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Abstract

Variational methods were successfully applied for registration of gray and RGB-valued
image sequences. A common assumption in these models is that pixel-values do not
change under transformations. Nowadays, modern image acquisition techniques such
as electron backscatter tomography (EBSD), which is used in material sciences, can
capture images with values in nonlinear spaces. Here, the image values belong to the
quotient space SO(3)/S of the special orthogonal group modulo the discrete symmetry
group of the crystal. For such data, the assumption that pixel-values remain unchanged
under transformations appears to be no longer valid. Hence, we propose a variational
model for the registration of SO(3)/S-valued image sequences, taking the dependence
of pixel-values on the transformation into account. More precisely, the data is trans-
formed according to the rotation part in the polar decomposition of the Jacobian of
the transformation. To model non-smooth transformations without obtaining so-called
staircasing effects, we propose to use a total generalized variation like prior. Then, we
prove existence of a minimizer for our model and explain how it can be discretized and
minimized by a primal-dual algorithm. Numerical examples illustrate the performance
of our method.

1. Introduction

Variational methods for estimating the displacement between image frames go back to Horn
and Schunck [41]. Meanwhile, there exists a vast number of refinements and extensions of
their approach and we refer to [11, 72] for an overview. In particular, models with priors
containing higher order derivatives of the displacement field were successfully used, e.g., in
[40, 57, 68, 76, 77]. In material science, such models were applied for the strain analysis
in materials [10, 36, 38], where they appear to be more sensitive to abrupt changes in the
displacement field than correlation based methods used in state-of-the-art software packages
such as [16, 24, 25]. While optical flow models with a linearized data term as described
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above are mainly convex, nonconvex models have to be solved in registration [50, 51], large
deformation diffeomorphic metric mapping [12] or metamorphosis [75].

Nowadays, modern image acquisition techniques can not only produce gray-valued and
RGB images, but also images with values in nonlinear spaces. Typical examples are diffusion
tensor magnetic resonance tomography (DT-MRI), where the image values are symmetric
positive definite matrices, and electron backscatter diffraction (EBSD), where the image
values are from a certain quotient space of the rotation group SO(3). Recently, the meta-
morphosis approach of Trouvé and Younes [69] in its path discrete form introduced by
Berkels et al. [14], see also [60], was generalized to manifold-valued images in [52] with a
mathematically sound theory for Hadamard manifolds in [27]. However, the usual ,,gray-
value constancy assumption” from videos does not carry over to the manifold-valued setting.
Instead, for image sequences whose values contain directional information the data has to
also be transformed spatially. For DT-MRI images, the appropriate handling of orientations
was addressed in, e.g., [4, 3, 22, 74].

In this paper, we focus on sequences of EBSD images, which appear in the microstruc-
tural analysis of crystalline materials. For every pixel of an EBSD image the phase and
the crystal orientation is measured based on electron diffraction on the crystal lattice of the
specimen [2, 45]. The orientations are given by a rotation in SO(3) modulo the finite sym-
metry group S of the crystal. Polycrystalline materials usually consist of clearly separated
regions with similar orientations, so-called grains. With EBSD, it is possible to analyze
the grain structure of the specimen, e.g., the size and distribution of grains, the shape and
characteristics of grain boundaries or orientations. Based on the microstructural analysis,
engineers can draw conclusions to macrostructural mechanical or functional behavior of the
material, e.g., its ductility, fatigue or electrical properties. EBSD is also used to investigate
temporary or permanent microstructural changes, caused by an external influence, such as
an applied force [66, 73]. Reconstruction of data back to the initial state by optical flow
allows to determine small changes of the microstructure or to quantify local deformations
and orientation changes in a region of irregular distributed deformations that can not be
detected by common analysis methods. For more information on EBSD, we refer to [49] and
for the practical visualization and analysis of EBSD data to the software package MTEX
[8, 9]. The segmentation of EBSD data was studied in [13] and for a statistical model to
observed texture evolution of fatigued metal films see [54].

We propose a variational model for estimating the displacement field between EBSD
images that consists of a special data term and prior:

• In accordance with the finite strain reorientation strategy [4], the data term takes
the rotation part of the transformations’ Jacobian into account. Moreover, it relies
on the geometric distance in the quotient manifold SO(3)/S and uses the quaternion
representation of SO(3).

• The prior (or regularization term) is based on the total generalized variation (TGV)
introduced for image restoration of gray-valued images by Bredies et al. [19], see also
[63, 64] for the discrete setting. Later, the concept was generalized for reconstructing
tensor-valued images by Valkonen et al. [70]. This regularizer allows for sharp tran-
sitions in the displacement field without the staircasing effect known, e.g., from total
variation regularization.
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Let us roughly illustrate how the rotation part in the transformation influences the pixel-
values. Given two images I1 : Ω → SO(3)/S and I2 : Ω1 → SO(3)/S, we want to find the
transformation ϕ : Ω→ Ω1 between them. A first idea would be to determine ϕ so that

I2 ◦ ϕ(x) = I1(x), x ∈ Ω. (1)

In other words, the value I1(x) ∈ SO(3)/S at position x ∈ Ω is taken to the position ϕ(x).
For gray-valued images this corresponds exactly to the gray-value constancy assumption.
However, for orientation data this naive approach does not reflect the physical conditions,
since a transformation by a rotation R ∈ SO(3) also changes the orientation of the EBSD
data, i.e., we have that

I2(Rx) = RI1(x), x ∈ Ω. (2)

In general, the transformation ϕ is not rigid, so that the change in orientation can vary
locally. For determining the rotation field from the transformation ϕ, we will use the polar
decomposition of ∇ϕ from continuum mechanics. Then the refined version of (2) for general
transformations ϕ is given by (5) and introduced in Section 3.1.

Figure 1 illustrates the difference between our variational model with data term given
by the straightforward approach (1) and the rotation aware model (5). The top row of
Figure 1 shows two piecewise constant images I1, I2. The square-shaped region of image
I1 and its orientation data is rotated in image I2 by 30 degrees. The difference between
the colors of the squares in image I1 and image I2 reflect the change of the data induced
by the transformation. The orientation data of the background (black) is unchanged. In
the bottom row of Figure 1 we observe that both models are able to recover the shape of
the rotated square. Of course, the orientation data does not change in the reconstruction
of I2 by model (1), cf. bottom left of Figure 1. As intended the rotation aware model
(5) changes the orientation in accordance with the transformation ϕ, cf. bottom right of
Figure 1. Moreover, the rotation aware model (5) is able to resolve quite accurate the rigid
transformation of the square, even though we are solving for general transformations. In
contrast, the naive model (1) introduces large deformation artifacts near the boundaries
inside the square.

This paper is organized as follows: In Section 2, we provide an overview on functions of
bounded variation and matrix-valued Radon measures. Then, in Section 3, we introduce our
continuous variational model to determine the optical flow between SO(3)/S-valued images
and prove the existence of minimizers. In Section 4 we discretize the proposed variational
model by sampling bilinear approximations at different scales. Here, we make use of the
quaternion representation of SO(3), which is introduced at the beginning of the section.
A primal-dual optimization algorithm is proposed in Section 5. We emphasize that our
discretization and optimization strategy is particularly suited for using parallel computing
devices. The proposed algorithms are implemented for GPU devices using Python together
with the CUDA toolkit. In Section 6, we demonstrate the performance of our algorithm for
synthetic as well as real-world data. Finally, we draw conclusions and indicate directions of
future research in Section 7.
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Figure 1.: Top row: Image I1 (left) and image I2 (right) of SO(3)-valued data visualized in
RGB space. Bottom row: Reconstruction of I2 overlaid with a grid visualizing ϕ
computed with the naive model (1) by I1 ◦ϕ−1 (left) and our new rotation aware
model (5) by R(∇ϕ)I1 ◦ ϕ−1 (right).
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2. Preliminaries

To establish our variational model, several technical preliminaries are necessary. Readers
who are familiar with the topic may move immediately to the next section. We mainly
follow the lines of [6, 70], where we stick to unsymmetrized tensors. By T k(Rd), k ∈ N, we
denote the set of all k-tensors on the vector space Rd, i.e., for k ≥ 1 the k-linear mappings
A : Rd × · · · × Rd → R. By convention, a 0-tensor is real number, T 1(Rd) is the vector
space Rd and T 2(Rd) is the vector space of d × d matrices. Taking the standard basis
ei ∈ Rd, i = 1, . . . , d, any tensor A ∈ T k(Rd) is uniquely determined by its coefficients
Ai1,...,ik := A(ei1 , . . . , eik), il ∈ {1, . . . , d}, l = 1, . . . , k. With the inner product and the
associated Frobenius norm

〈A,B〉 =
∑

i∈{1,...,d}k
AiBi, ‖A‖F :=

√
〈A,A〉 A,B ∈ T k(Rd),

the space T k(Rd) becomes a Hilbert space. For a bounded domain Ω ⊂ Rd with Lipschitz
boundary, we define the Lp-space of p-integrable k-tensor fields u : Ω→ T k(Rd) by

Lp(Ω, T k(Rd)) :=
{
u : Ω→ T k(Rd) : ‖u‖p <∞

}
, p ∈ [1,∞],

where the p-norm is defined as

‖u‖p :=

{( ∫
Ω ‖u‖

p
F dx

) 1
p , p ∈ [1,∞),

ess supx∈Ω ‖u(x)‖F , p =∞.

A tensor field u : Ω → T k(Rd) is differentiable if all coordinate functions ui1,...,ik : Ω → R
are differentiable. The class of l-times continuously differentiable k-tensor fields is de-
noted by C l(Ω, T k(Rd)), k ∈ N, and the subspace of compactly supported k-tensor fields
by C lc(Ω, T k(Rd)). Further, the closure of C lc(Ω, T k(Rd)) with respect to the C l-norm
is denoted by C l0(Ω, T k(Rd)). For u ∈ L1(Ω, T k(Rd)), the distributional gradient ∇u ∈
C1
c (Ω, T k+1(Rd))∗ is defined by

∇u(ψ) :=

∫
Ω
〈u,divψ〉dx, ψ ∈ C1

c (Ω, T k+1(Rd)),

where for ψ ∈ C1
c (Ω, T k(Rd)), k ≥ 1, the divergence divψ ∈ C(Ω, T k−1(Rd)) is given as

(divψ)i1,...,ik−1
(x) :=

d∑
i=1

∂ψi,i1,...,ik−1

∂xi
(x), il ∈ {1, . . . , d}, l = 1, . . . , k − 1.

Then, the total variation of u ∈ L1(Ω, T k(Rd)) is given by

TV(u) := sup
{
∇u(ψ) : ψ ∈ C1

c (Ω, T k+1(Rd)), ‖ψ‖∞ ≤ 1
}
.

The space of tensor fields of bounded variation is defined as

BV(Ω, T k(Rd)) :=
{
u ∈ L1(Ω, T k(Rd)) : TV(u) <∞

}
.
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A function µ : B(Ω) → T k(Rd) on the Borel σ-algebra B(Ω) is called a k-tensor-valued
Radon-measure if every coordinate function µi1,...,id : B(Ω) → R is a Radon measure. We
denote byM(Ω, T k(Rd)) the space of k-tensor-valued finite Radon-measures. By the Riesz–
Markov–Kakutani representation theorem, it holds C0(Ω, T k(Rd))∗ ∼=M(Ω, T k(Rd)). This
allows us to equip the spaceM(Ω, T k(Rd)) with the corresponding weak* convergence. Since
for u ∈ BV (Ω, T k(Rd)) we have

|∇u(ψ)| ≤ TV(u)‖ψ‖∞, ψ ∈ C1
c (Ω, T k+1(Rd)),

and since C1
c (Ω, T k+1(Rd)) is dense and continuously embedded in C0(Ω, T k+1(Rd)), the

gradient ∇u can be uniquely extended to a functional on C0(Ω, T k+1(Rd)) using the Hahn–
Banach theorem. Hence, we can associate to ∇u a unique measure Du ∈ M(Ω, T k+1(Rd))
such that

∇u(ψ) =
∑

i∈{1,...,d}k+1

∫
Ω
ψi dDui, ψ ∈ C1

c (Ω, T k+1(Rd)).

In the rest of the paper, we only require Du and reuse ∇u for the density of Du with respect
to the Lebesgue measure. For a measure µ ∈ M(Ω, T k(Rd)), we define the total variation
norm by

|µ|(Ω) := sup
{ ∑
i∈{1,...,d}k

∫
Ω
ψi dµi : ψ ∈ Cc(Ω, T k(Rd)), ‖ψ‖∞ ≤ 1

}
and the (second order) total generalized variation of a tensor field u ∈ BV(Ω, T k(Rd)) by

TGVα(u) := inf
w∈BV(Ω,T k+1(Rd))

α1|Du− wλ|(Ω) + α2|Dw|(Ω), α = (α1, α2) > 0, (3)

where we identify w ∈ BV(Ω, T k+1(Rd)) with the canonical measure

(wλ)(A) :=

∫
A
w dx, A ∈ B(Ω).

The space BV(Ω, T k(Rd)) becomes a Banach space with the norm

‖u‖BV := ‖u‖1 + TV(u).

A sequence un converges weakly* in BV(Ω, T k(Rd)) if un → u strongly in L1(Ω, T k(Rd)) and

Dun
∗
⇀ Du in the sense of measures. Equivalently, we can require supn TV(un) <∞ instead

of Dun
∗
⇀ Du. Recall that the space C∞(Ω, T k(Rd)) is dense w.r.t. weak* convergence.

Further, any sequence un ∈ BV(Ω, T k(Rd)) with supn∈N ‖un‖BV < ∞ admits a weakly*
convergent subsequence.

The following theorem provides a generalization of the polar decomposition to matrix-
valued Radon measures, cf. [58, Sec. 4]. Let SPD(d) denote the cone of symmetric, positive
semi-definite matrices.

Theorem 2.1. Let µ =
(
µi,j
)d
i,j=1

∈ M(Ω, T 2(Rd)) and σ be a Radon measure such that
the component-wise measures µi,j are absolutely continuous w.r.t. σ, i.e.,

µ(A) =

∫
A
M dσ, A ∈ B(Ω),
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for a measurable matrix-valued function M := (Mi,j)
d
i,j=1. Then |µ| defined by

|µ|(A) :=

∫
A
V dσ, A ∈ B(Ω), V :=

(
MTM

) 1
2 ,

is a Radon measure with density V : Ω → SPD(d). The measure |µ| does not depend on
the choice of σ. Further, there exists a matrix-valued function R : Ω → O(d) such that all
component-functions Ri,j : Ω→ R, i, j = 1, . . . , d, are measurable and

µi,j(A) =
d∑

k=1

∫
A
Ri,k d|µ|k,j , A ∈ B(Ω).

If additionally detV 6= 0 σ-a.e., then R is uniquely determined σ-a.e.

3. Continuous Image Registration Model

Let Ω,Ω1 ⊂ R2 be bounded domains with Lipschitz boundary. Further, assume that
I1 ∈ C(Ω,SO(3)/S) and I2 ∈ C(Ω1,SO(3)/S) are two given images. In the following,
we discuss various different variational models for such data, where the optimization do-
main is BV(Ω,Ω1), i.e., functions in BV(Ω,R2) whose range is restricted to Ω1. Naturally,
the constraint ϕ(Ω) ⊂ Ω1 has to be understood in an a.e. sense. More precisely, there has
to be a representative such that ϕ(Ω) ⊂ Ω1 holds. Note that BV(Ω,Ω1) is a closed subset of
BV(Ω,R2) w.r.t. L1(Ω,R2)-convergence and hence also w.r.t. weak* convergence. Further,
BV(Ω,Ω1) is convex if Ω1 is convex. From now on, we always denote the distributional gra-
dient of ϕ ∈ BV(Ω,Ω1) by Dϕ ∈M(Ω, T 2(R2)) and the density of its absolutely continuous
part by ∇ϕ, i.e., Dϕ = ∇ϕλ + (Dϕ)⊥. Note that ∇ϕ coincides with the weak gradient of
ϕ if it exists.

We are looking for an appropriate variational model to determine the transformation ϕ
in sequences of EBSD images of the form

inf
ϕ∈BV(Ω,Ω1)

D
(
ϕ; I1, I2

)
+R(ϕ),

where the data term D
(
ϕ; I1, I2

)
takes rotation of the data during the transformation into

account and the regularizer R(ϕ) makes the the problem well-posed.
In the following subsection, we propose a basic model for which the existence of a mini-

mizer is not ensured. However, the subsequent subsections give modifications of the setting
making the problem well-posed in the sense that a minimizer exists.

3.1. Basic Model

Recall that the pixel values are equivalence classes [R] := {RS : S ∈ S} ∈ SO(3)/S. In
the data term, we use for [R1], [R2] ∈ SO(3)/S the distance

dSO(3)/S([R1], [R2]) := min
S∈S

dSO(3)(R1S,R2) (4)

induced by the geodesic distance

dSO(3)(R1, R2) :=
√

2 arccos
(

1
2(trace(RT

1 R2)− 1)
)
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on SO(3), see [42]. Note that the distance (4) is rotation invariant. Later we use the
representation of the elements of SO(3) as quaternions and adapt the distance accordingly.
To take the rotation of the data into account, we use the polar decomposition of the density
∇ϕ : Ω→ T 2(R2). If det(∇ϕ(x)) > 0, there exists a unique polar decomposition

∇ϕ(x) = Rϕ(x)Vϕ(x), x ∈ Ω,

where Rϕ(x) ∈ SO(2) and Vϕ(x) ∈ SPD(2). More precisely, if ∇ϕ = UΣŨT denotes the
singular value decomposition of ∇ϕ(x), then we have

Rϕ = ∇ϕ
(
∇ϕT∇ϕ

)− 1
2 = UŨT, Vϕ = ŨΣŨT.

Note that Theorem 2.1 provides a polar decomposition for more general measures. However,
using such an approach, it is not obvious how to ensure uniqueness or even lower semi-
continuity of the corresponding functional based on some regularizer as it is done below.
EBSD techniques acquire only two-dimensional images of three-dimensional material probes.
Using the two-dimensional transformation ϕ : Ω→ Ω̄1, we are only able to catch changes in
orientation by rotations around the axis orthogonal to the image plane, so that we arrive
at the following transformation model of EBSD data

I2 ◦ ϕ = R(∇ϕ)I1, R(∇ϕ) :=

(
Rϕ 0
0 1

)
. (5)

In summary, a natural choice for the data term appears to be

D
(
ϕ; I1, I2

)
:=

∫
Ω

dSO(3)/S
(
R(∇ϕ)I1, I2 ◦ ϕ

)
dx =

∫
Ω

dSO(3)/S
(
I1,R(∇ϕ)TI2 ◦ ϕ

)
dx, (6)

where the last equality holds true due to the rotation invariance of the distance.
Now, the regularizer R must be constructed such that it ensures a unique polar decom-

position in order to make the whole functional well-defined. Further, the regularizer should
control the BV norm to guarantee its coercivity. A good candidate seems to be

R(ϕ) := TGVα(ϕ− Id) + β

∫
Ω
f(det∇ϕ) dx, β > 0, (7)

where

f(x) :=

{
x−1 + x if x > 0,
+∞ otherwise.

The second summand in the regularizer ensures that the polar decomposition exists for
a.e. x ∈ Ω as soon as the energy is finite. However, this regularizer is not weakly* lower
semi-continuous due to the second summand, cf. [26, p. 182]. An alternative would be to
use the modified regularizer

Rrelax(ϕ) := inf
ϕn→ϕ in L1(Ω,R2)
ϕn∈W 1,2(Ω,R2)

{
lim inf
n→∞

R(ϕn)
}
, ϕ ∈ BV(Ω,R2). (8)

Note, that Rrelax is the relaxation of the functional R|W 1,2(Ω,R2) to BV(Ω,R2), see also
[1, 5, 29, 30, 44] for similar approaches. By Lemma A.3 in the appendix, we have that
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indeed Rrelax(ϕ) = R(ϕ) for ϕ ∈ W 1,2(Ω,R2). Here W 1,p(Ω,R2), p ∈ [1,∞) denotes the
Banach space of functions in Lp(Ω,R2) having weak first order derivatives in Lp(Ω,R2)
equipped with the norm

‖ϕ‖W 1,p :=
(
‖ϕ‖pp + ‖ ∂∂xϕ‖

p
p + ‖ ∂∂yϕ‖

p
p

) 1
p
.

Further, we prove the following theorem in Appendix A.

Theorem 3.1. Let the data term D
(
ϕ; I1, I2

)
be weakly* lower semi-continuous. Then the

problem
inf

ϕ∈BV(Ω,Ω1)
D
(
ϕ; I1, I2

)
+Rrelax(ϕ) (9)

has a minimizer.

Unfortunately, our data term D
(
ϕ; I1, I2

)
in (6) is not even quasiconvex and establish-

ing weak* lower semi-continuity appears to be challenging. In particular, all lower semi-
continuity results for integral functionals that we are aware of require either quasiconvexity
or some stronger notion of convergence than the weak* convergence. Therefore, we inves-
tigate two modifications of the general setting that ensure the existence of a minimizer by
exploiting stronger modes of convergence.

3.2. Smoothing of Dϕ

We choose some mollifier ρε ∈ C∞c (R2) with (potentially small) smoothing parameter ε > 0.
Its convolution with the Radon measure Dϕ ∈M(Ω, T 2(R2)) is the function defined by

ρε ∗Dϕ =

∫
Ω
ρε(· − y) dDϕ(y).

Then, we replace ∇ϕ by ρε ∗Dϕ in (6) and (7) and consider the variational problem

inf
ϕ∈BV(Ω,Ω1)

D
(
ϕ; I1, I2

)
+ TGVα(ϕ− Id) + β

∫
Ω
f
(
det(ρε ∗Dϕ)

)
dx (10)

with

D
(
ϕ; I1, I2

)
:=

∫
Ω

dSO(3)/S
(
R(ρε ∗Dϕ)I1, I2 ◦ ϕ

)
dx.

To show existence of minimizers, we use the following compactness result, see [39, Lem. B.2].

Lemma 3.2. Let ρε ∈ C∞c (R2) and suppose µn
∗
⇀ µ ∈M(Ω;R2). Then ρε ∗µn → ρε ∗µ in

L∞(R2).

The next theorem establishes the desired existence of a minimizer.

Theorem 3.3. The variational problem (10) admits a minimizer.

Proof. Let ϕn ∈ BV(Ω,Ω1) be a minimizing sequence. Then, it holds supn ‖ϕn‖1 < ∞ as
ϕn(Ω) ⊂ Ω1 is bounded. Moreover, [18, Cor. 3.13] and the triangle inequality imply for any
ϕ ∈ BV(Ω,Ω1) that

TV(ϕ) ≤ C
(
‖ϕ‖1 + TGVα(ϕ)

)
≤ C TGVα(ϕ− Id) + C.

9



Hence, we get
sup
n
‖ϕn‖1 + TV(ϕn) <∞,

and there exists a subsequence, again denoted with (ϕn)n, converging strongly (and also
a.e.) to some ϕ in L1(Ω,Ω1). Moreover, Dϕn converges weakly* to Dϕ and Lemma 3.2
implies that ρε ∗Dϕn → ρε ∗Dϕ ∈ L∞(R2). Clearly, this implies existence of a subsequence
of (ϕn)n, again denoted with (ϕn)n, such that ρε ∗Dϕn → ρε ∗Dϕ a.e.

Recall that TGVα is lower semi-continuous w.r.t. L1(Ω,R2)-convergence, see [19, Proof
of Prop. 3.5]. Further, we can use the continuity of f to conclude f(ρε ∗Dϕn)→ f(ρε ∗Dϕ)
a.e. and hence the lemma of Fatou implies∫

Ω
f
(
det(ρε ∗Dϕ)

)
dx ≤ lim inf

n→∞

∫
Ω
f
(
det(ρε ∗Dϕn)

)
dx.

Note that the continuity of I2 implies I2 ◦ϕn → I2 ◦ϕ a.e. Then, the continuity of dSO(3)/S
and of R on the set of invertible matrices gives

dSO(3)/S
(
R(ρε ∗Dϕn)I1, I2 ◦ ϕn

)
→ dSO(3)/G

(
R(ρε ∗Dϕ)I1, I2 ◦ ϕ

)
a.e.,

which again together with the lemma of Fatou implies lower semi-continuity of the data
term D. Consequently, ϕ is a minimizer of our functional (10).

3.3. Higher Regularity of ϕ

Next, we propose a model that is based on higher regularity of the transformation ϕ. More
precisely, we restrict the transformations to the space

BV2(Ω,Ω1) :=
{
ϕ ∈W 1,1(Ω,Ω1) : ∇ϕ ∈ BV(Ω, T 2(R2))

}
,

see [61, Sec. 9.8] for more details. A sequence ϕn converges weakly* in BV2(Ω,Ω1) if ϕn → ϕ

strongly in W 1,1(Ω,Ω1) and D2ϕn
∗
⇀ D2ϕ. Equivalently, we can require supn TV(∇ϕn) <

∞ instead of D2ϕn
∗
⇀ D2ϕ. Further, it holds that any sequence (ϕn)n with supn ‖ϕn‖W 1,1 +

TV(∇ϕn) <∞ admits a weakly* convergent subsequence.
Now, we consider the variational problem

inf
ϕ∈BV2(Ω,Ω1)

D
(
ϕ; I1, I2

)
+ αTV(∇ϕ− I2) + β

∫
Ω
f(det∇ϕ) dx, (11)

where as in (6),

D
(
ϕ; I1, I2

)
=

∫
Ω

dSO(3)/S
(
R(∇ϕ)I1, I2 ◦ ϕ

)
dx.

Again, the second regularizer in (11) ensures that R(∇ϕ) is well-defined for a.e. x ∈ Ω as
soon as the energy is finite. In order to establish existence of a minimizer, we need the
following lemma.

Lemma 3.4. There exists a constant C > 0 such that for every ϕ ∈ BV2(Ω,R2) and
w ∈ BV(Ω, T 2(R2)) it holds

‖ϕ‖W 1,1 ≤ C
(
‖ϕ‖1 + ‖∇ϕ− w‖1 + TV(w)

)
.

In particular, it holds ‖ϕ‖W 1,1 ≤ C(‖ϕ‖1 + TV(∇ϕ)).

10



Proof. Assume in contrast that there exits no constant C ∈ R such that the inequality
holds. Then, there exist sequences (ϕn)n ∈ BV2(Ω,R2) and (wn)n ∈ BV(Ω, T 2(R2)) with

‖ϕn‖W 1,1 = 1 and
1

n
≥ ‖ϕn‖1 + ‖∇ϕn − wn‖1 + TV (wn).

From ‖ϕn‖W 1,1 = 1 we infer that (wn)n is bounded in BV(Ω, T 2(R2)) and admits a weakly*
convergent subsequence with limit w ∈ BV(Ω, T 2(R2)). Hence, it holds ∇ϕn → w in
L1(Ω, T 2(R2)). As ϕn → 0 in L1(Ω,R2), we further get ϕn → 0 in W 1,1(Ω,R2). However,
this contradicts our assumption ‖ϕn‖W 1,1 = 1.

Now, we can prove the actual existence result.

Theorem 3.5. The variational problem (11) admits a minimizer.

Proof. Let (ϕn)n ∈ BV2(Ω,Ω1) be a minimizing sequence. Then, it holds supn ‖ϕn‖1 <∞
as ϕn(Ω) ⊂ Ω1 is bounded.

Using Lemma 3.4, we get

sup
n
‖ϕn‖W 1,1 + TV(∇ϕn) ≤ sup

n
C
(
‖ϕn‖1 + TV(∇ϕn)

)
<∞,

and there exists a subsequence, again denoted with (ϕn)n, converging strongly to some ϕ
in W 1,1(Ω,Ω1). Clearly, this also implies the existence of a subsequence for which (∇ϕn)n
is a.e. convergent. The lower semi-continuity of the regularizer and the data term is shown
similar as in Theorem 3.3. Consequently, ϕ is a minimizer of our functional (11).

4. Discrete Image Registration Model

In this section, we establish a discrete variant of our model. We make use of the quaternion
representation of SO(3), which is recalled in the next subsection.

4.1. Quaternion Representation of SO(3)

There are several ways to represent the elements of the rotation group SO(3), for example
by real-valued 3 × 3 matrices or by three Euler angles. In this paper, we focus on the
representation by quaternions of unit length. Compared to the matrix representation only
four components are needed. Moreover, the calculations for quaternions are more convenient
than for the representation by Euler angle. For further information the reader may consult,
e.g., [35].

Quaternions are elements of the form q = (s, v)T ∈ R × R3, which form a 4-dimensional
real vector space and together with the Hamiltonian multiplication

q1 � q2 :=

(
s1s2 − vT

1 v2

s1v2 + s2v1 − v1 × v2

)
,

where × denotes the vector product, also a division algebra. Note that the Hamiltonian
multiplication is associative, but not commutative. The conjugate of q = (s, v)T ∈ R × R3

is given by q = (s,−v)T and its norm or length by

|q| :=
(
s2 + ‖v‖22

) 1
2 .

11



Let Sd denote the unit sphere in Rd+1. For the connection between quaternions and rota-
tions, we restrict our attention to quaternions of unit lengths q ∈ S3, which can be uniquely
represented by a vector r ∈ S2 and an angle θ ∈ [0, 2π) as

q(r, θ) :=
(
cos
(
θ
2

)
, r sin

(
θ
2

))T
.

It is easy to check that the multiplication of two unit quaternions is again a unit quaternion.
On the other hand, every rotation R(r, θ) ∈ SO(3) is determined by a rotation axis r ∈ S2

with rotation angle θ ∈ R and acts on a point p ∈ R3 by

R(r, θ)p = r(rTp) + cos(θ) ((r × p)× r) + sin(θ)(r × p) ∈ R3.

This is equivalent to multiplying p with the matrix

R(r, θ) =

 (1− c)r2
1 + c (1− c)r1r2 − r3s (1− c)r1r3 + r2s

(1− c)r1r2 + r3s (1− c)r2
2 + c (1− c)r2r3 − r1s

(1− c)r1r3 − r2s (1− c)r2r3 + r1s (1− c)r2
3 + c

 , (12)

where c := cos(θ) and s := sin(θ). Note that R(r, 2π − θ) = R(−r, θ). Rotations can be
identified with unit quaternions by

R(r, θ) =̂ q(r, θ) r ∈ S2, θ ∈ R.

Then, we have R(r, θ)T =̂ q(r, θ) and the homeomorphism between the rotation group and
the multiplicative group of the quaternion algebra

R(r1, θ1)R(r2, θ2) =̂ q(r1, θ1)� q(r2, θ2).

Since the same rotation is generated by −q = (cos(2π−θ
2 ), sin(2π−θ

2 ) (−r))T ∈ S3, we see that
SO(3) ∼= S3/{±1}. From these relations we infer that the geodesic distances on the rotation
group SO(3) and S3/{±1} are related via

dSO(3)

(
R(r1, θ1), R(r2, θ2)

)
= 2
√

2 dS3/{±1}
(
(s1, v1), (s2, v2)

)
= 2
√

2 arccos |s1s2 + vT
1 v2|.

To rewrite the data term (6) with respect to quaternions, we have to determine the
quaternion representation of the matrix R(∇ϕ) in (5). By (12), we see immediately that
r = e3 := (0, 0, 1)T so that

R (∇ϕ) =̂ q (e3, θϕ) =
(
cos
( θϕ

2

)
, 0, 0, sin

( θϕ
2

))T
and

R(∇ϕ) =

 cos(θϕ) − sin(θϕ) 0
sin(θϕ) cos(θϕ) 0

0 0 1

 .

Further, we obtain from the polar decomposition that

∇ϕ :=

(
a1,1 a1,2

a1,2 a2,2

)
=

(
cos(θϕ) − sin(θϕ)
sin(θϕ) cos(θϕ)

)(
v1,1 v1,2

v1,2 v2,2

)
,
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where the latter matrix is in SPD(2). Now, if det(∇ϕ) > 0 a.e., straightforward computation
implies

θϕ :=

arctan
(
a2,1−a1,2
a1,1+a2,2

)
, a1,1 + a2,2 > 0,

π − arctan
(
a2,1−a1,2
a1,1+a2,2

)
, a1,1 + a2,2 < 0.

(13)

In summary, the data term (6) with respect to quaternions can be written up to the factor
2
√

2 and with the agreement that {±1} is incorporated in the symmetry group S as

D
(
ϕ; I1, I2

)
:=

∫
Ω

dS3/S
(
I1, q (e3, θϕ)� I2 ◦ ϕ

)
dx, (14)

where θϕ is determined by (13).

4.2. Discretization

We discretize the image registration model

inf
ϕ∈BV(Ω,Ω1)

D
(
ϕ; I1, I2

)
+R(ϕ)

with data term (14) and regularizer (7) by using finite dimensional, bilinear approximations
of the involved functions and by discretizing the corresponding integrals using equidistant
samples. Henceforth, we assume that working on a discrete grid already provides a smooth-
ing in the sense of Subsection 3.2 with an appropriately small ε. We have also implemented
the “higher regularity of ϕ” approach from Subsection 3.3 and will show results in the
numerical part. However, we only briefly comment on the modified discretization for this
approach in Remark 4.1.

Using the notation
ϕ = Id + u, ∇ϕ = I2 +∇u, θϕ = θu

with the 2× 2 identity matrix I2 and recalling the TGV definition (3), we aim to minimize
a discrete version of

E(u,w) :=

∫
Ω

dS3/S
(
I1, q (e3, θu)� I2 ◦ (Id + u)

)
+ α1‖∇u− w‖F

+ α2‖∇w‖F + βf
(
det(I2 +∇u)

)
dx.

(15)

Let the domains Ω := (0, a) × (0, b) and Ω1 := (0, a1) × (0, b1) be rectangles with sides
having integer lengths a, b, a1, b1 ∈ N. We assume that all occurring functions can be
approximated by interpolation at prescribed sampling points. More precisely, we define the
bilinear interpolation basis function B : R2 → R by

B(x) =

{
(1− |x1|)(1− |x2|), |x1|, |x2| ≤ 1,

0, else.

Then, for given EBSD data I1(xi,j) ∈ S3/S and I2(xi,j) ∈ S3/S sampled at the grid points
xi,j := (i+ 1

2 , j+ 1
2), the corresponding functions I1 : Ω→ S3/S and I2 : Ω1 → S3/S are given

as follows. Let q(r1,i,j , θ1,i,j) ∈ I1(xi,j) and q(r2,i,j , θ2,i,j) ∈ I2(xi,j) be unit quaternions of
minimal angles θ1,i,j , θ2,i,j ∈ [0, π] with corresponding vectors r1,i,j , r2,i,j ∈ S2, respectively.
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Note that for almost all elements of S3/S there is exactly one quaternion of minimal angle.
Using these representatives, we interpolate the given EBSD data by defining

I1(x) := ProjS3/S

( a∑
i=0

b∑
j=0

q(r1,i,j , θ1,i,j)B(x− xi,j)
)
, x ∈ Ω,

I2(x) := ProjS3/S

( a1∑
i=0

b1∑
j=0

q(r2,i,j , θ2,i,j)B(x− xi,j)
)
, x ∈ Ω1,

where ProjS3/S : R4 \ {0} → S3/S denotes the orthogonal projection onto S3/S defined by

ProjS3/S(q) :=
[
q/‖q‖2

]
S , q ∈ R4 \ {0}.

We want to mention that this interpolation approach does not respect the proper topology of
the quotient space S3/S, since in general the distance in SO(3) of the involved representatives
could be larger than the distances in SO(3)/S of the corresponding equivalence classes, cf.
(4). However, the given formula is easy to implement and leads to reasonable results, as
seen by the numerical experiments in Section 6.

For our multilevel approach, we shall approximate the displacement field u ∈ BV(Ω,Ω1)
and the tensor field w ∈ BV(Ω, T 2(R2)) at different scales s. More precisely, s > 0 is a scaling
factor such that a/s, b/s ∈ N. Then we define us : Ω→ Ω1, the bilinear approximation of u
at scale s, by the expansion

us(x) :=

a/s∑
i=0

b/s∑
j=0

us,i,jB
(
x/s− (i, j)T

)
, x ∈ Ω,

where us,i,j ∈ R2, i = 0, . . . , a/s, j = 0, . . . , b/s, are the expansion coefficients. Further, the
piecewise constant approximation of w at scale s is defined by ws : Ω → T 2(R2) using the
expansion

ws(x) :=

a/s−1∑
i=0

b/s−1∑
j=0

ws,i,j1Ωs,i,j (x), 1Ωs,i,j (x) :=

{
1, x ∈ Ωs,i,j ,

0, else.

where ws,i,j ∈ T 2(R2), i = 0, . . . , a/s−1, j = 0, . . . , b/s−1, are the values on the subdomains

Ωs,i,j := (si, s(i+ 1))× (sj, s(j + 1)), i = 0, . . . , a/s− 1, j = 0, . . . , b/s− 1.

Note that the subdomains Ωs,i,j have side length s, which can be made arbitrarily small. In
particular, decreasing scales s lead to finer resolutions of the approximations us and ws of u
and w, respectively. Moreover, the coarsest resolution is given by the scale smax := gcd(a, b),
the greatest common divisor of a and b.

Finally, the energy (15) is approximated at scale s by the sampled energy

Es(us, ws) := s2

a/s−1∑
i=0

b/s−1∑
j=0

Ds,i,j(us)+α1 TV1
s,i,j(us, ws)+α2 TV2

s,i,j(ws)+βFs,i,j(us), (16)
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where Ds,i,j , TV1
s,i,j , TV2

s,i,j and Fs,i,j are the following discretizations of the corresponding
integrals in (15) on the subdomains Ωs,i,j . For a given sampling size m ∈ N, we use the
sampling points

xs,i,j,k,l :=
(
s
(
i+ 2k+1

2m

)
, s
(
j + 2l+1

2m

))
∈ Ωs,i,j

and define

Ds,i,j(us) :=
1

m2

m−1∑
k,l=0

dS3/S

(
I1(xs,i,j,k,l), q(e3, θu(xs,i,j,k,l))� I2

(
xs,i,j,k,l + us(xs,i,j,k,l)

))
,

TV1
s,i,j(us, ws) :=

1

m2

m−1∑
k,l=0

‖∇us(xs,i,j,k,l)− ws,i,j‖F ,

TV2
s,i,j(ws) :=

1

s


(
‖ws,i+1,j − ws,i,j‖2F + ‖ws,i,j+1 − ws,i,j‖2F

) 1
2 , i < a/s− 1, j < b/s− 1,

‖ws,i+1,j − ws,i,j‖F , i < a/s− 1, j = b/s− 1,

‖ws,i,j+1 − ws,i,j‖F , i = a/s− 1, j < b/s− 1,

Fs,i,j(us) :=
1

m2

m−1∑
k,l=0

f
(
det(I2 +∇us(xs,i,j,k,l))

)
.

Note that increasing sampling sizes m lead to higher accuracy of the approximated integrals,
at the cost of higher computational demands. Hence, we like to set the sampling size m at
a given scale s preferably small. In order to catch at least the features of I1 in the data
term Ds,i,j(us), it is reasonable to choose m ≥ s.

For minimizing the discretized energy Es in (16), we use an iterative optimization method.
Since the energy Es depends not only on the displacement field us and the tensor field ws,
but also on the derivatives of us and the finite differences of ws in TV2, a variable splitting
approach with additional variables for these expressions is necessary. The derivatives of
us : Ω → R2 are polynomials of degree at most one on the domain Ωs,i,j . More precisely,
from

∂

∂x1
B(x) =

{
1− |x2|, −1 < x1 < 0,

|x2| − 1, 0 < x1 < 1,

∂

∂x2
B(x) =

{
1− |x1|, −1 < x2 < 0,

|x1| − 1, 0 < x2 < 1,

we infer for x ∈ Ωs,i,j the relations

∂

∂x1
us(x) = zs,i,j,1(1− t2) + zs,i,j,2t2, t2 := x2/s− j ∈ (0, 1),

∂

∂x2
us(x) = zs,i,j,3(1− t1) + zs,i,j,4t1, t1 := x1/s− i ∈ (0, 1),

where the finite difference coefficients zs,i,j,κ, κ = 1, . . . , 4, solve the system of equations

0 = hs,i,j,1(us, zs) := zs,i,j,1 − (us,i+1,j − us,i,j)/s,
0 = hs,i,j,2(us, zs) := zs,i,j,2 − (us,i+1,j+1 − us,i,j+1)/s,

0 = hs,i,j,3(us, zs) := zs,i,j,3 − (us,i,j+1 − us,i,j)/s,
0 = hs,i,j,4(us, zs) := zs,i,j,4 − (us,i+1,j+1 − us,i+1,j)/s.

(17)
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Note that this artificial linear constraint is crucial for applying the ADMM algorithm.
Similarly, for the differences of the function ws : Ω→ T 2(R2) appearing in TV2, we introduce
the finite difference variables ωs,i,j,κ ∈ T 2(R2), κ = 1, 2, which solve the system of equations

0 = gs,i,j,1(ws, ωs) :=

{
ωs,i,j,1 − (ws,i+1,j − ws,i,j), i < a/s− 1,

ωs,i,j,1, i = a/s− 1,

0 = gs,i,j,2(ws, ωs) :=

{
ωs,i,j,2 − (ws,i,j+1 − ws,i,j), j < b/s− 1,

ωs,i,j,2, j = b/s− 1.

(18)

Then, we replace any occurrence of the displacement gradient ∇us : Ω → T 2(R2) in the
discretized energy Es in (16) by the piecewise continuous function

zs(x) :=

a/s−1∑
i=0

b/s−1∑
j=0

(
zs,i,j,1,1(1− t2) + zs,i,j,2,1t2 zs,i,j,3,1(1− t1) + zs,i,j,4,1t1
zs,i,j,1,2(1− t2) + zs,i,j,2,2t2 zs,i,j,3,2(1− t1) + zs,i,j,4,2t1

)
,

where t1 = x1/s − i and t2 = x2/s − j. For the function ws, we replace the differences in
TV2

s,i,j by the variable ωs := (ωs,i,j,κ)i,j,κ. Consequently, if the constraints (17) and (18) are
satisfied, we can rewrite the summands appearing in (16) as

Ds,i,j(us, zs) :=
1

m2

m−1∑
k,l=0

dS3/S

(
I1(xs,i,j,k,l), q(θzs(xs,i,j,k,l))� I2

(
xs,i,j,k,l + us(xs,i,j,k,l)

))
,

TV1
s,i,j(ws, zs) :=

1

m2

m−1∑
k,l=0

‖zs(xs,i,j,k,l)− ws,i,j‖F ,

TV2
s,i,j(ωs) :=

1

s

(
‖ωs,i,j,1‖2F + ‖ωs,i,j,2‖2F

) 1
2 ,

Fs,i,j(zs) :=
1

m2

m−1∑
k,l=0

f
(
det(I2 + zs(xs,i,j,k,l))

)
,

where θzs(xs,i,j,k,l) denotes the angle defined in (13) for the matrix I2 + zs(xs,i,j,k,l). In
summary, we get an extended form of (16), which we denote with Es(us, ws, zs, ωs).

Remark 4.1. The discrete version for the modification of the model (9) introduced in Sub-
section 3.3 can be treated in a similar way. For instance, the discrete version of the TV2-
model is obtained by setting α1 = 0 in (16) and adding the constraints zs(i+

1
2 , j+ 1

2) = ws,i,j,
i = 0, . . . , a/s, j = 0, . . . , b/s, to the optimization problem (16). Then, similar algorithms
as proposed in the next section can be derived.

5. Optimization Algorithm

In this section, we describe the optimization algorithm for the non-smooth, non-convex and
high dimensional problem (16). A reasonable and efficient method for solving constrained
optimization problems is the Augmented Lagrangian Method (ALM), also known as Method
of Multipliers, see [37, 55, 59], which enables the use of unconstrained optimization solvers.
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Global convergence results under relatively mild conditions, even for non-smooth and non-
convex optimization problems, were proved, e.g., in [7, 15]. We use a particularly efficient
variant, the Alternating Direction Method of Multipliers (ADMM), which in the context
of convex optimization provides global convergence. It goes back to [32, 34] and for an
overview we refer to [17, 33]. In general, the ADMM cannot be applied reliably to non-
convex and non-smooth problems. Recently, some promising results for particular problems
were given in [71]. In the following, we briefly show how the ADMM can be applied to our
problem. Indeed all ADMM steps can be incorporated within a multilevel approach and
can be computed in an efficient way, where we observe numerical convergence. We are not
aware of any other approach for the registration of EBSD data in the literature.

5.1. Algorithm

We start by noting that the augmented Lagrangian function for the minimization of Es(us, ws, zs, ωs)
under the constraints (17) and (18) is given by

Lµ(us, ws, zs, ωs, λh, λg) := Es(us, ws, zs, ωs) + µ
2Hs(us, ws, zs, ωs, λh, λg), µ > 0,

with

Hs(us, ws, zs, ωs, λh, λg) :=

a/s−1∑
i=0

b/s−1∑
j=0

4∑
κ=1

‖hs,i,j,κ(us, zs) + 1
µλh,i,j,κ‖

2
2

+

a/s−1∑
i=0

b/s−1∑
j=0

2∑
κ=1

‖gs,i,j,κ(ws, ωs) + 1
µλg,i,j,κ‖

2
F ,

primal variables

us,i,j ∈ R2, i = 0, . . . , a/s, j = 0, . . . , b/s,

ws,i,j ∈ R2,2, i = 0, . . . , a/s− 1, j = 0, . . . , b/s− 1,

zs,i,j := (zs,i,j,κ)4
κ=1 ∈ R2,4, i = 0, . . . , a/s− 1, j = 0, . . . , b/s− 1,

ωs,i,j := (ωs,i,j,κ)2
κ=1 ∈ R2,2,2, i = 0, . . . , a/s− 1, j = 0, . . . , b/s− 1,

and dual variables

λh := (λh,i,j,κ)4
κ=1 ∈ R2,4, λg := (λg,i,j,κ)2

κ=1 ∈ R2,2,2, i = 0, . . . , a/s−1, j = 0, . . . , b/s−1.

Then, the ADMM aims to solve the constrained problem starting with an initial guess
(u0
s, w

0
s , z

0
s , ω

0
s , λ

0
h, λ

0
g) iteratively based on the alternating primal-dual procedure

(ur+1
s , wr+1

s ) := argmin
(us,ws)

Lµ(us, ws, z
r
s , ω

k
s , λ

r
h, λ

r
g), (19)

(zr+1
s , ωr+1

s ) := argmin
(zs,ωs)

Lµ(ur+1
s , wr+1

s , zs, ωs, λ
r
h, λ

r
g), (20)

(λr+1
h , λr+1

g ) := (λrh, λ
r
g) + µ (hr+1

s , gr+1
s ), (21)

see [21]. Unfortunately, we cannot give an explicit solution for the primal problems (19)
and (20). Instead, we minimize the augmented Lagrangian Lµ for the primal variables
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iteratively using the algorithms in Appendix B. More precisely, the optimal zs, us and ws
are computed by steepest descent methods with inexact line search, c.f. Algorithm 4, whereas
the optimal ωs is computed analytically. Unfortunately, descent methods converge in general
only towards local minimizers. Furthermore, we like to emphasize that the function Lµ might
not be differentiable at particular points. At such points we use a subgradient instead of
the gradient. Since these points of non-differentiability occur only where the minimum of
the distance or norms is achieved, the proposed algorithms might have problems only close
to local minimizers, where non-differentiability is present. In such cases, it is difficult to
determine the correct step size by the line search. However, our numerical experiments
indicate that the proposed algorithms do perform well even in such corner cases.

(us, ws) - Minimization. The minimization in (19) w.r.t. the variables us, ws can be done
separately. For us we aim to minimize the sums

S1
s,i,j(us) := Ds,i,j(us, zs) + µ

2

4∑
κ=1

∥∥hs,i,j,κ(us, zs) + 1
µλh,i,j,κ

∥∥2

2
,

independently and parallel for i = 0, . . . , a/s − 1, j = 0, . . . , b/s − 1. However, since S1
s,i,j

depends on the variables us,i+k,j+l, k, l ∈ {0, 1}, we propose to decouple the optimization
as described in Algorithm 1. The advantage of the decoupling is that different step lengths
can be taken for different regions of the displacement field us.

Similarly, for ws we aim to minimize the sums

S2
s,i,j(ws) := α1 TV1

s,i,j(zs, ws) + µ
2

2∑
κ=1

∥∥gs,i,j,k(ws, ωs) + 1
µλg,i,j,κ

∥∥2

F

independently and parallel for i = 0, . . . , a/s − 1, j = 0, . . . , b/s − 1 as described in Algo-
rithm 2.

(zs, ωs) - Minimization. The minimization in (20) of the variables zs and ωs can be done
separately. For zs the sums

S3
s,i,j(zs) := Ds,i,j(us, zs) + α1 TV1

s,i,j(zs, ws) + βFs,i,j(zs)

+ µ
2

4∑
κ=1

∥∥hs,i,j,κ(us, zs) + 1
µλh,i,j,κ

∥∥2

2

can be minimized independently and parallel for i = 0, . . . , a/s− 1, j = 0, . . . , b/s− 1. The
main difficulty in the optimization of S3

s,i,,j arises from the non-differentiability of Ds,i,j

along higher dimensional varieties. This is caused by the level sets of the function in (13),
which reads for our setting as

θ(z) := arctan
( z2,1 − z1,2

z1,1 + z2,2 + 2

)
, z ∈ T 2(R2), (22)

and the non-differentiability of the distance dS3/S(·, q), q ∈ S3/S at q.
In order to obtain more suitable descent directions, we decompose the subgradient

∇zs,i,jLµ = ∇zs,i,jS3
s,i,j
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into a gradient “parallel” and a gradient “orthogonal” to the non-differentiable variety. The
“orthogonal” gradient is defined by

∇⊥zs,i,jLµ := ∇zs,i,jDs,i,j , (23)

since a change in the data term Ds,i,j drives directly a change in the level sets of the rotation
angles, see (22). Then, the “parallel” gradient is given by the orthogonal projection

∇‖zs,i,jLµ := ∇zs,i,jLµ −
〈
∇⊥zs,i,jLµ,∇zs,i,jLµ

〉〈
∇⊥zs,i,jLµ,∇⊥zs,i,jLµ

〉∇⊥zs,i,jLµ, (24)

which is likely to point in directions parallel to the level sets of the rotation angles. Using

alternately the descent directions −∇⊥zs,i,jLµ and −∇‖zs,i,j , we arrive at Algorithm 3.
For the variable ωs, we minimize the sums

S4
s,i,j(ωs) := α2 TV2

s,i,j(ωs) + µ
2

2∑
κ=1

∥∥gs,i,j,k(ws, ωs) + 1
µλs,i,j,κ

∥∥2

F
,

analytically and parallel for i = 0, . . . , a/s− 1, j = 0, . . . , b/s− 1. Here, we utilize that the
solution of

argmin
x∈Rd

µ
2‖x− y‖

2
2 + β‖x‖2, y ∈ Rd, µ, β > 0

is given by the grouped soft shrinkage

x∗ =

{
y
(
1− β

‖µy‖2

)
, ‖µy‖2 > β,

0, else.

5.2. Multilevel Approach and Implementation

Minimizing Es(us, ws, zs, ωs) under the constraints (17) and (18) is a highly non-convex
task. This results in many local minima, in particular for high image resolutions with
many degrees of freedom. In order to find good solutions, we apply a multilevel approach,
where we successively increase the approximation resolution. More precisely, for a given
scaling factor sl > 0 on level l ∈ N0, we apply the ADMM (19)-(21) and use the computed
displacement usl as initial guess for the next level by setting sl+1 := sl/2. On the coarsest
level l = 0, we take the largest scale s0 := gcd(a, b). The finest level lmax is achieved if
slmax < 1. Hence, domains Ω = (0, a) × (0, b) with sides a and b having large common
divisors, are preferred for our multilevel approach. Furthermore, we choose a relatively high
sampling density by setting the sampling factor m0 := 2s0, which is decreased at every
subsequent level by setting ml+1 := max{ml/2, 2}. The use of high sampling factors ml

allows us to avoid additional filtering steps, such as smoothing of the images I1, I2, as it is
usually done for other registration or optical flow approaches, see, e.g., [67]. For the (us, ws)-
and (zs, ωs)-minimization steps (19) and (20), it is sufficient to fix the maximal number of
iterations kmax := 5 in Algorithms 1-3. At each level l, we use l · 1000 ADMM-iterations. In
cases where large deformations are expected, it might by advantageous to start with a small
penalty parameter µ0 at level l = 0 and increase it at each level. This adds more flexibility
and efficiency for the optimization on coarser levels.
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Finally, we like to remark that our discretization and optimization strategy is well suited
for the use of parallel computing devices. Hence, we implemented the proposed algorithms
for GPU devices using Python together with the CUDA toolkit. Here, we use the Python
interface provided by PyCUDA [43] to implement the parallel Algorithms 1-3 with the
CUDA programming language [48]. The software will be publicly available.

6. Numerical Experiments

In this section, we demonstrate the performance of our registration models and optimiza-
tion algorithms on synthetic data as well as real world data. In Example 6.1, we show that
the TGV-model (10) and the “higher regularity” TV2-model (11) are able to reconstruct a
displacement field with a jump discontinuity. In Example 6.2, we recover the rigid rotations
between two rotated real-world EBSD datas sets. Here, our model is in perfect accordance
with the physical conditions. Further, we discuss the influence of the regularization pa-
rameters in our model. Finally, in Example 6.3, we take data from a simulation where ice
crystals are deformed under shear stress. Using the TV2-model, we are able to reconstruct
the deformation.

The regularization parameters in our models are chosen to provide visual appealing re-
construction results for a variety of scenarios. More precisely, if not stated otherwise we use
α1 = 0.1, α2 = 0.5 (TGV), α = 0.5 (TV2), β = 0.1 (determinant). For ADMM we usually
take µ = 1, where smaller parameters appear leading to larger violations of the equal-
ity constraints and larger parameters µ slow down the overall convergence. The variables
us, ws, zs, ωs, λh, λg of the multilevel method are initialized by zero.

The orientations q = (s, v) ∈ S3 of the EBSD data in Figure 2 – 5 are colorized by taking
the absolute values of the vectorial part v as color coordinates in RGB space. For more
sophisticated color codings we refer to [53]. The symmetry group S is given via the phase
of the EBSD measurements and specified below for each real-world example.

6.1. Tearing Square

In this example, we demonstrate that both the TGV-model and the “higher regularity”
TV2-model are able to recover the displacement field with a jump discontinuity. Recall,
that our discrete model is based on continuous basis functions, so that we can recover jump
discontinuities only in the limit of the refinement process. Nevertheless, we shall see that
the TGV-model (10) is able to resolve the jump discontinuities almost perfectly.

The images I1 and I2 of size 256×256, for which we reconstruct the displacement field, are
given in the first row of Figure 2. The black background in both images is associated to the
orientation (1, 0, 0, 0) ∈ S3. Image I1 contains a square region of size 128x128 of constant
orientation (0, 1/

√
2, 1/
√

2, 0) ∈ S3. In image I2, the left half of the square is rotated to
the left and the right half is rotated to the right, each by an angle of 30 degrees. Hence,
the orientations are (0, 1/2,

√
3/2, 0) ∈ S3 and (0,

√
3/2, 1/2, 0) ∈ S3, respectively. For this

example, we assume no further group symmetry, i.e., S = {±1}.
In Figure 2, we show the reconstructed displacement field of both methods. We observe

that the jump part is better resolved by the TGV-model, which is easily explained by the
higher order terms in the TV2-model. However, it is interesting that also the TV2-model is
able to handle such large jump discontinuities.
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Figure 2.: Artificial EBSD data of a tearing square. Top row: Image I1 (left) representing
the original square and Image I2 (right) representing the teared square. Both
images are of size 256 × 256 and visualized in RGB space. Middle row: Recon-
struction results of the TGV-model. Bottom row: Reconstruction results of the
TV2-model. From left to right: a) The first component of the displacement field
u1 showing the vertical jump discontinuity. b) Image of the derivative ∂

∂x1
u1. c)

Visualization of R(∇ϕ)I1 ◦ϕ−1 overlaid with a grid visualizing the reconstruction
of ϕ.
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6.2. Reconstruction of Rotated EBSD Measurements

Next, we deal with data from real EBSD measurements of two different samples. The
first sample is fully measured, whereas the second one has corrupted data. Both samples
are measured in two positions, which differ by a rotation with axis almost perpendicular
to the surface plane. We use the first sample to demonstrate the differences between our
model, which incorporates R(∇ϕ), and the naive approach, where the orientation of the
SO(3)/S-data is not changed by the transformation. The second example illustrates the
influence of the regularization parameters on the reconstruction. For both examples we use
the TV2-model.

The EBSD data of the first sample are measured on a zirconium-hydrogen alloy zircaloy-
4, which is typically used for constructive components in the nuclear power industry due
to combination of excellent corrosion resistance, good neutron penetration and suitable
mechanical properties. This sample only consists of the hexagonal phase, which has the
symmetry group ’6/mmm’ [31, 56]. The position of image I1 and image I2 differs by a
rotation of 50 degrees, as can be seen in the top row of Figure 3. The bottom row of
Figure 3 depicts the error of the reconstructed transformation ϕ, where we measure the
distance of image I1 to the rotation aware transformed image R(∇ϕ)TI2◦ϕ (left) and to the
naively transformed image I2 ◦ ϕ (right), respectively. We clearly observe that the rotation
influences the orientations in the EBSD measurements. In the rotation aware model, we
observe that the orientations of the matched grains are almost perfectly aligned (bottom,
left). If we do not take the rotational change into account, there appear large differences in
the corresponding orientations.

The second sample is a metastable austenitic so called TRIP (transformation induced plas-
ticity) steel. Deformation may induce both a transformation of the metastable austenitic
phase (symmetry group ’432’) to martensitic phase (symmetry group ’4/mmm’) or a forma-
tion of crystallographic twins that lead to a change of macroscopic properties [62]. In this
case, a deformation was induced by an indentation in scope of a hardness measurement. As
EBSD is very surface sensitive, the indenter imprints can not be measured and appear as
quasi diamond-shaped areas [20].

For our experiment, we choose the phase to which the majority of the grains corresponds
to, namely ’432’. The remaining phases and the three indenter imprints are filled by the
constant orientation (1, 0, 0, 0) ∈ S3 (black color) in both images I1 and I2. In the left
column of Figure 4, we can see that the position between the images I1 and I2 differs by a
rotation of about 8 degrees. Moreover, we observe for decreasing regularization parameter
α stronger deformations in areas of filled data. This behavior is expected for our model by
to the influence of the rotation field R(∇ϕ) in the data term, see right column in Figure 4.

6.3. Reconstruction of Simulated Deformations

Finally, we reconstruct the displacement field obtained from a stress simulation of ice crystals
using our TV2-model. More precisely, we are given an initial image I1 and a displacement
field u, which has been computed by a physical model, see [46, 47]. Then, image I2 is
obtained by applying the transformation ϕ(x) = x + u(x) to image I1. In the simula-
tion model, the displacement field and the image I1 are continued periodically along the
boundary. Hence, we need to repeat the image I2 along each direction to account for the
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Figure 3.: Real EBSD data of a zirconium-hydrogen alloy zircaloy-4 measured in two dif-
ferent positions. Top row: Image I1 (left) and image I2 (right), both overlaid
with a grid visualizing the reconstructed transformation (white grid). Bottom
row: Reconstruction error in degrees for our model (left) and the model without
orientation incorporation (right). The error for the naive model is much higher.
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Figure 4.: Real EBSD data of TRIP steel X20MnAlSi16-1-1 measured in two different posi-
tions using the austenitic phase. The remaining phases and the indenter imprints
are filled by a constant orientation (black regions). Left column: Reference im-
age I2 overlaid with the reconstructed transformation (gray grid) for decreasing
regularization parameters α = 10, 1, 0.1 (from top to bottom). For every image
the part in the upper right is magnified and depicted in the corresponding lower
left corner. Right column: The corresponding reconstruction errors in degrees.
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periodization. The symmetry group of the EBSD data is ’6/mmm’.
The input image I1 and the transformed image I2 are depicted in the top row of Figure 5.

In the bottom row of Figure 5, we show the result of our method in comparison to the
ground truth given by the transformation ϕ. There is a very good alignment between the
given and the reconstructed transformation.

7. Conclusions

Nowadays, novel image acquisition techniques such as EBSD come along with challenging
tasks in imaging sciences. In this paper, we were concerned with the appropriate modeling of
displacement fields between EBSD image sequences. In contrast to the gray-value constancy
assumption, it appears that the rotation part in the transformation influences the data
itself and must be incorporated into the variational model. Hence, we established a novel
continuous non-convex model and took care in describing its discretization and minimization
to make the numerical part understandable and reproducible.

In our future work, we will further refine the methods initialized in this paper. From a
practical perspective, we will be mainly interested in crack detection in fatigue tests and the
investigation of real-world materials. Integrating mathematical models in these investiga-
tions could lead to a better understanding of material behavior under mechanical loadings.
In particular, high performance materials such as TRIP steel or anisotropic nickel based
superalloys can have a complex microstructure and texture and hardly predictable fatigue
failure [28, 65]. For such materials, EBSD-data is also used to perform PDE-simulations of
the deformation behavior of real microstrucures and textures in order to predict the crack
initiation and therefore to enhance the performance of components and to save resources. As
the boundary conditions and the mesh generation for real data are challenging and poten-
tially faulty, image registration methods may be a powerful method to verify the simulations
by comparing simulated (PDE) and reconstructed (image registration) local deformation.
We will also have a look at other deformation models, e.g., metamorphosis related ones.
Finally, we intend to combine image sequences from EBSD and raster electron microscopy
to improve the transformation detection.

Acknowledgement. M.G. and G.S. gratefully acknowledge funding by the German Re-
search Foundation (DFG) within the project STE 571/16-1. We kindly thank Maria-Gema
Llorens for providing us with realistic deformation maps using the Elle Numerical Simula-
tion Platform, Ben Britton and Ruth Birch for measuring the Zirconium data and Stefan
Wolke for the EBSD measurements on TRIP steel.

A. Proof of Theorem 3.1

The proof of Theorem 3.1 is a consequence of the following two lemmata.

Lemma A.1. The functional Rrelax : BV(Ω,R2)→ R≥0 ∪ {+∞} is lower semi-continuous
w.r.t. L1(Ω,R2)-convergence.

Proof. Let ϕn → ϕ in L1(Ω,R2). Without loss of generality, we can assume Rrelax(ϕn) <∞
for all n ∈ N. By definition of Rrelax, there exists ϕ̃n ∈W 1,2(Ω,R2) with ‖ϕn− ϕ̃n‖1 ≤ 1/n
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Figure 5.: Simulated EBSD data from a stress simulation of ice crystals. Top row: Left
image I1 is transformed into the right image I2 by shear stress using periodic
boundary conditions. Left border is fixed and right border slips downwards.
The corresponding grids are depicted in gray. Bottom left: The reconstruction
error in degrees. Bottom right: The original transformation (blue grid) and
the reconstructed transformation (black grid). The part in the lower middle is
magnified and shows a significant difference to the ground truth.
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and R(ϕ̃n) ≤ Rrelax(ϕn) + 1/n. Incorporating ‖ϕ̃n − ϕ‖1 ≤ ‖ϕ̃n − ϕn‖1 + ‖ϕn − ϕ‖1, we
obtain ϕ̃n → ϕ in L1(Ω,R2). Hence, using the definition of Rrelax, we get

Rrelax(ϕ) ≤ lim inf
n→∞

R(ϕ̃n) ≤ lim inf
n→∞

Rrelax(ϕn) + 1/n = lim inf
n→∞

Rrelax(ϕn).

This concludes the proof.

Next, we want to show for specific choices of f that Rrelax(ϕ) ≥ R(ϕ) with equality if
ϕ ∈W 1,2(Ω,R2). This relation is actually crucial for obtaining coercivity of Rrelax w.r.t. the
BV-norm, which is one of the main ingredients for applying the direct method of calculus
to (9). Here, the following result turns out to be useful.

Theorem A.2 ([23, Thm. 3.1]). Let f : R → R≥0 ∪ {+∞} be convex and lower semi-
continuous with f(0) <∞. Assume that ϕ ∈ BV(Ω,R2) and ϕn ∈W 1,2(Ω,R2) satisfy

i) (ϕn)n is bounded in W 1,1(Ω,R2),

ii) ϕn → ϕ in L1(Ω,R2)

Then,
∫

Ω f(det∇ϕ) dx ≤ lim infn→∞
∫

Ω f(det∇ϕn) dx.

Now, we can prove the desired estimate.

Lemma A.3. Let R and Rrelax be defined by (7) and (8), respectively. Then, Rrelax(ϕ) ≥
R(ϕ) for any ϕ ∈ BV(Ω,R2) with equality if ϕ ∈W 1,2(Ω,R2).

Proof. First, note that Theorem A.2 still holds for our choice of f . This can be seen by using
monotone increasing approximations fε : R→ R≥0∪{+∞} with fε(x) := (x+ε)−1 +x if x ≥
0 and fε(x) := +∞ else. For any sequence (ϕn)n satisfying the conditions of Theorem A.2,
the monotone convergence theorem implies∫

Ω
f(det∇ϕ) dx = lim

ε→0

∫
Ω
fε(det∇ϕ) dx

≤ lim
ε→0

lim inf
n→∞

∫
Ω
fε(det∇ϕn) dx ≤ lim inf

n→∞

∫
Ω
f(det∇ϕn) dx. (25)

Let ϕ ∈ BV(Ω,R2) be arbitrary fixed. Clearly, we can assume Rrelax(ϕ) < ∞, otherwise
the statement is clear. Hence, for every ε ≥ 0, there exists a sequence (ϕn)n in W 1,2(Ω,R2)
with ϕn → ϕ in L1(Ω,R2) and

lim sup
n→∞

TGVα(ϕn − Id) ≤ lim
n→∞

R(ϕn) ≤ Rrelax(ϕ) + ε.

As TV can be upper bounded by TGVα, see [18, Cor. 3.13], this directly implies that the
sequence (ϕn)n is bounded in W 1,1(Ω,R2). Using observation (25), i.e., the generalization
of Theorem A.2, and the lower semi-continuity of TGVα w.r.t. L1(Ω,R2)-convergence, see
[19, Proof of Prop. 3.5], we get

Rrelax(ϕ) + ε ≥ lim
n→∞

R(ϕn) = lim
k→∞

TGVα(ϕn − Id) + β

∫
Ω
f(det∇ϕn) dx

≥ lim inf
k→∞

TGVα(ϕn − Id) + β lim inf
k→∞

∫
Ω
f(det∇ϕn) dx

≥ TGVα(ϕ− Id) + β

∫
Ω
f(det∇ϕ) dx

= R(ϕ).
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Algorithm 1. us-Minimization

Parameters: maximal iterations rmax ∈ N, weights α1, α2, β, µ
Input: initial guess u0

s, primal variables zs, ws, ωs, dual variables λh, λg
for r := 0, . . . , rmax − 1 do

for l1 := 0, 1 do
for l2 := 0, 1 do

l := 2l1 + l2

g
r+ l

4
s ∇usLµ(u

r+ l
4

s , ws, zs, ωs, λh, λg)
for i := 0, . . . , a/s do

for j := 0, . . . , b/s do

d
r+ l

4
s,i,j :=

{
−gr+

l
4

s,i,j , i = 2s+ l1, j = 2s+ l2,

0,

u
r+ l+1

4
s,i,j := u

r+ l
4

s,i,j + τi,jd
r+ l

4
s,i,j (determine τi,j by Algorithm 4)

Output: approximate minimizer urmax
s

Since ε > 0 was arbitrary, we arrive at Rrelax(ϕ) ≥ R(ϕ). Finally, equality for ϕ ∈
W 1,2(Ω,R2) follows directly by choosing the constant sequence ϕn := ϕ in the definition of
Rrelax.

Based on the previous lemmata, we can establish the proof using the direct method of
calculus.

Proof of Theorem 3.1. Let ϕn ∈ BV(Ω,Ω1) be a minimizing sequence. Then, it holds
supn ‖ϕn‖1 < ∞ as ϕn(Ω) ⊂ Ω1 is bounded. Moreover, [18, Cor. 3.13], Rrelax(ϕ) ≥ R(ϕ)
and the triangle inequality imply for any ϕ ∈ BV(Ω,Ω1) that

TV(ϕ) ≤ C
(
‖ϕ‖1 + TGVα(ϕ)

)
≤ CRrelax(ϕ) + C.

Hence, we get
sup
n
‖ϕn‖1 + TV(ϕn) <∞,

and there exists a subsequence converging weakly* to some ϕ in BV(Ω,Ω1). As weak*
convergence implies L1 convergence, Lemma A.1 implies that the regularizer is weakly*
lower semi-continuous. Hence, the complete functional (9) is weak* lower semi-continuous
and the result follows.

B. Algorithms
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