tα(x, v)∂fm+1(t, x, v)1{t1>0}| ≤ |e−λ〈v〉t1α(x, v)∂fm+1 (t1, x1, v) |e−|v|(t−t1)

+

ˆ t

t1

e−|v|(t−s)Gm(s,X1(s), v)|ds.
(3.22)

We use an induction of k to prove (3.17). The first term of the RHS of (3.22) can be bounded by the boundary
condition (3.9) as

P (‖wθf‖∞) + e−λ〈v〉(t−t1)〈v〉2e[
1

4TM
− 1

2Tw(x)
]|v|2
ˆ

V1

e−λ〈v1〉t1α(x1, v1)|∂fm(t1, x1, v1)|

× eλ〈v1〉t1e−[ 1
4TM

− 1
2Tw(x1)

]|v1|2 〈v1〉2
n(x1) · v1

dσ(v1, v),

(3.23)

where we have used n(x1) · v1 . α(x1, v1).
Then we apply (3.16) and (3.22) to derive

(3.23) ≤ 〈v〉2e−[ 1
4TM

− 1
2Tw(x)

]|v|2

×
[ˆ

V1

1{t2≤0<t1}α(X
2(t1), v1)|∂fm(0, X2(t1), v1)|

〈v1〉2eλ〈v1〉t1e−[ 1
4TM

− 1
2Tw(x1)

]|v1|2

n(x1) · v1
dσ(v1, v)

+

ˆ

V1

ˆ t1

0

1{t2≤0<t1}e
−|v1|(t1−s)|Gm−1(s,X2(s), v1)|

〈v1〉2eλ〈v1〉t1e−[ 1
4TM

− 1
2Tw(x1)

]|v1|2

n(x1) · v1
dσ(v1, v)ds

+

ˆ

V1

1{t2>0}e
−|v1|(t1−t2)e−λ〈v1〉t2α(x2, v1)|∂fm(t2, x2, v1)|

〈v1〉2eλ〈v1〉t1e−[ 1
4TM

− 1
2Tw(x1)

]|v1|2

n(x1) · v1
dσ(v1, v)

+

ˆ

V1

ˆ t1

t2

1{t2>0}e
−|v1|(t1−s)|Gm−1(s,X2(s), v1)|

〈v1〉2eλ〈v1〉t1e−[ 1
4TM

− 1
2Tw(x1)

]|v1|2

n(x1) · v1
dσ (v1, v) ds

]

.

(3.24)

Therefore, the formula (3.17) is valid for k = 2.
Assume (3.17) is valid for k ≥ 2 (induction hypothesis). Now we prove that (3.17) holds for k+1. We express

the last term in (3.18) using the boundary condition. Applying (3.9)(3.10), the contribution of constant term is
ˆ

∏k−1
j=1 Vj

1tk>0‖wθf
m−k+1‖∞dΣk

k−1.
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Then the summation in the third line of (3.19) extends to k:

k∑

l=2

1tl>0P (‖wθf
m−l+1‖∞)dΣk

l−1.

Since
´

Vk
dσ(vk, vk−1) = 1 from (3.2), we add vk integration to derive that for l ≤ k

dσ(vk, vk−1)Σ
k
l−1 = dΣk+1

l−1 . (3.25)

Thus the third line of (3.19) is valid for k + 1.

For the other term in (3.9)(3.10), the front term 〈vk−1〉2e[
1

4TM
− 1

2Tw(xk)
]|vk−1|2 depends on vk−1, we move this

term to the integration over Vk−1 in (3.17). Using the second line of (3.19), the integration over Vk−1 is

ˆ

Vk−1

eλ〈vk−1〉tk−1
〈vk−1〉4

n(xk−1) · vk−1
e
−[ 1

4TM
− 1

2Tw(xk−1)
]|vk−1|2

e
−[ 1

4TM
− 1

2Tw(xk)
]|vk−1|dσ(vk−1, vk−2)

=

ˆ

Vk−1

eλ〈vk−1〉tk−1
〈vk−1〉4

n(xk−1) · vk−1
e
[ 1
2Tw(xk−1)

− 1
2Tw(xk)

]|vk−1|2
dσ(vk−1, vk−2),

(3.26)

which is consistent with third line in (3.19) with l = k − 1.
For the remaining integration over Vk in (3.9), we split it into two terms as
ˆ

Vk

〈vk〉2|∂fm−k(tk, xk, vk)|e−[ 1
4TM

− 1
2Tw(xk) ]|vk|

2

dσ(vk, vk−1) =

ˆ

Vk

1{tk+1≤0<tk}
︸ ︷︷ ︸

(3.27)1

+

ˆ

Vk

1{tk+1>0}
︸ ︷︷ ︸

(3.27)2

. (3.27)

For the first term of the RHS of (3.27), we use a similar bound as (3.24) and derive that

(3.27)1 ≤
ˆ

Vk

1{tk+1≤0<tk}α(X
k+1(tk), vk)∂f

m−k+1(0, Xk+1(tk), vk)
〈vk〉2eλ〈vk〉tke−[ 1

4TM
− 1

2Tw(xk)
]|vk|2

n(xk) · vk
dσ(vk, vk−1)

+

ˆ

Vk

ˆ tk

0

1{tk+1≤0<tk}e
−|vk|(tk−s)|Gm−k(s,Xk+1(s), vk)|

〈vk〉2eλ〈vk〉tke−[ 1
4TM

− 1
2Tw(xk)

]|vk|2

n(xk) · vk
dσ(vk, vk−1)ds.

(3.28)

In (3.28),

〈vk〉2eλ〈vk〉tke−[ 1
4TM

− 1
2Tw(xk)

]|vk|2

n(xk) · vk
is consistent with the second line of (3.19) with l = k.

From the induction hypothesis( (3.17) is valid for k), we derive the integration over Vj for j ≤ k − 1 is

consistent with the third line of (3.19). After taking integration
´

∏k−1
j=1 Vj

we change dΣk
k−1 in (3.19) to dΣk+1

k .

Thus the contribution of (3.28) is
ˆ

∏
k
j=1 Vj

1{tk+1≤0<tk}|α∂f0
(
Xk+1(0), vk

)
|dΣk+1

k

+

ˆ

∏
k
j=1 Vj

ˆ tk

0

Gm−k(s)dΣk+1
k ds.

(3.29)

For the second term of the RHS of (3.27), similar to (3.24) we derive

(3.27)2

≤
ˆ

Vk

1{tk+1>0}e
−λ〈vk〉tke−λ〈vk〉tkα(xk+1, vk)∂f

m−k+1(tk+1, xk+1, vk)
〈vk〉2eλ〈vk〉tke−[ 1

4TM
− 1

2Tw(xk)
]|vk|2

n(xk) · vk
dσ(vk, vk−1)

+

ˆ

Vk

ˆ tk

tk+1

1{tk+1>0}e
−|vk|(tk−s)|Gm−k(s,Xk+1(s), vk)|

〈vk〉2eλ〈vk〉tke−[ 1
4TM

− 1
2Tw(xk) ]|vk|

2

n(xk) · vk
dσ(vk, vk−1)ds.

14



Similar to (3.29), after taking integration over
´

∏k−1
j=1 Vj

the contribution of (3.30) is

ˆ

∏k
j=1 Vj

1{tk+1>0}e
−λ〈vk〉tkα(xk+1, vk)∂f

m−k+1(tk+1, xk+1, vk)dΣ
k+1
k

+

ˆ

∏
k
j=1 Vj

ˆ tk

tk+1

Gm−k(s)dΣk+1
k ds.

(3.30)

From (3.30) (3.29), the summation in the first and second lines of (3.18) extends to k. And the index of the
fourth line of (3.18) changes from k to k+1. For the rest terms, the index l ≤ k− 1. We add the vk integration

as (3.25) so that the integration change to
∏k

l=1 Vj .
Therefore, the formula (3.18) is valid for k + 1 and we derive the lemma. �

The next lemma is the key to prove the L∞ bound for hm+1. Below we define several notation: let

rmax := max(r‖(2− r‖), r⊥), rmin := min(r‖(2− r‖), r⊥). (3.31)

Then we have

1 ≥ rmax ≥ rmin > 0. (3.32)

We inductively define:

Tl,l = 2TM , Tl,l−1 = rminTM + (1− rmin)Tl,l, · · · , Tl,1 = rminTM + (1− rmin)Tl,2. (3.33)

By a direct computation, for 1 ≤ i ≤ l, we have

Tl,i = 2TM + (TM − 2TM )[1− (1− rmin)
l−i]. (3.34)

Moreover, we denote

dΦk,l
p,m(s) :={

k−1∏

j=l+1

dσ(vj , vj−1)}

× {e
λ〈vl〉tl〈vl−1〉2e−[ 1

4TM
− 1

2Tw(xl)
]|vl|2

n(xl) · vl
dσ(vl, vl−1)}

× {
l−1∏

j=p

e
[ 1
2Tw(xj)

− 1
2Tw(xj+1)

]|vj |2 eλ〈vj〉tj 〈vj〉4
n(xj) · vj

dσ(vj , vj−1)}.

(3.35)

Note that if p = 1, dΦk,l
1,m = dΣk

l where dΣk
l is defined in (3.19). And we denote

dΥp′

p :=

p′

∏

j=p

e
[ 1
2Tw(xj)

− 1
2Tw(xj+1)

]|vj |2 eλ〈vj〉tj 〈vj〉4
n(xj) · vj

dσ(vj , vj−1). (3.36)

Then by the definition of (3.35) and (3.19), we have

dΦk,l
p,m = dΦk,l

p′,mdΥp′−1
p , (3.37)

dΣk
l = dΦk,l

p,mdΥp−1
1 . (3.38)

Remark 7. In Lemma 14 the integration has multiple fold and each fold contains the variable Tw(x), TM , r⊥, r‖.
We define these inductive notations to find a pattern to bound such integration.

Now we state the lemma.

Lemma 15. Given the formula for e−λ〈v〉tαfm+1(t) in (3.16) and (3.17) in lemma 14, there exists

t∗ = t∗(TM , Tm, k, r‖, r⊥, c), (3.39)

(t∗ need to satisfy more conditions specified in Lemma 16 and (3.149)) such that: when t ≤ t∗, we have
ˆ

∏k−1
j=p Vj

1{tl>0}dΦ
k,l
p,m ≤ t

−(l−p+1)c
∗ (CTM ,Tm)l−p+1Al,p. (3.40)

Here we define:

Al,p := exp

(
[ [Tl,p − Tw(xp)][1 − rmin]

2Tw(xp)[Tl,p(1− rmin) + rminTw(xp)]
+ Cl−p+1t

c
∗
]
|vp−1|2

)

. (3.41)
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CTM ,Tm is a constant defined in (3.57) and

Cn :=

n∑

i=1

Ci = C C
n − 1

C − 1
, (3.42)

where C is constant defined in (3.52). And c < 1 is a constant. We will specify c = 1
15 later in (3.137).

Moreover, for any p < p′ ≤ l, we have
ˆ

∏k−1
j=p Vj

1{tl>0}dΦ
k,l
p,m ≤ t

−(l−p′+1)q
∗ (CTM ,Tm)2(l−p′+1)

ˆ

∏p′−1
j=p Vj

1{tl>0}Al,p′dΥp′−1
p

≤ t
−(l−p+1)q
∗ (CTM ,Tm)2(l−p+1)Al,p.

(3.43)

Remark 8. To prove Lemma 15 we do not need the condition (3.149). Such condition will be used in the proof
of Proposition 5.

Proof. From (1.10) and (3.2), for the first bracket of the first line in (3.19) with l + 1 ≤ j ≤ k − 1, we have

ˆ

∏k−1
j=l+1 Vj

k−1∏

j=l+1

dσ(vj , vj−1) = 1.

Without loss of generality we can assume k = l + 1. Thus dΦk,l
p,m = dΦl+1,l

p,m . We use an induction of p with
1 ≤ p ≤ l to prove (3.40).

When p = l, by the second line of (3.35), the integration over Vl is bounded by
ˆ

Vl

e
−[ 1

4TM
− 1

2Tw(xl)
]|vl|2 e

λ〈vl〉tl〈vl〉4
n(xl) · vl

dσ(vl, vl−1). (3.44)

Clearly eλ〈vl〉tl ≤ eλ〈vl〉t∗ . We expand dσ(vl, vl−1) with (1.6) and (3.2), then we apply (2.15) in Lemma 5 to
bound (3.44) by

t−c
∗

ˆ

Vl,⊥

2

r⊥

1

〈vl,⊥〉2
2Tw(xl)e

−[ 1
4TM

− 1
2Tw(xl)

−tc∗]|vl,⊥|2
I0

(
(1− r⊥)1/2vl,⊥vl−1,⊥

Tw(xl)r⊥

)

e
− |vl,⊥|2+(1−r⊥)|vl−1,⊥|2

2Tw(xl)r⊥ dvl,⊥

×
ˆ

Vl,‖

1

πr‖(2 − r‖)(2Tw(xl))
e
−[ 1

4TM
− 1

2Tw(xl)
−tc∗]|vl,‖|2e

− 1
2Tw(xl)

|vl,‖−(1−r‖)vl−1,‖|2

r‖(2−r‖) dvl,‖,

(3.45)

where vl,‖, vl,⊥, Vl,⊥ and Vl,‖ are defined as

vl,⊥ = vl · n(xl), vl,‖ = vl − vl,⊥n(xl), Vl,⊥ = {vl,⊥ : vl ∈ Vl}, Vl,‖ = {vl,‖ : vl ∈ Vl}. (3.46)

vl−1,‖ and vl−1,⊥ are defined similarly.
First we compute the integration over Vl,‖, the second line of (3.45). To apply (2.8) in Lemma 2, we set

ε = tc∗, w = (1− r‖)vl−1,‖, v = vl,‖,

a = −[
1

4TM
− 1

2Tw(xl)
], b =

1

2Tw(xl)r‖(2 − r‖)
. (3.47)

We take t∗ = t∗(TM , c) ≪ 1 such that when t < t∗, we have

b− a− tc∗ =
1

2Tw(xl)r‖(2 − r‖)
− 1

2Tw(xl)
+

1

4TM
− tc∗ ≥ 1

4TM
− tc∗ ≥ 1

8TM
. (3.48)

Then we further require t ≤ t∗(TM , c) ≪ 1 such that 1 + 8TM tc∗ < 2, then we have

b

b− a− tc∗
=

b

b− a
[1 +

tc∗
b− a− tc∗

] ≤ 2TM

2TM + [Tw(xl)− 2TM ]r‖(2− r‖)
[1 + 8TM tc∗]

≤ 4TM

2TM + [Tm − 2TM ]rmax
:= CTM , (3.49)

where we used (3.31).
In regard to (2.8), we have

(a+ tc∗)b

b− a− tc∗
=

ab

b− a
[1 +

tc∗
b− a− tc∗

] +
b

b− a− tc∗
tc∗. (3.50)
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By (3.49) we obtain
b

b− a− tc∗
tc∗ ≤ 4TM

2TM + [Tm − 2TM ]rmax
tc∗.

By (3.47), we have
ab

b− a
=

2TM − Tw(xl)

2Tw(xl)[2TM + [Tw(xl)− 2TM ]r‖(2 − r‖)]
.

Therefore, by (3.48) and (3.50) we obtain

(a+ tc∗)b

b− a− tc∗
≤ 2TM − Tw(xl)

2Tw(xl)[2TM + [Tw(xl)− 2TM ]r‖(2− r‖)]
+ Ctc∗, (3.51)

where we defined

C :=
4TM

(
2TM − Tm

)

2Tm[2TM + [Tm − 2TM ]rmax]
+

4TM

2TM + [Tm − 2TM ]rmax
. (3.52)

By (3.49), (3.51) and Lemma 2, using w = (1− r‖)vl−1,‖ we bound the second line of (3.45) by

CTM exp

([ [2TM − Tw(xl)]

2Tw(xl)[2TM (1 − r‖)2 + r‖(2− r‖)Tw(xl)]
+ Ctc∗

]

|(1 − r‖)vl−1,‖|2
)

(3.53)

≤ CTM exp

([ [2TM − Tw(xl)][1− rmin]

2Tw(xl)
[
2TM (1− rmin) + rminTw(xl)

] + Ctc∗
]

|vl−1,‖|2
)

, (3.54)

where we used (3.31) and (3.32).
Next we compute the first line of (3.45). To apply (2.10) in Lemma 3, we set

ε = tc∗, w =
√
1− r‖vl−1,⊥, v = vl,⊥,

a = −[
1

4TM
− 1

2Tw(xl)
], b =

1

2Tw(xl)r⊥
.

(a+ε)b
b−a−ε can be computed using the same way as (3.51) with replacing r‖(2 − r‖) by r⊥. Here the difference is
the constant term becomes

2b
√
b− a− tc∗

= 2
√
b

√

b

b− a− tc∗
≤ 2

√
bCTM

≤ 2√
Tm

×
√

CTM . (3.55)

Hence replacing r‖(2− r‖) by r⊥ and replacing vl−1,‖ by vl−1,⊥ in (3.53), we bound the first line of (3.45) by

2√
Tm

√

CTM exp

([ [2TM − Tw(xl)]

2Tw(xl)[2TM (1 − r⊥) + r⊥Tw(xl)]
+ Ctc∗

]

|
√
1− r⊥vl−1,⊥|2

)

≤ 2√
Tm

CTM exp

([ [2TM − Tw(xl)][1− rmin]

2Tw(xl)
[
2TM (1− rmin) + rminTw(xl)

] + Ctc∗
]

|vl−1,⊥|2
)

, (3.56)

where we used (3.31) and (3.32).
Then we define the constant term in (3.41) as

CTM ,Tm =
2√
Tm

C
3/2
TM

. (3.57)

Collecting (3.54) (3.56), we derive

(3.45) ≤ t−c
∗ CTM ,Tm exp

([

[2TM − Tw(xl)][1 − rmin]

2Tw(xl)
[
2TM(1 − rmin) + rminTw(xl)

] + Ctc∗

]

|vl−1|2
)

= CTM ,TmAl,l,

where Al,l is defined in (3.41) and Tl,l = 2TM .
Therefore, (3.40) is valid for p = l by C1 = C.
Suppose (3.40) is valid for p = q + 1(induction hypothesis) with q + 1 ≤ l, then

ˆ

∏
l
j=q+1 Vj

1{tl>0}dΦ
l+1,l
q+1,m ≤ t

−(l−q)c
∗ Cl−q

TM ,Tm
Al,q+1.
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We want to show (3.40) holds for p = q. By the hypothesis and the third line of (3.35),
ˆ

∏
l
j=q Vj

1{tl>0}dΦ
l+1,l
q,m ≤ t

−(l−q+1)c
∗ Cl−q

TM ,Tm

ˆ

Vq

Al,q+1e
[ 1
2Tw(xq)

− 1
2Tw(xq+1)

+tc∗]|vq|2 1

n(xq) · vq
dσ(vq , vq−1), (3.58)

where we have applied Lemma 5.
Using the definition of Al,q+1 in (3.41), we obtain

(3.58) ≤ t
−(l−q+1)c
∗ Cl−q

TM ,Tm

ˆ

Vq

exp

(
(Tl,q+1 − Tw(xq+1))(1 − rmin)

2Tw(xq+1)[Tl,q+1(1− rmin) + rminTw(xq+1)]
|vq|2 + Cl−qt

c
∗|vq|2

)

e
[ 1
2Tw(xq)

− 1
2Tw(xq+1)

+tc∗]|vq|2dσ(vq, vq−1).

(3.59)

We focus on the coefficient of |vq|2 in (3.59), we derive

(Tl,q+1 − Tw(xq+1))(1 − rmin)

2Tw(xq+1)[Tl,q+1(1− rmin) + rminTw(xq+1)]
|vq|2 + [

1

2Tw(xq)
− 1

2Tw(xq+1)
]|vq|2

=
(Tl,q+1 − Tw(xq+1))(1 − rmin)− [Tl,q+1(1− rmin) + rminTw(xq+1)]

2Tw(xq+1)[Tl,q+1(1− rmin) + rminTw(xq+1)]
|vq|2 +

|vq|2
2Tw(xq)

=
−Tw(xq+1)(1 − rmin)− rminTw(xq+1)

2Tw(xq+1)[Tl,q+1(1 − rmin) + rminTw(xq+1)]
|vq|2 +

|vq|2
2Tw(xq)

=
−|vq|2

2[Tl,q+1(1 − rmin) + rminTw(xq+1)]
+

|vq|2
2Tw(xq)

.

By the Definition 2, xq+1 = xq+1(t, x, v, v1, · · · , vq), thus Tw(xq+1) depends on vq. In order to explicitly
compute the integration over Vq, we need to get rid of the dependence of the Tw(xq+1) on vq. Then we bound

exp

( −|vq|2
2[Tl,q+1(1− rmin) + rminTw(xq+1)]

)

≤ exp

( −|vq|2
2[Tl,q+1(1− rmin) + rminTM ]

)

= exp

(−|vq|2
2Tl,q

)

, (3.60)

where we used (3.33).
Hence by (3.2) (1.6) and (3.60), we derive

(3.59) ≤ t
−(l−q+1)c
∗ Cl−q

TM ,Tm

×
ˆ

Vq,⊥

1

r⊥Tw(xq)
e
−[ 1

2Tl,q
− 1

2Tw(xq)
−Cl−qt

c
∗−tc∗]|vq,⊥|2

I0

(
(1− r⊥)1/2vq,⊥vq−1,⊥

Tw(xq)r⊥

)

e
− |vq,⊥|2+(1−r⊥)|vq−1,⊥|2

2Tw(xq)r⊥ dvq,⊥

×
ˆ

Vq,‖

1

πr‖(2− r‖)(2Tw(xq))
e
−[ 1

2Tl,q
− 1

2Tw(xq)−Cl−qt
c
∗−tc∗]|vq,‖|2e

− 1
2Tw(xq)

|vq,‖−(1−r‖)vq−1,‖|2

r‖(2−r‖) dvq,‖.

(3.61)

In the third line of (3.61), to apply (2.8) in Lemma 2, we set

a = −[
1

2Tl,q
− 1

2Tw(xq)
], b =

1

2Tw(xq)r‖(2 − r‖)
, ε = Cl−qt

c
∗ + tc∗, w = (1− r‖)vq−1,‖.

Taking (3.47) for comparison, we can replace 2TM by Tl,q and replace tc∗ by Cl−qt
c
∗ + tc∗. Then we apply the

replacement to (3.48) and obtain

b− a− ε ≥ 1

2Tl,q
− Cl−qt

c
∗ − tc∗ ≥ 1

4TM
− Cktc∗ − tc∗ =

1

4TM
− C C

k − 1

C − 1
tc∗ − tc∗ >

1

5TM
,

where we applied (3.42) and we take t∗ = t∗(TM , C, k, c) to be small enough with t ≤ t∗. Also we require the
t < t∗(TM , C, k, c) satisfy

ε

b− a− ε
≤ 5TM(1 + Ck)tc ≤ 2.

By the definition of C in (3.52) we conclude the t∗ only depends on the parameter in (3.39). Thus by the same
computation as (3.49) we obtain

b

b− a− ε
≤ 2Tl,q

Tl,q + [min{Tw(x)} − Tl,q]r‖(2− r‖)
≤ CTM ,

where we used Tl,q ≤ 2TM from (3.33) and (3.31). CTM is defined in (3.49).
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By the same computation as (3.51), we obtain

(a+ ε)b

b− a− ε
=

ab

b− a
+

ab

b− a

ε

b − a− ε
+

b

b− a− ε
ε

≤ Tl,q − Tw(xq)

2Tw(xq)[Tl,q + [Tw(xq)− Tl,q]r‖(2 − r‖)]
+ Cl−q+1t

c
∗.

Here we used Tl,q ≤ 2TM and (3.31) to obtain

ab

b− a

ε

b − a− ε
+

bε

b− a− ε

≤ 4TM

(
Tl,q −min{Tw(x)}

)

2min{Tw(x)}[Tl,q + [min{Tw(x)} − Tl,q]r‖(2− r‖)]
[1 + Cl−q]t

c
∗

+
2Tl,q

2 + [min{Tw(x)} − Tl,q]r‖(2− r‖)
[1 + Cl−q]t

c
∗ ≤ [C + CCl−q]t

c
∗ = Cl−q+1t

c
∗

with C defined in (3.52) and Cl−q defined in (3.42).
Thus by Lemma 2 with w = (1 − r‖)vq−1,‖, the third line of (3.61) is bounded by

CTM exp

(
[ [Tl,q − Tw(xq)]

2Tw(xq)[Tl,q(1 − r‖)2 + r(2 − r‖)Tw(xq)]
+ Cl−q+1t

c
∗
]
|(1− r‖)vq−1,‖|2

)

≤ CTM exp

(
[ [Tl,q − Tw(xq)][1 − rmin]

2Tw(xq)[Tl,q(1− rmin) + rminTw(xq)]
+ Cl−q+1t

c
∗
]
|vq−1,‖|2

)

. (3.62)

By the same computation as (3.56) the second line of (3.61) is bounded by

2√
Tm

√

CTM exp

(
[ [Tl,q − Tw(xq)][1− rmin]

2Tw(xq)[Tl,q(1 − rmin) + rminTw(xq)]
+ Cl−q+1t

c
∗
]
|vq−1,⊥|2

)

. (3.63)

By (3.62) and (3.63) and the notation (3.57), we derive that

(3.61) ≤ t
−(l−q+1)c
∗ (CTM ,Tm)l−q+1 exp

(
[ [Tl,q − Tw(xq)][1− rmin]

2Tw(xq)[Tl,q(1− rmin) + rminTw(xq)]
+ Cl−q+1t

c
∗
]
|vq−1|2

)

= t
−(l−q+1)c
∗ Cl−q+1

TM ,TM
Al,q,

which is consistent with (3.40) with p = q. The induction is valid we derive (3.40).
Now we focus on (3.43). The first inequality in (3.43) follows directly from (3.40) and (3.37). For the second

inequality, by (3.36) and Lemma 5 we have

t
−(l−p′+1)c
∗ Cl−p′+1

TM ,Tm

ˆ

∏p′−1
j=p Vj

1{tl>0}Al,p′dΥp′−1
p

≤ t
−(l−p′+1)c
∗ Cl−p′+1

TM ,Tm

ˆ

∏p′−2
j=p Vj

ˆ

Vp′−1

1{tl>0}Al,p′

e
[ 1
2Tw(x

p′−1
)
− 1

2Tw(x
p′

)
+tc∗]|vp′−1|2

n(vp′−1) · vp′−1
dσ(vp′−1, vp′−2)dΥ

p′−2
p .

(3.64)

In the proof of (3.40) we have

(3.58) ≤ (3.59) ≤ (3.61) ≤ t
−(l−q+1)c
∗ Cl−q+1

TM ,Tm
Al,q.

Then by replacing q by p′ − 1 in the estimate (3.58) ≤ t
−(l−q+1)c
∗ Cl−q+1

TM ,Tm
Al,q we have

(3.64) ≤ t
−(l−p′+2)c
∗ Cl−p′+2

TM ,Tm

ˆ

∏p′−2
j=p Vj

1{tl>0}Al,p′−1dΥ
p′−2
p .

Keep doing this computation until integrating over Vp we obtain the second inequality in (3.43).
�

The next lemma conclude the smallness of the last term of (3.18).
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Lemma 16. Assume
Tm

TM
> max

(1− r‖
2− r‖

,

√
1− r⊥ − (1− r⊥)

r⊥

)

. (3.65)

For the last term of (3.18), we require t∗ in (3.39) further satisfies the condition (3.113) and (3.122)(these
conditions are consistent with the dependent variables in (3.39)). Then there exists

k0 = k0(Ω, CTM ,Tm , C, TM , r⊥, r‖) ≫ 1, (3.66)

such that for all t < t∗, we have
ˆ

∏k0−1
j=1 Vj

1{tk0>0}dΣ
k0

k0−1 ≤ (
1

2
)k0Ak0−1,1, (3.67)

where Ak0−1,1 is defined in (3.41).

Remark 9. The key difference between Lemma 16 and Lemma 15 is that we have the small term (12 )
k0 . With

this extra term Lemma 16 implies the measure of the last term of (3.18) is small provided k = k0 is large
enough. Such property is essential in our analysis since we then only need to consider a finite-fold integration
and bound the rest fold by small magnitude number.

The k0 is specified in (3.66). Combining with (3.39) with c = 1
15 specified in (3.137) we conclude

t∗ = t∗(Ω, TM , Tm, r‖, r⊥). (3.68)

We need several preparations to prove Lemma 16.

Lemma 17. For 1 ≤ i ≤ k − 1, if

|vi · n(xi)| < δ, (3.69)

then
ˆ

∏k−1
j=i Vj

1{vi∈Vi:|vi·n(xi)|<δ}1{tk>0}dΦ
k,k−1
i,m ≤ δt

−(k−i)c
∗ Ck−i

TM ,Tm
Ak−1,i. (3.70)

If

|vi,‖ − ηi,‖vi−1,‖| > δ−1, (3.71)

then
ˆ

∏k−1
j=i Vj

1{tk>0}1{|vi,‖−ηi,‖vi−1,‖|>δ−1}dΦ
k,k−1
i,m ≤ δt

−(k−i)c
∗ Ck−i

TM ,Tm
Ak−1,i. (3.72)

Here ηi,‖ is a constant defined in (3.80).
If

|vi,⊥ − ηi,⊥vi−1,⊥| > δ−1, (3.73)

then
ˆ

∏k−1
j=i Vj

1{tk>0}1{|vi,⊥−ηi,⊥vi−1,⊥|>δ−1}dΦ
k,k−1
i,m ≤ δt

−(k−i)c
∗ Ck−i

TM ,Tm
Ak−1,i. (3.74)

Here ηi,⊥ is a constant defined in (3.83).

Proof. First we focus on (3.70). By (3.61) in Lemma 15, we can replace l by k − 1 and replace q by i to obtain
ˆ

∏k−1
j=i Vj

1{tk>0}dΦ
k,k−1
i,m ≤ t

−(k−i)c
∗ Ck−i

TM ,Tm

×
ˆ

Vi,⊥

1

r⊥Tw(xi)
e
−[ 1

2Tk−1,i
− 1

2Tw(xi)
−Ck−it

c
∗−tc∗]|vi,⊥|2

I0

(
(1 − r⊥)1/2vi,⊥vi−1,⊥

Tw(xi)r⊥

)

e
− |vi,⊥|2+(1−r⊥)|vi−1,⊥|2

2Tw(x)r⊥ dvi,⊥

×
ˆ

Vi,‖

1

πr‖(2− r‖)(2Tw(xi))
e
−[ 1

2Tk−1,i
− 1

2Tw(xi)
−Ck−it

c
∗−tc∗]|vi,‖|2e

− 1
2Tw(xi)

|vi,‖−(1−r‖)vi−1,‖|2

r‖(2−r‖) dvi,‖.

(3.75)

Under the condition (3.69), we consider the second line of (3.75) with integrating over {vi,⊥ ∈ Vi,⊥ : |vi ·n(xi)| <
1−η

2(1+η)δ}. To apply (2.11) in Lemma 3, we set

a = −[
1

2Tk−1,i
− 1

2Tw(xi)
], b =

1

2Tw(xi)r⊥
, ε = Ck−it

c
∗ + tc∗, w =

√
1− r⊥vi−1,⊥.

20



Under the condition |vi · n(xi)| < 1−η
2(1+η) δ, applying (2.11) in Lemma 3 and using (3.63) with q = i, l = k − 1,

we bound the second line of (3.75) by

δ
2√
Tm

√

CTM exp

(
[ [Tk−1,i − Tw(xi)][1− rmin]

2Tw(xi)[Tk−1,i(1 − rmin) + rminTw(xi)]
+ Ck−i+1t

c
∗
]
|vi−1,⊥|2

)

. (3.76)

Taking (3.63) for comparison, we conclude the second line of (3.75) provides one more constant term δ. The
third line of (3.75) is bounded by (3.62) with q = i, l = k − 1. Therefore, we derive (3.70).

Then we focus on (3.72). We consider the third line of (3.75). To apply (2.9) in Lemma 2, we set

a = − 1

2Tk−1,i
+

1

2Tw(xi)
, b =

1

2Tw(xi)r‖(2− r‖)
, ε = Ck−it

c
∗ + tc∗, w = (1 − r‖)vi−1,‖. (3.77)

We define

Bi,‖ := b− a− ε. (3.78)

In regard to (2.9),

b

b − a− ε
w =

b

b− a
[1 +

ε

b− a− ε
]w.

By (3.77),

b

b− a
=

Tk−1,i

Tk−1,i(1− r‖)2 + Tw(xi)r‖(2− r‖)
,

ε

b− a− ε
=

Ck−it
c
∗ + tc∗

Bi,‖
.

Thus we obtain
b

b− a− ε
w = ηi,‖vi−1,‖, (3.79)

where we defined

ηi,‖ :=
Tk−1,i[1 + (Ck−i + 1)tc∗/Bi,‖]

Tk−1,i(1− r‖)2 + Tw(xi)r‖(2− r‖)
(1 − r‖). (3.80)

Thus under the condition (3.71), applying (2.9) in Lemma 2 with b
b−a−εw = ηi,‖vi−1,‖ and using (3.62) with

q = i, l = k − 1, we bound the third line of (3.75) by

δCTM exp

(
[ [Tk−1,i − Tw(xi)][1− rmin]

2Tw(xi)[Tk−1,i(1 − rmin) + rminTw(xi)]
+ Ck−i+1t

c
∗
]
|vi−1,‖|2

)

.

Thus we derive (3.72) due to the extra constant δ.
Last we focus on (3.74). We consider the second line of (3.75) with integrating over {vi,⊥ : vi,⊥ ∈ Vi,⊥, |vi,⊥| >

1+η
1−η δ

−1}. To apply (2.11) in Lemma 4, we set

a = − 1

2Tk−1,i
+

1

2Tw(xi)
, b =

1

2Tw(xi)r⊥
, ε = Ck−it

c
∗ + tc∗, w =

√
1− r⊥vi−1,⊥. (3.81)

Define

Bi,⊥ := b− a− ε. (3.82)

By the same computation as (3.79),

b

b− a− ε
w = ηi,⊥vi−1,⊥,

where we defined

ηi,⊥ :=
Tk−1,i[1 +

(Ck−i+1)tc∗
Bi,⊥

]

Tk−1,i(1− r⊥) + Tw(xi)r⊥

√
1− r⊥. (3.83)

Thus under the condition (3.73), applying (2.14) in Lemma 4 with b
b−a−εw = ηi,⊥vi−1,⊥ and using (3.63) with

q = i, l = k − 1, we bound the second line of (3.75) by

δ
2√
Tm

√

CTM exp

(
[ [Tk−1,i − Tw(xi)][1− rmin]

2Tw(xi)[Tk−1,i(1 − rmin) + rminTw(xi)]
+ Ck−i+1t

c
∗
]
|vi−1,⊥|2

)

.

Then we derive (3.72) due to the extra constant δ.
�
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Lemma 18. For ηi,‖ and ηi,⊥ defined in Lemma 17, we suppose there exists η < 1 such that

max{ηi,‖, ηi,⊥} < η < 1. (3.84)

Then if

|vi,‖| >
1 + η

1− η
δ−1 and |vi,‖ − ηi,‖vi−1,‖| < δ−1, (3.85)

we have

|vi−1,‖| > |vi,‖|+ δ−1. (3.86)

Also if

|vi,⊥| >
1 + η

1− η
δ−1 and |vi,⊥ − ηi,⊥vi−1,⊥| < δ−1, (3.87)

then we have

|vi−1,⊥| > |vi,⊥|+ δ−1. (3.88)

Remark 10. Lemma 17 includes the “good” cases since those extra small factor δ contributes to the decaying
constant in Lemma 16. Lemma 18 discusses those “bad” cases since such cases do not directly provide any small
factor. Thus those cases are the main difficulty in our estimate. In Lemma 20 we will specify the way to handle
them using the properties in this lemma.

Proof. Under the condition (3.85) we have

ηi,‖|vi−1,‖| > |vi,‖| − δ−1.

Thus we derive

|vi−1,‖| > |vi,‖|+
1− ηi,‖
ηi,‖

|vi,‖| −
1

ηi,‖
δ−1

> |vi,‖|+
1− ηi,‖
ηi,‖

1 + η

1− η
δ−1 − 1

ηi,‖
δ−1

> |vi,‖|+
1− ηi,‖
ηi,‖

1 + ηi,‖
1− ηi,‖

δ−1 − 1

ηi,‖
δ−1

> |vi,‖|+
1 + ηi,‖
ηi,‖

δ−1 − 1

ηi,‖
δ−1 > |vi,‖|+ δ−1,

where we used |vi,‖| > 1+η
1−η δ

−1 in the second line and 1 > η ≥ ηi,‖ in the third line. Then we obtain (3.86).

Under the condition (3.87), we apply the same computation above to obtain (3.88).
�

Lemma 19. Suppose there are n number of vj such that

|vj,‖ − ηj,‖vj−1,‖| ≥ δ−1, (3.89)

and also suppose the index j in these vj are i1 < i2 < · · · < in, then
ˆ

∏k−1
j=i1

Vj

1{tk>0}1{ (3.89) holds for j = i1, i2, · · · , in}dΦ
k,k−1
i1,m

≤ (δ)nt
−(k−i1)c
∗ Ck−i1

TM ,Tm
Ak−1,i1 . (3.90)

Proof. By (3.43) in Lemma 2 with l = k − 1, p = i1, p
′ = in and using (3.72) with i = in, we have

ˆ

∏k−1
j=i1

Vj

1{tk>0}1{ (3.89) holds for j = i1, · · · , in}dΦ
k,k−1
i1,m

≤ δt
−(k−in)c
∗ Ck−in

TM ,Tm

ˆ

∏in−1
j=i1

Vj

Ak−1,in1{tk>0}1{ (3.89) holds for j = i1, · · · , in−1}dΥ
in−1
i1

= δt
−(k−in)c
∗ Ck−in

TM ,Tm

ˆ

∏in−1−1

j=i1
Vj

ˆ

∏(in)−1
j=in−1

Vj

Ak−1,in1{tk>0}1{ (3.89) holds for j = i1, · · · , in−1}dΥ
(in)−1
in−1

dΥ
in−1−1
i1

.

(3.91)

Again by (3.43) and (3.72) with i = in−1 we have

(3.91) ≤ δ2t
−(k−in−1)c
∗ C

k−in−1

TM ,Tm

ˆ

∏in−1−1

j=i1
Vj

Ak−1,in−11{tk>0}1{ (3.89) holds for j = i1, · · · , in−2}dΥ
in−1−1
i1

.
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Keep doing this computation until integrating over Vi1 we derive (3.90).
�

Lemma 20. For 0 < δ ≪ 1, we define

Vδ
j := {vj ∈ Vj : |vj · n(xj)| > δ, |vj | ≤ δ−1}. (3.92)

For the sequence {v1, v2, · · · , vk−1}, consider a subsequence {vl+1, vl+2, · · · , vl+L} with l+ 1 < l+L ≤ k− 1 as
follows:

vl,
︸︷︷︸

∈V
1−η

2(1+η)
δ

l

vl+1, vl+2 · · · vl+L
︸ ︷︷ ︸

all∈Vl+j\V
1−η

2(1+η)
δ

l+j

, vl+L+1
︸ ︷︷ ︸

∈V
1−η

2(1+η)
δ

l+L+1

. (3.93)

In (3.93), if L ≥ 100 1+η
1−η , then we have

ˆ

∏k−1
j=l

Vj

1{tk>0}1
{vl+j∈Vl+j\V

1−η
2(1+η)

δ

l+j for 1≤j≤L}
dΦk,k−1

l,m ≤ (3δ)L/2t
−(k−l)c
∗ Ck−l

TM ,Tm
Ak−1,l. (3.94)

Here the η satisfies the condition (3.84).

Remark 11. In this lemma we combine the estimates in Lemma 17 and Lemma 18 and derive the desired
decaying term (3δ)L/2. In the proof we will address the difficulty stated in Lemma 18.

Proof. By the definition (3.92) we have

Vi\V
1−η

2(1+η)
δ

i = {vi ∈ Vi : |vi · n(xi)| <
1− η

2(1 + η)
δ or |vi| ≥

2(1 + η)

1− η
δ−1}.

Here we summarize the result of Lemma 17 and Lemma 18. With 1−η
1+η δ < δ, when vi ∈ Vi\V

1−η
2(1+η)

δ

i

(1) When |vi · n(xi)| < 1−η
2(1+η)δ, then we have (3.70).

(2) When |vi| > 2(1+η)
1−η δ−1,

(a) when |vi,‖| > 1+η
1−η δ

−1, if |vi,‖ − ηi,‖vi−1,‖| < δ−1, then |vi−1,‖| > |vi,‖|+ δ−1.

(b) when |vi,‖| > 1+η
1−η δ

−1, if |vi,‖ − ηi,‖vi−1,‖| ≥ δ−1, then we have (3.72).

(c) when |vi,⊥| > 1+η
1−η δ

−1, if |vi,⊥ − ηi,⊥vi−1,⊥| < δ−1, then |vi−1,⊥| > |vi,⊥|+ δ−1 .

(d) when |vi,⊥| > 1+η
1−η δ

−1, if |vi,⊥ − ηi,⊥vi−1,⊥| ≥ δ−1, then we have (3.74).

We define Wi,δ as the space that provides the smallness:

Wi,δ := {vi ∈ Vi : |vi,⊥| <
1− η

2(1 + η)
δ}
⋃

{vi ∈ Vi : |vi,⊥| >
1 + η

1− η
δ−1 and |vi,⊥ − ηi,⊥vi−1,⊥| > δ−1}

⋃

{vi ∈ Vi : |vi,‖| >
1 + η

1− η
δ−1 and |vi,‖ − ηi,‖vi−1,‖| > δ−1}.

Then we have

Vi\V
1−η

2(1+η)
δ

i ⊂ Wi,δ

⋃

{vi,⊥ ∈ Vi,⊥|vi,⊥| >
1 + η

1− η
δ−1 and |vi,⊥ − ηi,⊥vi−1,⊥| < δ−1}

⋃

{vi,‖ ∈ Vi,‖|vi,‖| >
1 + η

1− η
δ−1 and |vi,‖ − ηi,‖vi−1,‖| < δ−1}.

(3.95)

By (3.70), (3.72) and (3.74) with 1−η
1+η δ < δ, we obtain

ˆ

∏k−1
j=i Vj

1{vi∈Wi,δ}1{tk>0}dΦ
k,k−1
i,m ≤ 3δt

−(k−i)c
∗ Ck−i

TM ,Tm
Ak−1,i. (3.96)
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For the subsequence {vl+1, · · · , vl+L} in (3.93), when the number of vj ∈ Wj,δ is larger than L/2, by (3.90)
in Lemma 19 with n = L/2 and replacing the condition (3.89) by vj ∈ Wj,δ, we obtain

ˆ

∏k−1
j=l Vj

1{Number of vj∈Wj,δ is larger than L/2}1{tk>0}dΦ
k,k−1
l,m (3.97)

≤ (3δ)L/2t
−(k−li)c
∗ Ck−li

TM ,Tm
Ak−1,l. (3.98)

We finish the discussion with the case(1),(2b),(2d). Then we focus on the case (2a),(2c).
When the number of vj /∈ Wj,δ is larger than L/2, by (3.95) we further consider two cases. The first case is

that the number of vj ∈ {vj : |vj,‖| > 1+η
1−η δ

−1 and |vj,‖ − ηj,‖vj−1,‖| < δ−1} is larger than L/4. According to

the relation of vj,‖ and vj−1,‖, we categorize them into

Set1: {vj /∈ Wj,δ : |vj,‖| > 1+η
1−η δ

−1 and |vj,‖ − ηj,‖vj−1,‖| < δ−1}.
Denote M = |Set1| and the corresponding index in Set1 as j = p1, p2, · · · , pM . Then we have

L/4 ≤ M ≤ L. (3.99)

By (3.86) in Lemma 18, for those vpj , we have

|vpj ,‖| − |vpj−1,‖| < −δ−1. (3.100)

Set2: {vj ∈ Vj\V
1−η

2(1+η)δ

j : |vj,‖| ≥ |vj−1,‖|}.
Denote M = |Set2| and the corresponding index in Set2 as j = q1, q2, · · · , qM. By (3.99) we have

1 ≤ M ≤ L−M ≤ 3

4
L. (3.101)

Then for those vqj we define

aj := |vqj ,‖| − |vqj−1,‖| > 0. (3.102)

Set3: {vj ∈ Vj\V
1−η

2(1+η)δ

j : |vj,‖| ≤ |vj−1,‖| ≤ |vj,‖|+ δ−1}.
Denote N = |Set3| and the corresponding index in Set3 as j = o1, o2, · · · , oN . Then for those oj , we have

|voj ,‖| ≤ |voj−1,‖| ≤ |voj ,‖|+ δ−1. (3.103)

From (3.93), we have vl ∈ V
1−η

2(1+η)
δ

l and vl+L+1 ∈ V
1−η

2(1+η)
δ

l+L+1 , thus we can obtain

− 2(1 + η)

1− η
δ−1 < |vl+L+1,‖| − |vl,‖| =

L+1∑

j=1

|vl+j,‖| − |vl+j−1,‖|. (3.104)

By (3.100), (3.102) and (3.103), we derive that

−2(1 + η)

1− η
δ−1 <

M∑

j=1

(
|vpj ,‖| − |vpj−1,‖|

)
+

M∑

j=1

(
|vqj ,‖| − |vqj−1,‖|

)
+

N∑

j=1

(
|voj ,‖| − |voj−1,‖|

)

≤ −Mδ−1 +

M∑

j=1

aj .

Therefore, by L ≥ 100 1+η
1−η and (3.99), we obtain

2(1 + η)

1− η
δ−1 ≤ L

10
δ−1 ≤ M

2
δ−1

and thus
M∑

j=1

aj ≥ Mδ−1 − 2(1 + η)

1− η
δ−1 >

Mδ−1

2
. (3.105)

We focus on the integration over Vqi , such indexes satisfy (3.102). Let 1 ≤ i ≤ M, we consider the third line
of (3.75) with i = qi and with integrating over {vqi,‖ ∈ Vqi,‖ : |vqi,‖| − |vqi−1,‖| = ai}. To apply (2.9) in Lemma
2, we set

a = − 1

2Tk−1,qi

+
1

2Tw(xqi)
, b =

1

2Tw(xqi )r‖(2− r‖)
, ε = Ck−qi t

c
∗ + tc∗.
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By the same computation as (3.113), we have

a+ ε− b = − 1

2Tk−1,qi

+
1

2Tw(xqi )
− 1

2Tw(xqi )r‖(2− r‖)
+ Ck−qit

c
∗ + tc∗ < − 1

5TM
. (3.106)

Then we use ηqi,‖ < 1 to obtain

1{|vqi,‖|−|vqi−1,‖|=ai} ≤ 1{|vqi,‖|−ηqi,‖
|vqi−1,‖|>ai} ≤ 1{|vqi,‖−ηqi,‖

vqi−1,‖|>ai}. (3.107)

By (2.9) in Lemma 2 and (3.107), we apply (3.62) with q = qi to bound the third line of (3.75)( the integration
over Vqi,‖ ) by

e
− a2

i
4TM CTM exp

(
[ [Tk−1,qi − Tw(xqi)][1 − rmin]

2Tw(xqi )[Tk−1,qi(1− rmin) + rminTw(xqi )]
+ Ck−qi+1t

c
∗
]
|vqi−1,‖|2

)

. (3.108)

Hence by the constant in (3.108) we draw a similar conclusion as (3.96):
ˆ

∏k−1
j=qi

Vj

1{tk>0}1{|vqi,‖|−|vqi−1,‖|=ai}dΦ
k,k−1
qi,m ≤ e

− a2
i

4TM t
−(k−qi+1)c
∗ Ck−qi+1

TM ,Tm
Ak−1,qi . (3.109)

Therefore, by Lemma 19, after integrating over Vq1,‖,Vq2,‖, · · · ,VqM,‖ we obtain an extra constant

e−[a2
i+a2

2+···+a2
M]/4TM ≤ e−[ai+a2+···+aM]2/(4TMM) ≤ e−[Mδ−1/2]2/(4TMM)

≤ e−[L8 δ−1]2/(4TM
3
4L) ≤ e

− 1
96TM

L(δ−1)2 ≤ e−Lδ−1

.

Here we used (3.105) in the last step of first line and use (3.99), (3.101) in the first step of second line and take

δ ≪ 1 in the last step of second line. Then e−Lδ−1

is smaller than (3δ)L/2 in (3.98) and we conclude
ˆ

∏k−1
j=l Vj

1{M=|Set1|≥L/4}1{tk>0}dΦ
k,k−1
l,m ≤ (3δ)L/2t

−(k−li)c
∗ Ck−li

TM ,Tm
Ak−1,l. (3.110)

The second case is that the number of vj ∈ {vj /∈ Wj,δ : |vj,⊥| > 1+η
1−η δ

−1} is larger than L/4. We categorize

vj,⊥ into

Set4: {vj /∈ Wj,δ : |vj,⊥| > 1+η
1−η δ

−1 and |vj,⊥ − ηj,⊥vj−1,⊥| < δ−1}.

Set5: {vj ∈ Vj\V
1−η

2(1+η)δ

j : |vj,⊥| > |vj−1,⊥|}.

Set6: {vj ∈ Vj\V
1−η

2(1+η)δ

j : |vj,⊥| ≤ |vj−1,⊥| ≤ |vj,⊥|+ δ−1}.
Denote |Set4| = M1 and the corresponding index as p′1, p

′
2, · · · , p′M1

, |Set5| = M1 and the corresponding index as
q′1, q

′
2, · · · , q′M1

, |Set6| = N1 and the corresponding index as o′1, o
′
2, · · · , o′N1

. Also define bj := |vq′j ,⊥|− |vq′j−1,⊥|.
By the same computation as (3.105), we have

M1∑

j=1

bj ≥ M1δ
−1 − 2(1 + η)

1− η
δ−1 >

M1δ
−1

2
.

We focus on the integration over vq′j . Let 1 ≤ i ≤ M1, we consider the second line of (3.75) with i = q′i and

with integrating over {vq′i,⊥ ∈ Vq′i,⊥ : |vq′i,⊥| − |vq′i−1,⊥| = bi}. To apply (2.13) in Lemma 2, we set

a = − 1

2Tk−1,q′i

+
1

2Tw(xq′i
)
, b =

1

2Tw(xq′i
)r⊥

, ε = Ck−q′itc∗ + tc∗.

By the same computation as (3.113), we have

a+ ε− b = − 1

2Tk−1,q′i

+
1

2Tw(xq′i
)
− 1

2Tw(xq′i
)r⊥

+ Ck−q′i
tc∗ + tc∗ < − 1

5TM
. (3.111)

Similar to (3.107), we have

1{|vq′
i
,⊥|−|vq′

i
−1,⊥|=bi} ≤ 1{|vq′

i
,⊥−ηq′

i
,⊥vq′

i
−1,⊥|>bi}.

Hence by (2.13) in Lemma 4 and applying (3.63), we bound the integration over Vq′i,⊥ by

e
− b2i

16TM
2√
Tm

√

CTM exp

(

[ [Tk−1,q′i
− Tw(xq′i

)][1 − rmin]

2Tw(xq′i
)[Tk−1,q′i

(1− rmin) + rminTw(xq′i
)]
+ Ck−q′i+1t

c
∗
]
|vq′i−1,⊥|2

)

.
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Therefore,
ˆ

∏k−1

j=q′
i
Vj

1{tk>0}1{|vq′
i
,⊥|−|vq′

i
−1,⊥|=bi}dΦ

k,k−1
q′i,m

≤ e
− b2i

16TM t
−(k−q′i)c∗ C

k−q′i
TM ,Tm

Ak−1,q′i
.

The integration over Vq′1,⊥,Vq′2,⊥, · · · ,Vq′M1
,⊥ provides an extra constant

e−[b21+b22+···+b2M1
]/16TM ≤ e

− 1
400TM

L(δ−1)2 ≤ e−Lδ−1

,

where we set δ ≪ 1 in the last step. Then e−Lδ−1

is smaller than (3δ)L/2 in (3.98) and we conclude
ˆ

∏k−1
j=l Vj

1{M1=|Set4|≥L/4}1{tk>0}dΦ
k,k−1
l,m ≤ (3δ)L/2t

−(k−l)c
∗ Ck−l

TM ,Tm
Ak−1,l. (3.112)

Finally collecting (3.98), (3.110) and (3.112) we derive the lemma.
�

Now we are ready to prove the Lemma 16.

Proof of Lemma 16. Step 1

To prove (3.67) holds for the C-L boundary condition, we mainly use the decomposition (3.92) done by [5]

and [23] for the diffuse boundary condition. In order to apply Lemma 20, here we consider the space V
1−η

2(1+η)
δ

i

and ensure η satisfy the condition (3.84). In this step we mainly focus on constructing the η, which will be
defined in (3.124).

First we consider ηi,‖, which is defined in (3.80). In regard to (3.77) and (3.78), we require t∗ = t∗(k, TM , c, C)(
consistent with (3.39) ) to be small enough such that

Bi,‖ ≥ 1

2Tk−1,i
− Ck−it

c
∗ − tc∗ ≥ 1

4TM
− Cktc∗ − tc∗ ≥ 1

5TM
. (3.113)

By (3.34), Tk−1,i → TM as k − i → ∞. For any ε1 > 0, there exists k1 s.t when

k ≥ k1, i ≤ k/2, we have Tk−1,i ≤ (1 + ε1)TM . (3.114)

Moreover, by (3.65), there exists ε2 s.t
Tm

TM
>

1− r‖
2− r‖

(1 + ε2) (3.115)

and thus

ε2 = ε2(Tm, TM , r‖, r⊥). (3.116)

Thus we can bound Tw(xi) in the ηi,‖( defined in (3.80)) below as

Tw(xi) = Tk−1,i
Tw(xi)

Tk−1,i
≥ Tk−1,i

Tw(xi)

TM

1

1 + ε1
>

1− r‖
2− r‖

Tk−1,i
1 + ε2
1 + ε1

. (3.117)

Thus we obtain

ηi,‖ <
1 +

(Ck−i+1)tc∗
Bi,‖

(1− r‖)2 +
1−r‖
2−r‖

1+ε2
1+ε1

r‖(2− r‖)
(1− r‖) =

1 +
(Ck−i+1)tc∗

Bi,‖

1− r‖ + r‖
1+ε2
1+ε1

. (3.118)

By (3.114), we take

k = k1 = k1(ε2, TM , rmin) (3.119)

to be large enough such that ε1 < ε2/4. By (3.113) and (3.118), we derive that when k = k1,

sup
i≤k/2

ηi,‖ ≤ 1 + 5TM (Ck + 1)tc∗
1− r‖ + r‖

1+ε2
1+ε2/4

< η‖ < 1. (3.120)

Here we define

η‖ :=
1

1− r‖ + r‖
1+ε2

1+ε2/2

< 1 (3.121)

and we require t∗ = t′(k, TM , ε2, C, r‖) to be small enough and such that

5TMCktc∗ ≪ 1 (3.122)

to ensure the second inequality in (3.120). Combining (3.116) and (3.119), we conclude the condition for
t∗ (3.122) is consistent with (3.39).
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Then we consider ηi,⊥, which is defined in (3.83). In regard to (3.81) and (3.82), by (3.113) we have

Bi,⊥ ≥ 1
5TM

. By Tm

TM
>

√
1−r⊥−(1−r⊥)

r⊥
in (3.65) we can use the same computation as (3.117) to obtain

Tw(xi) >

√
1− r⊥ − (1− r⊥)

r⊥
Tk−1,i

1 + ε2
1 + ε1

,

with ε1 < ε2/4. Thus we obtain

ηi,⊥ < η⊥ < 1,

where we defined

η⊥ :=
1√

1− r⊥ + (1−√
1− r⊥)

1+ε2
1+ε2/2

< 1 (3.123)

with small enough t∗ = t∗(k, TM , ε2, C, r‖)( consistent with (3.39) ).
Finally we define

η := max{η⊥, η‖} < 1. (3.124)

Step 2

Claim: We have

|tj − tj+1| &Ω

( 1− η

2(1 + η)
δ
)3

, for vj ∈ V
1−η

2(1+η)
δ

j , 0 ≤ tj . (3.125)

Proof. For tj ≤ 1,

|
ˆ tj+1

tj

vjds|2 = |xj+1 − xj |2 & |(xj+1 − xj) · n(xj)|

= |
ˆ tj+1

tj

vj · n(xj)ds| = |vj · n(xj)||tj − tj+1|.

Here we used the fact that if x, y ∈ ∂Ω and ∂Ω is C2 and Ω is bounded then |x− y|2 &Ω |(x− y) · n(x)|( see the
proof in [15] ). Thus

|vj · n(xj)| .
1

|tj − tj+1|
|
ˆ tj+1

tj

vjds|2 . |tj − tj+1||vj |2. (3.126)

Since vj ∈ V
1−η

2(1+η) δ

j , tj ≤ 0, let 0 ≤ t ≤ t′, we have

|vj · n(xj)| . |tj − tj+1|
( 1− η

2(1 + η)
δ
)−2

. (3.127)

Then we prove (3.125). �

In consequence, when tk > 0 and t < t∗, by (3.125), there can be at most t∗{[CΩ(
2(1+η)
(1−η)δ )

3] + 1} numbers of

vj ∈ V
1−η

2(1+η)
δ

j . Equivalently there are at least k − 2− t∗
(

[CΩ(
2(1+η)
(1−η)δ )

3] + 1
)

numbers of vj ∈ Vj\V
1−η

2(1+η)
δ

j .

Step 3

In this step we combine Step 1 and Step 2 and focus on the integration over
∏k−1

j=1 Vj .

By (3.125) in Step 2, we define

N := t∗
[

CΩ

(2(1 + η)

δ(1− η)

)3
]

+ t∗. (3.128)

For the sequence {v1, v2, · · · , vk−1}, suppose there are p number of vj ∈ V
1−η

2(1+η)
δ

j with p ≤ N , we conclude there

are at most

(
k − 1
p

)

number of these sequences. Below we only consider a single sequence of them.

In order to get (3.121),(3.123)< 1, we need to ensure the condition (3.114). Thus we take k = k1(TM , r⊥, r‖)

and only use the decomposition Vj =
(

Vj\V
1−η

2(1+η)
δ

j

)

∪ V
1−η

2(1+η)
δ

j for
∏k/2

j=1 Vj . Then we only consider the half

sequence {v1, v2, · · · , vk/2}. We derive that when tk > 0, there are at most N number of vj ∈ V
1−η

2(1+η) δ

j and at

least k/2− 1−N number of vj ∈ Vj\V
1−η

2(1+η) δ

j in
∏k/2

j=1 Vj .

In this single half sequence {v1, · · · , vk/2}, in order to apply Lemma 20, we only want to consider the

subsequence (3.93) with l + 1 < l + L ≤ k/2 and L ≥ 100 1+η
1−η . Thus we need to ignore those subsequence with
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L < 100 1+η
1−η . By (3.93), we conclude that at the end of this subsequence, it is adjacent to a vl ∈ V

1−η
2(1+η)

δ

l .

By (3.128), we conclude

There are at most N number of subsequences (3.93) with L ≤ 100
1 + η

1− η
. (3.129)

We ignore these subsequences. Then we define the parameters for the remaining subsequence( with L ≥ 100 1+η
1−η

) as:

M1 := the number of vj ∈ Vj\V
1−η

2(1+η)
δ

j in the first subsequence starting from v1,

n := the number of these subsequences.

Similarly we can define M2,M3, · · · ,Mn as the number in the second, third, · · · , n-th subsequence. Recall that

we only consider
∏k/2

j=1 Vj , thus we have

100
1 + η

1− η
≤ Mi ≤ k/2, for 1 ≤ i ≤ n. (3.130)

By (3.129), we obtain

k/2 ≥ M1 + · · ·Mn ≥ k/2− 1− 100
1 + η

1− η
N >

k

2
− 101

1 + η

1− η
N. (3.131)

Take Mi with 1 ≤ i ≤ n as an example. Suppose this subsequence starts from vli+1 to vli+Mi , by (3.94) in
Lemma 20 with replacing l by li and L by Mi, we obtain

ˆ

∏k−1
j=li

Vj

1{tk>0}1
{vli+j∈Vli+j\V

1−η
2(1+η)

δ

li+j for 1≤j≤Mi}
dΦk,k−1

li,m
≤ (3δ)Mi/2t

−(k−li)c
∗ Ck−li

TM ,Tm
Ak−l,1i . (3.132)

Since (3.132) holds for all 1 ≤ i ≤ n, by Lemma 19 we can draw the conclusion for the Step 3 as follows. For

a single sequence {v1, v2, · · · , vk−1}, when there are p number vj ∈ V
1−η

2(1+η)
δ

j , we have
ˆ

∏k−1
j=1 Vj

1
{p number vj ∈ V

1−η
2(1+η)

δ

j for a single sequence}
1{tk>0}dΣ

k
k−1

≤ (3δ)(M1+···+Mn)/2t−kc
∗ Ck

TM ,Tm
Ak−1,1. (3.133)

Step 4

Now we are ready to prove the lemma. By (3.128), we have
ˆ

∏k−1
j=1 Vj

1{tk>0}dΣ
k
k−1

≤
N∑

p=1

ˆ

{Exactly p number of vj ∈ V
1−η

2(1+η)
δ

j }
1{tk>0}dΣ

k
k−1. (3.134)

Since (3.133) holds for a single sequence, we derive

(3.134) ≤ t−kc
∗ Ck

TM ,Tm

N∑

p=1

(
k − 1
p

)

(3δ)(M1+M2+···Mn)/2Ak−1,1

≤ t−kc
∗ Ck

TM ,Tm
N(k − 1)N(3δ)k/4−101 1+η

1−ηNAk−1,1, (3.135)

where we used (3.131) in the second line.
Now we let

δ = t
1/3
∗ δ′ with δ′ ≪ 1

such that

N =
t∗
t∗

[

CΩ

( 2(1 + η)

δ′(1− η)

)3
+ 1
]

.

Using (3.128) we derive

3δ′ = C(Ω, η)N−1/3.

Take k = N3, the coefficient in (3.135) is bounded by

t−N3c
∗ CN3

TM ,Tm
N3N+1(3δ)N

3/4−101 1+η
1−ηN ≤ t−N3c

∗ CN3

TM ,Tm
t
N3/15
∗ N4N(3δ′)N

3/5, (3.136)
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where we choosed N = N(η) large such that N3/4− 101 1+η
1−ηN ≥ N3/5.

Finally we choose

c :=
1

15
. (3.137)

We bound (3.136) by

t
−N3(c− 1

15 )∗ CN3

TM ,Tm
N4N(C(Ω, η)N−1/3)N

3/5 ≤ eN
3 log(CTM,Tm )e4N logNe(N

3/5) log(C(Ω,η)N−1/3)

= e4N logNe(N
3/5)(log(C(Ω,η))− 1

3 logN)eN
3 log(CTM,Tm ) = e4N logN−N3

15 (logN−3 logCΩ,η−15 logCTM,Tm )

≤ e4N logN−N3

30 logN ≤ e−
N3

15 logN = e−
k

150 log k ≤ (
1

2
)k,

where we choosed δ′ to be small enough in the second line such that N = N(Ω, η, CTM ,Tm) is large enough to
satisfy

logN − 3 logC(Ω, η)− 15 logCTM ,Tm ≥ logN

2
,

4N logN − N3

30
logN ≤ −N3

50
logN.

And thus we choose k = N3 = k2 = k2(Ω, η, CTM ,Tm) and we also require log k > 150 in the last step. Then we
get (3.67).

Therefore, by the condition (3.114), we choose k = k0 = max{k1, k2}. By the definition of η (3.124)
with (3.121) and (3.123), we obtain η = η(TM , C, r⊥, r‖, ε2). Thus by (3.116) and (3.119), we conclude the k0
we choose here does not depend on t and only depends on the parameter in (3.66). We conclude the lemma.

�

Proof of Proposition 5. First we take

t∞ ≤ t∗, (3.138)

with t∗ defined in (3.68). Then we let k = k0 with k0 defined in (3.66) so that we can apply Lemma 16 and
Lemma 15. Define the constant in (3.11) as

C∞ = 8t
−k0/15
∗ (CTM ,Tm)k0 . (3.139)

We mainly use the formula given in Lemma 14. By (3.7) we have

|Gm(s)| ≤ ‖wθf
m‖2∞+‖e−λ〈v〉sα∂fm‖∞[sup

m
‖wθf

m‖∞+1]+‖wθf
m‖∞e−λ〈v〉sα(x, v)

ˆ

R3

k̺(v, u)|∂fm(X1(s), u)|du,
(3.140)

where we used (2.27).
We consider two cases.

Case1: t1 ≤ 0,

By (3.16) and (3.140), for some polynomial P we have

|e−λ〈v〉tα(x, v)∂fm+1(t, x, v)|
≤ |α∂f0(X1(0), v)|+ t‖e−λ〈v〉tα∂fm+1‖∞ + tP (sup

m
‖wθf

m‖∞) (3.141)

+ P (sup
m

‖wθf
m‖∞)α(x, v)

ˆ t

0

ˆ

R3

e−|v|(t−s)k̺(v, u)e
−λ[〈v〉−〈u〉]s ‖e−λ〈v〉sα∂fm(s)‖∞

α(x− (t− s)v, u)
duds. (3.142)

Since s ≤ t ≪ 1, e−λ[〈v〉−〈u〉]s . 1 + e̺|v−u|2/2. And thus

k̺e
−λ[〈v〉−〈u〉]s . k̺ + k̺/2.

Then applying Lemma 9 we have

(3.142) ≤ tP (sup
m

‖wθf
m‖∞) sup

s≤t
‖e−λ〈v〉sα∂fm(s)‖∞.

Collecting (3.141) and (3.142) we obtain

‖e−λ〈v〉tα∂fm+1(t)1{t1≤0}‖∞ ≤ t sup
0≤s≤t

‖e−λ〈v〉sα∂fm+1(s)‖∞

+ tP (sup
m

‖wθf
m‖∞) + tP (sup

m
‖wθf

m‖∞) sup
0≤s≤t

‖e−λ〈v〉sα∂fm(s)‖∞.
(3.143)
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Since (3.143) holds for all t < t∞, we derive

sup
s

‖e−λ〈v〉sα∂fm+1(s)1{t1≤0}‖∞ ≤ R.H.S of (3.143).

And thus with t ≪ 1,

sup
s≤t

‖e−λ〈v〉sα∂fm+1(s)1{t1≤0}‖∞ ≤ 2tP (sup
m

‖wθf
m‖∞) + t[1 + P (sup

m
‖wθf

m‖∞)] sup
s≤t

‖e−λ〈v〉sα∂fm(s)‖∞.

(3.144)

Case2: t1 ≥ 0,

We consider (3.17) in Lemma 14. For the first line, by (3.140) and the same computation as (3.142) we obtain

ˆ t

t1

e−(t−s)|v|Gm(s)ds ≤ t sup
0≤s≤t

‖e−λ〈v〉sα∂fm+1(s)‖∞+tP (sup
m

‖wθf
m‖∞)+t sup

s
‖e−λ〈v〉sα∂fm(s)‖∞. (3.145)

For the second line of (3.17), we bound it by

exp

(
[ 1

4TM
− 1

2Tw(x1)

]
|v|2
)
ˆ

∏k0−1

j=1 Vj

H. (3.146)

Now we focus on
´

∏k0−1

j=1 Vj
H . We compute H term by term using (3.18).

First we compute the first line of (3.18). By Lemma 15 with p = 1, for every 1 ≤ l ≤ k0 − 1, we have

ˆ

∏k0−1

j=1 Vj

1{tl+1≤0<tl}|α∂f0
(
Xm−l(0), V m−l(0)

)
|dΣk0

l ≤ ‖α∂f0‖∞
ˆ

∏k0−1

j=1 Vj

1{tl+1≤0<tl}dΣ
k0

l

≤ t
−l/15
∗ Cl

TM ,Tm
‖α∂f0‖∞ exp

(
(Tl,1 − Tw(x1))(1 − rmin)

2Tw(x1)[Tl,1(1− rmin) + rminTw(x1)]
|v|2 + Clt1/15∗ |v|2

)

. (3.147)

In regard to (3.146) we have

exp

(
[ 1

4TM − 2Tw(x1)

]
|v|2
)

× (3.147)

= t
−l/15
∗ Cl

TM ,Tm
‖α∂f0‖∞ exp

([ −1

2
(
Tw(x1)rmin + Tl,1(1− rmin)

) +
1

4TM

]

|v|2 + Clt1/15∗ |v|2
)

.

Using the definition (3.33) we have Tw(x1) < 2TM and Tl,1 < 2TM . Then we require

t∗ = t∗(TM , k0, C) (3.148)

to be small enough such that the coefficient for |v|2 is

−1

2
(
Tw(x1)rmin + Tl,1(1 − rmin)

) +
1

4TM
+ Clt1/15∗

≤ −1

2
(
TMrmin + Tl,1(1 − rmin)

) +
1

4TM
+ Ck0t

1/15
∗ ≤ 0. (3.149)

Note that the condition (3.148) is consistent with (3.68).
Since (3.147) holds for all 1 ≤ l ≤ k0 − 1, by (3.149) the contribution of the first line of (3.18) in (3.146) is

bounded by

t
−k0/15
∗ Ck0

TM ,Tm
‖α∂f0‖∞. (3.150)
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Then we compute the second line of (3.18):
ˆ tl

max{0,tl+1}

ˆ

∏k0−1

j=1 Vj

e−(tl−s)|vl||Gm−l(s)|dΣk0

l ds

≤ tP (sup
m

‖wθf
m‖∞) sup

i≤m
‖e−λ〈v〉tα∂f i‖∞

ˆ

∏k0−1
j=1 Vj

dΣk0

l

≤ tt
−k0/15
∗ Ck0

TM ,Tm
P (sup

m
‖wθf

m‖∞) sup
i≤m

‖e−λ〈v〉tα∂f i‖∞

× exp

(
(Tl,1 − Tw(x1))(1 − rmin)

2Tw(x1)[Tl,1(1− rmin) + rminTw(x1)]
|v|2 + Clt1/15∗ |v|2

)

≤
supi≤m ‖e−λ〈v〉tα∂f i‖∞

5k0
exp

(
(Tl,1 − Tw(x1))(1 − rmin)

2Tw(x1)[Tl,1(1 − rmin) + rminTw(x1)]
|v|2 + Clt1/15∗ |v|2

)

. (3.151)

In the second line we applied the same computation as (3.142) to the s-integration. In the third line we
applied (3.40) In the last line we applied Lemma 15 and take t∞ = t∞(t∗, k0, CTM ,Tm , P (supm ‖wθf

m‖∞)) to
be small enough such that for t < t∞,

tt
−k0/15
∗ Ck0

TM ,Tm
P (sup

m
‖wθf

m‖∞) ≤ 1

5k0
. (3.152)

In regard to (3.146), by (3.149) we obtain

exp

(
[ 1

4TM
− 1

2Tw(x1)

]
|v|2
)

× (3.151) ≤ 1

5k0
sup
i≤m

‖e−λ〈v〉tα∂f i‖∞.

Since (3.151) holds for all 1 ≤ l ≤ k0 − 1, the contribution of the second line of (3.18) in (3.146) is bounded
by

k0 − 1

5k0
sup
i≤m

‖e−λ〈v〉tα∂f i‖∞ ≤ 1

5
sup
i≤m

‖e−λ〈v〉tα∂f i‖∞. (3.153)

Then we compute the third line of (3.18). Directly applying Lemma 15 we obtain
ˆ

∏k0−1

j=1 Vj

1{tl+1<0}P (sup
m

‖wθf
m‖∞)dΣk0

l

≤ t
−l/15
∗ Cl

TM ,Tm
P (sup

m
‖wθf

m‖∞) exp

(
(Tl,1 − Tw(x1))(1 − rmin)

2Tw(x1)[Tl,1(1− rmin) + rminTw(x1)]
|v|2 + Clt1/15∗ |v|2

)

. (3.154)

In regard to (3.146), by (3.149) we obtain

exp

(
[ 1

4TM
− 1

2Tw(x1)

]
|v|2
)

× (3.154) ≤ t
−l/15
∗ Cl

TM ,Tm
P (sup

m
‖wθf

m‖∞). (3.155)

Last we compute the fourth term of (3.18). By Lemma 16 and the assumption (3.11) we obtain
ˆ

∏k0−1
j=1 Vj

1{0<tk0}‖e
−λ〈v〉tk0α∂fm−k0(tk0)‖∞dΣk0

k0−1

≤ ‖e−λ〈v〉tα∂f‖∞
ˆ

∏k0−1
j=1 Vj

1{0<tk0}dΣ
k0

k0−1

≤ (
1

2
)k0 sup

i≤m
‖e−λ〈v〉tα∂f i‖∞ exp

(
(Tl,1 − Tw(x1))(1 − rmin)

2Tw(x1)[Tl,1(1− rmin) + rminTw(x1)]
|v|2 + Clt1/15∗ |v|2

)

. (3.156)

In regard to (3.146), by (3.149) we have

exp

(
[ 1

4TM
− 1

2Tw(x1)

]
|v|2
)

× (3.156) ≤ (
1

2
)k0‖e−λ〈v〉tα∂f‖∞.

Thus the contribution of the third line of (3.18) in (3.146) is bounded by

(
1

2
)k0 sup

i≤m
‖e−λ〈v〉tα∂f i‖∞. (3.157)
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Collecting (3.150) (3.153) (3.155) and (3.157) we conclude that the second line of (3.17) is bounded by

(3.146) ≤ [(
1

2
)k0 +

1

5
] sup
i≤m

‖e−λ〈v〉tα∂f i‖∞ + t
−k0/15
∗ Ck0

TM ,Tm

[
‖α∂f0‖∞ + P (sup

m
‖wθf

m‖∞)
]
. (3.158)

Adding (3.158) to (3.145) we use (3.17) and t ≪ 1 to derive

‖e−λ〈v〉tα∂fm+1(t, x, v)1{t1≥0}‖∞
≤ t sup

0≤s≤t
‖e−λ〈v〉sα∂fm+1(s)‖∞

+ [
1

4
C∞ + 2t

−k0/15
∗ Ck0

TM ,Tm
]
[
‖α∂f0‖∞ + P (sup

m
‖wθf

m‖∞)
]

≤ t sup
0≤s≤t

‖e−λ〈v〉sα∂fm+1(s)‖∞ + 4t
−k0/15
∗ Ck0

TM ,Tm

[
‖α∂f0‖∞ + P (sup

m
‖wθf

m‖∞)
]
,

(3.159)

where we have used the definition of C∞ (3.139) in the last line.
Since (3.159) holds for all t < t∞, we derive that

sup
s≤t

‖e−λ〈v〉sα∂fm+1(s, x, v)1{t1≥0}‖∞ ≤ Last line of (3.159).

Therefore, with t ≪ 1 we conclude

sup
s≤t

‖e−λ〈v〉sα∂fm+1(s, x, v)1{t1≥0}‖∞ ≤ 8t
−k0/15
∗ Ck0

TM ,Tm

[
‖α∂f0‖∞ + P (sup

m
‖wθf

m‖∞)
]
. (3.160)

Combining (3.144) and (3.160) we derive (3.12).
Last we focus the parameters for t∞ in (3.13). In the proof the constraint for t∞ comes from (3.152). Thus

from the definition of k0 in (3.66), definition of CTM ,Tm in (3.49) and definition of t∗ in (3.68)

t∞ = t∞(t∗, k0, CTM ,Tm , P (sup
m

‖wθf
m‖∞)) = t∞(TM , Tm,Ω, r⊥, r‖, sup

m
‖wθf

m‖∞).

Thus we derive (3.13).
�

Proof of Theorem 1. The uniform-in-m bound (3.15) follows from Proposition 5. Then we follow the same
argument to e−λ〈v〉tα[∂fm+1 − ∂fm] and conclude that e−λ〈v〉tα∂fm is a Cauchy sequence in L∞. Then we
pass the limit and conclude Theorem 1.

�

4. Weighted C1-estimate of the stationary Boltzmann equation

In this section we prove the weighted C1-estimate of the stationary Boltzmann equation (1.28). In particular,
we will prove Theorem 2.

First we give the boundary condition for fs in the following lemma.

Lemma 21. (Lemma 9 in [9])
The boundary condition for fs defined in (1.29) is given by

fs(x, v)|γ− = rs + e[
1

4T0
− 1

2Tw(x) ]|v|
2
ˆ

n(x)·u>0

fs(x, u)e
−[ 1

4T0
− 1

2Tw(x) ]|u|
2

dσ(u, v).

Here the remainder term rs is given by

rs =
µx,r‖,r⊥ − µ0√

µ0
, (4.1)

with

µx,r‖,r⊥ =
1

2π[T0(1− r‖)2 + Tw(x)r‖(2− r‖)]
e
−

|v‖|2

2[T0(1−r‖)2+Tw(x)r‖(2−r‖)]

× 1

T0(1 − r⊥) + Tw(x)r⊥
e
− |v⊥|2

2[T0(1−r⊥)+Tw(x)r⊥] .

(4.2)

As mentioned in the introduction, when we perform the integration by parts, polynomial terms appear in
the integration. In the next lemma we will bound all the possible integration related to the C-L boundary.
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Lemma 22. Denote

A :=
2

r⊥r‖(2− r‖)π

1

(2Tw(x1))2
e
[ 1
4T0

− 1
2Tw(x1)

]|v|2
. (4.3)

For (4.4) given by

e
−[ 1

4T0
− 1

2Tw(x1)
]|v1|2(n(x1) · v1)I0

(
(1− r⊥)1/2v1,⊥v⊥

r⊥Tw(x1)

)

× exp

(

− 1

2Tw(x1)

[ |v1,⊥|2 + (1− r⊥)|v⊥|2
r⊥

+
|v1,‖ − (1− r‖)v‖|2

r‖(2− r‖)

])

,

(4.4)

under the condition (1.31), we have

A×
ˆ

n(x1)·v1>0

[1 + |v1|2 + |v|2](4.4) . 1, (4.5)

A×
ˆ

n(x1)·v1>0

1

α(x1, v1)
(4.4) . 1, (4.6)

A×
ˆ

n(x1)·v1>0

[1 + |v1|]∇v1 [(4.4)] . 1. (4.7)

For x1 = ηp1(x1
p1 ) and i = 1, 2

∂x1
p1,i

A×
ˆ

n(x1)·v1>0

(4.4) . 1. (4.8)

Remark 12. The condition (1.31) is not necessary in this lemma. Since we will only use this lemma for the
stationary problem we impose such condition to simplify the proof.

Proof. From condition (1.31), we have |Tw(x1)− T0|, |1− r⊥|, |1− r‖| ≪ 1. Then for some ε ≪ 1,

| 1
r⊥

− 1|, |1− 1

r‖(2− r‖)
| = |1− 1

1− (1 − r‖)2
| . O(ε),

| (1− r⊥)

r⊥
|, | (1 − r⊥)1/2

r⊥
|, | 2(1− r‖)

r‖(2− r‖)
|, | (1− r‖)

2

r‖(2− r‖)
| . O(ε),

| 1

Tw(x1)
− 1

T0
| . O(ε).

Hence

(4.4) . |n(x1) · v1|e−[ 1
4T0

− 1
2T0

]|v1|2e
O(ε)
T0

|v1|2e−
1

2T0
|v1,⊥|2

e
O(ε)
T0

|v1,⊥|2
e

O(ε)
T0

|v⊥|2 × e
O(ε)
T0

v1,⊥v⊥

× e
− 1

2T0
|v1,‖|2e

O(ε)
T0

|v1,‖v‖|e
O(ε)
T0

|v‖|2 (4.9)

. |v1|e−
1

4T0
|v1|2e

O(ε)
T0

|v|2
e

O(ε)
T0

|v1|2 ,

in the last line we have used |ab| . |a|2 + |b|2, |v‖|2 + |v⊥|2 = |v|2.
Thus using ε ≪ 1 and (4.3) we have

A
ˆ

n(x1)·v1>0

[1 + |v|2 + |v1|2](4.4) (4.10)

.
1

T 2
0

e
[ 1
4T0

− 1
2T0

]|v|2
e

O(ε)
T0

|v|2
[1 + |v|2]

ˆ

n(x1)·v1>0

|v1|[1 + |v1|2]e−
1

4T0
|v1|2e

O(ε)
T0

|v|2
e

O(ε)
T0

|v1|2

.
1

T 2
0

e−
1−O(ε)

4T0
|v|2 [1 + |v|2]

ˆ

n(x1)·v1>0

|v1|[1 + |v1|2]e−
1−O(ε)

4T0
|v1|2 . 1, (4.11)

where we used T0 & 1. Then we conclude (4.5).
(4.6) follows from (4.9), where 1

α(x1,v1)
is cancelled by |n(x1) · v1|, and the rest computation is the same.

Then we prove (4.7). From (4.4), taking the v1 derivative we will have extra term

[
1

4T0
− 1

2Tw(x1)
]|v1|,

|v1,⊥|
Tw(x1)r⊥

,
|v1,‖ − (1− r‖)v‖|
Tw(x1)r‖(2− r‖)

,
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and from (1.7),

∇v1I0

(
(1− r⊥)1/2v1,⊥v⊥

r⊥Tw(x1)

)

= π−1

ˆ π

0

e
(1−r⊥)1/2v1,⊥v⊥

r⊥Tw(x1)
cosφ∇v1

((1− r⊥)1/2v1,⊥v⊥
r⊥Tw(x1)

)

cosφdφ

. ∇v1

( (1− r⊥)1/2v1,⊥v⊥
r⊥Tw(x1)

)

I0

(
(1− r⊥)1/2v1,⊥v⊥

r⊥Tw(x1)

)

,

the extra term is
(1− r⊥)1/2|v⊥|

Tw(r1)r⊥
.

Thus all the extra term can be bounded as

|v|+ |v1|
T0

. |v|+ |v1| . [1 + |v|2 + |v1|2].

This upper bound is already included in (4.5). Thus we conclude (4.7).
Last we prove (4.8). From (4.3) taking ∂x1

p1,i
derivative we have extra term

∂iηp1(x1
p1)

Tw(x1)3
,

∂iηp1(x1
p1)

Tw(x1)2
|v|2.

From (4.4), taking ∂x1
p1,i

derivative we have extra term

∂iηp1(x1
p1)

T 2
w(x1)

|v1|2,
∂iηp1(x1

p1)

T 2
w(x1)

.

The extra term are bounded by

‖η‖C1[
1

T 3
0

+
1

T 2
0

][1 + |v|2],

which is included in (4.5). Thus we conclude (4.8).
�

Then we start to prove Theorem 2. The main idea is to express the characteristic of (1.29) by using the
Duhamel’s principle:

fs(x, v) = 1t≥tbe
−ν(v)tbfs(xb, v)

+ 1t<tbe
−ν(v)tfs(x − tv, v) (4.12)

+

ˆ t

max{0,t−tb}
e−ν(v)(t−s)h(x− (t− s)v, v)ds,

where h = K(fs) + Γ(fs, fs).
Here in order to distinguish between Euclidean coordinate and the backward cycles, we denote

x = ([x]1, [x]2, [x]3). (4.13)

Thus

∇x = (∂[x]1 , ∂[x]2, ∂[x]3).

We take the spatial derivative to (4.12) to have

∂[x]jfs(x, v) = 1t≥tbe
−ν(v)tb∂[x]j [fs(xb, v)] (4.14)

− 1t≥tbν(v)∂[x]j tb(x, v)e
−ν(v)tbfs(xb, v) (4.15)

+ 1t<tbe
−ν(v)t∂[x]j [fs(x − tv, v)] (4.16)

+

ˆ t

max{0,t−tb}
e−ν(v)(t−s)∂[x]j [h(x− (t− s)v, v)]ds (4.17)

− 1t≥tb∂[x]j tbe
−ν(v)tbh(x− tbv, v). (4.18)

First we give an estimate for (4.14)-(4.18).
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Lemma 23. For h = Kfs + Γ(fs, fs), we can express ∂[x]jfs(x, v) as

∂[x]jfs(x, v) =
O(1)[‖wϑfs‖∞ + ‖wϑfs‖2∞] + o(1)‖α∇xfs‖∞

α(x, v)
(4.19)

+

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)∂[x]jf(x− (t− s)v, u)duds (4.20)

+
∑

i=1,2

∂x1
p1,i

∂[x]j
∂x1

p1,i
[fs(ηp1 (x1

p1), v)]. (4.21)

Proof. We estimate every term in (4.14)-(4.18).
From the chain rule and the definition of ηp1(x1

p1 ) = x1 in (2.39), the contribution of (4.14) is (4.21).

For (4.15), since ν(v) . wϑ(v), we apply (2.41) to get

(4.15) =
O(1)‖ν(v)fs(xb, v)‖

α(x, v)
.

O(1)‖wϑfs‖
α(x, v)

.

Such contribution is included in (4.19).
For (4.16), using t ≫ 1 we get

(4.16) = o(1)∂[x]jfs(x− tv, v) = o(1)
‖α∇xfs‖∞
α(x, v)

.

For (4.17), we first consider the contribution of h = K(fs), which reads

(4.17)h=K =

ˆ t

max{0,t−tb}
e−ν(v)(t−s)∂[x]j [

ˆ

R3

k(v, u)fs(x− (t− s)v, u)]ds

=

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)∂[x]jfs(x − (t− s)v, u)ds.

Such contribution is included in (4.20).
Then we consider the contribution of h = Γ(fs, fs). By (2.28) we have

(4.17)h=Γ .
‖wϑfs‖∞‖α∇xfs‖∞

α(x, v)
+ ‖wϑfs‖∞

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

kρ(v, u)|∂[x]jfs(x− (t− s)v, u)|ds

=
‖wϑfs‖∞‖α∇xfs‖∞

α(x, v)
+ ‖wϑfs‖∞

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

kρ(v, u)
‖α∇xfs‖∞

α(x − (t− s)v, u)
ds

.
‖wϑfs‖∞‖α∇xfs‖∞

α(x, v)
,

where we have applied Lemma 9 in the last line. Since ‖wϑfs‖ ≪ 1 from Corollary 4, the contribution of
h = Γ(fs, fs) of (4.17) in included in (4.19).

For the last term (4.18), we apply (2.41) and (2.23) (2.26) to get

(4.18) =
O(1)‖h‖∞
α(x, v)

=
O(1)‖wϑfs‖2∞

α(x, v)
.

Such contribution is included in (4.19).
Then we conclude the lemma.

�

Then we start the proof of Theorem 2.

Proof of Theorem 2. By Lemma 23, we only need to estimate (4.20) and (4.21).
First we estimate (4.21). By (2.43) in Lemma 10 we have

(4.21) =
O(1)

α(x, v)

∑

i=1,2

∂x1
p1,i

[fs(ηp1(x1
p1 ), v)]

︸ ︷︷ ︸

(4.22)∗

. (4.22)
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Using the notation (2.38) and Lemma 21, the boundary condition at fs(ηp1 (x1
p1), v) can be written as

fs(ηp1(x1
p1), v)

= rs +A
ˆ

n(ηp1(x
1
p1

))·v1>0

fs(ηp1 (x1
p1), v1)e

−[ 1
4T0

− 1

2Tw(η
p1

(x1
p1

))
]|v1|2

I0

(
(1− r⊥)1/2v1,⊥v⊥
r⊥Tw(ηp1(x1

p1 ))

)

× |n(ηp1(x1
p1 )) · v1| exp

(

− 1

2Tw(ηp1 (x1
p1))

[ |v1,⊥|2 + (1− r⊥)|v⊥|2
r⊥

+
|v1,‖ − (1− r‖)v‖|2

r‖(2− r‖)

])

= rs +A×
ˆ

v1
p1,3

>0

fs(ηp1(x1
p1), T t

x1
p1
v1
p1)× (4.23)dv1

p1 ,

with

v1
p1,3e

−[ 1
4T0

− 1

2Tw(η
p1

(x1
p1

))
]|v1

p1
|2
I0

(
(1− r⊥)1/2v1

p1,3v⊥

r⊥Tw(ηp1(x1
p1 ))

)

× exp

(

− 1

2Tw(ηp1(x1
p1 ))

[ |v1
p1,3|2 + (1− r⊥)|v⊥|2

r⊥
+

|(T t
x1
p1
v1
p1 − v1

p1,3n(ηp1(x1
p1))) − (1− r‖)v‖|2

r‖(2− r‖)

])

.

(4.23)

Taking ∂x1
p1,i

to fs(ηp1(x1
p1 ), v) we get

∂x1
p1,i

fs(ηp1(x1
p1), v) . ∂x1

p1,i
rs (4.24)

+ ∂x1
p1,i

[A]

ˆ

v1
p1,3

>0

‖wϑfs‖∞ × (4.23) (4.25)

+A
ˆ

v1
p1,3

>0

∂x1
p1,i

[fs(ηp1 (x1
p1), T t

x1
p1
v1
p1)]× (4.23) (4.26)

+A
ˆ

v1
p1,3

>0

fs(ηp1(x1
p1 ), T t

x1
p1
v1
p1)∂x1

p1,i
[(4.23)]. (4.27)

Since

∂x1
p1,i

Tw(ηp1 (x1
p1)) = ∇Tw · ∂3ηp1(x1

p1 ) . ‖Tw‖C1‖η‖C1,

applying (2.35) we have

(4.24) . ‖Tw‖C1‖η‖C1 . (4.28)

For (4.25) we change the v1
p1 integration back to v1 integration, thus (4.23) is replaced by (4.4), with integral

domain changing back to n(x1) · v1 > 0. Applying (4.8) we conclude

(4.25) . ‖wϑfs‖∞∂x1
p1,i

[A]

ˆ

n(x1)·v1>0

(4.4)dv1 . ‖wϑfs‖∞. (4.29)

For (4.27), taking ∂x1
p1,i

to (4.23) we have extra term

∇xTw(ηp1(x1
p1 ))∂iηp1(x1

p1 )|v1
p1 |2

T 2
w(ηp1(x1

p1))
,

∇xTw(ηp1(x1
p1 ))∂iηp1(x1

p1 )

T 2
w(ηp1 (x1

p1))

[ |v1
p1,3|2 + (1− r⊥)|v⊥|2

r⊥
+

|(T t
x1
p1
v1
p1 − vp1,3n(ηp1 (x1

p1)))− (1 − r‖)v‖|2

r‖(2− r‖)

]

,

[(T t
x1
p1
v1 − v1

p1,3n(ηp1 (x1
p1)))− (1 − r‖)v‖][∂x1

p1,i
T t
xp1

v1
p1 − v1

p1,3∂x1
p1,i

n(ηp1(xp1 ))]

Tw(ηp1(x1
p1 ))r‖(2− r‖)

,
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and from (1.7)

∂x1
p1,i

I0

(
(1− r⊥)1/2v1

p1,3v⊥

r⊥Tw(ηp1(x1
p1))

)

= π−1

ˆ π

0

e

(1−r⊥)1/2v
1
p1,3

v⊥

r⊥Tw(η
p1

(x1
p1

))
cosφ

∂x1
p1,i

((1− r⊥)1/2v1
p1,3v⊥

r⊥Tw(ηp1(x1
p1))

)

cosφdφ

. ∂x1
p1,i

( (1− r⊥)1/2v1
p1,3v⊥

r⊥Tw(ηp1(x1
p1 ))

)

I0

(
(1− r⊥)1/2v1

p1,3v⊥

r⊥Tw(ηp1(x1
p1 ))

)

,

the extra term is

∇xTw(ηp1(x1
p1))∂iηp1(x1

p1)(1 − r⊥)1/2v1
p1,3v⊥

r⊥T 2
w(ηp1 (x1

p1))
.

All the extra terms are bounded by

‖Tw‖C1‖η‖C1 [
1

T0
+

1

T 2
0

][1 + |v|2 + |v1
p1 |2] . 1 + |v|2 + |v1

p1 |2.

Thus

(4.27) . A
ˆ

vp1,3>0

‖wϑfs‖∞[1 + |v|2 + |v1
p1 |2]× (4.23)

= A
ˆ

n(x1)·v1>0

‖wϑfs‖∞[1 + |v|2 + |v1|2]× (4.4) . ‖wϑfs‖∞. (4.30)

In the second line we changed vp1 integration back to v1 integration and used |v1|2 = |v1
p1 |2 from (2.37). In the

last step we applied (4.5).
Then we focus on (4.26), which reads

(4.26) = A×
ˆ

v1
p1,3

>0

(4.23)

×
[(

∂x1
p1,i

T t
x1
p1
v1
p1

)

∇vfs(ηp1 (x1
p1), T t

x1
p1
v1
p1)

︸ ︷︷ ︸

(4.31)1

+ ∂iηp1(x1
p1 )∇xfs(ηp1 (x1

p1), T t
x1
p1
v1
p1)

︸ ︷︷ ︸

(4.31)2

]

. (4.31)

First we estimate the contribution of (4.31)1. We change the v1
p1 -integration back to v1 integration. The

extra term ∂x1
p1,i

T t
x1
p1
vp1 becomes

(

∂x1
p1,i

Tx1
p1

)

Tx1
p1
v1.

Thus such contribution is bounded as

A×
ˆ

n(x1)·v1>0

(

∂x1
p1,i

Tx1
p1

)

Tx1
p1
v1∇vfs(x1, v1)× (4.4)dv1

. ‖η‖C2‖η‖C1A×
ˆ

n(x1)·v1>0

|∇v1 [v1 × (4.4)]|fs(x1, v1)dv1

. ‖η‖C2‖η‖C1‖wϑfs‖∞A×
ˆ

n(x1)·v1>0

|
[
(4.4) + |v1|∇v1 [(4.4)]

]
|dv1

. ‖η‖C2‖η‖C1‖wϑfs‖∞ . ‖wϑfs‖∞. (4.32)

In the second line we used (2.37) to get
(

∂x1
p1,i

Tx1
p1

)

Tx1
p1

. ‖η‖C2‖η‖C1 . In the third line we used∇vfs(x1, v1) =

∇v1 [fs(x1, v1)] and performed the integration by parts with respect to dv1, and used (4.4) = 0 for n(x1) ·v1 = 0.
In the last line we used (4.5) and (4.7).
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Then we estimate the contribution of (4.31)2. We change the integration
´

v1
p1,3

>0
back to

´

n(x1)·v1>0
, such

contribution in (4.26) reads

A×
ˆ

n(x1)·v1>0

∂iηp1(x1
p1 )∇x1fs(x1, v1)× [(4.4)]dv1

= A×
ˆ

n(x1)·v1>0

|∂iηp1(x1
p1)

O(1)[‖wϑfs‖∞ + ‖wϑfs‖2∞] + o(1)‖α∇xfs‖∞
α(x1, v1)

| × [(4.4)]dv1 (4.33)

+A×
ˆ

n(x1)·v1>0

∂iηp1(x1
p1)

ˆ t1

max{0,t1
b
}
e−ν(v1)(t1−s)

ˆ

R3

k(v1, u)∇x1fs(x1 − (t1 − s)v1, u)duds× [(4.4)]dv1

(4.34)

+A×
ˆ

n(x1)·v1>0

∂iηp1(x1
p1)∇x1fs(ηp2(x2

p2 ), v1)× [(4.4)]dv1. (4.35)

Here we applied Lemma 23 to ∇xfs(x1, v1) = ∇x1 [fs(x1, v1)]. Then we estimate (4.33)-(4.35).
First we estimate (4.33). We use (4.6) to get

(4.33) . ‖η‖C1O(1)[‖wϑfs‖∞ + ‖wϑfs‖2∞] + o(1)‖α∇xfs‖∞. (4.36)

Then we estimate (4.34). We split ds integration into

ˆ t1

max{0,t1
b
}
=

ˆ t1−ε

max{0,t1
b
}

︸ ︷︷ ︸

(4.37)1

+

ˆ t1

t1−ε
︸ ︷︷ ︸

(4.37)2

. (4.37)

For (4.37)2, we apply Lemma 9 to get such contribution in (4.34) is bounded by

A×
ˆ

n(x1)·v1>0

‖η‖C1

ˆ t1

t1−ε

e−ν(v1)(t1−s)

ˆ

R3

k(v1, u)‖α∇xfs‖∞
α(x1 − (t1 − s)v1, u)

duds× [(4.4)]dv1

. O(ε)A×
ˆ

n(x1)·v1>0

‖η‖C1

‖α∇xfs‖∞
α(x1, v1)

× [(4.4)]dv1

. O(ε)‖α∇xfs‖∞. (4.38)

In the third line we used (4.6).
For (4.37)1 we exchange the x1 derivative to v1 derivative:

∇x1fs(x1 − (t1 − s)v1, u) = −∇v1 [fs(x1 − (t1 − s)v1, u)]

t1 − s
. (4.39)

In this case t1 − s ≥ ε. The contribution of (4.37)2 in (4.34) is

A×
ˆ

n(x1)·v1>0

∂iη

ˆ t1−ε

max{0,t1
b
}
e−ν(v1)(t1−s)

ˆ

R3

k(v1, u)
∇v1 [fs(x1 − (t1 − s)v1, u)]

t1 − s
duds× [(4.4)]dv1

. A×
ˆ

n(x1)·v1>0

‖η‖C1

ˆ t1−ε

max{0,t1
b
}

ˆ

R3

k(v1, u)
fs(x1 − (t1 − s)v1, u)

t1 − s
|∇v1e

−ν(v1)(t1−s)|duds× [(4.4)]dv1 (4.40)

+A×
ˆ

n(x1)·v1>0

‖η‖C1

ˆ t1−ε

max{0,t1
b
}

ˆ

R3

k(v1, u)
fs(x1 − (t1 − s)v1, u)

t1 − s
e−ν(v1)(t1−s)duds× |∇v1 [(4.4)]|dv1 (4.41)

+A×
ˆ

n(x1)·v1>0

‖η‖C1

ˆ

R3

k(v1, u)
fs(x1 − (t1 − t1

b
)v1, u)

t1 − s
e−ν(v1)(t1−t1

b
)|∇v1t

1
b|du× [(4.4)]dv1 (4.42)

+A×
ˆ

n(x1)·v1>0

‖η‖C1

ˆ t1−ε

max{0,t1
b
}

ˆ

R3

|∇v1k(v1, u)|
fs(x1 − (t1 − s)v1, u)

t1 − s
e−ν(v1)(t1−s)duds× (4.4)dv1. (4.43)
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Here we applied the integration by parts with respect to dv1. And we used (4.4) = 0 when n(x1) · v1 = 0. We
apply (2.22) and (2.19) to bound

(4.40) . A×
ˆ

n(x1)·v1>0

‖η‖C1

ˆ t1−ε

max{0,t1
b
}

ˆ

R3

k(v1, u)
‖wϑfs‖∞
t1 − s

|∇v1ν(v1)|(t1 − s)e−ν(v1)(t1−s)duds× [(4.4)]dv1

. ‖η‖C1‖wϑfs‖∞A×
ˆ

n(x1)·v1>0

(4.4)dv1

. O(1)‖η‖C1‖wϑfs‖∞, (4.44)

where we have used (4.6) in the third line.
For (4.41) we apply (2.31) in Lemma 9 to bound

(4.41) . A×
ˆ

n(x1)·v1>0

‖η‖C1

ˆ t1−ε

max{0,t1
b
}

ˆ

R3

k(v1, u)
fs(x1 − (t1 − s)v1, u)

ε
e−ν(v1)(t1−s)duds× |∇v1 [(4.4)]|dv1

. O(ε−1)‖η‖C1‖wϑfs‖∞A×
ˆ

n(x1)·v1>0

∇v1 [(4.4)]dv1

. O(ε−1)‖η‖C1‖wϑfs‖∞, (4.45)

where we have used (4.7) in the third line.
For (4.42) we apply (2.22) to get

(4.42) . A×
ˆ

n(x1)·v1>0

‖η‖C1

ˆ

R3

k(v1, u)
‖wϑfs‖∞

ε
e−ν(v1)(t1−t1

b
) 1

α(x1, v1)
du× [(4.4)]dv1

. O(ε−1)‖η‖C1‖wϑfs‖∞A×
ˆ

n(x1)·v1>0

1

α(x1, v1)
× [(4.4)]dv1

. O(ε−1)‖η‖C1‖wϑfs‖∞, (4.46)

where we have used (4.5) in the third line.
Collecting (4.44), (4.45), (4.46) and (4.38) we conclude that

(4.34) . O(ε)‖α∇xfs‖∞ +O(ε−1)‖wϑfs‖∞. (4.47)

Last we estimate (4.35). Applying chain rule we have

∂iηp1(x1
p1)∇x1fs(ηp2 (x2

p2), v1) = ∂iηp1(x1
p1 )

∑

j=1,2

∇x1x
2
p2,j∂x2

p2,j
f(ηp2(x2

p2), v1)

=
∑

j=1,2

∂x1
p1,i

x2
p2,j∂x2

p2,j
fs(ηp2 (x2

p2), v1).

Note that

v1 = (x1 − ηp2(x2
p2 ))/t1b. (4.48)

Applying Lemma 11 we have

(4.35) = A×
ˆ

n(x1)·v1>0

∑

j=1,2

∂x1
p1,i

x2
p2,j∂x2

p2,j
f(ηp2(x2

p2 ), v)
∑

p2∈P
ιp2 (x2)[(4.4)]

= A×
∑

p2∈P

¨

|x2
p2

|<δ1

ˆ t1

0

e−ν(v1)t
1
bιp2(x2)×

∑

j=1,2

∂x1
p1,i

x2
p2,j∂x2

p2,j
fs(ηp2(x2

p2 ), v)

×
√

gp2,11(x
2
p2)gp2,22(x

2
p2)

n(x1) · (x1 − ηp2(x2
p2))

t1
b

|n(x2) · (x1 − ηp2(x2
p2 ))|

|t1
b
|4 × (4.4)

n(x1) · v1
.

In the last step we used n(x1) · v1 =
n(x1)·(x1−ηp2(x

2
p2

))

t1
b

.
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We apply the integration by parts with respect to ∂x2
p2,j

for j = 1, 2. For ι2p(ηp2 (x2
p2)) = 0 when |x2

p2 | = δ1

from (2.32), the contribution of |x2
p2 | = δ1 vanishes. Thus we derive

(4.35) . A‖wϑfs‖∞ ×
∑

p2∈P

∑

j=1,2

×
[
¨ ˆ t1

0

∂x2
p2,j

[n(x1) · (x1 − ηp2(x2
p2))

t1
b

|np2(x2
p2) · (x1 − ηp2(x2

p2))|
|t1
b
|4

]
· · ·

+

¨ ˆ t1

0

∂x2
p2,j

[ ∑

j=1,2

∂x2
p2,j

∂x1
p1,i

√
gp2,11gp2,22

]
· · ·

+

¨ ˆ t1

0

∂x2
p2,j

[
(4.4)

n(x1) · v1
] · · ·

]

.

Applying Lemma 12 we have

n(x1) · (x1 − ηp2(x2
p2 ))

t1
b

.
|x1 − ηp2(x2

p2)|2

t1
b

,
|np2(x2

p2) · (x1 − ηp2(x2
p2))|

|t1
b
|4 .

|x1 − ηp2(x2
p2)|2

|t1
b
|4 .

∂x2
p2,j

[n(x1) · (x1 − ηp2(x2
p2))

t1
b

|np2(x2
p2 ) · (x1 − ηp2(x2

p2 ))|
|t1
b
|4

]
.

|x1 − ηp2(x2
p2)|3

|t1
b
|5 . (4.49)

From (2.42), (2.47) and (2.48), we derive that
∣
∣
∣
∣

∂

∂x2
p2,j

(
∑

j=1,2

∂x2
p2,j

∂x1
p1,i

√
gp2,11gp2,22

)∣
∣
∣
∣

. ‖η‖C2

{

1 +
|v2

p2,‖|
|v2

p2,3|2
|∂3ηp2(x2

p2 ) · ∂iηp1(x1
p1)|
}

≤ O(‖η‖C2)
{

1 +
|v2

p2 |
|v2

p2,3|2
|x1 − ηp2(x2

p2 )|
}

≤ O(‖η‖C2)
1

|v2
p2,3|

= O(‖η‖C2)
1

|n(x2) · v1|
.

(4.50)

Such term will be cancelled by n(x1) · v1 as:

|n(x1) · v1|
|n(x2) · v1|

.
α(x1, v1)

α(x2, v1)
. 1.

For the derivative to (4.4)
n(x1)·v1 , we note that

v1,⊥ = v1 · n(x1), v1,‖ = v1 − (n(x1) · v1)n(x1).

Using (4.48) we get

|∂x2
p2,j

v1| .
1

t1
b

, |∂x2
p2,j

v1,⊥| .
1

t1
b

, |∂x2
p2,j

v1,‖| .
1

t1
b

.

Then taking the derivative to (4.4)
n(x1)·v1 we have extra term

[
1

4T0
− 1

2Tw(x1)
](∂x2

p2,j
v1)v1,

(1 − r‖)
2∂x2

p2,j
v1,‖(v1,‖ − (1− r‖)v‖)

Tw(x1)r‖(2− r‖)
,

∂x2
p2,j

v1,⊥v1,⊥

Tw(x1)r⊥
.

The extra term comes from I0 is

∂x2
p2,j

((1 − r⊥)1/2v1,⊥v⊥
r⊥Tw(x1)

)

.
(1 − r⊥)1/2v⊥∂x2

p2,j
v1,‖

r⊥
.

Thus all of them are bounded by

[1 + |v|2 + |v1|2]
t1
b

.
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Then for ε ≪ 1 applying (4.9) we get

∂x2
p2,j

[
(4.4)

n(x1) · v1
] . [1 + |v|2 + |v1|2][

(4.4)

n(x1) · v1
]

. [1 + |v|2 + |v1|2]e−
1

4T0
|v1|2e

O(ε)
T0

|v|2e
O(ε)
T0

|v1|2 . (4.51)

Collecting (4.49), (4.50) and (4.51) we obtain

(4.35) . A× ‖wϑfs‖∞eO(ε)|v|2

×
¨ ˆ t1

0

e−νt1
b

[ |x1 − ηp2(x2
p2)|3

t5
b

+
|x1 − ηp2(x2

p2 )|2

t4
b

+
|x1 − ηp2(x2

p2)|4

t6
b

]

e
− 1

8T0

|x1−η
p2

(x2
p2

)|2

|t1
b
|2

. ‖wϑfs‖∞
ˆ ∞

0

e−ν(v1)t
1
b

|t1
b
|1/2

¨

1

|x1 − ηp2(x2
p2)|3/2

. ‖wϑfs‖∞. (4.52)

In the last line we have used the definition of A in (4.3) to have

A× eO(ε)|v|2 . 1.

And we used

[ |x1 − ηp2(x2
p2 )|3

|t1
b
|5 +

|x1 − ηp2(x2
p2)|2

|t1
b
|4 +

|x1 − ηp2(x2
p2)|4

t6
b

]

e
−

|x1−η
p2

(x2
p2

)|2

8T0|t1
b
|2

≤ 1

|t1
b
|1/2

1

|x1 − ηp2(x2
p2)|3/2

[ |x1 − ηp2(x2
p2 )|9/2

|t1
b
|9/2 +

|x1 − ηp2(x2
p2 )|7/2

|t1
b
|7/2 +

|x1 − ηp2(x2
p2 )|11/2

|t1
b
|11/2

]

× e
−

|x1−η
p2

(x2
p2

)|2

8T0|t1
b
|2

.
1

|t1
b
|1/2

1

|x1 − ηp2(x2
p2)|3/2

.

Then we combine (4.36), (4.47), (4.52) and (4.32) to get

(4.26) . o(1)‖α∇xfs‖∞O(ε−1)‖wϑfs‖∞. (4.53)

Finally combining (4.28), (4.29), (4.53) and (4.30) we conclude that

|∂xp1,i
[fs(ηp1 (xp1 , v))]| . O(ε−1)[‖wϑfs‖∞ + ‖wϑfs‖2∞] + o(1)‖α∇xfs‖∞.

This, with (4.22), conclude that the boundary term is bounded by

(4.21) .
O(ε−1)[‖wϑfs‖∞ + ‖wϑfs‖2∞] + o(1)‖α∇xfs‖∞

α(x, v)
. (4.54)

Estimate of (4.20). For the collision term we apply Lemma 23 to ∂[x]jfs(x− (t− s)v, u) to get

(4.20) =

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)
O(1)[‖wϑfs‖∞ + ‖wϑfs‖2∞] + o(1)‖α∇xfs‖∞

α(x − (t− s)v, u)
(4.55)

+

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)

ˆ s

max{0,s−tb(x−(t−s)v,u)}
e−ν(u)(s−s′)

×
ˆ

R3

k(u, u′)∂[x]jf(x− (t− s)v − (s− s′)u, u′)du′ds′ (4.56)

+

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)
∂fs(xb(x − (t− s)v, u), u)

∂[x]j
. (4.57)

Directly applying (2.30) in Lemma 9 we bound

(4.55) .
O(1)[‖wϑfs‖∞ + ‖wϑfs‖2∞] + o(1)‖α∇xfs‖∞

α(x, v)
. (4.58)

For (4.57), let y = x− (t− s)v, then

∂fs(xb(x− (t− s)v, u))

∂[x]j
=

∂fs(xb(y, u))

∂[y]j
,
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which is exactly the same as (4.21) with replacing x by y, v by u. Note that we already derive the upper bound

for (4.21) in (4.54), such estimate works for any x ∈ Ω, v ∈ R
3. Thus we can also bound ∂fs(xb(x−(t−s)v,u))

∂[x]j

by (4.54). Therefore,

(4.57) .

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)
O(ε−1)[‖wϑfs‖∞ + ‖wϑfs‖∞] + o(1)‖α∇xfs‖∞

α(y, u)
duds

.
O(ε−1)[‖wϑfs‖∞ + ‖wϑfs‖∞ + o(1)‖α∇xfs‖∞]

α(x, v)
,

(4.59)

where we have used Lemma 9 in the second line.
Last we estimate (4.56). We split the s′-integration into two cases:

ˆ s

max{...}
=

ˆ s

s−ε
︸︷︷︸

(4.60)1

+

ˆ s−ε

max{...}
︸ ︷︷ ︸

(4.60)2

. (4.60)

For (4.60)1, we bound

|∂[x]jfs(x − (t− s)v − (s− s′)u, u′)| . ‖α∇xfs‖∞
α(x− (t− s)v − (s− s′)u, u′)

.

Then we apply (2.31) in Lemma 9 to derive

(4.56)1s−ε≤s′≤s .

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)
O(ε)‖α∇xfs‖∞
α(x− (t− s)v, u)

.
O(ε)‖α∇xfs‖∞

α(x, v)
, (4.61)

where we have used (2.30) in the second line.
For (4.60)2 we exchange the x derivative into u derivative:

∂[x]jfs(x− (t− s)v − (s− s′)u, u′) =
∂uj [fs(x− (t− s)v − (s− s′)u, u′)]

s′ − s
.

In this case we have s− s′ ≥ ε. Applying the integration by parts with respect to du we get

(4.56)1s′≤s−ε . O(ε−1)

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

ˆ s

max{0,s−tb(x−(t−s)v,u)}
e−ν(u)(s−s′)

×
ˆ

R3

|∇u[k(v, u)k(u, u
′)]|fs(x− (t− s)v − (s− s′)u, u′)du′ds′ (4.62)

+

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)

ˆ s

max{0,s−tb(x−(t−s)v,u)}
e−ν(u)(s−s′)(s− s′)|∇uν(u)|

×
ˆ

R3

k(u, u′)
fs(x− (t− s)v − (s− s′)u, u′)

s′ − s
du′ (4.63)

+

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)e−ν(u)tb(x−(t−s)v,u)|∇utb(x− (t− s)v, u)|

×
ˆ

R3

k(u, u′)
fs(xb(x− (t− s)v, u)u, u′)

s′ − s
du′. (4.64)
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First we estimate (4.62). For some c ≪ ϑ we have

(4.62) . O(ε−1)

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

ˆ s

max{0,s−tb(x−(t−s)v,u)}
e−ν(u)(s−s′)

×
ˆ

R3

|∇u[k(v, u)k(u, u
′)]| 1

ec|v|2
ec|v|

2

ec|u|2
ec|u|

2

ec|u′|2 ‖e
c|v|2fs‖∞du′ds′

.
O(ε−1)

ec|v|2

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

ˆ s

max{0,s−tb(x−(t−s)v,u)}
e−ν(u)(s−s′)k ˜̺(v, u)[1 +

1

|v − u| ]

×
ˆ

R3

k ˜̺(u, u
′)[1 +

1

|u− u′| ]‖wϑfs‖∞du′ds′

.
O(ε−1)‖wϑfs‖∞

ec|v|2
× α(x, v)

α(x, v)
.

O(ε−1)‖wϑfs‖∞
α(x, v)

. (4.65)

In the third line we applied (2.29). In the last line we applied Lemma 9 and used α(x,v)

ec|v|2
. 1.

Then we estimate (4.63). Similar to computation of (4.65), we have

(4.63) .

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k(v, u)

ˆ s

max{0,s−tb(x−(t−s)v,u)}
e−ν(u)(s−s′)

×
ˆ

R3

k(u, u′)
1

ec|v|2
ec|v|

2

ec|u|2
ec|u|

2

ec|u′|2 ‖e
c|v|2fs‖∞du′ds′

.
1

ec|v|2

ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

ˆ s

max{0,s−tb(x−(t−s)v,u)}
e−ν(u)(s−s′)k ˜̺(v, u)

×
ˆ

R3

k ˜̺(u, u
′)‖wϑfs‖∞du′ds′

.
O(ε−1)‖wϑfs‖∞

ec|v|2
.

O(ε−1)‖wϑfs‖∞
α(x, v)

. (4.66)

Last we estimate (4.64). Applying (2.41) we have

(4.64) . O(ε−1)‖wϑfs‖∞
ˆ t

max{0,t−tb}
e−ν(v)(t−s)

ˆ

R3

k̺(v, u)
1

α(x − (t− s)v, u)

.
O(ε−1)‖wϑfs‖∞

α(x, v)
. (4.67)

In the second line we used Lemma 9.
Combining (4.65), (4.66) and (4.67) we conclude

(4.56)1s−s′≥ε .
O(ε−1)‖wϑfs‖∞

α(x, v)
. (4.68)

Then we combine (4.58),(4.59),(4.61),(4.68) and conclude

(4.20) .
o(1)‖α∇xfs‖∞ +O(ε−1)[‖wϑfs‖∞ + ‖wϑfs‖2∞]

α(x, v)
. (4.69)

Finally from Lemma 23, (4.54) and (4.69) we conclude Theorem 2.
�
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