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The 9-connected Excluded Minors for the Class of

Quasi-graphic Matroids

Rong Chen *

Abstract

The class of quasi-graphic matroids, recently introduced by Geelen, Gerards, and Whit-

tle, is minor closed and contains both the class of lifted-graphic matroids and the class of

frame matroids, each of which generalises the class of graphic matroids. In this paper, we

prove that the matroids U3,7 and U4,7 are the only 9-connected excluded minors for the

class of quasi-graphic matroids.
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1 Introduction

Let H be a graph and let N be a matroid. For a vertex v of H we let loopsH(v) denote the set of

loops of H whose ends are v. We say that H is a framework for N if

(QG1) E(H) = E(N),

(QG2) rN(E(H′)) ≤ |V(H′)| for each component H′ of H, and

(QG3) for each vertex v of H we have clN(E(H − v)) ⊆ E(H − v) ∪ loopsH(v), and

(QG4) for each circuit C of N, the graph H[C] has at most two components.

A matroid is quasi-graphic if it has a framework. The class of quasi-graphic matroids, recently

introduced by Geelen, Gerards, and Whittle [8], is minor closed and contains both lifted-

graphic matroids and frame matroids. Recently, the author and Geleen [4] proved that there are

infinitely many quasi-graphic excluded minors for the class of frame matroids and the class of

lifted-graphic matroids, but we are confident that the class of quasi-graphic matroids admits a

finite excluded-minor characterisation.

Conjecture 1.1. ([4], Conjecture 1.5.) There are, up to isomorphism, only finitely many excluded-

minors for the class of quasi-graphic matroids.
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One of the difficulties to prove Conjecture 1.1 is that some graphic matroids have exponen-

tially many different frameworks; for example, the rank-r wheel has at least 2r “inequivalent”

frameworks, see [3]. The same difficulty appears when considering problems on excluded mi-

nors for the class of frame matroids and for the class of lifted-graphic matroids. In fact, in the

proof of Rota’s Conjecture, Geleen, Gerards, and Whittle encountered a similar difficulty. The

interesting thing is: we have some kind of opposite versions in the proof of the two conjectures.

For Rota’s Conjecture, the proof for the low branch-width case is not complicated, see [1, 9];

while the proof for the high branch-width case is very difficult. While, for Conjecture 1.1, the

proof for low connectivity is thought to be difficult, while the proof for high connectivity is not

complicated. In this paper, we prove

Theorem 1.2. Other than U3,7 and U4,7, no excluded minor for the class of quasi-graphic ma-

troids is 9-connected.

Funk and Mayhew [7] recently proved that, for each positive integer r, the class of quasi-

graphic matroids has only a finite number of excluded minors of rank r.

This paper is organized as follows. In Section 3, we prove that U3,7 and U4,7 are the only

9-connected excluded minors of rank less than nine for the class of quasi-graphic matroids. 9-

connected excluded minors of rank at least nine are considered in Section 5. Some definitions

and basic properties of quasi-graphic matroids are given in Section 2. Properties of frameworks

for graphic matroids are presented in Section 4.

2 Preliminaries

We assume that the reader is familiar with matroid theory and we follow the terminology of

Oxley [10].

For a graph G, let loops(G) be the set of loops in G. An edge of G is a link if it is not a

loop. For any v ∈ V(G), let stG(v) denote the set of edges incident with v. For any U ⊆ V(G)

and F ⊆ E(G), set stG(U) =
⋃

u∈U stG(u), and let G[U] be the induced subgraph of G defined on

U, and let G[F] be the subgraph of G with F as its edge set and without isolated vertices. Let

cG(F) be the number of components of G[F], and let VG(F) denote V(G[F]). When F = {e}, we

will let VG(e) denote VG({e}). When there is no confusion, all subscripts will be omitted. For a

number k, we say that G is k-connected if G − S has exactly one component for any S ⊂ V(G)

with |S | < k.

A theta graph is a graph that consists of a pair of distinct vertices joined by three internally

disjoint paths. A cycle is a connected 2-regular graph. A collection B of some cycles of G

satisfies the theta property if no theta subgraph of G contains exactly two members of B. A

biased graph consists of a pair (G,B), where G is a graph and B is a collection of some cycles

of G that satisfies the theta property. A cycle C of G is balanced if C ∈ B, otherwise, it is

unbalanced.

Let H be a framework for a matroid N. For any cycle C of H, either C ∈ C(N) or C ∈ I(N)

by ([8], Lemma 2.5.). Let BN be the set of cycles of H that are circuits of N. Since BN satisfies

the theta property by ([8], Lemma 3.2.), (H,BN) is a biased graph. For convenience, we will

also view H as the biased graph (H,BN). A subgraph H′ of H is balanced if each cycle in

H′ is balanced; otherwise, H′ is unbalanced. If all cycles in H′ are unbalanced, then H′ is

contra-balanced.

By ([8], Lemma 3.3) and (QG4), we have
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Lemma 2.1. Let H be a framework for a matroid N. When C ∈ C(N), either

1. H[C] is a balanced cycle,

2. H[C] is a connected contra-balanced graph with minimum degree at least two with |C| =

|V(C)| + 1, or

3. H[C] is a union of two unbalanced cycles that meet in at most one single vertex.

Lemma 2.2. ([8], Lemma 2.6.) Let H be a framework for a matroid N. If H′ is a subgraph of

H with |E(H′)| > |V(H′)|, then E(H′) is a dependent set of N.

By Lemmas 2.1 and 2.2, we have

Lemma 2.3. Let H be a framework for a matroid N. Let C1,C2 be unbalanced cycles of H with

|V(C1) ∩ V(C2)| ≤ 1. Then the following hold.

• E(C1 ∪C2) is a circuit of N when |V(C1) ∩ V(C2)| = 1.

• When |V(C1) ∩ V(C2)| = 0, for each minimal path P in H linking C1 and C2, we have

E(C1 ∪C2) ∈ C(N) or E(C1 ∪C2 ∪ P) ∈ C(N).

We say that H is a frame representation of a matroid N if a subset I of E(H) is independent

in N if and only if H[I] has no balanced cycles and |E(H′)| ≤ |V(H)| for each component H′ of

H[I]. We say that H is a lifted-graphic representation of N if a subset I of E(H) is independent

in N if and only if H[I] has at most one cycle and when the cycle exists, it is unbalanced. Note

that, when H is a lifted-graphic representation for a 3-connected matroid, H has at most one

loop, and the loop is unbalanced.

Theorem 2.4. ([8], Theorems 7.1 and 7.2.) Let H be a framework for a 3-connected matroid N.

If H has an unbalanced loop, then H is a frame representation or a lifted-graphic representation

for N.

When H is a lifted-graphic representation for N with an unbalanced loop e, by the definition

of lifted-graphic representation, all graphs obtained from H\e by attaching the loop e to any

vertex of H\e or a new vertex not in H\e are also lifted-graphic representations of N. Under this

condition, we view all graphs obtained in this way as equivalent. That is, when all frameworks

for N can be obtained from H by this way, we view H as the unique framework for N.

Lemma 2.5. Let H be a framework for a matroid N. If H is not connected but N is connected,

then H is a lifted-graphic representation of N.

Proof. Let H1,H2, . . . ,Hn be the components of H. Since every pair of elements of E(N) must

be contained in a circuit of N, by Lemma 2.1 each edge of H is in an unbalanced cycle.

2.5.1. Let C1 and C2 be unbalanced cycles of H1 and H2, respectively. If H2 has an unbalanced

cycle C′
2

with E(C2) ∩ E(C′
2
) , ∅ and E(C1 ∪ C′

2
) ∈ C(N), then E(C1 ∪C2) ∈ C(N).
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Subproof. Assume not. Without loss of generality we may assume that C′
2

is chosen with E(C2∪

C′2) as small as possible. When C2 ∪C′2 is a theta subgraph of H2, since E(C2 ∪C′2) or the third

cycle in C2 ∪ C′
2

that is neither C2 nor C′
2

is a circuit of N by Lemmas 2.1 and 2.2, we have

E(C1 ∪ C2) ∈ C(N) by the circuit elimination axiom and Lemma 2.1. So we may assume that

C2 ∪ C′2 is not a theta subgraph of H2. Since E(C2) ∩ E(C′2) , ∅, there is a path P ( C2 such

that C′
2
∪ P is a theta-graph. In a similar way we can show that E(C1 ∪C

′′

2
) is a circuit of N for

an unbalanced cycle C
′′

2 of H2 with P ⊆ C
′′

2 ⊆ C′2 ∪ P, a contradiction to the choice of C′2 as

|E(C2 ∪C
′′

2
)| < |E(C2 ∪C′

2
)|. �

2.5.2. A union of each pair of unbalanced cycles coming from different components of H is a

circuit of N.

Subproof. Let C1 and C2 be unbalanced cycles of H1 and H2, respectively. By symmetry, it

suffices to show that E(C1∪C2) ∈ C(N). Let ei ∈ Ci for each 1 ≤ i ≤ 2. Since N is connected, N

has a circuit C containing {e1, e2}. Since e1 and e2 are in different components of H, by Lemma

2.1, there is an unbalanced cycle C′i of Hi containing ei for each integer 1 ≤ i ≤ 2 such that

C = E(C′
1
∪ C′

2
). Since e2 ∈ E(C2) ∩ E(C′

2
), we have E(C′

1
∪ C2) ∈ C(N) by 2.5.1. Moreover,

since e1 ∈ E(C1) ∩ E(C′
1
), using 2.5.1 again, E(C1 ∪C2) ∈ C(N). �

2.5.3. For every 1 ≤ i ≤ n, a union of every pair of vertex-disjoint unbalanced cycles of Hi is a

circuit of N.

Subproof. Assume that the claim does not hold for H1. Then there are vertex-disjoint unbal-

anced cycles C1,C
′
1

of H1 and a path P minimal linking the two cycles such that E(C1 ∪C′
1
∪P)

is a circuit of N by Lemma 2.3. Let C be a union of C1 and an unbalanced cycle of H2. By

2.5.2, C is a circuit of N. Let f ∈ E(C1) and g ∈ E(P). By circuit elimination axiom, there is a

circuit C′ of N with g ∈ C′ ⊆ E(C1 ∪C′1 ∪ P ∪C)− { f }, a contradiction to Lemma 2.1 as H[C′]

has degree-1 vertices. �

By 2.5.2 and 2.5.3, a union of every pair of vertex-disjoint unbalanced cycles of H is a

circuit of N, so the lemma holds. �

After this paper was submitted to a journal in September 2017, one of the referees told

the author in his/her referee report that Lemma 2.5 was also proved in ([2], Corollary 4.7) by

Bowler, Funk, and Slilaty. The two proofs are totally different.

By ([8], Lemmas 3.6 and 4.2) or Lemma 2.5 and ([8], Lemmas 4.2) we have

Lemma 2.6. Assume that H is a framework for a 3-connected matroid N with |E(N)| ≥ 4 and

H has no isolated vertices. Then

1. H is connected, or

2. H is a lifted-graphic representation of N with exactly two components, one of which is a

loop-component.

Moreover, N has a connected framework.

Lemma 2.7. For any integer k ≥ 2, if H is a connected framework for a k-connected matroid

N, then H is k − 1 connected.
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Proof. Assume not. Let (X, Y) be a partition of E(N) with m = |VH(X) ∩ VH(Y)| ≤ k − 2 and

such that H[X] and H[Y] are connected graphs with at least m + 1 vertices. When H[X] and

H[Y] are unbalanced, implying that |X|, |Y | ≥ m + 1, we have that (X, Y) is an m + 1-separation,

a contradiction. When X is balanced, (X, Y) is an m-separation, a contradiction. �

Theorem 2.8. ([8], Theorem 1.6.) A 3-connected matroid N is quasi-graphic if and only if there

exists a graph H such that

1. E(H) = E(N),

2. H is connected,

3. r(N) ≤ |V(H)|, and

4. for each vertex v of H we have clM(E(H − v)) ⊆ E(H − v) ∪ loopsH(v).

Lemma 2.9. Let H be a framework for a matroid N. For an edge e of H, if H\e is connected

and unbalanced, then e is in a circuit of N.

Proof. By considering a maximal independent set of H\e, it follows from (QG2) that r(N\e) =

|V(H)|. Moreover, since r(N) ≤ |V(H)| by (QG2), we have r(N) = r(N\e). So the lemma

holds. �

Let H be a framework for a matroid N. Let H′ = H − loops(H) when H is a lifted-graphic

representation of N, otherwise let H′ = H. A vertex v ∈ V(H) is a blocking vertex if H′ is

unbalanced and all unbalanced cycles of H′ contain v. Set st∗
H

(v) = stH′(v). Note that st∗
H

(v) is

the same as stH(v) unless H is lifted-graphic of N and v is incident with a loop.

Lemma 2.10. Let H be a connected framework for a 3-connected matroid N, and v ∈ V(H).

1. st∗H(v) is a union of cocircuits of N.

2. v is a blocking vertex of H if and only if st∗
H

(v) < C∗(N).

Proof. (1) follows from Lemma 2.1 and Theorem 2.4. Next, we prove that (2) is true.

Note that H and H′ are 2-connected by Lemma 2.7. Assume that v is a blocking vertex

of H. Since H′ − v is connected and balanced, r(E(H′ − v)) = |V(H′)| − 2 = r(N) − 2. So

st∗H(v) < C∗(N).

Assume that st∗
H

(v) < C∗(N). Then st∗
H

(v) contains at least two cocircuits of N by (1),

implying r(E(H′ − v)) ≤ r(N) − 2 = |V(H′)| − 2. Moreover, since H′ − v is connected, H′ − v is

balanced. So v is a blocking vertex of H. �

Let H be a connected framework for a 3-connected matroid N. We say that a vertex v of H

is fixed in H if N\st∗
H

(v) is a 3-connected non-graphic matroid.

Lemma 2.11. Let H be a connected framework for a 3-connected matroid N. For an edge f of

H, if v is fixed in H\ f , then v is fixed in H.

Proof. Evidently, it suffices to show that N\st∗
H

(v) is 3-connected. Assume not. Then f < st∗
H

(v).

Since N\(st∗H(v) ∪ { f }) and N are 3-connected and non-graphic, f is a coloop of N\st∗H(v) and

H′ − {v, f } is connected and unbalanced by Lemma 2.7 and Theorem 2.4. Then f ∈ stH(v)

by Lemma 2.9. Since f < st∗
H

(v), we have that { f } = loopsH(v) and H is a lifted-graphic

representation for N. Hence, f ∈ cl(E(H − v)) as H − v is unbalanced, a contradiction to the fact

that f is a coloop of N\st∗
H

(v) . �
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Lemma 2.12. Let H and H′ be 2-connected frameworks for a 3-connected matroid N. If v is a

fixed vertex of H, then st∗H(v) ∈ C∗(N) and there is a fixed vertex v′ of H′ satisfying st∗H′(v
′) =

st∗
H

(v).

Proof. Since H′ − v is unbalanced, st∗
H

(v) ∈ C∗(N) by Lemma 2.10. So r(N\st∗
H

(v)) = r(N) − 1.

Since N\st∗H(v) is a 3-connected non-graphic matroid, |V(H′)| = r(N) ≥ 3 and by Lemma 2.6

the graph H′\st∗
H

(v) has exactly two components, one of which is an isolated vertex or a loop-

component. Let {v′} be the vertex set of the 1-vertex component of H′\st∗H(v), and H′1 be the

other component. Since no circuit of N can intersect st∗
H

(v) with exactly one element and H′
1

is

connected and unbalanced, by Lemma 2.9, each edge in st∗
H

(v) has at most one end in H′
1
. So

st∗H′(v
′) = st∗H(v) by Theorem 2.4, implying that v′ is fixed in H′. �

For convenience, we will say that the vertex v′ in Lemma 2.12 is the corresponding vertex

of v in H′ and denote it by v too.

Lemma 2.13. Let H be a 2-connected framework for a 3-connected matroid N. If at most one

vertex is not fixed in H, then one of the following holds.

1. H is the unique framework for N.

2. H − loops(H) has a blocking vertex.

In particular, when all vertices are fixed in H, (1) holds.

Proof. First, we prove

2.13.1. When all vertices in H are fixed, (1) holds.

Subproof. When loops(H) = ∅ or H has a loop but it is not a lifted-graphic representation for N,

Lemma 2.12 implies that (1) holds. So we may assume that H is a lifted-graphic representation

for N with a loop f by Theorem 2.4. Let H′ be another connected framework for N. By

Lemma 2.12, loops(H) = loops(H′) = { f } and H\ f = H′\ f . When H has no blocking vertex,

since a union of f and each unbalanced cycle of H is a circuit of N by the structure of H, the

graph H′ must be a lifted-graphic representation for N, so H and H′ are equivalent. When

H has a blocking vertex, either f is incident with a blocking vertex of H′\ f or H′ must be

a lifted-graphic representation for N. No matter which case happens, H′ is a lifted-graphic

representation for N, so H and H′ are equivalent. That is, (1) holds. �

By 2.13.1, we may therefore assume that H has a unique unfixed vertex v. Assume that (1)

is not true. Let H′ be a connected framework for N that is not equivalent to H. By Lemma 2.12,

we may assume that V(H) = V(H′) and st∗H(u) = st∗H′(u) for any v , u ∈ V(H). Therefore,

2.13.2. For any vertices x, y ∈ V(H − v), we have that xy ∈ E(H) if and only if xy ∈ E(H′).

By symmetry, 2.13.1 and Lemma 2.12, we may assume that v is the unique unfixed vertex

of H′.

2.13.3. When H is a lifted-graphic representation of N with a loop f , both H and H′−loops(H′)

have v as their blocking vertex.

6



Subproof. Since N is 3-connected, loops(H) = { f }. Since stH(u) − { f } = st∗
H

(u) = st∗
H′

(u) for

any v , u ∈ V(H), we have f ∈ loops(H′). When H′ is a lifted-graphic representation for

N, since { f } = loops(H′), we have H\ f = H′\ f , so H and H′ are equivalent, a contradiction.

Hence, H′ is a frame representation for N by Theorem 2.4. Then stH(u) − { f } = stH′(u) for any

v , u ∈ V(H), implying that f ∈ loopsH′(v) and H − {v, f } = H′ − {v, loops(H′)}.

Assume that H − {v, f } has an unbalanced cycle C. Then E(C)∪ { f } ∈ C(N) as H is a lifted-

graphic representation for N. On the other hand, since C is a cycle of H − { f , v} of length at

least 2, C is also an unbalanced cycle of H′−{ f , v} by 2.13.2. Since H′ is a frame representation

for N and f ∈ loopsH′(v), we have E(C) ∪ { f } ∈ I(N), a contradiction. Hence, H − { f , v} is

balanced. That is, the claim holds. �

By 2.13.3 and symmetry, we may therefore assume that neither H nor H′ is a lifted-graphic

representation of N with a loop. Then stH(u) = stH′(u) for any v , u ∈ V(H). Since H , H′,

there is a link e = vu of H (or H′), which is a loop of H′ (or H) incident with u. Assume that

H − {v, loops(H)} has an unbalanced cycle C. Since |E(C)| ≥ 2, it follows from 2.13.2 that C is

also an unbalanced cycle of H′ − v. Let P be a minimal path in H − v joining u and C. Note that

P = {u} when u ∈ VH(C). Comparing H[E(C ∪ P) ∪ {e}] and H′[E(C ∪ P) ∪ {e}], we will get a

contradiction. Hence, H − {v, loops(H)} is balanced. That is, (2) holds. �

In Section 5 we will need a number of simple conditions which prevent a matroid from being

an excluded minor for the class of quasi-graphic matroids. In the following Lemmas we gather

a few such conditions. Lemmas 2.13-2.15 will be only used in the proof of Theorem 5.16.

Lemma 2.14. Let e, f be elements of a 3-connected matroid N such that N\e, N\ f , and N\e, f

are 3-connected. Let H be a 2-connected unbalanced framework for N\e, f that has no blocking

vertices. If H can be extended to frameworks for N\e and N\ f , then N is quasi-graphic.

Proof. Let G be a graph with H = G\e, f such that G\e and G\ f are frameworks for N\e and

N\ f , respectively. Since H is connected, by Lemmas 2.6 and 2.7 we may assume that G is 2-

connected. We claim that G is a framework for N. Evidently, (QG1) and (QG2) hold. Since N is

3-connected, by Theorem 2.8, it suffices to show that (QG3) holds. Let v be a vertex of G. When

e, f ∈ stG(v), (QG3) obviously holds for v. So by symmetry we may assume that e < stG(v).

Since H is 2-connected and has no blocking vertices, H − v is connected and unbalanced. Then

it follows from Lemma 2.9 that e ∈ clN(E(H − v)) as G\ f is a framework for N\ f . When

f ∈ stG(v), since clN(E(G − v)) = clN(E(H − v)) and G\e is a framework for N\e, (QG3) holds

for v. When f < stG(v), by the symmetry between e and f , we have f ∈ clN(E(H − v)). So

clN(E(G − v)) = clN(E(H − v)), implying that (QG3) holds for v as stG(v) = stH(v). �

Lemma 2.15. Let e, f be elements of a 3-connected matroid N such that N\e, N\ f , and N\e, f

are 3-connected. Let H be a 2-connected framework for N\e. Assume that there is a balanced

cycle C of H with f ∈ E(C) such that all vertices in VH(C) are fixed in H\ f . If N\ f is quasi-

graphic, so is N.

Proof. Let G
′′

be a framework for N\e, f that can be extended to a framework G′ for N\ f . By

Lemmas 2.6 and 2.7 we may further assume that G
′′

and G′ are 2-connected. Since G
′′

and H\ f

are frameworks for N\e, f and all vertices in VH(C) are fixed in H\ f , by Lemma 2.12, we may

assume that corresponding vertices in G
′′

[E(C) − { f }] and H[E(C) − { f }] are labelled by same

symbols and

st∗G′′(v) = st∗H\ f (v) = st∗H(v) − { f } ∈ C∗(N\e, f ),
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for any v ∈ VH(C). Hence, G
′′

[E(C) − { f }] and H[E(C) − { f }] are isomorphic paths. Let G be

the graph obtained from G′ by adding f to G′ such that G[E(C)] is a cycle. That is, G[E(C)]

and H[E(C)] are isomorphic.

We claim that G is a framework for N. (QG1) obviously holds. Since G is 2-connected

and r(N) = r(N\ f ) = |V(G′)|, (QG2) holds for G. Since N is 3-connected, by Theorem 2.8 it

suffices to show that (QG3) holds. Since E(C) is a circuit of N and G′ is a framework for N\ f ,

(QG3) holds for each vertex in V(G)− VG(E(C)) + VG( f ). For any v ∈ VG(E(C)) − VG( f ), since

v is fixed in both H and H\ f by Lemma 2.11, we have

st∗G′(v) − {e} = st∗G′′(v) = st∗H(v) ∈ C∗(N\e, f ) ∩ C∗(N\e) (2.1)

by Lemma 2.12. Since N\(st∗
G′′

(v)∪{e, f }) is 3-connected and non-graphic, G′−v is unbalanced,

so st∗G′(v) ∈ C∗(N\ f ). Combined with (2.1), st∗G′(v) ∈ C∗(N) or {e, f } ∈ C∗(N). Since N is 3-

connected, st∗G′(v) ∈ C∗(N). Hence, (QG3) holds for v. �

3 9-connected excluded minors with rank less than nine.

In this section, we prove that, if M is a 9-connected excluded minor for the class of quasi-

graphic matroids with r(M) ≤ 8, then M is isomorphic to U3,7 or U4,7. To prove this, we need

one more definition.

Let G be a simple graph. For a positive integer k, let kG denote the graph obtained from G

by replacing each edge of G by a parallel class with exactly k edges.

Theorem 3.1. U3,7 is an excluded minor for the class of quasi-graphic matroids.

Proof. First we show that 2K3 is the unique framework for U3,6. Let G be a framework for

U3,6. By Lemma 2.6 we may assume that G is connected. Then |V(G)| = 3. Since |E(G)| = 6,

either each vertex in G is incident with exactly four edges or some vertex v is incident with at

most three edges. When the former case happens, G is isomorphic to 2K3. When the latter case

happens, since G − v has no balanced cycles with at most two edges, Lemma 2.1 implies that

U3,6 has a triangle, a contradiction.

Since 2K3 is the unique framework for U3,6, it is easy to verify that U3,7 is not quasi-graphic.

Moreover, since 6K2 is a framework for U2,6, the theorem holds. �

Theorem 3.2. U4,7 is an excluded minor for the class of quasi-graphic matroids.

Proof. Let C4 be a 4-edge cycle, let K be the graph obtained from 2C4 by deleting a pair of

non-adjacent edges. Evidently, K4 and K are frame representations for U4,6. Note that, neither

K4 nor K can be extended to a framework for U4,7. Since 2K3 is a framework for U3,6, to prove

the theorem, it suffices to show that, besides K4 and K, U4,6 has no other frameworks.

Let G be a framework for U4,6. By Lemma 2.6 we may assume that G is connected. Then

|V(G)| = 4, G is 2-connected and each vertex of G is incident with at least three edges. Assume

that G has a blocking vertex u. Since each circuit in U4,6 has five elements and G−u is balanced,

G − u is a forest, so |stG(u)| ≥ 4. Since G is 2-connected, G − u is a 2-edge path; that is,

|stG(u)| = 4. Let v1, v2 be the degree-1 vertices of G − u. Since E(G)− { f } is a circuit of U4,6 for

each edge f ∈ stG(u), there are exactly two edges joining u and vi for each 1 ≤ i ≤ 2. So stG(u)

is dependent in U4,6, a contradiction. So G has no blocking vertices. For each vertex v of G,

since G − v is connected and unbalanced, |E(G − v)| = 3 as |stG(v)| ≥ 3. So |stG(v)| = 3. Since

8



|E(G)| = 6, by the arbitrary choice of v, the graph G has no loops and G is isomorphic to K4 or

K. �

Theorem 3.3. Let M be an excluded minor for the class of quasi-graphic matroids. If M is

9-connected with rank at most eight, then M is isomorphic to U3,7 or U4,7.

Proof. We claim that M is isomorphic to Ur,2r−1, Ur,2r, Ur,2r+1, or U8,n for a number r, where

n ≥ 15. Assume that M has a circuit C with |C| ≤ r(M). Without loss of generality we may

further assume that C is chosen as small as possible. When |E(M) − C| ≥ |C|, the partition

(C, E(M) − C) is a |C|-separation, a contradiction to the fact that M is 9-connected. When

|E(M) − C| < |C|, since |C| ≤ r(M) and E(M) − C is independent by the choice of C, the

partition (C, E(M) − C) is an |E(M) − C|-separation, a contradiction. So M is uniform. Then it

follows from ([10], Corollary 8.6.3) that the claim holds.

Since kK2 is a framework for U2,k, we have r(M) ≥ 3. Since U4,7 is a minor of Ur,2r−1, Ur,2r,

Ur,2r+1, and U8,n when r ≥ 4 and n ≥ 15, by Theorem 3.2 either r(M) = 3 or M is isomorphic to

U4,7. Moreover, since U3,6 is quasi-graphic, the theorem holds from Theorem 3.1 . �

4 Frameworks for graphic matroids

Let G be a graph, and M(G) its cycle matroid. A signed graph is a pair (G,Σ) with Σ ⊆ E(G),

each edge in Σ is labelled by −1 and other edges are labelled by 1. A cycle C of G is Σ-even if

|E(C) ∩ Σ| is even, otherwise it is Σ-odd. A set Σ′ ⊆ E(G) is a signature of (G,Σ) if (G,Σ) and

(G,Σ′) have the same Σ-even cycles and the same Σ-odd cycles. Evidently, for any cut C∗ of G,

the set Σ△E(C∗) is a signature of (G,Σ). For a framework H for a matroid N, we say that H is a

signed graph if there is a set Σ ⊆ E(H) such that a cycle C of H is balanced if and only if C is a

Σ-even cycle. We also say that Σ is a signature of H.

All definitions in the following five paragraphs were first given by Chen, DeVos, Funk and

Pivotto [3].

Fat thetas. Let G1,G2,G3 be non-empty graphs with distinct vertices xi, yi ∈ V(Gi). Let

G be obtained from G1,G2,G3 by identifying yi and xi+1 to a vertex wi for every 1 ≤ i ≤ 3

(where the indices are modulo 3). Let H be obtained from G1,G2,G3 by identifying x1, x2, x3 to

a vertex x and identifying y1, y2, y3 to a vertex y. A cycle of H is balanced if and only if E(C)

is completely contained in one of G1,G2 or G3. Then we say that H is a fat theta obtained from

G.

Simple curlings. Let G be a graph and v ∈ V(G). Let H be the signed graph obtained from

G by first labelling all edges incident with v by −1, and then changing any such edge e = vu to

a loop incident with u while keeping all other edges not incident with v unchanged and labelled

by 1. Then we say that H is a simple curling of G.

Pinches. If H is obtained from a graph G by identifying two vertices v1 and v2 to a new

vertex v and labeling all edges originally incident with v1 by −1 and all other edges by 1, then

we say H is a pinch. An edge with ends v1, v2 becomes an unbalanced loop incident to v

4-twistings. Let G1,G2,G3,G4 be graphs (not necessarily all non-empty) with distinct ver-

tices xi, yi, zi ∈ V(Gi). Let G be obtained from G1,G2,G3,G4 by identifying xi, y3−i, zi+2 to a

vertex wi for every 1 ≤ i ≤ 4 (where the indices are modulo 4). Let H be a signed graph ob-

tained from G1,G2,G3,G4 by identifying x1, x2, x3, x4 to a vertex x, identifying y1, y2, y3, y4 to

a vertex y and identifying z1, z2, z3, z4 to a vertex z, and with all edges originally incident with
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x1, y2 or z3 labelled by −1 and all other edges labelled by 1. Then we say that H is a 4-twisting

of G.

Consecutive twistings. Let G1, . . . ,Gk (for k ≥ 3), be graphs with distinct vertices xi, yi, zi ∈

V(Gi) for 1 ≤ i ≤ k. Let G be a graph obtained from G1, . . . ,Gk by identifying z1, z2, . . . , zk to

a vertex z and for each 1 ≤ i ≤ k identifying yi−1 and xi to a vertex wi (where the indices are

modulo k). Let H be the signed graph obtained from G1, . . . ,Gk by identifying yi−1, zi, xi+1 to

a vertex ui for every 1 ≤ i ≤ k (where the indices are modulo k), and with all edges originally

incident with y1 or x2 labelled by −1 and all other edges labelled by 1. Then we say that H

is a consecutive twisting or a consecutive k-twisting of G. If k is odd then H is a consecutive

odd-twisting of G.

Theorem 4.1. ([3], Corollary 1.3.) Let G be a 3-connected graph with |V(G)| ≥ 5. Let H be a

frame representation of M(G). Then either H is balanced, or H is obtained from G as a simple

curling, a pinch, a 4-twisting, or a consecutive odd-twisting.

Recall that c(H) is the number of components of H.

Theorem 4.2. ([8], Theorem 2.7.) Let H be a framework for a matroid N. If r(N) ≤ |V(H)| −

c(H), then N = M(H).

Theorem 4.3. ([15], Theorem 2.) Let H be a lifted-graphic representation of a matroid N. Then

N is binary if and only if H is a signed graph or H has a unique unbalanced component which

is a fat theta.

Let G be a graph, and let (X1, X2) be a partition of E(G) such that V(X1) ∩ V(X2) = {u1, u2}.

We say that G′ is obtained by a Whitney flip of G on {u1, u2} if G′ is a graph obtained by

identifying vertices u1, u2 of G[X1] with vertices u2, u1 of G[X2], respectively. A graph G′ is

2-isomorphic to G if G′ is obtained from G by a sequence of the operations: Whitney flips,

identifying two vertices from distinct components of a graph, or partitioning a graph into com-

ponents each of which is a block of the original graph.

In his Ph.D. thesis, Shih [12] proved the following characterization of graphic lifted-graphic

matroids (see also [11], Theorem 4.1.).

Theorem 4.4 (Theorem 1, Chapter 2 in [12]). Let G be a graph and let H be a lifted-graphic

representation of M(G). Assume that H is an unbalanced signed graph. Then there exists a

graph G′ 2-isomorphic to G such that one of the following holds.

(1) H is obtained from G′ by a pinch.

(2) H is obtained from G′ by a 4-twisting.

(3) H is obtained from G′ by a consecutive twisting.

Following a similar way as the proof of ([8], Theorem 1.4.), we prove

Theorem 4.5. Let H be a 2-connected framework for a 3-connected matroid N. If N is repre-

sentable, then H is a frame representation or a lifted-graphic representation of N.
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Proof. Without loss of generality we may assume that H is unbalanced. Then |V(H)| = r(N).

By Theorem 2.4 we may assume that H has no loops. Assume that there is a vertex v of H such

that rN(E(H−v)) ≤ r(N)−2. Since H−v is connected, it follows from Theorem 4.2 that H−v is

balanced. Then v is a blocking vertex of H, so H is a frame representation and a lifted-graphic

representation of N. So we may assume that rN(E(H − v)) = r(N) − 1 for each vertex v of H.

Moreover, since H has no loops, stH(v) is a cocircuit of N by (QG3).

Let A be a matrix over a field F with linearly independent rows satisfying N = M(A), where

M(A) is the matroid represented by A. Since stH(v) is a cocircuit of N for each vertex v of H,

there is a matrix B ∈ FV(H)×E(H) such that

1. the row-space of B is contained in the row-space of A, and

2. for each v ∈ V(H) and e ∈ E(H), the element of B in the row labelled by v and the column

labelled by e is non-zero if and only if v is incident with e in H.

Note that M(B) is a frame matroid and H is a framework for M(B). Since H is connected, we

have that

|V(H)| = r(M(A)) ≥ r(M(B)) ≥ |V(H)| − 1, (4.1)

and if r(M(A)) = r(M(B)) then M(A) = M(B) by (1) and (2). So we may assume that r(M(A)) >

r(M(B)). Then M(B) = M(H) by Theorem 4.2, up to row-operations we may assume that A is

obtained from B by appending a single row by (4.1). Hence, H is a lifted-graphic representation

of N. �

By Lemma 2.6 (or Lemma 2.5) and Theorem 4.5, we have

Corollary 4.6. Let H be a framework for a 3-connected representable matroid N. Then H is a

frame representation or a lifted-graphic representation of N.

The following result is an immediate consequence of Theorems 4.1, 4.3, 4.4, and Corollary

4.6.

Theorem 4.7. Let G be a 3-connected graph with |V(G)| ≥ 5, and H a connected framework

for M(G). Then H is isomorphic to G, or H is obtained from G by a simple curling, a pinch, a

4-twisting, or a consecutive twisting.

By Theorem 4.7 we have

Corollary 4.8. Let G be a 4-connected graph with |V(G)| ≥ 5, and H a connected framework

for M(G). Then H is isomorphic to G or H is obtained from G by a simple curling or a pinch.

Lemma 4.9. Let G be a 3-connected simple graph, and H a 4-connected unbalanced framework

for M(G) with |V(H)| ≥ 4. Then

1. H is obtained from G by a simple curling or a pinch, or

2. H is a signed graph with a signature X such that H[X] is a triangle.

Proof. Assume that (1) is not true. Since H is a 4-connected unbalanced graph with |V(H)| ≥ 4,

by Theorem 4.7, the graph H is obtained from G by a 4-twisting or a consecutive 3-twisting.

Without loss of generality that it is a 4-twisting, since the consecutive 3-twisting is (up to rela-

belling of vertices) the special case of this in which one of the Gi has no edges. By symmetry we
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may assume without loss of generality that none of G1,G2,G3 has more than 3 vertices, where

Gi and symbols that will be used but not defined in the proof, say wi, xi, yi, x, y, z, are defined

as in the definition of 4-twistings. By 3-connectivity and simplicity of G, there is precisely one

edge ei from w1 to each wi with i ∈ {2, 3, 4}, and there are no other edges incident with w1. By

the definition of 4-twistings, the signature of H is {e2, e3, e4}. The edge e2 can only arise from

an edge x1y1 in G1 or an edge x2y2 in G2: in either case it joins x to y in H. Similarly e3 joins x

to z in H and e4 joins y to z in H. Thus the signature of H is the set of edges of a triangle. �

5 Proof of Theorem 1.2.

Recall that c(H) is the number of components of a graph H. Lemmas 5.1-5.5 will be frequently

used in this section.

Lemma 5.1. Let H be a framework for a matroid. For an edge f ∈ E(H), if H\ f is balanced

and H has a balanced cycle containing f , then H is balanced.

Proof. Since r(E(H)) = r(E(H\ f )) = |V(H)| − c(H), the graph H is balanced. �

Note that Lemma 5.1 also follows immediately from the theta property.

For any subset X of E(H)∪V(H), if H\X is balanced, we say that X is a balancing set of H.

Note that, when H is balanced, each subset of E(H) ∪ V(H) is balancing. We say a balancing

set X is minimal if no proper subset of X is a balancing set of H. Note that, when H has a non-

empty minimal balancing set V ∪ E with V ⊆ V(H) and E ⊆ E(H), the graph H is unbalanced

and E ∩ st(V) = ∅ by the definition of minimal balancing sets.

Lemma 5.2. Let H be a connected unbalanced framework for a matroid N. If X is a minimal

balancing edge set of H with X ⊆ E(H), then X ∈ C∗(N).

Proof. Since H\X is connected and balanced, r(E(H\X)) = |V(H)| −1 = r(N)−1. On the other

hand, since each cycle in H\(X\{ f }) containing f is unbalanced for each f ∈ X by Lemma 5.1,

r(E(H\X) ∪ { f }) = r(N). Hence, X is a cocircuit of N. �

Lemma 5.3. Let H be a connected framework for an n-connected matroid N with |V(H)| ≥ n.

When H is unbalanced, each balancing set of H that contains only edges has rank at least n.

Proof. Assume not. Let X be a minimal balancing set of H with X ⊆ E(H) and r(X) ≤ n − 1.

Then r(E(N) − X) = r(N) − 1 by Lemma 5.2. Since H\X contains a spanning tree of H,

|E(N) − X| ≥ n − 1, so (X, E(N) − X) is an r(X)-separation of N, a contradiction. �

For any subset X of E(H) ∪ V(H), if c(H\X) > c(H), then we say that X is a cut of H.

Lemma 5.4. Let H be a framework for a matroid. Let Xi = Vi∪Ei be a balancing set of H with

Vi ⊆ V(H) and Ei ⊆ E(H) for each 1 ≤ i ≤ 2.

1. If X1 is minimal and contains a link f satisfying f < E2 ∪ st(V2), then X1 ∪ X2 contains a

cut of H.

2. If H− (X1∪X2) is connected and V1∩V2 = ∅, then E1∪E2∪E(H[V1∪V2]) is a balancing

set of H.
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Proof. First we prove that (1) is true. Since X1 is minimal, each cycle in H\(X1\{ f }) containing

f is unbalanced by Lemma 5.1. Moreover, since H − X2 is balanced and f ∈ E(H − X2), the

graph H\(X1\{ f }) has a cut contained in X2 ∪ { f }, so (1) holds.

Assume that (2) is not true. Let C be an unbalanced cycle of H\(E1 ∪ E2 ∪ E(H[V1 ∪ V2]))

with |V(C) ∩ (V1 ∪ V2)| as small as possible. Since H − Xi is balanced for each 1 ≤ i ≤ 2,

we have V(C) ∩ Vi , ∅. Then |V(C) ∩ (V1 ∪ V2)| ≥ 2 as V1 ∩ V2 = ∅. Since C does not

contain edges in H[V1 ∪ V2], the subgraph C − (V1 ∪ V2) is disconnected. Moreover, since

H − (X1 ∪ X2) is connected, there is a path P of H − (X1 ∪ X2) connecting two components of

C − (V1 ∪ V2) such that C ∪ P is a theta subgraph. For any cycle C′ of H with P ⊆ C′ ⊆ C ∪ P,

since |V(C′) ∩ (V1 ∪ V2)| ≤ |V(C) ∩ (V1 ∪ V2)| − 1, the cycle C′ is balanced by the choice of C.

Therefore C is balanced by the theta property, a contradiction. So (2) holds. �

Note that, the set Ei in Lemma 5.4 may be empty.

Let X and Y be subsets of the ground set of a matroid N. Set

⊓N(X, Y) = rN(X) + rN(Y) − rN(X ∪ Y).

When (X, Y) is a partition of E(N), we often denote ⊓N(X, Y) by λN(X). When there is no

confusion, subscripts will be omitted.

Lemma 5.5. Let H be a 4-connected framework for a simple and non-3-connected matroid N

with |V(H)| ≥ 4. Then H is unbalanced and has a balancing set X with r(X) ≤ 2. In particular,

when N has no triangles, |X| ≤ 2.

Proof. Since N is not 3-connected and H is 4-connected, H is unbalanced. Let(X, Y) be an

exact k-separation of N for an integer 1 ≤ k ≤ 2. We may assume that (X, Y) is chosen with

λ(X) + c(H[X]) + c(H[Y]) as small as possible.

Case 1. H[X] and H[Y] are connected.

Set m = |VH(X)∩VH(Y)|. Then m ∈ {k−1, k, k+1} as λ(X) = k−1. Since H is 4-connected,

by symmetry we may assume that VH(Y) = V(H) and m = |VH(X)|. When m = k − 1, we have

that k = 2 and H[X] consists of loops, so N has a circuit contained in X of size at most 2, which

is not possible as N is simple. When m = k+1 ≤ 3, both H[X] and H[Y] are balanced, that is, X

is a balancing set of H with r(X) = k. When m = k ≤ 2, one of H[X] and H[Y] is balanced and

the other is unbalanced. If H[X] is balanced, since |X| ≥ k and k = |VH(X)|, the set X contains

a circuit of N whose size is at most 2, a contradiction. So H[Y] is balanced. That is, X is a

balancing set of H with r(X) = k − 1.

Case 2. H[X] is disconnected, implying |X| ≥ 2.

Let X1 be the edge set of a component of H[X].

5.5.1. Either |X − X1| < k or ⊓(X1, X − X1) = 1 and ⊓(X1, Y) = 0.

Subproof. Assume that |X − X1| ≥ k. Since c(H[X]) + c(H[Y]) > c(H[X − X1]) + c(H[Y ∪ X1]),

we have λ(X − X1) > λ(X) by the choice of (X, Y), so ⊓(X1, X − X1) > ⊓(X1, Y) ≥ 0. Since

⊓(X1, X − X1) ≤ 1, the claim holds. �
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Assume that ⊓(X1, X − X1) = 0. By 5.5.1, we have 1 ≤ |X − X1| < k. So k = 2 = c(H[X]).

Using 5.5.1 again, we have |X1| = 1, so |X| = 2, implying that H[Y] is a connected spanning

subgraph of H. Since N is simple, r(X) = 2. Then H[Y] is balanced as λ(X) = 1, so the lemma

holds. Hence, we may assume that ⊓(X′, X − X′) = 1 for the edge set X′ of each component of

H[X], implying that H[X′] is unbalanced by Lemma 2.1. By symmetry we may further assume

that (a) either H[Y] is connected or each component of H[Y] is unbalanced.

When |X| = 2, since ⊓(X1, X − X1) = 1, we have X ∈ C(N), which is not possible as N is

simple. So |X| ≥ 3. By symmetry assume that |X − X1| ≥ 2 . By 5.5.1, we have ⊓(X1, Y) = 0.

Since X1 is unbalanced, each component of H[Y] that shares vertices with H[X1] is balanced by

Lemma 2.1. Then H[Y] is connected and balanced by (a), implying that r(Y) = |VH(Y)| − 1 and

X is a balancing set of H.

Let X1, . . . , Xc(H[X]) be the components of H[X]. Since an unbalanced spanning unicyclic

subgraph of H[X] is an independent set in N, we have r(X) ≥ Σ
c(H[X])

1
|VH(Xi)| − c(H[X]) + 1.

Then

1 ≥ k − 1 = λ(X) ≥ |VH(X) ∩ VH(Y)| − c(H[X])

as r(Y) = |VH(Y)| − 1. Hence, |VH(Xi) ∩ VH(Y)| ≤ 2 for each 1 ≤ i ≤ c(H[X]) and at most

one |VH(Xi) ∩ VH(Y)| is not equal to 1. Since H is 4-connected and H[X] is disconnected,

VH(Y) = V(H). Since r(Y) = r(N)−1 and λ(X) ≤ 1, we have r(X) ≤ 2. Hence, the lemma holds

as X is a balancing set of H. �

Recall that we define H′ = H − loops(H) when H is a lifted-graphic representation of N,

otherwise let H′ = H. For v1, v2 ∈ V(H), we say {v1, v2} is a blocking pair of H if vi is a blocking

vertex of H′ − v3−i for each 1 ≤ i ≤ 2. Note that, by our definition, balanced frameworks have

no blocking vertices, and no vertex in a blocking pair is a blocking vertex.

Lemma 5.6. Let H be a 7-connected unbalanced framework for a matroid with |V(H)| ≥ 8.

Assume that H has no blocking pairs and H − loops(H) has no blocking vertices. Then there is

an edge f of H such that H\ f has no blocking pairs and H − (loops(H) ∪ { f }) has no blocking

vertices.

Proof. Let e be an edge of H and S e be a minimal subset of V(H) such that H − (loops(H) ∪

{e} ∪ S e) is balanced. We can further assume that |S e| ≤ 2 otherwise the lemma holds. Let f be

a link of H − (S e ∪ {e}). Assume that H\ f has a blocking pair S f . Since S f ∪ { f } is a minimal

balancing set of H, it follows from Lemma 5.4 (1) that S e ∪ S f ∪ {e, f } contains a cut of H,

a contradiction to the fact that H is 7-connected, a contradiction. Following a similar way, we

show that H\(loops(H) ∪ { f }) has no blocking vertices. Hence, the lemma holds for f . �

Lemma 5.7. Let H be a 6-connected framework for a 7-connected matroid N with |V(H)| ≥ 7.

Assume that H has no blocking pairs and H − loops(H) has no blocking vertices. Then at most

one vertex of H is not fixed.

Proof. Assume not. Let v1, v2 be unfixed vertices of H. Then N\st∗H(vi) is graphic or non-3-

connected for each 1 ≤ i ≤ 2. Since H has no blocking pairs and H − loops(H) has no blocking

vertices, by Lemma 4.9 or Lemma 5.5, for each 1 ≤ i ≤ 2, there is a minimal balancing set Xi

of H\st∗
H

(vi) such that the following (a) or (b) happens. (a) |Xi| = 2, the two edges in Xi have

no common vertex and if Xi contains a loop then H is not a lifted-graphic representation of N,

for otherwise H has a blocking pair by the definition of blocking pairs. (b) H[Xi] is a triangle.
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Hence, vi < V(Xi) for each 1 ≤ i ≤ 2 no matter which case happens. Since N is 7-connected,

Xi ∪ {vi} is a minimal balancing set of H for each 1 ≤ i ≤ 2.

We claim that X1 = X2 when v2 < V(X1). When X1 ⊆ X2, it follows from (a) and (b) that

X1 = X2. Hence, it suffices to show that X1 ⊆ X2. Assume to the contrary that there is an edge

x ∈ X1 − X2. Then x is not a loop of H, otherwise x ∈ X2 as v2 < V(X1). Since X1 ∪ {v1} is a

minimal balancing set of H, by Lemma 5.4 (1), X1∪X2∪{v1, v2} contains a cut of H. Since H is

6-connected, X1∪X2 is a matching in H of size 4 and X1∪X2∪{v1, v2} is cut of H by (a) and (b).

Let H1 be a component of H−{v1, v2, X1, X2}. Set H+
1
= H[V(H1)∪{v1, v2}]\E(H[{v1, v2}]). Since

each balancing set of edges in H has size at least 7 by Lemma 5.3, H\(X1 ∪ X2) is unbalanced

with v1, v2 as its blocking vertices. Then H+1 is balanced, otherwise H+1 has an unbalanced cycle

containing exactly one vertex of {v1, v2} by the theta property. So λ(E(H+
1

)) ≤ 5, a contradiction

to the fact that N is 7-connected.

When X1 = X2, since H − {v1, v2, X1} is connected, by Lemma 5.4 (2), X1 ∪ E(H[{v1, v2}]) is

a balancing set of rank at most 5, a contradiction to Lemma 5.3. So X1 , X2. By symmetry and

the claim proved in the last paragraph, vi ∈ V(X3−i) for each 1 ≤ i ≤ 2. Let x be the edge in X1

that is not incident with v2. Since each cycle in the 4-connected graph H − {v1, v2} containing

x is unbalanced by Lemma 5.1, x ∈ X1 ∩ X2. Combined with (a) and (b), we have r(X1 ∪ X2 ∪

E(H[{v1, v2}])) ≤ 6. On the other hand, since vi ∈ V(X3−i), the graph H − {v1, v2, X1, X2} is 2-

connected. By Lemma 5.4 (2) again, X1 ∪ X2 ∪ E(H[{v1, v2}]) is a balancing set, a contradiction

to Lemma 5.3. �

To prevent a matroid from being an excluded minor for the class of quasi-graphic matroids,

we can use Lemmas 5.6 and 5.7 to show that H and H\ f have enough fixed vertices for some

edge f , as long as H − loops(H) has no blocking vertex and H has no blocking pair. In the rest

of this section, we will show that when H has a blocking vertex or a blocking pair, there is a

balanced cycle C of H and f ∈ E(C) such that all vertices in V(C) are fixed in both H\ f and

H (namely in Lemmas 5.11 and 5.14). The case that H has a blocking vertex will be dealt with

first.

A biased graph H is contra-balanced if each cycle of H is unbalanced.

Lemma 5.8. ([14], Theorem 6.) A biased graph is a signed graph if and only if it has no

contra-balanced theta-subgraphs.

Lemma 5.9. Let v be a blocking vertex of a biased graph H. Let x ∈ V(H − v) ∪ E(H − v) that

is not adjacent with v when x ∈ V(H − v). If H − {x, v} is connected, then H is a signed graph if

and only if H − x is a signed graph.

Proof. Evidently, it suffices to show that “if” part. Assume that H − x is a signed graph but

H is not. Then H has a contra-balanced theta subgraph T containing x by Lemma 5.8. Since

v is a blocking vertex of H, v is a degree-3 vertex of T . Since v and x are not adjacent when

x ∈ V(H − v), the graph T − {x, v} has exactly two or three components. Since H − {x, v} is

connected, H − {x, v} has a minimal forest P that joins different components of T − {x, v} such

that (T ∪ P) − {x, v} is connected. Then (T ∪ P) − x consists of a theta subgraph T ′ and some

vertex-disjoint paths that are not in any cycle. Since T is contra-balanced and H −v is balanced,

T ′ is also a contra-balanced theta-subgraph by theta property. Hence, H − x is not a signed

graph by Lemma 5.8, a contradiction. �

Suppose that v is a blocking vertex of H and H − v is connected. In this case we define

a relation ∼v on the edges in stH(v) − loopsH(v) by declaring e ∼v f if either e = f or all
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cycles containing e and f are balanced. This is an equivalence relation, as we show next. Let

e1, e2, e3 be distinct edges in stH(v) with e1 ∼v e2 and e2 ∼v e3. Let T be a theta subgraph of

H containing all of e1, e2 and e3; such a theta subgraph exists because H − v is connected. The

cycle in T containing both e1 and e2 is balanced, and so is the cycle containing both e2 and e3.

Therefore the cycle C in T containing e1 and e3 is balanced. Any other cycle containing e1 and

e3 may be obtained from C by rerouting along balanced cycles (contained in H − v), hence all

the cycles containing e1 and e3 are balanced and e1 ∼v e3, showing that ∼v is an equivalence

relation. The same argument shows that a cycle of H (that is not a loop) is unbalanced if and

only if it contains two edges in stH(v) which are not equivalent. We call the partition given by

the equivalence classes of ∼v the standard partition of stH(v) − loopsH(v). For more details, the

reader can refer to ([5], Section 2) or ([6], Section 1). Definitions and results introduced in this

paragraph will only be used in the proof of Lemma 5.10.

When H is a signed graph with a blocking vertex v, since H has no contra-balanced theta

subgraph by Lemma 5.8, it is easy to show that there is a partition (X1, X2) of stH(v)− loopsH(v)

such that H − (loops(H) ∪ Xi) is balanced for each 1 ≤ i ≤ 2. Split v into v1, v2 such that X1, X2

are incident with v1 and v2, respectively, and such that each unbalanced loop in H joins v1 and

v2 and each balanced loop in loopsH(v) is a loop incident with any vi. Let G denote the new

graph. Then H is a lifted-graphic representation of M(G). Hence, if a framework for a matroid

N is a signed graph with a blocking vertex, then N is graphic. This fact will be frequently used

in the rest of this section without reference.

Let X, Y ⊆ E(H) and P = (P1, . . . , Pn) be a partition of X. We will let P − Y denote the

partition (P1 − Y, . . . , Pn − Y) of X − Y .

Lemma 5.10. Let H be a 5-connected framework for a 5-connected matroid N with |V(H)| ≥ 5.

Assume that N is non-graphic and H has a blocking vertex v. Then the following hold.

1. For each vertex v , u ∈ V(H), the graph H−u is unbalanced and N\stH(u) is 3-connected.

2. A vertex u with u , v is not fixed in H if and only if H\E(H[{v, u}]) is an unbalanced

signed graph.

3. At most one vertex in V(H) − {v} is not fixed in H.

Proof. First we prove that (1) is true. If H − u is balanced, then it follows from Lemma 5.4 (2)

that E(H[{u, v}]) is a balancing set of H with rank at most 2, which is not possible by Lemmas

5.2 and 5.3. Hence, H − u is unbalanced.

Assume that N\stH(u) is not 3-connected for some vertex v , u ∈ V(H). Since N has no

triangles, by Lemma 5.5, H − u has a minimal balancing set X with |X| ≤ 2. Since each cycle of

H − u containing exactly one edge of X is unbalanced by Lemma 5.1, X ⊆ stH(v) ∪ loops(H).

Moreover, since H − {u, v} is connected, it follows from Lemma 5.4 (2) that X ∪ E(H[{u, v}]) is

a balancing set of H with rank at most 4, which is not possible by Lemmas 5.2 and 5.3.

Secondly, we prove that (2) is true. When H\E(H[{v, u}]) is an unbalanced signed graph

with v as its blocking vertex, N\E(H[{v, u}]) is graphic, and thus so is N\stH(u). Hence, u is

not fixed in H. Next, we prove the “only if” part of (2) is true. Since u is not fixed, N\stH(u) is

graphic by (1). Then H − u is an unbalanced signed graph with v as its blocking vertex by (1),

hence so is H\E(H[{v, u}]) by repeatedly using Lemma 5.9.

Thirdly, we prove that (3) is true. Assume not. There are vertices u, u′ in V(H)−{v} such that

H\E(H[{v, u}]) and H\E(H[{v, u′}]) are signed graphs with v as their blocking vertex by (2). Let
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P be the standard partition of stH(v)−loopsH(v) in H. ThenP−stH(u) andP−stH(u′) have exactly

two non-empty members. When P − (stH(u) ∪ stH(u′)) has exactly two non-empty members, P

has exactly two non-empty members, implying that H is a signed-graph, a contradiction to the

fact that N is non-graphic. WhenP−(stH(u)∪stH(u′)) has exactly one non-empty member, since

N is simple, H has a minimal balancing set {e, e′} with e ∈ E(H[{v, u}]) and e′ ∈ E(H[{v, u′}]).

Then {e, e′} ∈ C∗(N) by Lemma 5.2, a contradiction. �

Lemma 5.11. Let H be a 6-connected framework for a 6-connected matroid N with |V(H)| ≥ 6.

Assume that N is non-graphic and H has a blocking vertex v. Then H − v has a balanced cycle

C such that all vertices in V(C) are fixed in both H\ f and H for each edge f of C.

Proof. We claim that a vertex u ∈ V(H − v) is not fixed in H if and only if it is not fixed in

H\ f for an arbitrary f ∈ E(H − v). Evidently, it suffices to show that the “if” part is true. Let

u be a vertex in V(H − v) that is not fixed in H\ f . By Lemma 5.10 (2), H\(E(H[{v, u}]) ∪ { f })

is an unbalanced signed graph with v as its blocking vertex. Since H\(E(H[{v, u}]) ∪ { f , v}) is

connected, H\E(H[{v, u}]) is a signed graph by Lemma 5.9. So u is not fixed in H by Lemma

5.10 (2) again.

By Lemma 5.10 (3), H − v has a balanced cycle C such that all vertices in V(C) are fixed in

H. By the claim proved in the last paragraph, for each f ∈ E(C), all vertices in V(C) are also

fixed in H\ f . �

Next, the case that H has a blocking pair S but H − loops(H) has no blocking vertices will

be dealt with. To deal with this case, we need to introduce a characterization of the structure

of biased graphs that have at least two blocking vertices. Lemma 5.12 will be only used in the

proof of Lemma 5.13.

Lemma 5.12. ([16], Corollary 2.) Let V∗ = {v1, . . . , vn} be the set of blocking vertices of a

biased graph H. Assume that n ≥ 2. Then one of the following holds.

1. H is obtained from mK2 by replacing each edge ei with a balanced graph Hi such that all

cycles of H not contained in some Hi are unbalanced, where m ≥ 2.

2. H is obtained from a cycle v1v2 . . . vnv1 by replacing each edge vivi+1 with a graph Hi and

a cycle in H is unbalanced if and only if it contains {v1, . . . , vn}, where no vertex in Hi

separates vi and vi+1 and all subscripts are modulo n.

Lemma 5.13. Let H be a 5-connected unbalanced framework for a 6-connected matroid N with

|V(H)| ≥ 6. Assume that H has a blocking pair S and H − loops(H) has no blocking vertices.

Then we have

1. If some v ∈ V(H) − S is not fixed in H, then there is a vertex u ∈ S such that {u, v} is a

blocking pair of H.

2. H has at most two blocking pairs, and they have a common vertex.

Note that at most one vertex in V(H) − S can be contained in a blocking pair of H and at

most one vertex in V(H) − S is not fixed in H by Lemma 5.13.

Proof of Lemma 5.13. When H is a lifted-graphic representation for N with a loop, we may

assume that the loop is in st(S ).
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5.13.1. If S 1, S 2 are blocking pairs of H, then S 1 ∩ S 2 , ∅.

Subproof. Assume otherwise. By Lemma 5.4 (2), E(H[S 1∪S 2]) is a balancing set of H of rank

at most 4, a contradiction to Lemma 5.3. �

First, we prove that (1) is true. Since N\stH(v) is graphic or non-3-connected, by Lemma 4.9

or Lemma 5.5, either (a) H − v has a blocking vertex u or (b) H\stH(v) has a minimal balancing

set X such that |X| ≤ 2 or H[X] is a triangle. When (a) happens, u ∈ S by 5.13.1, so (1) holds.

Assume that (b) happens. Since each cycle C in H−v with |C∩X| = 1 is unbalanced by Lemma

5.1, we have X ⊆ st(S ), so H − (S ∪ X ∪ {v}) is 2-connected. Then X ∪ E(H[S ∪ {v}]) is a

balancing set of H with rank at most 5 by Lemma 5.4 (2), a contradiction to Lemmas 5.2 and

5.3.

Now, we prove that (2) holds. Assume that, besides S , the graph H has two other blocking

pairs S 1, S 2. By 5.13.1, we may assume that S 1 = {u, v} and S 2 = {u
′, v′}, where u, u′ ∈ S and

v, v′ ∈ V(H) − S . When u = u′, let w be the unique vertex in S − {u}. Since v, v′,w are distinct

blocking vertices of H − u, at least one pair of vertices in {v, v′,w} is a cut of H − u by Lemma

5.12 (2), so H is not 4-connected, a contradiction. Hence, u , u′, implying v = v′ using 5.13.1

again. Let E1 be the set of edges from u to u′. Since u, u′ are blocking vertices of G − v, by

Lemma 5.12 (1) or Lemma 5.12 (2), either {u, u′} is a cut of G − v or {v} ∪ E1 is a balancing set.

Since H is 5-connected, {v} ∪ E1 is a balancing set. Since u, v are blocking vertices of G − u′,

by symmetry we have that {u′} ∪ E2 is a balancing set, where E2 is the set of edges between u

and v. Hence, by Lemma 5.4 (2), the set of all edges between u, u′ and v is a balancing set, a

contradiction to Lemmas 5.2 and 5.3. �

Lemma 5.14. Let H be a 6-connected unbalanced framework for a 7-connected matroid N with

|V(H)| ≥ 7. Assume that H has a blocking pair S and H − loops(H) has no blocking vertices.

Then H − S has a balanced cycle C such that all vertices in V(C) are fixed in H\ f and H for

every edge f of C.

Proof. By Lemma 5.13 (2), H − S has a balanced cycle C such that each vertex in V(C) is not

contained in a blocking pair of H. Lemma 5.13 (1) implies that all vertices in V(C) are fixed in

H. Let f be an arbitrary edge in C. Assume that the lemma does not hold for f . Then there is

some vertex v ∈ V(C) that is not fixed in H\ f . By Lemma 5.13 (1), {u, v} is a blocking pair of

H\ f for some u ∈ S . Since {u, v} is not a blocking pair of H, there is a minimal balancing set X

of H with f ∈ X ⊆ {u, v, f }. By Lemma 5.4 (1), X ∪ S contains a cut of H, a contradiction to

the fact that H is 6-connected. �

To prove Theorem 1.2, we need one more result. Tutte [13] proved

Theorem 5.15. ([10], Theorem 10.3.1.) A matroid is graphic if and only if it has no minor

isomorphic to U2,4, F7, F
∗
7
,M∗(K5) and M∗(K3,3).

Now, we prove Theorem 1.2, which is restated here in a slightly different way.

Theorem 5.16. Let M be an excluded minor for the class of quasi-graphic matroids. Then M

is isomorphic to U3,7 or U4,7, or M is not 9-connected.

Proof. Assume that M is 9-connected. When r(M) ≤ 8, it follows from Theorem 3.3 that M

is isomorphic to U3,7 or U4,7. So we may assume that r(M) ≥ 9. Since M is non-graphic and

the matroids in Theorem 5.15 each have a cocircuit of size less than 9, there is an element e of
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M such that M\e is non-graphic by Theorem 5.15. Let G be a 7-connected framework for M\e

with |V(G)| ≥ 9.

First, consider the case that G − loops(G) has no blocking vertices and G has no blocking

pairs. By Lemma 5.6, there is an edge f of G such that G\ f has no blocking pairs and G −

(loops(G) ∪ { f }) has no blocking vertices. It follows from Lemmas 5.7 and 2.13 that G\ f is a

unique framework for M\e, f . Then G\ f can be extended to a framework for M\ f . Moreover,

since G has no blocking pairs, G\ f has no blocking vertices, so M is quasi-graphic by Lemma

2.14, a contradiction.

Secondly, consider the case that G has a blocking pair or G− loops(G) has a blocking vertex.

When G − loops(G) has a blocking vertex v and G is not a lifted-graphic representation for N,

let G′ be obtained from G by changing each loop in loops(G) − loopsG(v) to a link joining its

original end and v; otherwise, set G′ = G. By Theorem 2.4, G′ is also a 7-connected framework

for M\e that has a blocking pair or a blocking vertex. By Lemma 5.11 or Lemma 5.14, there is

a balanced cycle C of G′ such that all vertices in V(C) are fixed in G′\ f for each edge f in C.

Since M\ f is quasi-graphic, so is M by Lemma 2.15, a contradiction. �
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