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Abstract. A maximum entropy dissipation problem at a traffic junction and the corresponding

coupling condition are studied. We prove that this problem is equivalent to a coupling condition

introduced by Holden and Risebro. An L1–contraction property of the coupling condition and
uniqueness of solutions to the Cauchy problem are proven. Existence is obtained by a kinetic ap-

proximation of Bhatnagar–Gross–Krook–type together with a kinetic coupling condition obtained
by a kinetic maximum entropy dissipation problem. The arguments do not require TV –bounds

on the initial data compared to previous results. We also discuss the role of the entropies involved

in the macroscopic coupling condition at the traffic junction by studying an example.

1. Introduction

By hyperbolic conservation laws on networks we understand models on finite, directed graphs
where the dynamics on each arc are modelled by hyperbolic conservation laws in one spatial dimen-
sion. The arcs correspond to the traffic roads supplemented with suitable hyperbolic conservation
laws for vehicular traffic flow. At the vertices (called junctions) suitable conditions are needed to
couple the solutions. Hyperbolic conservation laws on networks were intensively studied in various
directions (analysis, numerics, control,...) in the last two decades, see e.g. [10]. See also [9, 16] for
an introduction to hyperbolic conservation laws.

We are interested in network models for macroscopic vehicular traffic flow. The scalar Lighthill-
Whitham-Richards model (LWR model) [30, 36] describes the dynamics of the vehicles on the roads.
The LWR model on networks and different coupling conditions were studied by many authors, see
e.g. [3, 11, 13, 14, 17, 18, 22, 29]. For a general introduction to traffic flow on networks, see [19, 20].
A major problem is the selection of suitable coupling conditions at the junctions. The aim is to
select coupling conditions modelling the physical dynamics at the traffic junction.

In the seminal paper by Holden and Risebro [22] a coupling condition for the LWR model
is defined by an optimization problem. Existence and uniqueness of solutions to the Riemann
problem is obtained. For initial data with bounded total variation existence of solutions to the
Cauchy problem is proven. We study this condition by using a maximum entropy dissipation
problem which is equivalent to the optimization problem introduced by Holden and Risebro. We
prove existence and uniqueness of solutions to the Cauchy problem without using a bound on
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the total variation of the initial data. Coclite and Garavello [14] introduce a vanishing viscosity
approach for the LWR model on networks and Andreianov, Coclite and Donadello [3] prove that
the limit of the vanishing viscosity solutions satisfies an L1–contractive coupling condition at the
junction. Recently, Fjordholm, Musch and Risebro [18] studied analytical and numerical aspects of
L1–contractive coupling conditions by using stationary solutions. In this paper we will use again
the L1–contraction property and stationary solutions to study a kinetic approximation for the LWR
model.

We use a kinetic Bhatnagar–Gross–Krook–type (BGK) model and a kinetic coupling condition
to approximate the LWR model. Kinetic models describing the dynamics at the junction were
studied for different applications, e.g. traffic flow, chemotaxis and gas dynamics [5, 6, 7, 8, 21, 24].
A typical approach starts by the selection of a kinetic coupling condition which is defined based on
reasonable physical assumptions. In the next step the convergence towards a macroscopic solution
is studied [8, 21]. In [24] a BGK model for isentropic gas dynamics is coupled at the junction by
a kinetic coupling condition. The convergence of the kinetic solutions is justified by compensated
compactness and a macroscopic coupling condition is derived. We follow [24] but since the LWR
model is a scalar conservation law, we obtain stronger analytical results.

The LWR model is a scalar conservation law

Btρ` Bxfpρq “ 0 t ą 0, x P Ω,

where ρ “ ρpt, xq denotes the car density and f the flux function. An assumption on the flux
function typically used in the literature is that f : ra, bs Ñ r0,8q is a sufficiently regular, concave
function with fpaq “ fpbq “ 0.

We use the framework in [19] and consider a single junction with i “ 1, . . . , n incoming roads and
j “ n ` 1, . . . , n `m outgoing roads. The roads are assumed to be infinitely long and the spatial
variable x is in the domains Ωi “ p´8, 0q for i “ 1, . . . , n and Ωj “ p0,8q for j “ n` 1, . . . , n`m.
Throughout this paper we consider weak entropy solutions to

Btρh ` Bxfhpρhq “ 0 t ą 0, x P Ωh, h “ 1, . . . , n`m, (1.1)

since it is well-known that the conservation law (1.1) does not admit classical solutions in general.
We make the following assumptions on fh:

(f.1) fh : Kh Ñ r0,8q is Lipschitz continuous with Kh “ rah, bhs;
(f.2) fh is concave with fhpahq “ fhpbhq “ 0;
(f.3)

n
ÿ

i“1

fip0q ´
n`m
ÿ

j“n`1

fjp0q “ 0;

(f.4) f 1h : Kh Ñ R is not constant on any non-trivial subinterval of Kh.

Notice that the non-degeneracy condition (f.4) is only used to pass to the limit in the kinetic
approximation. For notational convenience we extend fh by fhpρq “ 0 for ρ P RzKh.

We impose the initial data ρ0,h P L
1pΩh,Khq by

ρhp0, xq :“ lim
tÑ0`

ρhpt, xq “ ρ0,hpxq for a.e. x P Ωh, (1.2)

and assume that the above limit is attained in the strong L1
loc–sense.

It remains to define a coupling condition at the junction. First, we study the initial value
problem with constant initial data on each road, called generalized Riemann problem [19]. We
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assume that solutions to the generalized Riemann problem coincide with solutions to standard
Riemann problems restricted to x P Ωh.

We recall the definition of solutions to the generalized Riemann problem introduced by Holden
and Risebro [22].

Definition 1. Fix constant initial data ρ0,h P Kh and concave functions ĝh : r0, 1s Ñ R. A solution
to the generalized Riemann problem in the sense of Holden and Risebro [22] is given by the restric-
tions of pρ1, . . . , ρn`mq to x P Ωh, where ρh : r0,8qt ˆ Rx Ñ Kh are the weak entropy solutions to
the standard Riemann problems with initial data

ρhp0, xq “

#

ρ0,h if x P Ωh,

ρ̃h if x R Ωh,

solving

max
ρ̃hPKh

n`m
ÿ

h“1

ĝh

ˆ

fhpρhpt, 0qq

fmax
h

˙

s.t.
n
ÿ

i“1

fipρipt, 0qq ´
n`m
ÿ

j“n`1

fjpρjpt, 0qq “ 0.

with fmax
h :“ maxtfhpρq | ρ P Khu.

In the following we will illustrate in detail why the optimization problem in Definition 1 can be
interpreted as a maximum entropy dissipation problem at the junction. The concept of maximum
entropy dissipation was used in different situations in kinetic and hyperbolic theory before. Let us
mention the work by Dafermos [15] who applied an entropy rate admissibility criterion to select
solutions to hyperbolic conservation laws. A maximum entropy dissipation problem at the junction
is used in [24] to select a kinetic coupling condition which converges to a macroscopic coupling for
the system of isentropic gas dynamics.

We introduce a slight modification of Definition 1 involving entropy fluxes Ĝh corresponding to
entropies η̂h satisfying one the following assumptions:

(ηηη.A) η̂h : RÑ R is convex;
(ηηη.B) η̂h : RÑ R is convex and η̂1h f

1
h ď 0 almost everywhere on Kh.

Remark that (ηηη.B) characterizes the convex functions η̂h such that there exists ρ P Kh which is a
minimal point of η̂h and a maximal point of fh. In other words this point ρ is of minimal entropy
and maximal flux. Later this additional condition will be needed to prove, under certain conditions,
that the following definitions for the generalized Riemann problem are equivalent to Definition 1.

Definition 2. Fix constant initial data ρ0,h P Kh and entropy pairs pη̂h, Ĝhq satisfying (ηηη.B). A
solution to the Riemann problem in the sense of the maximum entropy dissipation problem is given
by the restrictions of pρ1, . . . , ρn`mq to x P Ωh, where ρh : r0,8qt ˆRx Ñ Kh are the weak entropy
solutions to the standard Riemann problems with initial data

ρhp0, xq “

#

ρ0,h if x P Ωh,

ρ̃h if x R Ωh,
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solving

max
ρ̃hPKh

n
ÿ

i“1

Ĝipρipt, 0`qq ´
n`m
ÿ

j“n`1

Ĝjpρjpt, 0´qq

s.t.
n
ÿ

i“1

fipρipt, 0qq ´
n`m
ÿ

j“n`1

fjpρjpt, 0qq “ 0.

In Section 2 we will prove that the optimization problem in Definition 2 admits a unique solution
if η̂h are strictly convex and the equivalence between Definition 1 and Definition 2 for suitable ĝh
and Ĝh.

We give a motivation for Definition 2: Integration by parts applied to the entropy formulation
of (1.1) gives the quantity

n
ÿ

i“1

Ĝipρipt, 0´qq ´
n`m
ÿ

j“n`1

Ĝjpρjpt, 0`qq (1.3)

in the boundary integral at the junction. More precisely, (1.3) measures the entropy dissipation at
the junction. It is different to the quantity

n
ÿ

i“1

Ĝipρipt, 0`qq ´
n`m
ÿ

j“n`1

Ĝjpρjpt, 0´qq (1.4)

involved in the optimization problem in Definition 2. More precisely, the directions from which
the traces are taken are exchanged. The traces in (1.3) are the traces which are still visible in the
generalized Riemann problem after the functions are restricted to x P Ωh. The traces in (1.4) will
disappear after the restriction. Both quantities coincide if and only if there is no stationary shock
at x “ 0 in one of the standard Riemann problems. In Definition 2 we use the quantity (1.4) and
make the assumption that the entropy dissipation due to this stationary shocks cannot be traced
back to the dynamics in the junction.

To allow also entropies η̂h which are not strictly convex, we introduce the priority functions ΠM .
For M P R, we define ΠM “ pΠM

1 , . . . ,ΠM
n`mq such that

(ΠΠΠ.1) the functions ΠM
h : r0, 1s Ñ tρ P Kh | η̂

1
hpρ´q ď M ď η̂1hpρ`qu; z ÞÑ ΠM

h pzq are increasing
and surjective for h “ 1, . . . , n`m and M P R.

We give the following definition for the generalized Riemann problem.

Definition 3. Fix constant initial data ρ0,h P Kh, entropy pairs pη̂h, Ĝhq and ΠM satisfying (ηηη.A)
and (ΠΠΠ.1). A solution to the generalized Riemann problem is given by the restrictions of ρhpt, xq
to x P Ωh, where ρh are the solutions to the standard Riemann problem with initial data

ρhp0, xq “

#

ρ0,h if x P Ωh,

ρ̂h if x R Ωh.

The states ρ̂h P Kh are chosen such that

η̂1hpρ̂h´q ďM ď η̂1hpρ̂h`q and ρ̂h “ ΠM
h pzq for M P R, z P r0, 1s,

n
ÿ

i“1

fipρipt, 0qq ´
n`m
ÿ

j“n`1

fjpρjpt, 0qq “ 0.
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We define the Riemann solver by RPpρ0q “ pρ1pt, 0´q, . . . , ρnpt, 0´q, ρn`1pt, 0`q, . . . , ρn`mpt, 0`qq

as a map RP :
Śn`m

h“1 Kh Ñ
Śn`m

h“1 Kh.

Solutions to the generalized Cauchy problem are defined as follows.

Definition 4. Let ρ0,h P L
1pΩh,Khq and let RP be as in Definition 3. We call pρ1, . . . , ρn`mq

with ρh : p0,8qt ˆ Ωh Ñ Kh a solution to the generalized Cauchy problem if

‚ for any entropy pair pηh, Ghq and for any test function φ P DpRt ˆ Ωhq, φ ě 0 there holds
ĳ

RtˆΩh

ηhpρhq Btφ`Ghpρhq Bxφdtdx`

ż

Ωh

ηhpρ0,hpxqqφp0, xqdx ě 0,

‚ there exist ρhpt, 0q P L
8pp0,8qt,Khq such that

Ghpρhpt, 0qq “ lim
xÑ0
xPΩh

Ghpρhpt, xqq for a.e. t ą 0,

for all entropy fluxes Gh and

RPpρpt, 0qq “ ρpt, 0q for a.e. t ą 0.

To prove existence of solutions in the sense of Definition 4, we use an approximation by a BGK
model [35]

Btghpt, x, ξq ` f
1
hpξq Bxghpt, x, ξq “

χpρghpt, xq, ξq ´ ghpt, x, ξq

ε
t ą 0, x P Ωh, ξ P Kh,

with gh “ ghpt, x, ξq, ρghpt, xq “
ş

Kh
ghpt, x, ξqdξ and χpρ, ξq “ sgnpξq if ξ ¨ pρ ´ ξq ą 0, χpρ, ξq “

0 else. At the junction a kinetic coupling condition Ψ defined by a kinetic maximum entropy
dissipation problem is imposed. Then, we proceed as follows: The convergence of the kinetic
solutions in the interior of Ωh is justified by a compactness result by Panov [32]. The existence
of stationary solutions to the BGK model and a careful analysis of the traces at the junction is
needed to pass to the limit in the coupling condition. Uniqueness of the solutions to the Cauchy
problem is obtained by an L1–contraction property of the coupling condition in combination with
classical Kružkov–estimates. This approach is similar to the approach in [3] for a vanishing viscosity
approximation. Our main result is the following.

Theorem 1. Let ρ0,h P L
1pΩh,Khq, (f.1)–(f.4), (ηηη.A) and (ΠΠΠ.1) hold. Let gεh be the solution to

the BGK model with coupling condition Ψ, initial condition gεhp0, x, ξq “ χpρ0,hpxq, ξq and ε ą 0
obtained in Theorem 4. Then, there exist ρh P Cpr0,8qt, L

1pΩh,Khqq such that, after possibly
taking a subsequence,

ş

R g
ε
h dξ Ñ ρh as ε Ñ 0 for a.e. pt, xq P p0,8q ˆ Ωh. pρ1, . . . , ρn`mq is the

unique solution to the generalized Cauchy problem in the sense of Definition 4.

We give some remarks on the assumptions we made. (f.4) is only needed to pass to the limit in
the kinetic approximation and (ηηη.B) is needed for Definition 2. Definition 3 can be studied without
using the stronger assumption (ηηη.B). (ΠΠΠ.1) is only needed for entropies η̂h which are not strictly
convex. More precisely, the coupling condition in Definition 3 depends on the choice of ΠM only if
Lptx P Γout

h | η̂1hpx´q ďM ď η̂1hpx`quq ‰ 0 for two or more roads h “ 1, . . . , n`m.

The coupling conditions depend strongly on the choice of the entropies pη̂h, Ĝhq. Therefore, they
have to be chosen carefully depending on the desired modelling. We give two examples which we
will study in more detail in Section 6:
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(i) The choice

η̂h “ η̂1 for h “ 1, . . . , n`m, (1.5)

leads to the coupling condition in [3, 14] obtained by a vanishing viscosity approach.
(ii) The choice

η̂h “ ´fh for h “ 1, . . . , n`m, (1.6)

leads to a coupling condition which prioritizes the outgoing characteristics at the junction
with large velocity f 1h. The coupling condition can be interpreted such that the drivers
maximize their velocity at the junction.

1.1. Outline of the paper. The paper is organized as follows. In Section 2 we study Definitions 1–
3 in detail and prove relations between them. In Section 3 we introduce the BGK model and the
kinetic coupling condition Ψ. In Section 4 we prove well-posedness of the kinetic model. In Section 5
we rigorously justify the limit of the kinetic model and obtain existence of solutions to the LWR
model. Furthermore, we prove uniqueness and an L1–contraction property of the solutions. In
Section 6 we study an explicit example for the Riemann problem and different choices of η̂h. In
Section 7 we give an outlook for future research.

2. The LWR model on Networks

2.1. Introductory remarks.

Entropy solutions. Entropy pairs for the LWR model are given by

pηh, Ghq : RÑ R2 such that ηh is convex and G1h “ η1h f
1
h. (2.1)

Every convex function ηh : RÑ R is an entropy with entropy flux

Ghpρq “

ż ρ

0

η1hpyq f
1
hpyqdy `Ghp0q for ρ P R. (2.2)

Throughout this paper we consider weak entropy solutions to (1.1) in the sense that

Btηhpρhq ` BxGhpρhq ď 0 t ą 0, x P Ωh, (2.3)

holds in the distributional sense for all entropy pairs pηh, Ghq. Let us recall the definition of some
special entropies:

‚ The relative entropy and relative entropy flux of ρ P R w.r.t. k P R and pηh, Ghq are given
by

ηhpρ | kq “ ηhpρq ´ ηhpkq ´ η
1
hpkq pρ´ kq ,

Ghpρ | kq “ Ghpρq ´Ghpkq ´ η
1
hpkq pfhpρq ´ fhpkqq .

(2.4)

‚ The Kružkov entropy pair of ρ P R w.r.t. k P R is given by

ηhpρ, kq “ |ρ´ k|, Ghpρ, kq “ sgnpρ´ kq pfhpρq ´ fhpkqq . (2.5)
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Some Notations. We define the sets of states ρ P Kh with incoming characteristics at the junction

Γin
h “

#

Int tρ P Kh | f
1
hpρq ď 0u h “ 1, . . . , n,

Int tρ P Kh | f
1
hpρq ě 0u h “ n` 1, . . . , n`m,

(2.6)

and with outgoing characteristics

Γout
h “

#

tρ P Kh | f 1hpρq ą 0u h “ 1, . . . , n,

tρ P Kh | f 1hpρq ă 0u h “ n` 1, . . . , n`m,
(2.7)

where Int denotes the interior and the overline the closure w.r.t. the topological space Kh.
To handle the incoming and outgoing roads simultaneously and to simplify notation, we define

˘h “

#

` h “ 1, . . . , n,

´ h “ n` 1, . . . , n`m.
(2.8)

for h “ 1, . . . , n`m. This notation is used to handle different signs in the case of incoming/outgoing
roads.

Furthermore, we consider only the representatives of η1h, f
1
h P L

8pKhq which are monotone in
the classical sense. This allows to evaluate η1h and f 1h point-wise. Our results hold true for any
monotone representative of η1h, f

1
h. Furthermore, we will use the convention

η1hpah´q “ ´8 and η1hpbh`q “ 8. (2.9)

Strong traces of entropy solutions. Solutions to scalar conservation laws do not have strong traces
in general. We state the following theorem which is obtained by combining the results from [28, 33].
It gives sense to the initial trace t “ 0 and to the left– and right–traces at the junction x “ 0.

Theorem 2. Let ρh P L
8pp0,8qt ˆ Rx,Khq be a weak entropy solution to the LWR model with

flux fh P C
0,1pKhq for some h “ 1, . . . , n`m. Then, there exists

(i) the initial trace

ρhp0, xq P L
8pRx,Khq

such that for all entropies ηh:

ηhpρps, xqq Ñ ηhpρhp0, xqq in L1
locpRxq as sÑ 0, s ą 0;

(ii) the boundary trace

L8pp0,8qt,Khq Q ρhpt, 0q “

#

ρhpt, 0´q h “ 1, . . . , n,

ρhpt, 0`q h “ n` 1, . . . , n`m,

at the junction such that for all entropy fluxes Gh:

Ghpρpt, sqq Ñ Ghpρhpt, 0qq in L1
locpp0,8qtq as sÑ 0, s P Ωh;

(iii) the trace

L8pp0,8qt,Khq Q ρhpt, 0˘hq “

#

ρhpt, 0`q h “ 1, . . . , n,

ρhpt, 0´q h “ n` 1, . . . , n`m,

at the junction such that for all entropy fluxes Gh:

Ghpρpt, sqq Ñ Ghpρhpt,˘h0qq in L1
locpp0,8qtq as sÑ 0, s R Ωh.
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Later, the values ρhpt, 0q will satisfy the coupling condition in Definition 4. The traces ρhpt, 0˘hq
appear in the construction using standard Riemann problems, e.g. in Definition 2. The traces
ρhpt, 0˘hq will dissapear, after restricting the solutions to Ωh.

The above traces are attained in the strong L1
loc–sense. This allows us to apply a divergence

theorem using the theory of divergence measure fields [4].
Applying the divergence theorem to the weak formulation of the LWR model and using a sequence

of test functions concentrating at x “ 0, we obtain the Rankine–Hugoniot–conditions

Ghpρhpt, 0˘hqq ´Ghpρhpt, 0qq

#

ě 0 h “ 1, . . . , n,

ď 0 h “ n` 1, . . . , n`m,

for all entropy fluxes Gh. Therefore, ρhpt, 0q and ρhpt, 0˘hq coincide or are connected by a stationary
shock. We conclude

fhpρhpt, 0qq “ fhpρhpt, 0`qq “ fhpρhpt, 0´qq. (2.10)

2.2. The LWR model at the junction. Having the physical application in mind, it is reasonable
to assume that the total mass (the total number of cars) in the network is conserved in time

n`m
ÿ

h“1

ż

Ωh

ρhpT, xqdx “
n`m
ÿ

h“1

ż

Ωh

ρ0,hpxqdx for every T ą 0, (2.11)

for ρ0,h P L
1pΩh,Khq. Integration by parts applied to (1.1) together with (f.3) and (2.11) leads to

the Rankine–Hugoniot–type condition

n
ÿ

i“1

fipρipt, 0qq “
n`m
ÿ

j“n`1

fjpρjpt, 0qq for a.e. t ą 0. (2.12)

Notice that there is another common condition in the literature based on the priorities of the drivers
at the junction. This condition implies (2.12). More details and a short outlook how our techniques
could be applied to this condition is given in Section 7.1.

We continue with the entropy dissipation at the junction. For the LWR model on the real line,
the total entropy decreases, i.e.

ż

R
ηpρpT2, xqqdx ď

ż

R
ηpρpT1, xqq dx for every T2 ě T1 ě 0,

for every entropy η with ηp0q “ 0 and initial data ρ0 P L
1pR,Khq. We aim to extend this property

to networks. Therefore, we choose suitable entropies pη1, . . . , ηn`mq with ηhp0q “ 0 and assume

n`m
ÿ

h“1

ż

Ωh

ηhpρhpT2, xqqdx ď
n`m
ÿ

h“1

ż

Ωh

ηhpρhpT1, xqqdx for every T2 ě T1 ě 0, (2.13)

and for ρ0,h P L
1pΩh,Khq. Analogous to (f.3) we make the assumption

n
ÿ

i“1

Gip0q ´
n`m
ÿ

j“n`1

Gjp0q “ 0. (2.14)

Integration by parts applied to (2.3) together with (2.13) and (2.14) leads to

n
ÿ

i“1

Gipρipt, 0qq ´
n`m
ÿ

j“n`1

Gjpρjpt, 0qq ě 0 for a.e. t ą 0. (2.15)
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We cannot expect that (2.15) holds for every choice of ηh. Otherwise, we get ρhpt, 0q “ 0 (set
Ghpρq “ fhpρq ´ fhp0q and Ghpρq “ fhp0q ´ fhpρq with Gh1 ” 0 for h1 ‰ h). The most we can
expect is that (2.15) holds for a suitable class of entropies pη1, . . . , ηn`mq.

2.3. The Riemann solver. We prove existence and uniqueness of solutions to the generalized
Riemann problem in Definition 3 and an L1-contraction property of the corresponding Riemann
solver RP.

Proposition 1. Let ρ0,h P Kh be constant and let (f.1)–(f.3), (ηηη.A) and (ΠΠΠ.1) hold. There exists
a unique solution to the generalized Riemann problem in the sense of Definition 3. The solution is
stationary if and only if RPpρ0q “ ρ0.

Proof. The proof uses similar arguments as in [3, Lemma 2.3]. For fixed M P R and z P r0, 1s, the
standard Riemann problems with initial data

ρhp0, xq “

#

ρ0,h if x P Ωh,

ρ̂h if x R Ωh,

and ρ̂h “ ΠM
h pzq can be solved uniquely. It remains to find M P R and z P r0, 1s such that the

conservation of mass holds.
The functions M ÞÑ ΠM

h p0q are increasing and of bounded variation since η̂h are convex and by
definition of ΠM

h . We have

lim
MÑ´8

ΠM
h p0q “ ah and lim

MÑ`8
ΠM
h p0q “ bh.

Furthermore, ρ̂h ÞÑ fhpρhpt, 0qq is continuous and monotone since

fipρipt, 0qq “

$

’

&

’

%

min
sPrρ0,i,ρ̂is

fipsq if ρ̂i ě ρ0,i

max
sPrρ̂i,ρ0,is

fipsq if ρ̂i ď ρ0,i

for i “ 1, . . . , n, (2.16)

fjpρjpt, 0qq “

$

’

&

’

%

min
sPrρ̂j ,ρ0,j ,s

fjpsq if ρ0,j ě ρ̂j

max
sPrρ0,j ,ρ̂js

fjpsq if ρ0,j ď ρ̂j
for j “ n` 1, . . . , n`m. (2.17)

The above formulae follow from the structure of the standard Riemann problem and from the
concavity of fh.

An intermediate value argument applied to the following decreasing function of bounded variation

ΞpMq “
n
ÿ

i“1

fipρipt, 0qq ´
n`m
ÿ

j“n`1

fjpρjpt, 0qq for ρ̂h “ ΠM
h p0q

in combination with

ΞpMq

#

ě 0 for M Ñ ´8,

ď 0 for M Ñ `8,

leads to two possible cases: In the first case there exists an M P R such that ΞpMq “ 0. Otherwise,
there exists an M P R such that

ΞpM´q ě 0 and ΞpM`q ď 0.
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Due to (ΠΠΠ.1), there exists z P r0, 1s such that

n
ÿ

i“1

fipρipt, 0qq ´
n`m
ÿ

j“n`1

fjpρjpt, 0qq “ 0 for ρ̂h “ ΠM
h pzq.

The existence of a solution follows.
By monotonicity of ρ̂h ÞÑ fhpρhpt, 0qq, the uniqueness of fhpρhpt, 0qq is obtained. The uniqueness

of ρh : p0,8qt ˆ Ωh Ñ Kh follows from the uniqueness of fhpρhpt, 0qq and the structure of the
standard Riemann problem. By the uniqueness we obtain ρhpt, xq “ ρ0,h for a.e. t, x P p0,8qtˆΩh
if RPpρ0q “ ρ0. �

We continue with the L1–contraction property.

Proposition 2. Let (f.1)–(f.3), (ηηη.A) and (ΠΠΠ.1) hold. Let RPpρsq “ ρs hold for ρsh P Kh,
s “ 1, 2. Then, we have

n
ÿ

i“1

Gipρ
1
i , ρ

2
i q ´

n`m
ÿ

j“n`1

Gjpρ
1
j , ρ

2
j q ě 0,

for Ghpρ
1
h, ρ

2
hq being the Kružkov entropy flux defined in (2.5).

Proof. Let Ms, zs be as in Definition 3 with the constant initial data ρ0,h “ ρsh. Without loss

of generality we can assume that ΠM1

1 pz1q ´ ΠM2

1 pz2q ‰ 0 if ΠM1

h pz1q ´ ΠM2

h pz2q ‰ 0 for some
h “ 1, . . . , n`m. If this is not the case, we can reorder the indices and possibly exchange the role
of i and j. We define

θ :“ sgnpΠM1

1 pz1q ´ΠM2

1 pz2qq.

By monotonicity of ΠM
h pzq w.r.t. M and z, we get

sgnpΠM1

h pz1q ´ΠM2

h pz2qq “ θ for h “ 1, . . . , n`m,

with the convention sgnp0q “ θ.
Step 1: We compute

n
ÿ

i“1

Gipρ
1
i , ρ

2
i q ´

n`m
ÿ

j“n`1

Gjpρ
1
j , ρ

2
j q

“

n
ÿ

i“1

sgnpρ1
i ´ ρ

2
i qpfipρ

1
i q ´ fipρ

2
i qq ´

n`m
ÿ

j“n`1

sgnpρ1
j ´ ρ

2
j qpfjpρ

1
j q ´ fjpρ

2
j qq

´ θ

˜

n
ÿ

i“1

pfipρ
1
i q ´ fipρ

2
i qq ´

n`m
ÿ

j“n`1

pfjpρ
1
j q ´ fjpρ

2
j qq

¸

“

n
ÿ

i“1

psgnpρ1
i ´ ρ

2
i q ´ θqpfipρ

1
i q ´ fipρ

2
i qq ´

n`m
ÿ

j“n`1

psgnpρ1
j ´ ρ

2
j q ´ θqpfjpρ

1
j q ´ fjpρ

2
j qq

ě
ÿ

iPA
psgnpρ1

i ´ ρ
2
i q ´ θqpfipρ

1
i q ´ fipρ

2
i qq ´

ÿ

jPB
psgnpρ1

j ´ ρ
2
j q ´ θqpfjpρ

1
j q ´ fjpρ

2
j qq.

The sets A Ă t1, . . . , nu and B Ă t1, . . . , nu are defined by

A “ ti | psgnpρ1
i ´ ρ

2
i q ´ θqpfipρ

1
i q ´ fipρ

2
i qq ă 0u,

B “ tj | psgnpρ1
j ´ ρ

2
j q ´ θqpfjpρ

1
j q ´ fjpρ

2
j qq ą 0u.
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Since ρ1
i ‰ ρ2

i for i P A (otherwise fipρ
1
i q “ fipρ

2
i q), we get

A “ ti | sgnpρ1
i ´ ρ

2
i q ‰ θ and sgnpρ1

i ´ ρ
2
i q pfipρ

1
i q ´ fipρ

2
i qq ă 0u.

Step 2: We collect some properties of A:

‚ ρ1
i ‰ ρ2

i as already observed above;

‚ tρ1
i , ρ

2
i u X Γout

i ‰ tρ1
i , ρ

2
i u since otherwise sgnpρ1

i ´ ρ
2
i q “ sgnpΠM1

i pz1q ´ΠM2

i pz2qq “ θ;
‚ tρ1

i , ρ
2
i u X Γin

i ‰ tρ
1
i , ρ

2
i u since otherwise sgnpρ1

i ´ ρ2
i q pfipρ

1
i q ´ fipρ

2
i qq ě 0 due to the fact

that fi is increasing on Γin
i .

We conclude that exactly one element of tρ1
i , ρ

2
i u lies in Γout

i and exactly one lies in Γin
i .

Step 3: Without loss of generality we assume that ρ1
i P Γout

i and ρ2
i P Γin

i . Then, there exists R2
i P Ki

such that R2
i “ ΠM2

i pz2q. Since 1 “ sgnpρ1
i ´ ρ

2
i q ‰ θ “ sgnpΠM1

i pz1q ´ ΠM2

i pz2qq “ sgnpρ1
i ´ R

2
i q,

we have ρ1
i ď R2

i P Γout
i . We obtain

‚ fipR
2
i q ď fipρ

1
i q by monotonicity of fi on Γout

i and ρ1
i ď R2

i ;
‚ fipρ

1
i q ă fipρ

2
i q since sgnpρ1

i ´ ρ
2
i q pfipρ

1
i q ´ fipρ

2
i qq ă 0 and sgnpρ1

i ´ ρ
2
i q ą 0;

‚ fipρ
2
i q ď fipR

2
i q by the construction of ρ2

i in Definition 3 based on standard Riemann

problems with right–hand state R2
i “ ΠM2

i pz2q P Γout
i .

The three estimates lead to the contradiction

fipR
2
i q ď fipρ

1
i q ă fipρ

2
i q ď fipR

2
i q

and we conclude that A “ H. With similar arguments B “ H follows and we conclude

n
ÿ

i“1

Gipρ
1
i , ρ

2
i q ´

n`m
ÿ

j“n`1

Gjpρ
1
j , ρ

2
j q ě 0.

�

Later we will see that the inequalities on the Kružkov entropy fluxes give the natural conditions
leading to the L1–contraction property for the Cauchy problem.

2.4. The maximum entropy dissipation problem.

Proposition 3. Let (f.1)–(f.3), (ηηη.B) and (ΠΠΠ.1) hold. There exists a solution to the maximum
entropy dissipation problem in Definition 2 solving the coupling condition

ρhpt, 0q “ RPhpρ0q.

The solution is unique if η̂h are strictly convex.
Proof.
Existence: Replacing ρ̂h by ρ̃h in (2.16)–(2.17) implies that fhpρhpt, 0qq is a continuous function
of ρ̃h. Furthermore, ρipt, 0q are increasing and upper semi-continuous w.r.t. ρ̃i. The continuous

entropy fluxes Ĝh are decreasing due to (ηηη.B). We conclude that Ĝipρipt, 0qq is decreasing and

lower semi-continuous w.r.t. ρ̃i. By the same arguments we obtain that Ĝjpρjpt, 0qq is decreasing
and upper semi-continuous w.r.t. ρ̃j . We obtain the existence by compactness of Kh.
Reformulation of Definition 2: By using (2.16)–(2.17) again, it can be easily checked that

fhpρhpt, 0qq is constant for

#

ρ̃h P Γin
h if ρ0,h P Γout

h ,

ρ̃h R tρ P Γout
h | fhpρq ď fhpρ0,hqu if ρ0,h P Γin

h .
(2.18)
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By (2.18) and by the monotonicity of Ĝhpρhpt, 0˘hqq w.r.t. ρ̃h, the following additional constraint
can be added without changing the solution on Ωh:

ρ̃h P Γout
h if ρ0,h P Γout

h ,

ρ̃h P tρ P Γout
h | fhpρq ď fhpρ0,hqu if ρ0,h P Γin

h .
(2.19)

Remark that the values ρ̃h with fhpρ̃hq “ fmax
h “ max fhpΓ

out
h q were not uniquely defined

through the original problem. By adding the additional constraint (2.19), only the value ρ̃h “
argmax fhpΓ

out
h q is admissible.

For ρ̃h satisfying (2.19), we have ρhpt, 0˘hq “ ρ̃h, the objective function reads

n
ÿ

i“1

Ĝipρ̃iq ´
n`m
ÿ

j“n`1

Ĝjpρ̃jq, (2.20)

and the constraint in Definition 2 is

n
ÿ

i“1

fipρ̃iq ´
n`m
ÿ

j“n`1

fjpρ̃jq “ 0. (2.21)

We write the optimization problem in terms of F̃h “ fhpρ̃hq similar to [19]. This is equivalent to
the original problem since fh is invertible on Γout

h and ρ̃h P Γout
h due to (2.19) . We obtain

max
n
ÿ

i“1

Ĝipf
´1
i |Γout

i
pF̃iqq ´

n`m
ÿ

j“n`1

Ĝjpf
´1
j |Γout

j
pF̃jqq (2.22)

s.t.
n
ÿ

i“1

F̃i ´
n`m
ÿ

j“n`1

F̃j “ 0

0 ď F̃h ď fmax
h if ρ0,h P Γout

h

0 ď F̃h ď fhpρ0,hq if ρ0,h P Γin
h

The optimization problem (2.22) has a concave objective function and affine constraints: The func-

tion Ĝipf
´1
i |Γout

i
pF̃iqq is concave: f´1

i |Γout
i

is convex since fi|Γout
i

is decreasing and concave. Ĝi is

concave and decreasing on Γout
i since Ĝ1i “ η̂1i f

1
i is decreasing and negative (ηηη.B) on Γout

i . The

concavity of ´Ĝjpf
´1
j |Γout

j
pF̃jqq follows by similar arguments.

Application of the KKT-conditions to (2.22): Due to the structure of (2.22), the KKT-conditions
are necessary and sufficient. They read:

˘h η̂
1
hpf

´1
h |Γout

h
pF̃hq¯hq ď ˘hλ` µh ´ νh ď ˘hη̂

1
hpf

´1
h |Γout

h
pF̃hq˘hq for h “ 1, . . . , n`m,

µh “ 0 or F̃h “

#

fmax
h if ρ0,h P Γout

h ,

fhpρ0,hq if ρ0,h P Γin
h ,

νh “ 0 or F̃h “ 0,
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for λ P R, µh, νh P r0,8q. With the convention (2.9), then there exists M P R such that for every
h “ 1, . . . , n`m one of the following conditions hold

η̂1hpf
´1
h |Γout

h
pF̃hq´q ďM ď η̂1hpf

´1
h |Γout

h
pF̃hq`q,

F̃i “

#

fmax
i if ρ0,i P Γout

i

fipρ0,iq if ρ0,i P Γin
i

with M ď η̂1ipf
´1
i |Γout

i
pF̃iq´q,

F̃j “

#

fmax
j if ρ0,j P Γout

j

fjpρ0,jq if ρ0,j P Γin
j

with η̂1jpf
´1
j |Γout

j
pF̃jq`q ďM.

(2.23)

Solutions to Definition 2: Using the fact that problem (2.22) and Definition 2 are equivalent for

F̃h “ fhpρ̃hq, we obtain that ρ̃h solves one of the following conditions

η̂1hpρ̃h´q ďM ď η̂1hpρ̃h`q for h “ 1, . . . , n`m,

ρ̃i “

#

min Γout
i if ρ0,i P Γout

i

min tΓout
i | fip¨q ď fipρ0,iqu if ρ0,i P Γin

i

with η̂1ipρ̃i´q ďM,

ρ̃j “

#

max Γout
j if ρ0,j P Γout

j

max tΓout
j | fjp¨q ď fjpρ0,jqu if ρ0,j P Γin

j

with M ď η̂1jpρ̃j`q.

(2.24)

Since the summands in the first constraint in the original optimization problem are constant for ρ̃h
as in (2.18), the traces ρhpt, 0¯q do not change if we solve the standard Riemann problems with ρ̂h
satisfying

η̂1hpρ̂h´q ďM ď η̂1hpρ̂h`q for h “ 1, . . . , n`m

replacing ρ̃h satisfying (2.24). Therefore, we have ρhpt, 0q “ RPhpρ0q.
Uniqueness: (2.24) uniquely characterizes the solutions ρ̃h to (2.19)–(2.21) for strictly convex η̂h.
With the remark after (2.19), the solutions ρh on Ωh are uniquely defined and therefore also
ρhpt, 0q. �

2.5. Equivalence between solutions given by Definition 1 and Definition 2.

Proposition 4. Let (f.1)–(f.3). Let ĝh P C
0,1pr0, 1s,Rq and let Ĝh be the entropy flux correspond-

ing to η̂h satisfying

ĝhpyq “ ˘hĜhpf
´1
h |Γout

h
py ¨ fmax

h qq for a.e. y P r0, 1s, for h “ 1, . . . , n`m.

Then, ĝh is concave if and only if Ĝh is an entropy flux to a convex entropy η̂h. If we assume
additionally that ĝh is concave, then Definition 1 and Definition 2 are equivalent.

Proof. The optimization problems in Definition 1 and Definition 2 differ only in their objective
function. As observed in the proof of Proposition 3, we have ρhpt, 0˘hq P Γout

h for the solution of
Definition 2. By the same arguments, this can be achieved for the solution in Definition 1 choosing
suitable ρ̃h such that ρ̃h “ ρhpt, 0˘hq. Setting

ĝhpyq “ ˘hĜhpf
´1
h |Γout

h
py ¨ fmax

h qq for a.e. y P r0, 1s

ðñ Ĝhpρq “ ˘hĝh

ˆ

fhpρq

fmax
h

˙

for a.e. ρ P Γout
h
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leads to the following relation between the traces

Ĝhpρhpt, 0˘hqq “ ˘hĝh

ˆ

fhpρhpt, 0˘hqq

fmax
h

˙

“ ˘hĝh

ˆ

fhpρhpt, 0qq

fmax
h

˙

.

The function ĝh is concave if Ĝh is an entropy flux of a convex η̂h since

η̂1hpρq f
1
hpρq “ Ĝ1hpρq “ ˘h

f 1hpρq

fmax
h

ĝ1h

ˆ

fhpρq

fmax
h

˙

for a.e. ρ P Γout
h ,

ðñ η̂1hpρq “
˘h1

fmax
h

ĝ1h

ˆ

fhpρq

fmax
h

˙

for a.e. ρ P Γout
h .

The other direction is obtained by the equation above and by extending η̂h to a convex function on
the domain Kh. �

3. A BGK Model on Networks

We introduce a kinetic formulation for scalar conservation laws and a kinetic Bhatnagar–Gross–
Krook–type model (BGK model), see e.g. [34] for a reference. We introduce the equilibrium function

χpρ, ξq “

$

’

&

’

%

1 if 0 ă ξ ă ρ,

´1 if ρ ă ξ ă 0,

0 else,

(3.1)

on Rρ ˆ Rξ and the notation

Dξ “ tg P R | sgnpξq g “ |g| ď 1u for ξ P R, (3.2)

L1pN ˆO,Dξq “ tg P L
1pN ˆOq | gpy, ξq P Dξ for a.e. py, ξq P N ˆOu (3.3)

for measurable sets N Ă Rl and O Ă R. We recall some well-known results for the equilibrium
function χ where we consider always increasing representatives of η1h if ηh is convex.

Lemma 1 ([34, Chapter 2]). Let ρ P R, ηh, fh P C
0,1pRq and let Gh be such that G1h “ η1hf

1
h.

(i) We have

ρ “

ż

R
χpρ, ξqdξ , fhpρq “

ż

R
f 1hpξq χpρ, ξqdξ ` fhp0q,

ηhpρq “

ż

R
η1hpξq χpρ, ξqdξ ` ηhp0q, Ghpρq “

ż

R
η1hpξq f

1
hpξq χpρ, ξqdξ `Ghp0q.

(ii) For ηh convex, g P Dξ and ρ, ξ P R, the sub-differential inequality

η1hpξq g ě η1hpξqχpρ, ξq ` η
1
hpρq pg ´ χpρ, ξqq

holds.
(iii) For ηh convex, gpξq “ χpρ, ξq is the minimizer of

ż

R
η1hpξq gpξqdξ

under the constraints

g P L1pR, Dξq and

ż

R
gpξqdξ “ ρ.

The minimizer is unique if ηh is strictly convex.
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We recall the kinetic formulation for scalar conservation laws introduced in [31] which is equiva-
lent to the notion of weak entropy solutions [34]. ρh is called a solution to the kinetic formulation of
(1.1) if there exists a non-negative bounded measure mhpt, x, ξq, mh P C0pKh,weak´M1pr0,8qtˆ
Ωhqq such that

Btχpρhpt, xq, ξq ` f
1
hpξq Bxχpρhpt, xq, ξq “ Bξmhpt, x, ξq t ą 0, x P Ωh, ξ P Kh, (3.4)

holds in the distributional sense.

3.1. Definition of the BGK model. Motivated by the kinetic formulation we aim to approximate
χpρh, ξq by the BGK model. We consider solutions gh P L

1pp0,8qt ˆ Ωh ˆKh, Dξq to

Btghpt, x, ξq ` f
1
hpξq Bxghpt, x, ξq “

χpρghpt, xq, ξq ´ ghpt, x, ξq

ε
t ą 0, x P Ωh, ξ P Kh, (3.5)

with

ρghpt, xq “

ż

Kh

ghpt, x, ξqdξ , (3.6)

and the initial condition

ghp0, x, ξq “ χpρ0,hpxq, ξq for a.e. x P Ωh, ξ P Kh, (3.7)

with ρ0,h P L
1pΩh,Khq. It remains to introduce a suitable coupling condition at the junction.

Notice that for fixed ξ P Kh the left–hand–side of (3.5) is a linear transport with characteristics
p1, f 1hpξqq in the x-t-plane. To define a kinetic coupling condition we prescribe data for the outgoing
characteristics ghpt, 0, ξq with ξ P Γout

h depending on the data with incoming characteristics ghpt, 0, ξq
with ξ P Γin

h . The approach can be formalized by a kinetic coupling function

Ψ:
n`m
ą

h“1

L1pΓin
h , Dξq Ñ

n`m
ą

h“1

L1pΓout
h , Dξq (3.8)

and the coupling condition

Ψhrgpt, 0,Γ
inqspξq :“ Ψhrgkpt, 0,Γ

in
k q, 1 ď k ď n`mspξq “ ghpt, 0, ξq for a.e. ξ P Γout

h , (3.9)

for h “ 1, . . . , n`m.

3.2. Selection of kinetic coupling conditions. We select the mapping Ψ as a solution to a
maximum entropy dissipation problem. Similar to the macroscopic case we may assume that the
total kinetic mass is conserved in time

n`m
ÿ

h“1

ĳ

ΩhˆKh

ghpT, x, ξqdxdξ “
n`m
ÿ

h“1

ĳ

ΩhˆKh

χpρ0,hpxq, ξqdxdξ for every T ą 0, (3.10)

for any ρ0,h P L
1pΩh,Khq, see also (2.12). As in the macroscopic setting, we assume that the total

kinetic entropy w.r.t. some pη1, . . . , ηn`mq decreases in time. We obtain

n`m
ÿ

h“1

ĳ

ΩhˆKh

η1hpξq ghpT2, x, ξqdξ ` ηhp0qdx ď
n`m
ÿ

h“1

ĳ

ΩhˆKh

η1hpξq ghpT1, x, ξqdξ ` ηhp0qdx (3.11)
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for every T2 ě T1 ě 0, for ρ0,h P L
1pΩh,Khq and for suitable entropy pairs pηh, Ghq satisfying

(2.14). Integration by parts applied to the entropy inequality (2.3) leads to
n
ÿ

i“1

ˆ
ż

Ki

η1ipξq f
1
ipξq gipt, 0, ξqdξ `Gip0q

˙

´

n`m
ÿ

j“n`1

˜

ż

Kj

η1jpξq f
1
jpξq gjpt, 0, ξqdξ `Gjp0q

¸

ě 0 for a.e. t ą 0,

(3.12)

for the entropy fluxes of ηh satisfying (2.14), see also (2.15). As in [24], we apply a maximum entropy
dissipation problem to select a kinetic coupling function Ψ based on (3.9), (3.10) and (3.12). Let
η̂h be convex entropies and let ghpξq, ξ P Γin

h be given data. We select ghpξq P Dξ, ξ P Γout
h by

maximizing (3.12) under the constraint (3.10):

max
ghpξq, ξPΓout

h

n
ÿ

i“1

ż

Γout
i

η̂1ipξq f
1
ipξq gipξqdξ ´

n`m
ÿ

j“n`1

ż

Γout
j

η̂1jpξq f
1
jpξq gjpξqdξ (3.13)

s.t.
n
ÿ

i“1

ż

Ki

f 1ipξq gipξqdξ “
n`m
ÿ

j“n`1

ż

Kj

f 1jpξq gjpξqdξ ,

ghpξq P Dξ for a.e. ξ P Γout
h .

Then, the mapping Ψ is defined by Ψhrgpt, 0,Γ
inqspξq “ ghpξq, ξ P Γout

h where ghpξq is a solution to
(3.13).

Proposition 5. Let (f.1)–(f.3) and (ηηη.B) hold. Let gh P L
1pΓin

h , Dξq.

(i) There exists a solution to (3.13) with

ghpξq “ χpρ̂h, ξq for ξ P Γout
h with η̂1hpρ̂h´q ďM ď η̂1hpρ̂h`q

for some M P R.
(ii) The solution is unique if η̂h are strictly convex for all h “ 1, . . . , n`m.

(iii) If η̂h are not strictly convex, there may exist multiple solutions. They coincide almost
everywhere except of ξ P Γout

h , η̂1hpξq “M .
Proof.
Step 1: We rewrite the optimization problem (3.13) as

min ´

n`m
ÿ

h“1

ż

Γout
h

η̂1hpξq |f
1
hpξq| ghpξqdξ (3.14)

s.t.
n`m
ÿ

h“1

ż

Γout
h

|f 1hpξq| ghpξqdξ “
n`m
ÿ

h“1

ż

Γin
h

|f 1hpξq| ghpξqdξ (3.15)

ghpξq P Dξ for a.e. ξ P Kh (3.16)

and define

gMh pξq “ χpρMh , ξq for ξ P Γout
h with η̂1hpρ

M
h ´q ďM ď η̂1hpρ

M
h `q.

For M P R with Lptη̂1h “Muq ą 0 for some h “ 1, . . . , n`m, we have some freedom in the definition
of ρMh pξq with η̂1hpρ

M
h q ď M ď η̂1hpρ

M
h `q. Here L denotes the one-dimensional Lebesque measure.

Furthermore, notice that the left–hand–side of (3.15) with gh “ gMh is increasing w.r.t. M P R and
it has discontinuities only if Lptη̂1h “Muq ą 0 for some h “ 1, . . . , n`m.
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Step 2: We aim to select M P R and ρMh such that (3.15) holds with gh “ gMh on Γout
h . Notice that

n`m
ÿ

h“1

ż

Γout
h

|f 1hpξq| g
M
h pξqdξ ´

n`m
ÿ

h“1

ż

Γin
h

|f 1hpξq| ghpξqdξ

#

ď 0 for sufficiently small M,

ě 0 for sufficiently large M.

We apply the intermediate value theorem to the left–hand–side of (3.15) as a function of M . Notice
that the function is monotone and of bounded variation (not necessarily continuous). We obtain
an M P R such that

lim
M̃ÑM´

n`m
ÿ

h“1

ż

Γout
h

|f 1hpξq| g
M̃
h pξqdξ ď

n`m
ÿ

h“1

ż

Γin
h

|f 1hpξq| ghpξqdξ ď lim
M̃ÑM`

n`m
ÿ

h“1

ż

Γout
h

|f 1hpξq| g
M̃
h pξqdξ .

We fix this M P R. By Beppo Levi’s lemma, limM̃ÑM˘ g
M̃
h pξq are monotone sequences converging

in L1pRξq to an equilibrium function χpρM˘h , ξq with η̂hpρ
M˘
h ´q ďM ď η̂hpρ

M˘
h `q. We apply the

intermediate value theorem again to the left–hand–side of (3.15) as a function of ρMh P rρM´h , ρM`h s.
This leads to the existence of ρMh such that (3.15) holds.
Step 3: For every gh and gMh with ρMh such that (3.15)–(3.16) are satisfied, we obtain by the sub-
differential inequality in Lemma 1 that

n`m
ÿ

h“1

ż

Γout
h

η̂1hpξq |f
1
hpξq| ghpξqdξ

ě

n`m
ÿ

h“1

˜

ż

Γout
h

η̂1hpξq |f
1
hpξq|χpρ

M
h , ξqdξ `M

ż

Γout
h

|f 1hpξq|
`

ghpξq ´ χpρ
M
h , ξq

˘

dξ

¸

“

n`m
ÿ

h“1

˜

ż

Γout
h

η̂1hpξq |f
1
hpξq| g

M
h pξqdξ `M

ż

Γout
h

|f 1hpξq| pghpξq ´ χpρ
M
h , ξqq dξ

¸

“

n`m
ÿ

h“1

ż

Γout
h

η̂1hpξq |f
1
hpξq| g

M
h pξqdξ .

(3.17)

Therefore, gMh is a solution to (3.14)–(3.16). The assertion (i) follows.
Step 4: Observe that the inequality in (3.17) is an equality if and only if ghpξq “ gMh pξq for a.e. ξ P

Γout
h X tη1hpξq ‰ Mu. Otherwise the inequality is strict. On the other hand the objective function

(3.14) dependents only on ghpξq with ξ R Γout
h Xtη1hpξq “Mu as long as the constraints (3.15)–(3.16)

are satisfied. Hence, the assertions (ii)–(iii) follow. �

To handle the non-uniqueness in the case where η̂h are not strictly convex, we use the functions
ΠM
h introduced in (ΠΠΠ.1) again. We define the following coupling condition solving (3.13).

Definition 5. We define the coupling function

Ψ:
n`m
ą

h“1

L1pΓin
h , Dξq Ñ

n`m
ą

h“1

L1pΓout
h , Dξq; g ÞÑ

´

Γout
h Q ξ ÞÑ χpρ̂h, ξq

¯n`m

h“1
,

for ρ̂h such that

η̂1hpρ̂h´q ďM ď η̂1hpρ̂h`q and ρ̂h “ ΠM
h pzq for M P R, z P r0, 1s,



18 ENTROPY DISSIPATION AT THE JUNCTION FOR MACROSCOPIC TRAFFIC FLOW MODELS

and
n
ÿ

i“1

˜

ż

Γout
i

f 1ipξqΨirgpΓ
inqspξqdξ `

ż

Γin
i

f 1ipξq gipξqdξ

¸

“

n`m
ÿ

j“n`1

˜

ż

Γout
j

f 1jpξqΨjrgpΓ
inqspξqdξ `

ż

Γin
j

f 1jpξq gjpξqdξ

¸ (3.18)

hold.

The existence of Ψ as in Definition 5 is obtained by the same arguments as in Proposition 5 by
setting ρ̂h “ ΠM

h pzq, z P r0, 1s if Lptη̂1h “Muq ą 0 for some h “ 1, . . . , n`m in Step 2.

3.3. A kinetic L1–contraction property. We prove an L1–contraction property of the kinetic
coupling condition Ψ.

Proposition 6. Let (f.1)–(f.3), (ηηη.A) and (ΠΠΠ.1) hold. Let Ψ be as in Definition 5. Then, for
gsh P L

1pKh, Dξq with gshpξq “ Ψhrg
spΓinqspξq, ξ P Γout

h , s “ 1, 2:

n
ÿ

i“1

ż

Ki

f 1ipξq |g
1
i pξq ´ g

2
i pξq|dξ ´

n`m
ÿ

j“n`1

ż

Kj

f 1jpξq |g
1
j pξq ´ g

2
j pξq| dξ ě 0.

Proof. Observe that by definition of Γin
h and Γout

h

n
ÿ

i“1

ż

Ki

f 1ipξq |g
1
i pξq ´ g

2
i pξq| dξ ´

n`m
ÿ

j“n`1

ż

Kj

f 1jpξq |g
1
j pξq ´ g

2
j pξq|dξ

“

n`m
ÿ

h“1

˜

ż

Γin
h

|f 1hpξq| |g
1
hpξq ´ g

2
hpξq| dξ ´

ż

Γout
h

|f 1hpξq| |g
1
hpξq ´ g

2
hpξq|dξ

¸

.

(3.19)

Due to the first constraint in (3.13), we get

n`m
ÿ

h“1

˜

ż

Γin
h

|f 1hpξq|
`

g1
hpξq ´ g

2
hpξq

˘

dξ ´

ż

Γout
h

|f 1hpξq|
`

g1
hpξq ´ g

2
hpξq

˘

dξ

¸

“ 0. (3.20)

Since gsh satisfy the coupling condition, there exist ρ̂sh as in Definition 5 such that gshpξq “ χpρ̂sh, ξq
for a.e. ξ P Γout

h , s “ 1, 2. Due to the monotonicity of η̂1h and ΠM
h , there exists µ P t´1, 1u such that

sgnpρ̂1
h ´ ρ̂2

hq “ µ for h “ 1, . . . , n `m (using the convention sgnp0q “ µ throughout this proof).
Since gshpξq “ χpρ̂sh, ξq for a.e. ξ P Γout

h , h “ 1, . . . , n ` m, we have also sgnpg1
hpξq ´ g2

hpξqq “ µ.
Combining this observation with (3.19) and (3.20) leads to

n
ÿ

i“1

ż

Ki

f 1ipξq |g
1
i pξq ´ g

2
i pξq|dξ ´

n`m
ÿ

j“n`1

ż

Kj

f 1jpξq |g
1
j pξq ´ g

2
j pξq| dξ

“

n`m
ÿ

h“1

˜

ż

Γin
h

|f 1hpξq| |g
1
hpξq ´ g

2
hpξq|dξ ´ µ

ż

Γout
h

|f 1hpξq| pg
1
hpξq ´ g

2
hpξqqdξ

¸

“

n`m
ÿ

h“1

ż

Γin
h

|f 1hpξq|
´

|g1
hpξq ´ g

2
hpξq| ´ µ

`

g1
hpξq ´ g

2
hpξq

˘

¯

dξ ě 0.

�
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4. Well-posedness of the BGK Model

We study well-posedness of the BGK model following the presentation in [34, Section 3.5]. First,
we consider a linear kinetic problem for general coupling conditions ψ. In a second step, we apply a
fixed point argument to construct solutions to the non-linear problem with the coupling condition
Ψ. We introduce the space L1

µh
pKhq of measurable functions gh : Kh Ñ R with

ş

Kh
|gh| |f

1
h|dx ă 8.

Theorem 3. Let (f.1)–(f.3) and g0,h P L
1pΩh ˆKhq hold. Let mh P L

1pp0, T qt ˆ Ωh ˆKhq for

all T ą 0 and let ψ :
Śn`m

h“1 L1
µh
pΓin
h q Ñ

Śn`m
h“1 L1

µh
pΓout
h q be a continuous function. Then, there

exists a unique distributional solution gh P Cpr0,8qt, L
1pΩh ˆKhqq to

$

’

&

’

%

Btgh ` f
1
hpξq Bxgh “

mh´gh
ε t ą 0, x P Ωh, ξ P Kh,

ghpt, 0, ξq “ ψhrgpt, 0,Γ
inqspξq t ą 0, ξ P Γout

h ,

ghp0, x, ξq “ g0,hpx, ξq x P Ωh, ξ P Kh.

The solution satisfies:

(i) the characteristics formula

ghpt, x, ξq “

„

g0,hpx´ f
1
hpξqt, ξqe

´t{ε `
1

ε

ż t

0

mhpt´ s, x´ f
1
hpξqs, ξq e

´s{ε ds



1{tąf 1hpξq{x

`

«

ghpt´ x{f
1
hpξq, 0, ξqe

´x{pf 1hpξqεq `
1

ε

ż x{f 1hpξq

0

mhpt´ s, x´ f
1
hpξqs, ξq e

´s{ε ds

ff

1{tăf 1pξq{x

;

(ii) the relations

Bt

¨

˝

m`n
ÿ

h“1

ĳ

ΩhˆKh

ghpt, x, ξqdx dξ

˛

‚“

m`n
ÿ

h“1

ĳ

ΩhˆKh

mhpt, x, ξq ´ ghpt, x, ξq

ε
dx dξ

´

n
ÿ

i“1

ż

Ki

f 1ipξq gipt, 0, ξqdξ `
n`m
ÿ

j“n`1

ż

Kj

f 1jpξq gjpt, 0, ξqdξ ,

Bt

¨

˝

m`n
ÿ

h“1

ĳ

ΩhˆKh

|ghpt, x, ξq| dxdξ

˛

‚ď

m`n
ÿ

h“1

ĳ

ΩhˆKh

|mhpt, x, ξq| ´ |ghpt, x, ξq|

ε
dxdξ

´

n
ÿ

i“1

ż

Ki

f 1ipξq |gipt, 0, ξq| dξ `
n`m
ÿ

j“n`1

ż

Kj

f 1jpξq |gjpt, 0, ξq| dξ ,

}ghpt, x, ξq}L8 ď max
!

}g0,h}L8 , }mh}L8 , }ψh}L8
)

P r0,8s;

(iii) and the equation

Bt|gh| ` f
1
hpξq Bx|gh| “

sgnpghqmh ´ |gh|

ε
ď
|mh| ´ |gh|

ε
t ą 0, x P Ωh, ξ P Kh.

Proof. We adapt the proof in [34, Theorem 3.5.1] to the network case. The characteristics for-
mula (i) can be obtained by solving a linear ordinary differential equation along the characteristics.
Notice that the continuity of ψ implies that ψrgpt, 0,Γinqs is independent of ghpt, 0, ξq with f 1hpξq “ 0.
Therefore, we can define, e.g. ghpt, 0, ξq “ 0 for a.e. f 1hpξq “ 0, t ą 0. The continuity of ψ ensures
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also
şT

0

ş

Kh
|ghpx“ 0q| |f 1hpξq|dξ dt ă 8. Now, an approximation argument based on smooth solu-

tions can be used to rigorously prove the existence. The relations in (ii) follow from integration
of the characteristics formula. The equation in (iii) can be proven as in the case of the standard
Cauchy problem.

It remains to prove the uniqueness. Assume that gsh, s “ 1, 2 are solutions with the same initial
data and the same coupling condition ψ. Then, g “ g1 ´ g2 is also a solution to the linear problem
with mh “ 0 and ghp0, x, ξq “ 0 for x P Ωh, ξ P Kh. We solve the auxiliary problem

Btϕh ` f
1
hpξq Bxϕh “

ϕh
ε

t P r0, T s, x P Ωh, ξ P Γin
h ,

ϕhpT, x, ξq “ νhpx, ξq P C
1
c pΩh ˆ Γin

h q x P Ωh, ξ P Γin
h ,

ϕhpt, 0, ξq “ ϑhpt, ξq P C
1
c pp0, T qt ˆ Γin

h q t P r0, T s, ξ P Γin
h .

Since ϕh is of class C1, we are able to use it as a test function in the weak formulation of gh and
obtain

ĳ

ΩhˆΓin
h

ghpT, x, ξq νh dx dξ `

ĳ

p0,T qtˆΓin
h

|f 1hpξq| ghpt, 0, ξqϑh dxdξ “ 0.

We can take arbitrary test functions νh, ϑh and get ghpT, x, ξq “ 0 for a.e. x P Ωh, ξ P Γin
h and

ghpt, 0, ξq “ 0 for a.e. t P p0, T q, ξ P Γin
h . Since we have g1

hpt, 0, ξq “ g2
hpt, 0, ξq for a.e. t P p0, T q, ξ P

Γin
h , we get g1

hpt, 0, ξq “ g2
hpt, 0, ξq for a.e. t P p0, T q, ξ P Γout

h by the coupling condition ψ. Using a
similar construction for ξ P Γout

h leads to g1
h “ g2

h for a.e. t P p0, T q, x P Ωh, ξ P Kh. �

Theorem 4. Let (f.1)–(f.3), (ηηη.A) and (ΠΠΠ.1) hold. Let g0,h P L
1pΩh ˆKh, Dξq with ρ0,hpxq “

ş

Kh
g0,hpx, ξqdξ. Then, there exists a unique distributional solution gh P Cpr0,8qt, L

1pΩhˆKh, Dξqq

to
$

’

&

’

%

Btgh ` f
1
hpξqBxgh “

χpρgh ,ξq´gh
ε t ą 0, x P Ωh, ξ P Kh,

Ψhrgpt, 0,Γ
inqspξq “ ghpt, 0, ξq t ą 0, ξ P Γout

h ,

ghp0, x, ξq “ g0,hpx, ξq x P Ωh, ξ P Kh,

with ρghpt, xq “
ş

Kh
ghpt, x, ξqdξ P Kh. The solution satisfies

(i) Conservation of mass:

n`m
ÿ

h“1

ĳ

ΩhˆKh

ghpT, x, ξqdxdξ “
n`m
ÿ

h“1

ĳ

ΩhˆKh

g0,hpx, ξqdx dξ for every T ą 0;

(ii) L1-contraction: For two solutions ρsh with initial data gs0,h, s “ 1, 2, we have

n`m
ÿ

h“1

}ρ1
hptq ´ ρ

2
hptq}L1pΩhq ď

n`m
ÿ

h“1

}g1
hptq ´ g

2
hptq}L1pΩhˆKhq ď

n`m
ÿ

h“1

}g1
0,h ´ g

2
0,h}L1pΩhˆKhq;

(iii) There exists a non-negative bounded function mh “ mhpt, x, ξq such that

χpρgh , ξq ´ gh
ε

“ Bξmh t ą 0, x P Ωh, ξ P Kh,
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holds and there exist functions µh P L
8pKhq independent of ε such that

ĳ

p0,T qtˆΩh

mhpt, x, ξqdtdx ď µhpξq for a.e. ξ P Kh.

Proof. The proof is based on arguments in [34, Theorem 3.6.1] and [23, Theorem 2.1]. We define the

Banach spaces XT “ Cpr0, T st,
Śn`m

h“1 L1pΩh,Khqq and YT “ Cpr0, T st,
Śn`m

h“1 L1pΩh ˆ Kh, Dξqq

with their standard norms. We define the map

Φpvq “ ρ with ρh “

ż

Kh

gh dξ ,

for the unique solution g obtained by Theorem 3 with mhpt, x, ξq “ χpvhpt, xq, ξq, v P XT . The
statement of Theorem 3 holds true for Ψ as in Definition 5 and we obtain g P YT and ρ P XT . This
can be shown by a careful treatment of the set Dξ involved in the definition of Ψ, XT , YT and by
using the characteristics formula.
Step 1: The operator Φ is a strict contraction: Take vs P XT , s “ 1, 2. Due to Theorem 3 and
Proposition 6, we have

Bt

m`n
ÿ

h“1

ĳ

ΩhˆKh

|g1
h ´ g

2
h|dx dξ

ď
1

ε

m`n
ÿ

h“1

ĳ

ΩhˆKh

|χpv1
h, ξq ´ χpv

2
h, ξq| ´ |g

1
h ´ g

2
h|dxdξ

´

n
ÿ

i“1

ż

Ki

f 1ipξq |g
1
i pt, 0, ξq ´ g

2
i pt, 0, ξq| dξ `

n`m
ÿ

j“n`1

ż

Kj

f 1jpξq |g
1
j pt, 0, ξq ´ g

2
j pt, 0, ξq|dξ

ď
1

ε

m`n
ÿ

h“1

ż

Ωh

„

|v1
h ´ v

2
h| ´

ż

Kh

|g1
h ´ g

2
h|dξ



dx .

The differential inequality implies a Gronwall estimate on gsh

}g1 ´ g2}YT “

m`n
ÿ

h“1

ĳ

ΩhˆKh

|g1
h ´ g

2
h|dxdξ ď p1´ e´T {εq}v1 ´ v2}XT

and therefore also on ρs

}ρ1 ´ ρ2}XT ď p1´ e
´T {εq}v1 ´ v2}XT .

Step 2: Existence and uniqueness: We apply the Banach fixed point theorem to obtain a unique
fixed point ρ of Φ. The unique kinetic solution gh is obtained by Theorem 3 with mhpt, x, ξq “
χpρhpt, xq, ξq. A unique global (in time) solution is obtained by a standard construction [34].
Step 3: The remaining properties follow from Theorem 3, Proposition 6 and (3.18). Note that

χpρgh , ξq “ 0 for ξ R Kh,
ş

Kh
|χpρ1

gh
, ξq ´χpρ2

gh
, ξq| dξ “ |ρ1

gh
´ ρ2

gh
| ď

ş

Kh
|g1
h´ g

2
h|dξ and ρgh P Kh

for gh P L
1pKh, Dξq. The existence of mh in (iii) follows as in [34, Corollary 3.6.2]. �

4.1. Stationary solutions to the BGK model. We prove existence of a class of stationary
solutions to the BGK model on networks. The stationary solutions will be used to justify the
convergence towards the macroscopic coupling condition.
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We define the set

K “

#

ρ̄ P
n`m
ą

h“1

Kh

ˇ

ˇ

ˇ
ρ̄ “ RPpρ̄q with ρ̄h P Γout

h if fhpρ̄hq “ fhpρ̂hq, ρ̂h P Γout
h

+

(4.1)

where ρ̂h is defined as in Definition 3 with initial data ρ0,h “ ρ̄h.

Proposition 7. Let (f.1)–(f.4), (ηηη.A) and (ΠΠΠ.1) hold. For every ρ̄ P K and ε ą 0, there exists a
unique stationary solution ḡεhpt, x, ξq “ ḡεhpx, ξq to the BGK model in Theorem 4 such that

ḡεhpx, ¨q Ñ χpρ̄h, ¨q in L1pKhq as |x| Ñ 8, x P Ωh.

Furthermore, we have

ḡεhpt, x, ξq Ñ χpρ̄h, ¨q in L1
locpp0,8qt ˆ Ωh ˆKhq as εÑ 0.

Proof. For notational convenience we use the notation sgn`pξq “ maxtsgnpξq, 0u, sgn´pξq “
mintsgnpξq, 0u and σh “ argmax fhpΓ

out
h q. Let ρ̂h be defined as in Definition 3 with initial data

ρ0,h “ ρ̄h.
For i “ 1, . . . , n we compute

ż

Γout
i

f 1ipξqχpρ̂i, ξqdξ “

ż

Γout
i

f 1ipξq sgn´pξqdξ `

ż

Γout
i

f 1ipξq1p´8,ρ̂is dξ

“ sgn`p0´ σiqpf
max
i ´ fip0qq ` sgn`pρ̂i ´ σiqpfipρ̂iq ´ f

max
i q,

ż

Γin
i

f 1ipξq sgn`pξqdξ “ sgn`pσi ´ 0qpfmax
i ´ fip0qq,

ż

Γin
i

f 1ipξq sgn´pξqdξ “ ´fmax
i ` sgn`pσi ´ 0qpfmax

i ´ fip0qq,

and obtain
ż

Γout
i

f 1ipξqχpρ̂i, ξqdξ `

ż

Γin
i

f 1ipξq sgn`pξqdξ ` fip0q “ fmax
i ` sgn`pρ̂i ´ σiqpfipρ̂iq ´ f

max
i q ě fipρ̄iq,

ż

Γout
i

f 1ipξqχpρ̂i, ξqdξ `

ż

Γin
i

f 1ipξq sgn´pξqdξ ` fip0q “ sgn`pρ̂i ´ σiqpfipρ̂iq ´ f
max
i q ď 0 ď fipρ̄iq.

By the same arguments we get
ż

Γout
j

f 1jpξqχpρ̂j , ξqdξ `

ż

Γin
j

f 1jpξq sgn´pξqdξ ` fjp0q “ fmax
j ` sgn`pσj ´ ρ̂jqpfjpρ̂jq ´ f

max
j q ě fjpρ̄jq,

ż

Γout
j

f 1jpξqχpρ̂j , ξqdξ `

ż

Γin
j

f 1jpξq sgn`pξqdξ ` fjp0q “ sgn`pσj ´ ρ̂jqpfjpρ̂jq ´ f
max
j q ď 0 ď fjpρ̄jq,

for j “ n` 1, . . . , n`m.
Using these estimates and (f.4), we are able to repeat the arguments from [37, Proposition 3] in

our setting. For i “ 1, . . . , n we set ui “ σi ´ ρi, replace the Burgers’ flux by f̃ipuiq “ fipσi ´ uiq ´
fmax
i and use the variable transformation y ÞÑ ´x. For j “ n ` 1, . . . , n `m we set uj “ σj ´ ρj

and f̃jpujq “ fmax
j ´ fjpσj ´ ujq without using a variable transformation.
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Therefore, there exists a unique stationary solution ḡhpt, x, ξq “ ḡhpx, ξq to the BGK model on
Ωh satisfying

$

’

’

’

’

&

’

’

’

’

%

f 1hpξq Bxḡ
ε
h “

χpρḡε
h
,ξq´ḡεh
ε t ą 0, x P Ωh, ξ P Kh,

ḡεhp0, ξq “ χpρ̂h, ξq t ą 0, ξ P Γout
h ,

ş

Kh
f 1hpξq ḡ

ε
hpx, ξqdξ ` fhp0q “ fhpρ̄hq x P Ωh,

ḡεhpx, ¨q Ñ χpρ̄h, ¨q in L1pKhq as |x| Ñ 8, x P Ωh.

Remark that Proposition 3 in [37] requires the assumption ρ̄ P K since

ż

Γout
i

f 1ipξqχpρ̂i, ξqdξ `

ż

Γin
i

f 1ipξq sgn`pξqdξ ` fip0q “ fipρ̄iq,

resp.

ż

Γout
j

f 1jpξqχpρ̂j , ξqdξ `

ż

Γin
j

f 1jpξq sgn´pξqdξ ` fjp0q “ fjpρ̄jq,

if fhpρ̂hq “ fhpρ̄hq for some h “ 1, . . . , n`m.
The functions ḡhpt, x, ξq “ ḡhpx, ξq satisfy the coupling condition at the junction since ḡεhpt, 0, ξq “

χpρ̂h, ξq for a.e. t ą 0, ξ P Γout
h and

n
ÿ

i“1

ż

Ki

f 1ipξq ḡipt, 0, ξqdξ ´
n`m
ÿ

j“n`1

ż

Kj

f 1jpξq ḡjpt, 0, ξqdξ “
n
ÿ

i“1

fipρ̄iq ´
n`m
ÿ

j“n`1

fjpρ̄jq “ 0.

The convergence ḡεh Ñ χpρ̄h, ¨q as εÑ 0 follows from ḡε1h pε1 x, ξq “ ḡε2h pε2 x, ξq for a.e. x P Ωh, ξ P
Kh and ḡεhpx, ¨q Ñ χpρ̄h, ¨q as |x| Ñ 8. �

5. Existence and Uniqueness of the LWR model at the junction

5.1. Interior Relaxation. We apply a compactness result by Panov [32] for measure–valued so-
lutions to pass to the limit in the interior of the domains Ωh. The compactness result uses a
regularizing effect of non-linear scalar conservation laws. The regularizing effect is only available if
the non–degeneracy condition (f.4) holds. Let us remark that compactness results with possibly
degenerate flux are available for the initial value problem [34] and initial boundary value problem
[25, 27]. For these results, a careful analysis for the initial and boundary conditions is needed. The
extension of them to networks may be a subject for future research.

Theorem 5. Let (f.1)–(f.4), (ηηη.A) and (ΠΠΠ.1) hold. Then, there exist ρh P Cpr0,8qt, L
1pΩh,Khqq

such that, after possibly taking a subsequence,

ż

Kh

gεh dξ “ ρgεh Ñ ρh as εÑ 0 in L1
locpr0,8qt ˆ Ωhq.

Furthermore, ρh solve the entropy inequality (2.3) on p0,8qt ˆ Ωh in the distributional sense.
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Proof. Since gh P L
1pp0,8qtˆΩhˆKh, Dξq, ν

ε
h “ Bξg

ε
h defines a measure in ξ for a.e. t P p0,8q, x P

Ωh. νεh are measure–valued solutions to the LWR model in the sense of

Bt

ˆ
ż

Kh

|ξ ´ k|dνεhpξq

˙

` Bx

ˆ
ż

Kh

sgnpξ ´ kq pfhpξq ´ fhpkqq dνεhpξq

˙

“ Bt

ˆ
ż

Kh

sgnpξ ´ kq gεhpξqdξ

˙

` Bx

ˆ
ż

Kh

sgnpξ ´ kq f 1hpξq g
ε
hpξqdξ

˙

“

ż

Kh

sgnpξ ´ kq
χpρgεh , ξq ´ g

ε
h

ε
dξ ď 0

for each k P Kh. Furthermore, νεh, ε ą 0 are bounded sequences of measure–valued functions since
supp νεhpt, xq Ă Kh.

By [32, Theorem 5], there exist measure–valued functions νh such that, after possibly taking
a subsequence, νεh Ñ νh strongly in the sense of measure–valued functions. We conclude ρgεh “
ş

Kh
ξ dνεhpξq Ñ

ş

Kh
ξ dνhpξq “ ρh in L1

locpr0,8qt ˆ Ωhq. By standard arguments [35, Lemma 3.3],

it can be shown that ρh satisfies the entropy inequality (2.3). The time continuity follows by
Theorem 2. �

5.2. Convergence at the Junction.

Proposition 8. Let (f.1)–(f.4), (ηηη.A) and (ΠΠΠ.1) hold. Let gεh and ρh be the solutions obtained
in Theorem 4 and Theorem 5. Let K be as in (4.1). Then, there exists a set of measure zero
N Ă p0,8q such that

n
ÿ

i“1

Gipρipt, 0q, ρ̄iq ´
n`m
ÿ

j“n`1

Gjpρjpt, 0q, ρ̄jq ě 0 for all t P p0,8qzN ,

for every ρ̄ P K, where Ghpρ1, ρ2q denotes the Kružkov entropy flux defined in (2.5).
Proof.
Step 1: We prove that gεh ´ χpρgεh , ξq Ñ 0 for a.e. t, x, ξ: Take a strictly convex η : R Ñ R. Using
the sub-differential inequality in Lemma 1 gives

pη1pξq ´ η1pρgεhqq
`

gεh ´ χpρgεh , ξq
˘

ě 0 for a.e. t, x, ξ. (5.1)

On the other hand we have
¡

p0,8qtˆΩhˆKh

pη1pξq ´ η1pρgεhqq
`

gεh ´ χpρgεh , ξq
˘

dtdxdξ

“

¡

p0,8qtˆΩhˆKh

η1pξq
`

gεh ´ χpρgεh , ξq
˘

dtdxdξ

“ ε

¡

p0,8qtˆΩhˆKh

η1pξq
`

Btg
ε
h ` f

1
hpξq Bxg

ε
h

˘

dtdxdξ

“ ε

ĳ

ΩhˆKh

η1pξq pgεhpT, x, ξq ´ g
ε
hp0, x, ξqqdxdξ ˘h ε

ĳ

p0,8qtˆKh

η1pξq f 1hpξq g
ε
hpt, 0, ξqdtdξ

ď Cε

(5.2)
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with a constant C ą 0 independent of ε ą 0. Since η is strictly convex, we have η1pξq ‰ η1pρgεhq for
a.e. ξ P Kh. By (5.1)–(5.2), we obtain gεh ´ χpρgεh , ξq Ñ 0 for a.e. t, x, ξ.
Step 2: Fix ρ̄ P K and let ḡεh by as in Proposition 7. Since (iii) in Theorem 3 and |χpρgεh , ξq ´
χpρḡεh , ξq| ď |g

ε
h ´ ḡ

ε
h|, we have

n`m
ÿ

h“1

¡

p0,8qtˆΩhˆKh

|gεh ´ ḡ
ε
h| Btφh ` f

1
hpξq |g

ε
h ´ ḡ

ε
h| Bxφh dtdxdξ ě 0

for φh P Dpp0,8qt ˆ Ωhq, φh ě 0. We aim to extend this inequality to φh P Dpp0,8qt ˆ Rxq,
φh ě 0 with φhpt, 0q “ φh1pt, 0q for all h, h1 “ 1, . . . , n `m. Approximating φh P Dpp0,8qt ˆ Rxq
in p0,8qtˆΩh by a suitable sequence in Dpp0,8qtˆRxq [3, Proposition 1] and using the fact that
the kinetic solutions gεh, ḡ

ε
h admit strong traces at x “ 0 leads to

0 ď
n`m
ÿ

h“1

¡

p0,8qtˆΩhˆKh

|gεh ´ ḡ
ε
h| Btφh ` f

1
hpξq |g

ε
h ´ ḡ

ε
h| Bxφh dt dx dξ

´

m
ÿ

i“1

¡

p0,8qtˆKi

f 1ipξq |g
ε
i ´ ḡ

ε
i |φipt, 0qdtdξ `

n`m
ÿ

j“n`1

¡

p0,8qtˆKj

f 1jpξq |g
ε
j ´ ḡ

ε
j |φjpt, 0qdtdξ

ď

n`m
ÿ

h“1

¡

p0,8qtˆΩhˆKh

|gεh ´ ḡ
ε
h| Btφh ` f

1
hpξq |g

ε
h ´ ḡ

ε
h| Bxφh dtdx dξ

for every φh P Dpp0,8qt ˆ Rxq, φh ě 0 with φhpt, 0q “ φh1pt, 0q for all h, h1 “ 1, . . . , n`m. Using
the fact that gεh ´ χpρgεh , ¨q Ñ 0, ρgεh Ñ ρh and ḡεh Ñ χpρ̄h, ¨q leads to

n`m
ÿ

h“1

¡

p0,8qtˆΩhˆKh

|ρh ´ ρ̄h| Btφh `Ghpρh, ρ̄hq Bxφh dtdxdξ ě 0

for every φh P Dpp0,8qt ˆ Rxq, φh ě 0 with φhpt, 0q “ φh1pt, 0q for all h, h1 “ 1, . . . , n`m. We set
φhpt, xq “ φbptqφa,rh pxq with φa,rh pxq “ 1 for |x| ď r{2, φa,rh pxq “ 0 for |x| ě r, |pφa,rh q1pxq| ď C{r

and with φb P Dp0,8q, φb ě 0. We take the limit r Ñ 0 using Lebesque’s theorem together with
Theorem 2 and obtain

n
ÿ

i“1

ż 8

0

Gipρipt, 0q, ρ̄iqφ
bptqdt´

n`m
ÿ

j“n`1

ż 8

0

Gjpρjpt, 0q, ρ̄jqφ
bptqdt ě 0

for every φb P Dp0,8q, φb ě 0.
Step 3: We proved that the desired inequalities hold for t P p0,8qzN pρ̄q with sets of measure zero
N pρ̄q. It remains to prove that N pρ̄q can be chosen independent of ρ̄ P K.

We take a countable and dense subset K˚ of K. We set N “
Ť

K˚ N pρ̄kq and obtain for all
ρ̄k P K˚:

n
ÿ

i“1

Gipρipt, 0q, ρ̄
k
i q ´

n`m
ÿ

j“n`1

Gjpρjpt, 0q, ρ̄
k
j q ě 0 for all t P p0,8qzN .

Since the entropy flux Ghpρhpt, 0q, ρ̄hq depends continuously on ρ̄h, we obtain the result by approx-
imating each ρ̄h P K by a sequence in K˚. �
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Proposition 9. Let (f.1)–(f.3), (ηηη.A) and (ΠΠΠ.1) hold. Let ρh P Kh be such that

n
ÿ

i“1

Gipρi, ρ̄iq ´
n`m
ÿ

j“n`1

Gjpρj , ρ̄jq ě 0 for every ρ̄ P K

with K as in (4.1), where Ghpρ1, ρ2q denotes the Kružkov entropy flux defined in (2.5). Then,

n
ÿ

i“1

Gipρi, ρ̃iq ´
n`m
ÿ

j“n`1

Gjpρj , ρ̃jq ě 0 for every ρ̃h P Kh with ρ̃ “ RPpρ̃q

and RPpρq “ ρ.

Proof. We follow the arguments in [3, Lemma 2.8]. Take ρ̃ with ρ̃ “ RPpρ̃q. Then, we define ρ̄ P K
by

ρ̄h “

#

ρ̂h if ρ̂h P Γout
h , fhpρ̃hq “ fhpρ̂hq,

ρ̃h else,

with ρ̂h as in Definition 3 with initial data ρ0,h “ ρ̃h. The first part follows from

Gipρi, ρ̄iq “ sgnpρi ´ ρ̄iqpfipρiq ´ fipρ̄iqq ď sgnpρi ´ ρ̃iqpfipρiq ´ fipρ̃iqq “ Gipρi, ρ̃iq,

Gjpρj , ρ̄jq “ sgnpρj ´ ρ̄jqpfjpρjq ´ fjpρ̄jqq ě sgnpρj ´ ρ̃jqpfjpρjq ´ fjpρ̃jqq “ Gjpρj , ρ̃jq.

For showing RPpρq “ ρ, we solve the generalized Riemann problem with initial data ρ0,h “ ρh
and denote the traces at the junction by ρ˚h “ ρhpt, 0q. We have

n
ÿ

i“1

Gipρi, ρ
˚
i q ´

n`m
ÿ

j“n`1

Gjpρj , ρ
˚
j q ě 0.

On the other hand we have

fipρiq ´ fipρ
˚
i q

#

ě 0 if ρi ď ρ̂i,

ď 0 if ρi ě ρ̂i,

where ρ̂i is as in Definition 3 with initial data ρ0,h “ ρh. Therefore, Gipρi, ρ
˚
i q “ ´|fipρiq ´ fipρ

˚
i q|

for i “ 1, . . . , n. By the same arguments we get Gjpρj , ρ
˚
j q “ |fjpρjq´fjpρ

˚
j q| for j “ n`1, . . . , n`m.

We conclude that

0 ď
n
ÿ

i“1

Gipρi, ρ
˚
i q ´

n`m
ÿ

j“n`1

Gjpρj , ρ
˚
j q ď 0.

Since all summands have the same sign, we have fhpρhq “ fhpρ
˚
hq for h “ 1, . . . , n`m. The result

follows from the construction of ρ˚h by standard Riemann problems. �

5.3. Uniqueness and L1–contraction property.

Proposition 10. Let (f.1)–(f.3), (ηηη.A) and (ΠΠΠ.1) hold. The solutions ρh to Definition 4 are
unique. For initial data ρs0,h P L

1pΩh,Khq, s “ 1, 2, the contraction property

n`m
ÿ

h“1

ż

Ωh

|ρ1
hpT q ´ ρ

2
hpT q| dx ď

n`m
ÿ

h“1

ż

Ωh

|ρ1
0,h ´ ρ

2
0,h|dx

holds for every T ě 0.
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Proof. The uniqueness proof is based on Kružkov estimates. We follow [3, Proposition 1]. Assume
that we have two solutions ρsh, s “ 1, 2 to Definition 4. Since ρsh are entropy solutions to (1.1), we
obtain by standard doubling of variable arguments

´

ĳ

p0,8qtˆΩh

|ρ1
h ´ ρ

2
h| Btφh `Ghpρ

1
h, ρ

2
hq Bxφh dtdt´

ż

Ωh

|ρ1
0,h ´ ρ

2
0,h|φhp0, xqdx ď 0

for every φh P DpRt ˆ Ωhq, φh ě 0. The solutions ρsh satisfy the coupling condition RPpρpt, 0qq “
ρpt, 0q for a.e. t ą 0 and therefore also the L1–contraction property proven in Proposition 2 and
Proposition 9. An approximation by test functions φh which are not necessarily zero at the junction
leads to

´

n`m
ÿ

h“1

ĳ

p0,8qtˆΩh

|ρ1
h ´ ρ

2
h| Btφh `Ghpρ

1
h, ρ

2
hq Bxφh dtdx´

n`m
ÿ

h“1

ż

Ωh

|ρ1
0,h ´ ρ

2
0,h|φhp0, xqdx ď 0

for every φh P DpRt ˆ Rxq, φh ě 0 with φhpt, 0q “ φh1pt, 0q for all h, h1 “ 1, . . . , n ` m. The
contraction property follows by a smooth approximation of φhp0, xq “ 1ttďT upt, xq. The uniqueness
follows as in [26]. �

Theorem 1 follows from the results in this section.

6. Numerical Examples for Different Choices of η̂h

We study the solution at the junction with different entropies η̂h. As first example (1.5) the
same strictly convex entropy η̂ for every road η̂h “ η̂ is chosen. The coupling condition coincides
with the one obtained by a vanishing viscosity approach [3, 14] and it is independent of the shape
of η̂.

As second example (1.6) the negative flux functions η̂h “ ´fh are considered. The coupling
condition can be interpreted such that the drivers maximize their velocity at the junction.

For constant initial data, n “ m “ 2 and Kh “ r0, 1s, we consider piece-wise linear flux functions
fh : r0, 1s Ñ r0, 1s

f1pvq “ f2pvq “

#

2v, 0 ď v ď 1{2,

2´ 2v, 1{2 ď v ď 1,

f3pvq “

#

4v, 0 ď v ď 1{4,

4{3´ 4v{3, 1{4 ď v ď 1,

f4pvq “

#

4v{3, 0 ď v ď 3{4,

4´ 4v, 3{4 ď v ď 1,

illustrated in Figure 1. The initial data is chosen such that the characteristics speeds are positive:

ρ0,i “ 1{4 P Γin
i , i “ 1, 2 and ρ0,j “ 0 P Γout

j , j “ 3, 4. (6.1)

Solving the Riemann problem with (1.5) and (1.6) leads then to qualitatively different solutions.
The boundary traces at the junction are given in Table 1.
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1 / 41 / 4 1 / 21 / 2 3 / 43 / 4 11

1 / 41 / 4

1 / 21 / 2

3 / 43 / 4

11

00

Figure 1. The flux functions f1, . . . , f4.

η̂h “ η̂
h ρhpt, 0q fhpρhpt, 0qq ρ̂h
1 1{4 1{2 3{16
2 1{4 1{2 3{16
3 3{16 3{4 3{16
4 3{16 1{4 3{16

η̂h “ ´fh
h ρhpt, 0q fhpρhpt, 0qq ρ̂h
1 1{4 1{2 0
2 1{4 1{2 0
3 1{4 1 1{4
4 0 0 0

Table 1. Boundary traces of the solutions to the generalized Riemann problem
with initial data (6.1) and different η̂h. The density ρ̂h is as in Definition 3.

6.1. Interpretation. Since we consider free flow initial data, we expect to have one degree of
freedom for each outgoing road j “ 3, 4. These degrees of freedom are specified by the coupling
condition.

In the first example (1.5), there is no prioritization of one of the outgoing roads j “ 3, 4 since
the entropies η̂h coincide. Therefore, the number of outgoing cars per unit ρjpt, 0q is the same for
j “ 3, 4. This example could be used to model traffic junctions where the ratio between the number
of cars turning into each outgoing road can be controlled by e.g. traffic lights.

In the example (1.6) we observe that the third road is prioritized since

η̂13pρq “ ´f
1
3pρq “ ´4 ă ´4{3 “ ´f 14pρq “ η̂14pρq for sufficiently small ρ ą 0.

Therefore, all cars turn into the third road. The condition may be used to model traffic junctions
where drivers choose the outgoing road with less traffic. The drivers choose then the outgoing road
such that the distance to the next car in the road is the largest.

7. Outlook

7.1. Drivers Preferences at the Junction. In the presented considerations we assume that the
drives do not have a priori known preferences for the outgoing roads. Coupling conditions with
known drivers preferences were intensively studied, see e.g. [19] and the references therein.

Typically, instead of using (2.12), a stronger condition is used: coefficients αij P r0, 1s satisfying

n`m
ÿ

j“n`1

αij “ 1 for i “ 1, . . . , n, (7.1)
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are given and the condition

n
ÿ

i“1

αij fipρipt, 0qq “ fjpρjpt, 0qq for a.e. t ą 0, (7.2)

is introduced. Condition (7.2) can be easily included in Definition 2 and its kinetic version is then
given by

n
ÿ

i“1

αij

˜

ż

Γout
i

f 1ipξqΨirgpΓ
inqspξqdξ `

ż

Γin
i

f 1ipξq gipξqdξ

¸

“

ż

Γout
j

f 1jpξqΨjrgpΓ
inqspξqdξ `

ż

Γin
j

f 1jpξq gjpξqdξ , for j “ n` 1, . . . , n`m.

(7.3)

The choice η̂h “ Id gives the condition in [13]. It would be interesting to see if other conditions
[11, 17] can also be obtained by using suitable entropies. We expect that the obtained new conditions
however do not satisfy the L1–contraction property in the sense of Proposition 2 and Proposition 6.

7.2. L1–dissipative solver. The notion of L1–dissipative solvers is a concept originating from
scalar conservation laws with discontinuous flux [2]. The concept was extended to a network in [3].
L1–dissipative solvers on networks are those Riemann solvers satisfying the junction condition in
Proposition 2.

In the classical setting of discontinuous fluxes, i.e. n “ m “ 1, the L1–dissipative solvers are
characterized by pA,Bq P Γout

1 ˆ Γout
2 with f1pAq “ f2pBq “ spA,Bq, see [1, 12]. They are defined

by: ρ “ RPpρq if and only if

f1pρ1q “ f2pρ2q ď spA,Bq and sgn`pρ1 ´Aq sgn´pρ2 ´Bq ď 0. (7.4)

Definition 3 and (7.4) are related in the following way: If there exists M P R, z P r0, 1s such that

ρ̂h “ ΠM
h pzq P Γout

h , i “ 1, 2 and f1pρ̂1q “ f2pρ̂2q, (7.5)

then Definition 3 and (7.4) coincide with spA,Bq “ f1pρ̂1q “ f2pρ̂2q, A “ ρ̂1 and B “ ρ̂2. Notice
that such M P R and z P r0, 1s do not exist if (ηηη.B) holds. If such M P R, z P r0, 1s do not exist,
Definition 3 and (7.4) coincide with spA,Bq “ maxtfmax

1 , fmax
2 u.

Therefore, Theorem 1 gives an existence and uniqueness result for the LWR model with discon-
tinuous flux for all L1–dissipative solvers.

It would be interesting to see if (7.4) and the characterisation of all L1–dissipative solvers can
be extended to networks. The new formulation has to take into account the prioritization at the
junction which is a phenomena that does not occur for n “ m “ 1. Inspired by (7.4) and for
notational convenience, we may replace

η̂1hpρ̂h´q ďM ď η̂1hpρ̂h`q and ρ̂h “ ΠM
h pzq for M P R, z P r0, 1s, (7.6)

by a general, more explicit condition on ρ̂h. We define a function Ξ: r0, 1s Ñ
Śn`m

h“1 Kh and require

ρ̂h “ Ξhpyq for a suitable y P r0, 1s. (7.7)

Note that by the intermediate value argument in Proposition 1, an increasing, surjective function
Ξ: r0, 1s Ñ

Śn`m
h“1 Kh as in (7.7) can be constructed from (7.6).
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