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Abstract
In this paper we consider the functional

Ep,λ(Ω) :=
∫

Ω
distp(x, ∂Ω) dx+ λ

H1(∂Ω)
H2(Ω) .

Here p ≥ 1, λ > 0 are given parameters, the unknown Ω varies among compact, convex, Hausdorff two-
dimensional sets of R2, ∂Ω denotes the boundary of Ω, and dist(x, ∂Ω) := infy∈∂Ω |x− y|. The integral
term

∫
Ω distp(x, ∂Ω) dx quantifies the “easiness” for points in Ω to reach the boundary, while H1(∂Ω)

H2(Ω)
is the perimeter-to-area ratio. The main aim is to prove existence and C1,1-regularity of minimizers of
Ep,λ.

Keywords. perimeter-to-area ratio, regularity
Classification. 49Q20, 49K10, 35B65

1 Introduction
The perimeter-to-area ratio (in 2D), or surface area-to-volume ratio (in 3D), plays a crucial role in many
processes. In biology, for instance, the size of prokaryote cells is limited by the efficiency of diffusion
processes, fundamental to transport nutrients across the cell, which is strongly correlated with the surface
area-to-volume ratio. A larger surface area-to-volume ratio also gives prokaryote cells a high metabolic
rate, fast growth, and short lifespan compared to eukaryote cells (see for instance [10]).

In chemistry, higher surface area-to-volume ratio increases the typical speed of chemical reactions. This
phenomenon can be observed in many instances , sometimes quite dramatically, such as dust explosions,
when dust particles of seemingly non-flammable materials (e.g., aluminum, sugar, flour, etc.) can be
ignited due to their very large surface area-to-volume ratio ([14, 12]).

In this paper we will focus on the 2D case. In the above examples, there are essentially two often
competing quantities: one is the “easiness” to access the boundary, and the other is the perimeter-to-area
ratio.
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A very thin, rod-like, rectangular body would have very good access to boundary (desirable), but large
perimeter-to-area ratio. A disk would have the lowest perimeter-to-area ratio (desirable) among shapes
of the same total area, but access to boundary would be limited. It is also possible to have both large
perimeter-to-area ratio and limited access to boundary.

Until now, we have discussed the “easiness” of accessing the boundary only at a qualitative level. In
order to quantify it, we introduce the “average distance” term

Fp(Ω) :=
∫

Ω
distp(x, ∂Ω) dx,

where dist(x, ∂Ω) := infy∈∂Ω |x− y|; p ≥ 1 is a given parameter; and | · | denotes the Euclidean distance.
Consider the energy functional

Ep,λ(Ω) =
∫

Ω
distp(x, ∂Ω) dx+ λ

H1(∂Ω)
H2(Ω) , (1.1)

where p ≥ 1, λ > 0 are given parameters. Define the admissible set

A := {Ω : Ω ⊂ R2 is compact, convex and Hausdorff two-dimensional}.

The term H1(∂Ω)
H2(Ω) is the perimeter-to-area ratio. Note that neither the perimeter H1(∂Ω), nor the area

H2(Ω), is penalized, only their ratio is. This makes compactness results quite challenging to prove, and
several estimates (in Section 2) will be required. Another issue is that it is not very clear if the average-
distance term is just a lower order perturbation of H

1(∂Ω)
H2(Ω) . The role of convexity is to ensure crucial

compactness estimates (Lemmas 2.2 and 3.5). Note that Ep,λ is invariant under rigid movements. Further
details about the space of convex sets, and its topology, will be discussed in Section 2. The main result of
this paper is:

Theorem 1.1. Given p ≥ 1, λ > 0, the following assertions hold:

(1) Ep,λ admits a minimizer in A.

(2) All minimizers are compact, convex, C1,1-regular sets, with Hausdorff dimension equal to 2.

(3) The perimeter-to-area ratio of any minimizer Ω satisfies

H1(∂Ω)
H2(Ω) = p+ 2

λ(p+ 3) min
A

Ep,λ.

Here, and for future reference, the expression “Ω is Ck-regular” means that its boundary ∂Ω is Ck-
regular, i.e., ∂Ω admits a Ck-regular parameterization.

Note that the functional Fp is formally similar to the average-distance functional

Σ 7→
∫

Γ
distp(x,Σ) dµ,

where Γ is a given domain, µ a given measure on Γ, and Σ varies among compact, path-wise connected
sets with Hausdorff dimension equal to 1. The average-distance functional has been widely studied, and
used in several modeling problems. For a (non exhaustive) list of references, we cite the papers (and
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books) by Buttazzo and collaborators [2, 3, 4, 8, 9, 6, 7]. Also related are the papers by Paolini and
Stepanov [22], Santambrogio and Tilli [23], Tilli [26], Lemenant and Mainini [19], Slepčev [25], and the
review paper by Lemenant [18]. Similar variational problems entailing a competition between classical
perimeter and nonlocal repulsive interaction were studied by Muratov and Knüpfer [21], Goldman, Novaga
and Ruffini [16], and Goldman, Novaga and Röger [15]. Figalli, Fusco, Maggi, Millot, and Morrini studied
a competition between a nonlocal s-perimeter and a nonlocal repulsive interaction term [13].

The rest of the paper is structured as follows: section 2 is dedicated to proving some auxiliary estimates
on the area ((2.2) and Corollary 2.1) and perimeter (Lemma 2.2) of elements of minimizing sequences.
Existence of minimizers will be shown in section 3, while C1,1 regularity will be proven in section 4.
Finally, we explore several future directions to further our understanding of the penalized average distance
problem.

2 Preliminary estimates
In this section we collect some preliminary estimates that will be used later. First, we remark that given
p ≥ 1 and λ > 0, for any Ω ∈ A it holds

H2(Ω) ≥ 4πλ2

Ep,λ(Ω)2 . (2.2)

Indeed, consider an arbitrary Ω ∈ A. By the isoperimetric inequality, among all convex sets with area
H2(Ω), the perimeter-to-area ratio is minimum for a disk, where it attains the value 2

√
π/
√
H2(Ω). Hence

2λ
√
π√

H2(Ω)
≤ λH

1(∂Ω)
H2(Ω) ≤ Ep,λ(Ω),

and (2.2) is proven.

Corollary 2.1. Given p ≥ 1, λ > 0, any minimizing sequence Ωn ⊆ A satisfies

H2(Ωn) ≥ 4πλ2
(

2π
p2 + 3p+ 2 + 2λ+ 1

)−2
=: C1, (2.3)

H1(∂Ωn)
H2(Ωn) ≤

1
λ

(
2π

p2 + 3p+ 2 + 2λ+ 1
)

=: C2, (2.4)

for any sufficiently large n.

Proof. First we prove infAEp,λ < +∞. Let B1 ∈ A be a disk of radius 1. Direct computation gives

inf
A
Ep,λ ≤ Ep,λ(B1) =

∫
B1

distp(x, ∂B1) dx+ λ
H1(∂B1)
H2(B1)

= 2π
∫ 1

0
(1− r)pr dr + 2λ = 2π

p2 + 3p+ 2 + 2λ < +∞. (2.5)

Thus, given a minimizing sequence Ωn ⊆ A, there exists N such that for any n ≥ N it holds

Ep,λ(Ωn) ≤ 2π
p2 + 3p+ 2 + 2λ+ 1, (2.6)
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and (2.2) gives

H2(Ωn) ≥ 4πλ2
(

2π
p2 + 3p+ 2 + 2λ+ 1

)−2
,

for any n ≥ N , hence (2.3). To prove (2.4), note that (2.6) forces

2π
p2 + 3p+ 2 + 2λ+ 1 ≥ Ep,λ(Ωn) ≥ λH

1(∂Ωn)
H2(Ωn) ,

concluding the proof.

Lemma 2.2. Given p ≥ 1 and λ > 0, for any minimizing sequence Ωn ⊆ A, it holds, for all sufficiently
large n,

H1(∂Ωn) ≤ C3 = C3(p, λ) (2.7)

with C3 being some computable (but uninfluential) constant.

Proof. We first claim that for any Ω ∈ A it holds∫
Ω

distp(x, ∂Ω) dx ≥ CH
2(Ω)p+1

H1(∂Ω)p , C = 3−p2−p−4. (2.8)

Consider an arbitrary Ω ∈ A. Let A,B ∈ ∂Ω be two points realizing D := |A− B| = diam Ω. Let Σi,
i = 1, 2 be the lines (see Figure 1) orthogonal to the line segment between A and B (which we denote by
JA,BK). Since Ω is convex, and |A − B| = diam Ω, Ω is entirely contained in the region between Σ1 and
Σ2. Then let Pi, i = 1, 2 be the points on ∂Ω such that the triangles 4APiB have maximal areas. As Ω
is convex, we have

H2(Ω) ≤ D(h1 + h2), hi := dist(Pi, JA,BK).

On the other hand, H2(4APiB) = Dhi/2, hence

H2(4AP1B ∪4AP2B)
H2(Ω) ≥ 1

2 .

Now we do the following construction: let Oi (resp. ri) be the incenter (resp. inradius) of 4APiB,
i = 1, 2. Denote by Ã (resp. P̃i, B̃) the midpoints of the line segments between Oi and A (resp. Pi, B) –
see Figure 2.

Clearly, 4ÃP̃iB̃ is a rescaled copy of 4APiB, with area H2(4APiB)/4. As

inradius = 2Area
Perimeter ,

we can estimate ri as follows:

ri = Dhi
D + |A− Pi|+ |B − Pi|

≥ Dhi
3D = hi

3 (2.9)

since by definition we have D = diam Ω ≥ |A− Pi|, |B − Pi|. Then, noting that

dist(x, ∂Ω) ≥ dist(x, ∂APiB) ≥ 1
2 dist(Oi, ∂APiB) ≥ 1

2ri
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Figure 1: A schematic representation of the construction. The points P1 and (resp. P2) are the points
on ∂Ω above (resp. below) the segment JA,BK furthest away from JA,BK.

for all x ∈ 4ÃP̃iB̃, i = 1, 2, we have∫
Ω

distp(x, ∂Ω) dx ≥
2∑
i=1

∫
4ÃP̃iB̃

distp(x, ∂Ω) dx

≥
2∑
i=1

2−prpiH
2(4ÃP̃iB̃) =

2∑
i=1

2−p−2rpiH
2(4APiB)

≥
2∑
i=1

3−p2−p−3hp+1
i D ≥ 3−p2−p−3D ·max

i=1,2
hp+1
i . (2.10)

Recalling that H2(Ω) ≤ D(h1 + h2), H1(∂Ω) ≥ 2D, we get

H2(Ω)p+1

H1(∂Ω)p ≤
Dp+1(h1 + h2)p+1

(2D)p = 2−pD(h1 + h2)p+1 ≤ 2D ·max
i=1,2

hp+1
i .

Hence (2.10) gives ∫
Ω

distp(x, ∂Ω) dx ≥ CH
2(Ω)p+1

H1(∂Ω)p , C = 3−p2−p−4,

and (2.8) is proven. From (2.4) we know that

H1(∂Ωn)
H2(Ωn) ≤ C2 =⇒ H2(Ωn)p+1

H1(∂Ωn)p+1 ≥ C
−p−1
2 ,
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Figure 2: A schematic representation of the construction. The points Ã, P̃i, B̃ are the midpoints of the
segments JOi, AK, JOi, PiK, JOi, BK respectively. The red dotted circle is the incircle of the triangle4APiB.

so the above inequality gives∫
Ω

distp(x, ∂Ωn) dx ≥ C H
2(Ωn)p+1

H1(∂Ωn)p+1H
1(∂Ωn) ≥ CC−p−1

2 H1(∂Ωn).

Now, any minimizing sequence {Ωn} is such that, for all sufficiently large n,

Ep,λ(Ωn) ≤ inf Ep,λ + 1,

thus

inf Ep,λ + 1 ≥ Ep,λ(Ωn) ≥
∫

Ωn
distp(x, ∂Ωn) dx ≥ CC−p−1

2 H1(∂Ωn),

(2.5) shows that inf Ep,λ < +∞, completing the proof.

Remark 2.3. We note that it is an interesting geometric question by itself to study what the optimal
constant C for the inequality (2.8). Furthermore, one may ask if the form of the inequality is optimal.
That is, one may ask, given H2(Ω) and H1(∂Ω), what is the minimum of

∫
Ω distp(x, ∂Ω) dx, which is a

constrained optimization problem related to the one considered in this work.

3 Existence
In this section we will prove that the Ep,λ admits a minimizer in A. As our arguments rely on a lower
semicontinuity result, namely Lemma 3.4 below, we need first to introduce a metric on A.
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For any Ω1,Ω2 ∈ A, define

d(Ω1,Ω2) := H2(Ω14Ω2), (3.11)

where 4 denotes the symmetric difference. Set

Ā := completion of A with respect to d.

Before we can proceed, we need to characterize the elements of Ā \ A: we cannot exclude a priori that an
element Ω ∈ Ā can be quite irregular:

1. Ω ∈ Ā needs not to be closed: indeed it is very possible for a sequence of compact sets to converge
to an open set in the metric d. For instance, let Ωn be the closed ball of radius 1 − 1/n centered
around the origin, then it converges to the open ball, centered around the origin, of radius 1.

2. As we do not have any a priori bounds on the diameter of elements of A, a set Ω ∈ Ā needs not to
be bounded.

3. The distance d is insensitive to perturbations on H2-negligible sets. Therefore, we cannot exclude
that Ā might contain compact convex sets up to H2-negligible sets. Thus whether a generic element
in Ā is convex or not is unclear.

In view of the above mentioned issues, we cannot assume neither compactness, nor convexity, for elements
of Ā. Our goal is to show (see Lemma 3.3 below) that minimizing sequences must converge to some element
in A.

The next result, from [25], will be crucial for our convergence arguments.

Lemma 3.1. Consider a sequence of constant speed parameterized curves γn : [0, 1] −→ K, where K ⊆ Rd
is some compact set. Assume moreover that

sup
n
L(γn) < +∞, sup

n
‖γn‖BV ([0,1];Rd) < +∞, (3.12)

where ‖ · ‖BV ([0,1];Rd) denotes the bounded variation norm. Then there exists a curve γ : [0, 1] −→ K such
that:

1. γn → γ in Cα([0, 1];Rd) for all α ∈ [0, 1),

2. γ′n → γ′ in Lp(0, 1;Rd) for all p < +∞,

3. γ′′n
∗
⇀ γ′′ weakly as measures.

Remark 3.2. We remark that this convergence result is quite strong: consider a sequence {Ωn} ⊆ A and
let γn be constant speed parameterizations of ∂Ωn. Note that γn are all closed curves. Assume that we are
under the hypotheses of Lemma 3.1, hence there exists γ : [0, 1] −→ K such that γn → γ in Cα([0, 1];Rd)
for all α ∈ [0, 1). In particular, we can define Ω to be the bounded region delimited by the graph of γ,
and we have the uniform convergence of the boundaries, which in turn gives dH(∂Ωn, ∂Ω) → 0. Here dH
denotes the Hausdorff distance

dH(X,Y ) := max
{

sup
x∈X

dist(x, Y ), sup
y∈Y

dist(y,X)
}
.

7



Such strong convergence also implies that the characteristic functions χΩn converge to χΩ in Lp, p ∈
[1,+∞), since

‖χΩn − χΩ‖pLp(Rd) ≤ H
2(Ωn4Ω) ≤ max

{
sup
n
L(γn), L(γ)

}
· dH(∂Ωn, ∂Ω)→ 0.

Lemma 3.3. Consider a minimizing sequence Ωn ⊆ A, then there exists Ω ∈ A, and a sequence xn ⊆ Rn
such that Ωn + xn → Ω in the metric d.

Note that, since our energy is translation invariant, the above convergence result is sufficient for our
purposes.

Proof. In this proof it is more convenient to work with constant speed, instead of arc-length, parameteri-
zations.

Consider minimizing sequence {Ωn} ⊆ A, and let ϕn : [0, 1] −→ ∂Ωn be constant speed parameter-
izations. Note all ∂Ωn are closed curves, and as Ep,λ is translation invariant, we can replace Ωn with
translated copies (which, for brevity, we still denote by Ωn, and by ϕn the parameterization of ∂Ωn) such
that ϕn(0) = ϕn(1) = 0. We show that we are under the conditions (3.12): first, the upper bound on the
perimeter (2.7) and Ωn ⊆ R2 ensures all Ωn are contained in some compact set K. As the curves ϕn are
parameterized by constant speed, we have ‖ϕ′n‖ = L(ϕn) = H1(∂Ωn) a.e. Then, in view of Lemma 2.2,
we infer (3.12). Therefore there exists a limit curve ϕ : [0, 1] −→ K such that the convergences in Lemma
3.1 hold. Since ϕn(0) = ϕn(1) = 0 for all n, we get ϕ(0) = ϕ(1) = 0 too. We define Ω to be the bounded
area delimited by ϕ, and the graph of ϕ turn out to be ∂Ω. By construction, Ω is compact.

We need to check it is convex: consider arbitrary P,Q ∈ Ω, t ∈ (0, 1), and we show that (1−t)P+tQ ∈ Ω.
Consider sequences Pn, Qn ∈ Ωn such that Pn → P , Qn → Q: since each Ωn is convex, (1−t)Pn+tQn ∈ Ωn.
By Lemma 3.1, we know ‖ϕn − ϕ‖C0([0,1];R2) → 0. As a consequence,

dH(∂Ωn, ∂Ω)→ 0

too, This allows us to choose, for each n, another point zn ∈ Ω such that |zn − ((1 − t)Pn + tQn)| ≤
dH(∂Ωn, ∂Ω). By construction, now the sequences (1 − t)Pn + tQn and zn have the same limit. As
(1− t)Pn + tQn → (1− t)P + tQ, and zn → z, hence z = (1− t)P + tQ, using the compactness of Ω finally
gives z ∈ Ω.

Finally, we check that dimHΩ = 2. Since the ambient space R2 has already Hausdorff dimension two, it
suffices to show that Ω contains a set of Hausdorff dimension two. For each n, we can use the construction
from the proof of Lemma 2.2 on each Ωn: we showed the existence of triangles Ti := 4ÃP̃iB̃ (see Figure
1) whose distance to the boundary is at least ri/2, with ri being the incenter which satisfied ri ≥ hi/3.
Now, since we showed in the proof of Lemma 2.2 that

2∑
i=1

hi,n diam Ωn ≥ H2(Ωn),

and
H2(Ωn) ≥ C1, diam Ωn ≤ H1(∂Ωn) ≤ C3

due to Corrollary 2.1, we get
2∑
i=1

hi,n ≥
H2(Ωn)
diam Ωn

≥ C1

C3
> 0.
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This shows that at least one of the triangles Ti,n, i = 1, 2, must be non degenerate since its inradius is
bounded from below by

max
i=1,2

ri,n ≥ max
i=1,2

hi,n
3 ≥ C1

6C3
,

and the proof is complete.

Lemma 3.3 is of crucial importance: since we are interested in the minimizers of Ep,λ, this allows us
to reduce the minimization problem to A, and neglect the highly irregular elements of Ā \ A.

Lemma 3.4. Given p ≥ 1, λ > 0, and a minimizing sequence Ωn ⊆ A converging to Ω ∈ A with respect
to d, then it holds:

H2(Ω) = lim
n→+∞

H2(Ωn), (3.13)

H1(∂Ω) ≤ lim inf
n→+∞

H1(∂Ωn), (3.14)∫
Ω

distp(x, ∂Ω) dx = lim
n→+∞

∫
Ωn

distp(x, ∂Ωn) dx. (3.15)

Proof. Estimate (3.13) follows from the definition of the metric d and Remark 3.2.
To prove (3.14), recall that the perimeter H1(∂Ωn) is the total variation of the characteristic function

of Ωn. Convergence Ωn → Ω with respect to d implies (see Remark 3.2)

χΩn → χΩ strongly in L1(R2),

with “χ” denoting the characteristic function of the subscribed set. Thus (3.14) follows from the lower-
semicontinuity of the total variation semi-norm.

To prove (3.15), note that∫
Ωn

distp(x, ∂Ωn) dx =
∫

Ωn\Ω
distp(x, ∂Ωn) dx+

∫
Ωn∩Ω

distp(x, ∂Ωn) dx∫
Ω

distp(x, ∂Ω) dx =
∫

Ω\Ωn
distp(x, ∂Ω) dx+

∫
Ωn∩Ω

distp(x, ∂Ω) dx,

hence ∣∣∣∣ ∫
Ωn

distp(x, ∂Ωn) dx−
∫

Ω
distp(x, ∂Ω) dx

∣∣∣∣
≤
∫

Ωn\Ω
distp(x, ∂Ωn) dx+

∫
Ω\Ωn

distp(x, ∂Ω) dx (3.16)

+
∫

Ωn∩Ω
|distp(x, ∂Ωn)− distp(x, ∂Ω)|dx. (3.17)

By Lemma 2.2,
diam(Ωn) ≤ H1(∂Ωn) ≤ C3.

According to (3.14),
diam(Ω) ≤ H1(∂Ω) ≤ lim inf

n→+∞
H1(∂Ωn) ≤ C3.
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Therefore, ∫
Ωn\Ω

distp(x, ∂Ωn) dx ≤ H2(Ωn\Ω)(diam(Ωn))p ≤ H2(Ωn\Ω)Cp3 → 0,∫
Ω\Ωn

distp(x, ∂Ω) dx ≤ H2(Ω\Ωn)(diam(Ω))p ≤ H2(Ω\Ωn)Cp3 → 0,

hence the sum in (3.16) goes to zero. To estimate (3.17), denote by dH the Hausdorff distance, and note
that, by the Mean Value theorem, it holds∫

Ωn∩Ω
|distp(x, ∂Ωn)− distp(x, ∂Ω)|dx

≤
∫

Ωn∩Ω
|dist(x, ∂Ωn)− dist(x, ∂Ω)|

· p sup
x∈Ωn∩Ω

(
max{dist(x, ∂Ωn),dist(x, ∂Ω)}

)p−1
dx

≤ H2(Ωn ∩ Ω)dH(∂Ωn, ∂Ω) · p
(

max{diam Ωn,diam Ω}
)p−1

≤ H2(Ωn ∩ Ω) dH(∂Ωn, ∂Ω) · p Cp−1
3 → 0.

Thus the term in (3.17) goes to zero too, and (3.15) is proven.

Now we prove part (1) of Theorem 1.1, i.e., the existence of minimizers in A.

Lemma 3.5. For any p ≥ 1, λ > 0, the functional Ep,λ admits a minimizer Ω ∈ A, which satisfies:

H2(Ω) ≥ C1, H1(∂Ω) ≤ C3,

with C1 (resp. C3) defined in (2.3) (resp. (2.7)).

Proof. Corollary 2.1 gives H2(Ωn) ≥ C1 for any sufficiently large n, and Lemma 3.4 gives

H2(Ω) = lim
n→+∞

H2(Ωn) ≥ C1. (3.18)

Based on Lemma 3.4 and equation (2.7),

H1(∂Ω) ≤ C3. (3.19)

Lemma 3.4 gives
H1(∂Ω)
H2(Ω) ≤ lim inf

n→+∞

H1(∂Ωn)
H2(Ωn) . (3.20)

and ∫
Ω

distp(x, ∂Ω) dx = lim
n→+∞

∫
Ωn

distp(x, ∂Ωn) dx. (3.21)
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Combining (3.20) and (3.21) gives

Ep,λ(Ω) =
∫

Ω
distp(x, ∂Ω) dx+ λ

H1(∂Ω)
H2(Ω)

≤ lim
n→+∞

∫
Ωn

distp(x, ∂Ωn) dx+ λ lim inf
n→+∞

H1(∂Ωn)
H2(Ωn) ≤ lim inf

n→+∞
Ep,λ(Ωn) = inf̄

A
Ep,λ,

hence Ω is effectively a minimizer of Ep,λ in Ā. Lemma 3.3 shows Ω ∈ A.

4 Regularity
Now we prove part (2) of Theorem 1.1. The proof will be split over Lemmas 4.2 and 4.3.

Lemma 4.1. Let S be a compact, convex set, with Hausdorff dimension equal to 2. Let w1, w2 ∈ ∂S be
arbitrary distinct points, and let σ be the segment with endpoints w1 and w2. Denoting by S1 and S2 the
two connected components of S\σ, then both S1, S2 are convex.

Proof. Endow R2 with a Cartesian coordinate system. Upon rotation and reflection, assume that σ lies in
the y-axis, and S1 ⊆ {x > 0}, S2 ⊆ {x < 0}. Clearly, given points u, v ∈ S1, the segment ξ between u and
v lies entirely in S ∩ {x > 0} = S1, hence S1 is convex. The proof for S2 is analogous.

Lemma 4.2. (C1-regularity) For any p ≥ 1, λ > 0, any minimizer of Ep,λ is C1-regular.

Proof. Consider an arbitrary minimizer Ω ∈ A. Endow R2 with a polar coordinate system. We parame-
terize ∂Ω by a closed Lipschitz curve

γ : [0, 2π] −→ ∂Ω.
The proof is achieved by a contradiction argument. Assume that Ω is not C1-regular. That is, γ is not
C1-regular at some point t0. Upon rotating the coordinates, we can also assume t0 ∈ (0, 2π). Since Ω is
convex, both one-sided derivatives

l− := lim
t→t−0

γ′(t), l+ := lim
t→t+0

γ′(t)

are well-defined [1, 20]. Denote by α the angle between l− and l+. Clearly, α 6= π.
Figure 3 is a representation (in first order approximation) of ∂Ω near γ(t0). For small parameters

0 < ε� 1, construct the competitor Ωε as follows:

1. Choose t1 < t0 < t2 such that (in first order approximation in ε)

H1(γ([t1, t0])) = H1(γ([t0, t2])) = ε+O(ε2).

2. Denote by
σ := {(1− s)γ(t1) + sγ(t2) : s ∈ [0, 1]}

the line segment between γ(t1) and γ(t2), and set

L :=
(
∂Ω\γ([t1, t2])

)
∪ σ. (4.22)

Note that such L is a convex Jordan curve, and denote by Ωε the bounded region delimited by L.
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Figure 3: A schematic representation (near γ(t0), in first order approximation in ε) of the construction of Ωε.

By construction, in first order approximation in ε, it holds

H1(∂Ωε) = H1(∂Ω)− 2ε(1− sin(α/2)) +O(ε2), (4.23)

H2(Ωε) = H2(Ω)− ε2 sinα
2 + o(ε2) = H2(Ω) +O(ε2). (4.24)

Moreover, it is straightforward to show that∫
Ωε

distp(x, ∂Ωε) dx ≤
∫

Ω
distp(x, ∂Ω) dx. (4.25)

Recalling that H2(Ω) > 0 (since Ω is a minimizer), combining (4.23), (4.24) and (4.25) gives (in first
order approximation in ε)

Ep,λ(Ωε) =
∫

Ωε
distp(x, ∂Ωε) dx+ λ

H1(∂Ωε)
H2(Ωε)

≤
∫

Ω
distp(x, ∂Ω) dx+ λ

H1(∂Ω)− 2ε(1− sin(α/2)) +O(ε2)
H2(Ω) +O(ε2)

=
∫

Ω
distp(x, ∂Ω) dx+ λ

H1(∂Ω)
H2(Ω) −

2λε(1− sin(α/2))
H2(Ω) +O(ε2)

= Ep,λ(Ω)− 2λε(1− sin(α/2))
H2(Ω) +O(ε2)

= min
A

Ep,λ −
2λε(1− sin(α/2))

H2(Ω) +O(ε2),

which is a contradiction for sufficiently small ε. Thus Ω must be C1-regular.

Lemma 4.3. Given p ≥ 1, λ > 0, a minimizer Ω of Ep,λ, let γ : [0,H1(∂Ω)] −→ ∂Ω be an arc-length
parameterization. Then it holds

lim sup
h→0

|γ(t+ 2h)− 2γ(t) + γ(t− 2h)|
h2 ≤ 4C, (4.26)
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for any t, where C is some constant depending only on λ and p (and independent of Ω).

We remark that (4.26) implies C1,1-regularity of ∂Ω.

Proof. Consider an arbitrary point p0 ∈ ∂Ω. Since we proved that Ω is C1-regular, consider a (local)
orthogonal coordinate system with origin in p0, and x-axis oriented along the tangent derivative (at p0),
such that Ω is entirely contained in the half-plane {y ≥ 0}. The boundary ∂Ω is thus (locally) the graph
of some nonnegative function f . Clearly, such f satisfies f(0) = 0.

Figure 4: A schematic representation of the construction near p0 = (0, 0).

Choose an arbitrary 0 < ε� 1. Denote by

σε := {(x, y) : 0 ≤ x ≤ ε, y = x · f(ε)/ε}

the segment between the origin and (ε, f(ε)). Let Lε be the curve obtained by replacing f([0, ε]) with σε.
That is,

Lε := (∂Ω\f([0, ε])) ∪ σε.
By construction (see Lemma 4.1) Lε is a convex Jordan curve, and let Ωε be the bounded region delimited
by Lε. Note that:

1. Clearly we can infer ∫
Ωε

distp(x, ∂Ωε) dx ≤
∫

Ω
distp(x, ∂Ω) dx. (4.27)

2. For areas, since by construction it holds Ωε ⊆ Ω, we have

H2(Ω)−H2(Ωε) = H2(Ω\Ωε)
= H2({(x, y) : 0 ≤ x ≤ ε, f(x) ≤ y ≤ x · f(ε)/ε})

=
∫ ε

0
[xf(ε)/ε− f(x)] dx = f(ε)ε

2 −
∫ ε

0
f(x) dx. (4.28)
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3. For perimeters, note that f ′(0) = 0, so |f ′| is small near 0. In particular, by choosing sufficiently
small ε, we can ensure that √

1 + |f ′(x)|2 ≤ 2 for all x ∈ (0, ε),

and also |f(ε)|/ε can be made as small as we need, so to satisfy√
1 + f(ε)2

ε2 = 1 + f(ε)2

2ε2 −
1
8

(f(ε)2

ε2

)2
+O

((f(ε)2

ε2

)3)
≤ 1 + f(ε)2

2ε2 .

Therefore,

H1(∂Ω)−H1(∂Ωε) =
∫ ε

0

(√
1 + |f ′(x)|2 −

√
1 + f(ε)2

ε2

)
dx

≥
∫ ε

0

(√
1 + |f ′(x)|2 − 1− f(ε)2

2ε2

)
dx,

where, since for sufficiently small ε� 1 the quantity f(ε)2

2ε2 can be made arbitrarily small, we have∫ ε

0

f(ε)2

2ε2 dx = o(ε), ε� 1.

Thus, for all sufficiently small ε,

H1(∂Ω)−H1(∂Ωε) =
∫ ε

0

(√
1 + |f ′(x)|2 −

√
1 + f(ε)2

ε2

)
dx

≥
∫ ε

0

(√
1 + |f ′(x)|2 − 1

)
dx+ o(ε)

=
∫ ε

0

|f ′(x)|2√
1 + |f ′(x)|2 + 1

dx+ o(ε) ≥ 1
3

∫ ε

0
|f ′(x)|2 dx. (4.29)

Combining (4.27), (4.28) and (4.29) gives

Ep,λ(Ωε) =
∫

Ωε
distp(x, ∂Ωε) dx+ λ

H1(∂Ωε)
H2(Ωε)

≤
∫

Ω
distp(x, ∂Ω) dx+ λ

H1(∂Ω)− 1
3
∫ ε

0 |f
′(x)|2 dx

H2(Ω)− ( f(ε)ε
2 −

∫ ε
0 f(x) dx)

. (4.30)

Since

H1(∂Ω)
H2(Ω)− ( f(ε)ε

2 −
∫ ε

0 f(x) dx)
= H

1(∂Ω)
H2(Ω) ·

H2(Ω)
H2(Ω)− ( f(ε)ε

2 −
∫ ε

0 f(x) dx)

= H
1(∂Ω)
H2(Ω) ·

(
1 +

f(ε)ε
2 −

∫ ε
0 f(x) dx

H2(Ω)− ( f(ε)ε
2 −

∫ ε
0 f(x) dx)

)
,
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estimate (4.30) reads

Ep,λ(Ωε) ≤
∫

Ω
distp(x, ∂Ω) dx− λ

1
3
∫ ε

0 |f
′(x)|2 dx

H2(Ω)− ( f(ε)ε
2 −

∫ ε
0 f(x) dx)

+ λ
H1(∂Ω)
H2(Ω) ·

(
1 +

f(ε)ε
2 −

∫ ε
0 f(x) dx

H2(Ω)− ( f(ε)ε
2 −

∫ ε
0 f(x) dx)

)

= Ep,λ(Ω) + λ

H1(∂Ω)
H2(Ω) ( f(ε)ε

2 −
∫ ε

0 f(x) dx)− 1
3
∫ ε

0 |f
′(x)|2 dx

H2(Ω)− ( f(ε)ε
2 −

∫ ε
0 f(x) dx)

. (4.31)

Since Ω is a minimizer, Lemma 3.5 gives H2(Ω) > 0, and note that

f(ε)ε
2 −

∫ ε

0
f(x) dx ≤ H

2(Ω)
2

for all sufficiently small ε, hence the denominator in (4.31) is positive. Thus the minimality of Ω forces
the numerator in (4.31) to be nonnegative, i.e.,

3H
1(∂Ω)
H2(Ω)

(
f(ε)ε

2 −
∫ ε

0
f(x) dx

)
−
∫ ε

0
|f ′(x)|2 dx ≥ 0. (4.32)

Equation (4.28) shows
f(ε)ε

2 −
∫ ε

0
f(x) dx = H2(Ω)−H2(Ωε) ≥ 0

since by construction Ωε ⊆ Ω. Lemma 3.5 gives

H2(Ω) ≥ C1, H1(∂Ω) ≤ C3,

hence
3H

1(∂Ω)
H2(Ω) ≤

3C3

C1
=: C,

and (4.32) forces

C

(
f(ε)ε

2 −
∫ ε

0
f(x) dx

)
≥
∫ ε

0
|f ′(x)|2 dx. (4.33)

Since Ω is convex, and we assumed (at the beginning of this proof) that Ω ⊆ {y ≥ 0}, f is nonnegative,
hence (4.33) forces

C

2 f(ε)ε ≥
∫ ε

0
|f ′(x)|2 dx. (4.34)

Note that, since f(0) = 0, it follows

f(ε) =
∫ ε

0
f ′(x) dx ≤

∫ ε

0
|f ′(x)|dx. (4.35)

By Hölder’s inequality, ∫ ε

0
|f ′(x)|2 dx ≥ 1

ε

(∫ ε

0
|f ′(x)|dx

)2
, (4.36)
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hence

C

2 ε
∫ ε

0
|f ′(x)|dx

(4.35)
≥ C

2 f(ε)ε
(4.34)
≥

∫ ε

0
|f ′(x)|2 dx

(4.36)
≥ 1

ε

(∫ ε

0
|f ′(x)|dx

)2

=⇒ C

2 ε
2 ≥

∫ ε

0
|f ′(x)|dx ≥

∫ ε

0
f ′(x) dx = f(ε).

The above arguments can be repeated for ε < 0, |ε| � 1 (or equivalently, when the orientation of x-axis is
inverted). The arbitrariness of ε then gives

lim sup
ε→0

|f(ε)− 2f(0) + f(−ε)|
(ε/2)2 ≤ 4C,

concluding the proof.

Now we prove part (3) of Theorem 1.1.

Lemma 4.4. Given p ≥ 1, λ > 0, any minimizer Ω of Ep,λ satisfies

H1(∂Ω)
H2(Ω) = p+ 2

λ(p+ 3) min
A

Ep,λ.

Proof. Let Ω be an arbitrary minimizer. Endow R2 with a Cartesian coordinate system, and assume
without loss of generality that (0, 0) is in the interior part of Ω. For any r > 0, denote by

Tr : R2 −→ R2, Tr(x) := rx

the homothety of center (0, 0) and ratio r. Note that Tr(Ω) ∈ A for any r > 0, and the scalings are∫
Tr(Ω)

distp(x, ∂Tr(Ω)) dx = rp+2
∫

Ω
distp(x, ∂Ω) dx,

H1(∂Tr(Ω))
H2(Tr(Ω)) = 1

r
· H

1(∂Ω)
H2(Ω) .

Define the function

f : (0,+∞) −→ (0,+∞), f(r) := Ep,λ(Tr(Ω)) = rp+2
∫

Ω
distp(x, ∂Ω) dx+ λ

r
· H

1(∂Ω)
H2(Ω) .

Since f is smooth, and attains a global minimum at r = 1, it follows

f ′(1) = (p+ 2)
∫

Ω
distp(x, ∂Ω) dx− λ · H

1(∂Ω)
H2(Ω) = 0

=⇒
∫

Ω
distp(x, ∂Ω) dx = λ

p+ 2 ·
H1(∂Ω)
H2(Ω) ,

hence
Ep,λ(Ω) = λ(p+ 3)

p+ 2 · H
1(∂Ω)
H2(Ω) = min

A
Ep,λ,

and the proof is complete.
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Let us conclude the paper with some final remarks. In this paper we investigated the minimization
problem for the average distance functional, with perimeter-to-area ratio penalization, in the plane. We
proved the existence and C1,1 regularity of minimizers, mainly relying on constructing suitable competitors.
Echoing and developing former studies that exclusively focused on either the 1D average distance problem
or purely surface area-to-volume ratio question, by considering optimal sets of combined energy from
broader and more eclectic perspectives, this study enriches and deepens our understanding of penalized
average distance problem.

We remark that all the main results of this paper, i.e. bounds on the perimeter and area, and C1,1-
regular of minimizers, can be also proven if we replace the perimeter-to-area term with a generalized ratio
of the form λH

1(∂Ω)α
H2(Ω)β , symbolizing a perimeter term normalized (by area) with different scaling exponents

α and β. That is, we consider an energy of the form

Eα,βp,λ (Ω) :=
∫

Ω
distp(x, ∂Ω) dx+ λ

H1(∂Ω)α

H2(Ω)β , (4.37)

where α, β are given powers satisfying 2β > α > p
p+1β > 0. This last bound, combined with Young’s

inequality, allows us to easily bound the perimeter, and the subsequent results. It can also be quickly
checked that if α > 2β, then minimizers are just single points. One more remark is that according to (2.8),
if in (4.37) we pick α = p, β = p+ 1 and λ = C as in (2.8), we get

Ep,p+1
p,λ (Ω) ≥ CH

2(Ω)p+1

H1(∂Ω)p + C
H1(∂Ω)p

H2(Ω)p+1 ≥ 2C.

So in this case if the optimal constant in (2.8) is obtained by a circle, the optimal shape for (1.1) is a
circle. An interesting question worthy further consideration is if the circle would be the minimizer for
other parameters, as in similar discussions given in [21, 16, 15, 13]. Another natural question is to ask if in
general one may improve the C1,1 regularity by combining the established results with elliptic regularity
theory, given that the variation of the perimeter-to-area ratio leads to a system of second order differential
equations of the boundary parametrization.

In addition, it is interesting to improve the results of this paper to higher dimensions, again with
a generalized ratio penalization. However, the geometric complexity of higher dimensional objects can
increase significantly, and more work is required to exclude more complicated sets (e.g., “tentacles”), which
were not an issue in the planar case, thus we expected to rely on rather different tools and arguments.
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