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Abstract

Spanning trees are a representative example of linear matroid bases that are efficiently
countable. Perfect matchings of Pfaffian bipartite graphs are a countable example of common
bases of two matrices. Generalizing these two examples, Webb (2004) introduced the notion
of Pfaffian pairs as a pair of matrices for which counting of their common bases is tractable
via the Cauchy–Binet formula.

This paper studies counting on linear matroid problems extending Webb’s work. We first
introduce “Pfaffian parities” as an extension of Pfaffian pairs to the linear matroid parity
problem, which is a common generalization of the linear matroid intersection problem and
the matching problem. We enumerate combinatorial examples of Pfaffian pairs and parities.
The variety of the examples illustrates that Pfaffian pairs and parities serve as a unified
framework of efficiently countable discrete structures. Based on this framework, we derive
celebrated counting theorems, such as Kirchhoff’s matrix-tree theorem, Tutte’s directed
matrix-tree theorem, the Pfaffian matrix-tree theorem, and the Lindström–Gessel–Viennot
lemma.

Our study then turns to algorithmic aspects. We observe that the fastest randomized
algorithms for the linear matroid intersection and parity problems by Harvey (2009) and
Cheung–Lau–Leung (2014) can be derandomized for Pfaffian pairs and parities. We further
present polynomial-time algorithms to count the number of minimum-weight solutions on
weighted Pfaffian pairs and parities. Our algorithms make use of Frank’s weight splitting
lemma for the weighted matroid intersection problem and the algebraic optimality criterion
of the weighted linear matroid parity problem given by Iwata–Kobayashi (2017).
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1 Introduction

Let A be a totally unimodular matrix of row-full rank; that is, any minor of A is 0 or ±1. The
(generalized) matrix-tree theorem [37] claims that the number of column bases of A is equal to
det AA⊤. This can be observed by setting A1 = A2 = A in the Cauchy–Binet formula

det A1A⊤
2 =

∑

J⊆E:|J |=r

det A1[J ] det A2[J ], (1)

where A1, A2 are matrices of size r × n with common column set E and Ak[J ] denotes the
submatrix of Ak indexed by columns J ⊆ E for k = 1, 2. In the case where A comes from the
incidence matrix of an undirected graph, the formula (1) provides the celebrated matrix-tree
theorem due to Kirchhoff [28] for counting spanning trees.

From a matroidal point of view, the matrix-tree theorem is regarded as a theorem for
counting bases of regular matroids, which are a subclass of linear matroids represented by
totally unimodular matrices. Regular matroids are recognized as the largest class of matroids
for which base counting is exactly tractable. For general matroids (even for binary or transversal
matroids), base counting is #P-complete [9, 45] and hence approximation algorithms have been
well-studied [2, 3].

Another example of a polynomial-time countable object is perfect matchings of graphs with
Pfaffian orientation [27]. The Pfaffian is a polynomial of matrix entries defined for a skew-
symmetric matrix S of even order. If S is the Tutte matrix of a graph G, its Pfaffian is the sum
over all perfect matchings of G except that each matching has an associated sign as well. Suppose
that edges of G are oriented so that all terms in the Pfaffian become +1 by assigning +1 or −1
to each variable in the Tutte matrix according to the edge direction. This means that there are
no cancellations in the Pfaffian, and thus it coincides with the number of perfect matchings of G.
Such an orientation is called Pfaffian and a graph that admits a Pfaffian orientation is also called
Pfaffian. If G is bipartite, we can consider the determinant of the Edmonds matrix instead of
the Pfaffian of the Tutte matrix. Whereas counting of perfect matchings is #P-complete even
for bipartite graphs [50], characterizations of Pfaffian graphs and polynomial-time algorithms
to give a Pfaffian orientation have been intensively studied [27, 32, 43, 46, 51].

From the viewpoint of matroids again, the bipartite matching problem is generalized to the
linear matroid intersection problem [10, 11]. This is the problem to find a common column base
of two matrices A1, A2 of the same size. Besides the bipartite matching problem, the linear
matroid intersection problem includes a large number of combinatorial optimization problems
as special cases, such as problems of finding an arborescence, a colorful spanning tree, and a
vertex-disjoint S–T path [49]. The weighted linear matroid intersection problem is to find a
common base of A1, A2 that minimizes a given column weight w : E → R. Various polynomial-
time algorithms have been proposed for both the unweighted and the weighted linear matroid
intersection problems [10, 11, 13, 22]. However, the counting of common bases is intractable
even for a pair of totally unimodular matrices, as it includes the counting of perfect bipartite
matchings.

Commonly generalizing Pfaffian bipartite graphs and regular matroids, Webb [52] introduced
the notion of a Pfaffian (matrix) pair as a pair of totally unimodular matrices A1, A2 such that
det A1[B] det A2[B] is constant for any common base B of A1 and A2. This condition means due
to the Cauchy–Binet formula (1) that the number of common bases of (A1, A2) can be retrieved
from det A1A⊤

2 . For example, bases of a totally unimodular matrix A are clearly common bases
of a Pfaffian pair (A, A). Webb [52] indicated that the set of perfect matchings of a Pfaffian
bipartite graph can also be represented as common bases of a Pfaffian pair. Although the
Pfaffian pairs concept nicely integrates these two celebrated countable objects, its existence
and importance do not seem to have been recognized besides the original thesis [52] of Webb.
We remark that one can remove the assumption of the total unimodularity on A1 and A2 for
counting purpose.
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The linear matroid intersection and the (nonbipartite) matching problems are commonly
generalized to the linear matroid parity problem [29], which is explained as follows. Let A be a
2r×2n matrix whose column set is partitioned into pairs, called lines. Let L be the set of lines. In
this paper, we call (A, L) a (linear) matroid parity. The linear matroid parity problem on (A, L)
is to find a parity base of (A, L), which is a column base of A consisting of lines. Applications
of the linear matroid parity problem include the maximum hyperforest problem on a 3-uniform
hypergraph, the disjoint A-path problem and the disjoint S-path problem [34]. The linear
matroid parity problem is known to be solvable in polynomial time since the pioneering work
of Lovász [34]. Recently, Iwata–Kobayashi [26] presented the first polynomial-time algorithm
for the weighted linear matroid parity problem, which is to find a parity base of (A, L) that
minimizes a given line weight w : L→ R.

In this paper, we explore Pfaffian pairs and their generalization to the linear matroid parity
problem, which we call Pfaffian (linear matroid) parities. The contributions of this paper are
twofold: structural and algorithmic results.

1.1 Structural Results

We introduce a new concept “Pfaffian parity” as a matroid parity (A, L) such that det A[B] is
constant for all parity base B of (A, L). As in the case of Pfaffian pairs, this condition ensures
that the number of parity bases can be retrieved from the Pfaffian of a skew-symmetric matrix
associated with (A, L). The proof of this fact relies on a generalization of the Cauchy–Binet
formula (1) to the Pfaffian given by Ishikawa–Wakayama [25] (see Proposition 2.1).

We then consolidate a list of discrete structures that can be represented as common bases
of Pfaffian pairs or parity bases of Pfaffian parities. Some of them are already (explicitly or
implicitly) known, and some are newly proved. The variety of this list illustrates that Pfaffian
pairs and parities serve as a unified framework of discrete structures for which counting is
tractable. Much of celebrated counting theorems are explained in this framework, such as
Kirchhoff’s matrix-tree theorem [28], Tutte’s directed matrix-tree theorem [48], the Pfaffian
matrix-tree theorem due to Masbaum–Vaintrob [36], and the Lindström–Gessel–Viennot (LGV)
lemma [20, 31]. An overview of the list is as follows; see each linked section for the exact problem
definitions.

Regular Matroids and Regular Delta-Matroids (Sections 3.1 and 3.2). Bases of regular
matroids are a trivial example of Pfaffian pairs, as explained above. We obtain Kirchhoff’s
matrix-tree theorem [28] as a corollary.

Webb [52] showed that one can represent the set of nonsingular principal submatrices of
a skew-symmetric totally unimodular matrix as common bases of a Pfaffian pair. This can
be slightly generalized to the feasible sets of regular delta-matroids, which are a generalization
of regular matroids introduced by Bouchet [4, 5]. A combinatorial example of regular delta-
matroids is Euler tours in 4-regular directed graphs [4].

Arborescences (Section 3.3). An arborescence of a directed graph G is a rooted directed
spanning tree. It is well-known that arborescences of G are characterized as a common base of
two matrices A1, A2 associated with G. Tutte’s directed matrix-tree theorem [48] claims that
the number of arborescences of G is equal to det A1A⊤

2 . Some known proofs of the directed
matrix-tree theorem essentially show that (A1, A2) is Pfaffian. This means that the directed
matrix-tree theorem can be treated in the framework of Pfaffian pairs.

Perfect Matchings of Pfaffian Graphs (Section 3.4). We show that the set of perfect
matchings of a Pfaffian graph can be seen as parity bases of a Pfaffian parity. This is an
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extension of the relationship between a Pfaffian bipartite graph and a Pfaffian pair observed by
Webb [52].

Spanning Hypertrees of 3-Pfaffian 3-Uniform Hypergraphs (Section 3.5). Let H =
(V, E) be a 3-graph (3-uniform hypergraph) and ~H = (V, ~E) an orientation of H. Namely, each
element in E is an unordered triple over V , and each element in ~E is an ordered triple. A
spanning hypertree of H has the sign according to the orientation ~H. The Pfaffian matrix-
tree theorem [36] claims that the Pfaffian of a skew-symmetric matrix associated with ~H is
the signed sum of all spanning hypertrees of H. The orientation ~H is called 3-Pfaffian if the
signs of all the spanning hypertrees are the same [21]. This means that the absolute value of
the determinant of the Pfaffian turns out to be the number of spanning hypertrees of H. The
3-graph H is also called 3-Pfaffian if it admits a 3-Pfaffian orientation. 3-Pfaffian orientations
for 3-graphs includes Pfaffian orientations for graphs as a special case [21].

Lovász [34] presented a reduction of the problem to find a spanning hypertree of H to the
linear (graphic) matroid parity problem. This reduction yields a one-to-one correspondence
between spanning hypertrees of H and parity bases of a matroid parity (A, L) constructed
from H (with L = E indeed). Appropriately reflecting the information on the orientation to
the matrix A, we show that (A, L) becomes Pfaffian when the orientation is 3-Pfaffian. More
generally, we prove that the sign of a spanning hypertree T is equal to det A[B], where B is
the parity base of (A, L) corresponding to T . Although we can easily confirm this fact by using
the Pfaffian matrix-tree theorem, we also provide another proof without relying on the Pfaffian
matrix-tree theorem. This leads us to a new proof of the Pfaffian matrix-tree theorem.

Disjoint S–T Paths of DAGs (Section 4.1). Let G be a directed acyclic graph (DAG) and
take disjoint vertex subsets S and T with |S| = |T | = k. An S–T path of G is the union of
k directed paths, each from a vertex in S to a vertex in T 1. An S–T path is called (vertex-
)disjoint if the consisting directed paths are pairwise vertex-disjoint. A disjoint S–T path has
the sign according to the pattern of which vertices in S are connected to which vertices in T .
The LGV lemma [20, 31] provides a formula on the sum of signs of disjoint S–T paths in G
via the determinant. The LGV lemma has various applications in combinatorics and linear
algebra [20]; the Cauchy–Binet formula (1) can be proved via the LGV lemma for example.

The disjoint S–T path problem on G reduces to the bipartite matching problem [13], in
which a disjoint S–T path is mapped to a perfect bipartite matching bijectively. We show that
this map retains the signs as well. This means that if all disjoint S–T paths of G have the same
sign, the set of disjoint S–T paths forms common bases of a Pfaffian pair. We say that such
(S, T ) is in the LGV position on G and illustrate two examples arising from planar graphs. We
further provide a new proof of the LGV lemma making use of this map.

Shortest Disjoint S–T Paths and S–T –U Paths (Sections 4.2 and 4.3). We generalize
the above arguments of the disjoint S–T path problem on DAGs to Mader’s disjoint S-path
problem [16, 35] on undirected graphs. Let G be an undirected graph and S a family of disjoint
vertex subsets. Suppose that |∪S∈SS| = 2k. An S-path of G is the union of k paths, each of
which connects vertices belonging to distinct parts in S. An S-path is called disjoint if the
consisting paths are pairwise vertex-disjoint. The disjoint S-path problem on G is to find a
disjoint S-path of G. As for disjoint S–T paths of DAGs, the sign of a disjoint S-path is defined
based on the connecting pattern on S. When |S| = 2, we call an S-path an S–T path (with
S = {S, T}). When |S| = 3, we refer to S-path as an S–T –U path (with S = {S, T, U}).

Tutte [49] proposed a reduction of the disjoint S–T path problem to the linear (graphic)
matroid intersection problem. Subsequently, Schrijver [44] presented a reduction of the disjoint

1 An S–T path generally refers to a single path from S to T rather than the union of such paths. In some
literature, an S–T path in our definition is called a perfect Menger-type linking [39, Section 2.2.4].
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S-path problem to the linear matroid parity problem based on the Lovász’ reduction [34].
Suppose also that G is equipped with a positive edge length, and consider the shortest disjoint
S-path problem, which is to find a disjoint S-path that minimizes the sum of edge lengths.
Yamaguchi [53] showed that the shortest disjoint S-path problem is reduced to the weighted
linear matroid parity problem. As a special case, the shortest disjoint S–T path problem reduces
to the weighted linear matroid intersection problem. This is a generalization of the reduction
from the disjoint S–T path problem on a DAG to the bipartite matching problem.

We first deal with the disjoint S–T path problem on G. Unfortunately, Tutte’s reduction
provides only a one-to-many correspondence between disjoint S–T paths and common bases of a
matrix pair (A1, A2). Nevertheless, we show that the sign of a disjoint S–T path P coincides with
det A1[B] det A2[B], where B is a common base corresponding to P . In addition, the weighted
reduction gives a one-to-one correspondence between optimal solutions. As a consequence, if
(S, T ) is in the LGV position, i.e., the signs of all disjoint S–T paths are the same, we can
represent the set of shortest disjoint S–T paths of G as minimum-weight common bases of a
Pfaffian pair.

We next consider the general disjoint S-path problem. Like the S–T case, Schrijver’s re-
duction for unweighted problems constructs only a one-to-many correspondence, whereas Yam-
aguchi’s reduction for weighted problems provides a one-to-one correspondence. Unlike the S–T
case, however, it will be turned out that det A[B] depends on some factor other than the sign
of a disjoint S-path P , where A is the matrix in the reduced linear matroid parity problem and
B is a parity base corresponding to P . Nonetheless, when |S| = 3, i.e., in the S–T –U case, the
factor would be constant for any disjoint S-path. This means the shortest disjoint S–T –U paths
are represented as minimum-weight parity bases of a weighted Pfaffian parity when S, T, U are
in the LGV position.

1.2 Algorithmic Results

Let (A1, A2) be an r × n Pfaffian pair and (A, L) a 2r × 2n Pfaffian parity. The definitions of
Pfaffian pairs and parities guarantee that one can count the number of common bases of (A1, A2)
and the number of parity bases of (A, L) just by matrix computations. We observe that these
computations can be done in O

(

nrω−1
)

or O
(

nrω−1 + r3
)

-time (see Theorem 5.1), where we
assume that arithmetic operations can be performed in constant time. Here, 2 < ω ≤ 3 is the
matrix multiplication exponent, i.e., the multiplication of two r × r matrices is performed in
O(rω)-time. The current best value of ω is 2.3728639 [30]. More generally and precisely, when
the matrices are over a field K of characteristic ch(K), we can compute the number of common
or parity bases modulo ch(K) within these times.

In the above arguments, we implicitly assumed that we know the value of det A1[B] det A2[B]
with an arbitrary common base B of (A1, A2) and det A[B] with an arbitrary parity base
B of (A, L). These values are called constants. If we do not know the value of constants,
then we need to obtain one common or parity base B beforehand by executing linear matroid
intersection and parity algorithms. The current best time complexities for solving the linear

matroid intersection problem is deterministic O
(

nr
5−ω
4−ω log r

)

-time due to Gabow–Xu [15] and

randomized O
(

nrω−1
)

-time due to Harvey [22]. Also, the current best time complexities for the
linear matroid parity problem is deterministic O(nrω)-time due to Gabow–Stallmann [14] and
Orlin [40], and randomized O

(

nrω−1
)

-time due to Cheung–Lau–Leung [8]. Therefore, we are
confronted with a choice of whether to stick to deterministic algorithms or to employ randomized
algorithms to keep the running time. We would face the same trade-off to find one common or
parity base even if we know the constants.

For the case of ch(K) = 0, we show that it is possible to cherry-pick good points of both
choices as follows.

Theorem 1.1. When ch(K) = 0, we can count the number of common bases of an r×n Pfaffian
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pair and the number of parity bases of a 2r×2n Pfaffian parity in deterministic O
(

nrω−1
)

-time.
In addition, we can construct one common or parity base in the same time complexity.

Intuitively, the algorithms of Harvey [22] and Cheung–Lau–Leung [8] make use of random-
ness to take a random vector avoiding numerical cancellations between common or parity bases.
We show that Pfaffian pairs and parities do not involve such numerical cancellations by their
definitions.

We next consider the problems of counting the number of minimum-weight common bases
of a column-weighted Pfaffian pair and the number of minimum-weight parity bases of a line-
weighted Pfaffian parity. These problems can be algebraically formulated by using a univariate
polynomial matrix (assuming the weight to be integral). In these formulations, the number
of minimum-weight common or parity bases is obtained as the coefficient of the lowest degree
term in the determinant or Pfaffian of the polynomial matrix. While we can compute it by
performing a symbolic computation, this yields only a pseudo-polynomial time algorithm.

Broder–Mayr [6] and Hayashi–Iwata [23] presented polynomial-time counting algorithms
for minimum-weight spanning trees and minimum-weight arborescences, respectively. Their
algorithms first compute dual optimal solutions of linear programming (LP) formulations and
then perform graphic operations on trees constructed from the dual optimal solutions.

Generalizing these algorithms from a matroidal perspective, we present a polynomial-time
counting algorithm for minimum-weight common bases of a Pfaffian pair. We make use of
Frank’s weight splitting lemma [12], which reveals the dual structure of the weighted matroid
intersection problem. Applying a row operation, we reduce the counting on a weighted Pfaffian
pair to the counting on an unweighted Pfaffian pair. Our reduction can be seen as a succinct
description of a known trick to represent minimum-weight common bases of a weighted matrix
pair as the set of common bases of unweighted matrix pair. The running time is estimated as
follows.

Theorem 1.2. Let (A1, A2) be a Pfaffian pair with column weight w : E → R. We can com-
pute the number of minimum-weight common bases of (A1, A2) modulo ch(K) in deterministic
O(nrω + nr log n)-time.

We also present a polynomial-time counting algorithm for weighted Pfaffian parities. Al-
though an LP formulation of the weighted linear matroid parity algorithm is not yet known,
Iwata–Kobayashi [26] gave an algebraic optimality criterion, which associates the minimum
weight of a parity base with the maximum weight of a perfect matching of a graph. Based on this
association, we show that the number of minimum-weight parity bases coincides with the lead-
ing coefficient of a skew-symmetric polynomial matrix that the algorithm of Iwata–Kobayashi
outputs as a byproduct. We then apply Murota’s upper-tightness testing algorithm [38] to
compute the leading coefficient. Murota’s algorithm was originally presented in the context
of combinatorial relaxation, which is to compute the degree of the determinant (Pfaffian) of a
skew-symmetric polynomial matrix. The time complexity is summarized as follows.

Theorem 1.3. Let (A, L) be a Pfaffian parity with line weight w : L→ R. We can compute the
number of minimum-weight parity bases of (A, L) modulo ch(K) in deterministic O

(

n3r
)

-time.

On describing time complexities, we have assumed that arithmetic operations on K can be
performed in constant time. This assumption is reasonable when K is a finite field of fixed order.
When K is the field Q of rational numbers, there is no guarantee that a direct application of
the algorithm of Iwata–Kobayashi [26] does not swell the bit-lengths of intermediate numbers.
Instead, they showed that one can solve the weight linear matroid parity problem over Q by
applying their algorithm over a sequence of finite fields. We give a polynomial-time counting
algorithm with K = Q based on their reduction.

Theorem 1.4. Let (A, L) be a Pfaffian parity over Q with line weight w : L→ R. We can deter-
ministically compute the number of minimum-weight parity bases of (A, L) in time polynomial
in the binary encoding length of A.
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As seen above, our counting algorithms for weighted Pfaffian pairs and parities are based
on different approaches: that for pairs reduces to the unweighted counting and that for parities
is via the matching problem. We show in Appendix that the algorithm for Pfaffian pairs can
also be derived by an approach based on the bipartite matching problem.

1.3 Organization

The rest of this paper is organized as follows. After introducing some preliminaries, Section 2
gives formal definitions of Pfaffian pairs and parities as well as their properties. Sections 3
and 4 exhibit examples of Pfaffian pairs and parities. The family of disjoint path problems are
dealt with in Section 4 and others are in Section 3. Finally, Section 5 presents our counting
algorithms for unweighted and weighted Pfaffian pairs and parities.

2 Pfaffian Pairs and Pfaffian Parities

2.1 Preliminaries

Let Z,Q and R denote the set of all integers, rational and real numbers, respectively. For a
nonnegative integer n, we denote {1, 2, . . . , n} by [n]. Let K be a field of characteristic ch(K).
Unless otherwise stated, all matrices are over K in Sections 2 and 5 and are over Q in Sections 3
and 4. For n ∈ Z, we define n modulo 0 as n for convenience. For n, m ∈ Z, “n is equal to m
over K” means n is congruent to m modulo ch(K). For a matrix A, we denote by A[I, J ] the
submatrix of A with row subset I and column subset J . If I is all the rows of A, we denote
A[I, J ] by A[J ].

While we can describe this paper without defining matroids, here we give a general definition.
A matroid is the pair M = (E,B) of a finite set E and a nonempty set family B ⊆ 2E over E
satisfying the following: for any B1, B2 ∈ B and x ∈ B1 \B2, there exists y ∈ B2 \B1 such that
B1 \ {x} ∪ {y} ∈ B. Each element of B is called a base of M and E is called the ground set of
M.

Typical examples of matroids arise from matrices. Let A ∈ Kr×n be a matrix with column
set E. Define

B(A) := {B ⊆ E | |B| = r, A[B] is nonsingular}.

If A is of row-full rank, then M(A) := (E,B(A)) forms a matroid, called a linear matroid
represented by A. We refer to each element of B(A) as a base of A. In this paper, we consider
A to have no base if A is not of row-full rank.

Recall that the determinant of a square matrix A = (Ai,j)i,j∈[n] ∈ Kn×n is defined as

det A :=
∑

σ∈Sn

sgn σ
n
∏

i=1

Ai,σ(i), (2)

where Sn is the set of all permutations on [n] and sgn σ denotes the sign of a permutation
σ ∈ Sn. A square matrix S is said to be skew-symmetric if S⊤ = −S and all diagonal entries
are zero, where the latter condition cares the case when ch(K) = 2. For a skew-symmetric
matrix S = (Si,j)i,j∈[2n] ∈ K2n×2n of even order, the Pfaffian of S is defined as

Pf S :=
∑

σ∈F2n

sgn σ
n
∏

i=1

Sσ(2i−1),σ(2i), (3)

where F2n is the subset of S2n given by

F2n := {σ ∈ S2n | σ(1) < σ(3) · · · < σ(2n − 1) and σ(2i− 1) < σ(2i) for i ∈ [n]}. (4)
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It is well-known that

(Pf S)2 = det S, (5)

Pf ASA⊤ = det A Pf S (6)

hold, where A ∈ K2n×2n is any square matrix. The following formula is a generalization of the
Cauchy–Binet formula (1) to Pfaffian given by Ishikawa–Wakayama [25].

Proposition 2.1 ([25, Theorem 1]). Let S ∈ K2n×2n be a skew-symmetric matrix and A ∈
K2r×2n a square matrix. Suppose that the row and column sets of S and the column set of A
are indexed by E. Then it holds

Pf ASA⊤ =
∑

J⊆E:|J |=2r

det A[J ] Pf S[J, J ]. (7)

Let A be a square matrix partitioned as A =
(

X Y
Z W

)

. Suppose that X and W are square, and
W is nonsingular. The Schur complement of A with respect to W is the matrix X − Y W −1Z.
This matrix is the one that appears at the position of X after eliminating Y and Z by elementary
operations using W . Since elementary operations do not change the determinant, it holds

det A = det W det
(

X − Y W −1Z
)

. (8)

Elementary operations also retain the Pfaffian of a skew-symmetric matrix by (6). Thus if

S =
(

X Y
−Y ⊤ W

)

is skew-symmetric and W is nonsingular, we have

Pf S = Pf W Pf
(

X + Y W −1Y ⊤). (9)

2.2 Linear Matroid Intersection Problem and Pfaffian Pairs

The matroid intersection problem introduced by Edmonds [10, 11] is the following: given two
matroids M1 = (E,B1) and M2 = (E,B2) over the same ground set E, we find a common base
B ∈ B1∩B2 of M1 and M2. The linear matroid intersection problem is to find a common base of
two linear matroids. We regard the input of the linear matroid intersection problem as a matrix
pair (A1, A2), which is the pair of matrices A1, A2 ∈ Kr×n of the same size over the same ground
field K. We denote the set of common bases of A1 and A2 by B(A1, A2) := B(A1) ∩ B(A2).

The linear matroid intersection problem can be algebraically formulated as follows. For a
vector z = (zj)

j∈E
indexed by the common column set E of (A1, A2), we denote the diagonal

matrix diag(zj)
j∈E

by D(z). We also define a block matrix

ΞA1,A2(z) :=

(

O A1

A⊤
2 D(z)

)

, (10)

where O denotes the zero matrix of appropriate size. We henceforth omit the subscript A1, A2

of Ξ as it will be clear from the context.

Proposition 2.2 (see [18, 47]). Let (A1, A2) be a matrix pair and z = (zj)j∈E
a vector of

distinct indeterminates indexed by the common column set E of (A1, A2). Then the following
are equivalent:

(1) (A1, A2) has a common base.

(2) A1D(z)A⊤
2 is nonsingular.

(3) Ξ(z) is nonsingular.

9



Here, the nonsingularity in Proposition 2.2 is in the sense of matrices over the rational
function field K(z) := K({zj | j ∈ E}). As indicated by Tomizawa–Iri [47], the equivalence of
Proposition 2.2 (1) and (2) can be seen from the Cauchy–Binet formula (1) because the formula
expands det A1D(z)A⊤

2 as

det A1D(z)A⊤
2 =

∑

B∈B(A1,A2)

det A1[B] det A2[B]
∏

j∈B

zj. (11)

This equation means that det A1D(z)A⊤
2 6= 0 if and only if B(A1, A2) 6= ∅ since the factor on x

avoids cancellations in the summation. Considering the formula (8) on the Schur complement
and (11), we also have

det Ξ(z) = det A1D(z)−1A⊤
2 · det D(z) =

∑

B∈B(A1,A2)

det A1[B] det A2[B]
∏

j∈E\B

zj . (12)

Hence all the claims in Proposition 2.2 are equivalent. See also Harvey [22] and Murota [39,
Remark 2.3.37].

Now we define Pfaffian matrix pairs slightly generalizing that of Webb [52].

Definition 2.3 (Pfaffian matrix pair; see [52]). We say that a matrix pair (A1, A2) is Pfaffian
if there exists c ∈ K \ {0} such that det A1[B] det A2[B] = c for all B ∈ B(A1, A2). The value c
is called the constant of (A1, A2).

We abbreviate a Pfaffian matrix pair as a Pfaffian pair. If (A1, A2) is Pfaffian, nonzero terms
in the summation of (11) and (12) do not cancel out. Hence the following holds for Pfaffian
pairs.

Proposition 2.4. Let (A1, A2) be a Pfaffian pair of constant c and z = (zj)
j∈E

a vector indexed
by the common column set E of (A1, A2). Then it holds

det A1D(z)A⊤
2 = c

∑

B∈B(A1,A2)

∏

j∈B

zj , (13)

det Ξ(z) = c
∑

B∈B(A1,A2)

∏

j∈E\B

zj.

In particular, the number of common bases of (A1, A2) is equal to c−1 det A1A⊤
2 = c−1 det Ξ(1)

over K, where 1 denotes the vector of ones with appropriate dimension.

Next, consider a column-weighted version of matrix pairs. Let (A1, A2) be a matrix pair
and w : E → R a weight on the common column set E of (A1, A2). The weight w(J) of J ⊆ E
is defined as w(J) :=

∑

j∈J w(j). The weighted linear matroid intersection problem is to find
a common base of (A1, A2) that minimizes the weight w among all common bases. It is well-
known that one can algebraically encode the information on the weight w by putting it to the
power of an indeterminate θ, as the following proposition shows. We define θw :=

(

θw(j)
)

j∈E
.

Proposition 2.5. Let (A1, A2) be a matrix pair with column weight w : E → R and let θ be an
indeterminate. For x ∈ R, the coefficient of θx in det A1D

(

θw
)

A⊤
2 and the coefficient of θw(E)−x

in det Ξ
(

θw
)

are equal to

∑

B∈Bx

det A1[B] det A2[B], (14)

where Bx := {B ∈ B(A1, A2) | w(B) = x}. In particular, if (A1, A2) is Pfaffian with constant c,
the coefficients of θx in det A1D

(

θw
)

A⊤
2 and of θw(E)−x in det Ξ

(

tθw
)

are equal to c−1|Bx| over
K.
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Proof. By (11), we have

det A1D
(

θw
)

A⊤
2 =

∑

B∈B(A1,A2)

det A1[B] det A2[B]
∏

j∈B

θw(j)

=
∑

B∈B(A1,A2)

det A1[B] det A2[B]θw(B). (15)

Hence the coefficient of θx in (15) is equal to (14) for x ∈ R. We can show the claim for
det Ξ

(

θw
)

in the same way via (11).

2.3 Linear Matroid Parity Problem and Pfaffian Parities

Let M = (E,B) be a matroid with |E| being even. The ground set E is partitioned into
pairs, called lines. Let L be the set of lines. The matroid parity problem (also known as the
matchoid problem or the matroid matching problem), introduced by Lawler [29], is to find a
base of M consisting of lines. Such a base is called a parity base of M (with respect to L). In
the general case, the matroid parity problem requires exponential number of membership oracle
calls of B [34]. Nevertheless, Lovász [34] showed that the linear matroid parity problem admits
a polynomial-time algorithm, in which the linear matroid is given as a matrix A. Here, the
numbers of rows and columns of A are even, say, A ∈ K2r×2n. We call the pair (A, L) a (linear)
matroid parity. We regard parity bases of (A, L) as a subset of L and denote by B(A, L) the set
of all parity bases of M(A) with respect to L. For J ⊆ L, we denote by A[J ] the submatrix of
A consisting of columns corresponding to lines in J .

The linear matroid parity problem also has algebraic formulations. For a vector z = (zℓ)ℓ∈L

indexed by L, we denote by ∆L(z) the 2n × 2n skew-symmetric block-diagonal matrix defined
as follows: the row and column sets are indexed by E, and each block corresponding to a line

ℓ ∈ L is a 2×2 skew-symmetric matrix
(

0 +zℓ
−zℓ 0

)

. Similarly to (10), we define a skew-symmetric

block matrix

ΦA,L(z) :=

(

O A
−A⊤ ∆L(z)

)

. (16)

We also omit the subscripts L of ∆ and A, L of Φ as they will be always clear.

Proposition 2.6 ([19, 33]). Let (A, L) be a matroid parity and z = (zℓ)ℓ∈L a vector of distinct
indeterminates indexed by L. Then the following are equivalent:

(1) (A, L) has a parity base.

(2) A∆(z)A⊤ is nonsingular.

(3) Φ(z) is nonsingular.

We note that the matrix A∆(z)A⊤ in Proposition 2.6 (2) can also be written as

A∆(z)A⊤ = A1D(z)A⊤
2 −A2D(z)A⊤

1 =
∑

ℓ=(v,v̄)∈L

zℓ

(

ava⊤
v̄ − av̄a⊤

v

)

, (17)

where av := A[{v}] is the vth column of A for v ∈ E and A1, A2 are 2r × n submatrices of
A consisting of column vectors av and av̄ for each line (v, v̄) ∈ L, respectively. Lovász [33,
Theorem 3] described the equivalence of Proposition 2.6 (1) and (2) representing A∆(z)A⊤ in
the rightmost form of (17). The equivalence of Proposition 2.6 (1) and (3) is due to Geelen–
Iwata [19, Theorem 4.1]; see also Cheung–Lau–Leung [8] and Murota [39, Remark 7.3.23]. These
equivalences can also be observed from the following identities.
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Proposition 2.7. Let (A, L) be a matroid parity and z = (zℓ)ℓ∈L a vector indexed by L. Then
it holds

Pf A∆(z)A⊤ =
∑

B∈B(A,L)

det A[B]
∏

ℓ∈B

zℓ, (18)

Pf Φ(z) =
∑

B∈B(A,L)

det A[B]
∏

ℓ∈L\B

zℓ. (19)

Proof. Applying the the expanding formula (7) to Pf A∆(z)A⊤, we have

Pf A∆(z)A⊤ =
∑

J⊆E:|J |=2r

det A[J ] Pf ∆(z)[J, J ],

where 2r is the cardinality of rows of A and E is the columns of A. From the definitions of ∆(z)
and Pfaffian, ∆(z)[J, J ] is nonsingular only if J consists of lines. In this case, Pf ∆(z)[J, J ] is
equal to the product of zℓ for every line ℓ consisting J . Hence (18) is obtained.

The latter identity (19) is obtained by applying the formula (9) on the Schur complement to
Φ(z). Note that ∆(z) can be regarded as nonsingular by seeing each zℓ as an indeterminate.

Now we define Pfaffian matroid parities in the same manner as Definition 2.3.

Definition 2.8 (Pfaffian matroid parity). We say that a matroid parity (A, L) is Pfaffian if
there exists c ∈ K \ {0} such that det A[B] = c for all B ∈ B(A, L). The value c is called the
constant of (A, L).

We abbreviate Pfaffian matroid parity as Pfaffian parity for short. The following is imme-
diately obtained from Proposition 2.7 and Definition 2.8.

Proposition 2.9. Let (A, L) be a Pfaffian parity of constant c and z = (zℓ)ℓ∈L a vector indexed
by L. Then it holds

Pf A∆(z)A⊤ = c
∑

B∈B(A,L)

∏

ℓ∈B

zℓ,

Pf Φ(z) = c
∑

B∈B(A,L)

∏

ℓ∈L\B

zℓ.

In particular, the number of parity bases of (A, L) is equal to c−1 Pf A∆(1)A⊤ = c−1 Pf Φ(1)
over K.

We next consider the weighted linear matroid parity problem. Let (A, L) be a matroid parity
and w : L → R a weight on lines. The weight of J ⊆ L is defined as w(J) :=

∑

j∈J w(j). The
weighted linear matroid parity problem is to find a parity base of (A, L) having the minimum
weight with respect to w among all parity bases. The following is obtained in the same way as
Proposition 2.5 via Proposition 2.7; see also Iwata–Kobayashi [26].

Proposition 2.10. Let (A, L) be a matroid parity equipped with a line weight w : L → R. Let
θ be an indeterminate. For x ∈ R, the coefficient of θx in Pf A∆

(

θw
)

A⊤ and the coefficient of

θw(L)−x in Pf Φ
(

θw
)

are equal to

∑

B∈Bx

det A[B],

where Bx := {B ∈ B(A, L) | w(B) = x}. In particular, if (A, L) is Pfaffian with constant c, the
coefficients of θx in Pf A∆

(

θw
)

A⊤ and of θw(L)−x in Pf Φ
(

θw
)

are equal to c−1|Bx| over K.

2.4 Reducing Pfaffian Pairs to Pfaffian Parities

Lawler [29] presented the following reduction of the linear matroid intersection problem to the
linear matroid parity problem. Let (A1, A2) be an r × n matrix pair with common column set
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E. We define a 2r × 2n matrix A as follows: we associate each two columns of A with j ∈ E

and set the 2r × 2 submatrix associated with j as
(

A1[{j}] 0
0 A2[{j}]

)

. Through this association,

we regard E as the set of lines of A. Then B ⊆ E is a common base of (A1, A2) if and only if
B is a parity base of (A, E) [29, Chapter 9.2]. We show that when (A1, A2) is Pfaffian, so is
(A, E).

Proposition 2.11. Let (A1, A2) be an r×n matrix pair and (A, E) the 2r× 2n matroid parity
defined above. If (A1, A2) is Pfaffian with constant c, then (A, E) is Pfaffian with constant

(−1)
r(r−1)

2 c.

Proof. Let B ⊆ E be a common base of (A1, A2) as well as a parity base of (A, E). By an

appropriate column permutation, A[B] is transformed into
(

A1[B] O

O A2[B]

)

, whose the determinant

is det A1[B] det A2[B] = c. The sign of this column permutation is (−1)1+···+(r−1) = (−1)
r(r−1)

2 .
Hence the claim holds.

3 Examples

In this section, we enumerate discrete structures that can be represented as common bases of
Pfaffian pairs or parity bases of Pfaffian parities.

3.1 Regular Matroids and Spanning Trees

A matroid is called regular if it is represented by a totally unimodular matrix, or equivalently,
it is representable by a matrix over any field. If A is a totally unimodular matrix, a pair (A, A)
is clearly Pfaffian with constant 1. Hence, as observed by Webb [52, Section 3.5], the number
of bases of A is equal to det AA⊤ by B(A) = B(A, A) and Proposition 2.4. This well-known
formula on regular matroids was initially indicated by Maurer [37].

Regular matroids typically arise from graphs. Let G = (V, E) be a connected undirected
graph and B(G) ⊆ 2E denote the set of all spanning trees of G. Then M(G) := (E,B(G))
forms a matroid, called the graphic matroid of G. Consider any orientation ~G = (V, ~E) of
G. Throughout this paper, we denote the directed edge in ~E corresponding to e ∈ E by ~e
and the directed edge set corresponding to F ⊆ E by ~F . We define the incidence matrix
A = (Av,e)v∈V,e∈E of ~G as a matrix over Q by

Av,e :=















+1 (v = ∂+~e),

−1 (v = ∂−~e),

0 (otherwise)

(20)

for v ∈ V and e ∈ E, where ∂+~e and ∂−~e denote the tail and the head of ~e, respectively.
The incidence matrix A is known to be totally unimodular. Let A(r) denote the submatrix
of A(r) obtained by removing the rth row of A for r ∈ V . Then A(r) represents B(G), i.e.,

B(G) = B
(

A(r)
)

. Hence the number of spanning trees of G is equal to det A(r)A(r)⊤
, which is

the (r, r)th cofactor of the Laplacian matrix AA⊤ of G. This is exactly Kirchhoff’s matrix-tree
theorem [28]. Refer to [41] for details of regular and graphic matroids

3.2 Regular Delta-Matroids and Euler Tours in 4-Regular Directed Graphs

Let S ∈ Qn×n be a skew-symmetric matrix whose rows and columns are indexed by a finite
set E. We also assume that S is principally unimodular ; that is, any principal minor of S is
in {+1, 0,−1} [5]. Since S is skew-symmetric, all the principal minors of S must be 0 or +1.
Define

F(S) := {F ⊆ E | S[F, F ] is nonsingular}
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and denote (E,F(S)) by D(S). For X ⊆ E, we let D(S)△X := (E,F(S)△X) with

F(S)△X := {F △X | F ∈ F(S)},

where F △X means the symmetric difference of F and X, that is, F △X := (F \X)∪ (X \F ).
Then D(S)△X is called the regular delta-matroid represented by S (and X) [4, 17]. Elements
in F(S)△X are called feasible sets of D(S)△X. Regular delta-matroids are a generalization
of regular matroids; see [5].

Webb [52, Section 3.5] indicated that the set of nonsingular principal submatrices of a
skew-symmetric totally unimodular matrix can be represented by a Pfaffian pair. This can be
slightly generalized to the feasible sets of a regular delta-matroid as follows. Define matrices

A1 :=
(

S In

)

and A2 :=
(

In In

)

with common column set E ∪ E, where In is the identity

matrix of order n = |E| and E is a disjoint copy of E corresponding to the right blocks of
A1 and A2. Note that A1 is not necessarily totally unimodular. For J ⊆ E, denote by J the
corresponding subset of E to J .

Proposition 3.1 (see [52, Section 3.5]). The matrix pair (A1, A2) is Pfaffian with constant 1.
In addition, there is a one-to-one correspondence between common bases of (A1, A2) and feasible
sets of D(S)△X given by B 7→ (B ∩ E)△X for B ∈ B(A1, A2).

Proof. We first show that (A1, A2) is Pfaffian. Note that J ⊆ E∪E with |J | = n is a base of A2

if and only if E \ J = J ∩E. Taking such a column subset J , put T1 := A1[J ] and T2 := A2[J ].
By a row permutation on T1 and T2, we transform T1 and T2 to

T1 =

(

S[J ∩ E, J ∩ E] O
S[E \ J, J ∩ E] In−k

)

, T2 =

(

Ik O
O In−k

)

,

where k := |J ∩E|. Note that det T1 det T2 does not change since the same row permutation is
performed on both T1 and T2. Now we have

det T1 det T2 = det S[J ∩ E, J ∩ E]. (21)

Since S is skew symmetric and principally unimodular, (21) is either 0 or 1. Hence (A1, A2) is
Pfaffian with constant 1.

The equation (21) also implies that B ⊆ E ∪ E is a common base of (A1, A2) if and only
if E \B = B ∩ E and B ∩ E ∈ F(S). Hence B ∈ B(A1, A2) corresponds to B ∩ E ∈ F(S)
one-to-one. The latter part of the proposition is obtained by taking the symmetric difference
with X.

Proposition 3.1 yields the following corollary.

Corollary 3.2. The number of feasible sets of a regular delta-matroid D(S)△X is equal to
det(S + In).

Taking the symmetric difference with X does not affect the number of feasible sets. However,
this changes the correspondence between elements of E and columns of (A1, A2). Namely,
labeling tj to an element j ∈ E in D(S)△X is equivalent to labeling tj in (A1, A2) to j ∈ E
if j /∈ X and to j ∈ E if j ∈ X. Note this fact when applying the formula (13) to regular
delta-matroids.

A combinatorial example of regular delta-matroids was given by Bouchet [4] as follows. Let
G = (V, E) be a directed 4-regular Eulerian graph; that is, G is strongly connected, and every
vertex of G is of in- and out-degree two. A (directed) Euler tour of G is a tour that traverses
every edge exactly once. Any Euler tour T of G visits every vertex exactly twice as G is 4-
regular. For each vertex v ∈ V with incoming edges e1, e2 ∈ E and outgoing edges e3, e4 ∈ E,
there are exactly two possibilities of the way to visit v twice; that is, T traverses e3 just after e1

and e4 just after e2, or e4 just after e1 and e3 just after e2. Therefore, fixing an Euler tour U of
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G, we can represent every Euler tour T of G as a vertex subset FU (T ) ⊆ V defined as follows:
v ∈ V is in FU (T ) if and only if T visits v ∈ V in the different way from U . The map T 7→ FU (T )
is injective. Define DU (G) := (V,FU (G)) with FU (G) := {FU (T ) | T is an Euler tour of G}.

For each vertex v ∈ V , we label the two directed edges leaving v as e+
v and e−

v . Define a
skew-symmetric matrix SU =

(

SU
u,v

)

u,v∈V
over Q as

SU
u,v :=















+1 (U traverses edges in the order of · · · e+
u · · · e

+
v · · · e

−
u · · · e

−
v · · · ),

−1 (U traverses edges in the order of · · · e+
u · · · e

−
v · · · e

−
u · · · e

+
v · · · ),

0 (otherwise)

for u, v ∈ V . Then SU is principally unimodular [4, Theorem 11] and DU (G) coincides with
D
(

SU
)

[4, Corollary 12]. Hence the set of Euler tours in a 4-regular directed graph can be
represented as common bases of a Pfaffian pair through Proposition 3.1.

Remark 3.3. For an arbitrary directed graph G = (V, E) each of whose vertex has the same
in- and out-degree, there exists a formula, so-called the BEST theorem, to count the number of
Euler tours in G (see, e.g., [7, Theorem 6.36]). This theorem states that the number of Euler
tours in G is

T
∏

v∈V

(dv − 1)!, (22)

where dv is the in-degree (= out-degree) of v ∈ V and T is the number of r-arborescences of G
with arbitrary root r ∈ V .

In the case where G is 4-regular, the BEST theorem (22) claims that the number of Euler
tours in G is equal to T , which can be computed by the directed matrix-tree theorem [48]. Hence
the Pfaffian-pair representation of Euler tours in 4-regular directed graph might seem useless.
Nevertheless, this representation is needed when we apply the formula (13) that includes a
variable z because the corresponding “symbolic” version of the BEST theorem is yet unknown.

3.3 Arborescences

Let G = (V, E) be a directed graph and take a vertex r ∈ V . An r-arborescence, or a directed
tree rooted at r, of G is an edge subset F ⊆ E satisfying the following:

(A1) F is a spanning tree if the orientation is ignored.

(A2) The in-degree of every v ∈ V \ {r} is exactly one in F .

It is well-known that r-arborescences can be represented as common bases of a matrix pair.
Let A be the incidence matrix (20) of G and R = (Rv,e)

v∈V,e∈E
a matrix over Q defined by

Rv,e :=

{

−1 (v = ∂−e),

0 (otherwise)

for v ∈ V and e ∈ E. The matrix R is totally unimodular since each column has at most
one nonzero entry. Matroids represented by such matrices are called partition matroids. Put
A1 := A(r) and A2 := R(r). Then B ⊆ E is a base of A1 and A2 if and only if B satisfies (A1)
and (A2), respectively. Hence common bases of (A1, A2) correspond to r-arborescences of G.

The matrix L := AR⊤ is called the (directed) Laplacian matrix of G. The directed matrix-
tree theorem due to Tutte [48] claims that the (r, r)th cofactor of L, which is equal to det A1A⊤

2 ,
coincides with the number of r-arborescences of G. This implies:

Proposition 3.4. The pair (A1, A2) is Pfaffian with constant 1.
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Proof. Since both A1 and A2 are totally unimodular, det A1[B] det A2[B] is ±1 for all B ∈
B(A1, A2). If (A1, A2) is not Pfaffian, det A1A⊤

2 is less than B(A1, A2) due to cancellations in the
right-hand side of (1). This contradicts the statement of the directed matrix-tree theorem.

We can directly show that (A1, A2) is Pfaffian without the directed matrix-tree theorem;
see the proof of [7, Theorem 6.35] for example. Such a proof justifies the directed matrix-tree
theorem via the Cauchy–Binet formula (1) the other way around.

3.4 Perfect Matchings of Pfaffian Graphs

A matching of an undirected graph G is an edge subset M such that no two disjoint edges in M
share the same end. We also define a matching for a directed graph by ignoring its orientation.
A matching M is said to be perfect if every vertex of G is covered by some edge in G. Matching
theory has two faces depending on whether G is bipartite or general.

First, let G = (U ∪ V, E) be a simple undirected bipartite graph. The vertex set of G is
bipartitioned as {U, V } with n := |U | = |V | and all edges are between U and V . We define
totally unimodular matrices AU =

(

AU
u,e

)

u∈U,e∈E
and AV =

(

AV
v,e

)

v∈V,e∈E
as

AU
u,e :=

{

+1 (u ∈ e),

0 (otherwise),
AV

v,e :=

{

+1 (v ∈ e),

0 (otherwise)

for u ∈ U, v ∈ V and e ∈ E. Note that both M(AU ) and M(AV ) are partition matroids. Then
M ⊆ E is a perfect matching of G if and only if M ∈ B(AU , AV ).

Suppose that vertices in U and V are ordered as u1, . . . , un and v1, . . . , vn. For i ∈ [n], the
ith rows of AU and AV are associated with ui and vi, respectively. A perfect matching M of G
uniquely corresponds to a permutation σ ∈ Sn on [n] such that

{

ui, vσ(i)

}

∈ M for all i ∈ [n].
Denote this permutation by σM . We define the sign of M (with respect to the current ordering
of U and V ) as sgn M := sgn σM .

Let z = (ze)e∈E be a vector of distinct indeterminates indexed by E. The matrix A1D(z)A⊤
2

is called the Edmonds matrix of G. Its (i, j)th entry is ze if e = {ui, vj} ∈ E and 0 otherwise
for i, j ∈ [n]. By the definition (2) of the determinant, it holds

det A1D(z)A⊤
2 =

∑

M∈B(A1,A2)

sgn M
∏

e∈M

ze. (23)

On the other hand, by (11), we have

det A1D(z)A⊤
2 =

∑

M∈B(A1,A2)

det A1[M ] det A2[M ]
∏

e∈M

ze. (24)

Comparing the coefficients of (23) and (24), we have the following.

Lemma 3.5. The sign of a perfect matching M of G is equal to det A1[M ] det A2[M ].

Consider an orientation ~G = (U ∪ V, ~E) of G. We define a vector s = (se)e∈E indexed by E
as

se :=

{

+1 (~e = (u, v)),

−1 (~e = (v, u))

for e = {u, v} ∈ E with u ∈ U and v ∈ V . Put ~A1 := A1D(s) and ~A2 := A2. Namely, ~A1 is a
matrix obtained from A1 by reversing the sign of every column corresponding to an edge from
V to U . Note that B(A1, A2) = B( ~A1, ~A2). The matrix N =

(

Ni,j

)

i,j∈[n]
:= ~A1

~A⊤
2 = A1D(s)A⊤

2

is called the (directed) bipartite adjacency matrix of ~G. Its (i, j)th entry Ni,j is

Ni,j =















+1 ((ui, vj) ∈ ~E),

−1 ((vj , ui) ∈ ~E),

0 (otherwise)

(25)
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for i, j ∈ [n]. Recall that ~M is also called a matching of ~G for a matching M of G. We define
the sign of a perfect matching ~M of ~G as

sgn ~M := sgn M
∏

e∈M

se = sgn M
n
∏

i=1

Ni,σM (i) ∈ {+1,−1}. (26)

Lemma 3.6. The sign of a perfect matching ~M of ~G is equal to det ~A1[M ] det ~A2[M ].

Proof. By Lemma 3.5, we have sgn M = det A1[M ] det A2[M ]. We also have det ~A1[M ] =
det A1[M ]

∏

e∈M se and det ~A2[M ] = det A2[M ] by the definitions of ~A1 and ~A2. Hence the
claim holds.

An orientation ~G of G is called Pfaffian if the signs of all perfect matchings of ~G are
the same [27, 46]. The following proposition, which was observed by Webb [52], holds from
Lemma 3.6.

Theorem 3.7 ([52, Observation 3.7]). Let G be a bipartite graph, ~G an orientation of G, and
( ~A1, ~A2) the matrix pair defined above from ~G. Then B( ~A1, ~A2) coincides with the set of perfect
matchings of G. In addition, if ~G is Pfaffian, ( ~A1, ~A2) is also Pfaffian with constant sgn ~M ,
where M is an arbitrary perfect matching of G.

We extend the above arguments to nonbipartite graphs. Let G = (V, E) be a simple undi-
rected graph that is not necessarily bipartite. Suppose that |V | is even and vertices are ordered
as v1, . . . , v2n. We define a totally unimodular matrix A ∈ R|V |×2|E| as follows: each row is
indexed by v ∈ V and each two columns are associated with an edge e ∈ E. For v ∈ V and
e = {vi, vj} ∈ E with i < j, the corresponding 1× 2 submatrix of A to v and e is defined to be
(

+1 0
)

if v = vi,
(

0 +1
)

if v = vj and O otherwise. We regard each e ∈ E as a line of A.

Then M ⊆ E is a perfect matching of G if and only if M ∈ B(A, E) [29, Chapter 9.2].
Recall that F2n is the subset of S2n defined by (4). A perfect matching M of G uniquely

corresponds to a permutation σ ∈ F2n such that
{

vσ(2i−1), vσ(2i)

}

∈ M for all i ∈ [n]. Denote
this permutation by σM . We define the sign of M as sgn M := sgn σM .

Let z = (ze)e∈E be a vector of distinct indeterminates indexed by E. The skew-symmetric
matrix A∆(z)A⊤ is called the Tutte matrix of G. Its (i, j)th entry is equal to ze if e = {ui, vj} ∈
E and i < j, to −ze if e = {ui, vj} ∈ E and i > j and to 0 otherwise for i, j ∈ [n]. By the
definition (3) of the Pfaffian, it holds

Pf A∆(z)A⊤ =
∑

M∈B(A,E)

sgn M
∏

e∈M

ze.

We also have

Pf A∆(z)A⊤ =
∑

M∈B(A,E)

det A[M ]
∏

e∈M

ze.

by (18). Hence the following holds as an extension of Lemma 3.5.

Lemma 3.8. The sign of a perfect matching M of G is equal to det A[M ].

In the same way as the bipartite case, we next consider an orientation ~G = (V, ~E) of G.
Define a vector s = (se)e∈E indexed by E as follows: for each ~e = (vi, vj) ∈ ~E, we set

se :=

{

+1 (i < j),

−1 (i > j).

We also construct a symmetric block diagonal matrix X = diag(Xe)e∈E, where Xe is a 2 × 2

matrix defined by Xe := I2 if se = +1 and Xe :=
(

0 +1
+1 0

)

if se = −1 for e ∈ E. Put ~A := AX,

i.e., ~A is obtained from A by interchanging two columns associated with each (vi, vj) ∈ ~E with
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i > j. Note that X∆(1)X = ∆(s) and B(A, E) = B( ~A, E) hold. The skew-symmetric matrix
S =

(

Si,j

)

i,j∈[2n]
:= ~A∆(1) ~A⊤ = A∆(s)A⊤ is called the (directed) skew-symmetric adjacency

matrix of ~G. It can be confirmed that

Si,j =















+1 ((vi, vj) ∈ ~E),

−1 ((vj , vi) ∈ ~E),

0 (otherwise)

holds for i, j ∈ [2n]. For a perfect matching M of G, it holds se = SσM (2i−1),σM (2i) for every
e =

{

vσM (2i−1), vσM (2i)

}

∈ M since σM (2i − 1) < σM (2i). We define the sign of a perfect

matching ~M of ~G as

sgn ~M := sgn M
∏

e∈M

se = sgn M
n
∏

i=1

SσM (2i−1),σM (2i) ∈ {+1,−1}.

Lemma 3.9. The sign of a perfect matching ~M of ~G is equal to det ~A[M ].

Proof. The claim follows from det ~A[M ] = det A[M ]
∏

e∈M se and sgn M = det A[M ] by Lemma 3.8.

An orientation ~G of G is also called Pfaffian if the signs of all perfect matchings of ~G are
constant. The following holds from Lemma 3.9 as a generalization of Theorem 3.7.

Theorem 3.10. Let G = (V, E) be a graph, ~G an orientation of G and ~A the matrix defined
above from ~G. Then B( ~A, E) coincides with the set of perfect matchings of G. In addition,
if ~G is Pfaffian, ( ~A, E) is also Pfaffian with constant sgn ~M , where M is an arbitrary perfect
matching of G.

3.5 Spanning Hypertrees of 3-Pfaffian 3-Uniform Hypergraphs

We introduce basic notions of hypergraphs. A 3-graph, or a 3-uniform hypergraph is a pair
H = (V, E), where V is a finite set and E ⊆

(V
3

)

is a subset of unordered triples of elements in
V . Elements in V and E are called vertices and hyperedges of H, respectively. An s–t path of
H is an alternating sequence s = v0, e1, v1, . . . , eℓ, vℓ = t of disjoint vertices v0, . . . , vℓ ⊆ V and
disjoint hyperedges e1, . . . , eℓ ⊆ E such that {vi−1, vi} ⊆ ei for i ∈ [ℓ]. A cycle is an alternating
sequence satisfying the above condition with v0 = vℓ and ℓ ≥ 2. We regard paths and cycles as
hyperedge subsets. A hyperedge subset F ⊆ E is called connected if there exists a path in F
between any two vertices contained in some hyperedge in F . A hyperforest of H is a hyperedge
subset having no cycles, and a hypertree is a connected hyperforest. A hypertree T is said to
be spanning if any vertex of H is contained in some hyperedge in T . It holds |V | = 2|T |+ 1 for
any spanning hypertree T . Namely, if H has a spanning hypertree, |V | must be odd.

Lovász [34] showed that one can find a spanning hypertree of a 3-graph by solving the linear
(graphic) matroid parity problem as follows. Let H = (V, E) be a 3-graph with |V | being odd.
We construct a multiple graph G = (V, E) as follows: starting from E = ∅, for each hyperedge
{u, v, w} ∈ E , we arbitrary add two edges out of {u, v}, {v, w}, {w, u} to E. Now each hyperedge
in E is associated with two edges in E. By this association, we regard each hyperedge in E as
a line of E. It is easily checked that T ⊆ E is a spanning hypertree of H if and only if the
edge subset of E corresponding to T is a spanning tree of G. Hence spanning hypertrees of H
correspond to parity bases of M(G) with respect to the line set E .

Masbaum–Vaintrob [36] established the Pfaffian matrix-tree theorem for enumerating hy-
pertrees of a 3-graph. To describe the theorem, we orient each hyperedge and then define the
sign of a spanning hypertree based on the description of [21]. Let H = (V, E) be a 3-graph
and suppose that vertices are ordered as v1, . . . , v2n+1, where |V | = 2n + 1. Let ~H = (V, ~E)
be an orientation of H, i.e., ~E is the set of ordered triples. Elements in ~E are called directed
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hyperedges. As in the orientation of graphs, we denote the directed hyperedge corresponding to
e ∈ E by ~e and the set of directed hyperedges corresponding to F ⊆ E by ~F . For each directed
hyperedge ~e = (vi, vj , vk) ∈ ~E , we associate a cyclic permutation σ~e := (i j k) with ~e. Arbitrary
fixing an ordering of hyperedges in a spanning hypertree T , we put

σ :=
∏

e∈T

σ~e. (27)

Then σ forms a cyclic permutation (s1 s2 · · · s2n+1) over [2n + 1] as shown in [36, Proposi-
tion 3.4]. Let s ∈ S2n+1 be a permutation defined by s(i) := si for i ∈ [2n + 1]. We define the
sign of ~T as sgn ~T := sgn s. While σ and s depend on the order of the product in (27), sgn ~T is
well-defined [36, Proposition 3.8].

Now we are ready to describe the Pfaffian matrix-tree theorem. Let z = (ze)e∈E be a vector
of distinct indeterminates indexed by E . For distinct i, j, k ∈ [2n + 1], let mijk be the inversion
number of (i, j, k) and put εijk := (−1)mijk . Namely, εijk = +1 if i < j < k, j < k < i, or
k < i < j and εijk = −1 otherwise. We define a skew-symmetric matrix Λ(z) = (Λi,j(z))

i,j∈[2n+1]
by

Λi,j(z) :=
∑

k∈[2n+1]:e={vi,vj ,vk}∈E

εijkze.

For r ∈ [2n + 1], let Λ(r)(z) denote the submatrix of Λ(z) obtained by removing the rth row
and column.

Theorem 3.11 (Pfaffian matrix-tree theorem [36, Theorem 5.3]). In the above setting, it holds

Pf Λ(r)(z) = (−1)r−1
∑

T ∈T

sgn ~T
∏

e∈T

ze (28)

for r ∈ [2n + 1], where T is the set of all spanning hypertrees of H.

Recall the construction of the multiple undirected graph G from H described above. We
shall construct a multiple directed graph ~G = (V, ~E) reflecting the orientation ~H as follows:
starting from ~E = ∅, for each (vi, vj , vk) ∈ ~E , we add (vi, vj) and (vi, vk) to ~E. Let A be
the incidence matrix (20) of ~G. We arrange the rows and columns of A so that the ith row
corresponds to vi for i ∈ [2n + 1], and in the two columns associated with each (vi, vj , vk) ∈ ~E ,
the column indexed by (vi, vj) is in the left of that by (vi, vk). Then the following holds.

Lemma 3.12. It holds A∆(z)A⊤ = Λ(z).

Proof. Take ~e = (vi, vj , vk) ∈ ~E and suppose that i < j < k. The 3× 3 submatrix of A∆(z)A⊤

indexed by {i, j, k} is







+1 +1
−1 0

0 −1







(

0 ze

−ze 0

)(

+1 −1 0
+1 0 −1

)

=







0 +ze −ze

−ze 0 +ze

+ze −ze 0






=







0 εijkze εikjze

εjikze 0 εjkize

εkijze εkjize 0






,

which agrees with the contribution of ze in Λ(z). Cases of other orderings of i, j, k are the
same.

Recall that A(r) denotes the submatrix of A obtained by removing the rth row for r ∈
[2n+1]. Note that A(r) represents M(G) and hence B

(

A(r), E
)

coincides with the set of spanning

hypertrees of H one-to-one. Using the Pfaffian matrix-tree theorem, we can associate sgn ~T with
det A(r)[T ] as follows.

Lemma 3.13. For a spanning hypertree T of H and r ∈ [2n + 1], the sign of ~T is equal to
(−1)r−1 det A(r)[T ].
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Proof. By Lemma 3.12 and (18), we have

Pf Λ(r)(z) = Pf A(r)∆(z)A(r)⊤
=

∑

T ∈B(A(r),E)

det A(r)[T ]
∏

e∈T

ze. (29)

Comparing the coefficients of (28) and (29), we obtain the claim.

An orientation of a 3-graph H is said to be 3-Pfaffian if sgn ~T is constant for all spanning
hypertree T of H [21]. A 3-graph is called 3-Pfaffian if it admits a 3-Pfaffian orientation. By
Lemma 3.13, the following holds.

Theorem 3.14. Let H = (V, E) be a 3-graph, ~H an orientation of H and A the matrix defined
above from ~H. Then B

(

A(r), E
)

corresponds to spanning hypertrees of H one-to-one for r ∈ [|V |].

In addition, when ~H is 3-Pfaffian, then
(

A(r), E
)

is Pfaffian with constant (−1)r−1 sgn ~T , where
T is an arbitrary spanning hypertree of H.

The above proof of Lemma 3.13 relies on the Pfaffian matrix-tree theorem. In the following,
we give an alternative proof of Lemma 3.13 without the Pfaffian matrix-tree theorem. It provides
a new proof of the Pfaffian matrix-tree theorem via Lemma 3.12 and (18).

Proof (of Lemma 3.13). We regard T as a hypertree rooted at r. We arrange hyperedges in T
as e1, . . . , en so that e1 contains vr and |ej ∩ (e1 ∪ · · · ∪ ej−1)| = 1 for every 2 ≤ j ≤ n. Such an
ordering is obtained by traversing T in pre-order or breadth-first order. For j ∈ [n], we define
tj, pj , qj ∈ [2n + 1] as follows. Put t1 := r and take p1 and q1 so that (t1, p1, q1) is equal to ~e1

up to an even permutation. For j ≥ 1, the hyperedge ~ej consists of one vertex contained in
e1 ∪ · · · ∪ ej−1 and two vertices which do not occur in e1 ∪ · · · ∪ ej−1. We denote the former
vertex by vtj

and the latter two vertices by vpj
and vqj

, where (vtj
, vpj

, vqj
) is equal to ~ej up to

an even permutation.
Permuting rows and columns, we transform A(r)[T ] into a matrix X as follows. The lines

(columns) are arranged in the same order as hyperedges. The row permutation is performed so
that vpj

corresponds to the (2j−1)st row and vqj
corresponds to the 2jth row for j ∈ [n]. Then X

is a block upper-triangular matrix whose the jth diagonal block is
(

−1 0
0 −1

)

if ~ej = (vtj
, vpj

, vqj
),

(

+1 +1
−1 0

)

if ~ej = (vpj
, vqj

, vtj
), and

(

0 −1
+1 +1

)

if ~ej = (vqj
, vtj

, vpj
). The determinants of those three

matrices are 1, and thus we have det X = 1. The sign of the line permutation is 1 and the sign
of the row permutation is (−1)r−1 sgn τ , where

τ :=

(

1 2 3 4 · · · 2n − 1 2n 2n + 1
p1 q1 p2 q2 · · · pn qn r

)

.

Hence we have det A(r)[T ] = (−1)r−1 sgn τ .
We next show sgn τ = sgn ~T , which implies the claim. For i ∈ [2n + 1], let Ti denote the

subhypertree of T rooted at vi, i.e., the set of hyperedges e in T such that the unique v–vr path
in T contains vi for every v ∈ e. Note that Ti might be empty. Put Ri := {j ∈ [n] | vi ∈ ej ∈ Ti}.
We recursively define a function f : [2n + 1]→ S2n+1 by

f(i) :=
∏

j∈Ri

f(qj)(tj pj qj)f(pj).

Then σ := f(r) is the product of (tj pj qj) for ej ∈ T in some order. As we have men-

tioned in defining sgn ~T , the permutation σ is cyclic. Suppose σ = (s1 · · · s2n+1). Note that
{s1, . . . , s2n+1} = V = {p1, q1, . . . , pn, qn, r}. We have σ(pj) = qj for j ∈ [n] because every hy-
peredge containing qj appears the right of (tj pj qj) in the sequence of products of permutations
and (tj pj qj) maps pj to qj. This means that (s1, s2, . . . , s2n+1) is equal to (p1, q1, p2, . . . , qn, r)

up to an even permutation. Hence sgn ~T is equal to sgn τ by the definition of sgn ~T .
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Remark 3.15. As mentioned by Hirschiman–Reiner [24], Kirchhoff’s matrix-tree theorem has
at least three different well-known proofs: one via the Cauchy-Binet formula (1), one via
deletion-contraction induction, and one via the sign-reversing involution. The original proof
of the Pfaffian matrix-tree theorem by Masbaum–Vaintrob [36] is based on an analog of deletion-
contraction induction. Hirschiman–Reiner [24] provided the second proof using the sign-reversing
involution. Our proof above is the third one, which is analogous to the proof of Kirchhoff’s
matrix-tree theorem via the Cauchy-Binet formula.

4 Examples from Disjoint S-Path Problem

Continued from Section 3, this section provides further examples of Pfaffian pairs and parities
in the framework of Mader’s disjoint S-path problem.

4.1 Disjoint S–T Paths on Directed Acyclic Graphs

Let G = (V, E) be a directed acyclic graph (DAG) and take disjoint vertex subsets S, T ⊆ V
with k := |S| = |V |. Suppose that vertices in S and T are ordered as s1, . . . , sk and t1, . . . , tk.
We assume that the in-degree of si and the out-degree of tj are zero for all i, j ∈ [k]. We regard
directed paths of G as edge subsets. A (directed) S–T path P ⊆ E of G is the union of k
directed paths P1, . . . , Pk of G satisfying the following:

(P1) There exists a permutation σ ∈ Sk of [k] such that every Pi is a path from si to tσ(i)

for i ∈ [k].

We call an S–T path P (vertex-)disjoint if Pi and Pj have no common vertices for distinct
i, j ∈ [k]. We denote the permutation in (P1) by σP . Note that σP is well-defined for disjoint
S–T paths. We define the sign of a disjoint S–T path P as sgn P := sgn σP .

We introduce the Lindström–Gessel–Viennot (LGV) lemma, which was provided by Gessel–
Viennot [20] based on the work of Lindström [31]. Let z = (ze)e∈E be a vector of distinct
indeterminates indexed by E. Define a k × k matrix Ω(z) = (Ωi,j(z))

i,j∈[k] by

Ωi,j(z) :=
∑

P ∈Pi,j

∏

e∈P

ze (30)

for i, j ∈ [k], where Pi,j is the set of all disjoint si–tj paths of G.

Lemma 4.1 (LGV lemma [20, 31]). It holds

det Ω(z) =
∑

P ∈P

sgn P
∏

e∈P

ze,

where P is the set of all disjoint S–T paths of G.

We say that (S, T ) is in the LGV position on G if sgn P is constant for any disjoint S–T
path P of G. When (S, T ) is in the LGV position, the number of disjoint S–T paths of G can
be computed through the LGV lemma.

The disjoint S–T path problem on a DAG G = (V, E), which is to find a disjoint S–T path
of G, can be reduced to the bipartite matching problem. We review the reduction presented in
the proof of [13, Theorem 2.5.9]. Let ṼS and ṼT be disjoint copies of Ṽ := V \ (S ∪ T ). For
v ∈ Ṽ , we denote the corresponding vertices to v in ṼS and ṼT by vs and vt, respectively. Also
vs and vt indicate v itself for v ∈ S and v ∈ T , respectively. We construct a bipartite graph Γ
as follows. The vertex set of Γ is the disjoint union of VS := S ∪ ṼS and VT := T ∪ ṼT . The
edge set of Γ is F1 ∪ F2, where

F1 := {{us, vt} | (u, v) ∈ E},

F2 :=
{

{vs, vt}
∣

∣ v ∈ Ṽ
}

.
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Lemma 4.2 (see [13, Theorem 2.5.9]). There is a one-to-one correspondence between disjoint
S–T paths of G and perfect matchings of Γ.

Proof. Let P be a disjoint S–T path of G and U ⊆ V the set of vertices covered by P . Let M
be the union of M1 and M2, where

M1 := {{us, vt} | (u, v) ∈ P} ⊆ F1,

M2 :=
{

{vs, vt}
∣

∣ v ∈ Ṽ \ U
}

⊆ F2.

Then each us ∈ VS is covered by {us, vt} ∈M1 for some vt ∈ VT if u ∈ U and by {us, ut} ∈M2

if u /∈ U . In addition, such an edge in M is unique since P is disjoint. The same argument
holds for vertices in VT . Hence M is a perfect matching of Γ.

Conversely, let M be a perfect matching of Γ. Define P := {(u, v) | {us, vt} ∈ M ∩ F1}.
Then the in- and out-degrees of v ∈ Ṽ are the same (zero or one) and the in-degree of tj ∈ T
and the out-degree of si ∈ S are one in P . Thus P is the disjoint union of a disjoint S–T path
P ′ of G and cycles on Ṽ . In particular, since G is acyclic, it holds P = P ′. It is easily confirmed
that the former and the latter correspondences are inversely mapped.

Orienting every edge of Γ appropriately, we show that the correspondence given in Lemma 4.2
preserves the signs of disjoint S–T paths and perfect matchings up to the factor of (−1)k.
Suppose that vertices in VS and VT are ordered so that the first k vertices are s1, . . . , sk and
t1, . . . , tk, respectively. Construct a directed bipartite graph ~Γ = (VS ∪ VT , ~F1 ∪ ~F2), where ~F1

is the orientation of F1 from VT to VS and ~F2 is the orientation of F2 from VS to VT . Recall
from Section 3.4 that sgn ~M is defined by (26) for a perfect matching M of Γ.

Lemma 4.3. Let P be a disjoint S–T path of G and M the perfect matching of Γ corresponding
to P . Then it holds sgn P = (−1)k sgn ~M .

Proof. Let ~Γ∗ be the directed bipartite graph obtained from ~Γ by appending k directed edges

~F3 :=
{(

tσP (i), si

) ∣

∣ i ∈ [k]
}

.

Then ~M ′ := ~F2 ∪ ~F3 is a perfect matching of ~Γ∗. It is clear that sgn M ′ = sgn P . The number
of edges in ~M ′ from VT to VS is

∣

∣~F3

∣

∣ = k. Hence the sign of ~M ′ is (−1)k sgn P .

We show sgn ~M = sgn ~M , which implies the claim. For i ∈ [k], let Pi be the si–tσP (i) path

in P and Ui the set of vertices in Ṽ covered by Pi. Let ~Ci be the disjoint union of ~Ci,1, ~Ci,2 and
~Ci,3 defined by

~Ci,1 := {(vt, us) | (u, v) ∈ Pi} ⊆ ~F1,

~Ci,2 := {(vs, vt) | v ∈ Ui} ⊆ ~F2,

~Ci,3 :=
{

(tσP (i), si)
}

⊆ ~F3.

Then
{

~C1, . . . , ~Ck

}

is the set of alternating cycles of M △M ′. Note that M is also a perfect

matching of ~Γ∗.
An even cycle of directed edges is said to be oddly oriented if the number of edges consistent

with the direction of a traversal is odd for either choice of traversals. Every alternating cycle ~Ci

is oddly oriented because the unique edge in ~Ci,3 is opposite to all the other edges of ~Ci. This
means that the signs of M and M ′ are the same (see, e.g., [42, Lemma 8.3.1]). Hence the claim
holds.

By Lemmas 4.2, 4.3 and 3.9, we have the following.

Theorem 4.4. Let G be a DAG and take disjoint vertex subsets S, T with |S| = |T |. Let ~Γ
be the directed bipartite graph defined above and ( ~A1, ~A2) the matrix pair representing perfect
matchings of ~Γ given in Section 3.4. Then B( ~A1, ~A2) and disjoint S–T paths of G correspond
one-to-one. In addition, if (S, T ) is in the LGV position, then ( ~A1, ~A2) is Pfaffian with constant
±1.
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Figure 1: Examples of (S, T ) that are in the LGV position. Gray areas represent planar DAGs.
(a) s1, . . . , s4, t4, . . . , t1 are aligned clockwise on the boundary of an (outer) face. (b) S adjoins
a face, T adjoins another face, and |S| = |T | is odd.

Figure 1 illustrates two examples of (S, T ) that is in the LGV position. If σP is identity
for every disjoint S–T path P of G, then (S, T ) is clearly in the LGV position. Such (S, T )
is called nonpermutable [20] and one famous example arises from a planar DAG G. Suppose
that s1, . . . , sk, tk, . . . , t1 are aligned clockwise on the boundary of one face of G. Then (S, T )
is nonpermutable because an S–T path P cannot be disjoint if σP is not identity. Another
example of the LGV position also arises from a planar DAG G. Suppose that all the vertices
in S are on the boundary of a face F of G, and all the vertices in T are on the boundary of
another face that does not adjoin F . Then σP must be a power of a cyclic permutation over
[k], whose sign is always +1 when k is odd.

Lastly, we present another application of Lemma 4.3. Let ( ~A1, ~A2) be the matrix pair
representing perfect matchings of ~Γ. Let z = (ze)e∈F1∪F2

be a vector of distinct indeterminates
indexed by F1 ∪ F2. We substitute ze := 1 for e ∈ F2. On indexing an component of z, we
identify {us, vt} ∈ F1 with (u, v) ∈ E. Put N(z) := ~A1D(z) ~A⊤

2 . Denote byM the set of perfect
matchings of Γ, by P the set of disjoint S–T paths of G, and by Ω(z) the matrix defined in the
LGV lemma for G. Then we have

det N(z) =
∑

M∈M

sgn ~M
∏

e∈M

ze =
∑

P ∈P

(−1)k sgn P
∏

e∈P

ze = det(−Ω(z)), (31)

where the first equality follows from (11), the second one follows from Lemmas 4.2 and 4.3, and
the last one is due to the LGV lemma. Indeed, we can prove the equality det N(z) = det(−Ω(z))
without using the LGV lemma, which turns to be a new proof of the lemma.

Proof (of Lemma 4.1). Recall that entries of N(z) satisfy (25) up to the factor of x. The matrix
N(z) can be partitioned as

N(z) =

(

X Y
Z W

)

,

where the row and column sets of X correspond to S and T , respectively and other rows and
columns are indexed by Ṽ . By sorting Ṽ in a topological order with respect to ~G, we can
transform W into an upper triangular matrix, as G is acyclic. In addition, diagonal entries of
W are 1 since (vs, vt) ∈ ~E2 for v ∈ Ṽ . Hence we have det W (z) = 1. By the formula (8) on the
Schur complement, we have

det N(z) = det W det
(

X − Y W −1Z
)

= det
(

X − Y W −1Z
)

.

We show X − Y W −1Z = −Ω(z). Fix i, j ∈ [k] and let G(i,j) be the subgraph of G obtained
by deleting S \{si} and T \{tj}. We consider the disjoint {si}–{tj} path problem on G(i,j). The
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directed bipartite graph ~Γ(i,j) on this problem is the subgraph of ~Γ induced by
(

ṼS∪{si}
)

∪
(

ṼT ∪

{tj}
)

. Similarly, the counterpart N (i,j)(z) of N(z) on this problem is N(z)[ṼS ∪{si}, ṼT ∪{tj}],
which means

N (i,j)(z) =

(

X[{si}, {tj}] Y [{si}, Ṽ ]
Z[Ṽ , {tj}] W

)

.

By (8), it holds

det N (i,j)(z) = X[{si}, {tj}]− Y [{si}, Ṽ ]W −1Z[Ṽ , {tj}],

which coincides with the (i, j)th entry of X − Y W −1Z.
Denote by M(i,j) the set of perfect matchings of Γ(i,j) and by P(i,j) the set of disjoint

{si}–{tj} paths of G(i,j), which are exactly si–ti paths of G. In the same was as (31), we have

det N (i,j)(z) =
∑

M∈M(i,j)

sgn ~M
∏

e∈M

ze

=
∑

P ∈P(i,j)

(−1)1 sgn P
∏

e∈P

ze

= −
∑

P ∈P(i,j)

∏

e∈P

ze = −Ωi,j(z). (32)

Note that we did not apply the LGV lemma on the last equality of (32); it is just the defini-
tion (30) of Ωi,j(z). Hence X − Y W −1Z = −Ω(z) holds. The LGV lemma follows from this
fact together with the first two equalities in (31).

4.2 Shortest Disjoint S–T Paths on Undirected Graphs

Let G = (V, E) be an undirected graph and S = {s1, . . . , sk} and T = {t1, . . . , tk} disjoint
vertex subsets of cardinality k. An S–T path P ⊆ E of G is the union of k paths P1, . . . , Pk of
G satisfying (P1) (with direction ignored). We denote the permutation in (P1) by σP . An S–T
path P is said to be (vertex-)disjoint if Pi and Pj do not share the same vertices for all distinct
i, j ∈ [k]. The disjoint S–T path problem on G is to find a disjoint S–T path of G. We also
equip G with a positive edge length ℓ : E → R>0. The length ℓ(P ) of an disjoint S–T path P
of G is defined as the sum of lengths of all edges in P . The shortest disjoint S–T path problem
on G is to find a disjoint S–T path of G with minimum length.

We first show that the shortest disjoint S–T path problem on an undirected graph is a
generalization of the disjoint S–T path problem on a DAG. Let ~G = (V, ~E) be a DAG and
take disjoint vertex subsets S, T ⊆ V of cardinality k. Let v1, . . . , vn be a topological ordering
of V with respect to ~G, i.e., (vi, vj) /∈ ~E for all i, j ∈ [n] with i ≥ j. Let G = (V, E) be the

undirected graph obtained from ~G by ignoring the orientation. We set an edge length for G as
ℓ(e) := j − i for e = {vi, vj} ∈ E with i < j.

Proposition 4.5. Suppose that ~G has at least one disjoint directed S–T path. Then P ⊆ E is
a shortest disjoint S–T path of G if and only if ~P is a disjoint directed S–T path of ~G.

Proof. Let P = P1∪· · ·∪Pk be a disjoint S–T path of G, where Pi is the si–tσP (i) path contained
in P for i ∈ [k]. For each e ∈ P , we denote by ∂se and ∂te the ends of e which are in sides
closer to si and to tσP (i) on Pi, respectively. Let f(vi) := i for i ∈ [n]. Then we have

ℓ(Pi) =
∑

e∈Pi

ℓ(e) =
∑

{u,v}∈Pi

|f(v)− f(u)| ≥
∑

e∈Pi

(

f
(

∂te
)

− f
(

∂se
)

)

= f
(

tσP (i)

)

− f(si) (33)

for i ∈ [k]. Summing (33) up over all i ∈ [k], we have

ℓ(P ) =
k
∑

i=1

ℓ(Pi) ≥
k
∑

i=1

(

f
(

tσP (i)

)

− f(si)
)

=
∑

v∈T

f(v)−
∑

u∈S

f(u). (34)

24



The equality of (34) is attained if and only if f
(

∂se
)

≤ f
(

∂te
)

for every e ∈ P . Since V is

topologically ordered, this is equivalent to the condition that ~P is a disjoint directed S–T path
of ~G. By assumption, such a disjoint S–T path exists on G. Hence the set of shortest disjoint
S–T path of G corresponds to the set of disjoint directed S–T paths of ~G.

We next describe a reduction from the disjoint S–T path problem on an undirected graph
G = (V, E) to the graphic matroid intersection problem, given by Tutte [49]. Let GS and GT be
the graphs obtained from G by shrinking S and T into a single vertex v∗, respectively. Recall
from Section 3.1 that M(GS) and M(GT ) denote the graphic matroids of GS and GT . An edge
subset B ⊆ E is a common base of M(GS) and M(GT ) if and only if B is a spanning forest of
G consisting of k connected components each of which covers exactly one vertex belonging to
S and exactly one vertex belonging to T in G. This means that any common base B contains a
unique disjoint S–T path P of G. Conversely, given a disjoint S–T path P , we can construct a
common base B by adding some of the remaining edges to P so that it forms a spanning forest
with k connected components. This means that M(GS) and M(GT ) have a common base if
and only if G has a disjoint S–T path. Note that B 7→ P is injective in this correspondence but
P 7→ B is not so.

Analogously to Tutte’s reduction, the shortest disjoint S–T path problem can be reduced
to the weighted graphic matroid intersection problem. This is a special case of Yamaguchi’s
reduction [53] of the shortest disjoint S-path problem, which will be described in Section 4.3, on
our S–T path setting. While this is a simple extension of Tutte’s reduction, it provides a one-to-
one correspondence between optimal solutions of these problems. Let G∗ be the graph obtained
from G by appending v∗ as a new vertex and adding the edge set E′ :=

{

{v, v∗}
∣

∣ v ∈ Ṽ
}

, where
Ṽ := V \ (S ∪T ). Similarly, let G∗

S and G∗
T be the graphs obtained from GS and GT by adding

E′, respectively. Denote E ∪ E′ by E∗. We set a column weight w : E∗ → R of M
(

G∗
S

)

and
M
(

G∗
T

)

as w(e) := ℓ(e) for e ∈ E and as q(e) := 0 for e ∈ E′.

Lemma 4.6. The minimum length of a disjoint S–T path of G with respect to ℓ is equal to the
minimum weight of a common base of M

(

G∗
S

)

and M
(

G∗
T

)

with respect to w. In addition, there
is a one-to-one correspondence between shortest disjoint S–T paths of G and minimum-weight
common bases of M

(

G∗
S

)

and M
(

G∗
T

)

.

Proof. As in the unweighted case, B ⊆ E∗ is a common base of M
(

G∗
S

)

and M
(

G∗
T

)

if and only if
B is a spanning forest of G∗ consisting of k+1 connected components B0 = B∩E′, B1, . . . , Bk ⊆
B such that v∗ is covered only by B0 and each of B1, . . . , Bk covers exactly one vertex belonging
to S and exactly one vertex belonging to T . Thus any common base B contains a unique disjoint
S–T path P of G. Since w is nonnegative, we have w(B) ≥ ℓ(P ). Conversely, given a disjoint
S–T path P , we can construct a common base B by adding {v, v∗} ∈ E′ for each v ∈ Ṽ that
is not covered by P . We have w(B) = ℓ(P ) as w(e) = 0 for e ∈ E′. Hence the shortest length
of a disjoint S–T path of G is equal to the minimum weight of a common base of M

(

G∗
S

)

and
M
(

G∗
T

)

.
As we discussed above, every minimum-weight common base contains a unique shortest

disjoint S–T path, and for every shortest disjoint S–T path P , there exists a minimum-weight
common base B containing P . Since ℓ(e) > 0 for all e ∈ E, this map P 7→ B is injective.

We next consider the correspondence in Lemma 4.6 by means of matrices. Let A be the
incidence matrix (20) of any orientation of G∗. We define A1 := A[S ∪ Ṽ , E∗] and A2 :=
A[T ∪ Ṽ , E∗]. Then A1 and A2 represent M(G∗

S) and M(G∗
T ), respectively. We assume that for

each i ∈ [k], the ith rows of A1 and A2 correspond to si and ti, respectively. Then the sign of
a disjoint S–T path P can be written using the subdeterminants of A1 and A2 as follows, even
if P is not the shortest.

Lemma 4.7. Let P be a disjoint S–T path of G and B a common base of (A1, A2) containing
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P . Then we have

sgn P = (−1)k det A1[B] det A2[B].

Proof. As shown in the proof of Lemma 4.6, B consists of k + 1 connected components B0,
B1, . . . , Bk in G∗. Here, B0 covers v∗ and Bi contains the si–tσP (i) path contained in P for
i ∈ [k]. Let Vi be the vertex subset covered by Bi for i = 0, . . . , k. By row and column
permutations, A1[B] is transformed into a block diagonal matrix X = diag(X0, X1, . . . , Xk),
where X0 has the row set V0 \ {v

∗} and the column set B0 and Xi has the row set Vi \
{

tσP (i)

}

and the column set Bi for i ∈ [k]. Similarly, we permute rows and columns of A2[B] so that it
becomes a block diagonal matrix Y = diag(Y0, Y1, . . . , Yk), where Y0 has the row set V0 \ {v

∗}
and the column set B0 and Yi has the row set Vi \

{

si

}

and the column set Bi for i ∈ [k]. We
can assume that column permutations of these two transformations are the same. We can also
assume that X0 and Y0 have the same ordering of rows, and for each i ∈ [k], the first rows of
Xi and Yi correspond to si and tσP (i), respectively, and other rows are in the same ordering.
This implies that the product of signs of these two row permutations on A1 and A2 are sgn P .
Hence we have

det A1[B] det A2[B] = sgn P det X det Y = sgn P
k
∏

i=0

det Xi det Yi. (35)

Here, we evaluate det Xi det Yi for i = 0, . . . , k. Note that det Xi det Yi is in {+1,−1} since
the incidence matrix A is totally unimodular and A1[B] and A2[B] are nonsingular. For i = 0,
we have det X0 det Y0 = 1 by X0 = Y0 = A[V0 \ {v

∗}, B0]. For i ∈ [k], let Zi be the matrix
such that the first row is the sum of those of Xi and Yi and other rows are Xi[Vi ∩ Ṽ , Bi] =
Yi[Vi ∩ Ṽ , Bi] = A[Vi ∩ Ṽ , Bi]. Note that det Xi + det Yi = det Zi. Since both the ends of every
edge in Bi are in Vi, every column of Zi contains exactly one +1 and one −1 and other entries
are zero. Hence Zi is singular and thus we have det Xi = − det Yi. The claim of the proposition
holds by (35).

We have the following conclusion by Lemmas 4.6 and 4.7.

Theorem 4.8. Let G be an undirected graph and take disjoint vertex subsets S, T with k :=
|S| = |T |. Let (A1, A2) be the matrix pair associated with G, S and T . When (S, T ) is in the
LGV position, then (A1, A2) is Pfaffian with constant (−1)k sgn P , where P is an arbitrary
disjoint S–T path of G. In addition, when G is equipped with a positive edge length ℓ, there
is a one-to-one correspondence between shortest disjoint S–T paths of G and minimum-weight
common bases of (A1, A2) with respect to the column weight w defined above.

We say that (S, T ) is in the LGV position on G if sgn P is constant for any disjoint S–T
path P of G. Figure 2 illustrates two examples of LGV-position, which are obtained by ignoring
edge directions in Figure 1.

4.3 Shortest Disjoint S–T–U Paths on Undirected Graphs

We further extend the shortest disjoint S–T path problem to the shortest disjoint S–T –U path
problem, which is a special case of the shortest disjoint S-path problem.

We first introduce Mader’s disjoint S-path problem [16, 35]. Let G = (V, E) be an undirected
graph and S = {S1, . . . , Ss} a family of disjoint nonempty subsets of V . Suppose that Σ :=
S1 ∪ · · · ∪ Ss is of cardinality 2k and ordered as u1, . . . , u2k so that i ≤ j means α ≤ β, where
ui ∈ Sα and uj ∈ Sβ for i, j ∈ [2k]. Vertices in Σ are called terminals. Recall that F2k is the
subset of S2k defined by (4). An S-path P of G is the union of k paths P1, . . . , Pk ⊆ E of G
satisfying the following:

(P2) There exists a permutation σ ∈ F2k such that Pi is a path between uσ(2i−1) ∈ Sα and
uσ(2i) ∈ Sβ with α 6= β for each i ∈ [k].
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Figure 2: Examples of (S, T ) that are in the LGV position. Gray areas represent planar DAGs.

Namely, P is an S-path if the ends of each Pi belong to distinct parts in S and the ends of Pi

and Pj are disjoint for all distinct i, j ∈ [k]. We call an S-path P disjoint if Pi and Pj have no
common vertices for all distinct i, j ∈ [k]. For a disjoint S-path P , a permutation satisfying (P2)
uniquely exists in F2k and we denote it by σP . The sign of a disjoint S-path P is defined as
sgn P := sgn σP . The disjoint S-path problem on G is to find a disjoint S-path of G. We also
consider the situation when G is equipped with a positive edge length ℓ : E → R>0. Then the
length of an S-path P is defined as ℓ(P ) :=

∑

e∈P ℓ(e). The shortest disjoint S-path problem is
to find a disjoint S-path of G with minimum length.

We next describe a reduction of the disjoint S-path problem to the linear matroid parity
problem, based on Schrijver’s linear representation [44] of Lovász’ reduction [34]. We assume
that there are no edges connecting terminals. Put Ṽ := V \ Σ, Ẽ :=

{

{u, v} ∈ E
∣

∣ u, v ∈ Ṽ
}

,
m := |E| and m̃ :=

∣

∣Ẽ
∣

∣. Fix two-dimensional row vectors b1, . . . , bs which are pairwise linearly
independent. We construct a matrix

X =

(

X1 O
X2 X3

)

from G as follows. The size of each block is 2k × 2m̃ for X1, (2n − 4k) × 2m̃ for X2, and

(2n − 4k) × 2(m − m̃) for X3. Each edge e ∈ Ẽ is associated with two columns of
(

X1
X2

)

and

each e ∈ E \ Ẽ is associated with two columns of
(

O
X3

)

. Each terminal ui ∈ Σ corresponds to

the ith row of
(

X1 O
)

for i ∈ [2k] and each v ∈ Ṽ is associated with two rows of
(

X2 X3

)

.

Entries of each block are determined as follows.

• The 1 × 2 submatrix of X1 associated with ui ∈ U and e ∈ E \ Ẽ is bα if e ∩ Sα = {ui}
and O otherwise.

• The 2× 2 submatrix of X2 associated with v ∈ Ṽ and e ∈ E \ Ẽ is the identify matrix I2

of order two if v ∈ e and O otherwise.

• The matrix X3 is defined to be the Kronecker product H[Ṽ , Ẽ] ⊗ I2, where H is the
incidence matrix (20) of any orientation of G. Namely, X3 is obtained from H[Ṽ , Ẽ] by
replacing +1 with +I2, −1 with −I2, and 0 with O.

We regard each edge e ∈ E as a line of X, which consists of the two columns associated with e.

Lemma 4.9 ([53, Lemma 4]). An edge subset B ⊆ E is a parity base of (X, E) if and only if
B is a spanning forest of G such that every connected component covers exactly two terminals
belonging to distinct parts of S.

Note that if B is a parity base of (X, E), the number of connected components must be k
since B covers all the vertices of G by Lemma 4.9. Hence (X, E) has a parity base if and only
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if G has a disjoint S-path. Unfortunately, as in the S–T path case described in Section 4.2,
this reduction does not provide a one-to-one correspondence between B(X, E) and the set of
disjoint S-paths of G.

Yamaguchi [53] showed that the shortest disjoint S-path problem can be reduced to the
weighted linear matroid parity problem. Here we present a simplified reduction for our setting
(where an S-path covers all terminals), together with a one-to-one correspondence of optimal
solutions. Let G∗ be the graph obtained from G by adding a new vertex v∗ and an edge set
E′ :=

{

{v, v∗}
∣

∣ v ∈ Ṽ
}

. We construct a matrix X∗ from G∗ in the same way as the construction
of X from G. Let A be the matrix obtained from X∗ by removing the two rows corresponding to
v∗. Namely, by an appropriate column permutation and an edge orientation on E′, the matrix
A is written as

(

X1 O O
X2 X3 I2n−4k

)

, (36)

where each two columns of the left, middle and right blocks correspond to an edge in Ẽ, E \ Ẽ
and E′, respectively. Regarding E∗ := E ∪ E′ as the set of lines on A, we set a line weight
w : E∗ → R as w(e) := ℓ(e) for e ∈ E and as w(e) = 0 for e ∈ E′.

Lemma 4.10. The minimum length of a disjoint S-path of G with respect to ℓ is equal to the
minimum weight of a parity base of (A, E∗) with respect to w. In addition, there is a one-to-
one correspondence between shortest disjoint S-paths of G and minimum-weight parity bases of
(A, E∗).

Proof. The line of this discussion is almost the same as the proof of Lemma 4.6. Since A
can be transformed into (36), B ⊆ E∗ is a parity base of (A, E∗) if and only if a submatrix
of X is nonsingular, where the rows and columns of the submatrix are ones associated with
V \ {v | {v, v∗} ∈ B ∩ E′} and B ∩ E, respectively. By Lemma 4.9, this is equivalent to the
condition that B consists of k + 1 connected components B0 = B ∩ E′, B1, . . . , Bk in G∗ such
that B0 contains v∗ and each of B1, . . . , Bk is a tree covering exactly two terminals belonging
to distinct parts of S. Thus any parity base B ∈ B(A, E∗) contains a unique disjoint S-path P
of G. We have ℓ(P ) ≤ w(B) by the nonnegativity of w. Conversely, given a disjoint S-path P ,
one can construct a parity base B by adding {v, v∗} ∈ E′ for each v ∈ Ṽ that is not covered by
P . Then we have w(B) = ℓ(P ) as w(e) = 0 for e ∈ E′. Hence the minimum length of a disjoint
S-path of G is equal to the minimum weight of a parity base of (A, E∗).

Any minimum-weight common base B ∈ B(A, E∗) contains a unique shortest disjoint S-
path P of G, as we have seen above. Conversely, for any shortest disjoint S-path, there exists
a unique minimum-weight common base B because ℓ(e) is positive for all e ∈ E. Hence the
correspondence is one-to-one.

We next give a formula that connects sgn P and det A[B]. For a disjoint S-path P , define

cP :=
k
∏

i=1

det

(

bα2i−1

bα2i

)

∈ R \ {0}, (37)

where αi is the element in [s] such that uσP (i) ∈ Sαi
for i ∈ [2k].

Lemma 4.11. Let P be a disjoint S-path of G and B a parity base of (A, E∗) containing P .
Then we have

cP sgn P = det A[B]. (38)

Proof. As shown in the proof of Lemma 4.10, B consists of k + 1 connected components B0 =
B ∩ E′, B1, . . . , Bk in G∗ such that B0 covers v∗ and Bi contains the path Pi ⊆ P between
uσP (2i−1) and uσP (2i) for each i ∈ [k]. Let Vi be the vertex subset covered by Bi for i =
0, . . . , k. By row and column permutations, A[B] is transformed into a block diagonal matrix
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Z = diag(Z0, Z1, . . . , Zk). For i = 0, . . . , k, the columns of Zi correspond to Bi and the rows
of Zi are associated with Vi if i 6= 0 and with V0 \ {v

∗} if i = 0. We can assume that the
permutations are taken so that they preserve the two rows and the two columns associated with
each v ∈ Ṽ and e ∈ E∗. This means that the column permutation is even. We also arrange the
rows corresponding to uσP (2i−1) and uσP (2i) on the first and second rows of Zi, respectively, for
i ∈ [k]. Since the first 2k rows of A correspond to u1, . . . , u2k from top to bottom, the sign of
the row permutation coincides with sgn P . Hence we have

det A[B] = sgn P
k
∏

i=0

det Zk. (39)

Applying row and column permutations preserving each two rows and columns, Z0 becomes
a block diagonal matrix whose diagonal blocks are I2 or −I2. Thus det Z0 = 1. Consider Zi

for i ∈ [k]. Let α, β ∈ [s] with uσP (2i−1) ∈ Sα, uσP (2i) ∈ Sβ. Permuting row and columns and

reversing the signs of some lines (two consecutive columns) in Bi ∩ Ẽ, we can transform Zi into



























bα

C

bβ

I2 −I2

I2
. . .
. . . −I2

I2 I2

I2p



























, (40)

for some matrix C, where empty cells indicate zero and p := |Bi \ Pi|. Note that these permu-
tations and change of sign retain the determinant again. The determinant of (40) is equal to

det
(

bα

bβ

)

. Hence (38) holds via (39).

We say that S is in the LGV position on G if sgn P is constant for all disjoint S-path P
of G. Since det A[B] depends not only on sgn P but on cP by Lemma 4.11, the matroid parity
(A, E∗) might not be Pfaffian even if S is in the LGV position. Nevertheless, cP is constant
when |S| = 3, as claimed in the following. We refer to the (shortest) disjoint S-path problem
with S = {S = S1, T = S2, U = S3} as the (shortest) disjoint S–T –U path problem. An S–T –U
path means an {S, T, U}-path.

Lemma 4.12. Let G = (V, E) be an undirected graph and S, T, U ⊆ V disjoint vertex subsets.
Then cP defined by (37) is constant for all disjoint S–T –U path P of G.

Proof. Let P be a disjoint S–T –U path of G and x, y, and z the numbers of paths in P connecting
S to T , T to U , and U to S, respectively. We have x + y = |T |, y + z = |U |, and z + x = |S|.
This means that x, y, z are uniquely determined from |S|, |T |, |U |. The value of cP is equal to

cP =

(

det

(

b1

b2

))x(

det

(

b2

b3

))y(

det

(

b1

b3

))z

,

where b1, b2 and b3 are two-dimensional row vectors corresponding to S, T , and U , respectively.
Hence cP does not depend on the choice of P .

We have the following conclusion by Lemmas 4.10–4.12.

Theorem 4.13. Let G be an undirected graph and take disjoint vertex subsets S, T, U . Let
(A, E∗) be the matroid parity defined above. When {S, T, U} is in the LGV position, then
(A, E∗) is Pfaffian with constant cP sgn P , where P is an arbitrary disjoint S–T –U path of G. In
addition, when G is equipped with a positive edge length ℓ, there is a one-to-one correspondence
between shortest disjoint S–T –U paths of G and minimum-weight parity bases of (A, E∗) with
respect to the line weight w defined above.
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s1

s2

s3

t1

t2

t3

u1 u2

Figure 3: Example of S, T, U that are in the LGV position, where S = {s1, s2, s3}, T = {t1, t2, t3}
and U = {u1, u2}. The gray area represents a planar graph.

We show one example of the LGV position for the S–T –U case. Let G be a planar graph
and suppose that terminals are aligned on the boundary of one face of G in the order of S, U , T
clockwise. Then as shown in the proof of Lemma 4.12, the connecting pattern of terminals are
uniquely determined from |S|, |T | and |U |. Hence σP is constant for all disjoint S–T –U path P
of G, which means that {S, T, U} is in the LGV position. See Figure 3 for an illustration.

5 Algorithms

In this section, we present algorithms for Pfaffian pairs and parities. In Section 5.1, we see that
the current fastest randomized algorithms [8, 22] for the linear matroid intersection and parity
problems can be derandomized for Pfaffian pairs and parities with ch(K) = 0. Sections 5.2
and 5.3 describe counting algorithms for minimum-weight common bases of Pfaffian pairs and
minimum-weight parity bases of Pfaffian parities, respectively. Unless otherwise stated, we deal
with matrices over a field K of characteristic ch(K). We assume that we can perform arithmetic
operations on K in constant time.

5.1 Counting on Unweighted Pfaffian Pairs and Parities

Propositions 2.4 and 2.9 claim that the number of common bases of a Pfaffian pair (A1, A2) of
constant c is equal to c−1 det A1A⊤

2 and the number of parity bases of a Pfaffian parity (A, L)
of constant c is equal to c−1 Pf A∆(1)A⊤, both over K. Therefore, if the value of c is already
known, we can compute these quantities just by performing matrix computations.

Theorem 5.1. Suppose that we are given the value of constants. Then the following hold:

(1) We can compute the number of common bases of an r × n Pfaffian pair modulo ch(K)
in deterministic O

(

nrω−1
)

-time.

(2) We can compute the number of parity bases of a 2r×2n Pfaffian parity modulo ch(K) in
deterministic O

(

nrω−1 + r3
)

-time. When ch(K) = 0, the running time can be improved
to O

(

nrω−1
)

.

Proof. (1) For an r× n Pfaffian pair (A1, A2), we can compute the matrix multiplication A1A⊤
2

in O
(

nrω−1
)

-time and its determinant in O(rω)-time [1, Theorem 6.6].
(2) Let (A, L) be a 2r × 2n Pfaffian parity. We rewrite A∆(1)A⊤ as

A∆(1)A⊤ = A1A⊤
2 −A2A⊤

1 (41)

using (17), where A1, A2 ∈ K2r×n are the submatrices of A defined in the same way as (17). Then
we can compute A∆(1)A⊤ in O

(

nrω−1
)

-time through (41). The computation of Pfaffian requires
O(r3)-time via the naive Gaussian elimination. While we can compute the square of the Pfaffian
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using the fast determinant computation through (5), in general we cannot determine which of
two square roots of det A∆(1)A⊤ is Pf A∆(1)A⊤. When ch(K) = 0, we have c−1 Pf A∆(1)A⊤ ≥
0 since it is the cardinality of B(A, L). Thus we can compute the Pfaffian in O(rω)-time.

In practice, the value of c can be typically retrieved from the reduction of discrete structures
to Pfaffian pairs or parities, as seen in Sections 3 and 4. However, if this is not the case, one
common or parity base B should be obtained to compute c. Solving linear matroid intersection
and parity problems will make the running time larger than O

(

nrω−1
)

if we stick to deterministic
algorithms [15, 40], or we can employ randomized algorithms [8, 22] to keep the running time.
We face the same trade-off to find one common or parity base even if we know c.

Indeed, for Pfaffian pairs and parities with ch(K) = 0, we can derandomize the linear matroid
intersection algorithm of Harvey [22] and the linear matroid parity algorithm of Cheung–Lau–
Leung [8]. In these algorithms, randomness is used only to find a vector over K satisfying some
genericity conditions, summarized below. See [22, Section 4] and [8, Section 6] for details on
their algorithms.

Let (A1, A2) be a matrix pair with common column set E. A column subset J ⊆ E is said
to be extensible if there exists a common base of (A1, A2) containing J . Similarly, for a matroid
parity (A, L), we call J ⊆ L extensible2 if there exists a parity base of (A, L) containing J . For
a vector z = (zj)j∈E and J ⊆ E, let ϕJ(z) denote a vector whose each component is defined as

ϕJ(z)j :=

{

0 (j ∈ J),

zj (j ∈ E \ J)

for j ∈ E. We also define ϕJ (z) for z = (zℓ)ℓ∈L and J ⊆ L in the same way. Recall that
matrices Ξ(z) and Φ(z) are defined by (10) and by (16), respectively.

Lemma 5.2 ([8, 22]). The following hold.

(1) Let (A1, A2) be an r × n matrix pair with common column set E. Suppose that we are
given a vector z = (zj)

j∈E
∈ Kn such that J is extensible if and only if Ξ(ϕJ(z)) is

nonsingular for every J ⊆ E. Then we can construct a common base of (A1, A2) (if it
exists) in deterministic O

(

nrω−1
)

-time.

(2) Let (A, L) be a 2r×2n matroid parity. Suppose that we are given a vector z = (zℓ)ℓ∈L ∈
Kn such that J is extensible if and only if Φ(ϕJ (z)) is nonsingular for every J ⊆ L. Then
we can construct a parity base of (A, L) (if it exists) in deterministic O

(

nrω−1
)

-time.

It is shown in [22, Theorem 4.4] and in [8, Theorem 6.4] that a vector of distinct inde-
terminates satisfies the requirements of z in Lemma 5.2. The algorithms of Harvey [22] and
Cheung–Lau–Leung [8] use a random vector over K instead of indeterminates to avoid symbolic
computations. For Pfaffian pairs and parities, we can use 1 for z as follows.

Lemma 5.3. Let K be a field of characteristic zero. For Pfaffian pairs and parities over K, we
can choose z = 1 in Lemma 5.2.

Proof. Let (A1, A2) be a Pfaffian pair of constant c with common column set E. By Proposi-
tion 2.4, we have

det Ξ(ϕJ(1)) = c−1
∑

B∈B(A1,A2)

∏

j∈E\B

ϕJ(1)j = c−1|{B ∈ B(A1, A2) | J ⊆ B}|

for J ⊆ E. Since ch(K) = 0, the set {B ∈ B(A1, A2) | J ⊆ B} is nonempty if and only if
its cardinality is nonzero over K. Hence the nonsingularity of Ξ(ϕJ (1)) is equivalent to the
extensibility of J .

2 Cheung–Lau–Leung [8] call such J “growable.”
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The same argument can be applied to Pfaffian parities by using Proposition 2.9. Let (A, L)
be a Pfaffian parity of constant c. Then

Pf Φ(ϕJ (1)) = c−1
∑

B∈B(A,L)

∏

ℓ∈L\B

ϕJ (1)ℓ = c−1|{B ∈ B(A, L) | J ⊆ B}|

for J ⊆ L. Thus J is extensible if and only if Φ(ϕJ (1)) is nonsingular.

The proof of Lemma 5.3 can also be seen as alternative simple proofs of [22, Theorem 4.4]
and [8, Theorem 6.4]. Now Theorem 1.1 is obtained as a conclusion of Theorem 5.1 and Lem-
mas 5.2 and 5.3.

5.2 Counting on Weighted Pfaffian Pairs

Let (A1, A2) be an r × n weighted Pfaffian pair of constant c with column weight w : E → R.
In this section, we consider counting the number of minimum-weight common bases of (A1, A2)
over K. While we can compute it by naively expanding det A1D(θw)A⊤

2 or det Ξ(θw) from
Proposition 2.5, this expansion requires pseudo-polynomial time with respect to the maximum
absolute value of a weight (assuming w to be integral). Instead, we reduce the problem to the
counting on an unweighted Pfaffian pair.

We introduce some notions to make our descriptions rigorous. Since w is real-valued, the
determinant and entries of A1D(θw)A⊤

2 are a formal K-linear combination f(θ) of real powers
of θ. Namely, f(θ) is formally expressed as

f(θ) =
∑

x∈X

axθx

with finite X ⊆ R and ax ∈ K for x ∈ X. Abusing terminology, we call f(θ) a polynomial in θ.
We define the degree deg f(θ) and the order ord f(θ) of f(θ) as the maximum and the minimum
x ∈ X such that ax 6= 0, respectively. We set deg 0 := −∞ and ord 0 := +∞ for convenience.
The constant term of f(θ) means a0.

We begin to describe the algorithm. Suppose that (A1, A2) has at least one common base
and we have obtained a minimum-weight common base B ∈ B(A1, A2) by solving the weighted
linear matroid intersection problem. We first perform row transformations on A1 and A2 so
that A1[B] and A2[B] become the identity matrix Ir. This operation, called pivoting, remains
(A1, A2) Pfaffian but changes its constant to 1. Now we can regard the row sets of A1 and A2

as B since A1[B] and A2[B] are identity.
Frank’s weight splitting lemma [12] reveals the dual structure of the weighted matroid inter-

section problem. It claims that there exist w1, w2 : E → R such that

(W1) w1(j) + w2(j) = w(j) for j ∈ E, and

(W2) a common base B′ ∈ B(A1, A2) minimizes the weight w if and only if B′ minimizes
w1 among all bases of A1 and B′ minimizes w2 among all bases of A2.

Let w1, w2 be split weights satisfying (W1) and (W2). The following observation is easy but
important.

Proposition 5.4. For k = 1, 2, u ∈ B and j ∈ E, if the (u, j)th entry of Ak is nonzero, then
it holds wk(u) ≤ wk(j).

Proof. By Ak[B] = Ir, the set B′ := B \ {u} ∪ {j} is a base of Ak. If wk(u) > wk(j), we have
w(B′) < w(B), which contradicts to (W2) and the minimality of B.

For k = 1, 2, let A#
k ∈ Kr×n be the matrix with row set B and column set E whose the

(u, j)th entry
(

A#
k

)

u,j
is defined by

(

A#
k

)

u,j
:=

{

the (u, j)th entry of Ak (wk(u) = wk(j)),

0 (otherwise)
(42)
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Algorithm 1 Computing the number of minimum-weight common bases of a Pfaffian pair.

Input : An r × n Pfaffian pair (A1, A2) and a column weight w : E → Z

Output: The number of minimum-weight common bases of (A1, A2) modulo ch(K)
1: Compute a minimum-weight common base B ∈ B(A1, A2) and split weights w1, w2

2: A1 ← A1[B]−1A1, A2 ← A2[B]−1A2

3: Construct the matrices A#
1 and A#

2 defined by (42)

4: return det A#
1 A#

2

⊤

for u ∈ B and j ∈ E.

Lemma 5.5. The set of minimum-weight common bases of (A1, A2) with respect to w is equal
to B

(

A#
1 , A#

2

)

. In addition,
(

A#
1 , A#

2

)

is Pfaffian with constant 1.

Proof. We first show that B
(

A#
k

)

is the set of minimum-weight bases of Ak with respect to the
weight wk for k = 1, 2. Then the first claim of the lemma follows from (W2).

Define p : B → R by p(u) := −wk(u) for u ∈ B and put Ãk(θ) := D
(

θp
)

AkD
(

θwk
)

, where
θ is an indeterminate. Note that each nonzero entry in Ãk(θ) is a “monomial,” i.e., its de-
gree and order are the same. Take B′ ⊆ E with |B′| = r. Then we have det Ãk(θ)[B′] =
θwk(B′)−wk(B) det Ak[B′]. Thus, B′ is a minimum-weight base of Ak with respect to wk if and
only if det Ãk(θ)[B′] is in K \ {0}. From Proposition 5.4, the degree of each nonzero entry in
Ãk(θ) is nonnegative; this implies that any term of positive degree in Ãk(θ)[B′] cannot con-
tribute to the constant term of det Ãk(θ)[B′]. In addition, the constant term of each entry in
Ãk(θ) is the same as that of A#

k by its definition. Hence the constant term of det Ãk(θ)[B′] is

equal to det A#
k [B′], which means that B′ is in B

(

A#
k

)

if and only if B′ minimizes wk among
B(Ak).

In the above argument, det A#
k [B′] = det Ãk(θ)[B′] = det Ak[B′] is proved for B′ ∈ B

(

A#
k

)

.

Hence we have det A#
1 [B′] det A#

2 [B′] = det A1[B′] det A2[B′] = 1 for all B′ ∈ B
(

A#
1 , A#

2

)

.

By Lemma 5.5 and Proposition 2.4, we have the following corollary, which leads us to an
algorithm described in Algorithm 1.

Corollary 5.6. The number of minimum-weight common bases of (A1, A2) modulo is equal to

det A#
1 A#

2

⊤
over K.

Now Theorem 1.2 can be proved as follows.

Proof (of Theorem 1.2). The validity of Corollary 5.6 is proved in the above arguments. We
analyze its time complexity. Frank’s weighted matroid intersection algorithm [12] can be imple-
mented for linear matroids in O(nrω + nr log n)-time (see, e.g., [44, Corollarly 41.10a]). Other
computations can be done within this time.

5.3 Counting on Weighted Pfaffian Parities

Let (A, L) be a 2r × 2n Pfaffian parity of constant c with line weight w : L → R. We describe
an algorithm to count the number of minimum-weight parity bases of (A, L) modulo ch(K).

Suppose that (A, L) has at least one parity base. Let ζ denote the minimum weight of
a parity base of (A, L) and N the number of minimum-weight parity bases modulo ch(K).
Note that N is nonzero if ch(K) = 0. We put δ := w(L) − ζ. Then following holds from
Proposition 2.10.

Lemma 5.7. The coefficient of θδ in Pf Φ
(

θw
)

is equal to cN . In addition, it holds δ ≥
deg Pf Φ

(

θw
)

and the equality is attained if and only if N 6= 0.

We first obtain a minimum-weight parity base B ∈ B(A, L) applying the algorithm of Iwata–
Kobayashi [26]. Then we perform a row transformation and a line (column) permutation on A
so that the left 2r columns of A correspond to B and A[B] = I2r. Namely, A is in the form of
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A =
(

I2r C
)

for some matrix C ∈ K2r×(2n−2r). Note that these transformations retain (A, L)

Pfaffian but change the constant to constant 1. We perform the same transformations on Φ
(

θw
)

(and on ∆
(

θw
)

) accordingly. Now the polynomial matrix Φ
(

θw
)

is in the form of

Φ
(

θw
)

:=







O I2r C

−I2r ∆
(

θw
)

−C⊤







← U
← B
← E \B,

where U is the row set of A identified with B.
Besides the minimum-weight parity base B, the algorithm of Iwata–Kobayashi [26] output

an extra matrix C∗. Its row set U∗ and column set E∗ contains U and E \B, respectively, and
elements in U∗ \U and E∗ \E = E∗ \(E \B) are newly introduced ones. The Schur complement
of C∗ with respect to Y := C∗[U∗ \ U, E∗ \ E] coincides with C, i.e., it holds

C = C∗[U, E \B]− C∗[U, E∗ \ E]Y −1C∗[U∗ \ U, E \B]. (43)

In addition, the cardinalities of U∗ and E∗ are guaranteed to be O(n). We put W := U∗∪B∪E∗

and c∗ := det Y . Consider the skew-symmetric polynomial matrix Φ∗(θ) =
(

Φ∗
u,v(θ)

)

u,v∈W

defined by

Φ∗(θ) =















O
O

C∗

I2r

O −I2r ∆
(

θw
)

O

−C∗⊤

O O















← U∗ \ U
← U
← B
← E \B
← E∗ \ E.

Then we have the following claim, which is essentially the same as Claim 6.2 in the arXiv
preprint of [26].

Lemma 5.8. It holds Pf Φ∗(θ) = c∗ Pf Φ
(

θw
)

.

Proof. From the property (43) of C∗ on the Schur complement, we can transform Φ∗(θ) by
elementary operations as

Φ̂(θ) :=















O
O O Y
I2r C O

O −I2r ∆
(

θw
)

O
O −C⊤

−Y ⊤ O O O















← U∗ \ U
← U
← B
← E \B
← E∗ \E.

Then we have

Pf Φ∗(θ) = Pf Φ̂(θ) = Pf







O O Y
O Φ

(

θw
)

O
−Y ⊤ O O






= Pf







O Y O
−Y ⊤ O O

O O Φ
(

θw
)






= c∗ Pf Φ

(

θw
)

.

Note that the permutation which we applied on the third equality is even since the order of
Φ
(

θw
)

is 2r + 2n. Hence the claim holds.

Lemma 5.7 can be rephrased in terms of Φ∗(θ) by using Lemma 5.8 as follows.

Lemma 5.9. The coefficient of θδ in Pf Φ∗(θ) is equal to c∗N . In addition, it holds δ ≥
deg Pf Φ∗(θw) and the equality is attained if and only if N 6= 0.

We next define an undirected graph G = G(Φ∗) associated with Φ∗(θ). The vertex set of G
is W and the edge set is given by

F :=
{

{u, v}
∣

∣ u, v ∈W, Φ∗
u,v(θ) 6= 0

}

.
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Algorithm 2 Computing the number of minimum-weight parity bases of a Pfaffian parity.

Input : An 2r × 2n Pfaffian parity (A, L) and a line weight w : L→ Z

Output: The number of minimum-weight common bases of (A1, A2) modulo ch(K)
1: Compute a minimum-weight parity base B ∈ B(A, L) and the matrix C∗

2: Construct the matrix Φ∗
(

θ
)

and the graph G = G(Φ∗)

3: Compute the maximum weight δ̂ = δ̂(Φ∗) of a perfect matching of G
4: if δ := w(B) > δ̂ then

5: return 0
6: else

7: Compute the coefficient a of θδ̂ in Pf Φ∗(θ)
8: c∗ := Pf C∗[U∗ \ U, E∗ \ E]
9: return c∗−1a

We set the weight of every edge {u, v} ∈ F to deg Φ∗
u,v(θ). Let δ̂(Φ∗) denote the maximum

weight of a perfect matching of G. We set δ̂(Φ∗) := −∞ if G has no perfect matching. Here
we put δ̂ := δ̂(Φ∗). From the definition (3) of Pfaffian, δ̂ serves as a combinatorial upper bound
on deg Pf Φ∗(θ). For later use, we define G(S) and δ̂(S) for any skew-symmetric polynomial
matrix S(θ) in the same manner.

The dual problem of the maximum-weight perfect matching problem on G is as follows
(see [26] and [44, Theorem 25.1]):

(D)

minimize
π,ξ

∑

u∈W

π(u)−
∑

Z∈Ω

ξ(Z)

subject to π(u) + π(v)−
∑

Z∈Ωu,v

ξ(Z) ≥ deg Φ∗
u,v(θ) ({u, v} ∈ F ),

ξ(Z) ≥ 0 (Z ∈ Ω),

where Ω := {Z ⊆ W | |Z| is odd and |Z| ≥ 3} and Ωu,v := {Z ∈ Ω | |Z ∩ {u, v}| = 1} for
u, v ∈W . The following claim is proved in [26] as a key ingredient of the optimality certification
on the weighted linear matroid parity problem.

Proposition 5.10 ([26, Claim 6.3 in the arXiv preprint]). There exists a feasible solution of
(D) having the objective value δ.

We make use of Proposition 5.10 for the purpose of counting.

Lemma 5.11. It holds δ ≥ δ̂ ≥ deg Pf Φ∗(θ). The equalities are attained if N 6= 0.

Proof. We have δ ≥ δ̂ by Proposition 5.10 and the weak duality of (D). We also have δ̂ ≥
deg Pf Φ∗(θ) from the definition of Pfaffian. The equality condition is obtained from Lemma 5.9.

By Lemma 5.11, it holds N = 0 if δ > δ̂. Otherwise, our goal is to compute the coefficient of
θδ = θδ̂ in Pf Φ∗(θ) by Lemma 5.9. This can be obtained by executing Murota’s upper-tightness
testing algorithm on combinatorial relaxation [38, Section 4.4] (with det replaced with Pf).

Proposition 5.12 (see [38, Section 4.4]). Let S(θ) be a 2n × 2n skew-symmetric polynomial

matrix. We can compute the coefficient of θδ̂(S) in Pf S(θ) in O(n3)-time.

Algorithm 2 shows the entire procedure of our algorithm. Its time complexity, which is
stated in Theorem 1.3, is analyzed as follows.

Proof (of Theorem 1.3). The algorithm of Iwata–Kobayashi [26] runs in O
(

n3r
)

-time [26, The-
orem 11.1]. The maximum-weight perfect matching problem can be solved in O

(

n3
)

-time as

|W | = O(n); see [44, Section 26.3a]. The coefficient of θδ̂ in Pf θ∗(θ) can also be computed in
O
(

n3
)

-time by Proposition 5.12. Hence the total running time is dominated by O
(

n3r
)

.
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In the above arguments, we have assumed that arithmetic operations on K can be performed
in constant time. This assumption is reasonable when K is a finite field of fixed order. When
K = Q, it has not been proved that a direct application of the algorithm by Iwata–Kobayashi [26]
does not swell the bit-lengths of intermediate numbers. Instead, they showed that one can
obtain a minimum-weight parity base B by applying their algorithm over a sequence of finite
fields. However, since our counting algorithm requires not only B but also C∗, we cannot
directly execute our counting algorithm if we use the weighted linear matroid parity algorithm
for K = Q as a black-box. Here, we describe a polynomial-time counting algorithm for K = Q,
which is based on the same reduction to problems over finite fields as [26].

Let (A, L) be a Pfaffian parity over Q equipped with a line weight w : L→ R. Multiplying the
product of denominators of entries in A, we may assume that entries in A are integral. Applying
the weighted linear matroid parity algorithm for K = Q, we first compute the minimum weight
η of a parity base and the constant c ∈ Z of (A, L). Let γ be the maximum absolute value of the
entries of A and put K := ⌈r log(nrγ)⌉+ 2. We compute K smallest prime numbers p1, . . . , pK

by the sieve of Eratosthenes. Since K is bounded by a polynomial of the bit-length of A and
pK = O(K log K) by the prime number theorem, this computation can be done in polynomial
time.

Let N be the number of minimum-weight parity bases of (A, L). For i ∈ [K], we consider the
problem of computing cN modulo pi. We have cN ≡ 0 modulo pi if pi divides c. Suppose the
case when c is not a multiple of pi. Since det A[B] = c for all B ∈ B(A, L), a line subset B ⊆ L
is a parity base of (A, L) if and only if B is a parity base of (Api , L), where Api is a matrix over
GF(pi) obtained by regarding each entry of A as an element of GF(pi). Therefore, cN modulo
pi is equal to the number of parity bases of (Api , L) over GF(pi). We compute this quantity by
applying Algorithm 2 to (Api , L). Since arithmetic operations on GF(pi) can be performed in
polynomial time, this computation can also be done in polynomial time by Theorem 1.3.

Using the Chinese remainder theorem and the Euclidean algorithm, we compute cN modulo
∏K

i=1 pi from cN modulo p1, . . . , pK . Then we have

2|cN |+ 1 < 4|cN | ≤ 4r!γr

(

n

r

)

≤ 4(rγn)r ≤ 2K ≤
K
∏

i=1

pi,

which implies that cN is uniquely determined from cN modulo
∏K

i=1 pi. These arguments
certificate the correctness of Theorem 1.4.
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A Appendix

A.1 Counting on Weighted Pfaffian Pairs Revisited

In this section, we derive Algorithm 1 in a different manner than Section 5.2. While it is a
bit roundabout approach, it might provide a connection between Algorithm 1 and the counting
algorithm for weighted Pfaffian parities, explained in Section 5.3.
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Let (A1, A2) be a Pfaffian pair with constant c and column weight w : E → R. Suppose
that (A1, A2) has at least one common base. Let ζ be the minimum weight of a common
base and N the number of minimum-weight common bases modulo ch(K). Define P (θ) =
(

Pu,v(θ)
)

u∈U1,v∈U2
:= A1D

(

θw
)

A⊤
2 , where θ is an indeterminate and U1 and U2 are row sets of

A1 and A2, respectively. From Proposition 2.5, we have the following algebraic characterization
on ζ and N .

Lemma A.1. The coefficient of θζ in P (θ) is equal to cN . In addition, it holds ζ ≤ ord P (θ)
and the equality is attained if and only if N 6= 0.

Let B ∈ B(A1, A2) be a minimum-weight common base. As in Section 5.2, we first apply
pivoting to A1 and A2 so that A1[B] = A2[B] = Ir. We perform the same row and column
operation on P (θ) accordingly. Now we can identify U1 and U2 with B since A1[B] and A2[B]
are identity.

Next, we construct a bipartite graph G = (U1 ∪U2, F ) from P (θ) as follows. The vertex set
U1 ∪ U2 is bipartitioned as {U1, U2}. The edge set F is given by

F := {(u, v) | u ∈ U1, v ∈ U2, Pu,v(θ) 6= 0}

and we set the weight of every edge (u, v) ∈ F as ord Pu,v(θ). Let ζ̂ denote the minimum
weight of a perfect matching of G. If G has no perfect matching, we let ζ̂ := +∞. Then it is
easily observed from the definition (2) of the determinant that ζ̂ serves as a combinatorial lower
bound on ord det P (θ) (see, e.g., [38, Proposition 2.1]), and hence on ζ if N 6= 0 by Lemma A.1.
Indeed, these quantities satisfy the following relation.

Lemma A.2. It holds ζ ≤ ζ̂ ≤ ord det P (θ). The equalities are attained if N 6= 0.

Proof. By Lemma A.1 and ζ̂ ≤ ord det P (θ), it suffices to show ζ ≤ ζ̂. To show the claim, we
use the dual problem of the minimum-weight perfect bipartite matching problem on G, which
is formulated as follows:

(DB)
maximize

p1,p2

∑

u∈B

p1(u) +
∑

v∈B

p2(v)

subject to p1(u) + p2(v) ≤ ord Pu,v(θ) ((u, v) ∈ F ).

See [44, Theorem 17.5] for example. Note again that U1 and U2 are identified with B.
Using the split weight w1, w2 satisfying (W1) and (W2), we define p1(u) := w1(u) and

p2(v) := w2(v) for u, v ∈ B. We show that this p1 and p2 are feasible on (DB). For every
(u, v) ∈ F , there exists j ∈ E with w(j) = ord Pu,v(θ) such that both the (u, j)th entry of
A1 and the (v, j)th entry of A2 are nonzero. By Proposition 5.4, we have w1(u) ≤ w1(j) and
w2(v) ≤ w2(j). Thus p1(u) + p2(v) = w1(u) + w2(v) ≤ w1(j) + w2(j) = w(j) = ord Pu,v(θ),
where the third equality follows from (W1). Hence (p1, p2) is feasible.

The value of the objective function with respect to p1 and p2 is

∑

u∈B

p1(u) +
∑

v∈B

p2(v) =
∑

u∈B

w1(u) +
∑

v∈B

w2(v) = w(B) = ζ.

This equality means that ζ is no more than the optimal value of the dual program, and thus
than ζ̂ by the weak duality of the linear program.

If ζ < ζ̂, then N must be zero by Lemma A.2. Otherwise, it holds ζ = ζ̂ = ord det P (θ)

and N is equal to the coefficient of θζ̂ in det P (θ). In the definition (2) of the determinant

of P (θ), every minimum-weight perfect matching of G contributes to the coefficient of θζ̂ in
det P (θ). In this sense, we can regard the computation of N as a kind of “counting operation”
on minimum-weight perfect matchings of the bipartite graph G.

Murota [38] gave a characterization of the coefficient of θζ̂ in det P (θ) (for a general poly-
nomial matrix P (θ)) as follows. Let (p1, p2) be a feasible solution of (DB). The tight coefficient
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matrix P # =
(

P #
u,v

)

u,v∈B
of P (θ) with respect to (p1, p2) is defined by

P #
u,v := the coefficient of θp1(u)+p2(v) in Pu,v(θ)

for u, v ∈ B.

Proposition A.3 ([38, Propositions 2.4 and 2.6]). Let (p1, p2) be a feasible solution of (DB).
If (p1, p2) is not optimal, then P # is singular. If (p1, p2) is optimal, then det P # is equal to the

coefficient of θζ̂ in det P (θ).

Proposition A.3 essentially follows from the complementarity of the linear program. At
this point, we have obtained a polynomial-time algorithm for computing N since P # can be
calculated in polynomial-time. We need one more argument to reach to Algorithm 1.

Let w1 and w2 be a split weight satisfying (W1) and (W2). For k = 1, 2, let A#
k be the

matrix obtained from Ak and wk by (42). We also put p1(u) := w1(u) and p2(u) := w2(u) for
u ∈ B. Note that (p1, p2) is feasible on (DB) as shown in the proof of Lemma A.2.

Lemma A.4. The matrix A#
1 A#

2

⊤
is equal to the tight coefficient matrix of P (θ) with respect

to (p1, p2).

Proof. Fix u, v ∈ B and j ∈ E. Let a and b be the (u, j)th entry of A1 and the (v, j)th entry of
A2, respectively. Assume that ab 6= 0. Then ab contributes to P #

u,v if and only if w1(u)+w2(v) =
w(j), which is equivalent to w1(u) = w1(j) and w2(u) = w2(j) by Proposition 5.4 and (W1).

Hence ab contributes to P #
u,v if and only if it contributes to the (u, v)th entry of A#

1 A#
2

⊤
.

We prove Corollary 5.6 using Lemma A.4, which guarantees the validity of Algorithm 1.

Proof (of Corollary 5.6). Suppose that ζ = ζ̂. Then (p1, p2) is optimal on (DB) since the

associated objective value is ζ = ζ̂. By Lemma A.1, N is equal to the coefficient of θζ̂ in det P (θ),

which is the same as det A#
1 A#

2

⊤
by the latter part of Proposition A.3 and Lemma A.4.

If ζ < ζ̂, then N = 0 by Lemma A.2. In addition, (p1, p2) is not optimal on (DB). Hence

det A#
1 A#

2

⊤
must be zero by the former claim of Proposition A.3. Thus det A#

1 A#
2

⊤
= N holds

on both cases.

Remark A.5. In the above arguments, we have constructed the bipartite graph G from P (θ) =
A1D(θw)A⊤

2 . On the other hand, Algorithm 2 builds a graph from Φ∗(θ) instead of Q(θ) :=
A∆(θw)A⊤ for a Pfaffian parity (A, L). Assuming that A is pivoted so that A[B] = I2r with a
minimum-weight parity base B, we conjecture that the number of minimum-weight parity bases
is equal to the coefficient of θδ̂(Q) in Pf Q(θ), where δ̂(Q) is defined in Section 5.3. If this is the
case, we can improve the running time of the weighted counting algorithm for Pfaffian parities.
Moreover, we can use an arbitrary algorithm to output B since C∗ is no longer needed, which
might further improve the running time for specific instances. This conjecture is true for linear
matroid intersection by Lemmas A.1 and A.2 and for the matching problem by the definition
of Pfaffian.
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