
On obtaining the convex hull of quadratic inequalities via

aggregations∗

Santanu S. Dey† Gonzalo Muñoz‡ Felipe Serrano§
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Abstract

A classical approach for obtaining valid inequalities for a set involves weighted aggregations of
the inequalities that describe such set. When the set is described by linear inequalities, thanks to the
Farkas lemma, we know that every valid inequality can be obtained using aggregations. When the
inequalities describing the set are two quadratics, Yildiran [28] showed that the convex hull of the
set is given by at most two aggregated inequalities. In this work, we study the case of a set described
by three or more quadratic inequalities. We show that, under technical assumptions, the convex hull
of a set described by three quadratic inequalities can be obtained via (potentially infinitely many)
aggregated inequalities. We also show, through counterexamples, that it is unlikely to have a similar
result if either the technical conditions are relaxed, or if we consider four or more inequalities.

1 Introduction

Given a feasible region described by two or more constraints, a common approach for obtaining relax-
ations of the set is to consider weighted aggregations, that is, the process of obtaining a new inequality by
re-scaling the constraints by scalar weights and then adding the scaled constraints together. We call this
approach aggregation. In the case of a nonempty set described by a finite number of linear inequalities
we know, thanks to the Farkas Lemma, that any implied inequality can be obtained via an aggregation.
Aggregations have also been studied in the context of integer programming (for example [7]) to obtain
cutting-planes and in mixed-integer nonlinear programming (for example [18]) to obtain better dual
bounds.

In this paper, we are interested in understanding the strength of aggregations in order to obtain the
convex hull of sets defined by quadratic constraints. In [28, 10, 17], the authors have shown that the
convex hull of two quadratic inequality constraints can be obtained as the intersection of a finite number
of aggregated constraints (in fact, two). Each of these aggregated constraints may not be convex on its
own, but their intersection gives the convex hull. The main question we ask in this paper is whether
such an aggregation technique can be shown to deliver the convex hull of sets defined using more than
two quadratic constraints.

Our key result is to show, that under a nontrivial technical condition, a similar result to the case of sets
described by two quadratic constraints can be obtained for the case of three quadratic constraints —that
is, the convex hull of a set described by three quadratic constraints can be obtained as the intersection
of aggregated constraints where, individually, these aggregated constraints may not be convex. Overall,
we follow closely the presentation style in Yildiran [28] and follow a similar high-level proof strategy.
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The key to our approach involves proving a three-quadratic-constraints S-lemma [26, 21]. An S-lemma
for three quadratics is known, however, for our purposes, we require a different version of it which, to
the best of our knowledge, has not been proved. Our S-lemma result is based on a theorem due to
Barvinok [3].

We also show, via examples, that this result provides a reasonable demarcation of conditions that allow
obtaining the convex hull of quadratic constraints via aggregated constraints. In particular, we present
an example with three quadratic constraints where the necessary technical condition for our result does
not hold, and the convex hull is not obtained using aggregated constraints. We also present an example
with four quadratic constraints where the convex hull is not obtained using aggregated constraints even
though the necessary technical conditions hold.

1.1 Literature review

The results presented in this paper contribute to the current literature on understanding the structure
of the convex hull of simple sets described by quadratic constraints. Recently, the convex hull of one
quadratic constraint intersected with a polytope, and other cutting-plane generation techniques for this
set have been studied in [23, 14, 22, 6, 19, 15]. The convex hull for two quadratic constraints and related
sets have been studied in [28, 10, 17, 13].

Other connections to previous literature are convex hull results for sets related to the so-called extended
trust-region problem [27, 9, 11, 8, 1, 4]. Another connection is given by the general conditions for the SDP
relaxation being tight/giving the convex hull, which have been studied in [25, 24, 12, 2]. It is important
to mention that the results in [25], providing conditions for the tightness of the SDP relaxation, involve
the study of the aggregation of quadratic inequalities, as in our case. However, the results are of a
slightly different nature; for instance, Example 2 below illustrates a case where the convex hull can be
obtained via aggregations, but the SDP relaxation is not tight.

1.2 Notation

For a positive integer n, we denote the set {1, . . . , n} by [n]. Let Sn denote the space of n×n symmetric
matrices, and Sn+ denote the space of positive semi-definite matrices. We denote the fact that A ∈ Sn+
as A � 0, and the fact that A ∈ Sn is a positive-definite matrix as A � 0. Given a set S, we denote its
convex hull, interior, and closure as conv(S), int(S), and S̄ respectively.

Given a set S defined by one quadratic constraint, that is,

S := {x ∈ Rn : x>Ax+ 2b>x+ c ♠ 0},

where ♠ is either < or ≤, we let ν(S) denote the number of negative eigenvalues of A. Given a set S
described by m quadratic constraints:

S := {x ∈ Rn : x>Aix+ 2b>i x+ ci ♠ 0, i ∈ [m]},

where ♠ is either < or ≤ for all the constraints, we denote the homogenization of this set as Sh, that is

Sh :=
{

(x, xn+1) ∈ Rn × R : x>Aix+ 2x>bixn+1 + cix
2
n+1 ♠ 0, i ∈ [m]

}
.

Given λ ∈ Rm+ , we let Sλ to denote the set defined by aggregation of the constraints in S with the weights
λ, that is

Sλ :=

x ∈ Rn : x>

∑
i∈[m]

λiAi

x+ 2x>

∑
i∈[m]

λibi

+
∑
i∈[m]

λici ♠ 0

 .

1.3 Outline of the paper

In Section 2 we present our main results, including examples of the results and counterexamples illus-
trating the importance of the technical conditions in our results. In Section 3 we provide open questions
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and conclusions from our main results. Sections 4 to 7 present the proofs of each of our results. In each
one of these sections we provide the preliminary results needed for each proof.

2 Main results

In this section, we provide our main results along with the necessary background. We also provide
examples illustrating the main results and counter-examples showing the importance of our conditions.
All proofs are presented in Section 4 and onwards.

2.1 Known S-lemmas and a new variant

At the core of the main results of our work is the S-lemma, which has a rich history. In its most modern
form, it was first proven by Yakubovich [26]. See the excellent survey by Pólik and Terlaky [21].

The following version of S-lemma was used by Yildiran [28] in his proof of the convex hull result for two
quadratics.

Theorem 1 (S-lemma for two quadratics, used in [28]). Let g1, g2 : Rn → R be homogeneous quadratic
functions:

gi(x) = x>Qix.

Then,

{x ∈ Rn | gi(x) < 0, i ∈ [2]} = ∅ ⇐⇒ ∃λ ∈ R2
+ \ {0},

2∑
i=1

λiQi � 0.

In order to obtain a convex hull result for three quadratics, a similar theorem would be ideal. The
S-lemma does have variants that include three quadratic inequalities, such as the following.

Proposition 1 (Proposition 3.6, S-lemma survey [21]). Let n ≥ 3 and g0, g1, g2 : Rn → R be homoge-
neous quadratic functions:

gi(x) = x>Qix

Assume there is x̂ ∈ Rn such that g1(x̂) < 0, g2(x̂) < 0, and that there is a linear combination of
Q0, Q1, Q2 that is positive definite. Then

{x ∈ Rn : g0(x) < 0, g1(x) ≤ 0, g2(x) ≤ 0} = ∅
⇐⇒ ∃ (y1, y2) ∈ R2

+ g0(x) + y1g1(x) + y2g2(x) ≥ 0 ∀x ∈ Rn

Note that this S-lemma is “asymmetrical”, in the sense that one inequality is singled out from the
other two. In Theorem 1 this is not the case, as both inequalities are treated symmetrically. In our
development, a symmetric version of the Proposition 1 is desirable, and we thus prove the following.

Lemma 1. Let n ≥ 3 and let g1, g2, g3 : Rn → R be homogeneous quadratic functions:

gi(x) = x>Qix.

Assuming there is a linear combination of Q1, Q2, Q3 that is positive definite, the following equivalence
holds

{x ∈ Rn : gi(x) < 0, i ∈ [3]} = ∅ ⇐⇒ ∃λ ∈ R3
+ \ {0},

3∑
i=1

λiQi � 0.

It is important to mention that in the case of two quadratics an asymmetrical version of Theorem 1 is
well known, and the equivalence between both versions can easily be established. However, in the case
of three quadratics, we do not see a direct way of proving Lemma 1 from Proposition 1 and thus we
present a direct proof.
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Just as one can prove the Farkas Lemma as a consequence of strong duality for linear programming,
one proof of the original two-quadratic-constraints S-lemma can be seen as the consequence of strong
duality for semidefinite programming (SDP) and a ‘rank reduction’ result. With the latter, feasibility of
the primal SDP implies the existence of a rank-one solution for the SDP —this yields feasibility of the
original quadratic constraints.

For the two-quadratic-constraints S-lemma, the classical result of Pataki [20] (see Theorem 4 in Sec-
tion 4.1) suffices to accomplish the rank reduction. In the case of three-quadratic-constraints S-lemma,
Pataki’s result does not suffice and we rely on a similar result due to Barvinok [3] that holds under a
boundedness condition (see Theorem 5 in Section 4.1). The proof of Lemma 1 can be found in Section 4
based on the outline presented above.

2.2 The convex hull of three quadratic constraints: open case

The main result of this paper provides sufficient conditions for the convex hull of a set defined by three
quadratic inequalities to be given by aggregations. Specifically:

Theorem 2. Let n ≥ 3 and

S =

{
x ∈ Rn : [x 1]

[
Ai bi
b>i ci

] [
x
1

]
< 0, i ∈ [3]

}
.

Assume

• (Positive definite linear combination, or PDLC) There exists θ ∈ R3 such that

3∑
i=1

θi

[
Ai bi
b>i ci

]
� 0.

• (Non-trivial convex hull) conv(S) 6= Rn.

Let
Ω :=

{
λ ∈ R3

+ : Sλ ⊇ conv(S) and ν(Sλ) ≤ 1
}
,

where Sλ =

{
x ∈ Rn : [x 1]

(∑3
i=1 λi

[
Ai bi
b>i ci

])[
x
1

]
< 0

}
and ν(Sλ) is the number of negative eigen-

values of
∑3
i=1 λiAi. Then

conv(S) =
⋂
λ∈Ω

Sλ.

Our proof of Theorem 2 in presented in Section 5 and follows the following arguments. We consider any
point x̂ 6∈ conv(S) and set our task to proving that there is a λ ∈ Ω such that x̂ 6∈ Sλ. We begin by
selecting a hyperplane separating x̂ from conv(S) and homogenizing both this hyperplane and the set
S. Effectively, in the linear subspace defined by the homogenized hyperplane, the three homogeneous
quadratic constraints define an infeasible set (Lemma 2, Section 5.2). From here, we apply the S-lemma
(Lemma 1) and obtain a λ ∈ R3

+ such that the quadratic form obtained by aggregating the homogeneous
quadratic constraints with λ does not intersect the homogenized hyperplane (Lemma 3, Section 5.3).
Finally, we complete the proof of Theorem 2 (Section 5.4) by showing that, after a “dehomogenization”,
this implies (i) x̂ 6∈ Sλ and (ii) λ ∈ Ω.

We note that, even though the high-level approach of our proof of Theorem 2 is similar to the one by
Yildiran [28], the proof itself is simpler. Yildiran uses the S-lemma in its two-quadratic version, but
also heavily depends on several structural results regarding the pencil of two quadratics —our proof
essentially only uses the S-lemma. However, the result by Yildiran is stronger; our simplification of the
proof, and the lack of existence of the exact same version of S-lemma for three quadratic constraints,
lead to some important differences between Theorem 2 and the analogous result in [28]:
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• Theorem 2 requires the PDLC condition, unlike Yildiran’s result which does not need any such
condition. This condition is required since we need a similar condition for the S-lemma (Lemma 1).

• The set Ω may not be finite, unlike Yildiran’s result which shows that one only needs two aggrega-
tions for constructing the convex hull of two quadratic inequalities. In our case, we currently do not
know if we require only a finite subset of Ω to obtain conv(S) for the three quadratic constraints
case.

The next example shows an application of Theorem 2.

Example 1. Consider the following set:

S =

{
x ∈ R3 : [x 1]

[
Ai bi
b>i ci

] [
x
1

]
< 0, i ∈ [3]

}
,

where,

• A1 =

 1 0 0
0 1 0
0 0 0

, b>1 = [0 0 0], c1 = −2

• A2 =

 −1 0 0
0 −1 0
0 0 0

, b>2 = [0 0 0], c2 = 1

• A3 =

 −1 0 0
0 1 0
0 0 1

, b>3 = [3 0 0], c3 = 0

Note that

−12 ·
[
A1 b1
b>1 c1

]
− 15 ·

[
A2 b2
b>2 c2

]
+ 1 ·

[
A3 b3
b>3 c3

]
=


2 0 0 3
0 4 0 0
0 0 1 0
3 0 0 9

 � 0,

i.e. the PDLC condition holds. In addition, it is easy to verify that S is bounded, thus conv(S) 6= R3.
Therefore, by Theorem 2 the convex hull is given by the intersection of a family of aggregations. Indeed,
in this case the convex hull of S is given by

conv(S) = {x : x2
1 + x2

2 − 2 < 0,−x2
1 + x2

2 + x2
3 + 6x1 < 0,−2x2

1 + x2
3 + 6x1 + 1 < 0},

where the first two inequalities correspond to the first and the third inequality describing S, and the last
inequality is an aggregation with λ = (0, 1, 1).

Note also that the matrices A1, A3, A2 + A3, each corresponding to the quadratic part of a constraint in
the description of conv(S), all have at most one negative eigenvalue. Moreover, the second and third
constraints are not describing convex sets on their own, but combined with the first constraint they yield
a conv(S). In Figure 1 we show S and conv(S) for this example.

Finally, we note that in this case restricting to any pair of constraints of S, and aggregations thereof,
does not yield the convex hull.

2.3 Counterexamples

The next examples evaluate how important are the requirements of Theorem 2; they show that this
theorem is indeed a reasonable demarcation of cases where aggregation can yield the desired convex
hull. We remark that in the examples that follow, our claims require formal proofs, which we relegate
to Sections 7.1 and 7.2.
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Figure 1: Plots of sets S (left) and conv(S) (right) for Example 1. In this example, the convex hull is obtained
via three aggregations of the three quadratic inequalities describing S.

We begin with an example showing that an extension of Theorem 2 to four quadratics is unlikely. We
obtained this example from modifying an example of [21] (also see [5, Exercise 3.58]) which the authors
used to argue that a generalization of the S-lemma to four inequalities is improbable. Here, we further
elaborate on a variation of it to make it fit our purposes.

Proposition 2. Consider the following set:

S =

{
x ∈ R3 : [x 1]

[
Ai 0
0 ci

] [
x
1

]
< 0, i ∈ [4]

}
,

where,

• A1 =

 1 1.1 1.1
1.1 1 1.1
1.1 1.1 1

, c1 = −1

• A2 =

 −2.1 0 0
0 1 0
0 0 1

, c2 = 0

• A3 =

 1 0 0
0 −2.1 0
0 0 1

, c2 = 0

• A4 =

 1 0 0
0 1 0
0 0 −2.1

, c2 = 0

In this case,

• PDLC is satisfied.

• conv(S) 6= R3

However,

conv(S) (
⋂
{Sλ : λ ∈ R3

+, Sλ ⊇ conv(S)}.

In particular, conv(S) 6=
⋂
λ∈Ω Sλ.

In Figure 2 we show the set S considered in Proposition 2. The proof of this proposition can be found
in Section 7.1.

The PDLC condition we consider in Theorem 2 appears to be quite restrictive, and the reader might
wonder how necessary it is. We show next, via an example, that if this condition does not hold then
Theorem 2 does not necessarily hold.
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Figure 2: Plot of the set S for Proposition 2, defined using 4 quadratic inequalities.

Proposition 3. Consider the following set:

S =

{
x ∈ R3 : [x 1]

[
Ai bi
b>i ci

] [
x
1

]
< 0, i ∈ [3]

}
,

where,

• A1 =

 1 0 0
0 0 0
0 0 0

, b>1 = [0 0 0], c1 = −1

• A2 =

 0 0 0
0 1 0
0 0 0

, b>2 = [0 0 0], c2 = −1

• A3 =

 0 −1/2 0
−1/2 0 0

0 0 1

, b>3 = [0 0 0], c3 = 0

In this case,

• conv(S) 6= R3

• PDLC does not hold

and additionally,

conv(S) (
⋂
{Sλ : λ ∈ R3

+, Sλ ⊇ conv(S)}.

In particular, conv(S) 6=
⋂
λ∈Ω Sλ.

Figure 3 illustrates the set considered in Proposition 3, and a proof of this result is provided in Section 7.2

2.4 The convex hull of three quadratic constraints: closed case

In the mathematical programming literature, we usually work with closed sets and constraints defined
by inequalities rather than strict inequalities. Therefore, it would be nice to have a version of Theorem 2
where we examine a set described by three quadratic (non-strict) inequalities. Here we pursue a direction
closely related to that of Modaresi and Vielma [17] in order to obtain the following result.

Theorem 3. Let n ≥ 3 and let

T =

{
x ∈ Rn : [x 1]

[
Ai bi
b>i ci

] [
x
1

]
≤ 0, i ∈ [3]

}
.

Assume

7



Figure 3: Plot of the set S for Proposition 3. In this example, the PDLC condition does not hold, and the convex
hull is not obtained via aggregations.

• (Positive definite linear combination, or PDLC) There exists θ ∈ R3 such that

3∑
i=1

θi

[
Ai bi
b>i ci

]
� 0.

• (Non-trivial convex hull) conv(T ) 6= Rn.

• (No low-dimensional components) T ⊆ int(T ).

Let
Ω′ := {λ ∈ R3

+ : Tλ ⊇ conv(T ) and ν(Tλ) ≤ 1},

where Tλ =

{
x ∈ Rn : [x 1]

(∑3
i=1 λi

[
Ai bi
b>i ci

])[
x
1

]
≤ 0

}
and ν(Tλ) is the number of negative eigen-

values of
∑3
i=1 λiAi. Then

conv(T ) =
⋂
λ∈Ω′

Tλ.

At a high level, our proof of Theorem 3 is similar to the proof presented in [17] for the case of two
quadratic constraints. The main difference in the proofs comes from the fact that we do not know |Ω| is
finite (unlike in the case of two quadratic constraints). See Section 6 for a proof of Theorem 3.

Example 2. We note that the ‘closed’ version of Example 1 serves as an example for the application of
Theorem 3.

Moreover, we can use this case to argue why our result is of a different nature compared to that of SDP
tightness results, such as [25]. We do so by arguing that in this case, even if aggregations yield the convex
hull, an SDP may not provide tight bounds. For example, if we maximize x1 over the resulting closed set
T the optimal value is < 0, while the SDP bound is > 0. We provide detailed derivations of these values
(optimal solution value and SDP bound) in Section 7.3.

2.5 On restricting to a finite subset of Ω

An important open question is to determine if we actually require an infinite number of aggregations to
obtain the convex hull in Theorems 2 and 3. In all our experiments, we have not discovered an example
that satisfies the PDLC condition and for which the convex hull is obtained using an infinite intersection.

However, if we drop some of these conditions, namely PDLC and the n ≥ 3 condition, we can have that
the convex hull of three quadratic inequalities is the intersection of an infinite number of aggregated
constraints. In this case, however, the aggregations provided by λ may not satisfy ν(Sλ) ≤ 1.
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Figure 4: Plots of sets S (left) and conv(S) (right) for Proposition 4. In this example, the convex hull is obtained
via an infinite intersection of aggregations of the three quadratic inequalities describing S.

Proposition 4. Consider the set

S := {x ∈ R2 : x2
1 ≤ 1, x2

2 ≤ 1, (x1 − 1)2 + (x2 − 1)2 ≥ 1},

and let Ω+ := {λ ∈ R3
+ : Sλ ⊇ conv(S)}. It holds that

conv(S) =
⋂
λ∈Ω+

Sλ.

Moreover, conv(S) (
⋂
λ∈Ω̃+ Sλ for any Ω̃+ ⊆ Ω+ which is finite.

Figure 4 illustrates the set considered in Proposition 4, and the corresponding proof is provided in
Section 7.4.

3 Conclusion and open questions

Our results show that the aggregation approach remains expressive in the case of three quadratic in-
equalities, in the sense that aggregations can provide the convex hull of a set. This result requires the
PDLC condition, which seems very restrictive, but that cannot be completely avoided. We have also
shown that it is unlikely to generalize these results to four or more constraints unless further structure
is considered.

Our main open question involves the finiteness of the Ω set in Theorems 2 and 3: we have not been able
to show whether an infinite number of aggregations is actually needed. We show an example where an
infinite number of aggregations is required but without the PDLC condition. We have not been able to
produce such an example when the PDLC condition holds.

We also leave two more open questions related to our results. Firstly, relaxing/replacing the No low-
dimensional components condition. This condition in Theorem 3 is not easy to verify, unfortunately.
Replacing it or relaxing it would be a great way to strengthen this result. Secondly, relaxing the PDLC
condition. Although we know that if we completely relax this condition, Theorem 2 may not hold, we also
see there are examples, such as Proposition 4, where the convex hull is obtained via aggregation without
the PDLC condition holding. It would be interesting to better understand the role of this condition,
although this direction seems challenging to pursue.

4 Symmetric S-lemma for three quadratic constraints

4.1 Preliminary results

In this section we rely on two rank reduction results. The following result is from [20].

Theorem 4. If A ⊆ Sn is an affine subspace such that the intersection Sn+ ∩ A is non-empty and

dim(A) ≥
(
n+1

2

)
−
(
r+2

2

)
+ 1, then there is a matrix X ∈ Sn+ ∩ A such that rank(X) ≤ r.

9



The following result is from [3].

Theorem 5. If A ⊆ Sn is an affine subspace such that the intersection Sn+ ∩ A is non-empty, bounded

and dim(A) ≥
(
n+1

2

)
−
(
r+2

2

)
then there is a matrix X ∈ Sn+ ∩ A such that rank(X) ≤ r.

4.2 Proof of Lemma 1

To aid the reader, we restate the lemma here.

Lemma 1. Let n ≥ 3 and let g1, g2, g3 : Rn → R be homogeneous quadratic functions:

gi(x) = x>Qix.

Assuming there is a linear combination of Q1, Q2, Q3 that is positive definite, the following equivalence
holds

{x ∈ Rn : gi(x) < 0, i ∈ [3]} = ∅ ⇐⇒ ∃λ ∈ R3
+ \ {0},

3∑
i=1

λiQi � 0.

Proof. The ⇐ implication is trivial: by contradiction, if there is a x̂ such that gi(x̂) < 0, then

x̂>

(
3∑
i=1

λiQi

)
x̂ =

3∑
i=1

λigi(x̂) < 0,

a contradiction with
∑3
i=1 λiQi � 0.

We now show the contrapositive of the other direction. Therefore, let us assume

@λ ∈ R3
+ \ {0}, s.t.

3∑
i=1

λiQi � 0 (1)

and we show next that {gi(x) < 0, i = 1, 2, 3} 6= ∅. First of all, note that we can assume

{x ∈ Rn : gi(x) < 0, i = 2, 3} 6= ∅ (2)

Since otherwise, by the S-lemma for 2 quadratics (Theorem 1), there exists (λ2, λ3) ∈ R2
+ \{0} such that

λ2Q2 + λ3Q3 � 0.

Setting λ1 = 0 contradicts (1). Now, consider the following SDP

min 〈Q1, X〉 (3a)

s.t. 〈Q2, X〉 ≤ −1 (3b)

〈Q3, X〉 ≤ −1 (3c)

X � 0 (3d)

and its dual

max − y2 − y3 (4a)

s.t. y2Q2 + y3Q3 � Q1 (4b)

y2, y3 ≤ 0. (4c)

By (1), we obtain that (4) is infeasible. Additionally, note that by (2), problem (3) satisfies Slater’s
conditions: indeed, for x̂ in (2) the matrix

Mx̂x̂> + εI � 0,

and is feasible for (3), for sufficiently large M > 0 and small ε > 0. SDP duality thus implies that (3)
must be unbounded. In particular, there exists X̂ � 0 such that

〈X̂,Qi〉 = εi i = 1, 2, 3,

10



for εi < 0. This is almost what we want: we would like for X̂ to have rank 1. We now work towards a
rank reduction of X̂.

Define the affine subspace
A = {X ∈ Sn : 〈X,Qi〉 = εi, i = 1, 2, 3},

and G = A ∩ Sn+.

We claim that G is non-empty, bounded, and dim(A) ≥
(
n+1

2

)
− 3. Clearly X̂ ∈ G. Additionally, since

there is a PD linear combination of Q1, Q2, Q3, there exists θi such that

3∑
i=1

θiQi � 0.

Note that

G ⊆

{
X � 0 :

〈
X,

3∑
i=1

θiQi

〉
≤

3∑
i=1

θεi

}
.

Since
∑3
i=1 θiQi � 0, the set on the right-hand side is bounded and thus G is bounded as well.

The statement regarding the dimension of A follows since Sn has dimension
(
n+1

2

)
and A is defined via

3 affine equality constraints. We construct a rank 1 element of G distinguishing the following cases.

Case 1: dim(G) =
(
n+1

2

)
− 3 In this case

dim(G) =

(
n+ 1

2

)
−
(
r + 2

2

)
for r = 1. By Theorem 5 (see [3]), there exists X̃ ∈ G such that

rank(X̃) ≤ r = 1.

Case 2: dim(G) >
(
n+1

2

)
− 3 In this case

dim(G) ≥
(
n+ 1

2

)
−
(
r + 2

2

)
+ 1

for r = 1. By Theorem 4 (see [20]), there exists X̃ ∈ G such that

rank(X̃) ≤ r = 1.

In both cases, we conclude that there exists x̃ ∈ Rn such that

x̃>Qix̃ = εi < 0, i = 1, 2, 3.

5 Convex hull via aggregations: open case

5.1 Preliminary results

We begin by presenting the main tools we use in this section. The following theorem is a classical linear
algebra result. A proof may be found in [16].

11



Figure 5: Example of a semi-convex cone P (orange) and a faux-separating hyperplane of P (green).

Theorem 6 (Cauchy’s Interlacing theorem). Let k, n be integers satisfying 1 ≤ k < n. Let A ∈ Sn and
denote its eigenvalues λ1(A) ≥ λ1(A) ≥ · · · ≥ λn(A). Let Ã be any of its k × k principal submatrices.
Then:

λn−k+i(A) ≤ λi(Ã) ≤ λi(A).

We heavily rely on the next definition from [28].

Definition 1. A semi-convex cone (SCC) is the union of two convex cones which are symmetric reflec-
tions of each other with respect to the origin.

The following result is from [28].

Theorem 7. Let P = {x ∈ Rn+1 : x>Px < 0} 6= ∅. The following are equivalent:

1. There exists a linear hyperplane that does not intersect P.

2. P has one negative eigenvalue.

3. P is a semi-convex cone.

Henceforth, we refer to a linear hyperplane that does not intersect P, an SCC of the form {x : x>Px < 0},
as a faux-separating hyperplane of P. The paper [28] uses the term “separating”, however, we prefer to
reserve the term “separating” to refer to a separating hyperplane with respect to a set. In this case, a
hyperplane that is faux -separating P is splitting the set in two and both the half-spaces corresponding
to the faux-separating hyperplane have a non-empty intersection with P. In particular, P intersected
with each half-space is a convex cone. In Figure 5 we illustrate a faux-separating hyperplane.

5.2 Separation in original space to homogenized space

Consider an arbitrary quadratic set

S =

{
x : [x 1]

[
Ai bi
b>i ci

] [
x
1

]
< 0, i ∈ [m]

}
and its homogenized version

Sh =

{
x : [x xn+1]

[
Ai bi
b>i ci

] [
x

xn+1

]
< 0, i ∈ [m]

}
.

Lemma 2. Let α>x < β be a valid inequality for conv(S). If conv(S) 6= Rn, then {x : αTx = βxn+1} ∩
Sh = ∅.

Proof. By contradiction, suppose there is a (x̂, x̂n+1) ∈ {x : αTx = βxn+1} ∩ Sh. Then

x̂TAix̂+ 2bTi x̂x̂n+1 + cix̂
2
n+1 < 0 for all i ∈ [m].

12



If x̂n+1 6= 0 this implies that 1
x̂n+1

x̂ ∈ S and αTx̂/x̂n+1 = β. This is a contradiction with α>x < β being

valid for conv(S).

If x̂n+1 = 0, we obtain x̂TAix̂ < 0 for i ∈ [m]. Consider z ∈ Rn arbitrary and z± = z ±Mx̂, then

(z±)>Aiz
± + 2b>i z

± + ci = M2(x̂TAix̂) +Mb̃i + c̃i

for some scalars b̃i, c̃i that do not depend on M . This implies that for M large enough z± ∈ S, and thus
z ∈ conv(S). This contradicts conv(S) 6= Rn.

5.3 Towards faux-separation of an aggregated homogeneous constraint

Let
Q = {x ∈ Rn+1 : gi(x) < 0, i = 1, 2, 3},

where gi(x) = xTQix, n ≥ 3 and,

Qλ = {x ∈ Rn+1 :

3∑
i=1

λigi(x) < 0}.

Relying on Lemma 1, we can obtain the following result.

Lemma 3. Let n ≥ 3 and let H ⊆ Rn+1 be a linear hyperplane. Suppose that {Qi}3i=1 ⊂ Sn+1 satisfy
the PDLC condition. Then H ∩Q = ∅ if and only if ∃λ ≥ 0 such that H ∩Qλ = ∅.

Proof. The “if” part is direct: suppose ∃λ ≥ 0 such that H ∩ Qλ = ∅. Since Qλ ⊇ Q, we immediately
conclude H ∩Q = ∅.

Now suppose H ∩Q = ∅. We can parameterize the hyperplane H as

H = {x ∈ Rn+1 : x = Uw, w ∈ Rn}.

where the n columns of U are linearly independent. Therefore, the system

wTUTQiUw < 0 i = 1, 2, 3 (5)

is infeasible. Note that assuming PDLC for Qi implies PDLC for UTQiU . Indeed, let θi be the multipliers
for the former, then

wT

(
3∑
i=1

θiU
TQiU

)
w = wTUT

(
3∑
i=1

θiQi

)
Uw.

Since Uw = 0⇒ w = 0, we conclude this is a PD linear combination of UTQiU . Thanks to this, we can
apply Lemma 1 and show that the infeasibility of (5) implies that there exists λ ≥ 0 such that

3∑
i=1

λiU
TQiU � 0.

Thus, there is no w ∈ Rn such that
3∑
i=1

λiw
TUTQiUw < 0

i.e., there is no x ∈ H such that
3∑
i=1

λix
TQix < 0

This implies H ∩Qλ = ∅.

13



5.4 Proof of Theorem 2

We are now ready to prove Theorem 2. For the convenience of the reader, we restate it here.

Theorem 2. Let n ≥ 3 and

S =

{
x ∈ Rn : [x 1]

[
Ai bi
b>i ci

] [
x
1

]
< 0, i ∈ [3]

}
.

Assume

• (Positive definite linear combination, or PDLC) There exists θ ∈ R3 such that

3∑
i=1

θi

[
Ai bi
b>i ci

]
� 0.

• (Non-trivial convex hull) conv(S) 6= Rn.

Let
Ω :=

{
λ ∈ R3

+ : Sλ ⊇ conv(S) and ν(Sλ) ≤ 1
}
,

where Sλ =

{
x ∈ Rn : [x 1]

(∑3
i=1 λi

[
Ai bi
b>i ci

])[
x
1

]
< 0

}
and ν(Sλ) is the number of negative eigen-

values of
∑3
i=1 λiAi. Then

conv(S) =
⋂
λ∈Ω

Sλ.

Proof. The ⊆ inclusion follows by definition. For the other direction, it suffices to take x̂ 6∈ conv(S), and
show that there exists λ ∈ Ω such that x̂ 6∈ Sλ.

Since x̂ 6∈ conv(S), and conv(S) is open, there exists α ∈ Rn \ {0}, such that

conv(S) ⊆ {x : α>x < α>x̂}.

Since conv(S) 6= Rn, by Lemma 2 we have that {(x, xn+1) ∈ Rn+1 : α>x = (α>x̂)xn+1} ∩ Sh = ∅. Now,
by applying Lemma 3, with H = {(x, xn+1) ∈ Rn+1 : α>x = (α>x̂)xn+1} we obtain that there exists
λ ∈ R3

+ such that

(Sh)λ ∩H = ∅. (6)

Note that (x̂, 1) ∈ H. This implies (x̂, 1) 6∈ (Sh)λ, i.e.,

[x̂ 1]

(
3∑
i=1

λi

[
Ai bi
b>i ci

])[
x̂
1

]
≥ 0,

therefore, x̂ 6∈ Sλ. It remains to argue that λ ∈ Ω.

From Theorem 7, we know that (Sh)λ is an SCC, and H faux-separates it. On one hand, this settles
that ν(Shλ) = 1 implying that ν(Sλ) ≤ 1 (by the interlacing Theorem 6). Additionally,

(Sh)+
λ := (Sh)λ ∩ {(x, xn+1) : α>x < (α>x̂)xn+1}

is a convex set. We claim that
conv(S)× {1} ⊆ (Sh)+

λ .

Indeed, every x̃ ∈ S satisfies α>x̃ < α>x̂, and thus

(x̃, 1) ∈ (Sh)+
λ .

which implies
S × {1} ⊆ (Sh)+

λ .
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The claim follows as (Sh)+
λ is convex. To conclude, we note that this implies

conv(S)× {1} ⊆ (Sh)+
λ ∩ {(x, xn+1) : xn+1 = 1}

⊆ (Sh)λ ∩ {(x, xn+1) : xn+1 = 1}
= Sλ × {1},

which completes the proof that λ ∈ Ω.

6 Convex hull via aggregations: closed case

6.1 Preliminary results

In this section, we use the following result from [17].

Lemma 4 ([17]). Let A and B be two non-empty closed sets such that

A ⊆ int(A)

and B is convex. If conv(int(A)) = int(B), then conv(A) = B.

Additionally, we need to prove the following lemma.

Lemma 5. If {Ai}i∈I is a collection of sets such that
⋂
i∈I int(Ai) is open, then

int

(⋂
i∈I

Ai

)
=
⋂
i∈I

int(Ai).

Before moving to the proof, we note that in [17] —where the authors obtain a result as Yildiran’s for
the closed case— such a lemma is not needed. This is because they deal with a finite intersection, and
the interior behaves well with a finite intersection. In our case, we may have an infinite intersection.

Proof. The inclusion ⊆ is always true, therefore we only need to show ⊇. Since int(Ai) ⊆ Ai, it always
holds that ⋂

i∈I
int(Ai) ⊆

⋂
i∈I

Ai

Since the set on the left is open, and the interior of a set is the largest open set contained in it, we
conclude ⋂

i∈I
int(Ai) ⊆ int

(⋂
i∈I

Ai

)

6.2 Proof of Theorem 3

Using the results from the previous section, we are ready to prove Theorem 3 which, for the convenience
of the reader, we restate here.

Theorem 3. Let n ≥ 3 and let

T =

{
x ∈ Rn : [x 1]

[
Ai bi
b>i ci

] [
x
1

]
≤ 0, i ∈ [3]

}
.

Assume

15



• (Positive definite linear combination, or PDLC) There exists θ ∈ R3 such that

3∑
i=1

θi

[
Ai bi
b>i ci

]
� 0.

• (Non-trivial convex hull) conv(T ) 6= Rn.

• (No low-dimensional components) T ⊆ int(T ).

Let
Ω′ := {λ ∈ R3

+ : Tλ ⊇ conv(T ) and ν(Tλ) ≤ 1},

where Tλ =

{
x ∈ Rn : [x 1]

(∑3
i=1 λi

[
Ai bi
b>i ci

])[
x
1

]
≤ 0

}
and ν(Tλ) is the number of negative eigen-

values of
∑3
i=1 λiAi. Then

conv(T ) =
⋂
λ∈Ω′

Tλ.

Proof. We know from Theorem 2 that

conv(int(T )) =
⋂
λ∈Ω̃

int(Tλ)

where
Ω̃ := {λ ∈ R3

+ : int(Tλ) ⊇ conv(int(T )) and ν(Tλ) ≤ 1}.
Since conv(int(T )) is an open set, the intersection

⋂
λ∈Ω̃ int(Tλ) is open as well. Lemma 5 then implies

⋂
λ∈Ω̃

int(Tλ) = int

⋂
λ∈Ω̃

Tλ


We would like to use A = S and B =

⋂
λ∈Ω̃ Tλ in Lemma 4. A satisfies the necessary hypothesis directly.

B is closed since it is the intersection of closed sets, and it is convex since its interior is convex. Therefore,
Lemma 4 implies that

conv(T ) =
⋂
λ∈Ω̃

Tλ.

It remains to show that we can replace Ω̃ with Ω′ in the intersection. Recall that, by definition of Ω′ we
have

conv(T ) ⊆
⋂
λ∈Ω′

Tλ

and since the set on the right is closed we have

conv(T ) ⊆
⋂
λ∈Ω′

Tλ.

For the other direction, we first prove that Ω̃ ⊆ Ω′. Indeed, the condition regarding the negative
eigenvalue remains unchanged, and under the assumption T ⊆ int(T ) we have conv(int(T )) = conv(T ).
Thus,

λ ∈ Ω̃⇒ int(Tλ) ⊇ conv(int(T ))⇒ Tλ ⊇ conv(int(T ))

⇔ Tλ ⊇ conv(T )

⇒ Tλ ⊇ conv(T )

⇒ λ ∈ Ω′.

Therefore
conv(T ) =

⋂
λ∈Ω̃

Tλ ⊇
⋂
λ∈Ω′

Tλ.
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7 Counterexample proofs

7.1 Proof of Proposition 2

This example shows that a generalization of our main theorem is unlikely to hold in the case of four
quadratics.

Proposition 2. Consider the following set:

S =

{
x ∈ R3 : [x 1]

[
Ai 0
0 ci

] [
x
1

]
< 0, i ∈ [4]

}
,

where,

• A1 =

 1 1.1 1.1
1.1 1 1.1
1.1 1.1 1

, c1 = −1

• A2 =

 −2.1 0 0
0 1 0
0 0 1

, c2 = 0

• A3 =

 1 0 0
0 −2.1 0
0 0 1

, c2 = 0

• A4 =

 1 0 0
0 1 0
0 0 −2.1

, c2 = 0

In this case,

• PDLC is satisfied.

• conv(S) 6= R3

However,

conv(S) (
⋂
{Sλ : λ ∈ R3

+, Sλ ⊇ conv(S)}.

In particular, conv(S) 6=
⋂
λ∈Ω Sλ.

The rest of this subsection is dedicated to the proof of this proposition.

First of all, note that
∑4
i=1 θi

[
Ai bi
bi ci

]
� 0 where θ1 = −1, θ2 = −40, θ3 = −40, θ4 = −40, i.e. the

PDLC condition holds. Also it is easily verified that conv(S) 6= R3 (we actually show below that S is
bounded). However, in this example

conv(S) (
⋂
{Sλ : λ ∈ Rn+, conv(S) ⊇ Sλ}.

To show this last claim, we begin by showing that the set is bounded. While this can be verified
numerically (see Figure 2) using a general-purpose solver, the non-convex nature of the set can impair
solvers in certifying global optimality. For this reason, we provide a more analytical proof sketch of
this claim which involves exact calculations. We do not provide all details, since they would result in a
tedious proof, but we provide enough detail to support our claims.

It is worth mentioning that boundedness cannot be obtained from a simple aggregation-based argument:
in [21], the authors show that there is no (λ2, λ3, λ4) ≥ 0 such that

A1 + λ2A2 + λ3A3 + λ4A4 � 0.
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The same argument can be adapted to show that there is no (λ1, λ2, λ3, λ4) ≥ 0 such that

λ1A1 + λ2A2 + λ3A3 + λ4A4 � 0.

The standard SDP relaxation, which could also be considered to show boundedness analytically, it is not
useful either, as it is unbounded.

Claim 1. The set S is bounded. Moreover, it is contained in the box [−8, 8]3.

We remark that the bounding box [−8, 8]3 is by no means optimal. Our numerical experiments indicate
that it is actually [−1.23, 1.23]3. We just focus on a box whose validity proof is simple and rigorous.

Proof. (Claim 1) We begin by noting that Ai i = 2, 3, 4 induce the following system:

−2.1x2
1 + x2

2 + x2
3 <0 (7a)

x2
1 − 2.1x2

2 + x2
3 <0 (7b)

x2
1 + x2

2 − 2.1x2
3 <0 (7c)

If we add and subtract x2
1, x

2
2, and x2

3 in the first, second, and third inequality, respectively, we obtain

x2
1 + x2

2 + x2
3 < 3.1 min{x2

1, x
2
2, x

3
3} (8)

Note that
min{x2

1, x
2
2, x

3
3} ≤ min{|x1x2|, |x2x3|, |x1x3|}.

Using that the minimum is bounded by the average, we obtain that the following inequality defines a
relaxation of (7)

x2
1 + x2

2 + x2
3 <

31

30
(|x1x2|+ |x2x3|+ |x1x3|) (9)

Consider now the aggregation of x>A1x− 1 < 0 and (9) with weights 1
2 and 1, respectively. We obtain

the following aggregated constraint:

0 >
1

2

(
x2

1 + x2
2 + x2

3 + 2.2x1x2 + 2.2x2x3 + 2.2x1x2 − 1
)

+ x2
1 + x2

2 + x2
3 −

31

30
(|x1x2|+ |x2x3|+ |x1x3|)

Let us now restrict to an orthant, that is, we fix the sign of each xi. In this case, it is not hard to see
that the last expression becomes

x>Qx <
1

2

with

Q =

 3
2

11
20 −

31
60q1,2

11
20 −

31
60q1,3

11
20 −

31
60q1,2

3
2

11
20 −

31
60q2,3

11
20 −

31
60q1,3

11
20 −

31
60q2,3

3
2


where each qi,j = sgn(xixj) ∈ {−1, 1} is fixed in any orthant. A case analysis on Q shows that it is
always a positive definite matrix. Indeed, the case when λmin(Q) is the smallest is obtained when exactly
two among {q1,2, q2,3, q1,3} take the value −1. In this case, the smallest eigenvalue is

22

15
(√

8193 + 91
) > 8

1000
.

This immediately shows boundedness of S. To obtain a bounding box, we use that an upper bound on
the length of a vector of an ellipsoid is related to the smallest eigenvalue of the matrix defining it:

max{‖x‖ : x>Qx ≤ 1/2} =
1√

λmin(2Q)
≤
√

1000

16
< 8

In particular, this shows that [−8, 8]3 is a valid bounding box for S.
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Claim 2.

x1 =

(
1207

1000
,− 117

4000
,− 117

4000

)
∈ conv(S)

x2 = (10,−5,−5) 6∈ conv(S)

Proof. The fact that x2 6∈ conv(S) follows directly from Claim 1, as it lies outside the bounding box.
Consider

x̃1 =

(
1207

1000
,

1207

1000
,−2531

2000

)
x̃2 =

(
1207

1000
,−2531

2000
,

1207

1000

)
One can easily verify that x̃1 ∈ S i = 1, 2 simply evaluating the corresponding quadratic inequalities.
The result follows from noting that

x1 =
1

2
(x̃1 + x̃2)

Claim 3. There is no λ ≥ 0 such that

x1 ∈ Sλ and x2 6∈ Sλ. (10)

Proof. Let us call

qi(x) := [x 1]

[
Ai 0
0 ci

] [
x
1

]
i ∈ [4]

A vector λ ≥ 0 that satisfies (10) also satisfies, without loss of generality, the following linear system

4∑
i=1

λiqi(x
1) < 0 (11a)

4∑
i=1

λiqi(x
2) > 0 (11b)

λ1 + λ2 + λ3 + λ4 = 1 (11c)

λ ≥ 0 (11d)

However, it can be directly verified that the linear system (11) is infeasible. We prefer to not provide
the exact numerical values in (11) as they possess too many digits. Nonetheless, the reader can verify
this claim computationally using exact arithmetic based on the values provided for x1 and x2.

For the sake of completeness, we provide approximate coefficients for (11), along with its infeasibility
proof. System (11) has the form

0.3051λ1 − 3.0576λ2 + 1.4559λ3 + 1.4559λ4 < 0 (12a)

−16λ1 − 160λ2 + 72.5λ3 + 72.5λ4 > 0 (12b)

λ1 + λ2 + λ3 + λ4 = 1 (12c)

λ ≥ 0 (12d)

Aggregating the first three linear expression with weights [1.7629,−0.0342,−0.0854] yields the infeasi-
biliby proof

λ1 < −0.08544.
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7.2 Proof of Proposition 3

In this section, we show a case where relaxing the PDLC condition results in a convex hull not obtainable
via aggregations.

Proposition 3. Consider the following set:

S =

{
x ∈ R3 : [x 1]

[
Ai bi
b>i ci

] [
x
1

]
< 0, i ∈ [3]

}
,

where,

• A1 =

 1 0 0
0 0 0
0 0 0

, b>1 = [0 0 0], c1 = −1

• A2 =

 0 0 0
0 1 0
0 0 0

, b>2 = [0 0 0], c2 = −1

• A3 =

 0 −1/2 0
−1/2 0 0

0 0 1

, b>3 = [0 0 0], c3 = 0

In this case,

• conv(S) 6= R3

• PDLC does not hold

and additionally,

conv(S) (
⋂
{Sλ : λ ∈ R3

+, Sλ ⊇ conv(S)}.

In particular, conv(S) 6=
⋂
λ∈Ω Sλ.

Let us show that conv(S) 6= R3: indeed, one can easily prove that S is bounded, as the constraints are
simply

x2
1 < 1

x2
2 < 1

x2
3 < x1x2.

See Figure 3. Additionally, there is no linear combination of
∑3
i=1 θi

[
Ai bi
b>i ci

]
which is positive definite:

if there were, we would need θ1 < 0 or θ2 < 0, since c3 = 0 and c1 = c2 = −1. However, in that case the
first or the second diagonal entry of the linear combination is negative.

Now we prove that conv(S) (
⋂
{Sλ : λ ∈ Rn+, conv(S) ⊇ Sλ}.

Claim 4.
(
− 3

8 − ε,
3
8 + ε, 1

2

)
6∈ conv(S) for any ε > 0.

Proof. Consider the halfspaceH : {x ∈ R3 : −x1+x2+x3 ≤ 1.25}. Notice that−
(
− 3

8 − ε
)
+
(

3
8 + ε

)
+ 1

2 =
1.25 + 2ε > 1.25. We proceed to show that S ⊆ H, which completes the proof of the claim.

Let Ŝ(z) := conv(S ∩ {x ∈ R3 : x3 = z}). It is straightforward to verify that Ŝ(z) is a polytope with
extreme points: (1, 1, z), (z2, 1, z), (1, z2, z), (−1,−z2, z), (−z2,−1, z) and (−1,−1, z). Thus,

max{−x1 + x2 + x3 : x ∈ Ŝ(z)} = max{z,−1 + z2 + z, 1 + z − z2}.
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Noting that max{x2
3 : x ∈ S} = 1, we have that

sup{−x1 + x2 + x3 : x ∈ S} ≤ max{−x1 + x2 + x3 : x ∈ ∪z:|z|≤1Ŝ(z)}
= maxz:|z|≤1{z,−1 + z2 + z, 1 + z − z2} = 1.25.

Therefore, S ⊆ H.

Claim 5. (0, 0, 1− ε) ∈ conv(S) for ε ∈ (0, 1).

Proof. Indeed, it can be directly verified that (1 − ε/2, 1 − ε/2, 1 − ε), (−1 + ε/2,−1 + ε/2, 1 − ε) ∈ S.
The midpoint of these two points is (0, 0, 1− ε), which shows it lies in conv(S).

Based on the two claims above, it is sufficient to prove that for a particular ε ∈ (0, 1) there is no
λ ∈ R3

+ \ {0}, such that
(
− 3

8 − ε,
3
8 + ε, 1

2

)
6∈ Sλ and (0, 0, 1− ε) ∈ Sλ.

Let ε = 1/8 and, by contradiction, assume there is λ ∈ R3
+ \ {0} such that x =

(
− 3

8 − ε,
3
8 + ε, 1

2

)
6∈ Sλ

and y = (0, 0, 1− ε) ∈ Sλ. A simple calculation yields

x2
1 − 1 = −3

4
, x2

2 − 1 = −3

4
, x2

3 − x1x2 =
1

2

y2
1 − 1 = −1, y2

2 − 1 = −1, y2
3 − y1y2 =

49

64

This implies that λ satisfies

−3

4
λ1 −

3

4
λ2 +

1

2
λ3 ≥ 0

−λ1 − λ2 +
49

64
λ3 < 0

Multiplying the first inequality by −4/3 and adding it to the second inequality yields(
−2

3
+

49

64

)
λ3 < 0

This implies λ3 < 0, which is a contradiction. We conclude that there is no such λ.

7.3 On the SDP tightness of Example 2

In this example, we are considering a set T defined by the following inequalities

x2
1 + x2

2 ≤ 2 (13a)

−x2
1 − x2

2 ≤ −1 (13b)

−x2
1 + x2

2 + x2
3 + 6x1 ≤ 0. (13c)

We would like to argue that max{x1 : x ∈ T} < 0, while its SDP bound is > 0.

If we aggregate inequalities (13) with multipliers (0, 1/2, 1/2) we obtain the implied inequality

−x2
1 +

1

2
x2

3 + 3x1 +
1

2
≤ 0.

Lower bounding x2
3 ≥ 0, and factoring the resulting concave quadratic yields(

x1 −
1

2
(3−

√
11)

)(
−x1 +

1

2
(3 +

√
11)

)
≤ 0,

from where we conclude

x1 ≤
1

2
(3−

√
11) or x1 ≥

1

2
(3 +

√
11). (14)
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Additionally, aggregating inequalities (13) with multipliers (1, 0, 1), we obtain

2x2
2 + x2

3 + 6x1 ≤ 2

from where we conclude x1 ≤ 1/3, therefore the leftmost inequality in (14) is valid for T , which implies
x1 ≤ 0. Actually, one can prove that 1

2 (3−
√

11) < 0 is the optimal value of x1, but a bound suffices for
our argument.

On the other hand, the SDP relaxation of the optimization problem reads

max x1

s.t. X11 +X22 ≤ 2

−X11 −X22 ≤ −1

−X11 +X22 +X33 + 6x1 ≤ 0[
1 x>

x X

]
� 0.

And one can easily verify that [
1 x>

x X

]
=


1 1

3 0 0
1
3 2 0 0
0 0 0 0
0 0 0 0

 � 0

is a feasible solution with objective value 1/3 > 0, thus showing that the SDP relaxation is not tight.

7.4 Proof of Proposition 4

In this subsection, we show that in Proposition 4 the convex hull can be obtained via aggregations, but
only using infinitely many of them.

Proposition 4. Consider the set

S := {x ∈ R2 : x2
1 ≤ 1, x2

2 ≤ 1, (x1 − 1)2 + (x2 − 1)2 ≥ 1},

and let Ω+ := {λ ∈ R3
+ : Sλ ⊇ conv(S)}. It holds that

conv(S) =
⋂
λ∈Ω+

Sλ.

Moreover, conv(S) (
⋂
λ∈Ω̃+ Sλ for any Ω̃+ ⊆ Ω+ which is finite.

It is easy to see that
conv(S) = {x ∈ R2 : x2

1 ≤ 1, x2
2 ≤ 1, x1 + x2 ≤ 1}.

See Figure 4 for an illustration of the set S and its convex hull. Additionally, PDLC condition does not
hold. Indeed, PDLC condition holds if and only if 0 is the optimal value of the following SDP:

min θ4

s.t. θ1

 1 0 0
0 0 0
0 0 −1

+ θ2

 0 0 0
0 1 0
0 0 −1

+ θ3

 −1 0 1
0 −1 1
1 1 −1

+ θ4 · I � I

θ4 ≥ 0,
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where I is the identity matrix. The dual of this SDP is:

max 〈I,W 〉

s.t.

〈
W,

 1 0 0
0 0 0
0 0 −1

〉 = 0

〈
W,

 0 0 0
0 1 0
0 0 −1

〉 = 0

〈
W,

 −1 0 1
0 −1 1
1 1 −1

〉 = 0

〈W, I〉 ≤ 1

W � 0.

Note that

W =

 1/3 1/4 1/4
1/4 1/3 1/4
1/4 1/4 1/3


is a feasible solution to the dual and its objective function value is 1. By weak duality we conclude that
the PDLC condition does not hold.

Recall that Ω+ := {λ ∈ R3
+ : Sλ ⊇ conv(S)}. We now show that

conv(S) =
⋂
λ∈Ω+

Sλ.

By definition, we have, conv(S) ⊆
⋂
λ∈Ω+ Sλ. We need to verify conv(S) ⊇

⋂
λ∈Ω+ Sλ. Since the

constraints x2
1 ≤ 1 and x2

2 ≤ 1 contain conv(S), it is sufficient to show that for each point in the set
{(x1, x2) : x1 + x2 > 1, x1 < 1, x2 < 1} there is a λ ∈ Ω+ that does not contain it.

Consider λa =
(
a2, a2 − 2a+ 1, a2 − a+ 1

)
for a ∈ (0, 1). It is not difficult to verify that λa ≥ 0 and

Sλa :=
{
x : (a− 1)x2

1 − ax2
2 + 2

(
a2 − a+ 1

)
(x1 + x2)− 3a2 + 3a− 2 ≤ 0

}
Let us show that Sλa ⊇ conv(S). Let

ga(x) := (a− 1)x2
1 − ax2

2 + 2
(
a2 − a+ 1

)
(x1 + x2)− 3a2 + 3a− 2

Penalizing the constraint x1 + x2 ≤ 1 with the multiplier 2 + 4(a− 1)a ≥ 0 we obtain:

max
x∈conv(S)

ga(x) ≤ max
x

ga(x) + (2 + 4(a− 1)a)(1− x1 − x2)

= max
x

(a− 1)
(
−2ax1 + a+ x2

1

)
− ax2

2 − 2(a− 1)ax2

The last function is strictly concave for a ∈ (0, 1), and its unique optimal solution is x = (a, 1− a), with
optimal value 0. This shows that Sλa ⊇ conv(S).

In addition, it is not difficult to verify that all points of the form (a + ε, 1 − a + ε) for ε > 0 are no
contained in Sλa . Therefore,

conv(S) = {x : x2
1 ≤ 1, x2

2 ≤ 1} ∩
⋂

a∈(0,1)

Sλa .

Finally, we will verify that we need infinitely many aggregations. Consider any λ ∈ R3
+ \ {0} such that

the inequality defining Sλ is active at (a, 1− a) and valid for conv(S). Then λ must satisfy:

(a2 − 1)λ1 + (a2 − 2a)λ2 + (−2a2 + 2a)λ3 = 0
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Since a2 − 1 < 0, a2 − 2a < 0, and −2a2 + 2a > 0 it must be that λ3 > 0. Additionally, since
|a2 − 1| > 2a− 2a2 and a2 − 2a < 0, we must have that λ1 < λ3. Similarly, since |a2 − 2a| > 2a− 2a2,
we must have that λ2 < λ3.

Note now that

Sλ := {x : (λ1 − λ3)x2
1 + (λ2 − λ3)x2

2 + 2λ3(x+ y)− λ1 − λ2 − λ3 ≤ 0}.

Since we just showed λi < λ3 for i = 1, 2, the last set is the complement of an ellipse. From here we
conclude that if (b, 1− b) for b 6= a is also in the boundary of Sλ then Sλ does not contain conv(S).

This shows that any aggregation that has (a, 1 − a) in its boundary, does not contain any other point
(b, 1− b).
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