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Abstract. This paper is concerned with the sharp interface limit for the Allen-Cahn
equation with a nonlinear Robin boundary condition in a bounded smooth domain
Ω ⊂ R2. We assume that a diffuse interface already has developed and that it is in
contact with the boundary ∂Ω. The boundary condition is designed in such a way that
the limit problem is given by the mean curvature flow with constant α-contact angle.
For α close to 90° we prove a local in time convergence result for well-prepared initial
data for times when a smooth solution to the limit problem exists. Based on the latter we
construct a suitable curvilinear coordinate system and carry out a rigorous asymptotic
expansion for the Allen-Cahn equation with the nonlinear Robin boundary condition.
Moreover, we show a spectral estimate for the corresponding linearized Allen-Cahn
operator and with its aid we derive strong norm estimates for the difference of the exact
and approximate solutions using a Gronwall-type argument.
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1 Introduction
Let Ω ⊂ R2 be a bounded, smooth domain with outer unit normal N∂Ω. Moreover, let α ∈ (0, π) be
fixed. The parameter α will correspond to a constant angle later. Furthermore, we consider ε > 0
small. For uε,α : Ω × [0, T ] → R we are interested in the following Allen-Cahn equation with
nonlinear Robin boundary condition which we will refer to via (ACα):

∂tuε,α −∆uε,α + 1
ε2 f

′(uε,α) = 0 in Ω× (0, T ), (ACα1)

∂N∂Ωuε,α + 1
ε
σ′α(uε,α) = 0 on ∂Ω× (0, T ), (ACα2)

uε,α|t=0 = u0,ε,α in Ω. (ACα3)
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1. INTRODUCTION

Here f : R → R is an appropriate smooth double well potential with wells of equal depth, for
instance f(u) = 1

2(1− u2)2, see Figure 1. The concise conditions we impose are

f ∈ C∞(R), f ′(±1) = 0, f ′′(±1) > 0, f(−1) = f(1), f > f(1) in (−1, 1) (1.1)

and the following sign condition for f ′ outside a large ball:

uf ′(u) ≥ 0 for all |u| ≥ R0 and an R0 ≥ 1. (1.2)

We use (1.2) later to deduce uniform a priori bounds for classical solutions uε,α, cf. Section 7.1.1.

−1 1

f(u)

u

Figure 1: Typical example for the double-well potential, f(u) = 1
2(1− u2)2.

Furthermore, σα : R→ R is assumed to be smooth with suppσ′α ⊂ (−1, 1) and

cosα = σα(−1)− σα(1)∫ 1
−1
√

2(f(r)− f(−1)) dr
. (1.3)

For the typical shape of σα see Figure 2 below. In order to fulfil the compatibility condition (1.3) and
to have smoothness of σα with respect to α we choose σα for simplicity as follows:

Definition 1.1. Let σ̂ : R→ R be smooth with supp σ̂′ ⊂ (−1, 1) and such that

σ̂(−1)− σ̂(1) =
∫ 1

−1

√
2(f(r)− f(−1)) dr.

Then we define σα := cosα σ̂.

−1 1 u

σ′α(u)σα(u)

−1 1u

Figure 2: Typical shape of σα and σ′α.
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1. INTRODUCTION

Motivation of (ACα). By direct computation one can show that equation (ACα1)-(ACα3) is the
L2-gradient flow corresponding to the energy

Eε,α(u) :=
∫

Ω

1
2 |∇u|

2 + 1
ε2 f(u) dx+

∫
∂Ω

1
ε
σα(u) dH1. (1.4)

In the case α = π
2 only the first part in the energy remains, which is (up to a scaling in ε) the standard

scalar Ginzburg-Landau energy or Modica-Mortola energy, see Modica [Mo1]. The corresponding
L2-gradient flow in this case is the standard Allen-Cahn equation, see Allen, Cahn [AC] and the
introduction in Bronsard, Reitich [BR] for some motivations. The new term in the energy is a
boundary contact energy. The idea is to adjust the gradient flow in such a way that distinct values of
u are penalized differently when attained at the boundary.

With formal arguments (system of fast reaction/slow diffusion or an energy argument; see Moser
[M2] for some details in the case α = π

2 ) one can show that (ACα1)-(ACα3) is a diffuse interface
model: the uε,α is an order parameter, where the values ±1 represent two distinct phases or compo-
nents in applications. Typically after a short “generation” time Ω is divided into subdomains where
the solution uε,α of (ACα1)-(ACα3) is near ±1 and diffuse interfaces develop with thickness propor-
tional to ε. Therefore in the limit ε → 0 we should get an evolving hypersurface Γ = (Γt)t∈[0,T ],
which moves according to some sharp interface model. This is the meaning behind the notion “sharp
interface limit”. See Figure 3 below for a sketch. A rigorous result concerning the “generation of
interfaces” in the case α = π

2 is provided by Chen [C1].
In general it is important to connect sharp interface models and diffuse interface models via their

sharp interface limits. Both model types can be used in various applications and there are motivations
from the modelling and analysis perspective as well as from the numerics side. See [M2] for a
summary of possible applications and motivations.

uε,α(., t)
≈ −1

uε,α(., t) ≈ 1

diffuse interface ∼ ε
Ω Ω

ε→0−→

Γt

α

α

Figure 3: Diffuse interface and sharp interface limit.

Formal Sharp Interface Limit for (ACα). In Owen, Sternberg [OS] formal asymptotic analysis is
used to determine the sharp interface limit for some boundary contact energy densities. The calcula-
tions can be adapted for the σα in Definition 1.1. It will turn out that f and σα are balanced suitably
through (1.3), see also Remark 4.3 below, such that in the sharp interface limit ε→ 0 we formally
obtain the mean curvature flow

VΓt = HΓt (MCF)

together with constant α-contact angle. The boundary contact energy densities in [OS] are different
to our σα and rather physically motivated. Our choice for σα is motivated by the goal to obtain
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1. INTRODUCTION

(MCF) with the constant contact angle α in the sharp interface limit. Moreover, σα is chosen as
simple as possible in order to shorten the proofs. Note that (1.3) is reminiscent of the well-known
Young’s Equation that can be used to compute the contact angle of three adjacent media through
surface tension relations.

Finally, note that Modica [Mo2] studied the Γ-convergence with respect to ε → 0 for energies
of the form (1.4) (up to a scaling in ε) with mass and nonnegativity constraint. The Γ-limits are
perimeter functionals, where additionally the perimeter of some part of the boundary is added but
weighted with a constant related to the potential and the boundary contact energy. This also motivates
to study the dynamical problem (ACα1)-(ACα3) associated to (1.4) and the relation to (MCF) with
contact angle distinct from π

2 in the limit ε→ 0.

Rigorous Sharp Interface Limit Results for (ACα). There are many results for the case α = π
2 ,

i.e. the usual Allen-Cahn equation. Here it is well-known that the sharp interface limit is (MCF), and
in case of boundary contact, there is a π

2 -contact angle. Let us summarize the results, see [M2] for
a more detailed description. On the one hand there are local in time results, proving quite strong
assertions (e.g. norm estimates) for times before singularities appear and as long as the interface stays
smooth. See [C1] (via the construction of sub- and supersolutions and the comparison principle) and
for closed interfaces [deMS] (by rigorous asymptotic expansions, see below for a description). The
latter was refined in [CHL], [AL] and the situation of boundary contact for the diffuse interfaces
was considered in [AM] for 2D and [M2] for ND. Finally note [FiLS], where a relative entropy
method was used. On the other hand, there are global in time results that use a weak formulation for
the limit system, cf. [EvSS], [KKR] (viscosity solutions), [I],[MiT], [Ka] (varifold solutions), [LS]
(conditional result in BV-setting).

To the best of our knowledge, for the case α 6= π
2 there is no rigorous result so far in the literature.

However, note that on the energy level there is a preparatory result in a varifold setting, see Kagaya,
Tonegawa [KaT], in particular the remarks in [KaT], Section 5.3. We prove a rigorous sharp interface
limit result local in time for α close to π

2 with the method of de Mottoni and Schatzman [deMS], see
Theorem 1.3 below. It extends the result in Abels, Moser [AM], where the case α = π

2 is considered.
The result is part of the PhD thesis of the second author, cf. Moser [M1]. Note that also [M2] is part
of [M1].

The Method of de Mottoni and Schatzman. The method relies on the local in time existence of a
smooth solution to the sharp interface problem. The latter can usually be proven. Then

1. Based on the evolving hypersurface that is (part of) the solution to the sharp interface problem,
one carries out a rigorous asymptotic expansion of the diffuse interface model in order to obtain
a suitable approximate solution.

2. Then one uses a Gronwall argument in order to control the difference of the exact and approxi-
mate solutions. This then entails the need for a spectral estimate of an operator obtained from
the diffuse interface model by some linearization at the approximate solution.

With this method the typical profile of the solution is also obtained and comparison principles are
not required in an essential manner. Therefore the approach has been applied to many other diffuse
interface models as well, see [M2] for a detailed list of references. For an overview of the rigorous
asymptotic expansions and the spectral estimates in the applications we refer to the introductions of
Sections 5 and 6 in [M1]. The novelty in the contributions [AM] (and [M2]) is the consideration of
boundary contact for the diffuse interfaces within the method.

4



1. INTRODUCTION

Mean Curvature Flow (MCF) with Contact Angle. In our 2D case mean curvature is simply the
curvature of the curve. For our convergence result we will make the assumption that (MCF) with
constant contact angle α has a smooth solution on some time interval [0, T0]. This is a precondition
for the method of de Mottoni and Schatzman [deMS].

The local in time well-posedness starting from suitable initial curves is basically well-known. See
for example Katsoulakis, Kossioris, Reitich [KKR], Section 2, for a parametric approach. Another
idea is to reduce the evolution to a parabolic PDE by writing it over a reference curve via suitable
coordinates. The typical procedure in the case of a closed hypersurface is described e.g. in Prüss,
Simonett [PS]. For curvilinear coordinates in the situation of boundary contact see Vogel [V] and
Section 3 below.

We need some notation concerning the coordinates for the formulation of the main theorem.

Remark 1.2 (Domain, Sharp Interface and Coordinates). The details are given in Section 3 below.
For a sketch of the situation see Figure 4.

1. Domain. Let Ω ⊂ R2 be a bounded, smooth domain with outer unit normal N∂Ω. For T > 0
let QT := Ω× (0, T ) and ∂QT := ∂Ω× [0, T ].

2. Sharp Interface. Let T0 > 0 and Γ = (Γt)t∈[0,T0] be an evolving curve (with boundary, smooth,
compact, connected) parametrized appropriately over a reference interval I and with boundary
contact of ∂Γ at ∂Ω with constant contact angle α ∈ (0, π). For Γ let VΓt be the normal
velocity and HΓt be the curvature at time t ∈ [0, T0] with respect to a unit normal ~n of Γ.
Cf. Section 3.1 below for the exact prerequisites.

3. Coordinates. We construct suitable curvilinear coordinates (r, s) taking values in a trapeze with
angle α based on the rectangle [−2δ, 2δ]× I for δ > 0 small (cf. Figure 5 below for a sketch)
parametrizing a neighbourhood of Γ in Ω× [0, T0]. For the precise statements see Theorem
3.2. Here r works as a signed distance function and s has the role of a tangential component.
The set QT0 = Ω× [0, T0] is divided by Γ into two connected sets Q±T0

corresponding to the
sign of r, i.e. the following disjoint union holds:

QT0 = Γ ∪Q−T0
∪Q+

T0
.

Finally, we define tubular neighbourhoods Γ(η) := r−1((−η, η)) for η ∈ (0, 2δ] and introduce
a normal derivative ∂n and some tangential gradient∇τ on Γ(η), cf. Remark 3.3.

Γt

Γt(2δ)
Ω

r
s

Γt

Ω

N∂Ω

α

α

~n(., t)

Figure 4: Sharp interface with α-contact angle and curvilinear coordinates.
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The Main Theorem. We obtain the following rigorous sharp interface limit result for (ACα):

Theorem 1.3 (Convergence of (ACα) to (MCF) with α-Contact Angle). There is an α0 > 0
small such that the following holds. Let Ω, N∂Ω, QT and ∂QT for T > 0 be as in Remark 1.2, 1.
Furthermore, let Γ = (Γt)t∈[0,T0] for some T0 > 0 be a smooth evolving curve with α-contact angle
as in Remark 1.2, 2. for fixed α ∈ π

2 + [−α0, α0] and let Γ solve (MCF). Moreover, let δ > 0 be
small and Q±T0

, Γ(δ), ∇τ , ∂n be defined as in Remark 1.2, 3. Finally, let f fulfill (1.1)-(1.2) and let
σα be as in Definition 1.1. Let M ∈ N with M ≥ 3.

Then there are δ0 ∈ (0, δ], ε0 > 0 and uAε,α : Ω× [0, T0]→ R smooth for ε ∈ (0, ε0] (depending
on M ) such that limε→0 u

A
ε,α = ±1 uniformly on compact subsets of Q±T0

and:

1. If M ≥ 4, then consider u0,ε,α ∈ C2(Ω) with ∂N∂Ωu0,ε,α + 1
εσ
′
α(u0,ε,α) = 0 on ∂Ω for

ε ∈ (0, ε0] and such that for some R > 0 and all ε ∈ (0, ε0] it holds

sup
ε∈(0,ε0]

‖u0,ε,α‖L∞(Ω) <∞ and ‖u0,ε,α − uAε,α|t=0‖L2(Ω) ≤ RεM . (1.5)

Then for solutions uε,α ∈ C2(QT0) of (ACα1)-(ACα3) for ε ∈ (0, ε0] starting from the initial
data u0,ε,α there are ε1 ∈ (0, ε0], C > 0 such that

sup
t∈[0,T ]

‖(uε,α − uAε,α)(t)‖L2(Ω) + ‖∇(uε,α − uAε,α)‖L2(QT \Γ(δ0)) ≤ CεM ,
√
ε‖∇τ (uε,α − uAε,α)‖L2(QT∩Γ(δ0)) + ε‖∂n(uε,α − uAε,α)‖L2(QT∩Γ(δ0)) ≤ CεM

(1.6)

for all ε ∈ (0, ε1] and T ∈ (0, T0].

2. If M ≥ 4, then there is a R̃ > 0 small such that the assertion in 1. is valid, provided that R,M
in (1.5)-(1.6) are displaced by R̃, 3.

3. If M = 3, then there is T1 ∈ (0, T0] such that the analogous result in 1. is true, but (1.6) is
only obtained for all ε ∈ (0, ε1] and T ∈ (0, T1].

Remark 1.4. 1. Interpretation of Theorem 1.3. The uAε,α in the theorem can be viewed as the
representation of a diffuse interface moving with Γ because uAε,α is smooth but converges for
ε → 0 to a step function with jump set equal the solution Γ to (MCF) with α-contact angle
starting from Γ0. The initial data u0,ε,α in Theorem 1.3 are “well-prepared”, i.e. the generation
of diffuse interfaces in the evolution is skipped and it is assumed that a diffuse interface is
located at the initial sharp interface Γ0 at time t = 0. Therefore Theorem 1.3 basically proves
that the qualitative behaviour of diffuse interfaces with boundary contact, generated by (ACα),
is that of (MCF) with α-contact angle, at least as long as the evolution of the latter remains
smooth. Moreover, Theorem 1.3 yields the typical profile of solutions across diffuse interfaces.

2. Layout of the Proof. The new model problems, a nonlinear elliptic problem on R× (0,∞) and
the linearized problem are considered in Section 4.2 below. Note that interestingly, condition
(1.3) turns out to be a necessary (and at least for α close to π

2 sufficient) condition for the
solvability of the nonlinear equation, see Remark 4.3. The asymptotic expansions can be found
in Section 5 and the approximate solution uAε,α in Section 5.3. Note that M is related to the
number of terms in the expansion. The spectral estimate is done in Section 6 and the difference
estimate is shown in Section 7.2.1. Finally, Theorem 1.3 is proven in Section 7.2.2.

6



2. NOTATION AND FUNCTION SPACES

3. Origin of α0. Theorem 1.3 is only shown for a small but uniform α0 > 0. Let us comment at
this point, where this restriction comes from. First, note that there is no restraint arising from
the construction of the curvilinear coordinates in Section 3.2. The first restriction enters when
we use the elliptic problem on R× (0,∞) from the π

2 -case and the Implicit Function Theorem
with respect to α to solve the model problems in Section 4.2. The second restriction origins
from the proof of the spectral estimate in Section 6. The reason is that we adapt the proof
from the π

2 -case in [AM] and choose α0 > 0 small such that similar arguments work, see also
Remark 6.2, 1. The precise restriction on α0 is manifested in Remark 5.5 and Theorem 6.1.

4. Well-Posedness of (ACα). In Theorem 1.3 existence of solutions uε,α ∈ C2(QT0) of (ACα) is
assumed, but this is in principle well-known. The nonlinear boundary condition makes the
analysis more difficult compared to the case α = π

2 . Nevertheless, σ′α is zero outside (−1, 1)
and one can still obtain a priori boundedness of classical solutions, see Section 7.1.1 below.
One possibility is to construct weak solutions via time-discretization. Moreover, equation
(ACα1)-(ACα3) fits for example in the abstract semigroup setting of Lunardi [Lu], Section
8.5.3. There local well-posedness in a Hölder-setting is obtained by linearization at the initial
value. Higher regularity and smoothness can be obtained with linear theory, cf. Lunardi,
Sinestrari, von Wahl [LSW]. In order to show global existence of solutions, one has to prove
boundedness of the solution in the Hölder space C2,β(Ω) with respect to time for some β > 0
small. Then the existence interval can be taken uniformly. It should be possible to prove this
with the a priori uniform boundedness and a bootstrap argument.

5. The level sets {uAε,α = 0}, {uε,α = 0} can be seen as approximations for Γ. In the explicit
construction of uAε,α in Section 5 below the error from {uAε,α = 0} to Γ is of order ε. This is
of interest for numerical computations, cf. also Caginalp, Chen, Eck [CCE]. Note that for the
case α = π

2 this approximation order is ε2, if f is even, cf. [AM] and [M2].

6. Basically also estimates of stronger norms can be obtained in the situation of Theorem 1.3,
but the initial values have to satisfy better estimates. The idea is to use interpolation estimates
of the already estimated norms with stronger norms that can be controlled for exact solutions
by some negative ε-orders, cf. Alikakos, Bates, Chen [ABC], Theorem 2.3 in the case of the
Cahn-Hilliard equation. Nevertheless, this does not improve the approximation of Γ in the
sense of 5.

2 Notation and Function Spaces
We denote with N the natural numbers and N0 := N∪{0}. Moreover, K = R or C is fixed depending
on the context. Furthermore, for simplicity we write |.| for the Euclidean norm in Rm, m ∈ N and
the Frobenius norm in Rm×n, m,n ∈ N. We say that Ω ⊆ Rn, n ∈ N is a domain, if Ω is open,
nonempty and connected. The symbol “|.” denotes restrictions or evaluations of functions. Moreover,
we use the convention that the differential operators∇, div and D2 just on spatial variables. For some
set X and a normed space Y we define B(X,Y ) := {f : X → Y bounded}. If X,Y are normed
spaces over K, then L(X,Y ) is the set of bounded linear operators T : X → Y . Finally, we employ
the constant convention.

Let n, k ∈ N and let Ω ⊆ Rn be open and nonempty. We consider a Banach space B over K.
We use the usual notation Ck(Ω, B), Ck(Ω, B), Ckb (Ω, B), Ckb (Ω, B), Ck,γ(Ω, B) for continuous,

7



2. NOTATION AND FUNCTION SPACES

k-times continuously differentiable and Hölder-continuous functions with values in B (and variants
with bounded and/or continuously extendible functions and derivatives), see [M2], Definition 2.1 for
details. If B = K and it is obvious from the context if K = R or C, then we omit B in the notation.
Moreover, C∞0 (Ω) is the set of f ∈ C∞(Ω,R) with compact support supp f ⊆ Ω. Furthermore,
C∞0 (Ω) denotes {f |Ω : f ∈ C∞0 (Rn)}.

Let (M,A, µ) be a σ-finite, complete measure space and B be a Banach space over K = R or C.
We refer to Amann, Escher [AE], Chapter X, for the definitions and properties of (µ- or strongly-)
measurable and (Bochner-)integrable functions f : M → B, the Bochner(-Lebesgue)-Integral and
the Lebesgue-spaces Lp(M,B) for 1 ≤ p ≤ ∞.

Definition 2.1. 1. Let Ω ⊆ Rn, n ∈ N be open and nonempty. Moreover, let k ∈ N0, 1 ≤ p ≤ ∞
and B be a Banach space. Then we denote with W k,p(Ω, B) the standard Sobolev-spaces,
where W 0,p(Ω, B) := Lp(Ω, B). Finally, let Hk(Ω, B) := W k,2(Ω, B).

2. Let n ∈ N. ThenHβ(Rn) for β > 0 are the usual L2-Bessel-Potential spaces andW k+µ,p(Rn)
for k ∈ N0, µ ∈ (0, 1) and 1 ≤ p <∞ the Sobolev-Slobodeckij spaces.

If B = K and it is clear from the context if K = R or C, then we leave out B in the notation.
Concerning definitions and properties of these scalar-valued function spaces, for example embeddings,
interpolation theorems and trace results we refer to Adams, Fournier [AF], Alt [Al], Leoni [Le] and
Triebel [T1], [T2]. For transformation theorems and the behaviour on product sets consider also
[M2], Section 2.

Finally, let us introduce the needed spaces with exponential weight.

Definition 2.2. Let 1 ≤ p ≤ ∞, k ∈ N0, µ ∈ (0, 1) and β, β1, β2 ≥ 0.

1. We define and equip with canonical norms

Lp(β1,β2)(R
2
+) := {u ∈ L1

loc(R2
+) : eβ1|R|+β2Hu ∈ Lp(R2

+)},

W k,p
(β1,β2)(R

2
+) := {u ∈ L1

loc(R2
+) : Dγu ∈ Lp(β1,β2)(R

2
+) for all |γ| ≤ k}.

Occasionally, we replace W k,2 with Hk. Let Ck(β1,β2)(R2
+) := Ckb (R2

+) ∩W k,∞
(β1,β2)(R

2
+).

2. Similarly we define Lp(β)(R), Lp(β)(R+), W k,p
(β) (R), W k,p

(β) (R+), Ck(β)(R), Ck(β)(R+).

3. We fix a smooth η : R→ R such that η(R) = |R| for all |R| ≥ R and an R > 0. Then let

W k+µ,p
(β) (R) := {u ∈ L1

loc(R) : eβη(R)u ∈W k+µ,p(R)}

for 1 ≤ p <∞ with natural norm.

Many properties of these spaces are similar as for (and can be shown with) the features of the
unweighted spaces. See [M2], Lemma 2.22, for some properties, in particular the Banach space
property, equivalent norms, density assertions, embeddings and traces as well as an L2-Poincaré
inequality and a kind of reverse fundamental theorem on R+.
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3. CURVILINEAR COORDINATES

3 Curvilinear Coordinates
We consider a bounded, smooth domain Ω ⊆ R2 with outer unit normal N∂Ω. In this section we show
the existence of a curvilinear coordinate system parametrizing a neighbourhood of an appropriate
evolving curve1 in Ω with boundary contact at ∂Ω with a constant contact angle α ∈ (0, π). For a
sketch see Figure 4 above.

3.1 Requirements for the Evolving Curve
As parametrization domain for the evolving curve we choose I := [−1, 1] for simplicity. We require
that there is some X0 : I × [0, T ]→ Ω smooth such that X0(., t) is an injective immersion for all
t ∈ [0, T ]. Due to technicalities, we also consider a slightly larger open interval I0 ⊃ I and a smooth
extension of X0 to X̃0 : I0 × (−τ0, T + τ0)→ R2 for some τ0 > 0 such that X̃0(., t) is an injective
immersion for all t ∈ (−τ0, T + τ0). Finally, let Ĩ be a compact interval such that I ( Ĩ◦ and Ĩ ( I0.
The existence of such I0, τ0, X̃0 follows via compactness arguments.

Because continuous bijections of compact into Hausdorff topological spaces are homeomorphisms,
we obtain thatX0(., t) is an embedding and Γt := X0(I, t) ⊂ R2 is a smooth, compact and connected
curve with boundary for all t ∈ [0, T ]. Furthermore,

Γ :=
⋃

t∈[0,T ]
Γt × {t}

is a smooth evolving curve and

X0 := (X0, prt) : I × [0, T ]→ Γ : (s, t) 7→ (X0(s, t), t)

is a homeomorphism. Let ~n : I × [0, T ]→ R2 be a smooth normal field, i.e. ~n is smooth and ~n(., t)
represents a normal field on Γt. Because of [D], Lemma 2.40 the related normal velocity is

V (s, t) := VΓt(s) := ~n(s, t) · ∂tX0(s, t) for (s, t) ∈ I × [0, T ].

Furthermore, let H(s, t) := HΓt(s) for (s, t) ∈ I × [0, T ] be the (mean) curvature. Using the
previous definitions for X̃0 on Ĩ × [− τ0

2 , T + τ0
2 ] we obtain extensions of Γt,Γ, ~n, V and H . For the

normal we employ the same symbol ~n.
Finally, we assume (Γt)◦ ⊆ Ω and ∂Γt ⊆ ∂Ω. Then we define the contact angle of Γt with ∂Ω in

any boundary point X0(s, t), (s, t) ∈ ∂I × [0, T ] with respect to ~n(s, t) via

|](N∂Ω|X0(s,t), ~n(s, t))| ∈ (0, π),

where ](N∂Ω|X0(s,t), ~n(s, t)) is taken in (−π, π).

3.2 Existence of Curvilinear Coordinates
Let the assumptions in the last Section 3.1 hold with a constant contact angle α ∈ (0, π) for all times
t ∈ [0, T ]. We define smooth tangent and normal fields on the evolving curve Γ by

~τ(s, t) := ∂sX0(s, t)
|∂sX0(s, t)| and ~n(s, t) :=

(
0 1
−1 0

)
~τ(s, t) for all (s, t) ∈ I × [0, T ].

1 For the definition of an evolving hypersurface see Depner [D], Definition 2.31.

9



3. CURVILINEAR COORDINATES

The natural extensions to Ĩ × (−τ0, T + τ0) are denoted with the same symbols. Moreover, the
contact points are p±(t) := X0(±1, t) and we set p±(t) := (p±(t), t) for t ∈ [0, T ].

Remark 3.1. We assume |∂sX0(s, t)| = 1 for all s ∈ I \ [−1
2 ,

1
2 ] and t ∈ [0, T ]. This can be

achieved by reparametrization. More precisely, consider

B : I × [0, T ]→ I : (s, t) 7→ 2
L(t)

∫ s

−1
|∂sX0(σ, t)| dσ − 1, L(t) :=

∫ 1

−1
|∂sX0(σ, t)| dσ.

Then B is smooth and ∂sB > 0. Hence B(., t) is invertible for all t ∈ [0, T ] and the Inverse Mapping
Theorem applied to a smooth extension of (B, prt) on I × [0, T ] yields the smoothness of the inverse
in (s, t). Hence X̃0(s, t) := X0(B(., t)−1|s, t) is a parametrization with |∂sX̃0(s, t)| ≡ L(t)/2.
Then another simple transformation yields the desired reparametrization.

The above condition on ∂sX0 is only needed for the case α 6= π
2 . More precisely, we use

|∂sX0(±1, t)| = 1 in this Section 3.2 and for the asymptotic expansion of (ACα) at the contact
points, see Section 5.2.1.1. Finally, the above condition on ∂sX0 is used for the proof of the spectral
estimate for (ACα), see Section 6.

For the coordinates we choose a domain of definition that takes into account the contact angle
structure. More precisely, for δ > 0 consider the trapeze

Sδ,α :=
{

(r, s) ∈ R2 : r ∈ (−δ, δ), s ∈ [−1 + cosα
sinα r, 1−

cosα
sinα r]

}
(3.1)

with upper and lower boundary

S±δ,α :=
{
(r, s±(r)) : r ∈ (−δ, δ)

}
, where s±(r) := ±1∓ cosα

sinα r. (3.2)

For α = π
2 we have Sδ,π2 = (−δ, δ)× I and S±δ,π2

= (−δ, δ)× {±1}. For a sketch see Figure 5.

Sδ,α

S−δ,α

S+
δ,α

r = 0

s = 1

s = −1

α

α

δ

Figure 5: Sδ,α and S±δ,α.

Theorem 3.2 (Curvilinear Coordinates). Let the above requirements hold. Then there is a δ > 0
and a smooth map Sδ,α × [0, T ] 3 (r, s, t) 7→ X(r, s, t) ∈ Ω with the following features:
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3.2 EXISTENCE OF CURVILINEAR COORDINATES

1. The map X := (X, prt) is a homeomorphism onto a neighbourhood of Γ in Ω× [0, T ]. Addi-
tionally, one can extend X to a smooth diffeomorphism mapping from an open neighbourhood
of Sδ,α × [0, T ] in R3 onto an open set in R3. Moreover,

Γ(δ̃) := X(Sδ̃,α × [0, T ])

is an open neighbourhood of Γ in Ω× [0, T ] for δ̃ ∈ (0, δ].

2. It holds X|r=0 = X0 and X agrees with the usual tubular neighbourhood coordinate system
for s ∈ [−1 + µ0, 1− µ0] for some µ0 ∈ (0, 1

2) small. Moreover, for (r, s, t) ∈ Sδ,α × [0, T ]
the property X(r, s, t) ∈ ∂Ω is equivalent to (r, s) ∈ S+

δ,α ∪ S
−
δ,α.

3. Denote the inverse of X with (r, s, prt). Then

|∇r|2|Γ = 1, ∂r(|∇r|2 ◦X)|r=0 = 0 and ∇r · ∇s|Γ = 0.

Finally, we can achieve ∇s ◦X0 = ∂sX0/|∂sX0|2 and ∇r ◦X0 = ~n. In this case we have
V = −∂tr ◦X0 and H = −∆r ◦X0.

Proof. The proof is similar to the case α = π
2 which was done in [AM], Theorem 2.1. See [M1],

Section 3.2, for the details. The idea is as follows. First one shows that there are graph descriptions
of ∂Ω viewed from the tangential lines to ∂Ω at the contact points p±(t) for t ∈ [0, T ] in uniform
neighbourhoods, cf. [M1], Lemma 3.5. To use this for the definition of the curvilinear coordinate
system, one has to introduce a suitable reparametrization over the upper and lower boundary of the
trapeze, cf. [M1], Lemma 3.6. For α = π

2 this is trivial. Then the idea for the definition of X is to
extend the obtained mapping on the upper and lower boundary of the trapeze in such a way that it
coincides with the usual tubular neighbourhood coordinate system outside a neighbourhood of the
boundary and such that the claimed properties are satisfied.

Remark 3.3. 1. Let QT := Ω × (0, T ). There are unique connected Q±T ⊆ QT = Ω × [0, T ]
such that QT = Q−T ∪Q

+
T ∪ Γ (disjoint) and sign r = ±1 on Q±T ∩ Γ(δ). Additionally, let

Γ±(δ̃, µ) := X((S◦
δ̃,α
∩ {±s > 1− µ})× [0, T ]),

Γ(δ̃, µ) := Γ(δ) \ [Γ−(δ̃, µ) ∪ Γ+(δ̃, µ)] = X((−δ̃, δ̃)× (−1 + µ, 1− µ)× [0, T ])

for δ̃ ∈ (0, δ] and µ ∈ (0, 1]. For t ∈ [0, T ] fixed we define Γt(δ̃),Γ±t (δ̃, µ) and Γt(δ̃, µ) to be
the respective sets obtained by intersection with R2×{t} and then projection to R2. Here Γ(δ̃)
is as in Theorem 3.2.

2. Let δ̃ ∈ (0, δ]. For a sufficiently smooth ψ : Γ(δ̃)→ R we introduce the tangential and normal
derivative via

∇τψ := ∇s[∂s(ψ ◦X) ◦X−1] and ∂nψ := ∂r(ψ ◦X) ◦X−1
,

respectively. In the part of Γ(δ) where the coordinate system is the orthogonal one, these
definitions coincide with the ones in Abels, Liu [AL]:

∇τψ = ∇s
|∇s|

∇s
|∇s|

· ∇ψ and ∂nψ = ∇r · ∇ψ on Γ(δ̃, µ0).

11



4. MODEL PROBLEMS

This follows from ∇ψ|X = ∇r|X∂r(ψ ◦ X) + ∇s|X∂s(ψ ◦ X). For t ∈ [0, T ] fixed and
ψ : Γt(δ̃)→ R smooth enough, we define∇τψ and ∂nψ analogously. In the orthogonal region
similar identities as above hold. The same notation is used when ψ is only defined on open
subsets of Γ(δ̃) or Γt(δ̃), t ∈ [0, T ]. The same properties as before are valid in the orthogonal
parts of the coordinate system.

3. For transformation arguments later we set

J(r, s, t) := Jt(r, s) := | detD(r,s)X(r, s, t)| for (r, s, t) ∈ Sδ,α × [0, T ].

J is smooth and c ≤ J ≤ C for some c, C > 0. Moreover, from the proof of Theorem 3.2 it
follows that

Jt(r, s)−2 =
[
|∇r|2|∇s|2 − (∇r · ∇s)2

]
|X(r,s,t),

in particular Jt(0, s) = |∂sX0(s, t)| for all (s, t) ∈ I × [0, T ].

4 Model Problems

4.1 Some Scalar-valued ODE Problems on R
In this section we summarize existence and regularity results required for ODEs appearing in the
inner asymptotic expansion for (ACα), α ∈ (0, π). Here we will only need (1.1) for the potential f .

4.1.1 The ODE for the Optimal Profile

We consider the nonlinear ODE

−w′′ + f ′(w) = 0, w(0) = 0, lim
z→±∞

w(z) = ±1. (4.1)

Theorem 4.1. Let f : R → R satisfy (1.1). Then there is a unique solution θ0 ∈ C2(R) of (4.1).
Additionally, θ0 is smooth, θ′0 =

√
2(f(θ0)− f(−1)) > 0 and

Dk
z (θ0 ∓ 1)(z) = O(e−β|z|) for z → ±∞ and all k ∈ N0, β ∈

(
0,
√

min{f ′′(±1)}
)
.

Proof. This follows from the proof of Schaubeck [Sb], Lemma 2.6.1.

θ0 is known as the optimal profile. A rescaled variation will represent the typical profile of the
solutions for (ACα1)-(ACα3) from Section 1 across the diffuse interface away from the contact points,
see Section 5.1 below. If f is even, then θ0 is even, θ′0 is odd and θ′′0 even and so on. In the case of
the standard double-well potential f(u) = 1

2(1 − u2)2 depicted in Figure 1, the optimal profile is
given by θ0 = tanh, cf. Figure 6.
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4.2 NONLINEAR ELLIPTIC PROBLEM ON R2
+ AND THE LINEARIZED PROBLEM

2 2−2−2

1

−1

1

−1

θ′0(z)θ0(z)

z z

Figure 6: Typical optimal profile θ0 = tanh and the derivative θ′0.

4.1.2 The Linearized ODE

Now we consider the linear ODE obtained via linearization of (4.1) at θ′0, i.e.

−w′′ + f ′′(θ0)w = A in R, w(0) = 0. (4.2)

We have the following solvability theorem.

Theorem 4.2. 1. Let A ∈ C0
b (R). Then (4.2) has a solution w ∈ C2(R) ∩ C0

b (R) if and only
if
∫
RAθ

′
0 dz = 0. In this case w is unique. Additionally, let A(z) − A± = O(e−β|z|) for

z → ±∞ hold for a β ∈ (0,
√

min{f ′′(±1)}), then

Dl
z

[
w − A±

f ′′(±1)

]
= O(e−β|z|) for z → ±∞, l = 0, 1, 2.

2. Let U ⊆ Rd be arbitrary (e.g. a point) and A : R × U → R, A± : U → R be smooth
(i.e. locally smooth extendible) and satisfy uniformly in U :

Dk
xD

l
z

[
A(z, .)−A±

]
= O(e−β|z|) for z → ±∞, k = 0, ...,K, l = 0, ..., L,

for a β ∈ (0,
√

min{f ′′(±1)}) and K,L ∈ N0. Then w : R × U → R, where w(., x) is the
solution of (4.2) for A(., x) for all x ∈ U , is also smooth and fulfills uniformly in U

Dk
xD

l
z

[
w(z, .)− A±

f ′′(±1)

]
= O(e−β|z|) for z → ±∞,m = 0, ...,K, l = 0, ..., L+ 2.

In our case A± = 0 will be sufficient.

Proof. See [M2], Theorem 4.2 and [Sb], Lemma 2.6.2.

4.2 Nonlinear Elliptic Problem on R2
+ and the Linearized Problem

Let f : R→ R be as (1.1), α ∈ (0, π), σ̂ : R→ R and σα = cosα σ̂ be as in Definition 1.1. In the
contact point expansion for (ACα) we have to solve the following model problems:
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4. MODEL PROBLEMS

4.2.1 The Nonlinear Elliptic Problem on R2
+

Find a smooth vα : R2
+ → R such that with Aα :=

(
1 − cosα

− cosα 1

)
and θ0 as in Theorem 4.1 it

holds

−divAα∇vα + f ′(vα) = 0 for (R,H) ∈ R2
+, (4.3)

N∂R2
+
·Aα∇vα|H=0 + σ′α(vα)|H=0 = 0 for R ∈ R, (4.4)

∂kR∂
l
H [vα(R,H)− θ0(R)] = O(e−ck,l(|R|+H)) for all k, l ∈ N0. (4.5)

Here N∂R2
+

= (0,−1)>. We choose vπ
2
(R,H) = θ0(R) for all (R,H) ∈ R2

+.

Remark 4.3 (Compatibility Condition for σα). The condition (1.3) on α, σα, f can be derived as
a necessary condition for the existence of a smooth solution vα of (4.3)-(4.5).

This can be seen as follows: Let σα : R → R be smooth with2 suppσ′α ⊂ (−1, 1) and vα
sufficiently smooth solve (4.3)-(4.5), where vπ

2
:= θ0. We multiply (4.3) with ∂Rvα and get

d

dR

[1
2(∂Rvα)2 − 1

2(∂Hvα)2 − f(vα)
]

+ d

dH

[
∂Rvα∂Hvα − cosα(∂Rvα)2

]
= 0.

Integrating with respect to R over R as well as H over (0, H0) for an arbitrary H0 > 0 implies

0 =
∫
R

[∂Rvα(∂Hvα − cosα∂Rvα)]H0
H=0 dR.

By the boundary condition (4.4) it holds ∂Hvα − cosα∂Rvα|H=0 = σ′α(vα). Therefore

0 =
∫
R

[∂Rvα(∂Hvα − cosα∂Rvα)]|H0 dR−
∫
R

d

dR
[σα(vα|H=0)] dR.

Using the asymptotics in (4.5) we obtain 0 = − cosα
∫
R(θ′0)2 dR− [σα(1)− σα(−1)] by sending

H0 →∞. Hence σα has to fulfil

cosα = σα(−1)− σα(1)∫
R(θ′0)2 dR

. (4.6)

Because of Theorem 4.1 it holds∫
R

(θ′0)2 =
∫
R
θ′0

√
2(f(θ0)− f(−1)) =

∫ 1

−1

√
2(f(r)− f(−1)) dr

and therefore (4.6) is equivalent to (1.3).

4.2.2 The Linearized Elliptic Problem on R2
+

Let Aα be as in the last Section 4.2.1 and vα be a sufficiently smooth solution to (4.3)-(4.5), where
vπ

2
= θ0. The linearized problem reads as follows: For G : R2

+ → R and g : R→ R with suitable

regularity and exponential decay find a solution u : R2
+ → R with similar decay to

−divAα∇u+ f ′′(vα)u = G for (R,H) ∈ R2
+, (4.7)

N∂R2
+
·Aα∇u|H=0 + σ′′α(vα)u|H=0 = g for R ∈ R. (4.8)

2 In this remark the special form in Definition 1.1 is not needed.
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4.2 NONLINEAR ELLIPTIC PROBLEM ON R2
+ AND THE LINEARIZED PROBLEM

Remark 4.4 (Compatibility Condition for the Data). Let σα : R→ R be smooth with2 suppσ′α ⊂
(−1, 1) and vα sufficiently smooth solve (4.3)-(4.5), where vπ

2
:= θ0. There is a necessary condition

on the data G, g for a solution u of (4.7)-(4.8) to exist:

∫
R2

+

G∂Rvα +
∫
R
g∂Rvα|H=0 = 0. (4.9)

The condition can be derived by testing (4.7) with ∂Rvα, integration by parts and using (4.3)-(4.4)
for vα, see [M1], Remark 4.14 for details.

4.2.3 Solution of the Problems for α close to π
2

An energy approach for the nonlinear problem (4.3)-(4.5) is difficult because the domain R2
+ is

unbounded, the solution has non-trivial asymptotics and the energy of the expected solution is
infinite. Therefore we take the angle α close to π

2 and choose the following strategy: we treat α
as a parameter in the equations and use the functional analytic setting with exponentially weighted
Sobolev spaces in Definition 2.2. This framework allows for isomorphisms between the solution
and the data for the linear problem in the case α = π

2 , cf. [M2], Section 4.2.2, in particular [M2],
Theorem 4.8. This is because for data G ∈ L2(R2

+) = L2(R+, L
2(R)) and g ∈ L2(R) orthogonal

with respect to θ′0 in L2(R) (for a.e. H > 0) one obtains solution operators via weak solutions
and the Lax-Milgram-Theorem (and with perturbation arguments also for exponentially weighted
Sobolev spaces with small decay parameter). Here the spectral properties of the 1D-operator
L0 : H2(R) ⊆ L2(R)→ L2(R) : u 7→ [− d2

dR2 +f ′′(θ0)]u are very important. See [M1], Lemma 4.2
or [AM], Lemma 2.5 for the latter. For the remaining “parallel parts” of the data there is the explicit
solution formula [M2], (4.7), provided that the data satisfy the compatibility condition [M2], (4.5).
The setting with exponentially weighted Sobolev spaces is tailored for this explicit solution formula
since ∂H : H1

(β)(R+) → L2
(β)(R+) is an isomorphism for β > 0 with inverse v 7→ −

∫∞
. v ds,

cf. [M2], Lemma 2.22, 6.-7.
With [M2], Theorem 4.8 one can solve the nonlinear problem (4.3)-(4.5) with the Implicit Function

Theorem and the linear problem (4.7)-(4.8) with a Neumann series argument, both for α close to π
2 .

See [M1], Section 4.2.2.4, for the details and Sections 4.2.3.1-4.2.3.2 below for the results. Here a
problem to overcome is the compatibility condition [M2], (4.5). In [M1] this is dealt with in a similar
way as in the proof of Theorem 4.7 in [M2], i.e. first one subtracts suitable terms in the boundary
parts such that [M2], (4.5), is fulfilled, but in the end one shows that those terms have to be zero
for the solutions. The latter involves similar computations as in the derivations of the compatibility
conditions in Remarks 4.3-4.4. Furthermore, one also has to spend some thoughts on the regularity
parameters in the weighted Sobolev spaces m ∈ N0 that one uses for the isomorphisms in the case
α = π

2 in [M2], Theorem 4.8. More precisely, one can only apply the Implicit Function Theorem
and the Neumann series argument in such a setting for finitely many m since otherwise the possible
angles α depend on m. Moreover, m should be taken as low as possible to reduce the computations.
In [M1] this is done for the linear problem for m = 0 and m = 1 in order to have a “regularity
theory” in exponentially weighted spaces due to uniqueness. It turns out that m = 1 for the nonlinear
problem is enough to subsequently use this “regularity theory” for derivatives of vα and to rigorously
carry out computations as in Remarks 4.3-4.4. Then one uses induction arguments.
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4. MODEL PROBLEMS

4.2.3.1 The Nonlinear Problem Let v̂α := vα − θ0. Then the nonlinear equations (4.3)-(4.4) for
vα are equivalent to

Lπ
2
v̂α = (Gα, gα)(v̂α), (4.10)

where Lπ
2

:= (−∆ + f ′′(θ0(R)),−∂H |H=0) and

Gα(v) := −2 cosα∂R∂Hv − [f ′(θ0 + v)− f ′(θ0)− f ′′(θ0)v],
gα(v) := − cosα[∂Rv|H=0 + θ′0]− σ′α(θ0 + v)|H=0.

The first solution theorem for the nonlinear equations (4.3)-(4.4) for α close to π
2 is as follows.

Theorem 4.5. There are γ > 0 and β : (0, γ] → (0,∞) non-decreasing such that the following
holds. Let γ ∈ (0, γ], β ∈ (0,min{β(γ),min{

√
f ′′(±1)}}). Then there is an α = α(β, γ) > 0

such that (4.10) has a solution v̂α ∈ H3
(β,γ)(R

2
+) for α ∈ π

2 + [−α, α] which is C1 in α, v̂π
2

= 0 and
vα := θ0 + v̂α solves (4.3)-(4.4) and it holds

∫
R θ
′
0∂Rvα|H=0 dR > 0.

Proof. See [M1], Theorem 4.18. Here γ and β(.) are from the case α = π
2 , cf. [M2], Theorem 4.8

(same as [M1], Theorem 4.11).

Remark 4.6. From now on we fix γ0 ∈ (0, γ] and β0 ∈ (0,min{β(γ0
2 ),min{

√
f ′′(±1)}}). More-

over, we denote by α and v̂. the constant and the solution, respectively, obtained in Theorem 4.5
for β0, γ0. Due to the Lipschitz-continuity of v̂. : π

2 + [−α, α] → H3
(β0,γ0)(R

2
+), the identity

vα := θ0 + v̂α and the embedding H3
(β0,γ0)(R

2
+) ↪→ C1

(β0,γ0)(R2
+), by possibly shrinking α we can

assume that∫
R

(∂ρvα)2|Z dρ ∈ [3
4 ,

5
4 ]‖θ′0‖2L2(R) for Z ≥ 0 and

∫
R2

+

∂ρ∂Zvα∂ρvα d(ρ, Z) ≤ 1
4‖θ

′
0‖2L2(R).

The latter estimates are not needed in this section, but they will be important for asymptotic expansions
and spectral estimates later, see the end of Section 5.2.2.2 and Section 6.

Concerning higher regularity we have the following theorem:

Theorem 4.7. Let β0, γ0, v̂. be as in Remark 4.6. Then there is an α0 > 0 small such that v̂. :
π
2 + [−α0, α0]→ Hk

(β0,γ0)(R
2
+) is well-defined and Lipschitz-continuous for all k ∈ N0.

Proof. See [M1], Theorem 4.23.

4.2.3.2 The Linear Problem We write the linear equations (4.7)-(4.8) as

Lαu = (G, g), where Lα := Lπ
2

+Mα, (4.11)

Mαu := (2 cosα∂R∂Hu+ [f ′′(vα)− f ′′(θ0)]u, [cosα∂Ru+ σ′′α(vα)u]|H=0).

Theorem 4.8. Let β0, γ0, v̂. be as in Remark 4.6. Then there is an α0 > 0 small such that for all
α ∈ π

2 + [−α0, α0], β ∈ [0, β0], γ ∈ [γ0
2 , γ0] and k ∈ N0 it holds that

Lα : Hk+2
(β,γ)(R

2
+)→

{
(G, g) ∈ Hk

(β,γ)(R
2
+)×Hk+ 1

2
(β) (R) :

∫
R2

+

G∂Rvα +
∫
R
g∂Rvα|H=0 = 0

}
is an isomorphism and the norm of the inverse is bounded independent of α, β, γ for fixed k.

Proof. See [M1], Theorem 4.25.
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5. ASYMPTOTIC EXPANSION OF (ACα) IN 2D

5 Asymptotic Expansion of (ACα) in 2D
In this section we implement the rigorous asymptotic expansion for (ACα) in the setting of the
introduction. We build the expansion upon the curvilinear coordinates from Section 3 and the model
problems solved in Section 4 appear. Therefore we will have to restrict α to a small interval around
π
2 in order to use the results in Section 4.2.

Let Ω ⊆ R2 be as in Remark 1.2, 1. and Γ := (Γt)t∈[0,T ] be as in Section 3.1 with contact angle
α ∈ (0, π). We employ the notation from Sections 3.1-3.2. Moreover, let δ > 0 be such that
the assertions of Theorem 3.2 hold for δ replaced by 2δ. In particular (r, s) : Γ(2δ) → Sδ,α are
curvilinear coordinates that describe a neighbourhood Γ(2δ) of Γ in Ω × [0, T ]. Here Sδ,α is the
trapeze with width δ and angle α defined in (3.1). Recall that r can be viewed as a signed distance
function and s has the role of a tangential component, both with respect to an extension of Γ. See
also Figure 4 and Figure 5. Finally, let Γ evolve by (MCF). Additionally, let f fulfill (1.1) and σα
be as in Definition 1.1. We construct a smooth approximate solution uAε,α to (ACα1)-(ACα3) for α
close to π

2 with uAε,α = ±1 in Q±T \ Γ(2δ), increasingly steep “transition” from −1 to 1 for ε → 0
and such that {uAε,α = 0} converges to Γ for ε→ 0.

Roughly the idea is as follows. For the inner expansion in Section 5.1 we can use the calculations
from the case α = π

2 in [AM], Section 3.1. See also [M2], Section 5.1 for the iteration of the latter
expansion (also for N ≥ 2). This formally yields a suitable approximate solution of (ACα1) on
{(x, t) ∈ Γ(2δ) : s(x, t) ∈ I}, where I = [−1, 1]. It would not make sense to use the construction
for s ∈ Iµ := [−1− µ, 1 + µ] for some µ > 0 since then the height functions would have to satisfy a
parabolic equation on Iµ, but we want to impose boundary conditions at s = ±1 later. However, we
can use smooth extensions from I to Iµ (or R) of the inner expansion terms and the height functions
(cf. (5.1) below) obtained on I for some large µ > 0. Then also the rescaled variable (cf. (5.2) below)
from the inner expansion is well-defined close to the contact points. But we can only use the estimate
on the approximation error for the inner expansion for s ∈ I . Therefore we have to cut off in an
appropriate way. If the latter is done ε-independent, then it is difficult to set up a straight-forward
ansatz at the boundary points: For the contact point expansion it is natural to addionally rescale
z±α := −r cosα+ (1∓ s) sinα which runs in R+. Since one has to match the inner and the contact
point expansion in every ε-order, this would lead to ansatz functions in (ρ, Z, t) ∈ R2

+ × [0, T ]
having non-trivial asymptotic properties for Z →∞. However, when using Taylor expansions for
(ACα1) this behaviour is a problem, since some of the appearing polynomials will not be multiplied
with suitable decaying terms. Therefore the idea is to cut-off the inner expansion with appropriate
functions depending on the ε-scaled variables. The contact point expansion is done in Section 5.2
and leads to the model problems on R2

+ we considered in Section 4.2. In order to use these results we
will have to restrict to α ∈ π

2 + [−α0, α0], where α0 > 0 is determined in Remark 5.5 below. The
compatibility condition (4.9) will yield the boundary conditions for the height functions at s = ±1.
Altogether for α ∈ π

2 + [−α0, α0] we obtain a suitable approximate solution uAε,α to (ACα1)-(ACα3),
see Section 5.3 below.

Let M ∈ N with M ≥ 2. For j = 1, ...,M we introduce height functions

hj,α : Iµ × [0, T ]→ R and hε,α :=
M∑
j=1

εj−1hj,α (5.1)

for some µ > 0, where Iµ := [−1 − µ, 1 + µ]. Furthermore, we set hM+1,α := hM+2,α := 0 and

17



5. ASYMPTOTIC EXPANSION OF (ACα) IN 2D

analogously to the case α = π
2 in [AM]

ρε,α(x, t) := r(x, t)
ε
− hε,α(s(x, t), t) for (x, t) ∈ Γ(2δ). (5.2)

If µ > 0 is large enough, the latter is well-defined.

5.1 Inner Expansion of (ACα) in 2D
For the inner expansion we consider the same ansatz as in [AM], Section 3.1, and [M2], Section 5.1
for N = 2. Let ε > 0 be small and

uIε,α :=
M+1∑
j=0

εjuIj,α, uIj,α|(x,t) := ûIj,α(ρε,α|(x,t), s|(x,t), t) in {(x, t) ∈ Γ(2δ) : s|(x,t) ∈ I},

where ûIj,α : R× I × [0, T ]→ R : (ρ, s, t) 7→ ûIj,α(ρ, s, t) for j = 0, ...,M + 1. Moreover, we set
uIM+2,α := 0 and ûIε,α :=

∑M+1
j=0 εj ûIj,α. We use the following notation:

Definition 5.1 (Notation for Inner Expansion of (ACα) in 2D). 1. We name (θ0, u
I
1,α) the zero-

th inner order and (hj,α, uIj+1,α) the j-th inner order for j = 1, ...,M .

2. Let k ∈ {−1, ...,M + 2} and β > 0. Then let RIk,(β),α be the set of smooth functions
R : R× I × [0, T ]→ R that depend just on the j-th inner orders for 0 ≤ j ≤ min{k,M} and
fulfill uniformly in (ρ, s, t):

|∂iρ∂ls∂nt R(ρ, s, t)| = O(e−β|ρ|) for all i, l, n ∈ N0.

Finally, we analogously define R̂Ik,(β),α with functions R : R× [0, T ]→ R.

We expand (ACα1) for uε,α = uIε,α in the same way as in [M2], Section 5.1.1 (for N = 2 there).
This leads to

ûI0,α(ρ, s, t) = θ0(ρ) and ûI1,α(ρ, s, t) = 0, (5.3)

cf. [M2], Section 5.1.1.1-5.1.1.2. Moreover, from [M2], Sections 5.1.1.3-5.1.1.4 we obtain: In-
ductively, if for k = 0, ...,M − 1 the j-th inner order for j = 0, ..., k is known, smooth and
ûIj+1,α ∈ RIj,(β),α for every β ∈ (0,min{

√
f ′′(±1)}), then there is an equation for hk+1,α:

∂thk+1,α − |∇s|2|X0(s,t)∂
2
shk+1,α + a1∂shk+1,α + a0hk+1,α = fk,α in I × [0, T ], (5.4)

where fk,α : I × [0, T ]→ R is a smooth function that can be explicitly computed from the j-th inner
orders for 0 ≤ j ≤ k and a0, a1 are smooth and can be computed from the coordinates. If hk+1,α is
smooth and solves (5.4), then we obtain ûIk+2,α as the solution of

−L0û
I
k+2,α(ρ, s, t) = Rk+1,α(ρ, s, t) for (ρ, s, t) ∈ R× I × [0, T ], (5.5)

where L0 := −∂2
ρ + f ′′(θ0) and Rk+1,α ∈ RIk+1,(β),α can be explicitly computed from hk+1,α and

the j-th inner orders for j = 0, ..., k. Here (5.4) is equivalent to the compatibility condition for (5.5)
and Theorem 4.2 yields the solution ûIk+2,α ∈ RIk+1,(β),α for all β ∈ (0,min{

√
f ′′(±1)}).

18



5.2 CONTACT POINT EXPANSION OF (ACα) IN 2D

Remark 5.2. If f is even, then it holds f0,α = 0. This follows from [M2], Remark 5.5.

Lemma 5.3. If for k = 0, ...,M the k-th inner orders are known, smooth, ûIk+1 ∈ RIk,(β),α for some
β > 0 and the equations (5.3)-(5.5) hold, then for some c, C > 0 we have∣∣∣∣∂tuIε,α −∆uIε,α + 1

ε2 f
′(uIε,α)

∣∣∣∣ ≤ C(εMe−c|ρε,α| + εM+1) in {(x, t) ∈ Γ(2δ) : s|(x,t) ∈ I}.

Proof. This follows from the expansions and remainder estimates in [M2], Sections 5.1.1.1-5.1.1.4.

5.2 Contact Point Expansion of (ACα) in 2D
For the contact point expansion we define s± := 1∓ s,

z±α := −r cosα+ s± sinα and Z±ε,α := z±α
ε

on Γ(2δ). (5.6)

See also Figure 7 below. Note that

s = ±1∓ s± and s± = ε
1

sinα
[
Z±ε,α + (ρε,α + hε,α) cosα

]
. (5.7)

This identity will be used later to expand s-dependent terms and it motivates us (see Remark 5.4
below) to define the following cut-off function for uIε,α: Let χ̂ : R→ [0, 1] be smooth with χ̂(y) = 0
for y ≤ 1 and χ̂(y) = 1 for y ≥ 2. Then we set for some constant H0 ≥ 0

χ̂α(ρ, Z) := χ̂(Z) χ̂
( 1

sinα [Z + ρ cosα−H0]
)

for all (ρ, Z) ∈ R2
+, (5.8)

χα(x, t) := χ̂α(ρε,α(x, t), Z±ε,α(x, t)) for all (x, t) ∈ Γ(2δ, 1). (5.9)

See Figure 7 below for a sketch.

Sδ,α

s = −1

α

z−α
s

r

χ̂α(ρε,α, Z−ε,α) = 0

χ̂α(ρε,α, Z−ε,α) = 1 Sδ,α

∼ ε
∼ ε

ρ

Z

χ̂α = 0

χ̂α = 1

s = −1

α

z−α

s

1
cosα

sinα
H0 + sinα

1

Figure 7: Coordinates and cut-off χ̂α.

For the contact point expansion we make the ansatz

uε,α = χαu
I
ε,α + uC±ε,α in Γ(2δ)
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5. ASYMPTOTIC EXPANSION OF (ACα) IN 2D

close to the contact points p±(t), t ∈ [0, T ]. Here we define uC±ε,α :=
∑M
j=1 ε

juC±j,α and

uC±j,α (x, t) := ûC±j,α (ρε,α(x, t), Z±ε,α(x, t), t)

for (x, t) ∈ Γ(2δ), where

ûC±j,α : R2
+ × [0, T ]→ R : (ρ, Z, t) 7→ ûC±j,α (ρ, Z, t) for j = 1, ...,M.

Moreover, we set ûC±ε,α :=
∑M
j=1 ε

j ûC±j,α and uC±M+1,α := 0.

Remark 5.4. 1. Note that χ̂(Z±ε,α) is zero on Γ(2δ) close to ∂QT . Therefore there will be no
contribution of uIε,α in the expansion of the boundary condition (ACα2). Nevertheless, this is
just for aesthetic reasons. However, the second factor of χ̂α in (5.8) is crucial. Namely, if h1,α
is known independently of χα, then we can take H0 := 2‖h1,α‖∞. Then due to (5.7) it holds:

1
sinα [Z±ε,α + ρε,α cosα−H0] ≥ 1 ⇒ s±

ε
≥ 1 + 1

sinα [cosαhε,α +H0] ≥ 0 in Γ(2δ)

if ε > 0 is small depending on ‖h2,α‖∞, ..., ‖hM,α‖∞ and α. This is important since then
values of uIε,α are only used in the set {(x, t) ∈ Γ(2δ) : s|(x,t) ∈ I} on which we know that
uIε,α has appropriate decay and is (at the moment formally) a suitable approximate solution of
(ACα1), cf. Lemma 5.3.

2. The ε-scaled cut-off function χ̂(Z)χ̂(s±/ε) should also work, but there are even more terms
that have to be expanded.

To get an idea for the expansion of (ACα1) for uε,α = χαu
I
ε,α + uC±ε,α in Γ(2δ), we rewrite

0 = (∂t −∆)
[
χαu

I
ε,α + uC±ε,α

]
+ 1
ε2 f

′(χαuIε,α + uC±ε,α ) (5.10)

= uIε,α(∂t −∆)χα + 2∇(uIε,α) · ∇(χα) + χα

[
(∂t −∆)uIε,α + 1

ε2 f
′(uIε,α)

]
(5.11)

+ (∂t −∆)uC±ε,α + 1
ε2

[
f ′(χαuIε,α + uC±ε,α )− χαf ′(uIε,α)

]
. (5.12)

Due to Remark 5.4, 1. and Lemma 5.3 it will be possible to control the last term in (5.11) rigorously
in the end. Hence this term can be left out in the expansion of (5.10). Moreover, the lowest order will
be important. Therefore we set

wC±α := χαu
I
0,α + uC±0,α and ŵC±α (ρ, Z, t) := χ̂α(ρ, Z)θ0(ρ) + ûC±0,α (ρ, Z, t),

ũIε,α := uIε,α − uI0,α, ũC±ε,α := uC±ε,α − uC±0,α as well as ˆ̃uC±ε,α := ûC±ε,α − ûC±0,α . Then we rewrite
(5.10)-(5.12) without the last term in (5.11) as follows:

0 = (∂t −∆)[wC±α + ũC±ε,α ]− χα(∂t −∆)uI0,α + ũIε,α(∂t −∆)χα

+ 2∇(ũIε,α) · ∇(χα) + 1
ε2

[
f ′(wC±α + χαũ

I
ε,α + ũC±ε,α )− χαf ′(uIε,α)

]
.

(5.13)

We will expand the “bulk equation” (5.13) in Γ(2δ) into ε-series with coefficients in (ρε,α, Z±ε,α, t)
up to O(εM−2) and the nonlinear Robin boundary condition (ACα2) for uε,α = χαu

I
ε,α + uC±ε,α on
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5.2 CONTACT POINT EXPANSION OF (ACα) IN 2D

∂QT ∩ Γ(2δ) into ε-series with coefficients in (ρε,α, t) up to O(εM−1). Note that in order to yield a
suitable approximate solution, the contact point expansion has to match the inner expansion. To this
end we aim for

∂iρ∂
l
H∂

n
t [ŵC±α (ρ,H, t)− θ0(ρ)] = O(e−(β|ρ|+γH)), (5.14)

∂iρ∂
l
H∂

n
t û

C±
j,α (ρ,H, t) = O(e−(β|ρ|+γH)) (5.15)

for j = 1, ...,M and all i, l, n ∈ N0, for some β, γ > 0 possibly depending on j, i, l, n. Later we
will use arbitrary β ∈ [0, β0) and γ ∈ [γ0

2 , γ0), where β0, γ0 are specified as follows:

Remark 5.5 (Decay Parameters β0,γ0, Angle α0, Lowest Order vα). We choose β0, γ0 > 0 as in
Remark 4.6 and such that the inequality

β0 + γ0 ≤ min{
√
f ′′(±1)} (5.16)

holds. For these β0, γ0 we can use all the assertions in Section 4.2. Hence we obtain an α0 > 0
small and a solution vα of (4.3)-(4.4) for all α ∈ π

2 + [−α0, α0] such that vα = θ0 + v̂α and
v̂. : π

2 + [−α0, α0] → Hk
(β0,γ0)(R

2
+) is Lipschitz-continuous for all k ∈ N0. Moreover, due to

Theorem 4.8 the linearized problem (4.7)-(4.8) can be solved in Sobolev spaces with exponential
weight with decay parameters β ∈ [0, β0], γ ∈ [γ0

2 , γ0]. Note that every choice in this remark is
independent of Ω and Γ.

The successive requirement that the coefficients in the expansions disappear will yield equations
on R2

+ of the type as in Subsection 4.2. It will turn out that for ŵC±α = vα the lowest order vanishes.
The solvability condition (4.9) for the linear problems in the higher orders will yield the boundary
conditions at s = ±1 for the height functions hj,α.

For the expansion we compute in the following lemma how the differential operators act on
(ρε,α, Z±ε,α, t)-dependent terms like uC±ε,α , χα or χαuI0,α.

Lemma 5.6. Let R2
+ × [0, T ] 3 (ρ, Z, t) 7→ ŵ(ρ, Z, t) ∈ R be smooth enough and define w :

Γ(2δ)→ R via w(x, t) := ŵ(ρε,α(x, t), Z±ε,α(x, t), t) for all (x, t) ∈ Γ(2δ). Then

∂tw = ∂ρŵ

[
∂tr

ε
− (∂thε,α + ∂ts∂shε,α)

]
+ ∂Zŵ

∂tz
±
α

ε
+ ∂tŵ,

∇w = ∂ρŵ

[∇r
ε
−∇s∂shε,α

]
+ ∂Zŵ

∇z±α
ε

,

∆w = ∂ρŵ

[∆r
ε
− (∆s∂shε,α + |∇s|2∂2

shε,α)
]

+ ∂Zŵ
∆z±α
ε

+ ∂2
Zŵ
|∇z±α |2

ε2

+ 2∂ρ∂Zŵ
∇z±α
ε
·
[∇r
ε
−∇s∂shε,α

]
+ ∂2

ρŵ

∣∣∣∣∇rε −∇s∂shε,α
∣∣∣∣2 ,

where the w-terms and the derivatives of r or s are evaluated at (x, t), the hε,α-expressions at
(s(x, t), t) and the ŵ-terms at (ρε,α(x, t), Z±ε,α(x, t), t).

Proof. This follows from the chain rule.

Similar as in the case α = π
2 in [M2] we use the following notation for the higher orders:

Definition 5.7 (Notation for Contact Point Expansion of (ACα) in 2D).
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5. ASYMPTOTIC EXPANSION OF (ACα) IN 2D

1. We refer to the functions (θ0, u
I
1,α, w

C±
α ) as the zero-th order and (hj,α, uIj+1,α, u

C±
j,α ) as the

j-th order, where j = 1, ...,M .

2. Let k ∈ {−1, ...,M + 2}. We write PCk,α(ρ, Z) for the set of polynomials in (ρ, Z) with
smooth coefficients in t ∈ [0, T ] depending only on the hj,α for 1 ≤ j ≤ min{k,M}. In the
analogous way we introduce PCk,α(ρ) and PCk,α(Z) with ρ and Z instead of (ρ, Z), respectively.

3. Let k ∈ {−1, ...,M + 2} and β, γ > 0. Let RCk,(β,γ),α be the set of smooth functions

R : R2
+ × [0, T ]→ R that depend only on the j-th orders for 0 ≤ j ≤ min{k,M} and such

that uniformly in (ρ, Z, t):

|∂iρ∂lZ∂nt R(ρ, Z, t)| = O(e−(β|ρ|+γZ)) for all i, l, n ∈ N0.

Similarly we define the set RCk,(β),α without the Z-dependence.

5.2.1 Contact Point Expansion: The Bulk Equation

We rewrite (5.13) in Γ(2δ) with Lemma 5.6 as follows:

0 = (∂ρŵC±α − χ̂αθ′0)
[
∂tr −∆r

ε
− (∂thε,α + |∇s|2∂2

shε,α + (∂ts−∆s)∂shε,α)
]

+ ∂Zŵ
C±
α

(∂t −∆)z±α
ε

+ ∂tŵ
C±
α − ∂2

Zŵ
C±
α

|∇z±α |2

ε2

− 2∂ρ∂ZŵC±α
∇z±α
ε
·
[∇r
ε
−∇s∂shε,α

]
− (∂2

ρŵ
C±
α − χ̂αθ′′0)

∣∣∣∣∇rε −∇s∂shε,α
∣∣∣∣2

+ (∂t −∆)ũC±ε,α + ũIε,α(∂t −∆)χα + 2∇(ũIε,α) · ∇(χα)

+ 1
ε2

[
f ′(wC±α + χαũ

I
ε,α + ũC±ε,α )− χαf ′(uIε,α)

]
,

(5.17)

where we use the conventions for evaluations as in Lemma 5.6. Later we will choose ŵC±α = vα
such that the lowest order in the ε-expansion vanishes, where vα is from Remark 5.5. In (5.17) one
can observe that the θ0-contributions are crucial for the asymptotics as Z →∞ in the ε-expansion,
since we want exponentially decaying terms in the expansion at each order.

In the following we specify how all the terms in (5.17) are expanded into ε-series. For the f ′-parts:
provided that uIj,α, u

C±
j,α are bounded, Taylor expansions imply on Γ(2δ)

f ′(wC±α + χαũ
I
ε,α + ũC±ε,α )

=f ′(wC±α ) +
M+2∑
k=1

1
k!f

(k+1)(wC±α )

M+1∑
j=1

εj(χαuIj,α + uC±j,α )

k +O(εM+3), (5.18)

as well as on {(x, t) ∈ Γ(2δ) : s|(x,t) ∈ I}

f ′(uIε,α) = f ′(θ0) +
M+2∑
k=1

1
k!f

(k+1)(θ0)

M+1∑
j=2

εjuIj,α

k +O(εM+3), (5.19)
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5.2 CONTACT POINT EXPANSION OF (ACα) IN 2D

where uI1,α = 0 due to (5.3). Therefore the terms for f ′(wC±α + χαũ
I
ε,α + ũC±ε,α )− χαf ′(uIε,α) in the

asymptotic expansion are for k = 2, ...,M + 2:

O(1) : f ′(wC±α )− χαf ′(θ0),
O(ε) : f ′′(wC±α )uC±1,α + χα[f ′′(wC±α )− f ′′(θ0)]uI1,α = f ′′(wC±α )uC±1,α ,

O(εk) : f ′′(wC±α )uC±k,α + [a polynomial in (χαuI1,α, ..., χαuIk−1,α, u
C±
1,α , ..., u

C±
k−1,α)

of order ≤ k, where the coefficients are multiples of

f (3)(wC±α ), ..., f (k+1)(wC±α ) and every term has a uC±j,α -factor]

+ [a polynomial in (uI1,α, ..., uIk,α) of order ≤ k, where the

coefficients are multiples of χlαf
(l+1)(wC±α )− χαf (l+1)(θ0),

l = 1, ..., k + 1, and every term has a uIj,α-factor].

The remaining explicit terms in f ′(wC±α + χαũ
I
ε,α + ũC±ε,α )− χαf ′(uIε,α) are of order O(εM+3).

Additionally, we expand terms in (5.17)-(5.19) depending (s, t) or (ρ, s, t), namely the hj,α-terms
and the uIj,α-terms, respectively. Such terms also appear because of the product rule (cf. Lemma
5.6 and [AM], Lemma 3.1) for χα, ũIε,α, ũ

C±
ε,α . To this end let g1 : Iµ × [0, T ] → R or g1 :

R× Iµ × [0, T ]→ R be smooth with bounded derivatives in s. A Taylor expansion yields

g1|s = g1|s=±1 +
M+2∑
k=1

∂ks g1|s=±1
k! (s∓ 1)k +O(|s∓ 1|M+3) (5.20)

with a uniform remainder. Then because of (5.7) we replace

s∓ 1 = ∓ε 1
sinα [Z + (ρ+ hε,α(s, t)) cosα] . (5.21)

In particular |s∓ 1| = εO(1 + |ρ|+ Z), if the hj,α are bounded. On the right hand side in (5.21) we
again have the s-dependent term hε,α, but the ε-order has increased by one. If the hj,α are sufficiently
regular, then we can use (5.20)-(5.21) for the hε,α-term inductively. The latter is needed only finitely
many times and yields an expansion of g1 into an ε-series with coefficients in (ρ, Z, t) up toO(εM+2).
The terms are for k = 1, ...,M + 2:

O(1) : g1|s=±1,

O(εk) : [a polynomial in (ρ, Z, ∂lshj,α|(±1,t)), l = 0, ..., k − 1, j = 1, ..., k of order ≤ k,
where the coefficients are multiples of ∂lsg1|s=±1, l = 1, ..., k].

Finally, the remainder in the expansion of g1 is of order εM+3O((1 + |ρ|+ Z)M+3). The latter will
be multiplied with decaying terms later and becomes O(εM+3).

Furthermore, we have to expand terms in (5.17) depending on (x, t) that appear after applying
Lemma 5.6 and [AM], Lemma 3.1, more precisely the derivatives of r, s and z±α . To this end let
g2 : Γ(2δ)→ R be smooth. Then a Taylor expansion yields uniformly in (r, s, t) ∈ Sδ,α × [0, T ]

g̃2(r, s, t) := g2(X(r, s, t)) =
M+2∑
j+k=0

∂jr∂
k
s g̃2|(0,±1,t)
j! k! rj(s∓ 1)k +O(|(r, s∓ 1)|M+3). (5.22)
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5. ASYMPTOTIC EXPANSION OF (ACα) IN 2D

We substitute r by ε(ρ+ hε,α(s, t)) and s∓ 1 by (5.21). For the appearing s-dependent term hε,α we
use the expansion for g1 above. Hence we obtain an expansion of g2 into ε-series with coefficients in
(ρ, Z, t) up to O(εM+2). The terms in the expansion are for k = 1, ...,M + 2:

O(1) : g2|p±(t),

O(ε) : ∂rg̃2|(0,±1,t)(ρ+ h1,α|(±1,t))∓ ∂sg̃2|(0,±1,t)
1

sinα
[
Z + (ρ+ h1,α|(±1,t)) cosα

]
,

O(εk) : hk,α|(±1,t)

[
∂rg̃2|(0,±1,t) ∓

cosα
sinα∂sg̃2|(0,±1,t)

]
+[a polynomial in (ρ, Z, ∂lshj,α|(±1,t)), l = 0, ..., k − 1, j = 1, ..., k − 1 of order ≤ k,

where the coefficients are multiples of ∂l1r ∂
l2
s g̃2|(0,±1,t), l1, l2 ∈ N0, l1 + l2 ≤ k].

Here in contrast to the case α = π
2 in [M2], Section 5.1.2 we need theO(ε) explicitly. The remainder

in the expansion for g2 is εM+3O((1+ |ρ|+Z)M+3). The latter will be multiplied with exponentially
decaying terms later and becomes O(εM+3).

Now we expand (5.17) with the above identities into ε-series with coefficients in (ρε,α, Z±ε,α, t).

5.2.1.1 Bulk Equation: O(ε−2) The lowest order O( 1
ε2 ) in (5.17) vanishes if

0 = −∂2
Zŵ

C±
α |∇z±α |2|p±(t) − 2∂Z∂ρŵC±α ∇z±α · ∇r|p±(t) − (∂2

ρŵ
C±
α − χ̂αθ′′0)|∇r|2|p±(t)

+ f ′(ŵC±α )− χ̂αf ′(θ0).

Now we use that due to Remark 3.1 and Theorem 3.2 it holds |∇r|2|p±(t) = |∇s|2|p±(t) = 1 as
well as ∇r · ∇s|p±(t) = 0. Therefore with the definition (5.6) we obtain |∇z±α |2|p±(t) = 1 and
∇z±α · ∇r|p±(t) = − cosα. Hence because of θ′′0 = f ′(θ0) the lowest order becomes

[−∂2
Z + 2 cosα∂Z∂ρ − ∂2

ρ ]ŵC±α + f ′(ŵC±α ) = 0 for (ρ, Z, t) ∈ R2
+ × [0, T ]. (5.23)

5.2.1.2 Bulk Equation: O(ε−1) The next order O(1
ε ) in (5.17) cancels if we require[

−∂2
Z +2 cosα∂Z∂ρ − ∂2

ρ + f ′′(ŵC±α )
]
ûC±1,α = GC±1,α , (5.24)

GC±1,α (ρ, Z, t) :=−
[
∂ρŵ

C±
α − χ̂αθ′0

]
(∂tr −∆r)|p±(t) − ∂Zŵ

C±
α (∂tz±α −∆z±α )|p±(t)

− 2∂ρ∂ZŵC±α (∇z±α · ∇s)|p±(t)∂sh1,α|(±1,t)

−
[
∂2
ρŵ

C±
α − χ̂αθ′′0

]
2(∇r · ∇s)|p±(t)∂sh1,α|(±1,t)

+ ∂2
Zŵ

C±
α

[
∂r(|∇z±α |2 ◦X)|(0,±1,t)(ρ+ h1,α|(±1,t))

∓∂s(|∇z±α |2 ◦X)|(0,±1,t)
1

sinα [Z + (ρ+ h1,α|(±1,t)) cosα]
]

+ 2∂ρ∂ZŵC±α
[
∂r((∇z±α · ∇r) ◦X)|(0,±1,t)(ρ+ h1,α|(±1,t))

∓∂s((∇z±α · ∇r) ◦X)|(0,±1,t)
1

sinα [Z + (ρ+ h1,α|(±1,t)) cosα]
]

+
[
∂2
ρŵ

C±
α − χ̂αθ′′0

] [
∂r(|∇r|2 ◦X)|(0,±1,t)(ρ+ h1,α|(±1,t))
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∓∂s(|∇r|2 ◦X)|(0,±1,t)
1

sinα [Z + (ρ+ h1,α|(±1,t)) cosα]
]
.

Because of Remark 3.1 and Theorem 3.2 it follows that (∂tr −∆r)|p±(t) = (∇r · ∇s)|p±(t) = 0,
(∇z±α · ∇s)|p±(t) = ∓ sinα and ∂r(|∇r|2 ◦X)|(0,±1,t) = ∂s(|∇r|2 ◦X)|(0,±1,t) = 0. Therefore

GC±1,α (ρ, Z, t) =− ∂ZŵC±α (∂tz±α −∆z±α )|p±(t) ± 2 sinα∂ρ∂ZŵC±α ∂sh1,α|(±1,t)

+ ∂2
Zŵ

C±
α

[
∂r(|∇z±α |2 ◦X)|(0,±1,t)(ρ+ h1,α|(±1,t))

∓∂s(|∇z±α |2 ◦X)|(0,±1,t)
1

sinα [Z + (ρ+ h1,α|(±1,t)) cosα]
]

+ 2∂ρ∂ZŵC±α
[
∂r((∇z±α · ∇r) ◦X)|(0,±1,t)(ρ+ h1,α|(±1,t))

∓∂s((∇z±α · ∇r) ◦X)|(0,±1,t)
1

sinα [Z + (ρ+ h1,α|(±1,t)) cosα]
]
.

In particular GC±1,α is independent of χ̂α. This is important in order to choose H0 and hence χ̂α
independently, see Remark 5.4, 1. For later use, we collect the h1,α-terms and write

GC±1,α (ρ, Z, t) = ±2 sinα∂ρ∂ZŵC±α ∂sh1,α|(±1,t)

+ 2∂ρ∂ZŵC±α
[
∂r((∇z±α · ∇r) ◦X)|(0,±1,t) ∓

cosα
sinα∂s((∇z

±
α · ∇r) ◦X)|(0,±1,t)

]
h1,α|(±1,t)

+ ∂2
Zŵ

C±
α

[
∂r(|∇z±α |2 ◦X)|(0,±1,t) ∓

cosα
sinα∂s(|∇z

±
α |2 ◦X)|(0,±1,t)

]
h1,α|(±1,t) + G̃C±0,α ,

where G̃C±0,α ∈ RC0,(β,γ),α for all β ∈ [0, β0), γ ∈ [γ0
2 , γ0) provided that ŵC±α − θ0 ∈ RC0,(β,γ),α for

all these β, γ. The latter corresponds to the matching condition (5.14).

5.2.1.3 Bulk Equation: O(εk−1) For k = 1, ...,M − 1 we considerO(εk−1) in (5.17) and derive
an equation for ûC±k+1,α. Therefore suppose that the j-th order is constructed for all j = 0, ..., k,
that it is smooth and that H0 in χ̂α is known. Additionally, let ûIj+1,α ∈ RIj,(β1),α for all β1 ∈
(0,min{

√
f ′′(±1)}) and j = 0, ..., k. Note that in contrast to the case α = π

2 in [M2], Section
5.1.2.1.2 the decay is used at this point. Namely, with the inequality (5.16) for the decay parameters
β0, γ0 and the decay for the ûIi,α it will be possible to control the contributions of ∂lρŵ

C±
α − χ̂α∂lρθ0,

l = 1, 2 and the new types of terms in the expansion of the f ′-parts, cf. (5.18)-(5.19). Finally, we
assume that ŵC±α −θ0 ∈ RC0,(β,γ),α as well as ûC±j,α ∈ RCj,(β,γ),α for all j = 1, ..., k and all β ∈ [0, β0),
γ ∈ [γ0

2 , γ0). The latter corresponds to the matching conditions (5.14)-(5.15).
Then with the notation from Definition 5.7 it follows for all those (β, γ):

For j = 1, ..., k + 1 : [O(εj) in [(5.18)− χα · (5.19)]] ∈ f ′′(ŵC±α )ûC±j,α +RCj−1,(β,γ),α,

For i, j = 1, ..., k : [O(εj) in (5.20) for g1 = g1(hi)] ∈ PCmax{i,j},α(ρ, Z).

Moreover, for j = 1, ..., k + 1 we obtain

[O(εj) in (5.22)] ∈ hj,α|(±1,t)

[
∂rg̃2|(0,±1,t) ∓

cosα
sinα∂sg̃2|(0,±1,t)

]
+ PCj−1,α(ρ, Z).
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All those identities can be verified with the remarks accompanying (5.18)-(5.22). The only con-
tributions that are not straight-forward are the (finitely many) terms appearing in the expansion
of the f ′-parts that are of type χlαf

(l+1)(wC±α ) − χαf
(l+1)(θ0), l ∈ {1, ..., j + 1} times a term

in R̂Ij−1,(β1),α for all β1 ∈ (0,min{f ′′(±1)}) times some polynomial in PCj−1,α(ρ, Z). The latter
appear due to the order O(εi) in the expansion of uIn,α, where i ∈ {0, ..., j − 1} and n ∈ {1, ..., j}.
We have to show that such terms are contained in RCj−1,(β,γ),α for all β ∈ [0, β0), γ ∈ [γ0

2 , γ0). On
the set {χ̂α = 0} there is nothing to prove. Moreover, on {χ̂α = 1} we can use uniform continuity
for f ′-derivatives on compact sets and that ŵC±α − θ0 ∈ RC0,(β,γ),α for all (β, γ) as above to obtain
the desired estimate. Finally, for the decay on the set Ξ := {χ̂α ∈ (0, 1)} we use Z ≤ |ρ| for all
(ρ, Z) ∈ Ξ with |ρ| + Z ≥ R, where R is large depending on α,H0. See also Figure 7. Then it
follows that β|ρ| + γZ ≤ (β + γ)|ρ| ≤ β1|ρ| for all those (ρ, Z) and all β + γ ≤ β1. Due to the
inequality β0 + γ0 ≤ min{f ′′(±1)} we obtain the claimed inclusion.

Now we compute O(εk−1) for k = 1, ...,M − 1 in (5.17). Let (β, γ) be as above and arbitrary.
The f ′-part yields a term in f ′′(ŵC±α )ûC±k+1,α +RCk,(β,γ),α. Moreover, note that

∂lρŵ
C±
α − χ̂αθ(l)

0 ∈ ∂
l
ρŵ

C±
α − θ(l)

0 +RC0,(β,γ),α ⊆ R
C
0,(β,γ),α (5.25)

for all l ∈ N and all β, γ as above. The first inclusion can be shown with the decay of θ(l)
0 from

Theorem 4.1 and analogous arguments as before since for (ρ, Z) ∈ {χ̂α ∈ [0, 1)} it holds Z ≤ |ρ| if
|ρ|+Z is large. The second inclusion follows from ŵC±α −θ0 ∈ RC0,(β,γ),α. Therefore the contribution
at order O(εk−1) from the first line in (5.17) is contained in

(∂ρŵC±α − χ̂αθ′0)

PCk,α(ρ, Z) +
k−1∑
j=0

PCj,α(ρ, Z)PCk−1,α(ρ, Z)

 ⊆ RCk,(β,γ),α.

Analogously it follows that the ∂ZŵC±α -part yields an element of RCk,(β,γ),α. Moreover, the term
∂tŵ

C±
α ∈ RC0,(β,γ),α only contributes to O(1). Furthermore, the ∂2

Zŵ
C±
α -part gives an element of

− ∂2
Zŵ

C±
α

[
hk+1,α|(±1,t)

(
∂r(|∇z±α |2 ◦X)|(0,±1,t) ∓

cosα
sinα∂s(|∇z

±
α |2 ◦X)|(0,±1,t)

)]
+ ∂2

Zŵ
C±
α PCk,α(ρ, Z),

where the last term is contained in RCk,(β,γ),α. Similarly, the ∂ρ∂ZŵC±α -part yields a term in

RCk,(β,γ),α − 2∂ρ∂ZŵC±α
[
± sinα∂shk+1,α|(±1,t)

+hk+1,α|(±1,t)

(
∂r((∇z±α · ∇r) ◦X)|(0,±1,t) ∓

cosα
sinα∂s((∇z

±
α · ∇r) ◦X)|(0,±1,t)

)]
.

Due to (5.25) and since ∇r · ∇s|p±(t) = ∂r(|∇r|2 ◦X)|(0,±1,t) = ∂s(|∇r|2 ◦X)|(0,±1,t) = 0, we
get in an analogous way that the contribution at order O(εk−1) from the (∂2

ρŵ
C±
α − χ̂αθ′′0)-term in

(5.17) is an element of RCk,(β,γ),α. Moreover, the term (∂t −∆)ũC±ε,α yields a contribution in

[
−∂2

Z + 2 cosα∂ρ∂Z − ∂2
ρ

]
ûC±k+1,α +RCk,(β,γ),α.
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For ũIε,α(∂t−∆)χα we use uI1,α = 0, the decay of ûIj,α and that Z ≤ |ρ| on {χ̂α ∈ (0, 1)} if |ρ|+Z
is large. With the latter we obtain as above the decay of the products of the inner expansion terms
with derivatives of χ̂α. Therefore we get a term in RCk,(β,γ),α, where we note that ûIj,α counts to order
j − 1. Finally, with the same ideas we obtain that 2∇(ũIε,α) · ∇(χα) also yields a contribution in
RCk,(β,γ),α.

Altogether the O(εk−1)-order in the expansion for the bulk equation (5.17) is zero if[
−∂2

Z + 2 cosα∂Z∂ρ − ∂2
ρ + f ′′(ŵC±α )

]
ûC±k+1,α = GC±k+1,α, (5.26)

GC±k+1,α := 2∂ρ∂ZŵC±α
[
± sinα∂shk+1,α|(±1,t)

+hk+1,α|(±1,t)

(
∂r((∇z±α · ∇r) ◦X)|(0,±1,t) ∓

cosα
sinα∂s((∇z

±
α · ∇r) ◦X)|(0,±1,t)

)]
+∂2

Zŵ
C±
α hk+1,α|(±1,t)

[
∂r(|∇z±α |2 ◦X)|(0,±1,t) ∓

cosα
sinα∂s(|∇z

±
α |2 ◦X)|(0,±1,t)

]
+ G̃C±k,α ,

where G̃C±k,α ∈ RCk,(β,γ),α for all β ∈ [0, β0), γ ∈ [γ0
2 , γ0).

From the expansion of the Robin boundary condition (ACα2) we will obtain boundary conditions
for the equations (5.23), (5.24) and (5.26). This is done in the next section.

5.2.2 Contact Point Expansion: The Robin Boundary Condition

We expand the non-linear Robin-boundary condition (ACα2) for uε,α = χαu
I
ε,α + uC±ε,α on ∂QT ∩

Γ(2δ). Since χα is zero in an ε-dependent neighbourhood of ∂QT , the latter equals

N∂Ω · ∇(wC±α + ũC±ε,α )|∂QT + 1
ε
σ′α(wC±α + ũC±ε,α )|∂QT = 0 on ∂QT ∩ Γ(2δ). (5.27)

Here on ∂QT ∩ Γ(2δ) it holds z±α = Z±ε,α = 0 and s± = cosα
sinα r, cf. (5.6). Therefore we set

s±(r) := ±1∓ cosα
sinα r, X

±
1 |(r,t) := X|(r,s±(r),t) for (r, t) ∈ [−2δ, 2δ]× [0, T ]. (5.28)

Then due to Lemma 5.6 the equation (5.27) is equivalent to

0 = N∂Ω|X±1 (r,t) ·

(∂ρŵC±α + ∂ρ ˆ̃uC±ε,α )|Z=0

∇r|X±1 (r,t)
ε

−∇s|
X
±
1 (r,t)∂shε,α|(s±(r),t)


+ (∂ZŵC±α + ∂Z ˆ̃uC±ε,α )|Z=0

∇z±α |X±1 (r,t)
ε

+ 1
ε
σ′α(ŵC±α + ˆ̃uC±ε,α )|Z=0 (5.29)

on ∂QT ∩ Γ(2δ), where r = r(x, t) and ρ = ρε,α(x, t).
In the following we determine how all the terms are expanded into ε-series up to O(εM−1)

with coefficients in (ρ, t). For the hε,α-terms let g1 : Iµ × [0, T ] → R be smooth. We use the
rigorous Taylor expansion (5.20) and we replace s ∓ 1 by (5.21) with Z = 0. Then the remarks
and the assertions for the remainder terms below (5.20) are still valid when we formally set Z = 0.
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Concerning terms evaluated at X±1 , we consider g2 : ∂QT ∩Γ(2δ)→ R smooth. A Taylor expansion
yields for (r, t) ∈ [−2δ, 2δ]× [0, T ]:

g̃±2 (r, t) := g2(X±1 (r, t)) =
M+2∑
k=0

∂kr g̃
±
2 |(0,t)
k! rk +O(|r|M+3). (5.30)

Then we use r = ε(ρε,α + hε,α|(s,t)) and expand hε,α as specified above. To this end the height
functions need to be smooth enough. Similar to the expansion of the (x, t)-dependent terms in the
bulk equation, cf. (5.22), the terms in the ε-expansion of (5.30) are for k = 2, ...,M + 2:

O(1) : g2|p±(t),

O(ε) : (ρ+ h1,α|(±1,t))∂rg̃±2 |(0,t),
O(εk) : hk,α|(±1,t)∂rg̃

±
2 |(0,t) + [some polynomial in (ρ, ∂lshj,α|(±1,t)), l = 0, ..., k − 1,

j = 1, ..., k − 1 of order ≤ k, where

the coefficients are multiples of (∂2
r g̃
±
2 , ..., ∂

k
r g̃
±
2 )|(0,t)].

The other explicit terms in (5.30) are bounded by εM+3 times some polynomial in |ρ| if the hj,α
are smooth. Later, these terms and the O(|r|M+3)-remainder in (5.30) for each choice of g2 will be
multiplied with exponentially decaying terms in |ρ|. Then these terms are O(εM+3). Finally, the
σα-term is replaced via

σ′α(ŵC±α + ˆ̃uC±ε,α )|Z=0 = σ′α(ŵC±α )|Z=0 +
M+2∑
k=1

1
k!σ

(k+1)
α (ŵC±α )|Z=0(ˆ̃uC±ε,α |Z=0)k +O(εM+3).

The terms in the ε-expansion are for k = 2, ...,M + 2:

O(1) : σ′α(ŵC±α |Z=0),
O(ε) : σ′′α(ŵC±α )ûC±1,α |Z=0,

O(εk) : σ′′α(ŵC±α )ûC±k,α |Z=0 + [a polynomial in (ûC±1,α |Z=0, ..., û
C±
k−1,α|Z=0) of order ≤ k,

where the coefficients are multiples of σ(3)
α (ŵC±α )|Z=0, ...,

σ(k+1)
α (ŵC±α )|Z=0 and every term contains a ûC±j,α -factor].

The other explicit terms are of order O(εM+3).
Now we can expand (5.29) into ε-series with coefficients in (ρε,α, t) up to O(εM−1).

5.2.2.1 Robin Boundary Condition: O(ε−1) At the lowest order O(1
ε ) we have

(N∂Ω · ∇r)|p±(t)∂ρŵ
C±
α |Z=0 + (N∂Ω · ∇z±α )|p±(t)∂Zŵ

C±
α |Z=0 + σ′α(ŵC±α |Z=0) = 0.

By construction it holdsN∂Ω|p±(t) = −∇z±α |p±(t), where∇z±α ·∇r|p±(t) = − cosα and |∇z±α |2|p±(t) =
1, cf. Section 5.2.1.1. Therefore the order O(1

ε ) vanishes if we require

[−∂Z + cosα∂ρ]ŵC±α |Z=0 + σ′α(ŵC±α |Z=0) = 0. (5.31)

The latter equation together with (5.23) is solved by ŵC±α := vα for α ∈ π
2 + [−α0, α0], where

vα and α0 are as in Remark 5.5. In particular vα is t-independent and vα − θ0 ∈ RC0,(β,γ),α for all
β ∈ [0, β0], γ ∈ [γ0

2 , γ0].
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5.2.2.2 Robin Boundary Condition: O(ε0) The next order O(1) vanishes if

[−∂Z + cosα∂ρ + σ′′α(vα|Z=0)]ûC±1 |Z=0(ρ, t) = gC±1,α (ρ, t), (5.32)

gC±1,α (ρ, t) :=− ∂ρvα|Z=0
[
h1,α|(±1,t)∂r((N∂Ω · ∇r) ◦X

±
1 )|(0,t) ∓ sinα∂sh1,α|(±1,t)

]
− ∂Zvα|Z=0h1,α|(±1,t)∂r((N∂Ω · ∇z±α ) ◦X±1 )|(0,t) + g̃C±0,α (ρ, t),

where g̃C±0,α ∈ RC0,(β),α is given by

g̃C±0,α (ρ, t) := −ρ ∂ρvα|Z=0∂r((N∂Ω · ∇r) ◦X
±
1 )|(0,t) − ρ ∂Zvα|Z=0∂r((N∂Ω · ∇z±α ) ◦X±1 )|(0,t).

We solve this equation together with (5.24). If h1,α is smooth and determined only from the 0-th
order, then GC±1,α ∈ RC0,(β,γ),α and gC±1,α ∈ RC0,(β),α for all β ∈ [0, β0), γ ∈ [γ0

2 , γ0). Note that both are
independent of χα. Therefore due to Remark 5.5 and Theorem 4.8 there is a unique smooth solution
ûC±1 to (5.24) and (5.32) with the same decay as GC±1,α if and only if the compatibility condition (4.9)
holds, i.e. ∫

R2
+

GC±1,α∂ρvα d(ρ, Z) +
∫
R
gC±1,α ∂ρvα|Z=0 dρ = 0.

The latter is equivalent to the following linear boundary condition for h1,α:

b±1,α(t)∂sh1,α|(±1,t) + b±0,α(t)h1,α|(±1,t) = f±0,α(t) for t ∈ [0, T ], (5.33)

where

b±1,α(t) :=± sinα
[
2
∫
R2

+

∂ρ∂Zvα∂ρvα d(ρ, Z) +
∫
R

(∂ρvα)2|Z=0 dZ

]
,

b±0,α(t) :=
∫
R2

+

∂2
Zvα∂ρvα d(ρ, Z)

[
∂r(|∇z±α |2 ◦X)|(0,±1,t) ∓

cosα
sinα∂s(|∇z

±
α |2 ◦X)|(0,±1,t)

]
+2
∫
R2

+

∂ρ∂Zvα∂ρvα

[
∂r((∇z±α · ∇r) ◦X)|(0,±1,t) ∓

cosα
sinα∂s((∇z

±
α · ∇r) ◦X)|(0,±1,t)

]
−
∫
R(∂ρvα)2|Z=0∂r((N∂Ω · ∇r) ◦X

±
1 )|(0,t) −

∫
R ∂Zvα∂ρvα|Z=0∂r((N∂Ω · ∇z±α ) ◦X±1 )|(0,t),

f±0,α(t) :=−
∫
R2

+

G̃C±0,α∂ρvα d(ρ, Z)−
∫
R
g̃C±0,α ∂ρvα|Z=0 dρ

are smooth in t ∈ [0, T ] and independent of χα, where G̃C±0,α is as in Section 5.2.1.2. Together with
the linear parabolic equation (5.4) for k = 0 from the inner expansion in Section 5.1, we obtain a
time-dependent linear parabolic boundary value problem for h1,α. Here analogously to the π

2 -case in
[AM] the initial value h1,α|t=0 is not specified.

Remark 5.8. If f is even, then due to Remark 5.2 it holds f0,α = 0 for the right hand side in (5.4) for
k = 0. However, in general it holds f±0,α 6= 0. Therefore in contrast to the π

2 -case in [AM], Section 3
a non-trivial h1,α is needed except from special cases. This is due to the many terms appearing in
f±0,α. Also note that for vα there are no symmetry properties available.

We solve the equations for h1,α with Lunardi, Sinestrari, von Wahl [LSW], Chapter 9 in the
analogous way as in [AM], Section 3.2.2. To this end we only need that all the coefficients are smooth
and that |∇s|2|X0

, |b±1,α| are bounded from below by a positive constant. Everything is known except
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the estimate for b±1,α. However, the latter follows from the additional estimates in Remark 4.6. Hence
we obtain a smooth solution h1,α : I × [0, T ]→ R to (5.4) with k = 0 together with (5.33). We can
extend h1,α to a smooth function on Iµ × [0, T ] for example with the Stein Extension Theorem, see
Leoni [Le], Theorem 13.17. Moreover, h1,α is independent of χα. This enables us to define H0 and
χα according to Remark 5.4, 1. Furthermore, due to Section 5.1 we obtain ûI2,α (solving (5.5) for
k = 0) with ûI2,α ∈ RI1,(β1),α for all β1 ∈ (0,min{

√
f ′′(±1)}). Therefore the first inner order is

computed. Finally, Theorem 4.8 yields a unique smooth solution ûC±1,α to (5.24) and (5.32) such that
ûC±1 ∈ RC1,(β,γ),α for all β ∈ [0, β0), γ ∈ [γ0

2 , γ0). Hence the first order is determined.

5.2.2.3 Robin Boundary Condition: O(εk) and Induction For k = 1, ...,M − 1 we consider
O(εk) in (5.29) and derive equations for the (k + 1)-th order. Therefore we assume the following
induction hypothesis: suppose that the j-th order is constructed for all j = 0, ..., k, that it is
smooth and that H0 and χα is known. Moreover, suppose that ûIj+1,α ∈ RIj,(β1),α for every β1 ∈
(0,min{

√
f ′′(±1)}) and j = 0, ..., k. Finally, let ûC±j,α ∈ RCj,(β,γ),α for all β ∈ [0, β0), γ ∈ [γ0

2 , γ0)
and j = 0, ..., k. The assumption holds for k = 1 due to Section 5.2.2.2.

Then with the notation in Definition 5.7 we have

For j = 1, ..., k + 1 : [O(εj) in σ′α(ŵC±α + ˆ̃uC±ε,α )|Z=0] ∈ σ′′α(vα)ûCk+1,α|Z=0 +RCk,(β),α,

For i, j = 1, ..., k : [O(εj) for g1 = g1(hi)|(s±(r),t)] ∈ PCmax{i,j},α(ρ).

Moreover, for j = 1, ..., k + 1 we obtain

[O(εj) in (5.30)] ∈ hj,α|(±1,t)∂rg̃
±
2 |(0,t) + PCj−1,α(ρ) [⊆ PCj,α(ρ), if j ≤ k].

With this we can compute the order O(εk) in (5.29). Therefore let β ∈ [0, β0) be arbitrary. The
contribution of 1

ε (∂ρvα + ∂ρ ˆ̃uC±ε,α )|Z=0(N∂Ω · ∇r)|X±1 (r,t) yields a term in

∂ρû
C±
k+1,α|Z=0N∂Ω · ∇r|p±(t) + ∂ρvα|Z=0hk+1,α|(±1,t)∂r((N∂Ω · ∇r) ◦X

±
1 )|(0,t)

+
k∑
j=1

PCj,α(ρ)∂ρûC±k+1−j |Z=0,

where N∂Ω · ∇r|p±(t) = cosα and the last sum is contained in RCk,(β),α. Moreover, from the term
−(∂ρvα + ∂ρ ˆ̃uC±ε,α )|Z=0(N∂Ω · ∇s)|X±1 (r,t)∂shε,α|(s±(r),t) we obtain an element of

(∂shk+1,α|(±1,t) + PCk,α(ρ))N∂Ω · ∇s|p±(t)∂ρvα|Z=0 + PCk,α(ρ)
k∑
j=0

PCj,α(ρ)∂ρûC±k−j,α

⊆ ± sinα∂ρvα|Z=0∂shk+1,α|(±1,t) +RCk,(β),α.

Analogously as before, 1
ε (∂Zvα + ∂Z ˆ̃uC±ε,α )|Z=0(N∂Ω · ∇z±α )|

X
±
1 (r,t) contributes a term in

−∂Z ûC±k+1,α|Z=0 + ∂Zvα|Z=0hk+1,α|(±1,t)∂r((N∂Ω · ∇z±α ) ◦X±1 )|(0,t) +RCk,(β),α.

Finally, the term 1
εσ
′
α(vα + ˆ̃uC±ε,α )|Z=0 gives an element in σ′′α(vα)ûC±k+1,α|Z=0 +RCk,(β),α.
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Altogether the O(εk)-order in the expansion of (5.29) vanishes if

[−∂Z + cosα∂ρ + σ′′α(vα|Z=0)]ûC±k+1|Z=0(ρ, t) = gC±k+1,α(ρ, t), (5.34)

gC±k+1,α(ρ, t) :=− ∂ρvα|Z=0
[
hk+1,α|(±1,t)∂r((N∂Ω · ∇r) ◦X

±
1 )|(0,t) ∓ sinα∂shk+1,α|(±1,t)

]
− ∂Zvα|Z=0hk+1,α|(±1,t)∂r((N∂Ω · ∇z±α ) ◦X±1 )|(0,t) + g̃C±k,α (ρ, t),

where g̃C±k,α ∈ RCk,(β),α. We solve the latter equation (5.34) together with (5.26).
The compatibility condition (4.9) yields the following linear boundary condition for hk+1,α:

b±1,α(t)∂shk+1,α|(±1,t) + b±0,α(t)hk+1,α|(±1,t) = f±k,α(t) for t ∈ [0, T ], (5.35)

where b±1,α, b
±
0,α are the same as the ones after (5.33) and

f±k,α(t) := −
∫
R2

+

G̃C±k,α∂ρvα d(ρ, Z)−
∫
R
g̃C±k,α∂ρvα|Z=0 dρ

is smooth in t ∈ [0, T ], where G̃C±k,α is as in Section 5.2.1.3.
The arguments in the last Section 5.2.2.2 yield a smooth solution hk+1,α : I × [0, T ] → R of

(5.4) from Section 5.1 together with (5.35). Again, the latter can be extended to a smooth function
on Iµ × [0, T ]. Moreover, Section 5.1 determines ûIk+2,α (solving (5.5)) with ûIk+2,α ∈ RIk+1,(β1),α
for all β1 ∈ (0,min{

√
f ′′(±1)}). Therefore the (k + 1)-th inner order is computed. Moreover, it

holds GC±k,α ∈ RCk+1,(β,γ),α as well as gC±k+1 ∈ RCk+1,(β),α for all β ∈ [0, β0), γ ∈ [γ0
2 , γ0) and they

are independent of ûC±k+1,α. Finally, Theorem 4.8 yields a unique smooth solution ûC±k+1,α to (5.26)
and (5.34) such that ûC±k+1,α ∈ RCk+1,(β,γ),α for all β ∈ [0, β0), γ ∈ [γ0

2 , γ0). Hence the (k + 1)-th
order is determined.

Finally, the j-th order is determined inductively for all j = 0, ...,M , the hj,α are smooth and
ûIj+1,α ∈ RIj,(β1),α for all β1 ∈ (0,min{

√
f ′′(±1)}) as well as ûC±j,α ∈ RCj,(β,γ),α for all β ∈ [0, β0),

γ ∈ [γ0
2 , γ0).

5.3 The Approximate Solution for (ACα) in 2D
Let σα be as in Definition 1.1 and α0 > 0 be as in Remark 5.5. Moreover, let Γ := (Γt)t∈[0,T ] be as
in Section 3.1 with contact angle α ∈ π

2 + [−α0, α0] and a solution to (MCF) in Ω. Additionally, let
δ > 0 be such that the assertions of Theorem 3.2 hold for δ replaced by 2δ and consider r, s from the
theorem. Let M ∈ N, M ≥ 2 be as in the inception of Section 5. Moreover, let δ0 ∈ (0, δ] be small
such that −2δ0 + µ0 sinα > 0 and

s± = 1
sinα [z±α + r cosα] ∈ (5

4 ,
7
4)µ0 for z±α ∈ [11

8 ,
3
2 ]µ0 sinα and |r| ≤ δ0, (5.36)

where µ0 is from Theorem 3.2. Note that (5.36) is only needed in order to have a suitable partition
of Γ(δ0) for the spectral estimate later, cf. (6.3) below. Finally, let η, η̃ : R→ [0, 1] be smooth with
η(r) = 1 for |r| ≤ 1, η(r) = 0 for |r| ≥ 2 and η̃(r) = 1 for r ≤ 1, η̃(r) = 0 for r ≥ 2. Then we set

uB±ε,α := χαu
I
ε,α + uC±ε,α = vα + χαũ

I
ε,α + ũC±ε,α (5.37)
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for ε > 0, where χα and vα are evaluated at (ρε,α, Z±ε,α). The appearing functions were constructed
in Sections 5.1-5.2. Then we define

uAε,α :=

η( rδ0 )
[
η̃( s±µ0

)uB±ε,α + (1− η̃( s±δ0 ))uIε,α
]

+ (1− η( rδ0 ))sign(r) in Γ±(2δ, 1),
±1 in Q±T \ Γ(2δ),

where s± = ±1∓ s and the sets were defined in Remark 3.3, 1. In the following lemma we show
that this gives a suitable approximate solution for (ACα1)-(ACα3).

Lemma 5.9. The mapping uAε,α is smooth, uniformly bounded in x, t, ε and the remainders rAε,α :=
(∂t −∆)uAε,α + 1

ε2 f
′(uAε,α) and sAε,α := ∂N∂Ωu

A
ε,α + 1

εσ
′
α(uAε,α) in (ACα1)-(ACα2) satisfy

|rAε,α| ≤ C(εM−1e−c(|ρε,α|+Z
±
ε,α) + εMe−c|ρε,α| + εM+1) in Γ±(2δ, 1),

rAε,α = 0 in QT \ Γ(2δ),
|sAε,α| ≤ CεMe−c|ρε,α| on ∂QT ∩ Γ(2δ),
sAε,α = 0 on ∂QT \ Γ(2δ)

for ε > 0 small and some constants c, C > 0.

Remark 5.10. The analogous statements as in [M2], Remark 5.11 are true.

Proof. The proof is analogous to the one of [M2], Lemma 5.10, where the case α = π
2 is shown. One

uses Lemma 5.3 and verifies that the Taylor expansions and remainder estimates stated in Section
5.2 hold rigorously. The main point left to show in the case α 6= π

2 is the suitable convergence with
respect to ε→ 0 (i.e. rates of type e−c/ε for the function and all derivatives) in the transition regions
for the functions we glued together in the definition of uAε,α. With the latter, one can then estimate the
mixed terms in rAε,α and sAε,α appearing due to the cutoff functions similar to the case α = π

2 . Because
of (5.37) and the asymptotics of the appearing functions it is enough to prove

z±α |(x,t) ≥ c > 0 and χα(ρε,α, Z±ε,α)|(x,t) ≡ 1

for all (x, t) ∈ Γ±(2δ, 1) with |r(x, t)| ≤ 2δ0 and s±(x, t) ≥ µ0 as well as ε > 0 small. However,
by the assumption on δ0 it holds

z±α |(x,t) = |z±α |(x,t)| ≥ −|r|(x,t) cosα|+ s±|(x,t) sinα ≥ −2δ0 + µ0 sinα > 0

for all those (x, t). Moreover, recall the definition (5.9) of χ̂α. Therefore it is left to show that

1
sinα [Z±ε,α|(x,t) + ρε,α|(x,t) cosα−H0] ≥ 1

for all the (x, t) as above and ε > 0 small, where H0 = 2‖h1,α‖∞, see Remark 5.4, 1. and the end of
Section 5.2.2.2. The estimate follows from

1
sinα [Z±ε,α|(x,t) + ρε,α|(x,t) cosα−H0] =

s±|(x,t)
ε

− 1
sinα [hε,α|(s(x,t),t) cosα+H0]

for all the (x, t) as before and ε > 0. The second term is estimated by 4‖h1,α‖∞/ sinα for ε > 0
small. Hence the lemma is proven.
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6 Spectral Estimate for (ACα) in 2D
In the second step for the method of de Mottoni and Schatzman [deMS] one estimates the difference
of the exact and approximate solutions. Therefore typically a Gronwall-type argument is used
combined with the idea of linearization at the approximate solution, because the structure of the latter
is known. An important ingredient is the spectral estimate for a linear operator related to the diffuse
interface model and the approximate solution, i.e. an estimate for the corresponding bilinear form.

In this section we prove such a spectral estimate for the Allen-Cahn equation with nonlinear Robin
boundary condition (ACα1)-(ACα3) for α close to π

2 in the setting of the introduction, i.e. the case of
boundary contact in 2D. The operator is given by

Lε,t := −∆ + 1
ε2 f

′′(uAε,α(., t)) in Ω

together with the linear Robin boundary condition

Nε,tu := N∂Ω · ∇u+ 1
ε
σ′′α(uAε,α(., t))u = 0 on ∂Ω,

where f is as in (1.1), σα is from Definition 1.1 and uAε is from Section 5.3. We will prove a spectral
estimate of the following form (cf. also Theorem 6.1 below): if α is close enough to π

2 (independent
of Ω,Γ etc.), then there are c0, C, ε0 > 0 such that for all u ∈ H1(Ω), ε ∈ (0, ε0]:∫

Ω
|∇ψ|2 + 1

ε2 f
′′(uAε,α|(.,t))ψ2 dx+

∫
∂Ω

1
ε
σ′′α(uAε,α|(.,t))(trψ)2 dH1

≥ −C‖ψ‖2L2(Ω) + ‖∇ψ‖2L2(Ω\Γt(δ0)) + c0ε‖∇τψ‖2L2(Γt(δ0)),
(6.1)

where ∇τ is the tangential gradient introduced in Remark 3.3, 2. The estimate (also without the two
additional last terms in (6.1)) yields that the spectrum of Lε,t is bounded from below by −C, where
Lε,t is interpreted as an unbounded operator on L2(Ω) with domain {u ∈ H2(Ω) : Nε,tu = 0}.
Finally, note that also a weaker spectral estimate (e.g. without the last two additional terms) would be
enough to obtain a convergence result, see Remark 7.5 below.

In the following we explain our approach for the proof of the spectral estimate (6.1). Using a
reduction strategy in analogy to Chen [C2] might work here, but even in the case α = π

2 this is not
clear, cf. [M2], Remark 6.1. In [AM], Section 4 the case α = π

2 is carried out in a different way as
in [C2] (see below for a summary). Since we have to take α close to π

2 anyway because of Section
4.2.3 and the asymptotic expansion in Section 5, we chose to adapt the proof in [AM] and to take
α close to π

2 where needed such that the arguments still work. Here one has to pay attention on the
restrictions for α because a dependency on Γ or Ω is of course not allowed.

At this point let us briefly explain the idea in [AM], Section 4 for the proof of the spectral estimate
in the case α = π

2 . First the spectral estimate is localized with a suitable partition of unity. The
estimate away from a neighbourhood of the contact points is shown similar to [C2], Theorem 2.3
with properties of perturbed 1D-Allen-Cahn-type operators on large intervals approximating R.
The spectral estimate close to the contact points is obtained by a splitting technique. Therefore an
approximate first eigenfunction for the Allen-Cahn operator is constructed, where the model problem
on the half space mentioned in Section 4.2.2 for α = π

2 is used. Then the space of H1-functions is
decomposed L2-orthogonally with respect to the explicit space consisting of tangential alterations
of this approximate eigenfunction. Finally, the bilinear form corresponding to the spectral term is
estimated on each arising subspace. Here again the features of perturbed 1D-operators are important.
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In the following we adapt this proof to the case of α close to π
2 . In [M2], Section 6.1 (or see also

[M1], Section 6.1) the 1D-preliminaries are proven in an abstract setting independent of the particular
geometry and also applicable for the case α 6= π

2 , including scaling transformations and remainder
estimates as well as spectral estimates for perturbed 1D Allen-Cahn-type operators.

6.1 Assumptions and Spectral Estimate
We state the assumptions for this section. For convenience similar notation as in Section 5 is used.
We consider β0, γ0, α0 > 0, α ∈ π

2 + [−α0, α0] and vα as in Remark 5.5. Let Ω ⊂ R2 and
Γ = (Γt)t∈[0,T ] for T > 0 be as in Section 3.2 with contact angle α ((MCF) not needed). Moreover,
let δ1 > 0 be such that Theorem 3.2 holds for 2δ1 instead of δ. We use the notation from Theorem
3.2 and Remark 3.3. Furthermore, we consider height functions h1,α and h2,α = h2,α(ε) for ε > 0
small. We require (with a slight abuse of notation)

hj,α ∈ B([0, T ], C0(Iµ) ∩ C2(Îµ)) for j = 1, 2,

where Iµ := [−1− µ, 1 + µ] for some µ > 0 large and Îµ := Iµ \ (−1 + 2µ0, 1− 2µ0). Moreover,
we assume that there exists C0 > 0 such that ‖hj,α‖B([0,T ],C0(Iµ)∩C2(Îµ)) ≤ C0 for j = 1, 2. Then
for ε > 0 small we set hε,α := h1,α + εh2,α and define the stretched variables

ρε,α := r − εhε,α(s, t)
ε

, Z±ε,α := z±α
ε

in Γ(2δ1),

where z±α = −r cosα + (1 ∓ s) sinα is as in (5.6). Moreover, let δ0 ∈ (0, δ1] be small such that
(5.36) holds. We set µ̂0 := 11

8 µ0 sinα and µ̃0 := 3
2µ0 sinα as well as for t ∈ [0, T ]:

ΩC±
t := {x ∈ Γt(δ0) : z±α (x, t) ∈ (0, µ̃0)}.

Let ûC±1,α : R2
+ × [0, T ]→ R : (ρ, Z, t) 7→ ûC±1,α (ρ, Z, t) be in B([0, T ], H2

(0, γ0
2 )(R

2
+)). Then we set

uC±1,α (x, t) := ûC±1,α (ρε,α(x, t), Z±ε,α(x, t), t) for (x, t) ∈ ΩC±
t .

For ε > 0 small we consider

uAε,α =


θ0(ρε,α) +O(ε2) in Γ(δ0, µ0),
vα(ρε,α, Z±ε,α) + εuC±1,α +O(ε2) in ΩC±

t ,

±1 +O(ε) in Q±T \ Γ(δ0),

where θ0 is as in Theorem 4.1, vα is as in Remark 5.5 and O(εk) are continuous3 functions bounded
by Cεk. For convenience4 we do not consider further ε-order terms similar to [AM], Remark 4.3, (i).
In this situation we prove

Theorem 6.1 (Spectral Estimate for (ACα) in 2D). There is an α0 ∈ (0, α0] independent of Ω,Γ
such that, if α ∈ π

2 + [−α0, α0], then there exist ε0, C, c0 > 0 independent of the hj,α for fixed C0
such that for all ε ∈ (0, ε0], t ∈ [0, T ] and ψ ∈ H1(Ω) we have∫

Ω
|∇ψ|2 + 1

ε2 f
′′(uAε,α|(.,t))ψ2 dx+

∫
∂Ω

1
ε
σ′′α(uAε,α|(.,t))(trψ)2 dH1

≥ −C‖ψ‖2L2(Ω) + ‖∇ψ‖2L2(Ω\Γt(δ0)) + c0ε‖∇τψ‖2L2(Γt(δ0)).
(6.2)

3 For evaluation on the boundary.
4 It would be tedious to include such terms in the asymptotic expansion for the approximate eigenfunction below and

probably a cut-off structure similar as in Section 5.2 is needed.
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6.2 OUTLINE FOR THE PROOF OF THE SPECTRAL ESTIMATE CLOSE TO THE CONTACT POINTS

Remark 6.2. 1. Compared to the case α = π
2 in Theorem 4.1 in [AM] we can only show the

weaker estimate (6.2) with an ε-factor in front of the∇τ -term. The reason is that the arguments
in [AM], Section 4 can be adapted except for the estimate of ∇τφ in the proof of [AM],
Theorem 4.11. In the present situation there will be a term roughly of the form

1
ε3

∫ µ̃0

0
a(z)2

∫ δ0

−δ0
(∂Z∂ρvα)2|( r

ε
, z
ε

) dr dz.

We can control the latter only with an O(ε−1)-term, e.g. 1
εC‖a‖

2
H1(0,µ̃0), cf. (6.17) and the

proof of Theorem 6.12. Therefore we need the additional ε. Nevertheless, the estimate still
gives some control on the∇τ -term.

2. Note that in this section z corresponds to z±α , whereas in [AM] the z rather served as a rescaled
(integral) variable over R. Here we use ρ for the latter instead.

The main task is the proof of the following spectral estimate close to the contact points:

Theorem 6.3. There is an α0 ∈ (0, α0] independent of Ω,Γ such that, if α ∈ π
2 + [−α0, α0], then

there are ε̃0, C, c̃0 > 0 independent of the hj,α for fixed C0 such that for all ε ∈ (0, ε̃0], t ∈ [0, T ]
and ψ ∈ H1(ΩC±

t ) with ψ(x) = 0 for a.e. x ∈ ΩC±
t with z±α (x, t) ≥ µ̂0 it holds:∫

ΩC±t
|∇ψ|2 + 1

ε2 f
′′(uAε,α|(.,t))ψ2 dx+

∫
∂Ω∩∂ΩC±t

1
ε
σ′′α(uAε,α|(.,t))(trψ)2 dH1

≥ −C‖ψ‖2
L2(ΩC±t ) + c̃0ε‖∇τψ‖2L2(ΩC±t ).

This is sufficient to prove Theorem 6.1:

Proof of Theorem 6.1. For ε0 > 0 small and all ε ∈ (0, ε0] it holds f ′′(uAε,α) ≥ 0 in Q±T \ Γ(δ0) and
σ′′α(uAε,α) = 0 on ∂Ω \ ∂ΩC±

t . Therefore it is enough to prove the estimate in Theorem 6.1 for Γt(δ0)
instead of Ω. We reduce to further subsets. The estimate holds for Γt(δ0, µ0) instead of Ω with 1 in
front of the∇τ -term and without the boundary term. The latter was already proven in the case α = π

2 ,
cf. the proof of Theorem 4.1 in [AM]. Finally, one can combine this with Theorem 6.3 similar as in
the case α = π

2 with a suitable partition of unity for

Γt(δ0) ⊆ Γt(δ0, µ0) ∪
⋃
±

Γ±t (δ0, 5µ0/4), (6.3)

cf. the proof of Theorem 4.1 in [AM]. This is possible since

Γ±t (δ0,
5
4µ0) ⊆ {x ∈ Γt(δ0) : z±α (x, t) ∈ (0, µ̂0)} ⊆ ΩC±

t ⊆ Γ±t (δ0,
7
4µ0)

for t ∈ [0, T ] due to (5.36).

6.2 Outline for the Proof of the Spectral Estimate close to the Contact
Points

Because of a Taylor expansion it is enough to prove Theorem 6.3 for

1
ε2 f

′′(vα|(ρε,α(.,t),Z±ε,α(.,t))) + 1
ε
f ′′′(vα|(ρε,α(.,t),Z±ε,α(.,t)))u

C±
1,α (., t)
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instead of 1
ε2 f
′′(uAε,α(., t)). Moreover, we can replace 1

εσ
′′
α(uAε,α(., t)) by

1
ε
σ′′α(vα|(ρε,α(.,t),0)) + σ′′′α (vα|(ρε,α(.,t),0))uC±1,α (., t)

due to Young’s inequality and the second estimate in the following lemma.

Lemma 6.4. There is a C1 > 0 (independent of ψ, t) such that

‖trψ‖2
L2(∂ΩC±t ) ≤ C1

[
‖ψ‖2

L2(ΩC±t ) + ‖∇ψ‖L2(ΩC±t )‖ψ‖L2(ΩC±t )

]
,

‖trψ‖2
L2(∂Ω∩∂ΩC±t ) ≤ C1

[
‖ψ‖2

L2(ΩC±t ) + ‖∇τψ‖L2(ΩC±t )‖ψ‖L2(ΩC±t )

]
for all ψ ∈ H1(ΩC±

t ) and t ∈ [0, T ].

Proof. The first estimate follows analogously to the proof of (4.12) in [AM]. For convenience we
do not go into details. The proof of the second estimate is similar: it is equivalent to prove the
estimate for S := {(r, s) ∈ R2 : r ∈ (−δ0, δ0), s ∈ ±[1 − 3

2µ0, 1] ∓ cosα
sinα r}, S

±
δ0,α

instead of
ΩC±
t , ∂Ω ∩ ∂ΩC±

t as well as ∂s instead of ∇τ . For the latter we use the same idea as in the proof
of (4.12) in [AM]. Here ~w ∈ C1(S)2 with ~w ·N∂S ≥ 1 on S±δ0,α and ~w ·N∂S = 0 on ∂S \ S±δ0,α as
well as w1 = 0 yields the claim.

We construct an approximate first eigenfunction of φAε,α(., t)

L±ε,t := −∆ + 1
ε2 f

′′(vα|(ρε,α(.,t),Z±ε,α(.,t))) + 1
ε
f ′′′(vα|(ρε,α(.,t),Z±ε,α(.,t)))u

C±
1,α (., t) on ΩC±

t

together with the linear Robin boundary condition N±ε,tu = 0 on ∂ΩC±
t , where

N±ε,tu :=
[
N∂ΩC±t

· ∇+ χ∂Ω
[1
ε
σ′′α(vα|(ρε,α(.,t),0)) + σ′′′α (vα|(ρε,α(.,t),0))uC±1,α |(.,t)

]]
u on ∂ΩC±

t .

Here χ∂Ω is the characteristic function of ∂Ω. In analogy to the case α = π
2 , cf. [AM], Section 4.1,

we use the ansatz

φAε,α(., t) := 1√
ε

[vC±ε,0 (., t) + εvC±ε,1 (., t)] on ΩC±
t ,

vC±ε,0 (., t) := v̂C±0 |(ρε,α(.,t),Z±ε,α(.,t),z±α (.,t),t) := q±|(z±α (.,t),t)∂ρvα|(ρε,α(.,t),Z±ε,α(.,t)) on ΩC±
t ,

vC±ε,1 (., t) := v̂C±1 |(ρε,α(.,t),Z±ε,α(.,t),t) on ΩC±
t ,

where q± : [0, µ̃0]× [0, T ]→ R : (z, t) 7→ q±(z, t) and v̂C±0 : R2
+× [0, µ̃0]× [0, T ]→ R as well as

v̂C±1 : R2
+ × [0, T ]→ R.

In Subsection 6.3 we expand L±ε,tφAε,α(., t) and N±ε,tφAε,α(., t) with similar ideas as in Section 5.2
and choose q± and v̂C±1 appropriately. The q±-term is used to enforce the compatibility condition for
the equations for v̂C±1 . Then in Subsection 6.4 we decompose

H̃1(ΩC±
t ) :=

{
ψ ∈ H1(ΩC±

t ) : ψ(x) = 0 for a.e. x ∈ ΩC±
t with z±α (x, t) ≥ µ̂0

}
(6.4)
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in a suitable way. To this end we consider

V̂ ±ε,t :=
{
φ = a(z±α (., t))φAε,α(., t) : a ∈ Ĥ1(0, µ̃0)

}
, (6.5)

Ĥ1(0, µ̃0) :=
{
a ∈ H1(0, µ̃0) : a = 0 on [µ̂0, µ̃0], a(0) = 0

}
. (6.6)

Finally, in Subsection 6.5 we analyze the bilinear form B±ε,t related to L±ε,t on V̂ ±ε,t × V̂ ±ε,t, (V̂ ±ε,t)⊥ ×
(V̂ ±ε,t)⊥ and V̂ ±ε,t × (V̂ ±ε,t)⊥. Here for φ, ψ ∈ H1(ΩC±

t ) let

B±ε,t(φ, ψ) :=
∫
∂Ω∩∂ΩC±t

[1
ε
σ′′α(vα|(ρε,α,0)) + σ′′′α (vα|(ρε,α,0))uC±1,α

]
|(.,t)trφ trψ dH1

+
∫

ΩC±t
∇φ · ∇ψ +

[ 1
ε2 f

′′(vα|(ρε,α,Z±ε,α)) + 1
ε
f ′′′(vα|(ρε,α,Z±ε,α))u

C±
1,α

]
|(.,t)φψ dx.

(6.7)

Remark 6.5. Note that in [AM], Section 4 the whole H1-space is considered instead of (6.4), but
this is not needed for the proof of the spectral estimate close to the contact points because of the
cutoff functions, cf. [AM], proof of Theorem 4.1. Therefore we can work with the smaller space
in (6.4). Then the behaviour of the approximate eigenfunction φAε,α close to the interior boundary
[∂ΩC±

t \ ∂Ω] ∩ Γt( δ02 ) is not important. Otherwise we would have to carry out an asymptotic
expansion close to the interior boundary, too.

6.3 Asymptotic Expansion for the Approximate Eigenfunction
Asymptotic Expansion of

√
εL±ε,tφAε,α(., t). In

√
ε∆φAε,α(., t) there are some additional terms due to

q± compared to the formula in Lemma 5.6. More precisely, via direct computation we get

√
ε∆φAε,α = (q±∂2

ρvα + ε∂ρv̂
C±
1 )

[∆r
ε
− (∆s∂shε,α + |∇s|2∂2

shε,α)
]

+ (q±∂Z∂ρvα + ε∂Z v̂
C±
1 )∆z±α

ε
+ (q±∂2

Z∂ρvα + ε∂2
Z v̂

C±
1 ) |∇z

±
α |2

ε2

+ 2(q±∂Z∂2
ρvα + ε∂Z∂ρv̂

C±
1 ) ∇z

±
α

ε
·
[∇r
ε
−∇s∂shε,α

]
+ (q±∂3

ρvα + ε∂2
ρ v̂
C±
1 )

∣∣∣∣∇rε −∇s∂shε,α
∣∣∣∣2

+ 2∂zq±∂Z∂ρvα
|∇z±α |2

ε
+ 2∂zq±∂2

ρvα∇z±α ·
[∇r
ε
−∇s∂shε,α

]
+ ∂zq

±∂ρvα∆z±α + ∂2
zq
±∂ρvα|∇z±α |2,

with evaluations as in Lemma 5.6 except that the q±-terms are evaluated at (z±α (x, t), t).
The difficulty in expanding

√
ε∆φAε,α is that for the vα-terms without a derivative in Z, i.e. terms

with the factors ∂kρvα, k = 1, 2, 3, we do not have exponential decay estimates with respect to Z.
Therefore we have to expand the corresponding factors in a more subtle way than in Section 5.2.1,
where this problem was solved with a suitable ansatz. However, we only need the expansion up
to order 1

ε and for the remainder terms a decay in normal direction as in the case α = π
2 in [AM],

Lemma 4.4 will be enough. Therefore we do not need to expand terms of order ε0 in the formula
for
√
ε∆φAε,α above, in particular higher regularity for ∂2

shε,α is not necessary. This leads to the
following expansion procedure for

√
εL±ε,tφAε,α(., t):
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Terms of order O(1) are not expanded. The other terms are expanded as follows. For (x, t)-terms
that are not multiplied by a term with a Z-derivative we only use a Taylor-expansion in normal
direction analogous to [AM], (3.2) and replace r by ε(ρ+ hε,α(s, t)). But then we leave untouched
all the appearing hε,α-terms that are not multiplied with a term including a Z-derivative. Moreover,
for all the other (x, t)-terms we apply the full Taylor expansion (5.22) and replace r as above and
s∓ 1 via (5.21). Then we rewrite the hε,α-terms that are multiplied by a term with a Z-derivative via

∂kshε,α|(s(x,t),t) = ∂kshε,α|(±1∓ 1
sinα z

±
α (x,t),t) = ∂kshε,α|(±1,t) +O(|z±α |(x,t)|) for k = 0, 1.

Regarding the q±-terms we only rewrite the ones in front of the ∂Z∂ρvα, the ones multiplied with
the ε-orders of |∇z±α |2 or ∇r · ∇z±α as well as the one multiplied with f (3)(vα) via the formula
∂kz q
±(z, t) = ∂kz q

±(0, t) + O(|z|) for k = 0, 1. Note that the remainder term stemming from the
f (3)(vα)-term can be controlled because ûC±1,α∂ρvα has appropriate decay. The z-remainders will
only contribute to order ε0 in the expansion of

√
ε∆φAε,α due to z±α = εZ±ε,α.

At the lowest order O( 1
ε2 ) in

√
εL±ε,tφAε,α(., t) we obtain

1
ε2 q
±(z, t)

[
−∂2

Z + 2 cosα∂ρ∂Z − ∂2
ρ + f ′′(vα)

]
∂ρvα = 0

due to (4.3). For the 1
ε -order we get

1
ε

[
−∂2

Z + 2 cosα∂ρ∂Z − ∂2
ρ + f ′′(vα)

]
v̂C±1 + 1

ε
q±(0, t)f (3)(vα)ûC±1,α∂ρvα

− 1
ε
q±(z, t)∂2

ρvα∆r|X0(s,t) −
1
ε
q±(0, t)∂Z∂ρvα∆z±α |p±(t)

− 1
ε2 q
±(0, t)∂2

Z∂ρvα

[
∂r(|∇z±α |2 ◦X)|(0,±1,t)ε(ρ+ h1,α|(±1,t))

+∂s(|∇z±α |2 ◦X)|(0,±1,t)(∓ε)
1

sinα [Z + cosα(ρ+ h1,α|(±1,t))]
]

− 2q±(0, t)∂Z∂2
ρvα

[
∂r((∇r · ∇z±α ) ◦X)|(0,±1,t)ε(ρ+ h1,α|(±1,t))

+∂s((∇r · ∇z±α ) ◦X)|(0,±1,t)(∓ε)
1

sinα [Z + cosα(ρ+ h1,α|(±1,t))]−
∓ sinα
ε

∂sh1,α|(±1,t)

]
+ q±(z, t)∂3

ρvα
[
∂r(|∇r|2 ◦X)|(0,s,t)ε(ρ+ h1|(s,t))−∇r · ∇s|X0(s,t)∂sh1,α|(s,t)

]
− 2
ε
∂zq
±(0, t)∂Z∂ρvα −

2
ε
∂zq
±(z, t)∂2

ρvα(∇r · ∇z±α )|X0(s,t).

Here the penultimate line vanishes due to Theorem 3.2. Moreover, (∇r · ∇z±α )|X0(s,t) = − cosα.
We leave the two ∂2

ρvα-terms as remainders. Later we can improve the ε-order of these terms in
one situation due to

∫
R(∂2

ρvα∂ρvα)|(ρ,Z) dρ = 0 for Z ≥ 0, see the estimate of (II) in the proof of
Lemma 6.8 below. Moreover, we require the other terms to add up to zero. This gives the following
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equation for v̂C±1 on R2
+ × [0, T ]:[

−∂2
Z + 2 cosα∂ρ∂Z − ∂2

ρ + f ′′(vα)
]
v̂C±1

= −q±(0, t)f (3)(vα)ûC±1,α∂ρvα + ∂Z∂ρvα
[
q±(0, t)∆z±α |p±(t) + 2∂zq±(0, t)

]
+ q±(0, t)∂2

Z∂ρvα

[
∂r(|∇z±α |2 ◦X)|(0,±1,t)(ρ+ h1,α|(±1,t))

+∂s(|∇z±α |2 ◦X)|(0,±1,t)
∓1

sinα [Z + cosα(ρ+ h1,α|(±1,t))]
]

+ 2q±(0, t)∂Z∂2
ρvα

[
∂r((∇r · ∇z±α ) ◦X)|(0,±1,t)(ρ+ h1,α|(±1,t))

+∂s((∇r · ∇z±α ) ◦X)|(0,±1,t)
∓1

sinα [Z + cosα(ρ+ h1,α|(±1,t))]± sinα∂sh1,α|(±1,t)

]
.

Asymptotic Expansion of
√
εN±ε,tφAε,α(., t) on ∂Ω ∩ ∂ΩC±

t . In ΩC±
t it holds

√
ε∇φAε,α = ∂zq

±∂ρvα∇z±α + (q±∂Z∂ρvα + ε∂Z v̂
C±
1 )∇z

±
α

ε

+ (q±∂2
ρvα + ε∂ρv̂

C±
1 )

[∇r
ε
−∇s∂shε,α

] (6.8)

with evaluations as in Lemma 5.6 except that the q±-terms are evaluated at (z±α (x, t), t). In
√
εN∂Ω ·

∇φAε,α the q±-terms are evaluated at z = 0. Moreover, we expand the (x, t)-terms via (5.30) and
insert r = ε(ρ+ hε,α(s, t)). Note that there are no hε,α-terms in the lowest order and we only have
to expand up to O(ε0). Therefore we use ∂kshε,α|(s,t) = ∂kshε,α|(±1,t) +O(|s∓ 1|) for k = 0, 1 and
replace s∓ 1 by (5.21) with Z = 0.

At the lowest order O(1
ε ) in

√
εN±ε,tφAε,α(., t) we obtain

1
ε
q±(0, t)

[
−∂Z + cosα∂ρ + σ′′α(vα|Z=0)

]
∂ρvα|Z=0

due to N∂Ω = −∇z±α |p±(t) and N∂Ω · ∇r|p±(t) = cosα, cf. Section 5.2.2.1. This is zero because of
(4.4). The O(1)-order equals[
−∂Z + cosα∂ρ + σ′′α(vα|Z=0)

]
v̂C±1 |Z=0 + q±(0, t)σ′′′α (vα|Z=0)uC±1,α |Z=0∂ρvα|Z=0

− ∂zq±(0, t)∂ρvα|Z=0 + q±(0, t)∂Z∂ρvα|Z=0
[
(ρ+ h1,α|(±1,t))∂r((N∂Ω · ∇z±α ) ◦X±1 )|(0,t)

]
+ q±(0, t)∂2

ρvα|Z=0
[
(ρ+ h1,α|(±1,t))∂r((N∂Ω · ∇r) ◦X

±
1 )|(0,t) ∓ sinα∂sh1,α|(±1,t)

]
,

whereX±1 is defined as in (5.28). We require that this term vanishes. This yields a boundary condition
for v̂C±1 on ∂R2

+ × [0, T ].
Together with the equation derived in the asymptotic expansion of

√
εL±ε,tφAε,α(., t) we obtain

equations of type (4.7)-(4.8) with the additional parameter t ∈ [0, T ] for v̂C±1 . Because of α ∈
π
2 + [−α0, α0], we have solution theorems due to Remark 5.5 and Theorem 4.8. Note that the

corresponding right hand sides are contained in B([0, T ];H2
(β, γ0

2 )(R
2
+)×H5/2

(β) (R)) for some β > 0
provided that q± ∈ B([0, T ], C1([0, µ̃0])). Hence under this condition on q± we obtain a unique
solution v̂C±1 ∈ B([0, T ];H4

(β, γ0
2 )(R

2
+)) ↪→ B([0, T ];C2

(β, γ0
2 )(R

2
+)) for some possibly smaller β > 0
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if and only if (4.9) holds for the associated right hand sides. The latter is equivalent to an equation
for q± only involving q±(0, t) and ∂zq±(0, t) linearly. Moreover, note that the only terms where
∂zq
±(0, t) enters are

∂zq
±(0, t)

[
2
∫
R2

+

∂Z∂ρvα∂ρvα d(ρ, Z) +
∫
R

(∂ρvα)2|Z=0 dρ

]
.

Because of the estimates in Remark 4.6 it follows that ∂zq±(0, t) is a determined bounded function
on [0, T ] if for example q±(0, t) = 1 for t ∈ [0, T ]. Therefore with a simple ansatz and cutoff
we can construct q± ∈ B([0, T ], C2([0, 2µ0])) such that (4.9) holds for this situation as well as
q±(0, t) = 1, q±(., t) = 1 on [µ̂0, µ̃0] for all t ∈ [0, T ] and 1

2 ≤ q
± ≤ 2.

Lemma 6.6. The mapping φAε,α(., t) is C2(ΩC±
t ) and fulfills uniformly in t ∈ [0, T ]:∣∣∣∣√εL±ε,tφAε,α(., t) + 1

ε
q̃±(., t)

∣∣∣∣ ≤ Ce−c|ρε,α(.,t)| in ΩC±
t ,∣∣∣√εN±ε,tφAε,α(., t)

∣∣∣ ≤ Cεe−c|ρε,α(.,t)| on ∂ΩC±
t ∩ ∂Ω,∣∣∣√εN±ε,tφAε,α(., t)

∣∣∣ ≤ Ce−c/ε on ∂ΩC±
t \ Γt(

δ0
2 ),

where we have set

q̃±(., t) := [∆r|X0(s(.,t),t)q
±|(z±α (.,t),t) − 2 cosα∂zq±|(z±α (.,t),t)]∂

2
ρvα|(ρε,α(.,t),Z±ε,α(.,t)).

Proof. The assertions follow from the construction and rigorous remainder estimates for the expan-
sions above. Note that no Z-terms are multiplied with ∂2

ρvα, ∂3
ρvα.

6.4 Notation for Transformations and the Splitting
We introduce the notation

X± : [−δ0, δ0]× [0, µ̃0]× [0, T ]→
⋃

t∈[0,T ]
ΩC±
t : (r, z, t) 7→ X(r,±1∓ 1

sinα [z + cosα r], t)

and X± := (X±, prt). Here note that (X±(., t))−1 = (r, z±α )(., t). Furthermore, we set X±0 :=
X±(0, ., .) and X±0 := X

±(0, ., .). Moreover, let

J±t (r, z) := |detD(r,z)X
±(r, z, t)| = Jt

(
r,±1∓ 1

sinα [z + cosα r]
) 1

sinα,

h̃±j,α(r, z, t) := hj,α(±1∓ 1
sinα [z + cosα r], t)

for (r, z, t) ∈ [−δ0, δ0]× [0, µ̃0]× [0, T ] and j = 1, 2 as well as h̃±ε,α := h̃±1,α + εh̃±2,α. Integrals over
ΩC±
t can be transformed to (−δ0, δ0) × (0, µ̃0) via X±(., t) for t ∈ [0, T ], where the determinant

factor is given by J±t . Hereby ρε,α(., t) transforms to

ρε,α|X±(r,z,t) =
r − εh̃±ε,α(r, z, t)

ε
.
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After applying the Fubini Theorem we can use the results from the 1D-preliminaries in [M2], Section
6.1, for fixed z. We set r±ε,z,t : [−δ0, δ0] → R : r 7→ r − εh̃±ε,α(r, z, t) for all z ∈ [0, µ̃0] and
t ∈ [0, T ]. Then due to [M2], Section 6.1.1, the map

F±ε,z,t : 1
ε
r±ε,z,t([−δ0, δ0])→ [−δ0, δ0] : ρ 7→ (r±ε,z,t)−1(ερ)

is well-defined for all z, t as above if ε ∈ (0, ε0] for some ε0 > 0 independent of z, t. Finally, we set
J̃±ε,z,t := J±t (F±ε,z,t(.), z) for z ∈ [0, µ̃0] and t ∈ [0, T ].

Now we characterize the splitting of H̃1(ΩC±
t ).

Lemma 6.7. Let H̃1(ΩC±
t ), V̂ ±ε,t and Ĥ1(0, µ̃0) be as in (6.4)-(6.6). Then

1. V̂ ±ε,t is a subspace of H̃1(ΩC±
t ) and for ε0 > 0 small there are c1, C1 > 0 such that

c1‖a‖L2(0,µ̃0) ≤ ‖φ‖L2(ΩC±t ) ≤ C1‖a‖L2(0,µ̃0)

for all φ = a(z±α (., t))φAε,α(., t) ∈ V̂ ±ε,t and ε ∈ (0, ε0], t ∈ [0, T ].

2. Let (V̂ ±ε,t)⊥ be the L2-orthogonal complement of V̂ ±ε,t in H̃1(ΩC±
t ). Then for ψ ∈ H̃1(ΩC±

t ):

ψ ∈ (V̂ ±ε,t)⊥ ⇔
∫ δ0

−δ0
(φAε,α(., t)ψ)|X±(r,z,t)J

±
t (r, z) dr = 0 for a.e. z ∈ (0, µ̃0).

Additionally, H̃1(ΩC±
t ) = V̂ ±ε,t ⊕ (V̂ ±ε,t)⊥ for every ε ∈ (0, ε0] if ε0 > 0 is small.

Proof. Ad 1. Analogously to the case α = π
2 it follows that a(z±α (., t)) ∈ H1(ΩC±

t ) for all a ∈
H1(0, µ̃0), cf. the proof of [AM], Lemma 4.6. Therefore V̂ ±ε,t is a subspace of H̃1(ΩC±

t ). Now
we show the norm equivalence for ε ∈ (0, ε0] and ε0 > 0 small. To this end we consider ψ =
a(z±α (., t))φAε,α(., t) ∈ V̂ ±ε,t. Then the transformation rule and Fubini’s Theorem imply

‖ψ‖2
L2(ΩC±t ) =

∫ µ̃0

0
a(z)2

∫ δ0

−δ0
(φAε,α|X±(r,z,t))

2J±t (r, z) dr dz. (6.9)

The leading order term with respect to ε in the inner integral is 1
εq
±(z, t)2 times∫ δ0

−δ0
(∂ρvα)2|(ρε,α|

X
±(r,z,t)

, z
ε

)J
±
t |(r,z) dr =

∫
rε,z,t([−δ0,δ0])/ε

( d
dρ
F±ε,z,t)|ρ(∂ρvα)2|(ρ, z

ε
)J̃
±
ε,z,t|ρ dρ,

where we used the transformation in [M2], Lemma 6.5, 1. Because of [M2], Remark 6.4, 2., the
decay of ∂ρvα, the estimate 0 < d

dρF
±
ε,z,t = εO(1) due to [M2], Lemma 6.5, Remark 4.6 and

c ≤ J, q± ≤ C for some c, C > 0, it follows that the above integral can be estimated from above and
below by constants c̃, C̃ > 0 independent of t ∈ [0, T ], ε ∈ (0, ε0] provided that ε0 = ε0(C0) > 0
is small. For the remainder in the inner integral in (6.9) we use [M2], Lemma 6.5, and obtain an
estimate of the absolute value to Cε. For ε0 > 0 small this shows the claim. 1.

Ad 2. Let t ∈ [0, T ] be fixed. By definition it holds

(V̂ ±ε,t)⊥ =
{
ψ ∈ H̃1(ΩC±

t ) :
∫

ΩC±t
ψa(z±α (., t))φAε,α(., t) dx = 0 for all a ∈ Ĥ1(0, µ̃0)

}
.

The integral equals
∫ µ̃0

0 a(z)
∫ δ0
−δ0(φAε,α(., t)ψ)|X±(r,z,t)J

±
t (r, z) dr dz. Hence the Fundamental The-

orem of Calculus of Variations yields the characterization. Moreover, by definition it holds V̂ ±ε,t ∩
(V̂ ±ε,t)⊥ = {0}. It is left to show V̂ ±ε,t + (V̂ ±ε,t)⊥ = H̃1(ΩC±

t ). Due to the proof of the first part this
follows analogously as in the case α = π

2 , cf. the proof of [AM], Lemma 4.6., 2. 2.

41



6. SPECTRAL ESTIMATE FOR (ACα) IN 2D

6.5 Analysis of the Bilinear Form
First we consider B±ε,t on V̂ ±ε,t × V̂ ±ε,t.

Lemma 6.8. There are ε0, C > 0 such that

B±ε,t(φ, φ) ≥ −C‖φ‖2
L2(ΩC±t ) + c‖a‖2H1(0,µ̃0), c := 1

2‖θ
′
0‖2L2(R)

for all φ = a(z±α (., t))φAε,α(., t) ∈ V̂ ±ε,t and ε ∈ (0, ε0], t ∈ [0, T ].

Proof. Consider φ as in the lemma. With the analogous computation as in the case α = π
2 , cf. the

proof of [AM], Lemma 4.7, it follows that

B±ε,t(φ, φ) =
∫

ΩC±t
|∇(a(z±α ))φAε,α|2|(.,t) dx+

∫
ΩC±t

(a2(z±α )φAε,α)|(.,t)L±ε,tφAε,α|(.,t) dx

+
∫
∂ΩC±t

[
N±ε,tφAε,α|(.,t) tr(a2(z±α )φAε,α|(.,t))

]
dH1 =: (I) + (II) + (III).

Ad (I). It holds |∇(a(z±α (., t)))|2 =
[
|∇z±α |2(a′)2(z±α )

]
|(.,t) and therefore

(I) =
∫ µ̃0

0
(a′)2(z)

∫ δ0

−δ0

[
|∇z±α |2(φAε,α)2

]
|
X
±(r,z,t)J

±
t (r, z) dr dz.

Note that |∇z±α |2|X±(0,z,t) = 1 and J±t (0, t) = 1 due to Remark 3.1, Theorem 3.2, Remark 3.3, 3. and
(5.6). Therefore the Taylor Theorem yields that these terms are 1 +O(|r|). Moreover, Remark 4.6
yields

∫
R(∂ρvα)2(ρ, Z) dρ ≥ 3

4‖θ
′
0‖2L2(R) for Z ≥ 0. With transformations and remainder estimates

in [M2], Lemma 6.5, exponential decay estimates as well as [M2], Remark 6.4, 2. it follows that the
inner integral in (I) is estimated from below by 2

3‖θ
′
0‖2L2(R) for all ε ∈ (0, ε0], t ∈ [0, T ], if ε0 > 0 is

small.

Ad (II). It holds

(II) =
∫ µ̃0

0
a2(z)

∫ δ0

−δ0
φAε,α|X±(r,z,t)(L

±
ε,tφ

A
ε,α(., t))|X±(r,z,t)J

±
t (r, z) dr dz.

We estimate the inner integral. Lemma 6.6 implies∣∣∣∣√εL±ε,tφAε,α(., t))|X±(r,z,t) + 1
ε

[∆r|
X
±
0 (z,t)q

±|(z,t) − 2 cosα∂zq±|(z,t)]∂2
ρvα(ρε,α|X±(r,z,t),

z

ε
)
∣∣∣∣

≤ Ce−c|ρε,α(X±(r,z,t))| for (r, z) ∈ [−δ0, δ0]× [0, µ̃0].

Using [M2], Lemma 6.5,
∫
R(∂2

ρvα∂ρvα)(ρ, Z) dρ = 0 for all Z ≥ 0 due to integration by parts and
Jt(r, z) = Jt(0, z) +O(|r|), we obtain |(II)| ≤ C‖a‖2L2(0,µ̃0) with C > 0 independent of φ ∈ V̂ ±ε,t
and all ε ∈ (0, ε0], t ∈ [0, T ] if ε0 > 0 is small.

Ad (III). The representation for line integrals and properties of the trace operator imply

(III) =
∑
±

∫ µ̃0

0
a2(z)

[
φAε,αN±ε,tφAε,α

]
|
X
±(±δ0,z,t)

|∂zX±(±δ0, z, t)| dz

+ a2(0)
∫ δ0

−δ0

[
φAε,αN±ε,tφAε,α

]
|
X
±(r,0,t)|∂rX

±(r, 0, t)| dr.
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Using Lemma 6.6 and for the last integral [M2], Lemma 6.5, we obtain

|(III)| ≤ Ce−c/ε‖a‖2L2(0,µ̃0) + Cεa2(0).

Due to H1(0, µ̃0) ↪→ C0
b ([0, µ̃0]), the claim follows with Lemma 6.7, 1.

Next we analyze B±ε,t on (V̂ ±ε,t)⊥ × (V̂ ±ε,t)⊥. To this end we need the following auxiliary lemma:

Lemma 6.9. There is a C2 > 0 independent of Ω,Γ, α ∈ π
2 + [−α0, α0] and some δ̃0 > 0 with

‖trψ‖2
L2(∂Ω∩∂ΩC±

t,δ
) ≤ C2

[
‖ψ‖2

L2(ΩC±
t,δ

) + ‖∇τψ‖L2(ΩC±
t,δ

)‖ψ‖L2(ΩC±
t,δ

)

]
,

‖∇τψ‖L2(ΩC±
t,δ

) ≤ 2‖∇ψ‖L2(ΩC±
t,δ

)

for all ψ ∈ H1(ΩC±
t,δ ) and t ∈ [0, T ], δ ∈ (0, δ̃0], where ΩC±

t,δ := ΩC±
t ∩ Γt(δ).

Proof. The proof is analogous to the one of Lemma 6.4, but we have to be careful in order to obtain
constants independent of Ω,Γ and α ∈ π

2 + [−α0, α0]. Note that with S from the proof of Lemma
6.4 the first estimate for S ∩ [(−δ, δ)× R], S±δ,α, ∂s instead of ΩC±

t,δ , ∂Ω ∩ ∂ΩC±
t,δ ,∇τ holds with a

uniform constant independent of α ∈ π
2 + [−α0, α0]. This follows as in the proof of Lemma 6.4

since ~w can be chosen in a uniform way for all those α. Moreover,∫
∂Ω∩∂ΩC±

t,δ

|trψ|2 dH1 =
∫
S±
δ,α

|trψ|2|X(.,t)|det d.(X(., t)|S±
δ,α

)| dH1.

Let γ± : (−δ, δ)→ S±δ,α : r 7→ (r, s±(r)) with s± as in (3.2). It holds∣∣∣∣∣dγ±(r)[X(., t)|S±
δ,α

]
(

(γ±)′(r)
|(γ±)′(r)|

)∣∣∣∣∣ = 1
|(γ±)′(r)| |∂rX

±(r, 0, t)|

and |∂rX±(r, 0, t)| = |∂rX±(0, 0, t)|+O(|r|), where

∂rX
±(0, 0, t) = D(r,s)X|(0,t)

(
1

∓ cosα/ sinα

)
= Id · (γ±)′(r)

due to Remark 3.1 and Theorem 3.2. This shows | det d.(X(., t)|S±
δ,α

)| ≤ 1 + C(Γ)δ. Additionally,

integrals over S ∩ [(−δ, δ)× R] are transformed to ΩC±
t,δ via X(., t) with the determinant factor Jt,

where Jt(r, s) = 1 +O(|δ|) in ΩC±
t,δ because of Remark 3.1 and Remark 3.3, 3. Altogether we obtain

the first estimate. For the second one we use |∇s|2 = 1 +O(|δ|) in ΩC±
t,δ due to Remark 3.1 and

|∇ψ|2|X(.,t) ≥ (1− C(Γ)δ)∂s(ψ|X(.,t))2 in ΩC±
t,δ .

The latter follows from Theorem 3.2, a Taylor expansion and Young’s inequality.

Lemma 6.10. There are α̂0, ν > 0 independent of Ω,Γ such that, if α ∈ π
2 + [−α̂0, α̂0], then there

is an ε0 > 0 such that for all ψ ∈ (V̂ ±ε,t)⊥ and ε ∈ (0, ε0], t ∈ [0, T ] it holds

B±ε,t(ψ,ψ) ≥ ν
[ 1
ε2 ‖ψ‖

2
L2(ΩC±t ) + ‖∇ψ‖2

L2(ΩC±t )

]
.
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Proof. First we prove that it is sufficient to show the existence of α̃0, ν̃ > 0 independent of Ω,Γ, α
and the existence of some ε̃0 > 0 such that if α ∈ π

2 + [−α̃0, α̃0], then

B̃±ε,t(ψ,ψ) :=
∫

ΩC±t
|∇ψ|2 + 1

ε2 f
′′(θ0|ρε,α(.,t))ψ2 dx ≥ ν̃

ε2 ‖ψ‖
2
L2(ΩC±t ) (6.10)

for all ψ ∈ (V̂ ±ε,t)⊥ and ε ∈ (0, ε̃0], t ∈ [0, T ]. In order to show with (6.10) the estimate in the
lemma note that due to Remark 4.6 and Definition 1.1 there is a C > 0 independent of Ω,Γ and
α ∈ π

2 + [−α0, α0] such that

|f ′′(vα(ρ, Z))− f ′′(θ0(ρ))| ≤ C|α− π

2 | for all (ρ, Z) ∈ R2
+ and |σ′′α|+ |σ′′′α | ≤ C|α−

π

2 |.

Moreover, to control the 1
εσ
′′
α-term in B±ε,t we use Lemma 6.9 and σ′′α(vα(ρε,α(., t), 0)) = 0 in

ΩC±
t \ Γ(δ̃0) for ε small because of Definition 1.1 and Remark 4.6, where δ̃0 is as in Lemma 6.9. For

the σ′′′α -term we use Lemma 6.4. Therefore |B±ε,t(ψ,ψ)− B̃±ε,t(ψ,ψ)| is estimated by

C|α− π
2 |+ Cε

ε2 ‖ψ‖2
L2(ΩC±t ) +

2C C2|α− π
2 |+ Cε

ε
‖ψ‖L2(ΩC±t )‖∇ψ‖L2(ΩC±t )

for all ψ ∈ (V̂ ±ε,t)⊥ and ε ∈ (0, ε0], t ∈ [0, T ] if ε0 > 0 is small. Let α ∈ π
2 + [−α̃0, α̃0]. Then for

β ∈ (0, 1) it follows with Young’s inequality that

B±ε,t(ψ,ψ) ≥ (1− β + β)B̃±ε,t(ψ,ψ)− |B±ε,t(ψ,ψ)− B̃±ε,t(ψ,ψ)|

≥
(1− β)ν̃ − β supR |f ′′(θ0)| − C (C2 + 1)|α− π

2 | − Cε
ε2 ‖ψ‖2

L2(ΩC±t )

+ (β − C C2|α−
π

2 | − Cε)‖∇ψ‖
2
L2(ΩC±t )

for all ψ ∈ (V̂ ±ε,t)⊥ and ε ∈ (0, ε0], t ∈ [0, T ]. We choose β := 1
4 min{1, ν̃/ supR |f ′′(θ0)|} and then

α̂0 > 0 small such that

ν̃

2 − C (C2 + 1)α̂0 ≥
ν̃

4 and β − C C2α̂0 ≥
β

2 .

Therefore the claim follows with ν := min{ ν̃8 ,
β
4 } provided that ε0 > 0 is small.

In the following we prove (6.10) with similar ideas as in the case α = π
2 , cf. the proof of

[AM], Lemma 4.8. Let ψ̃±t := ψ|X±(.,t) for ψ ∈ (V̂ ±ε,t)⊥. Because of the chain rule we obtain
∇ψ|X±(.,t) = ∇r|

X
±(.,t)∂rψ̃

±
t +∇z±α |X±(.,t)∂zψ̃

±
t and therefore

|∇ψ|2|X±(.,t) = (∇(r,z)ψ̃
±
t )>

(
|∇r|2 ∇r · ∇z±α
∇r · ∇z±α |∇z±α |2

)
|
X
±(.,t)∇(r,z)ψ̃

±
t ,

where |∇r|2 = 1 +O(|r|2), |∇r · ∇z±α | = | cosα|+O(|r|) and |∇s|2 = 1 +O(|r|) due to Remark
3.1, Theorem 3.2 and Taylor’s Theorem. Therefore Young’s inequality yields

|∇ψ|2|X±(.,t) ≥ (1− C3|α−
π

2 | − C|r|)
[
(∂rψ̃±t )2 + (∂zψ̃±t )2

]
(6.11)
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with C3 > 0 independent of Ω,Γ and α ∈ π
2 + [−α0, α0]. To get C|r| small enough (which will be

precise later), we fix δ̃ > 0 small and estimate separately for r in

I±,εz,t := (r±ε,z,t)−1[(−δ̃, δ̃)] and Î±,εz,t := (−δ0, δ0) \ I±,εz,t . (6.12)

If ε0 = ε0(δ̃, C0) > 0 is small, then for all ε ∈ (0, ε0] and z ∈ [0, µ̃0], t ∈ [0, T ] it holds

f ′′(θ0(ρε,α|X±(r,z,t))) ≥ c0 := 1
2 min{f ′′(±1)} > 0 for r ∈ Î±,εz,t , |r| ≤ 2δ̃ for r ∈ I±,εz,t

where we used [M2], Remark 6.4, 2. for the first estimate and [M2], Lemma 6.2, 1. for the second
one. With C3, C as in (6.11) we define c̃ = c̃(α, δ̃) := C3|α− π

2 |+ 2Cδ̃. For ε ∈ (0, ε0], t ∈ [0, T ]
we get

B̃±ε,t(ψ,ψ) ≥
∫ µ̃0

0

∫
Î±,εz,t

c0
ε2 (ψ̃±t )2J±t |(r,z) dr dz +

∫ µ̃0

0

∫
I±,εz,t

(1− c̃)(∂zψ̃±t )2J±t |(r,z) dr dz

+
∫ µ̃0

0

∫
I±,εz,t

[
(1− c̃)(∂rψ̃±t )2 + 1

ε2 f
′′(θ0(ρε,α|X±(.,t)))(ψ̃

±
t )2

]
J±t |(r,z) dr dz.

We use the notation from the beginning of Section 6.4. The transformation in [M2], Lemma
6.5, 1. yields that the inner integral in the second line equals 1/ε2 times

B±,c̃ε,z,t(Ψ±ε,z,t,Ψ±ε,z,t) :=
∫
Iε,δ̃

[
(1− c̃)( d

dz
Ψ±ε,z,t)2 + f ′′(θ0(z))(Ψ±ε,z,t)2

]
J̃±ε,z,t dz, (6.13)

where we set Iε,δ̃ := (− δ̃
ε ,

δ̃
ε) and Ψ±ε,z,t :=

√
εψ̃±t (F±ε,z,t(.), z). Hence (6.10) follows if we show for

α̃0 > 0 small independent of Ω,Γ and δ̃ > 0 small, that c̃ ≤ 1 and with the c0 from above

B±,c̃ε,z,t(Ψ±ε,z,t,Ψ±ε,z,t) ≥ ν‖Ψ±ε,z,t‖2L2(Iε,δ̃,J̃
±
ε,z,t)
− c0

2 ‖ψ̃
±
t (., z)‖2

L2(Î±,εz,t ,J
±
t (.,z)) (6.14)

for ε ∈ (0, ε0], a.e. z ∈ [0, µ̃0] and all t ∈ [0, T ] with some ε0 > 0 independent of ε, z, t and ν > 0
independent of Ω,Γ, α, δ̃, ε0, ε, z, t provided that α ∈ π

2 + [−α̃0, α̃0].
Here L2(Iε,δ̃, J̃

±
ε,z,t) is the space of L2-functions on Iε,δ̃ with respect to the weight J̃±ε,z,t. We

denote the scalar-product in L2(Iε,δ̃, J̃
±
ε,z,t) by (., .)ε,z,t and the norm with ‖.‖ε,z,t. For the proof

of (6.14) we need properties of B±,0ε,z,t. The latter is defined as in (6.13) with c̃ replaced by 0. With
respect to (., .)ε,z,t, B±,0ε,z,t is the bilinear form associated to

L±,0ε,z,t := −(J̃±ε,z,t)−1 d

dz

(
J̃±ε,z,t

d

dz

)
+ f ′′(θ0)

on H2(Iε,δ̃) with homogeneous Neumann boundary condition. In this situation we can apply the
results in [M2], Section 6.1.3.2 on spectral properties for perturbed 1D Allen-Cahn-type operators, in
particular [M2], Theorem 6.8.

Proof of (6.14). The integral characterization for ψ ∈ (V̂ ±ε,t)⊥ in Lemma 6.7, 2. yields∣∣∣∣∣
∫
I±,εz,t

(φAε,α(., t)ψ)|X±(r,z,t)J
±
t (r, z) dr

∣∣∣∣∣ ≤ C(δ̃)e−cδ̃/ε‖ψ̃±t (., z)‖L2(Î±,εz,t ,J
±
t (.,z))
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for ε small, a.e. z ∈ [0, µ̃0] and all t ∈ [0, T ]. The lowest order term in the integral is

1√
ε
q±(z, t)

∫
I±,εz,t

∂ρvα(ρε,α|X±(r,z,t),
z

ε
)(ψ̃±t J±t )(r, z) dr = q±(z, t)(Ψ±ε,z,t, ∂ρvα(., z

ε
))ε,z,t.

The remaining term in the integral due to φAε,α can be estimated with the Hölder inequality, the decay
of v̂C±1 and [M2], Lemma 6.5, by Cε‖Ψ±ε,z,t‖ε,z,t. Moreover, due to Remark 4.6 it holds

|∂ρvα(ρ, Z)− θ′0(ρ)| ≤ C4|α−
π

2 |e
−β0|ρ| for all (ρ, Z) ∈ R2

+

and some C4 > 0 independent of Ω,Γ, α. Together with

J̃±ε,z,t(ρ) = Jt(F±ε,z,t(ρ), z) = Jt(0, z) +O(|F±ε,z,t(ρ)|) = 1 +O(ε(|ρ|+ C))

because of Remark 3.1, Remark 3.3, 3. and [M2], Corollary 6.3, we obtain

|(Ψ±ε,z,t, ∂ρvα(., z
ε

))ε,z,t − (Ψ±ε,z,t, θ′0)ε,z,t| ≤ (C4|α−
π

2 |+ Cε)‖Ψ±ε,z,t‖ε,z,t

for some C4 > 0 independent of Ω,Γ, α. Using 0 < 1
2 ≤ q

± ≤ 2 we obtain altogether

|(Ψ±ε,z,t, θ′0)ε,z,t| ≤ (C4|α−
π

2 |+ Cε)‖Ψ±ε,z,t‖ε,z,t + C(δ̃)e−cδ̃/ε‖ψ̃±t (., z)‖L2(Î±,εz,t ,J
±
t (.,z))

for ε small. [M2], Theorem 6.8, 2. and uniform bounds for q±, J±t yield for the positive normalized
eigenfunction Ψ±,1ε,z,t to the first eigenvalue λ±,1ε,z,t of L±,0ε,z,t the estimate

|(Ψ±ε,z,t,Ψ
±,1
ε,z,t)ε,z,t| ≤ (C4|α−

π

2 |+ C(δ̃)ε)‖Ψ±ε,z,t‖ε,z,t

+ C(δ̃)e−cδ̃/ε‖ψ̃±t (., z)‖L2(Î±,εz,t ,J
±
t (.,z))

(6.15)

for a.e. z ∈ [0, µ̃0], all t ∈ [0, T ] and ε ∈ (0, ε0], if ε0 > 0 is small.
With the analogous computation as in the case α = π

2 , cf. the proof of (4.10) in [AM], it follows
from [M2], Theorem 6.8, 1. and 3. that, if c̃(α, δ̃) = C3|α− π

2 |+ 2Cδ̃ ≤ 1, then it holds

B±,c̃ε,z,t(Ψ±ε,z,t,Ψ±ε,z,t) ≥ ‖Ψ±ε,z,t‖2ε,z,t

[
ν2(1− c̃(α, δ̃))− c̃(α, δ̃) sup

ρ∈R
|f ′′(θ0(ρ))|

]

−(1− c̃(α, δ̃))(O(ε2) + ν2)
∣∣∣(Ψ±ε,z,t,Ψ±,1ε,z,t)ε,z,t

∣∣∣2
for a.e. z ∈ [0, µ̃0], all t ∈ [0, T ] and ε ∈ (0, ε0] if ε0 = ε0(δ̃, C0) > 0 is small. We combine this
with (6.15) in order to show (6.14). Note that ν2 from [M2], Theorem 6.8, does not depend on α, δ̃.
Therefore we can first choose α̃0 > 0 small such that

C3α̃0 ≤
1
4 , (ν2 + sup

ρ∈R
|f ′′(θ0(ρ))|)C3α̃0 ≤

ν2
4 and

1
2C

2
4α̃

2
0 ≤

1
4 .

Note that this can be achieved independent of Ω,Γ. Then let δ̃ > 0 be small such that

2Cδ̃ ≤ 1
2 and (ν2 + sup

ρ∈R
|f ′′(θ0(ρ))|)2Cδ̃ ≤ ν2

4 .

These estimates imply c̃(α, δ̃) ≤ 1
2 and that the term in the square brackets above is estimated from

below by ν2
2 . Finally, we can choose ε0 > 0 small such that (6.14) holds with ν = ν2

8 . Finally,
altogether we have proven Lemma 6.10.
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For B±ε,t on V̂ ±ε,t × (V̂ ±ε,t)⊥ we obtain

Lemma 6.11. There is an α0 > 0 independent of Ω,Γ such that, if α ∈ π
2 + [−α0, α0], then there

are ε0, C > 0 such that

|B±ε,t(φ, ψ)| ≤ C

ε
‖φ‖L2(ΩC±t )‖ψ‖L2(ΩC±t ) + 1

4B
±
ε,t(ψ,ψ) + ( c4 + Cε2)‖a‖2H1(0,µ̃0)

for all φ = a(z±α (., t))φAε,α(., t) ∈ V̂ ±ε,t, ψ ∈ (V̂ ±ε,t)⊥ and ε ∈ (0, ε0], t ∈ [0, T ], where the constant
c = 1

2‖θ
′
0‖2L2(R) is as in Lemma 6.8.

Proof. Analogously as in the case α = π
2 , cf. the proof of [AM], Lemma 4.10, we have

B±ε,t(φ, ψ) =
∫

ΩC±t
a(z±α )|(.,t)ψL±ε,tφAε,α|(.,t) dx+

∫
∂ΩC±t

N±ε,tφAε,α|(.,t)tr
[
a(z±α (., t))ψ

]
dH1

+
∫

ΩC±t
∇(a(z±α ))|(.,t) ·

[
φAε,α|(.,t)∇ψ −∇φAε,α|(.,t)ψ

]
dx =: (I) + (II) + (III).

Ad (I). It holds |(I)| ≤ ‖a(z±α |(.,t))L±ε,tφAε,α(., t)‖L2(ΩC±t )‖ψ‖L2(ΩC±t ) because of the Hölder In-
equality, where

‖a(z±α |(.,t))L±ε,tφAε,α|(.,t)‖2L2(ΩC±t ) =
∫ µ̃0

0
a2(z)

∫ δ0

−δ0
(L±ε,tφAε,α(., t))2|X±(r,z,t) J

±
t (r, z) dr dz.

Analogously to the case α = π
2 , cf. the proof of [AM], Lemma 4.10, we obtain from Lemma 6.6 that

(L±ε,tφAε,α|(.,t))2 is estimated by

1
ε3

∣∣∣[∆r|X0(s(.,t),t)q
±|(z±α (.,t),t)−2 cosα∂zq±|(z±α (.,t),t)]∂

2
ρvα|(ρε,α(.,t),Z±ε,α(.,t))

∣∣∣2+ C̃

ε2 e
−c|ρε,α(.,t)|.

Therefore [M2], Lemma 6.5, implies that the inner integral above is estimated by C/ε2 and because
of Lemma 6.7, 1. we get

|(I)| ≤ C

ε
‖a‖L2(0,µ̃0)‖ψ‖L2(ΩC±t ) ≤

C̃

ε
‖φ‖L2(ΩC±t )‖ψ‖L2(ΩC±t )

for all t ∈ [0, T ] and ε ∈ (0, ε0] provided that ε0 > 0 is small.

Ad (II). Because of Hölder’s inequality we obtain

|(II)| ≤ ‖trψ‖L2(∂ΩC±t )‖tr(a(z±α |(.,t)))N±ε,tφAε,α|(.,t)‖L2(∂ΩC±t ).

For the second integral we use the representation of integrals over curves, cf. also the estimate of
(III) in the proof of Lemma 6.8. Then Lemma 6.6 and [M2], Lemma 6.5, yield

‖a(z±α )N±ε,tφAε,α|(.,t)‖L2(∂ΩC±t ) ≤ Cε|a(0)|+ Ce−c/ε‖a‖L2(0,µ̃0) ≤ Cε‖a‖H1(0,µ̃0).

We estimate ‖trψ‖L2(∂ΩC±t ) with Lemma 6.4. Then Young’s inequality and Lemma 6.10 imply

|(II)| ≤ ν

8εC1
‖trψ‖2

L2(∂ΩC±t ) + C̃ε3‖a‖2H1(0,µ̃0) ≤
1
8B
±
ε,t(ψ,ψ) + C̃ε3‖a‖2H1(0,µ̃0),

where C1 is as in Lemma 6.4.
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Ad (III). We proceed in the analogous way as in the case α = π
2 , cf. the estimate of (III) in the

proof of [AM], Lemma 4.10. However, there are some new terms due to∇r · ∇z±α and since ∂ρvα
depends on Z. It holds (III) =

∫ µ̃0
0 a′(z)g±t (z) dz with

g±t (z) :=
∫ δ0

−δ0
∇z±α |X±(r,z,t) ·

[
φAε,α(., t)∇ψ −∇φAε,α(., t)ψ

]
|X±(r,z,t) J

±
t (r, z) dr.

We insert ∇ψ|X±(.,t) = ∇r|
X
±(.,t)∂rψ̃

±
t +∇z±α |X±(.,t)∂zψ̃

±
t with ψ̃±t := ψ|X±(.,t). For the ∂zψ̃±t -

term in g±t we use |∇z±α |2|X±(r,z,t) = 1 +O(|r|) due to Remark 3.1 and Theorem 3.2. Therefore

|g±t (z)| is for a.e. z ∈ [0, µ̃0] and all t ∈ [0, T ] estimated by∣∣∣∣∣
∫ δ0

−δ0

[
φAε,α|X±(.,t)∂zψ̃

±
t J
±
t

]
|(r,z) dr

∣∣∣∣∣+
∫ δ0

−δ0

∣∣∣(ψ̃±t J±t )|(r,z)∇z±α · ∇φAε,α|X±(r,z,t)

∣∣∣ dr
+
∫ δ0

−δ0

[
C
∣∣∣r ∂zψ̃±t |(r,z)∣∣∣+ ∣∣∣∇r · ∇z±α |X±(r,z,t)∂rψ̃

±
t |(r,z)

∣∣∣] · ∣∣∣φAε,α|X±(r,z,t)J
±
t |(r,z)

∣∣∣ dr.
We use ψ ∈ (V̂ ±ε,t)⊥ to rewrite the first term. With the properties of Sobolev spaces on product sets,
cf. [M2], Lemma 2.10, and since integration yields a bounded linear operator on L2(−δ, δ), we can
differentiate the identity in Lemma 6.7, 2. and use the product rule. Hence the first term is estimated
by ∣∣∣∣∣

∫ δ0

−δ0

[(
∂z(φAε,α|X±(.,t))J

±
t + φAε,α|X±(.,t)∂zJ

±
t

)
ψ̃±t

]
|(r,z) dr

∣∣∣∣∣ .
Now we use the structure of φAε,α. In (6.8) we computed∇φAε,α in ΩC±

t . Moreover, it holds

√
ε∂z(φAε,α|X±) = −∂zh̃±ε

[
q±|(z±α ,t)∂

2
ρvα|(ρε,α,Z±ε,α) + ε∂ρv̂

C±
1 |(ρε,α,Z±ε,α,t)

]
|
X
± (6.16)

+
[
∂zq
±|(z±α ,t)∂ρvα|(ρε,α,Z±ε,α) + 1

ε
q±|(z±α ,t)∂Z∂ρvα|(ρε,α,Z±ε,α) + ∂Z v̂

C±
1 |(ρε,α,Z±ε,α,t)

]
|
X
±

for all (r, z) ∈ [−δ0, δ0]× [0, µ̃0]. Consider the estimate for |g±t (z)| after inserting φAε,α, ∇φAε,α and
∂z(φAε,α|X±). There are four new critical terms compared to the case α = π

2 , cf. the estimate of (III)
in the proof of [AM], Lemma 4.10. First, from ∂z(φAε,α|X±(.,t)) there is the contribution

1
ε3/2 |q

±|(z,t)|
∣∣∣∣∣
∫ δ0

−δ0
∂Z∂ρvα|(ρε,α(X±(.,t)), z

ε
)[ψ̃
±
t J
±
t ](r, z) dr

∣∣∣∣∣ .
Moreover, due to |∇z±α |2 = 1+O(|r|) and∇r·∇z±α = − cosα+O(|r|) we get from the∇φAε,α-term
the two remainders

1
ε3/2 |q

±(z, t)|
∫ δ0

−δ0

[
|∂Z∂ρvα|(ρε,α(X±(.,t)), z

ε
)|+ | cosα∂ρvα|(ρε,α(X±(.,t)), z

ε
)|
]
|ψ̃±t J±t |(r, z) dr.

Finally, the∇r · ∇z±α multiplied by ∂rψ̃±t yields the term

1√
ε
|q±(z, t)|

∫ δ0

−δ0
| cosα∂ρvα|(ρε,α(X±(.,t)), z

ε
)||∂rψ̃

±
t J
±
t |(r, z) dr.
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6.5 ANALYSIS OF THE BILINEAR FORM

For the ∂Z∂ρvα-terms we use

|∂Z∂ρvα(ρ, Z)| ≤ C|α− π

2 |e
−β0|ρ| for all (ρ, Z) ∈ R2

+

because of Remark 5.5, where C, β0 > 0 are independent of Ω,Γ, α. Moreover, we split the last
integral with ∂rψ̃±t as in the proof of Lemma 6.10, cf. (6.12), and we use (6.11). Note that with
α̂0 and δ̃ as in the proof of Lemma 6.10, the prefactor in (6.11) is contained in [1

2 , 1] provided that
α ∈ π

2 + [−α̂0, α̂0] and |r| ≤ 2δ̃. Therefore the Hölder Inequality, [M2], Lemma 6.5, Remark 4.6,
1
2 ≤ q

± ≤ 2 and J±t = 1 +O(|r|) yield

|g±t (z)| ≤ (1
ε
C5|α−

π

2 |+ C)
[
‖ψ̃±t (., z)‖L2(−δ0,δ0;J±t (.,z)) + ε‖∇ψ|X±(.,z)‖L2(−δ0,δ0;J±t (.,z))

]
for a.e. z ∈ [0, µ̃0] and some C5 > 0 independent of Ω,Γ and α ∈ π

2 + [−α̂0, α̂0]. Therefore the
Hölder Inequality and Young Inequality yield

|(III)| ≤ (C6|α−
π

2 |+ Cε2)‖a′‖2L2(0,µ̃0) + ν

8

[ 1
ε2 ‖ψ‖

2
L2(ΩC±t ) + ‖∇ψ‖2

L2(ΩC±t )

]
for some C6 > 0 independent of Ω,Γ, where ν is as in Lemma 6.10. The last term is dominated by
1
8B
±
ε,t(ψ,ψ) due to Lemma 6.10. Finally, we can choose α0 > 0 small independent of Ω,Γ such that

C6α0 ≤ c
4 , where c is as in Lemma 6.8. This shows the claim.

Finally, we combine Lemma 6.8-6.11.

Theorem 6.12. There is an α0 > 0 independent of Ω,Γ such that, if α ∈ π
2 + [−α0, α0], then there

are ε0, C, c0 > 0 such that for all ε ∈ (0, ε0], t ∈ [0, T ] and ψ ∈ H1(ΩC±
t ) with ψ(x) = 0 for

a.e. x ∈ ΩC±
t with z±α (x, t) ≥ µ̂0 it holds

B±ε,t(ψ,ψ) ≥ −C‖ψ‖2
L2(ΩC±t ) + c0ε‖∇τψ‖2L2(ΩC±t ).

Remark 6.13. 1. In the proof below the estimate is slightly better.

2. Theorem 6.12 directly implies Theorem 6.3, cf. the inception of Section 6.2.

Proof of Theorem 6.12. Let t ∈ [0, T ] and ψ ∈ H̃1(ΩC±
t ). Due to Lemma 6.7 we can uniquely write

ψ = φ+ φ⊥ with φ = [a(z±α )φAε,α]|(.,t) ∈ V̂ ±ε,t and φ⊥ ∈ (V̂ ±ε,t)⊥.

Analogously to the case α = π
2 , cf. the proof of [AM], Theorem 4.11 we obtain from Lemma

6.8, Lemma 6.11 and Lemma 6.10 that there are C, ε0 > 0 independent of ψ, ε, t such that for all
ε ∈ (0, ε0] it holds

B±ε,t(ψ,ψ) ≥ −C‖φ‖2
L2(ΩC±t ) + ν

4ε2 ‖φ
⊥‖2

L2(ΩC±t ) + c

4‖a‖
2
H1(0,µ̃0) + ν

2‖∇(φ⊥)‖2
L2(ΩC±t ).

It remains to include the∇τψ-term in the estimate. By the triangle inequality we have

‖∇τψ‖L2(ΩC±t ) ≤ ‖∇τφ‖L2(ΩC±t ) + ‖∇τ (φ⊥)‖L2(ΩC±t ).
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Theorem 3.2 yields ‖∇τ (φ⊥)‖L2(ΩC±t ) ≤ C‖∇(φ⊥)‖L2(ΩC±t ). Moreover, by definition

∇τψ|X(r,s,t) = ∇s|X(r,s,t)∂s(φ|X(r,s,t)) = ∇s|X(r,s,t)∂s(a(z±α |X(r,s,t))φAε,α|X(r,s,t)).

Note that ∂s(z±α |X(r,s,t)) = ∓ sinα due to the definition (5.6) of z±α and therefore

√
ε∂s(φAε,α|X) = (∓ sinα)∂zq±(z±α |X , t)∂ρvα(ρε,α, Z±ε,α)|X

+ q±(z±α |X , t)
[
−∂shε,α∂2

ρvα(ρε,α, Z±ε,α)|X + ∓ sinα
ε

∂Z∂ρvα(ρε,α, Z±ε,α)|X
]

+ ε

[
−∂shε,α∂ρv̂C±1 (ρε,α, Z±ε,α, t)|X + ∓ sinα

ε
∂Z v̂

C±
1 (ρε,α, Z±ε,α, t)|X

]
,

where the hε,α-terms are evaluated at (s, t). We estimate all appearing terms in ‖∇τφ‖2L2(ΩC±t ) using

several times (d+ d̃)2 ≤ 2(d2 + d̃2) for d, d̃ ≥ 0. All terms are multiplied by a 1
ε -factor (or better)

except the 1
ε3 |∂Z∂ρvα|

2-term. Let us first estimate all terms except the latter one. We transform to
(r, z)-coordinates, use the Fubini Theorem and [M2], Lemma 6.5. Then these terms are controlled by
C‖a‖2H1(0,µ̃0). Now we consider the ∂Z∂ρvα-term. The latter is estimated by

C
1
ε3

∫ µ̃0

0
a2(z)

∫ δ0

−δ0
|∂Z∂ρvα(ρε,α|X±(r,z,t),

z

ε
)|2 dr dz. (6.17)

We use |a(z)| ≤ C‖a‖H1(0,µ̃0) for all z ∈ [0, µ̃0] due to the Fundamental Theorem and

|∂Z∂ρvα(ρ, Z)| ≤ Ce−β0|ρ|−γ0Z for all (ρ, Z) ∈ R2
+

because of Remark 5.5. Therefore [M2], Lemma 6.5, for the inner integral and another scaling
argument for the z-integral yields that (6.17) is estimated by C 1

ε‖a‖
2
H1(0,µ̃0). Finally, combining this

with the previous estimate for B±ε,t this yields the claim.

7 Difference Estimates and Proofs of the Convergence
Theorems

In this section we use a Gronwall-type argument in order to control the difference of the exact
and approximate solutions for (ACα). In the last Section 6 we proved a spectral estimate as a
preparation. Additionally, we have to estimate some nonlinear terms due to terms involving the
potential. Therefore as preparation we remark a uniform a priori bound for exact classical solutions
of (ACα) in Section 7.1.1. Moreover, we note some Gagliardo-Nirenberg estimates in Section 7.1.2.
Then in Section 7.2 we prove a difference estimate and we show Theorem 1.3.

7.1 Preliminaries
7.1.1 Uniform A Priori Bound for Classical Solutions of (ACα)

Let Ω, QT , ∂QT be as in Remark 1.2, 1. and ε > 0. We show uniform bounds for classical solutions
of (ACα). Let f satisfy (1.1) and R0 ≥ 1 such that the condition (1.2) for f ′ is fulfilled. Moreover,
let α ∈ (0, π) and σα : R→ R be smooth with suppσ′α ⊂ (−1, 1).
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Lemma 7.1. Let u0,ε,α ∈ C0(Ω) and uε,α ∈ C0(QT ) ∩ C1(Ω × (0, T ]) ∩ C2(Ω × (0, T ]) be a
solution of (ACα1)-(ACα3). Then

‖uε,α‖L∞(QT ) ≤ max{R0, ‖u0,ε,α‖L∞(Ω)}.

Proof. One can prove this via contradiction and ideas from the proof of the parabolic weak maximum
principle. See [M1], Lemma 7.1 for details.

7.1.2 Gagliardo-Nirenberg Inequalities

We remark some Gagliardo-Nirenberg estimates.

Lemma 7.2 (Gagliardo-Nirenberg Inequality). Let n ∈ N, 1 ≤ p, q, r ≤ ∞ and θ ∈ [0, 1] be
such that

θ

(1
p
− 1
n

)
+ 1− θ

q
= 1
r
,

where 1
∞ := 0. Moreover, if p = n > 1, then let θ < 1. Then it holds

‖u‖Lr(Rn) ≤ c‖u‖1−θLq(Rn)‖∇u‖
θ
Lp(Rn)

for all u ∈ Lq(Rn) ∩W 1,p(Rn) and some constant c = c(n, p, q, r) > 0.

Proof. Cf. Leoni [Le], Theorem 12.83.

Remark 7.3. Using appropriate extension operators the estimate in Lemma 7.2 can be transferred
to domains with uniform Lipschitz boundary provided that ‖∇u‖Lp(Rn) in the estimate is replaced
by ‖u‖W 1,p(Rn) and the constant in the estimate additionally depends on the operator norm of the
extension operator. For such operators cf. Leoni [Le], Theorem 13.8 and Theorem 13.17. We remark
that the operator norms in [Le] are controlled just via the standard quantities and the geometrical
parameters of Ω and ∂Ω. Therefore if the latter can be estimated uniformly, the operator norms and
the constants in the above Gagliardo-Nirenberg estimates can be chosen uniformly with respect to the
domain Ω.

7.2 Difference Estimate and Proof of the Convergence Theorem for
(ACα) in 2D

We show in Section 7.2.1 the difference estimate for exact solutions and appropriate approximate
solutions for the Allen-Cahn equation with nonlinear Robin-boundary condition (ACα1)-(ACα3) in
2D. In Section 7.2.2 we prove the main Theorem 1.3 by checking the requirements for the difference
estimate for the approximate solution from Section 5.3.

7.2.1 Difference Estimate

Theorem 7.4 (Difference Estimate for (ACα)). Let Ω, QT and ∂QT be as in Remark 1.2, 1. Let
Γ = (Γt)t∈[0,T0] for some T0 > 0 be as in Section 3.2 with contact angle α ∈ (0, π) and δ > 0 be
such that Theorem 3.2 holds with δ replaced by 2δ. Moreover, let Γt(δ), Γ(δ), ∇τ and ∂n be as in
Remark 3.3. Let f fulfill (1.1)-(1.2) and σα for α ∈ (0, π) be as in Definition 1.1.

Let ε0 > 0, uAε,α ∈ C2(QT0) and u0,ε,α ∈ C2(Ω) with ∂N∂Ωu0,ε,α + 1
εσ
′
α(u0,ε,α) = 0 on ∂Ω and

uε,α ∈ C2(QT0) be exact solutions to (ACα1)-(ACα3) with u0,ε,α in (ACα3), ε ∈ (0, ε0].
For a R > 0, M ∈ N,M ≥ 3 and some δ0 ∈ (0, δ] we require the following conditions:
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7. DIFFERENCE ESTIMATES AND PROOFS OF THE CONVERGENCE THEOREMS

1. Uniform Boundedness: supε∈(0,ε0] ‖uAε,α‖L∞(QT0 ) + ‖u0,ε,α‖L∞(Ω) <∞.

2. Spectral Estimate: There are c0, C > 0 such that∫
Ω
|∇ψ|2 + 1

ε2 f
′′(uAε,α|(.,t))ψ2 dx+

∫
∂Ω

1
ε
σ′′α(uAε,α|(.,t))(trψ)2 dH1

≥ −C‖ψ‖2L2(Ω) + ‖∇ψ‖2L2(Ω\Γt(δ0)) + c0ε‖∇τψ‖2L2(Γt(δ0))

for all ψ ∈ H1(Ω) and ε ∈ (0, ε0], t ∈ [0, T0].

3. Approximate Solution: The remainders

rAε,α := ∂tu
A
ε,α −∆uAε,α + 1

ε2 f
′(uAε,α) and sAε,α := ∂N∂Ωu

A
ε,α + 1

ε
σ′α(uAε,α)

in (ACα1)-(ACα2) for uAε,α and the difference uε,α := uε,α − uAε,α satisfy∣∣∣∣∫
∂Ω
sAε,αtruε,α(t) dH1 +

∫
Ω
rAε,αuε,α(t) dx

∣∣∣∣
≤ CεM+ 1

2 (‖uε,α(t)‖L2(Ω) + ‖∇τuε,α(t)‖L2(Γt(δ0)) + ‖∇uε,α(t)‖L2(Ω\Γt(δ0)))
(7.1)

for all ε ∈ (0, ε0] and T ∈ (0, T0].

4. Well-Prepared Initial Data: For all ε ∈ (0, ε0] we have

‖u0,ε,α − uAε,α|t=0‖L2(Ω) ≤ RεM . (7.2)

Then the following assertions hold.

1. Let M > 3. Then there exist β, ε1 > 0 such that for gβ(t) := e−βt we have

sup
t∈[0,T ]

‖(gβuε,α)(t)‖2L2(Ω) + ‖gβ∇uε,α‖2L2(QT \Γ(δ0)) ≤ 2R2ε2M ,

c0ε‖gβ∇τuε,α‖2L2(QT∩Γ(δ0)) + ε2‖gβ∂nuε,α‖2L2(QT∩Γ(δ0)) ≤ 2R2ε2M
(7.3)

for all ε ∈ (0, ε1] and T ∈ (0, T0].

2. Let M = 3 and (7.1) hold for some M̃ > M instead of M . Then there are β, R̃, ε1 > 0 such
that, provided that (7.2) is valid for R̃ instead of R, then (7.3) for R̃ instead of R holds for all
ε ∈ (0, ε1], T ∈ (0, T0].

3. Let M = 3. Then there exist ε1, T1 > 0 such that (7.3) is true for β = 0 and for all
ε ∈ (0, ε1], T ∈ (0, T1].

Remark 7.5. 1. The parameter M is related to the order of the approximate solution in Section
5. The δ0 is introduced because in the application of Theorem 7.4 later we use the spectral
estimate in Theorem 6.1. There δ0 was chosen small in order to have (5.36). The parameter β
is used in order to get a result for all times T ∈ (0, T0].
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2. Weaker requirements in the theorem also yield a result, e.g. when the two additional terms on
the right hand side of the spectral estimate absent or one only has an estimate with the full
H1-norm on the right hand side in (7.1). But then the obtained assertions may be weaker as
well, e.g. the critical order 3 for M could be larger and the ε-orders in (7.3) may be weakened.
The reason is that the H1-norm can be estimated with the spectral term but one has to invest
the error ε−2 times the L2-norm.

3. The parameter 3 is critical for M in our proof, see (7.10) below. One problem are estimates
of cubic terms. Moreover, case M = 3 is complicated since in (7.10) there is a term of order
larger than 2 in R and a linear term in R, but the needed order is 2 in R. The linear term in R
stems from (7.1). For the parameter β there is a similar issue in the critical case. Compared
to the case α = π

2 , cf. [AM], Theorem 5.1, the critical order for M is increased by one and
the estimate (7.3) is slightly weaker. This is because we only have a spectral estimate with the
ε-factor in front of the∇τ -term.

4. In the proof of the difference estimate for the case α = π
2 , cf. [AM], proof of Theorem 5.1, we

applied Gagliardo-Nirenberg inequalities for the integral on Γt(δ) subsequently in tangential
and normal direction. These estimates are difficult to adapt for the case α 6= π

2 because the
relevant domain is a trapeze, not a rectangle. Even if this works, the possible increase in the
ε-order is just 1

4 and thus does not lower the critical integer order for M . Therefore we use a
standard Gagliardo-Nirenberg Inequality on whole Ω, see the computation after (7.9) below.

Proof of Theorem 7.4. For the proof we can assume w.l.o.g. δ0 = δ, otherwise one can simply shrink
δ. The continuity of the objects on the left hand side in (7.3) implies that

Tε,β,R := sup {T̃ ∈ (0, T0] : (7.3) holds for ε,R and all T ∈ (0, T̃ ]} (7.4)

is well-defined for all ε ∈ (0, ε0], β ≥ 0 and Tε,β,R > 0. In the different cases we have to prove:

1. If M > 3, then there exist β, ε1 > 0 such that Tε,β,R = T0 for all ε ∈ (0, ε1].

2. If M = 3, then there are β, R̃, ε1 > 0 such that Tε,β,R̃ = T0 provided that ε ∈ (0, ε1] and (7.1)
is valid for some M̃ > 3 instead of M and (7.2) holds with R replaced by R̃.

3. If M = 3, then there exist T1, ε1 > 0 such that Tε,0,R ≥ T1 for all ε ∈ (0, ε1].

We do a general computation first and consider the distinct cases later. The difference of the left
hand sides in (ACα1) for uε,α and uAε,α gives[

∂t −∆ + 1
ε2 f

′′(uAε,α)
]
uε,α = −rAε,α − rε(uε,α, uAε,α), (7.5)

where rε(uε,α, uAε,α) := 1
ε2

[
f ′(uε,α)− f ′(uAε,α)− f ′′(uAε,α)uε,α

]
. Taking the product of (7.5) with

g2
βuε,α and integrating over QT for T ∈ (0, Tε,β,R] for fixed ε ∈ (0, ε0] and β ≥ 0 yields

∫ T

0
g2
β

∫
Ω
uε,α

[
∂t −∆ + 1

ε2 f
′′(uAε,α)

]
uε,α = −

∫ T

0
g2
β

∫
Ω

[rAε,α + rε(uε,α, uAε,α)]uε,α (7.6)
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for all T ∈ (0, Tε,β,R], ε ∈ (0, ε0] and β ≥ 0. We estimate all terms appropriately. Because of
1
2∂t|uε,α|

2 = uε,α∂tuε,α, integration by parts in time and ∂tgβ = −βgβ we get∫ T

0

∫
Ω
g2
β∂tuε,αuε,α dx dt = 1

2gβ|
2
T ‖uε,α|T ‖2L2(Ω) −

1
2‖uε,α(0)‖2L2(Ω) + β

∫ T

0
g2
β‖uε,α‖2L2(Ω) dt,

where ‖uε,α(0)‖2L2(Ω) ≤ R2ε2M due to (7.2) (“well-prepared initial data”). For the remaining
expression on the left hand side in (7.6) we apply integration by parts in space. This implies∫ T

0
g2
β

∫
Ω
uε,α

[
−∆ + 1

ε2 f
′′(uAε,α)

]
uε,α dx dt

=
∫ T

0
g2
β

[∫
Ω
|∇uε,α|2 + 1

ε2 f
′′(uAε,α)u2

ε,α dx+
∫
∂Ω

1
ε
σ′′α(uAε,α)(truε,α)2 dH1

]
dt

+
∫ T

0
g2
β

∫
∂Ω

[
sAε,α + sε,α(uε,α, uAε,α)

]
truε,α dH1 dt, (7.7)

where we have set sε,α(uε,α, uAε,α) := 1
ε

[
σ′α(uε,α)− σ′α(uAε,α)− σ′′α(uAε,α)uε,α

]
|∂Ω. Using require-

ment 2. (“spectral estimate”) in the theorem we obtain that the first integral on the right hand side in
the latter display is estimated from below by

−C
∫ T

0
g2
β‖uε,α‖2L2(Ω) dt+ ‖gβ∇uε,α‖2L2(QT \Γ(δ)) + c0ε‖gβ∇τuε,α‖2L2(QT∩Γ(δ)).

For the remainder terms with rAε,α and sAε,α we employ (7.1) (“approximate solution”). Hence∣∣∣∣∣
∫ T

0
g2
β

[∫
∂Ω
sAε,αtruε,α(t) dH1 +

∫
Ω
rAε,αuε,α(t) dx

]
dt

∣∣∣∣∣ ≤ C1R‖gβ‖L2(0,T )ε
2M

because of (7.3) for all T ∈ (0, Tε,β,R] and ε ∈ (0, ε0], where we have used the Hölder Inequality to
estimate ‖gβ‖L1(0,T ) ≤

√
T0‖gβ‖L2(0,T ).

We derive an estimate for the rε-term in (7.6) and the sε,α-term in (7.7). The requirement
1. (“uniform boundedness”) in the theorem and Lemma 7.1 implies

sup
ε∈(0,ε0]

[
‖uε,α‖L∞(QT0 ) + ‖uAε,α‖L∞(QT0 )

]
<∞. (7.8)

Hence we can use the Taylor Theorem and get∣∣∣∣∣
∫ T

0
g2
β

[∫
Ω
rε(uε,α, uAε,α)uε,α dx+

∫
∂Ω
sε,α(uε,α, uAε,α)truε,α dH1

]
dt

∣∣∣∣∣
≤ C

∫ T

0
g2
β

[ 1
ε2 ‖uε,α‖

3
L3(Ω) + 1

ε
‖truε,α‖3L3(∂Ω)

]
dt.

(7.9)

For the estimate of the L3(Ω)-norm we use a standard Gagliardo-Nirenberg Inequality on Ω, see
Lemma 7.2 and Remark 7.3. This yields due to (7.3)

∫ T

0

g2
β

ε2 ‖uε,α‖
3
L3(Ω) dt ≤

∫ T

0

g2
β

ε2 ‖uε,α‖
2
L2(Ω)‖uε,α‖H1(Ω) dt ≤ CR3ε2MεM−3‖g−1

β ‖L2(0,T )
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for all T ∈ (0, Tε,β,R] and ε ∈ (0, ε0]. For the L3(∂Ω)-norm in (7.9) we use the idea from Evans
[Ev], 5.10, problem 7 again. Let ~w ∈ C1(Ω) with ~w ·N∂Ω ≥ 1. Then because of |uε,α|3(t) ∈ C1(Ω)
with∇(|uε,α|3)(t) = 3sign(uε,α)|uε,α|2∇uε,α(t) we get

‖truε,α|t‖3L3(∂Ω) ≤
∫
∂Ω

~w ·N∂Ω|uε,α|3|t dH1 ≤
∫

Ω

[
|div~w||uε,α|3 + 3|uε,α|2|∇uε,α · ~w|

]
|tdx

≤ C[‖uε,α‖3L3(Ω)+‖uε,α‖2L4(Ω)‖∇uε,α‖L2(Ω)]|t ≤ C[‖uε,α‖3L3(Ω)+‖uε,α‖L2(Ω)‖uε,α‖2H1(Ω)]|t,

where we used the Gagliardo-Nirenberg Inequality for the L4(Ω)-norm, see Lemma 7.2 and Remark
7.3. With |∇uε,α| ≤ C(|∂nuε,α|+ |∇τuε,α|) and (7.3) we obtain

1
ε

∫ T

0
g2
β‖truε,α‖3L3(∂Ω) dt ≤ CR

3ε2MεM−3‖g−1
β ‖L2(0,T )

for all T ∈ (0, Tε,β,R] and ε ∈ (0, ε0].
Finally, we estimate ∂nuε,α. To this end we use |∂nuε,α| ≤ C|∇uε,α| and

ε2‖gβ∂nuε,α‖2L2(QT∩Γ(δ)) ≤ C
∫ T

0
g2
β

[
‖uε,α‖2L2(Ω) + ε‖truε,α‖2L2(∂Ω)

]
dt

+ Cε2
∫ T

0
g2
β

[∫
Ω
|∇uε,α|2 + 1

ε2 f
′′(uAε,α)(uε,α)2 dx+

∫
∂Ω

1
ε
σ′′α(uAε,α)(truε,α)2 dH1

]
dt

with a constant C > 0 independent of ε, T and R. The second line can be absorbed with 1
2 of the

spectral term above if ε ∈ (0, ε1] and ε1 > 0 is small (independent of T , R). Moreover, for the
‖truε,α‖2L2(∂Ω)-term we use the analogous idea that we applied for the estimate of ‖truε,α‖3L3(∂Ω)
above. This yields

ε

∫ T

0
g2
β‖truε,α‖2L2(∂Ω) dt ≤ ε

∫ T

0
g2
β‖uε,α‖L2(Ω)‖uε,α‖H1(Ω) dt.

Here note that because of (7.3) it follows that for all T ∈ (0, Tε,β,R] and ε ∈ (0, ε0]

ε2
∫ T

0
g2
β‖uε,α‖2H1(Ω) dt ≤ CR

2ε2M .

Therefore with the Young Inequality the contribution of the ‖truε,α‖2L2(∂Ω)-term is controlled by

C̃

∫ T

0
g2
β‖uε,α‖2L2(Ω) dt+ 1

8R
2ε2M

for all T ∈ (0, Tε,β,R] and ε ∈ (0, ε0] with some C̃ > 0 large.
Altogether we have

1
2gβ(T )‖uε,α(T )‖2L2(Ω) + 1

2‖gβ∇uε,α‖
2
L2(QT \Γ(δ))

+ 1
2c0ε‖gβ∇τuε,α‖2L2(QT∩Γ(δ)) + 1

2ε
2‖gβ∂nuε,α‖2L2(QT∩Γ(δ))

≤ (1
2 + 1

8)R2ε2M +
∫ T

0
(−β + C0)g2

β‖uε,α(t)‖2L2(Ω) dt+ C1Rε
2M‖gβ‖L2(0,T )

+ CR3ε2MεM−3‖g−1
β ‖L2(0,T )

(7.10)

for all T ∈ (0, Tε,β,R], ε ∈ (0, ε1] and some constants C0, C1, C > 0 independent of ε, T,R.
Now let us look at the different cases in the theorem.
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Ad 1. If M > 3, then we choose β ≥ C0 large such that C1R‖gβ‖L2(0,T0) ≤ R2

8 . Therefore (7.10)
is controlled by 7

8R
2ε2M for all T ∈ (0, Tε,β,R] and ε ∈ (0, ε1], if ε1 > 0 is small. By contradiction

and continuity this yields Tε,β,R = T0 for all ε ∈ (0, ε1]. 1.

Ad 2. Let M = 3 and let (7.1) hold for some M̃ > M instead of M . Then the term in (7.10) where
R enters linearly is enhanced by the factor εM̃−M . We fix β ≥ C0 and choose R > 0 small such
that the R3-term in (7.10) is estimated by 1

8R
2ε2M . Then ε1 > 0 can be taken small such that (7.10)

is bounded by 7
8R

2ε2M for all T ∈ (0, Tε,β,R] and ε ∈ (0, ε1]. Via contradiction and continuity we
obtain Tε,β,R = T0 for all ε ∈ (0, ε1]. 2.

Ad 3. Let M = 3 and β = 0. Then (7.10) is controlled by[
(1
2 + 1

8)R2 + CR2T + CRT
1
2 + CR3T

1
2

]
ε2M .

There are ε1, T1 > 0 such that this is estimated by 7
8R

2ε2M for all T ∈ (0,min(Tε,β,R, T1)] and
ε ∈ (0, ε1]. Hence Tε,0,R ≥ T1 for all ε ∈ (0, ε1]. 3.

The proof of Theorem 7.4 is completed.

7.2.2 Proof of Theorem 1.3

Let f satisfy (1.1)-(1.2) and σα for α ∈ (0, π) be as in Definition 1.1. Then let α0 > 0 be as in
Remark 5.5 and α0 ∈ (0, α0] such that Theorem 6.1 holds. Moreover, let Ω, QT and ∂QT be as in
Remark 1.2, 1. Additionally, let Γ = (Γt)t∈[0,T0] for some T0 > 0 be a smooth solution to (MCF)
with α-contact angle condition parametrized as in Section 3.1 for some α ∈ π

2 + [−α0, α0] and
let δ > 0 be such that Theorem 3.2 holds for δ replaced by 2δ. We use the notation from Section
3.1 and Section 3.2. Furthermore, let δ0 ∈ (0, δ] be such that (5.36) holds. Moreover, let M ∈ N
with M ≥ 3 and let (uAε,α)ε>0 be the approximate solution on QT0 defined in Section 5.3 (which
was constructed via asymptotic expansions in Section 5) and let ε0 > 0 be such that Lemma 5.9
(“remainder estimate”) holds for ε ∈ (0, ε0]. The property limε→0 u

A
ε,α = ±1 uniformly on compact

subsets of Q±T0
holds due to the construction in Section 5.

Theorem 1.3 follows directly from Theorem 7.4 if we prove the conditions 1.-4. in Theorem 7.4.
The requirement 1. (“uniform boundedness”) is satisfied because of Lemma 5.9 for uAε,α and for
u0,ε,α this is required in Theorem 1.3. Condition 2. (“spectral estimate”) follows from to Theorem
6.1. Assumption 4. (“well prepared initial data”) is a requirement for u0,ε,α and holds in the situation
of Theorem 1.3. It is left to prove 3. (“approximate solution”). This is similar to the case α = π

2 ,
cf. the proof of Theorem 1.1 in [AM].

First we estimate the boundary term in (7.1). Lemma 5.9 implies sAε,α = 0 on ∂Ω \ Γt(2δ) and
|sAε,α| ≤ CεMe−c|ρε,α|, where ρε,α is from (5.2). Hence∣∣∣∣∫

∂Ω
sAε,αtruε,α(t) dH1

∣∣∣∣ ≤ ‖sAε,α‖L2(∂Ω∩Γt(2δ))‖truε,α(t)‖L2(∂Ω∩Γt(2δ)).

Due to the substitution rule and a scaling argument with [M2], Lemma 6.5, we obtain the estimate
‖sAε,α‖L2(∂Ω∩Γt(2δ)) ≤ Cε

M+ 1
2 . Moreover, analogously to Lemma 6.4 it follows that

‖truε,α(t)‖L2(∂Ω∩Γt(2δ)) ≤ C(‖uε,α(t)‖L2(Γt(2δ)) + ‖∇τuε,α(t)‖L2(Γt(2δ))).
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Because of |∇τuε,α| ≤ C|∇uε,α|, the estimate for the sAε,α-term in (7.1) follows.
Finally, we consider the rAε,α-term in (7.1). By Lemma 5.9 we get rAε,α = 0 in Ω \ Γt(2δ) and

|rAε,α| ≤ C(εM−1e−c(|ρε,α|+Z
±
ε,α) + εMe−c|ρε,α| + εM+1) in Γ±(2δ, 1).

An integral transformation yields∣∣∣∣∫
Ω
rAε,αuε,α(t) dx

∣∣∣∣ ≤ ∫
Γt(2δ)

|rAε,αuε,α(t)| dx =
∫
S2δ,α

|rAε,αuε,α|X(r,s,t)|Jt(r, s) d(r, s),

where S2δ,α is as in (3.1) and Jt is uniformly bounded in t ∈ [0, T0] by Remark 3.3, 3. We choose
µ > 0 such that for Iµ := (−1− µ, 1 + µ) it holds S2δ,α ⊆ (−2δ, 2δ)× Iµ. Moreover, we denote
with e0(uε,α|X) the extension of uε,α|X by zero to (−2δ, 2δ) × Iµ. With a scaling argument and
| rε |+ |

s±

ε | ≤ C(|ρε,α|+ Z±ε,α + 1) because of (5.7) it follows that

∣∣∣∣∫
Ω
rAε,αuε,α(t) dx

∣∣∣∣ ≤ CεM− 1
2

∫ 1+µ

−1−µ
‖e0(uε,α|X)(., s, t)‖L2(−2δ,2δ)

[∑
±
e−c

|s∓1|
ε + ε

]
ds.

Note that H1(−s, s,B) ↪→ L∞(−s, s,B) for all s ∈ [1, 1 + µ] and any Banach space B with
uniform embedding constant. For B we use L2-spaces over suitable intervals I(s) (possibly empty
for |s| large) with

⋃
s∈(1,1+µ) I(s)× (−s, s) = (S2δ,α)◦. Hence the features of Sobolev spaces on

product sets, cf. [M2], Lemma 2.10, yield

‖e0(uε,α|X)(., t)‖L∞(Iµ,L2(−2δ,2δ)) ≤ C(‖uε,α|X‖L2(S2δ,α) + ‖∇τuε,α|X‖L2(S2δ,α)).

With a scaling argument for the exponential term and an integral transformation we obtain∣∣∣∣∫
Ω
rAε,αuε,α(t) dx

∣∣∣∣ ≤ CεM+ 1
2 (‖uε,α(t)‖L2(Γt(2δ)) + ‖∇τuε,α(t)‖L2(Γt(2δ))).

Since |∇τuε,α| ≤ C|∇uε,α|, this shows (7.1). Hence Theorem 1.3 is proven. �
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