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Abstract. We analyze the Lanczos method for matrix function approximation (Lanczos-FA),
an iterative algorithm for computing f(A)b when A is a Hermitian matrix and b is a given vector.
Assuming that f : C → C is piecewise analytic, we give a framework, based on the Cauchy integral
formula, which can be used to derive a priori and a posteriori error bounds for Lanczos-FA in terms
of the error of Lanczos used to solve linear systems. Unlike many error bounds for Lanczos-FA,
these bounds account for fine-grained properties of the spectrum of A, such as clustered or isolated
eigenvalues. Our results are derived assuming exact arithmetic, but we show that they are easily
extended to finite precision computations using existing theory about the Lanczos algorithm in finite
precision. We also provide generalized bounds for the Lanczos method used to approximate quadratic
forms bHf(A)b, and demonstrate the effectiveness of our bounds with numerical experiments.
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1. Introduction. Computing the product of a matrix function f(A) with a
vector b, where A is a Hermitian matrix and f : C → C is a scalar function, is a
fundamental task in numerical linear algebra. Perhaps the most well known example
is f(x) = 1/x, in which case f(A)b = A−1b is the solution to the linear system
of equations Ax = b. Other common functions include the exponential, logarithm,
square root, inverse square root, and sign function, which have applications in solving
differential equations [12, 52], Gaussian process sampling [51], principal component
projection and regression [2, 22, 39], lattice quantum chromodynamics [9, 57], eigen-
value counting/spectrum approximation [6, 7, 10], and beyond [32].

A common approach to approximating f(A)b is based on the Lanczos algorithm.
The Lanczos algorithm, shown in Algorithm 1.1, iteratively constructs an orthonormal
basis Qk = [q1, . . . ,qk] for a nested sequence of Krylov subspaces,

Kk(A,b) = span(b,Ab, . . . ,Ak−1b) = {p(A)b : deg(p) < k},

such that span(q1, . . . ,qj) = Kj(A,b) for all j ≤ k. The basis Qk satisfies a three-
term recurrence

AQk = QkTk + βkqk+1e
T
k ,(1.1)
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where Tk is a real symmetric tridiagonal matrix with entries

Tk =


α1 β1

β1 α2
. . .

. . .
. . . βk−1

βk−1 αk

 .
The Lanczos method for matrix function approximation, which we refer to as

Lanczos-FA, approximates f(A)b using Qk and Tk as follows:

Definition 1.1. The k-th Lanczos-FA approximation to f(A)b is defined as

lank(f,A,b) := Qkf(Tk)QH
kb,

where Qk and Tk are produced by the Lanczos method run for k steps on (A,b).
For simplicity, we often write lank(f), since A and b remain fixed for most of this
manuscript. If we are considering the Lanczos algorithm run on a matrix or right
hand side different from the given A or b, we will use the full notation.

Algorithm 1.1 Lanczos

1: procedure Lanczos(A,b, k)
2: q0 = 0, β0 = 0, q1 = b/‖b‖
3: for j = 1, 2, . . . , k do
4: q̃j+1 = Aqj − βj−1qj−1

5: αj = 〈q̃j+1,qj〉
6: q̃j+1 = q̃j+1 − αjqj
7: optionally, reorthogonalize1 q̃j+1 against {qi}j−1

i=1
8: βj = ‖q̃j+1‖
9: qj+1 = q̃j+1/βj

10: end for
11: return Qk, Tk
12: end procedure

We would like to understand the convergence behavior of Lanczos-FA through a
priori and a posteriori error bounds. In the context of Krylov subspace methods for
symmetric matrices, a priori bounds depend on the spectrum of A but not on the
choice of right hand side b [27]. As such, a priori bounds are used to provide intuition
about how an algorithm depends on the spectrum of the input. On the other hand, a
posteriori bounds typically depend on quantities which are accessible to the user, but
not on quantities which are unknown in practice. This means a posteriori bounds for
Lanczos-FA can depend on quantities such as the output of the Lanczos algorithm
Qk and Tk but not on the spectrum of A.

1.1. Polynomial error bounds for Lanczos-FA. It is easy to show that
lank(p) = p(A)b for any polynomial p with deg p < k; see for example [12, 52].
This implies that lank(f) = pk(A)b, where pk is the degree k− 1 polynomial interpo-
lating f at the eigenvalues of Tk. Since eigenvalues of A are often approximated by
eigenvalues of Tk, this interpolating polynomial is a sensible approximation.

1Note that reorthogonalization has no effect on the algorithm in exact arithmetic, but can in
finite precision. We discuss finite precision considerations in Section 5.
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More formally, let ‖ · ‖ be any norm induced by a positive definite matrix which
commutes with A; i.e. with the same eigenvectors as A. Such norms include the
2-norm, the A2-norm, and the A-norm (if A is positive definite). Then ‖g(A)v‖ ≤
‖g(A)‖2 ·‖v‖ for any g : R→ R, so by the triangle inequality, for any p with deg p < k,

‖f(A)b− lank(f)‖ ≤ ‖f(A)b− p(A)b‖+ ‖p(A)b− lank(p)‖+ ‖lank(p)− lank(f)‖
= ‖(f(A)− p(A))b‖+ 0 + ‖Qk(p(Tk)− f(Tk))QH

kb‖
≤ ‖f(A)− p(A)‖2 · ‖b‖+ ‖Qk(p(Tk)− f(Tk))QH

k‖2 · ‖b‖
≤ (‖f(A)− p(A)‖2 + ‖p(Tk)− f(Tk)‖2) · ‖b‖.

Denote the infinity norm of a scalar function h : R → R over S ⊂ R by ‖h‖S :=
supx∈S |h(x)|. Then, writing the set of eigenvalues of a Hermitian matrix B as Λ(B),

‖f(A)b− lank(f)‖ ≤ min
deg p<k

(
‖f − p‖Λ(A) + ‖f − p‖Λ(Tk)

)
‖b‖.(1.2)

Finally, introducing the notation I(B) := [λmin(B), λmax(B)] and using the fact that
Λ(Tk) ⊂ I(A), we obtain the classic bound

‖f(A)b− lank(f)‖2 ≤ 2 min
deg p<k

(
‖f − p‖I(A)

)
‖b‖2.(1.3)

That is, except for a possible factor of 2, the error of the Lanczos-FA approximation
to f(A)b is at least as good as the best uniform polynomial approximation to f on the
interval containing the eigenvalues of A. For arbitrary f , (1.3) remains the standard
bound for Lanczos-FA. It has been studied carefully and is known to hold to a close
degree in finite precision arithmetic [45].

However, the uniform error bound of (1.3) is often too loose to accurately predict
the performance of Lanczos-FA. Notably, it depends only on the range of eigenvalues
I(A) and not on more fine-grained information like the presence of eigenvalue clusters
or isolated eigenvalues, which are known to lead to faster convergence. The expression
in (1.2) is more accurate but it cannot be used as an a priori bound since it involves
the eigenvalues of the tridiagonal matrix Tk, which depend on b. It also cannot be
used as a practical a posteriori bound since it involves all eigenvalues of A.

The goal of this paper is to address these limitations. Before doing so, we discuss
an example to better illustrate why (1.3) can be loose as an a priori bound. It is well
known that the eigenvalues of Tk are interlaced by those of A; that is, Λ(Tk) ⊂ I(A)
and between each pair of eigenvalues of Tk is at least one eigenvalue of A. With this
property in mind, define Jk(A) as the set of all k-tuples µ = (µ1, . . . , µk) ∈ Rk that
are interlaced by the eigenvalues of A. Then, we can use (1.2) to write

‖f(A)b− lank(f)‖ ≤ max
µ∈Jk(A)

min
deg p<k

(
‖f − p‖Λ(A) + ‖f − p‖µ

)
‖b‖.(1.4)

The bound (1.4) is an a priori error bound, and at least in some special cases, provides
more insight than (1.3) in situations where the eigenvalues of A are clustered.

Example 1.2. Consider A with many eigenvalues uniformly spaced through the
interval [0, 1] and a single isolated eigenvalue at κ > 1. Since the eigenvalues of Tk

are interlaced by those of A, there is at most one eigenvalue of Tk between 1 and κ;
that is, Λ(A)∪Λ(Tk) is contained in [0, 1]∪ {µ, κ} for some µ ∈ [1, κ]. We then have

‖f(A)b− lank(f)‖ ≤ 2 max
µ∈[1,κ]

min
deg p<k

(
‖f − p‖[0,1]∪{µ,κ}

)
‖b‖.(1.5)
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For κ = 5, f(x) = exp(−x), and k = 6, we use a numerical optimizer to determine that
the value maximizing the right hand side of (1.5) is µ∗ ≈ 4.96. In Figure 1 we show
the error of the Lanczos-FA polynomial along with the optimal uniform polynomial
approximations to f on [0, 5], which contains [0, 1]∪{µ∗, 5}. Here the optimal uniform
polynomial approximation is computed by the Remez algorithm. As expected, the
bound from (1.5) is significantly better than that from the uniform approximation.
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Fig. 1: Comparison of errors of degree 5 polynomial approximations to f(x) =
exp(−x). Legend : Lanczos-FA approximation for b with equal projection onto all
eigenvectors of A ( ), optimal uniform approximation on [0, 5] ( ), optimal uni-
form approximation on [0, 1]∪{µ∗, 5} ( ). The light vertical lines are the eigenvalues
of A, while the darker vertical lines are the eigenvalues of T6 (the Ritz values). Re-
marks: Note that the Lanczos-FA approximation becomes very inaccurate on (1, 5)
which allows a smaller error on the eigenvalues of A, which is the only error that
impacts our approximation to f(A)b. As a result, the uniform approximation on
[0, 1] ∪ {µ∗, 5} is a much better bound for the Lanczos-FA error than the uniform
approximation on [0, 5], which remains equally accurate over the entire interval [0, 5].

1.2. Our Approach and Roadmap. Given the potential looseness of the clas-
sic uniform error bound on Lanczos-FA (1.3), our goal is to derive tighter, but still
practically computable error bounds. Ideally, we want bounds that are both generally
applicable and easier to apply than e.g., the bound of (1.4) based on interlacing.

One important case where such bounds already exist is when f(x) = 1/x and A
is positive definite. In this setting, tight a posteriori error bounds are easily obtained
by computing the residual ‖Alank(f)−b‖, and moreover, much stronger a priori error
bounds are known than (1.3). In particular, ‖f(A)b− lank(f)‖ is equal to the error
of the conjugate gradient algorithm (CG) used to solve Ax = b and therefore optimal
over the Krylov subspace in the A-norm. This immediately implies a priori bounds
depending only on mindeg p<k ‖f − p‖Λ(A), and so can be much tighter than (1.3) for
matrices with clustered or isolated eigenvalues (see Appendix A for details).

Our approach is inspired by these sharper a posteriori and a priori error bounds
for Lanczos-FA in the case of linear systems – i.e., for f(x) = 1/x. We exploit
the existence of these bounds to address a more general class of functions by using
the Cauchy integral formula to write the Lanczos-FA error f(A)b − lank(f) for any
analytic f in terms of the Lanczos error for solving a continuum of shifted linear
systems in A. We then bound this error in terms of the error in computing the
solution to a single shifted system, (A − wI)−1b. This reduction is presented in
Section 2, along with a discussion of related work. We proceed, in Section 3, to show
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how this reduction can be used to obtain useful a priori and a posteriori error bounds.
One highlight result is a proof that, for any analytic function f , the relative error of
Lanczos-FA in approximating f(A)b can be bounded by a fixed constant times the
relative error in solving a slightly shifted linear system in A. We provide examples
and numerical experiments that illustrate the quality of our bounds in Section 4. In
Section 5 we give an analysis of our bounds in finite precision. Finally, in Section 6,
we discuss generalizations to quadratic forms bHf(A)b.

2. Lanczos-FA error and the Cauchy integral formula. Assuming f : C→
C is analytic in a neighborhood of the eigenvalues of A and Γ is a simple closed curve or
union of simple closed curves inside that neighborhood and enclosing the eigenvalues
of A, the Cauchy integral formula states that

f(A)b = − 1

2πi

∮
Γ

f(z)(A− zI)−1b dz.(2.1)

If Γ also encloses the eigenvalues of Tk we can similarly write the Lanczos-FA ap-
proximation as

Qkf(Tk)QH
kb = − 1

2πi

∮
Γ

f(z)Qk(Tk − zI)−1QH
kb dz.(2.2)

Observing that the integrand of (2.1) contains the solution to the shifted linear system
(A− zI)x = b while (2.2) contains the Lanczos-FA approximation to the solution, we
make the following definition.

Definition 2.1. For z ∈ C, define the k-th Lanczos-FA error and residual for
the linear system (A− zI)x = b as,

errk(z,A,b) := (A− zI)−1b−Qk(Tk − zI)−1QH
kb,

resk(z,A,b) := b− (A− zI)Qk(Tk − zI)−1QH
kb.

As with the Lanczos-FA approximation, we will typically omit the arguments A and
b, and in the case z = 0, we will often write errk and resk.

With Definition 2.1 in place, the error of the Lanczos-FA approximation to f(A)b
can be written as

f(A)b−Qkf(Tk)QH
kb = − 1

2πi

∮
Γ

f(z) errk(z) dz.(2.3)

Therefore, if for every z ∈ Γ we are able to understand the convergence of Lanczos-
FA on the linear system (A − zI)x = b, then this formula lets us understand the
convergence of Lanczos-FA for f(A)b. To simplify bounding (2.3), we will write
errk(z) for all z ∈ Γ in terms of the error in solving a single shifted linear system.

To do this, we use the fact that the Lanczos factorization (1.1) can be shifted,
even for complex z, to obtain

(A− zI)Qk = Qk(Tk − zI) + βkqk+1e
T
k .(2.4)

That is, Lanczos applied to (A,b) for k steps produces output Qk and Tk satisfying
(1.1) while Lanczos applied to (A−zI,b) for k steps produces output Qk and Tk−zI
satisfying (2.4). Using this fact, we have the following well known lemma.
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Lemma 2.2. For all z where Tk − zI is invertible,

resk(z) =

 (−1)k

det(Tk − zI)

k∏
j=1

βj

 ‖b‖2 qk+1.

Proof. From (2.4), and the fact that Qk’s first column is b/‖b‖2, it is clear that,

(A− zI)Qk(Tk − zI)−1QH
kb = (A− zI)Qk(Tk − zI)−1‖b‖2e1

= Qk‖b‖2e1 + βkqk+1e
T
k (Tk − zI)−1‖b‖2e1

= b + βkqk+1e
T
k (Tk − zI)−1‖b‖2e1.

Using the formula (Tk − zI)−1 = (1/ det(Tk − zI)) adj(Tk − zI), we see that

eT
k (Tk − zI)−1e1 =

(−1)k−1

det(Tk − zI)

k−1∏
j=1

βj .

We use Lemma 2.2 to relate errk(z) to errk(w) for any z, w ∈ C.

Definition 2.3. For w, z ∈ C define hw,z : R→ C and hz : R→ C by

hw,z(x) :=
x− w
x− z , hz(x) :=

1

x− z
Corollary 2.4. For all z, w ∈ C, where A− zI and A−wI are both invertible,

errk(z) = det(hw,z(Tk))hw,z(A) errk(w)

resk(z) = det(hw,z(Tk)) resk(w).

Proof. By Lemma 2.2,

det(Tk − zI) resk(z) = det(Tk − wI) resk(w).

Thus,

resk(z) =
det(Tk − wI)

det(Tk − zI)
resk(w) = det(hw,z(Tk)) resk(w).

Noting that resk(z) = (A− zI) errk(z) and resk(w) = (A−wI)errk(w), we obtain the
relation between the errors,

errk(z) = det(hw,z(Tk))(A− zI)−1(A− wI) errk(w)

= det(hw,z(Tk))hw,z(A) errk(w).

In summary, combining (2.3) and Corollary 2.4 we have the following corollary.
This result is by no means new, and appears throughout the literature; see for instance
[21] and [17, Theorem 3.4].

Corollary 2.5. Suppose A is a Hermitian matrix and f : C→ C is a function
analytic in a neighborhood of the eigenvalues of A and Tk, where Tk is the tridiagonal
matrix output by Lanczos run on A,b for k steps. Then, if Γ is a simple closed curve
or union of simple closed curves inside this neighborhood and enclosing the eigenvalues
of A and Tk and w ∈ C is such that w 6∈ Λ(Tk) ∪ Λ(A),

f(A)b− lank(f) =

(
− 1

2πi

∮
Γ

f(z) det(hw,z(Tk))hw,z(A)dz

)
errk(w).
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2.1. Bound on Lanczos-FA error in terms of linear system error. Our
main result is a flexible bound for the Lanczos-FA error, obtained by bounding the
integral in the right-hand side of Corollary 2.5. As we will see in Section 3, we can
instantiate this theorem to obtain effective a priori and a posteriori error bounds in
many settings.

Theorem 2.6. Consider the setting of Corollary 2.5. If, additionally, for some
S0, S1, . . . , Sk ⊂ R we have Λ(A) ⊂ S0 and λi(Tk) ∈ Si for i = 1, . . . , k, then

‖f(A)b− lank(f)‖ ≤
(

1

2π

∮
Γ

|f(z)| ·
(

k∏
i=1

‖hw,z‖Si

)
· ‖hw,z‖S0

· |dz|
)

︸ ︷︷ ︸
integral term

‖errk(w)‖.︸ ︷︷ ︸
linear system error

The above bound depends on our choices of Γ, w, and the sets S0, S1, . . . , Sk, which
must contain the eigenvalues of A and Tk. The sets S0, S1, . . . , Sk should be chosen
based on the informatoin we have about A and Tk. For example, we could take all
these sets to be the eigenvalue range I(A). If we have more information a priori
about the eigenvalues of A, we can obtain a tighter bound by choosing smaller S0,
with correspondingly lower ‖hw,z‖S0

. For an a posteriori bound, we can simply set
Si = {λi(Tk)}, for i = 1, . . . , k. This gives an optimal value for ‖hw,z‖Si

. Both
approaches are detailed in Section 3.

We emphasize that the integral term and linear system error term in the theorem
are entirely decoupled. Thus, once the integral term is computed, bounding the error
of Lanczos-FA for f(A)b is reduced to bounding ‖errk(w)‖, and if the integral term
can be bounded independently of k, Theorem 2.6 implies that, up to a constant factor,
the Lanczos-FA approximation to f(A)b converges at least as fast as ‖errk(w)‖.

Proof of Theorem 2.6. Applying the triangle inequality for integrals and the sub-
multiplicativity of matrix norms to Corollary 2.5 we have

‖f(A)b− lank(f)‖ ≤
(

1

2π

∮
Γ

|f(z)| · | det(hw,z(Tk))| · ‖hw,z(A)‖2 · |dz|
)
‖errk(w)‖.

(2.5)

Next, since Λ(A) ⊆ S0 then

‖hw,z(A)‖2 = max
i=1,...,n

|hw,z(λi(A))| ≤ ‖hw,z‖S0 ,

and similarly, if λi(Tk) ∈ Si for i = 1, . . . , k, then

|det(hw,z(Tk))| =
∣∣∣∣∣
k∏
i=1

hw,z(λi(Tk))

∣∣∣∣∣ ≤
k∏
i=1

‖hw,z‖Si
.(2.6)

Combining these inequalities yields the result.

2.2. Comparison with previous work. Our framework for analyzing Lanczos-
FA has four properties which differentiate it from past work: (i) it is applicable to
a wide range of functions, (ii) it yields a priori bounds dependent on fine-grained
properties of the spectrum of A such as clustered or isolated eigenvalues, (iii) it can
be used a posteriori as a practical stopping criterion, and (iv) it is applicable when
computations are carried out in finite precision arithmetic. To the best of our knowl-
edge, no existing analysis satisfies more than two of these properties simultaneously.
In this section, we provide a brief overview of the most relevant past work.
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Most directly related to our framework is a series of works which also make use
of the shift-invariance of Krylov subspaces when f is a Stieltjes function2 [16, 19, 35]
or a certain type of rational function [18, 20, 21]. These analyses are applicable a
priori and a posteriori and in fact allow for corresponding error lower bounds as well.
However, these bounds cannot be applied to more general functions, and the impact
of a perturbed Lanczos recurrence in finite precision is not considered.

The most detailed generally applicable analysis is [45], which extends [13, 14]
and studies (1.3) when Lanczos is run in finite precision. However, as discussed in
subsection 1.1, (1.3) is often too pessimistic in practice as it does not depend on
the fine-grained properties about the distribution of eigenvalues. Another generally
applicable analysis is [34], which suggests replacing errk(z) with resk(z) in (2.3). Since
resk(z) can be computed once the outputs of Lanczos have been obtained, the resulting
integral can be computed (or at least approximated by a quadrature rule). However,
this approach does not take into account the actual relationship between resk(z) and
errk(z), and therefore gives only an estimate of the error, not a true bound. Another
Cauchy integral formula based approach is [33] which shows that Lanczos-FA exhibits
superlinear convergence for the matrix exponential and certain other specific analytic
functions.

There are a variety of other bounds specialized to individual functions. For ex-
ample, it is known that if A is nonnegative definite and t > 0, then the error in the
Lanczos-FA approximation for the matrix exponential exp(tA)b can be related to
the maximum over s ∈ [0, t] of the error in the optimal approximation to exp(sA)b
over a Krylov space of slightly lower dimension [11]. More recent work involving the
matrix exponential are [38, 37, 36]. There is also a range of work which analyzes the
convergence of Lanczos-FA and related methods for computing the square root and
sign functions [4, 5, 57].

3. Applying our framework. We proceed to show how to effectively bound
the integral term of Theorem 2.6, to give a priori and a posteriori bounds on the
Lanczos-FA error, assuming accurate bounds on ‖errk(w)‖ are available. Throughout,
we assume w ∈ R and we do not discuss in detail how to bound this linear system
error – there are many known approaches, both a priori and a posteriori, and the best
bounds to use are often context dependent. For a more detailed discussion we refer
readers to Appendix A.

To use Theorem 2.6, we must evaluate or bound ‖hw,z‖Si
. Towards this end, we

introduce the following lemmas, which apply when Si is an interval. These lemmas
are also useful when Si is a union of intervals – in that case ‖hw,z‖Si is bounded by
the maximum bound on any of these intervals. i

Lemma 3.1. For any interval [a, b] ⊂ R, if z ∈ C \ [a, b] and w ∈ R, we have

‖hw,z‖[a,b] = max

{∣∣∣∣a− wa− z

∣∣∣∣ , ∣∣∣∣b− wb− z

∣∣∣∣ ,(∣∣∣∣z − wIm(z)

∣∣∣∣ if x∗ ∈ [a, b] else 0

)}
where

x∗ :=
Re(z)2 + Im(z)2 − Re(z)w

Re(z)− w .

2A function f defined on the positive real axis is a Stieltjes function if and only if f(x) ≥ 0 for
all x ∈ R and f has an analytic extension to the cut plane C \ (−∞, 0] satisfying Im(f(x)) ≤ 0 for
all x in the upper half plane [3, Theorem 3.2] [1, p. 127 attributed to Krein].
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Proof. Note that for x ∈ R,

|hw,z(x)|2 =

∣∣∣∣x− wx− z

∣∣∣∣2 =
(x− w)2

(x− Re(z))2 + Im(z)2
,

and

d

dx

(
|hw,z(x)|2

)
=

[(x− Re(z))2 + Im(z)2]2(x− w)− (x− w)22(x− Re(z))

[(x− Re(z))2 + Im(z)2]2
.

Aside from x = w, where hw,z(x) = 0, the only value x ∈ R for which d
dx

(
|hw,z(x)|2

)
=

0 is x∗. This implies that the only possible local extrema of |hw,z(x)| on [a, b] are a,
b, and x∗ if x∗ ∈ [a, b]. Substituting the expression for x∗ into that for |hw,z(x∗)|, one
finds, after some algebra, that |hw,z(x∗)| = |z − w|/| Im(z)|.

Lemma 3.2. Fix r > 0, let D(c, t) be the disc in the complex plane centered at c
with radius t ≥ 0, and define

Xr =
⋃

x∈[a,b]

D
(
x,
|x− w|

r

)
.

Then for z ∈ C \Xr, we have

‖hw,z‖[a,b] ≤ r.

In particular, if z is on the boundary of Xr, then ‖hw,z‖[a,b] = r.

Proof. Let z ∈ C \Xr and pick any x ∈ [a, b]. Since z 6∈ D(x, |x−w|/r) it follows
that |z − x| > |x − w|/r and therefore |hw,z(x)| = |x − w|/|x − z| < r. Maximizing
over x yields the result.

If z is on the boundary of Xr, then for some x ∈ [a, b], |z − x| = |x−w|/r, which
means that for this x, |hw,z(x)| = r.

Note that if r ≤ 1 and w ∈ R\ [a, b], then the region described in Lemma 3.2 is simply
a disc about b if w < a or a disc about a if w > b. If r > 1 and w is real, then
the region described is that in the discs about a and b and between the two external
tangents to these two discs.

3.1. A priori bounds. We can use Theorem 2.6 to give a priori bounds, as long
as we choose S0 and Si, i = 1, . . . , k independently of b (and in turn Tk).

The simplest possibility is to take S0 = Si = I(A). In this case, as an immediate
consequence of Theorem 2.6 and Lemma 3.2 we have the following a priori bound,

Corollary 3.3. Suppose that for some w < λmin(A), f is analytic in a neigh-
borhood of D(λmax(A), λmax(A)−w). Then, taking Γ to be the boundary of this disk,

‖f(A)b− lank(f)‖ ≤
(

1

2π

∮
Γ

|f(z)| · |dz|
)
‖errk(w)‖

≤
(

(λmax(A)− w) max
z∈Γ
|f(z)|

)
‖errk(w)‖.

Proof. To obtain the first inequality observe that Lemma 3.2 with [a, b] = I(A)
implies ‖hw,z‖I(A) = 1 on this contour. The second inequality follows since the length
of Γ is 2π(λmax(A)− w).
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This bound is closely related to [16, Theorem 6.6] which bounds the error in Lanczos-
FA for Stieltjes functions in terms of the error in the Lanczos approximation for a
certain linear system.

Using that err0(w) = (A− wI)−1b, we can rewrite Corollary 3.3 as

‖f(A)b− lank(f)‖2
‖f(A)b‖2

≤ max
z∈Γ
|f(z)| · (λmax(A)− w)‖(A− wI)−1b‖2

‖f(A)b‖2
· ‖errk(w)‖2
‖err0(w)‖2

.

This can be used to obtain simple relative error bounds for many functions. For
instance, suppose A is positive definite, f(x) = x−q for q > 1, and w = cλmin

for c ∈ (0, 1). Then maxz∈Γ |z−q| = w−q = c−qλmin(A)−q, ‖(A − wI)−1b‖2 ≤
(λmin(A)− w)−1‖b‖ and ‖A−qb‖2 ≥ λmax(A)−q‖b‖. We then have the bound3

‖A−qb− lank(f)‖2
‖A−qb‖2

≤ c−qκ(A)qκ(A− wI)
‖errk(w)‖2
‖err0(w)‖2

.

Corollary 3.3 and the above bound provide simple reductions to the error of
solving a positive definite linear system involving A − wI using Lanczos. However,
these bounds may be a significant overestimate in practice. In particular, for any
k > 1, (2.6) cannot be sharp due to the fact that ‖hw,z‖I(A) = supx∈I(A) |hw,z(x)|
cannot be attained at every eigenvalue of Tk. In fact, for most values λi(Tk) and
most points z ∈ Γ, we expect |hw,z(λi(Tk))| � ‖hw,z‖I(A). Figure 2 shows sample

level curves for ‖hw,z‖I(A)/|det(hw,z(Tk))|1/k which illustrate the slackness in the
bound.

To derive sharper a priori bounds, there are several approaches. If more infor-
mation is known about the eigenvalue distribution of A, then the Si can be chosen
based on this information. For example, similarly to (1.4), it is possible to exploit the
interlacing property of the eigenvalues of Tk.

Example 3.4. Suppose A has eigenvalues in [0, 1] with a single eigenvalue at κ > 1.
Assume w ≤ 0. Then there is at most one eigenvalue of Tk in [1, κ] so in Theorem 2.6
we can pick Si = [0, 1] for i = 1, . . . , k − 1 and Sk = [0, κ]. We have

|det(hw,z(Tk))| =
∣∣∣∣∣
k∏
i=1

hw,z(λi(Tk))

∣∣∣∣∣ ≤ (‖hw,z‖[0,1]

)k−1 ‖hw,z‖[0,κ].

If z is near to κ then ‖hw,z‖[0,1] may be much smaller than ‖hw,z‖[0,κ].

Second, the contour Γ can be chosen to try to reduce the slackness in (2.6).
Intuitively, the slackness is exacerbated when z ∈ Γ is close to Si but far from λi(Tk).
For instance, for any k > 1,

lim
|z|→∞

‖hw,z‖kI(A)

|det(hw,z(Tk))| → 1, and ∀λ ∈ I(A), lim
z→λ

‖hw,z‖kI(A)

|det(hw,z(Tk))| → ∞.

This behavior is also observed in Figure 2.
These observations suggest that we should pick Γ to be far from the spectrum

of A. Of course, we are constrained by properties of f such as branch cuts and
singularities. Moreover, certain contours may increase the slackness in Theorem 2.6
itself. These considerations are discussed further in Example 4.1.

3Slightly stronger bounds can be obtained by bounding ‖(A − wI)−1b‖2/‖A−qb‖2 directly,
rather than bounding the numerator and denominator separately.
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Fig. 2: Contour plot of ‖hw,z‖I(A)/|det(hw,z(Tk))|1/k as a function of z ∈ C for
a synthetic example with I(A) = [0.5, 3] and Λ(Tk) = {0.5, 0.8, 1.2, 1.5, 3} (k = 5).
Here w is indicated by the white diamond ( ) and the eigenvalues of Tk are indicated
by white x’s ( ). Larger slackness in (2.6) corresponds to darker regions.

3.2. A posteriori error bounds. After the Lanczos factorization (1.1) has
been computed, Tk is known and Λ(Tk) can be cheaply computed. Thus, in Theo-
rem 2.6 we can take Si = {λi(Tk)} for i = 1, . . . , k, which is the best possible choice.
In this case (2.6) is an equality and det(hw,z(Tk)) = det(Tk − w)/ det(Tk − z) can
be computed via tridiagonal determinant formulas rather than using the eigenvalues
of Tk.

If I(A) is not known, the extreme Ritz values λmin(Tk) and λmax(Tk) can be
used to estimate the extreme eigenvalues of A [40, 50]. All together, this means that it
is not difficult to efficiently obtain accurate estimates of the bound from Theorem 2.6.

3.3. Numerical computation of integrals. Typically, to produce an a priori
or a posteriori error bound, the integral term in Theorem 2.6 must be computed
numerically. Consider a discretization of the integral

f(A) = − 1

2πi

∮
Γ

f(z)(A− zI)−1dz

using nodes zi and weights wi, i = 1, 2, ..., q. This yields a rational matrix function

rq(A) := − 1

2πi

q∑
i=1

wif(zi)(A− ziI)−1.

Using the triangle inequality, we can write

‖f(A)b− lank(f)‖
≤ ‖f(A)b− rq(A)b‖+ ‖rq(A)b− lank(rq))‖+ ‖lank(rq)− lank(f)‖

≤ 2

(
max

x∈Λ(A)∪Λ(Tk)
|f(x)− rq(x)|

)
‖b‖+ ‖rq(A)b− lank(rq)‖.(3.1)

Now, observe that analogous to Theorem 2.6,

‖rq(A)b− lank(rq)‖ ≤
(

1

2π

q∑
i=1

wi · |f(zi)| ·
(

k∏
i=1

‖hw,z‖Si

)
· ‖hw,z‖S0

)
‖errk(w)‖.

(3.2)
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If we use the same nodes and weights to evaluate the integral term in Theorem 2.6, we
obtain exactly the expression on the right hand side of (3.2). Thus, this discretization
of Theorem 2.6 is a true upper bound for the Lanczos-FA error to within an additive
error of size equal to twice the approximation error of r(x) to f(x) on Λ(A) ∪Λ(Tk)
times ‖b‖. In many cases, we expect exponential convergence of rq to f , which
implies that this term can be made less than any desired value ε > 0 using a number
of quadrature nodes that grows only as the logarithm of ε−1 [30, 55].

We note that fast convergence of rq to f suggests that, instead of applying
Lanczos-FA, we can approximate f(A)b by first finding rq and then solving a small
number of linear systems (A − ziI)xi = b to compute rq(A)b. Solving these sys-
tems with any fast linear system solver yields an algorithm for approximating f(A)b
inheriting, up to logarithmic factors in the error tolerance, the same convergence guar-
antees as the linear system solvers used. A recent example of this approach is found
in [39] which uses a modified version of stochastic variance reduced gradient (SVRG)
to obtain a nearly input sparsity time algorithm for f(A)b when f corresponds to
principal component projection or regression.

A range of work suggests using a Krylov subspace method and the shift invariance
of the Krylov subspace to solve these systems and compute rq(A)b explicitly. This
was studied in [18, 21] for the Lanczos method, and in [51] for MINRES, the latter of
which uses the results of [30] to determine the quadrature nodes and weights. However,
as the above argument demonstrates, the limit of the Lanczos-based approximation
as the discretization becomes finer is simply the Lanczos-FA approximation to f(A)b.
Therefore, there is no clear advantage to such an approach over Lanczos-FA in terms
of the convergence properties, unless preconditioning is used. .

On the other hand, there are some advantages to these approaches in terms of
computation. Indeed, Krylov solvers for symmetric/Hermitian linear systems require
just O(n) storage; i.e. they do not require more storage as more iterations are taken.
A naive implementation of Lanczos-FA requires O(kn) storage, and while Lanczos-FA
can be implemented to use O(n) storage by taking two passes, this has the effect of
doubling the number of matrix-vector products required. See [29] for a recent overview
of limited-memory Krylov subspace methods.

4. Examples and numerical verification. We next present examples in which
we apply Theorem 2.6 to give a posteriori and a priori error bounds for approximat-
ing common matrix functions with Lanczos-FA. These examples illustrate the general
approaches to applying Theorem 2.6 described in Section 3. All integrals are com-
puted either analytically or using SciPy’s integrate.quad which is a wrapper for
QUADPACK routines.

In all cases, we exactly compute the ‖errk(w)‖ term in the bounds. In practice, one
would bound this quantity a priori or a posteriori using existing results on bounding
the Lanczos error for linear system solves. By computing the error exactly, we separate
any looseness due to our bounds from any looseness due to an applied bound on
‖errk(w)‖.

Example 4.1 (Matrix square root). Let A be positive definite and f(x) =
√
x.

Perhaps the simplest bound is obtained by using Theorem 2.6 with w = 0, Si = I(A)
and Γ chosen as the boundary of the disk D(λmax(A), λmax(A)).We then obtain a
bound via Corollary 3.3. However, this bound may be loose – note that except through
‖errk(w)‖, it does not depend on the number of iterations k. Thus it cannot establish
convergence at a rate faster than that of solving a linear system with coefficient matrix
A.
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(a) circle contour (b) Pac-Man contour (c) double circle contour

Fig. 3: Circle, Pac-Man and double circle contours described in Examples 4.1 and 4.2
respectively. All three figures show I(A) ( ) and w ( ).

Keeping w = 0, we can obtain tighter bounds by letting Γ be a “Pac-Man” like
contour that consists of a large circle about the origin of radius R with a small circular
cutout of radius r that excludes the origin and a small strip cutout to exclude the
negative real axis. That is, as shown in Figure 3b, the boundary of the set,

D(0, R) \ ({z : Re(z) ≤ 0, | Im(z)| < r} ∪ D(0, r)).
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(a) circular contour (c = r = λmax(A))
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(b) Pac-Man contour (r → 0, R→∞)

Fig. 4: A-norm error bounds for f(x) =
√
x where A has n = 1000 eigenvalues

spaced uniformly in [10−2, 102]. Legend : True Lanczos-FA error ‖f(A)b − lank(f)‖
( ). A priori bounds obtained by using Theorem 2.6 with S0 = Si = I(A) ( )
and S0 = Si = Ĩ(A) = [λmin(A)/2, 2λmax(A)] ( ). A posteriori bounds obtained
by using Theorem 2.6 with S0 = I(A), Si = {λi(Tk)} ( ), and S0 = Ĩ(A),
Si = {λi(Tk)} ( ). Observe that using the wider interval Ĩ(A) has very little
effect on both the a priori and a posteriori bounds. Also observe that the a posteriori
bounds closely match the actual convergence of Lanczos-FA.

As the outer radius R → ∞, the integral over the large circular arc goes to 0
since ‖hw,z‖I(A) = O(R−1), |f(z)| = O(R1/2), and the length of the circular arc is

on the order of R. Thus, the product f(z)(‖hw,z‖I(A))
k+1 goes to 0 as R → ∞, for

all k ≥ 1. Similarly, as r → 0, the length of the small arc goes to zero. Therefore,
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we need only consider the contributions to the integral on [−R± ir,±ir] in the limit
R→∞, r → 0.

In this case, when Si = I(A) for all i, we can compute the value of the integral
term in Theorem 2.6 analytically. We have

‖f(A)b− lank(f)‖ ≤
(

1

2π

∫ 0

−∞
|(x± 0i)1/2| · ‖hw,x±0i‖k+1

I(A) dx

)
‖errk‖

=

(
1

2π

∫ 0

−∞
|x± 0i|1/2 λmax(A)k+1

(λmax(A)− x)k+1
dx

)
‖errk‖

=

(
1

π
λmax(A)k+1

∫ ∞
0

y1/2

(λmax(A) + y)k+1
dy

)
‖errk‖

=

(
λmax(A)3/2

2
√
π

Γ(k − 1/2)

Γ(k + 1)

)
‖errk‖,

where we have made the change of variable y = −x. Note that

lim
k→∞

k3/2 Γ(k − 1/2)

Γ(k + 1)
= 1.

This proves that lank(
√·) converges somewhat faster than the Lanczos algorithm

applied to the corresponding linear system Ax = b.
In Figure 4, we plot the bounds from Theorem 2.6 for the circular and Pac-

Man contours described above. For both contours we consider Si = I(A) for all
i, as well as bounds based on an overestimate of this interval, Si = Ĩ(A) where
Ĩ(A) = [λmin(A)/2, 2λmax(A)]. This provides some sense of how sensitive the bounds
are to the choice of Si when Si is a single interval. For a posteriori bounds, we set Si
to {λi(Tk)} for i > 0.

We remark that the bounds from Theorem 2.6 are upper bounds for (2.5) which
implies that the slackness of (2.5) is relatively small. This suggests that the roughly
6 orders of magnitude improvement in Theorem 2.6 when moving from the circular
contour to the Pac-Man contour is primarily due to reducing the slackness in (2.6),
aligning with our intuition.

Our next example illustrates the application of Theorem 2.6 to several com-
mon piecewise analytic functions. Functions of this class have found widespread
use throughout scientific computing and data science but have proven particularly
difficult to analyze using existing approaches [10, 22, 39, 57].

Example 4.2 (Step and Absolute Value Functions). Let f(x) be one of |x − a|,
step(x−a), or step(x−a)/x for a ∈ I(A), where, for z ∈ C we define step(z) := 0 for
Re(z) < 0 and step(z) := 1 for Re(z) ≥ 0. Also, for z ∈ C, we replace |x−a| by z−a if
Re(z) > a and by a−z if Re(z) ≤ a. Note that the latter two functions correspond to
principle component projection and principle component regression respectively. In
the case of principle component regression, we A is positive semi-definite. The step
function is also closely related to the sign function, which is widely used in quantum
chromodynamics to compute the overlap operator [57].

Next, take w = a and define Γ1 and Γ2 as the boundaries of the disks D1 :=
D(λmin(A), w − λmin(A) − ε) and D2 := D(λmax(A), λmax(A) − w − ε), for some
sufficiently small ε > 0. Then f is analytic in a neighborhood of the union of these
two disks, so assuming none of the eigenvalues of A or Tk are equal to a, we can
apply Lemma 3.2.
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(a) (A − wI)2-norm for f(x) = step(x −
a)/x where A = XXH and the entries of
X ∈ Rn,2n are independent Gaussians with
mean zero and variance 1/2n with n = 3000.
We set a = 0.99λmax(A) so that there are
roughly 5 eigenvalues above a.
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(b) 2-norm for f(x) = step(x− a) where A
is the MNIST training data [41] covariance
matrix and a = 0.15λmax(A) so that there
are 16 eigenvalues above a.

Fig. 5: Bounds for piece-wise analytic functions using the double-circle contour
described in Example 4.2. Legend : True Lanczos-FA error ( ). A priori bounds
obtained by using Theorem 2.6 with S0 = Si = I(A) ( ) or (4.1) ( ) with
S0 = Si = I(A). Note that these curves are on top of one another suggesting there
is very little loss going from Theorem 2.6 to the much easier to evaluate (4.1). An a
posteriori bound obtained by using Theorem 2.6 with S0 = I(A) and Si = {λi(Tk)}
( ). Observe that all bounds, especially the a posteriori ones closely match the true
convergence of Lanczos-FA.

Note that ‖hw,z‖I(A) → 1 as z → w from outside [a, b], avoiding a potential
singularity which would occur if the contour Γ passed through I(A) at any other
points. In fact, ignoring the contribution of ε, ‖hw,z‖I(A) = 1 for all z ∈ Γ1 and for
all z ∈ Γ2. Thus, Corollary 3.3 can be written as

‖f(A)b− lank(f)‖ ≤

 1

2π

2∑
j=1

|Γj |max
z∈Γj

|f(z)|

 ‖errk(w)‖.(4.1)

The values of this bound for all three functions are summarized in Table 1.
In Figure 5, we plot the bounds from Theorem 2.6 for the contour described above

with Si = I(A).
If w ∈ I(A) we note that ‖errk(w)‖ corresponds to the indefinite linear system

(A − wI)x = b, so standard results for the Conjugate Gradient algorithm are not
applicable. However, the residual of this system can still be computed exactly once
the Lanczos factorization (1.1) has been obtained, and as we prove in Appendix A,
a priori bounds for the convergence of MINRES [8] can be extended to the Lanczos
algorithm for indefinite systems. It is also clear that, at the cost of having to compare
against the error of multiple different linear systems, functions which are piecewise
analytic on more than two regions can be handled.

5. Finite precision. While reorthogonalization in the Lanczos method (Algo-
rithm 1.1) is unnecessary in exact arithmetic, omitting it may result in drastically
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f(x) f(z), z ∈ Ω1 f(z), z ∈ Ω2
1

2π

∑2
j=1 |Γj |maxz∈Γj |f(z)|

|x− a| a− z z − a 2(a− λmin)2 + 2(λmax − a)2

step(x− a) 0 1 (λmax − a)
step(x− a)/x 0 1/z (λmax − a)/a

Table 1: Values of the factor in parentheses on the right-hand side of (4.1) (ignoring
ε) for several common piecewise analytic functions.

different behavior when using finite precision arithmetic; see for instance [43]. In the
context of Lanczos-FA, the two primary effects are (i) a delay of convergence (increase
in the number of iterations to reach a given level of accuracy) and (ii) a reduction
in the maximal attainable accuracy. These effects are reasonably well understood in
the context of linear systems [25, 26], i.e., f(x) = 1/x, and for some other functions
such as the matrix exponential [11]. However, general theory is limited. A notable
exception is [45], which argues that the uniform error bound for Lanczos-FA (1.3)
holds to a close degree in finite precision arithmetic.

When run without reorthogonlization, Algorithm 1.1 will produce Qk and Tk

satisfying a perturbed three term recurrence

AQk = QkTk + βkqk+1e
T
k + Fk,(5.1)

where Fk is a perturbation term. Moreover, the columns of Qk may no longer be
orthogonal. A priori bounds on the size of Fk and the loss of orthogonality between
successive Lanczos vectors have been established in a series of works by Paige [46,
47, 48, 49]. These quantities can also be computed easily once Qk and Tk have been
obtained, allowing for easy use with our bounds.

5.1. Effects of finite precision on our error bounds for Lanczos-FA. Note
that using the divide and conquer algorithm from [28] to compute the eigendecompo-
sition of the tridiagonal matrix Tk, we can quickly and stably compute Qkf(Tk)e1.
A detailed analysis of this is given in [45, Appendix A].

While the tridiagonal matrix Tk and the matrix Qk of Lanczos vectors produced
in finite precision arithmetic may be very different from those produced in exact
arithmetic, we now show that our error bounds, based on the Tk and Qk actually
produced, still hold to a close approximation. First, we argue that Lemma 2.2 holds
to a close degree provided Fk is not too large. Towards this end, note that we have
the shifted perturbed recurrence,

(A− zI)Qk = Qk(Tk − zI) + βkqk+1e
T
k + Fk.(5.2)

From (5.2), it is then clear that,

(A− zI)Qk(Tk − zI)−1e1 = Qke1 + βkqk+1e
T
k (Tk − zI)−1e1 + Fk(Tk − zI)−1e1.

This implies that Corollary 2.4 also holds closely. More specifically,

resk(z) = det(hw,z(Tk))resk(w) + fk(w, z)

errk(z) = det(hw,z(Tk))hw,z(A)errk(w) + (A− zI)−1fk(w, z)
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where

fk(w, z) := Fk

(
(Tk − zI)−1 − det(hw,z(Tk))(Tk − wI)

−1
)

e1.

Using this we have,

f(A)b− lank(f) = − 1

2πi

∮
Γ

f(z)errk(z)dz − 1

2πi

∮
Γ

f(z)(A− zI)−1fk(w, z)dz

which we may bound using the triangle inequality as

‖f(A)b− lank(f)‖ ≤ 1

2π

∥∥∥∥∮
Γ

f(z)errk(z)dz

∥∥∥∥+
1

2π

∥∥∥∥∮
Γ

f(z)(A− zI)−1fk(w, z)dz

∥∥∥∥ .
This expression differs from Theorem 2.6 only by the presence of the term involving
fk(w, z) (and, of course, by the fact that errk(z) now denotes the error in the finite
precision computation). If we take ‖ · ‖ as the (A − wI)2-norm, then this additional
term can be bounded by,

1

2π

∥∥∥∥∮
Γ

f(z)(A− zI)−1fk(w, z)dz

∥∥∥∥
≤ 1

2π

∮
Γ

|f(z)| · ‖(A− wI)(A− zI)−1‖2 · ‖fk(w, z)‖2 · |dz|

≤ 1

2π

∮
Γ

|f(z)| · ‖hw,z‖S0 · ‖fk(w, z)‖2 · |dz|.(5.3)

Note that (5.3) can be viewed as an upper bound of the ultimate obtainable
accuracy of Lanczos-FA in finite precision after convergence. If the inequalities do not
introduce too much slack, this upper bound will also produce a reasonable estimate.
If ‖Fk‖ is small, the size of this addition is also hopefully small, in which case one may
simply ignore the contribution of (5.3), provided the Lanczos-FA error is not near the
final accuracy. We have worked in the (A − wI)2 norm as it simplifies some of the
analysis, but in principle, a similar approach could be used with other norms. This
is straightforward, but would involve bounding something other than ‖hw,z‖S0

.

Example 5.1. The left panel of Figure 6 shows the convergence of Lanczos-FA
when Algorithm 1.1, without reorthogonalization, is used to generate Qk and Tk.
Compared with the error of the iterates generated using full orthogonalization, a
delay of convergence and loss of accuracy are clear. This figure also shows the error
bounds derived by bounding ‖Fk‖ as described above. We note that the contribution
from the integral in (5.3) is almost negligible until the bound is near the final accuracy.

6. Quadratic forms. In many applications, one seeks to compute bHf(A)b
rather than f(A)b. A common approach is Lanczos quadrature, which computes the
approximation bHlank(f) to bHf(A)b. This approximation is a degree k Gaussian
quadrature approximation to the integral of f against the weighted spectral measure
corresponding to A,b; see for instance [7, 23, 56]. However, as with the case of
Lanczos-FA, most existing error bounds for Lanczos quadrature are either pessimistic
or limited to special classes of functions.

Note that the Lanczos-FA approximation satisfies,

bHlank(f) = bHQkf(Tk)QH
kb = ‖b‖22 eH

1 f(Tk)e1.
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(a) (A−wI)2-norm error bounds for f(x) =√
x using a Pac-Man contour (r → 0, R →
∞). Legend : True Lanczos-FA error ( ).
A priori bounds obtained by using Theo-
rem 2.6 with S0 = Si = I(A) with ( )
and without ( ) right hand side of (5.3).
A posteriori bounds obtained by using The-
orem 2.6 with S0 = I(A) and Si = {λi(Tk)}
with ( ) and without ( ) right hand
side of (5.3). For reference, the convergence
of Lanczos-FA with reorthogonalization in
double precision ( ) is also shown.

0 20 40 60 80 100

Lanczos iteration k

10−9

10−8

10−7

10−6

(b) Legend : ‖Fk‖F ( ), right hand side
of (5.3) ( ). Note that the size of Fk is
small relative to the Lanczos-FA error, until
the accuracy is near the final accuracy.

Fig. 6: A has n = 50 eigenvalues with λ1 = 1, λn = 0.001, and λi = λn + n−i
n−1 (λ1 −

λn)ρi−1, i = 2, . . . , n− 1, as described in [53] with parameter ρ = 0.8. Here Lanczos
is run without reorthogonalization in single precision arithmetic, but the integrals are
evaluated using double precision arithmetic.

Thus, we can compute bHlank(f) without storing or recomputing Qk.
Since A is Hermitian, (A− zI)H = A− zI. Thus, since

bH(A− zI)−1 = ((A− zI)−1b)H = (lank(hz) + errk(z))b)H

we can expand the quadratic form error as

bHerrk(z) = bH(A− zI)−1resk(z) = (lank(hz)) + errk(z))
H resk(z).

Now, by definition, lank(hz(x)) = Qkhz(Tk)QHb and by Lemma 2.2 resk(z) is pro-
portional to qk+1. Thus, since, at least in exact arithmetic, qk+1 is orthogonal to
Qk,

bHerrk(z) = errk(z)Hresk(z) = ((A− zI)−1resk(z))Hresk(z).

Next, using Corollary 2.4 and the fact that hw,z(x)hw,z(x) = |hw,z(x)|2 for w, x ∈ R,

bHerrk(z) = |det(hw,z(Tk))|2resk(w)H(A− zI)−1resk(w).

We then have,

|bHerrk(z)| ≤ |det(hw,z(Tk))|2 · ‖(A− zI)−1‖2 · ‖resk(w)‖22.
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Applying the Cauchy integral formula we therefore obtain a bound for the quadratic
form error analogous to Theorem 2.6,

|bHf(A)b− bHlank(f)| ≤
(

1

2π

∮
Γ

|f(z)| ·
(

k∏
i=1

‖hw,z‖2Si

)
· ‖hz‖S0

· |dz|
)
‖resk(w)‖22.

(6.1)

Comparing the above to the bound of Theorem 2.6 for approximating f(A)b, we see
that ‖errk(w)‖ is replaced with ‖resk(w)‖22. Thus, heuristically, we can expect the
quadratic form to converge at a rate twice that of the norm of the error of the matrix
function.

Similar to Lemma 3.1 we have the following bound on ‖hz‖Si when S0 is an
interval. This allows a bound on (6.1) analogous to (2.5).

Lemma 6.1. For any interval [a, b] ⊂ R, if z ∈ C \ [a, b], we have

‖hz‖[a,b] =


1/| Im(z)| Re(z) ∈ I(A)

1/|a− z| Re(z) < a

1/|b− z| Re(z) > b
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Lanczos iteration k

10−15

10−13

10−11
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101

(a) Error bounds for f(x) = log(x) using
a Pac-Man contour as described in Exam-
ple 6.2. A = XXT, where the entries of X ∈
Rn,2n are independent Gaussians with mean
zero variance 1/2n where n = 3000. Legend :
A priori bounds obtained by using (6.1) with
S0 = Si = I(A) ( ) and S0 = Si = Ĩ(A)
( ). A posteriori bounds obtained by us-
ing (6.1) with S0 = I(A), Si = {λi(Tk)}
( ) and S0 = Ĩ(A), Si = {λi(Tk)} ( ).

0 10 20 30 40 50

Lanczos iteration k

10−16

10−13

10−10

10−7

10−4

10−1

(b) Error bounds for f(x) = step(x−a) with
double circle contour as described in Exam-
ple 6.3. A is the covariance matrix of the
MNIST training data [41]. Legend : A priori
bounds obtained by using (6.1) with S0 =
Si = Iw(A) ( ) and S0 = Si = Ĩw(A)
( ). A posteriori bounds obtained by us-
ing (6.1) with S0 = Iw(A), Si = {λi(Tk)}
( ) and S0 = Ĩw(A), Si = {λi(Tk)}
( ).

Fig. 7: Lanczos-FA quadratic form errors. Legend : |bHf(A)b − bHlank(f)| ( ).
For reference we also show ‖f(A)b− lank(f)‖22 ( ). Note that this is the square of
the 2-norm of the Lanczos-FA error.

In the case that the contour Γ does not pass through I(A), the bound of (6.1) is
essentially as easy to compute as that of Theorem 2.6. However, if the contour passes
through I(A) at w, to ensure that S0 does not contain points in the contour, it must
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be chosen as a set other than I(A). This set must contain all of A’s eigenvalues and
we must bound its distance to the contour (in particular, to w).

Example 6.2. Suppose A is positive definite and f(x) = log(x). We use (6.1)
to obtain a bound for the quadratic form error |bHf(A)b − bHlank(f)|. A priori
bounds are obtained with S0, Si = I(A) while a posteriori bounds are obtained with
S0 = I(A) and Si = {λi(Tk)}. In both cases, we take Γ as the Pac-Man contour
centered at 0 with r = λmin(A)/100 to avoid the singularity log(0) = −∞. The
resulting bounds are shown in the left panel of Figure 7.

As in Example 4.1, we also consider the cases where we use an estimate Ĩ(A) for
I(A) to study the sensitivity of our bounds to Si. For these tests we use a Pac-Man
contour with r = λmin(A)/200.

Example 6.3. Let f(x) = step(x − a) for a ∈ I(A), and set w = a. Similarly
to the previous example we use (6.1) to obtain a bound for the quadratic form error
|bHf(A)b − bHlank(f)|. However, we must have Si avoid where Γ crosses the real
axis.

Suppose λl,w
max(A) and λr,w

min(A) are consecutive eigenvalues of A so that λl,w
max(A) <

w < λr,w
min(A). Then we can define

Iw(A) := [λmin(A), λl,w
max(A)] ∪ [λr,w

min(A), λmax(A)].

In this case, ‖hz‖Iw(A) = max{‖hz‖[λmin,λ
l,w
max], ‖hz‖[λr,w

min,λmax])} can be computed us-
ing Lemma 6.1.

We can then apply (6.1) to obtain a bound for the quadratic form error |bHf(A)b−
bHlank(f)|. A priori bounds are obtained with S0, Si = Iw(A) while a posteriori
bounds are obtained with S0 = Iw(A) and Si = {λi(Tk)}. This is shown in the right

panel of Figure 7. Of course, in practice it is unlikely that λl,w
min(A) and λr,w

max(A)
are known. The distance to w of course can be estimated by estimating the smallest
eigenvalue of (A − wI)2, perhaps via Lanczos. However, it can be expected to be
more difficult than estimating λmin(A) and λmax(A). Thus, we also show the effect

of approximating λl,w
max(A) and λl,w

min(A). Specifically, we compute ‖hw,z‖Ĩw(A) where

Ĩw(A) = [λmin/2, w − γ] ∪ [w + γ, 1.5λmax])

for γ = minλ∈Λ(A) |λ− w|/100.

7. Conclusion and outlook. In this paper we give a simple approach to gener-
ate error bounds for Lanczos-FA used to approximate f(A)b when f(x) is piecewise
analytic. Our framework can be used both a priori and a posteriori, and the bounds,
to close degree, hold in finite precision. While outside the scope of this paper, the
same general approach is applicable to non-Hermitian matrices computed using an
Arnoldi factorization.

8. Acknowledgments. The authors thank Thomas Trogdon for suggestions in
early stages.

Appendix A. Error bounds for Lanczos on linear systems. Our analy-
sis reduces understanding the Lanczos-FA error for a function f to understanding
‖errk(w)‖, the error of Lanczos-FA used to solve the system (A − wI)x = b. We
review several bounds for this task. Without loss of generality, we assume w = 0, as
the wI term can be incorperated directly into A.

In the case that A is positive (or negative) definite, Lanczos-FA with f(x) = 1/x is
equivalent to the conjugate gradient algorithm (CG) [31]. Therefore, it inherits CG’s



ERROR BOUNDS FOR LANCZOS-FA 21

well known property of returning an optimal solution in the A-norm (or −A-norm if
A is negative definite). That is,

‖errk‖A = min
y∈Kk(A,b)

‖A−1b− y‖A = min
deg p≤k
p(0)=1

‖p(A)A−1b‖A.

From this optimality, we obtain the following (well known) bounds for positive
definite A

‖errk‖A
‖err0‖A

≤ min
deg p≤k
p(0)=1

max
λ∈Λ(A)

|p(λ)| ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
≤ 2 exp

(
− 2k√

κ(A)

)

where the final bound follows from the fact that (x− 1)/(x+ 1) ≤ exp(−2/x) for all
x ≥ 1. The minimax bound, based on the eigenvalues of A, is tight in the sense that for
each k there exists b (dependent on A and k) so that lank(f,A,b) attains the bound
[24]. The final inequality implies that Lanczos-FA requires k ≤ 1

2

√
κ(A) log(2/ε)

iterations to ensure ‖errk‖A/‖err0‖A ≤ ε.
From the result above, it is also straightforward to derive a bound that is more

directly comparable to (1.2) and (1.3). Specifically, for f(x) = 1/x, [45] shows:

‖errk‖2 = ‖f(A)b− lank(f)‖2 ≤
√
κ(A)‖b‖2 · min

deg p<k
‖f − p‖Λ(A).

Beside the leading constant
√
κ(A), this bound is strictly stronger than (1.2) because

it only depends on the eigenvalues of A, and not those of Tk. As a result, it is also
strictly stronger than the uniform approximation bound of (1.3).

If A is indefinite, we can obtain error bounds by relating the Lanczos-FA approx-
imation to MINRES. For these bounds, we need the following theorem from [8] which
compares the 2-norm of the residual in the Lanczos approximation to the solution of
a Hermitian linear system to that of the MINRES algorithm. MINRES, by defini-
tion, minimizes the 2-norm of the residual over all approximations from the Krylov
subspace.

Theorem A.1. Let A be a nonsingular Hermitian matrix and define rMk as the
MINRES residual at step k; i.e.

rMk := b−Aŷ, ŷ = argmin
y∈Kk(A,b)

‖b−Ay‖2.

Then, assuming that the initial residuals in the two procedures are the same,

‖resk‖2
‖res0‖2

=
‖rMk ‖2/‖rM0 ‖2√

1−
(
‖rMk ‖2/‖rMk−1‖2

)2 .
Therefore, if MINRES makes good progress at step k (i.e. ‖rMk ‖2/‖rMk−1‖2 is small),

then Theorem A.1 implies ‖resk‖2/‖res0‖2 ≈ ‖rMk ‖2/‖rM0 ‖2. Thus, since MINRES
converges at a linear rate, there will be iterations in which Lanczos-FA has nearly as
good a residual norm as MINRES. This is made precise by the following result.

Corollary A.2. Suppose Λ(A) ⊂ [a, b] ∪ [c, d], where a < b < 0 < c < d with
b − a = d − c, and define γ =

√
|ad|/|bc|. Then, for any ε < γ/4 there exsits

k ≤ 2γ log(
√

2γ/ε) so that ‖resk‖2/‖res0‖2 < ε.
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Proof. If the eigenvalues of A lie in [a, b] ∪ [c, d], where a < b < 0 < c < d and
b− a = d− c, then as in [27, Section 3.1], the optimality of MINRES implies

‖rMj ‖2
‖rM0 ‖2

≤ 2

(√
|ad|/|bc| − 1√
|ad|/|bc|+ 1

)bj/2c
≤ 2 exp

(
− 2bj/2c√
|ad|/|bc|

)
.

For notational convenience set τ = 2ε/γ and define k′ to be the first iteration
where ‖rMk′ ‖2/‖r0‖2 < τ/2 and k′′ to be the first iteration where ‖rMk′′‖2/‖r0‖2 < τ2/4.
Note that k′′ ≤ γ log(2/(τ2/4)) = 2γ log(2

√
2/τ).

First, suppose ‖rk′‖2/‖r0‖2 ≤ τ/4. Then, since ‖rk′−1‖2/‖r0‖2 > τ/2, using
Theorem A.1,

‖resk‖2
‖res0‖2

=
‖rMk′ ‖2/‖rM0 ‖2√

1−
(
‖rMk′ ‖2/‖rMk′−1‖2

)2 ≤ τ/4√
1− ((τ/4)/(τ/2))2

=
τ

2
√

3
≤ ε.

Next, suppose that ‖rk′‖2/‖r0‖2 > τ/4. Let ` = k′′− k and note that there must
exist an iteration k ∈ (k′, k′′] so that

‖rMk ‖2
‖rMk−1‖2

=
‖rMk ‖2/‖rM0 ‖2
‖rMk−1‖2/‖rM0 ‖2

≤
(
τ2/4

τ/4

)1/`

.

Now note that

1√
1−

((
τ2/4
τ/4

)1/`
)2

=
1√

1− τ2/`

and that ` ≤ k′′ − 1 ≤ 2γ log(2
√

2/τ) so

1√
1− τ2/`

≤ 1√
1− τ1/(γ log(2

√
2/τ))

=
1√

1−
(
τ1/ log(2

√
2/τ)

)1/γ

If τ ∈ [0, 1/2] then τ1/ log(2
√

2/τ) ≤ exp(−2/5) < 3/4 so noting that γ ≥ 1 we can
apply Lemma A.3 to obtain

1√
1−

(
τ1/ log(2

√
2/τ)

)1/γ
≤ 2γ.

Combining this with Theorem A.1 gives,

‖resk‖2
‖res0‖2

=
‖rMk′ ‖2/‖rM0 ‖2√

1−
(
‖rMk′ ‖2/‖rMk′−1‖2

)2 ≤ τ/4√
1−

((
τ2/4
τ/4

)1/`
)2
≤ τγ

2
= ε.

Lemma A.3. For all x ∈ [0, 3/4] and y ∈ [0, 1],

1√
1− xy ≤

2

y
.
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Proof. Consider the function

g(x, y) =
y

2
√

1− xy .

For any y ∈ [0, 1], g(x, y) is non-decreasing in x, so it suffices to set x = 3/4. Thus,
define

f(y) = log(g(3/4, y)) = log

(
y

2
√

1− (3/4)y

)

which has derivative

f ′(y) =
1

y
− log(4/3)

2((4/3)y − 1)
.

? Note that (4/3)y − 1 ≥ log(4/3)y for all y ≥ 0 so

log(4/3)

2((4/3)y − 1)
≤ log(4/3)

2 log(4/3)y
=

1

2y
.

Therefore f ′(y) ≥ 1/(2y) ≥ 0, so f(y) is non-decreasing. Since log is increasing this
implies that g(3/4, y) is a non-decreasing function of y on [0, 1] and therefore bounded
above by g(3/4, 1) = 1. Thus, g(x, y) ≤ 1 for all x ∈ [0, 3/4] and y ∈ [0, 1] and the
result follows.

So far we have discussed a priori bounds, but there are a range of a posteriori
bounds as well. For instance, a simple a posteriori bound is obtained using the fact
that ‖errk‖A2 = ‖resk‖2, which holds even when A is indefinite. Using the similarity
of matrix norms, bounds for ‖errk‖ when ‖ · ‖ is any norm induced by a matrix with
the same eigenvectors as A can then be obtained.

When A is positive (or negative) definite, a range of more refined error bounds
and estimates for the A-norm and 2-norm have been considered. These bounds obtain
error estimates for CG at step k by running Lanczos (or CG) for an extra d iterations.
The information from this larger Krylov subspace Kk+d(A,b) is then used to estimate
the error at step k. Typically d can be taken as a small constant, say d = 5, so the
extra work required to obtain these bounds is not too large. We refer to [54, 44, 15, 42]
and the references within for more details.
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Curran Associates, Inc., 2019, pp. 3868–3878.
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[44] G. Meurant and P. Tichý, Approximating the extreme Ritz values and upper bounds for the

A-norm of the error in CG, Numerical Algorithms, 82 (2018), pp. 937–968.
[45] C. Musco, C. Musco, and A. Sidford, Stability of the Lanczos method for matrix function

approximation, in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’18, USA, 2018, Society for Industrial and Applied Mathemat-
ics, p. 1605–1624.

[46] C. C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices.,
PhD thesis, University of London, 1971.

[47] , Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix,
IMA Journal of Applied Mathematics, 18 (1976), pp. 341–349.

[48] , Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem,
Linear Algebra and its Applications, 34 (1980), pp. 235 – 258.

[49] C. C. Paige, Accuracy of the lanczos process for the eigenproblem and solution of equations,
SIAM Journal on Matrix Analysis and Applications, 40 (2019), pp. 1371–1398.

[50] B. N. Parlett, H. Simon, and L. M. Stringer, On estimating the largest eigenvalue with
the Lanczos algorithm, Mathematics of Computation, 38 (1982), pp. 153–153.

[51] G. Pleiss, M. Jankowiak, D. Eriksson, A. Damle, and J. Gardner, Fast matrix square
roots with applications to Gaussian processes and Bayesian optimization, in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, eds., vol. 33, Curran Associates, Inc., 2020, pp. 22268–22281.

[52] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator,
SIAM Journal on Numerical Analysis, 29 (1992), pp. 209–228.

[53] Z. Strakos and A. Greenbaum, Open questions in the convergence analysis of the Lanczos
process for the real symmetric eigenvalue problem, University of Minnesota, 1992.
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