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Abstract

In the first main result of this paper we prove that one can approximate discontinious solutions of the 1d
Navier Stokes system with solutions of the 1d Navier-Stokes-Korteweg system as the capilarity parameter tends
to 0. Moreover, we allow the viscosity coefficients µ = µ (ρ) to degenerate near vaccum. In order to obtain this
result, we propose two main technical novelties. First of all, we provide an upper bound for the density verifing
NSK that does not degenerate when the capillarity coefficient tends to 0. Second of all, we are able to show that
the positive part of the effective velocity is bounded uniformly w.r.t. the capillary coefficient. This turns out to
be crucial in providing a lower bound for the density.

The second main result states the existene of unique finite-energy global strong solutions for the 1d Navier-
Stokes system assuming only that ρ0, 1/ρ0 ∈ L∞. This last result finds itself a natural application in the context
of the mathematical modeling of multiphase flows.

1 Introduction

1.1 Presentation of the models

One classical model used to study mixtures of two or more compressible fluids with different densities is the Navier-
Stokes system (referred as NS in the sequel):





∂tρ+ ∂x (ρu) = 0,
∂t (ρu) + ∂x

(
ρu2
)
− ∂x (µ (ρ) ∂xu) + ∂x(aρ

γ) = 0,
(ρ, u)|t=0 = (ρ0, u0) ,

(1.1)

The mixture is supposed to be itself a compressible barotropic fluid and, in order to simplify matters, we suppose
that it has constant temperature. Practical examples include gas bubbles in water flowing in pipes, fluids containing
a melted substance, polluted air/water ..., see [IH10] for more relevant examples. The unknowns are the velocity
of the fluid u = u(t, x) ∈ R and the density of the fluid ρ = ρ(t, x) ∈ R+. We consider here that the pressure
P (ρ) = aργ is defined throughout a γ state-law with γ > 1 and a > 0. In this paper, we consider that the viscosity
coefficient µ = µ(ρ) ≥ 0 is density-dependent, with µ (0) = 0.

The fact that the dissipative operator depends on the density itself is motivated by physical considerations.
Keeping in mind the fact that (1.1) governs flows of mixtures, it is reasonable to suppose that each of the components
has its own viscosity. We also mention that system (1.1) can be obtained via the Boltzmann equation through the
Chapman-Enskog expansion to the second order (see [CCB90]) which ensures that the viscosity coefficient is then
a function of the temperature. If we consider the case of isentropic fluids, this dependence is expressed by a
dependence on the density function (we refer in particular to [HS91]). Let us also mention that the case µ(ρ) = ρ is
related to the so called viscous shallow water system. This system with friction has been derived by Gerbeau and
Perthame in [GP00] from the Navier-Stokes system with a free moving boundary in the shallow water regime at the
first order. This derivation relies on the hydrostatic approximation where the authors follow the role of viscosity
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and friction on the bottom. It transpires that the mathematical analysis of this situation is more involved than the
constant viscosity case since the operator −∂x (µ (ρ) ∂xu) is not strongly elliptic.

The system (1.1) is a Sharp Interface Model : assuming that at initial time the constituents of the mixture are
separated by a jump in the initial density ρ0, then this discontinuity persists for all later times, and it is advected
by the fluid’s velocity see the early work of D. Hoff and J. Smoller [HS85]. This allows one to distinguish at any
time the zones occupied by the ”pure” constituents.

This picture changes if one takes in consideration capillary forces. In this case the two fluids are not anymore
separated by a sharp interface but rather by a thin layer where the density, although passing continuously from
one fluid to another, it experiences large variations. This type of models are called Diffusive Interface Models. One
classical model used to describe this situation is the Navier-Stokes-Korteweg (NSK in the sequel) system which, in
its 1d version reads 




∂tρ+ ∂x (ρu) = 0,
∂t (ρu) + ∂x

(
ρu2
)
− ∂x (µ (ρ) ∂xu) + ∂x(aρ

γ) = c∂xK,
(ρ, u)|t=0 = (ρ0, u0) .

(1.2)

In the above system K stands for the Korteweg capillarity tensor and its general formula is

K = ρκ (ρ) ∂xxρ+
1

2
(ρκ′ (ρ)− κ (ρ)) (∂xρ)

2
, (1.3)

for some positive function κ = κ (ρ). Moreover, c > 0 is a positive constant measuring the ”strength of the
capillarity” or in an other way ”the thickness of the diffusive interface”. Indeed the size of c is directly linked with
the thickness of the transition zone separating the pure phases. For the underlying physical principles behind the
governing equations, see the pioneering paper by J.-E. Dunn and J. Serrin in [SD85] but also [VdW79, Kor01, SD85,
NT92, AMW98, CH58].

Let us observe that formally, when c → 0, we recover the NS system (1.1). Justifying mathematically such
a limit in a physically interesting setting, namely, where interfaces could be tracked down, raises the following
questions:

Q1 Can we construct solutions for the system (1.1) with initial data ρ0 allowing discontinuities? How ”wildly”
can these discontinuities behave?

Q2 Can we recover solutions of (1.1) with discontinuous initial data ρ0 as the limit of solutions of (1.2)?

In this paper, we give positive answers to the above questions. Of course, we cannot solve the problem for
general µ (ρ) and κ (ρ), additional hypothesis which ensure some extra algebraic structure to the underlying PDEs
systems are needed. One typical example we can treat is

µ (ρ) = ρα with α ∈ (0,
1

2
) and κ (ρ) =

µ2 (ρ)

ρ3
. (1.4)

In order to obtain such results, we propose two new technical features in the context of the NSK system. Before,
explaining these features, let us mention that, it is by now well-established, that the crucial point for obtaining
global existence results is to be able to obtain apriori estimates which ensure that the density ρ stays bounded
and bounded away from vacuum (i.e. ρ > 0) all along the time. Indeed, explosion criteria shows that this is the
possible cause for the breakdown of strong solutions, see for instance Theorem 1.1. from [CDNP20] and Theorem 3.3.
from [BH20, BH21]. Even, for less regular solutions in the spirit of Hoff-Serre [Hof87, Ser86a, Ser86b], the former
qualitative information for the densities ensure that one can carry out estimation in the Hoff-class of regularity
(referred to as intermediate-regularity solutions).

Regarding the second question Q2: in the case of the NSK system, first of all, we are able to use a maximum
principle in order to obtain an L∞-bound on the density that does not degenerate in the vanishing capillarity
coefficient limit c → 0. Secondly, we show that in order to obtain a lower bound for the density, it is sufficient to
assume only a one sided inequality on the so-called effective velocity. At the level of the density, loosely speaking,
this amounts to ask a one sided inequality:

∂xϕ(ρ0) ≤M0, (1.5)

for some M0 ∈ R and where ϕ (ρ) is a primitive of µ(ρ)
ρ2 . Obviously, the expression in (1.5) has a meaning in the

sense of measures. As these estimates are uniform w.r.t. capillarity parameter c, we are able to recover in the
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vanishing capillarity limit c → 0, solutions for the NS system where the initial data needs only to verify (1.5). We
can observe that functions ϕ(ρ0) ∈ BVloc with discontinuities with negative jump enter in the scope of (1.5). As
far as the authors are aware, this is the first result in this direction, the only somehow related results known are
obtained for the zero viscosity-capillarity limit by F. Charve and the second author in [CH13] and by P. Germain
and P.G. LeFloch in [GL16]. The relative weak assumptions that are required on the initial density are in sharp
contrast with what is usually assumed in the literature where the so-called Bresch-Desjardin entropy [BD07] is
used in order to ensure that the density stays away from vacuum (see [MV08]). However the assumption that the
BD-entropy is finite at initial time allows only to consider continuous initial densities.

The method of proof reveals that in the case of the NS system (1.1), the situation is much more better: we can
ensure that the density stays away from vacuum using only the fact that this is the case at the initial time t = 0.
More precisely, under hypothesis (1.4) for µ (ρ) we are able to construct global strong solutions assuming only that
ρ0 and 1

ρ0
∈ L∞. This gives an affirmative answer to Q1 at least for mildly degenerate density-dependent viscosities.

Let us also point out that this result is also relevant with respect to recent results obtained by Bresch and Hillairet
in [BH19] in the context of multiphase modeling. Indeed the authors show that solutions for a Baer-Nunziato
type-system can be obtained as week limits of highly-oscilating solutions of the NS system (1.1). The only norm
that one can hope to keep uniformly bounded in the presence of high-oscilations is the L∞-norm. Our existence
result stated in Theorem 1.1 thus enlarges the class of viscosity coefficients for which Theorem 1 from [BH19] holds
true. In particular, the aforementioned result holds true for viscosities that degenerate close to vacuum.

1.2 A short review of known results

Before, giving the formal statement of our main results we propose to the reader a short review of the results
concerning the existence of global strong solutions for the NS and NSK systems. We mention here that we use
the term weak solution to designate a distributional solution for which uniqueness is not know to hold true. The
term strong solution will be used whenever we may ensure the uniqueness property even thought the derivatives
appearing in the equations may not have a meaning a.e..

1.2.1 The Navier-Stokes system

We start mentioning some known results for the system (1.1).

The constant viscosity case The study of the well-posedness of the Cauchy problem for the compressible
Navier-Stokes equations with constant viscosity coefficients can be tracked back to the pioneering works of the
Russian school of PDEs, see Ya. I. Kanel in [Kan68] and Kazhikhov and Shelukhin [KS77] where they considered
the case of regular initial data (in particular, the densities are always continuous). In the 80′s D. Hoff and J. Smoller
started a program investigating the well-posedness issues for parabolic equations with rough initial data. Up to
the knowledge of the authors, they were the first to observe that the discontinuities of the density are advected
by the flow and they persist all along the time owing to the regularization of the so called effective viscous flux
[HS85]. The first results tackling the question of rough initial densities for the NS system were obtained by D.
Hoff [Hof87] and D. Serre [Ser86a, Ser86b]. Qualitative properties for weak-solutions like the non-formation of
vacuum states were adressed in [HS01]. We mention also the result of D. Hoff and D. Serre [HS91] where they
proved that the assumption of constant viscosity leads to a failure of continuous dependence on the initial data.
Finally D. Hoff extended the result of [Hof87] by showing in [Hof98] the existence of global weak solution with initial
density admitting shocks (roughly speaking the density ρ0 satisfies ρ0,

1
ρ0

∈ L∞) and with regularizing effects on
the velocity,

The density dependent case For initial densities that feature vacuum zones, existence of global weak solution
has been obtained by Q.Jiu and Z. Xin in [JX08] for viscosity coefficients verifying µ (ρ) = ρα with α > 1

2 .
In [Has19], the second author constructed global weak solutions for general viscosity coefficients with initial

density admitting shock type discontinuities and with initial velocity belonging to the set of finite measures. In
opposite to [Hof98], the initial data satisfy the BD entropy but not the classical energy which allows in particular
to obtain regularizing effects for the density inasmuch as the density becomes instantaneously continuous.
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We recall that the basic energy estimate, obtained formally by multiplying the velocity’s equation with u and
integrating by parts states that

∫

R

(
1

2
ρu2(t, x) + ρe (ρ) (t, x)

)
dx+

∫ t

0

∫

R

µ(ρ)(∂xu)
2(s, x)dsdx ≤

∫

R

(
1

2
ρ0u

2
0(t, x) + ρ0e (ρ0) (x)

)
dx, (1.6)

with
ρe′ (ρ)− e (ρ) = ργ .

In the context of the multidimensional NS system, D. Bresch and B. Desjardins [BD07] discovered that (1.1) has
some ”hidden” algebraic structure. We can observe (see [Has18]) that the so-called effective velocity :

v = u+ ∂xϕ (ρ)

verifies the equation
∂t(ρv) + ∂x(ρuv) + ∂xρ

γ = 0,

and that multiplying with v the previous relation the following functional, named BD entropy, is formally controlled:

∫

R

(
1

2
ρv2(t, x) + ρe (ρ) (t, x)

)
dx+ γ

∫ t

0

∫

R

µ (ρ) ργ−3(∂xρ)
2 ≤

∫

R

(
1

2
ρ0v

2
0(t, x) + ρ0e (ρ0) (x)

)
dx, (1.7)

We observe that if µ (ρ) = ρα then the BD entropy shows that

∫

R

1

2
ρ(v − u)2(t, x)dx = Cα

∫

R

(∂xρ
α− 1

2 )2(t, x)dx

Thus, supposing that ∂xρ
α− 1

2

0 ∈ L2, and taking 0 < α < 1
2 , the BD entropy yields that the L∞-norm of 1

ρ remains

bounded. This was the main argument that A. Mellet and A. Vasseur [MV07] used in order to construct global
strong solutions for the case of degenerate viscosity coefficients with α satisfying 0 < α < 1

2 .
In [Has18], the second author has proved similar results for the case 1/2 < α ≤ 1 where he exploited the fact

that the effective velocity v satisfies a damped transport equation. This allows him to obtain an L∞-estimates for
v and using a maximum principle in order to obtain a L∞ control on 1

ρ .

More recently Constantin et al in [CDNP20] have extended the previous result to the case α > 1 with γ belonging
to [α, α+ 1] provided that the initial data satisfy:

∂xu0 ≤ ργ−α
0 . (1.8)

We point out that the condition (1.8) amounts to considering a negative effective flux (see for example [Hof87, Lio98])
at initial time. The main idea of their proof consists in proving via a maximum principle that the effective flux
i.e. the function µ (ρ) ∂xu − ργ , remains negative for all time t ≥ 0 if this is the case initially. This is sufficient to
control the L∞ norm of 1

ρ .

In [BH20] we proved that if α > 1
2 , γ ≥ max{1, α} and if the so-called effective velocity satisfies initially an

Oleinik type inequality (see [Ole59]) then we have the existence of global strong solution provided that (ρ0,
1
ρ0
) are

bounded. In particular there is no restriction on the sign of the effective flux.
Let us mention that all the above results, assume that the BD entropy is bounded initially, it allow sat least

when α > 1
2 to control the L∞ norm of the density ρ all along the time by using Sobolev embedding on the quantity

∂xρ
α− 1

2 ∈ L2. Since this involves an L2 information for the derivative of the density, all the above results deal with
continuous initial densities.

Concerning discontinious initial densities we are only aware of two results: Fang and Zhang [FZ06] dealing with
the free boundary problem and Ruxu et al [RJHL12] dealing with the problem on the whole real line but assuming
small initial energy. The estimates that the authors obtain depend on the number of points of discontinuity and, in
particular, these estimates blow-up as the number of discontinuity points tends to +∞. For this reason, they are
not appropiate in order to study 1d−homogeneisaition as in [BH19].

As it was mentioned previously, in this paper we will provide a new method to control the L∞ norm of the
density, without using the BD entropy. By doing so, our initial density ρ0 is just L2 (R) ∩ L∞ (R)
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1.2.2 The Navier-Stokes-Korteweg system

Let us pass now in review some results for system (1.2). F. Charve and the second author in [CH13] proved the

global existence of strong solution for the system (1.2) when µ(ρ) = ερ and κ(ρ) = ε2

ρ . In addition, they show
that the global strong solutions converge when ε goes to 0 to a global weak entropy solution of the compressible
Euler system with initial data of finite energy. P. Germain and P.G. LeFloch in [GL16] studied recently the global
existence of vacuum and non-vacuum weak solutions for the Korteweg system. It is important to point out that
they need to impose a tame condition on the viscosity and capillary coefficients which takes the form:

κ(ρ) .
µ(ρ)2

ρ3
and δ(ε) . ε2, (1.9)

if we consider the vanishing viscosity capillary limit for viscosity and capillary coefficients µε(ρ) = εµ(ρ), κε(ρ) =
δ(e)κ(ρ) when ε > 0 goes to 0. Roughly speaking, the previous tame condition implies in some sense that the
parabolic behavior, governed by the viscosity tensor dominates the dispersive effects that are induced by the
capillarity tensor. We mention that this is important because the dispersive effects tend to create strong oscillations
which prevent obtaining strong convergence informations (they allow only to obtain weak-convergence results which
are not well-suited to treat the compressible setting). In particular, when ε goes to 0, by assuming (1.9) we can
expect recovering strong convergence in suitable functional spaces. In [GL16] the authors study then the zero
viscosity-capillarity limit associated with the Navier-Stokes-Korteweg system generalizing the results of [CH13].

They need in particular for this analysis to assume that κε(ρ) =
µε(ρ)

2

ρ3 when the viscosity coefficient is degenerate

with µε(ρ) = ερα. We recall that we will also consider this algebraic relation in the remaining part of this paper.
Recently, Chen et al. in [CCDZ15] and Chen in [Che12] have proved for the first time some results of existence of
global strong solutions for initial density far away from the vacuum in Lagrangian coordinates. More precisely they
consider viscosity and capillary coefficients of the form µ(ρ) = ρα1 and κ(ρ) = ρβ1 with (α1, β1) ∈ R2. In comparison
with the present work, there is no relation a priori between α1 and β1 (furthermore there is no restriction on c > 0).
They manage essentially to show such result when β1 < −2 which allows in a direct way to control the L∞ norm

of 1
ρ by using the energy estimate (indeed roughly speaking the energy estimate ensure that ∂xρ

β1
2
+1 is bounded in

L∞
T (L2) for any T > 0). They deal also with the case β1 ≥ −2 but in this case α1 < 0, in particular the viscosity

coefficient explodes near vacuum. The main ideas of the proof is to obtain L2-estimates for the effective velocity

v = u+ µ(ρ)
ρ2 ∂xρ by using an energy method combined with Sobolev embedding in the spirit of Kanel (see [Kan68]).

Furthermore the authors show also the existence of global strong solution when the initial data is a perturbation of
a Riemann problem associated to a rarefaction wave for the compressible Euler problem.

In [BH21] the authors extend the results of [Che12, CCDZ15] to the case of the NSK system with strongly
degenerate viscosity coefficients with initial density far away from vacuum. More precisely, the viscosity coefficients
take the form µ(ρ) = ρα with α > 1 and the capillarity coefficient satisfies the algebraic relation (1.10). The main
difficulty of the proof consists in estimating globally in time the L∞ norm of 1

ρ . The method of proof relies on

fine algebraic properties of the NSK system. In [BH21] we introduce two new effective velocities endowed with
weight functions depending both on the viscosity and the capillarity coefficients as some power laws of the density.
For these two quantities we show some Oleinik-type estimate which provide the control of the L∞ norm of 1

ρ by
applying a maximum principle. It is interesting to point out that the two effective pressure introduced in this
paper depending on the capillary coefficient generalize to the NSK systems those introduced for the NS system in
[BH20, CDNP20].

1.3 Main results

1.3.1 The algebraic structure of the NSK system

For the rest of the paper, as in [GL16, BGLV19], we will assume that:

κ (ρ) =
µ2 (ρ)

ρ3
. (1.10)

With such a choice for κ we can rewrite the capillarity tensor K as

K = µ (ρ) ∂xxϕ (ρ)
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with

ϕ′ (ρ) =
µ (ρ)

ρ2
. (1.11)

We observe also that:

∂xK = ρ∂x
(
G′ (ρ) ∂2xxG (ρ)

)
with G′ (ρ) =

µ (ρ)

ρ3/2
. (1.12)

We will study the system (1.2) on the real line R with the following far field assumption:

ρ (t, x) → 1 and u (t, x) → 0 when |x| → ∞, (1.13)

for all t ≥ 0. Let r ∈ (0, 1) and observe that using the second equation of the system (1.2) we can write that:

ρ∂t (u+ r∂xϕ (ρ)) + ρu∂x (u+ r∂xϕ (ρ))− (1− r) ∂x (µ(ρ)∂x (u+ r∂xϕ (ρ))) + a∂xρ
γ

=
(
r2 − r + c

)
∂xK.

For c ∈ (0, 14 ] the equation

r2 − r + c = 0

admits the two positive roots

r1 (c) =
1 +

√
1− 4c

2
≤ 1 and r0 (c) =

1−
√
1− 4c

2
≤ 1.

In the sequel we will assume that c ∈ (0, 14 ] and we observe that

r1 (c) −→
c→0

1 and r0 (c) −→
c→0

0. (1.14)

We introduce the following two extra variables

vi = u+ ri∂xϕ (ρ) for i ∈ {0, 1} ,

which will be referred as effective velocities. The effective velocities verify the following equations:

ρ∂tvi + ρu∂xvi − (1− ri (c)) ∂x (µ(ρ)∂xvi) + a∂xρ
γ = 0 for i ∈ {0, 1} . (1.15)

Let us discuss now the dissipation of energy. Using (1.12) the natural energy associated to (1.2) is

∫

R

(1
2
ρu2(t, x) + ρe (ρ) (t, x) +

1

2
c (∂xG (ρ))

2
(t, x)

)
dx+

∫ t

0

∫

R

µ(ρ)(∂xu)
2(s, x)dsdx ≤ Ec (ρ0, u0) , (1.16)

where

Ec (ρ0, u0) =
1

2

∫

R

(
ρ0u

2
0(x) + ρ0e (ρ0) (x) + cEcap (∂xρ0)

)
dx, (1.17)

with

Ecap (∂xρ0) =
1

2

∫

R

(∂xG (ρ0))
2
(x)dx =

1

2

∫

R

ρ0 (∂xϕ (ρ0))
2
(x)dx

and

e (ρ) =
(ργ − 1− γ (ρ− 1))

(γ − 1) ρ
=
ργ−1

γ − 1
+

1

ρ
− γ

γ − 1
. (1.18)

In the context of the Navier-Stokes-Korteweg system (1.2), since there are two effective-velocities we have two
BD-type entropies obtained by multiplying the equation (1.15) with vi and integrating by parts:

∫

R

(
1

2
ρv2i (t, x) + ρe (ρ) (t, x)

)
dx+ (1− ri (c))

∫ t

0

∫

R

µ(ρ)(∂xvi)
2(s, x)dsdx+ ri (c) γ

∫ t

0

∫ t

0

µ (ρ) ργ−3(∂xρ)
2(s, x)dsdx

(1.19)
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≤
∫

R

(1
2
ρv2i,0(x) + ρ0e (ρ0) (x)

)
dx =

∫

R

(1
2
ρ0u

2
0(x) + ρ0e (ρ0) (x)

)
dx+ ri

∫

R

ρ0u0∂xϕ (ρ0) (x)dx+ r2iEcap (∂xρ0) .

(1.20)

If one ignores the relative size with respect to c of the coefficients ri (c) , both estimates (1.20) give the same
qualitative information. Moreover, the spaces where the initial data has to be drawn from, in order to give a
mathematical meaning to these functionals are such that Ec (ρ0, u0) defined in (1.17) is finite. In particular,
assuming finite energy, the density in the NSK system is always a continuous function. Of course, this is normal
since, as discussed in the Introduction, NSK is a Diffuse Interface Model. However, observe that as c → 0, the
estimate for v0 degenerates in the basic energy estimate for Navier-Stokes (1.6), while the estimate for v1 degenerates
to the BD-entropy estimate (1.7). This observation reveals that if one is interested in recovering a ”rough” solution
of the NS system by a vanishing capillarity limit, the BD entropy estimate for v1 must explode as c→ 0.

1.3.2 Assumptions for the viscosity coefficient

We wish now to specify the form of the viscosity coefficient with which we will work. We recall that

ϕ′ (ρ) =
µ (ρ)

ρ2
and ψ′ (ρ) =

µ (ρ)

ρ
· (1.21)

Also, we introduce

Ξ′ (ρ) =
(ργµ (ρ))

1
2

ρ2
· (1.22)

We suppose that µ is a C1 positive function on (0,+∞) such that:

lim
ρ→+∞

µ (ρ) = ∞ (µ1)

We assume that there exists positive constants d1, d2, d3, d4, d5 such that the following relations hold true. First of
all, for all ρ ≥ 0 we suppose that

1

d1
µ(ρ) ≤ ψ (ρ) ≤ d1µ (ρ) . (µ2)

Next, we suppose that

µ (ρ) ≤ d2 (1 + ργ) for all ρ ≥ 0. (µ3)

We also require that ϕ : (0,∞) → Imϕ is invertible and that

lim
ρ→0

ϕ (ρ) = −∞. (µ4)

We impose that
lim

ρ→+∞
Ξ (ρ) = +∞. (µ5)

Finally, we denote

Φ (τ) = −ϕ
(
1

τ

)
> 0 , Λ (τ) =

1

µ

(
1

τ

) > 0 (1.23)

and we ask that
Λ (τ) ≤ d4 (1 + Φ (τ))

2
(µ6)

along with
τ

1
2 ≤ d5 (1 + Φ (τ))

1−η
(µ7)

for some positive η ∈ (0, 1).
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Remark 1 Let us investigate how the above hypothesis translate in the case of viscosity coefficient of the form
µ (ρ) = ρα. Observe that in this case we have that

ϕ(ρ) =
ρα−1

α− 1
and ψ(ρ) =

ρα

α
if α 6= 1

while
ϕ(ρ) = ln ρ and ψ(ρ) = ρ if α = 1.

We see that, (µ1), (µ2), (µ3) imply that
0 < α ≤ γ.

Hypothesis (µ4) implies that
α ≤ 1.

Hypothesis (µ5) implies that
α+ γ ≥ 2.

Finally, since
Λ (τ) = τα and Φ (τ) = 1

1−ατ
1−α if α 6= 1,

the hypothesis (µ6) implies that

α ≤ 2

3

while (µ7) implies that

α <
1

2
.

1.3.3 Statement of the main results

Finally, after a rather long introduction, we are in the position of stating our first main result which addresses the
question of global existence of strong solutions with rough initial densities.

Theorem 1.1 Consider γ > 1 and µ verifying (µ1), (µ2), (µ3), (µ4),(µ6) and (µ7). Consider (ρ0, u0) ∈ L∞ (R)×
L2 (R) such that

‖ρ0‖L∞(R) +

∥∥∥∥
1

ρ0

∥∥∥∥
L∞(R)

+ E0 (ρ0, u0) ≤M.

Then, there exists a unique global solution (ρ, u) for the Navier-Stokes system (1.1). Moreover, there exists C =

C
(
T,E0 (ρ0, u0) ,

∥∥∥ρ0, 1
ρ0

∥∥∥
L∞

)
such that the pair (ρ, u) satisfies for all T > 0:

E0 (ρ (T ) , u (T )) =

∫

R

(
ρu2 + ρe (ρ)

)
(T ) +

∫ T

0

∫

R

µ(ρ)(∂xu)
2 ≤ E0 (ρ0, u0) , (1.24)

1

C
≤ ρ(T, ·) ≤ C, (1.25)

∫ T

0

∫

R

σρ |u̇|2 + 1

2
σ (T )

∫

R

µ (ρ (T )) (∂xu (T ))
2 ≤ C, (1.26)

1

2

∫ T

0

∫

R

σ2ρ |u̇|2 + (1− r0)

∫ T

0

∫

R

σ2µ (ρ) |∂xu̇|2 ≤ C, (1.27)

∫ T

0

σ
1
2 (τ) ‖∂xu (τ)‖2L∞ dτ + sup

0<t≤T
σ(t)‖∂xu(t, ·)‖L∞ ≤ C, (1.28)

where σ (t) = min {1, t} and u̇ = ∂tu+ u∂xu.
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Remark 2 Up to your knowledge this is the first result assuring the existence of global unique solutions for the
compressible Navier-Stokes system in one dimension with degenerate viscosity coefficient and with rough initial
density ρ0 ∈ L∞. Of course, this includes the case of discontinuous initial data, with an arbitrary number of
discontinuities and arbitrary jumps. In particular, this extends the works [BH20, CDNP20, MV08] where the
authors consider initial densities which are continuous.

Remark 3 According to the Remark 1, we recall that the choice µ(ρ) = ρα with α ∈ (0, 1/2) enters in the framework
of Theorem 1.1.
Since we do not need to assume (µ5), any p (ρ) = ργ with γ > 1 fits in the framework of our result.

Remark 4 At this point it is important to remark that, using Proposition 2.4.1 proved below, the result obtained
by Constantin et al. [CDNP20] can be adapted to obtain an existence result with discontinuous initial densities ρ0
such that

∂xu0 − ργ−α
0 ≤ 0. (1.29)

Let us remark however that, at least if ∂xu0 is continuous, condition that although cannot be ensured for later
times, it nevertheless implies that the jump of ργ−α

0 at a discontinuity must be positive. This observation shows that
general initial data relevant for multifluids at a mesoscopic scale, as explained in [BDG+18], Section 3.2. cannot be
considered assuming (1.29) initially.

The second main result states that, if we impose a sign condition on the effective velocity v1 then, we can
construct solutions for the NSK system (1.2) which verify uniform estimates for the density and the effective
velocity v0 that do not degenerate as c→ 0. Recall that formally, when c→ 0, v0 degenerates to u, the velocity of
the NS system.

Theorem 1.2 Let c ∈ (0, 14 ), γ > 1 and µ, ϕ, ψ verifying (1.21), (µ1)-(µ7). Consider the initial data (ρ0, u0) which
is uniformly bounded in c in the following space

u0,
√
cρ

1
2

0 ∂xϕ (ρ0) ∈ L2 (R) , ρ0e (ρ0) ∈ L1 (R) .

Moreover, suppose that there exists M0 ∈ R such that for all c ∈
(
0, 14

)
we have

a.e. x ∈ R : v1|t=0 = u0 (x) + r1 (c) ∂xϕ(ρ0 (x)) ≤M0.

Then, there exists a unique global solution for (1.2) that satisfies the following estimates, uniformly with respect to
the parameter c:
∫

R

1
2ρu

2 + ρe (ρ) + cρ (∂xϕ (ρ))
2
+

∫ t

0

∫

R

µ(ρ)(∂xu)
2 ≤ Ec (ρ0, u0) ,

∫

R

1
2ρv

2
0 + ρe (ρ)

∫ t

0

∫

R

+ (1− r0 (c))

∫ t

0

∫

R

µ(ρ)(∂xvi)
2(s, x)dsdx+ r0 (c) γ

∫ t

0

∫

R

µ (ρ) ργ−3(∂xρ)
2(s, x)dsdx ≤ 2Ec (ρ0, u0) ,

ρ (t, x) ≤ C (t, Ec, ‖ρ0‖L∞) ,

u (t, x) + r1 (c) ∂xϕ (ρ (t, x)) ≤M0 + C (t, Ec, ‖ρ0‖L∞) ,

‖ 1

ρ (t, ·)‖L∞ ≤ C
(
t, Ec,M0,

∥∥∥ρ0, 1
ρ0

∥∥∥
L∞

)

‖ϕ (ρ)‖BV ([0,T ]×[−L,L]) + ‖ρ‖BV ([0,T ]×[−L,L]) ≤ C
(
t, L,Ec,M0,

∥∥∥ρ0, 1
ρ0

∥∥∥
L∞

)
∀L > 0.

∫ T

0

∫

R

σρ |v̇0|2 +
1− r0 (c)

2
σ (T )

∫

R

µ (ρ (T )) (∂xv0 (T ))
2 ≤ C

(
t, Ec,M0,

∥∥∥ρ0, 1
ρ0

∥∥∥
L∞

)
,

1
2

∫ T

0

∫

R

σ2ρ |v̇0|2 + (1− r0 (c))

∫ T

0

∫

R

σ2µ (ρ) |∂xv̇0|2 ≤ C
(
t, Ec,M0,

∥∥∥ρ0, 1
ρ0

∥∥∥
L∞

)
,

(1.30)
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where σ (t) = min {1, t} and v̇0 = ∂tv0 + u∂xv0. Above, C are generic functions depending continuously on their
arguments and they are increasing in t.

As we pointed out in the introduction, comparing with [GL16] and [Che12, CCDZ15], our contribution consists
in the uniform estimates with respect to c for ‖ρ‖L∞ and the fact that we only use the one sided bound for
v1|t=0 = u0+ r1∂xϕ (ρ0) in order to show that ρ is bounded from bellow. Of course this is crucial if one is interested
in the capillarity-vanishing limit problem (the viscosity remaining constant).

As a corollary to Theorem 1.2 we immediately obtain

Theorem 1.3 Let c ∈ (0, 14 ), γ > 1 and µ, ϕ, ψ verifying (1.21), (µ1)-(µ6). Let M0 ∈ R, M > 0 and consider
(ρc0, u

c
0) such that

‖ρc0‖L∞(R) +

∥∥∥∥
1

ρc0

∥∥∥∥
L∞(R)

+ Ec (ρ
c
0, u

c
0) ≤M,

and
uc0 (x) + r1 (c) ∂xϕ(ρ

c
0) (x) ≤M0 a.e. on R.

Moreover, suppose that (ρ0, u0) is such that ρ0e(ρ0) ∈ L1(R), u0 ∈ L2(R), (ρ0, 1/ρ0) ∈ L∞(R), ϕ(ρ0) ∈ BVloc (R)
such that

u0 + ∂xϕ(ρ0) ≤M0 in the sense of measures (1.31)

and that: {
ρc0 − 1 → ρ0 − 1, uc0 → u0 in L2 (R) ,

uc0 + r1∂xϕ(ρ
c
0)⇀ u0 + ∂xϕ(ρ0) weakly in the sense of measures.

(1.32)

Then, there exists (ρ, u) such that for all T > 0,

lim
c→0

(ρc, uc)c>0 = (ρ, u) weakly− ⋆ in L∞ ([0, T ]× R)

and (ρ, u) is the unique global solution for the NS system (1.1) with initial data (ρ0, u0) that verifies for all T > 0:

E0 (ρ (T ) , u (T )) =

∫

R

(
ρu2 + ρe (ρ)

)
(T ) +

∫ T

0

∫

R

µ(ρ)(∂xu)
2 ≤ E0 (ρ0, u0) , (1.33)

C

(
t, E0 (ρ0, u0) ,

∥∥∥∥ρ0,
1

ρ0

∥∥∥∥
L∞

)−1

≤ ρ(t, x) ≤ C

(
t, E0 (ρ0, u0) ,

∥∥∥∥ρ0,
1

ρ0

∥∥∥∥
L∞

)
for any x ∈ R. (1.34)

‖ϕ (ρ)‖BV ([0,T ]×[−L,L]) + ‖ρ‖BV ([0,T ]×[−L,L]) ≤ C

(
t, L,Ec,M0,

∥∥∥∥ρ0,
1

ρ0

∥∥∥∥
L∞

)
∀L > 0. (1.35)

u+ ∂xϕ (ρ) ≤M0 + C (t, E0, ‖ρ0‖L∞) in the sense of measures (1.36)
∫ T

0

∫

R

σρ |u̇|2 + 1

2
σ (T )

∫

R

µ (ρ (T )) (∂xu (T ))
2 ≤ C = C

(
T,E0 (ρ0, u0) ,

∥∥∥∥ρ0,
1

ρ0

∥∥∥∥
L∞

)
, (1.37)

1

2

∫ T

0

∫

R

σ2ρ |u̇|2
∫ T

0

∫

R

σ2µ (ρ) |∂xu̇|2 ≤ C = C

(
T,E0 (ρ0, u0) ,

∥∥∥∥ρ0,
1

ρ0

∥∥∥∥
L∞

)
, (1.38)

∫ T

0

σ
1
2 (τ) ‖∂xu (τ)‖2L∞ dτ + sup

0<t≤T
σ(t)‖∂xu(t, ·)‖L∞ ≤ C = C

(
T,E0 (ρ0, u0) ,

∥∥∥∥ρ0,
1

ρ0

∥∥∥∥
L∞

)
, (1.39)

.

As far as we are aware, this is the first result treating the vanishing capillarity limit. As a corollary of the
previous Theorem we obtain via a vanishing capillary process the existence of global strong solutions for the 1D
Navier-Stokes system with discontinuous initial densities . However, besides the fact that ρ0 and 1

ρ0
must be in

L∞ (R) we also require that
u0 + ∂xϕ(ρ0) ≤M0 (1.40)

for some M0 ∈ R, this is obviously an additional condition compared to Theorem 1.1. In particular (1.40) implies
that ϕ(ρ0) belongs to BVloc and that the only discontinuities in x on ρ0 are such as the jump of ϕ (ρ0) at x is
negative:

[ϕ (ρ0)] (x) = lim
h→0,h>0

ϕ (ρ0 (x+ h))− lim
h→0,h>0

ϕ (ρ0 (x− h)) ≤ 0.
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Remark 5 We would like also emphasize that it is possible to obtain a similar theorem if we replace the condition
(1.31) by:

u0 + ∂xϕ (ρ0) ≥M0 in the sense of measures, (1.41)

with M0 ∈ R. We refer to Section 2.6 and Remark 6 for more details on these questions.

2 Proof of the main results

Let us give the general plan for the proof of the main results. The main difficulty is to obtain a priori estimates
assuring that the density is bounded and bounded by below. Once this is achieved, one may follow the approach
of D. Hoff in order to obtain the estimates necessary to prove existence and uniqueness, see [Hof87], [Hof98] for
the original approach or our more recent contributions [BH20], [BH21]. Thus, we will not insist on these, by now
well-understood points.

First, we recall the finite-time existence results of strong solutions and some explosion criterion stating that the
only way in which a classical solution might blow-up is because of the appearance of vacuum regions or because the
density does not remain bounded, more precisely, the L∞-norm of 1

ρ or of ρ blows up. These results were stated

and proved in [BH20] and [BH21] (see Theorem 3.1 from these papers).
We consider initial data as in Theorem 1.1 and Theorem 1.2 and we regularize it with a family of molifiers such

as to fit in the scope of the local existence, see Theorem 2.1 below. For each mollified initial data we consider
the regular solution defined on a maximal time of existence. The regularity of the solutions ensures that all the
computations presented below are justified. In particular, the regularity of the local-in-time solution justifies the
passage from the Eulerian formulation (1.2) to the so-called mass-Lagrangian formulation, see Section 2.2. The fact
that this later formulation is more adapted to obtain apriori estimates is known since the work of Kazhikhov and
Shelukhin [KS77] and was used more recently by Germain and Le Floch in [GL16].

A first important step is to show that the density is uniformly bounded using only the uniform bound on the
energy and the L∞ norm of ρ0. This is the objective of Section 2.4 . More precisely, we show that the local solution
(or any regular enough solution) for the NSK system verifies

ρ (t, x) ≤ C (t, Ec, ‖ρ0‖L∞) for all x ∈ R

where C is continuous and increasing with respect to t. This estimate is crucial if one wants to consider the vanishing
capillarity limit. The proof is rather technical and uses a lot of tricks inspired by earlier works of the Russian school
of PDEs, see [Kan68],[KS77]. We refer the reader to the monographic [AKM90] for a systematic treatment of the 1d
NS system with various boundary conditions. Loosely speaking, the idea is to work with a primitive of the function
defining the velocity’s equation. The fact that we work with functions defined on the whole real line adds another
difficulty to the proof because we need to localize the arguments. We point out that Proposition 2.3.2 below turns
out to be crucial in order to carry out our proof.

In Sections 2.5 and 2.6 we show that the density part of such a regular solution remains bounded and bounded
below. In particular, this will ensure that its maximal time of existence is +∞. In the same way as working with a
primitive for the momentum equation leads to an upper bound for the density under not to restrictive hypothesis,
working with a primitive of the equation of the effective velocity will enable us to obtain a lower bound for the density
with minimal regularity assumptions. More precisely, in the NSK case we show that the density is lower bounded

by a constant that depends continuously on time, initial energy, ‖ρ0‖L∞ ,
∥∥∥ 1
ρ0

∥∥∥
L∞

and on M0 ∈ R defined as the

smallest constant such that
v1|t=0 = u0 + r1∂xϕ (ρ0) ≤M0, a.e. in R. (2.1)

Relation (2.1) translates the fact the the positive part of the effective velocity should be bounded but does not offer
any information on the negative part. In particular, this explains why densities having negative jumps enter the
framework of (2.1). In the case of the NS system, the information we obtain is better. Indeed, we can say that the
effective velocity is controlled pointwise by the initial effective velocity plus a term that we control. This allows to
show that ρ is lower bounded without assuming (2.1).

Finally, in Section 3, armed with the uniform estimates for the density, we show how to carry-out the Hoff-type
estimates program. With respect to our recent contribution [BH21], the Hoff-estimates for the effective velocity that
degenerates to u, are shown to hold true uniformly with respect to the capillarity coefficient c which is important
for the proof of Theorem 1.3.
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2.1 Existence of strong solution in finite time

In order to prove the existence of global strong solutions for the NS and NSK systems, we start with recalling the
following result.

Theorem 2.1 Assume that the viscosity coefficients satisfy the assumptions (µ1)-(µ4), s ≥ 3 and (ρ0 − 1, u0) ∈
Hs+1 × Hs(R) with 1

ρ0
∈ L∞(R). Then there exists T ∗ > 0 such that there exists a strong solution (ρ, u) of the

system (1.2) on (0, T ∗) with ∀T ∈ (0, T ∗):

(ρ− 1) ∈ C(0, T,Hs+1(R)) ∩ L2(0, T,Hs+2(R)), u ∈ C(0, T,Hs(R)) ∩ L2(0, T,Hs+1(R)),

and for all t ∈ (0, T ∗):

‖1
ρ
(t, ·)‖L∞ ≤ C(t),

where C(t) < +∞ if t ∈ (0, T ∗). In addition, if:

sup
t∈(0,T∗)

[‖1
ρ
(t, ·)‖L∞ + ‖ρ(t, ·)‖L∞ ] ≤ C < +∞,

then the solution can be continued beyond (0, T ∗).

The above result claims that the only way a strong solution might blow-up in finite time T ⋆ is if the L∞-norm
of 1

ρ or ρ blows-up at time T ∗. We refer to [Che12, CCDZ15] for the proof of existence of a strong solution in finite

time and we refer to [BH21] for a proof of the blow-up criterion.
Since the initial data in Theorem 1.1 and Theorem 1.2 are less regular than in the Theorem 2.1, we cannot directly
use Theorem 2.1. Consider (ρ0, u0) ∈ L∞ (R) × L2 (R) such that Ec (ρ0, u0) < ∞ and, in the case of the NSK
system,

u0 + r1 (c) ∂xϕ (ρ0) ≤M0 a.e. on R.

We regularize the initial data as follows:





ρn0 = jn ∗ ρ0,
vn1|t=0 = jn ∗

(
v1|t=0

)
= jn ∗ (u0 + r1 (c) ∂xϕ (ρ0)) ,

un0 = vn1|t=0 − r1 (c) ∂xϕ (ρn0 ) .
(2.2)

with jn a family of mollifiers, jn(y) = nj(ny) with j ∈ C∞(R) such that

0 ≤ j ≤ 1,

∫

R

j(y)dy = 1 and Supp j ⊂ [−2, 2].

We deduce that (ρn0 − 1, vn1|t=0) belong to all Sobolev spaces Hs(R) with s ≥ 0. Furthermore, by the composition

theorem we can prove that ϕ(ρn0 )−ϕ(1) belongs toHk(R) for any k ≥ 0 and consequently we obtain that un0 ∈ Hk(R)
for k ≥ 3. However, the higher order Sobolev norms explode when n→ ∞. The only informations that are uniform
in n ∈ N, the regularization parameter, are the following:





0 <
∥∥∥ 1
ρ0

∥∥∥
L∞

≤ ρn0 ≤ ‖ρ0‖L∞ < +∞,

Ec (ρ
n
0 , u

n
0 ) ≤ 2Ec (ρ0, u0) ,

vn1|t=0 = un0 + r1 (c) ∂xϕ (ρn0 ) ≤M0.

(2.3)

We can now apply the Theorem 2.1 to the sequence of initial data (ρn0 , u
n
0 )n≥0 which provides us the existence

of a strong solution (ρn, un) of the system (1.2) on some finite time interval (0, Tn) with Tn > 0. We denote by
vn0 = un + r0 (c) ∂xϕ(ρ

n) and by vn1 = un + r1 (c) ∂xϕ(ρ
n) the effective velocities introduced in Section 1.3.1. Using

(2.3) and the regularity of the constructed solution we see that for any t ∈ (0, Tn) and sufficiently large n ∈ N we
have that
∫

R

(
1

2
ρn |un|2 (t, x) + ρne (ρn) (t, x) + c(∂xG (ρn))2

)
dx+

∫ t

0

∫

R

µ(ρn)(∂xu
n)2(s, x)dsdx ≤ 2Ec (ρ0, u0) < +∞

(2.4)
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∫

R

(
1

2
ρn |vn0 |2 (t, x) + ρne (ρn) (t, x)

)
dx+ (1− r0(c))

∫ t

0

∫

R

µ(ρn)(∂xv
n
0 )

2(s, x)dsdx ≤ 2Ec (ρ0, u0) < +∞. (2.5)

We anticipate that at the end of Section 2.6 when we will have shown that 1
ρn

is bounded, we will be able to
conclude that for any n ∈ N we have Tn = +∞, see Proposition 2.6.2.

The end of the proof of Theorem 1.2 and 1.1 will consist in proving that (ρn, un)n∈N converges up to a subsequence
to a global strong solution (ρ, u) of the system (1.2). In the sequel for simplicity we omit the subscript n ∈ N and
all the estimate are obtained on the time interval (0, Tn).

2.2 The Mass-Lagrangian formulation

It is well known that if
inf
x∈R

ρ0 (x) > 0 for all x ∈ R,

then the change of variables:

ρ̃(t,m) = ρ(t,X(t, Y (m))) and ũ(t,m) = u(t,X(t, Y (m)))

with:

X(t, x) = x+

∫ t

0

u(s,X(s, x))ds and Y −1(m) =

∫ m

0

ρ0(z)dz.

where Y −1 is the inverse of Y (we observe in particular that Y −1 is strictly increasing on R since infx∈R ρ0 (x) > 0)
transforms the system (1.2) and (1.15) into:





∂tρ̃+ ρ̃2∂mũ = 0,
∂tũ− ∂m (ρ̃µ (ρ̃) ∂mũ) + ∂mρ̃

γ = c∂m(ρ̃µ (ρ̃) ∂2mmψ (ρ̃)),
∂tṽi − (1− ri) ∂m (ρ̃µ (ρ̃) ∂mṽi) + ∂mρ̃

γ = 0,
(2.6)

where we denote

ψ′ (ρ) = ρϕ′ (ρ) =
µ (ρ)

ρ
, (2.7)

and with m ∈ R. We note that we have taken a = 1 in the pressure term only for simplifying the notations. The
conditions (1.13) yield

ρ̃ (t,m) → 1 and ũ (t,m) → 0 when |m| → ∞.

Obviously, along as the solutions are regular, for instance the regularity assumed in Theorem 2.1 is sufficient,
then for all t > 0, the application

m→ X (t, Y (m))

is a C1-diffeormorfism from R to R with inverse denoted by

x→ m (t, x) . (2.8)

Obviously, we have that ∫

R

F (ρ (t, x) , u (t, x)) =

∫

R

F (ρ̃ (t,m) , ũ (t,m))
dm

ρ̃ (t,m)
, (2.9)

for any function F . Also, we have that

∂xG (t,X (t, Y (m))) = ρ̃∂mG (t,m) (2.10)

We will use system (2.6) in order to obtain a priori estimates as it is easier to manipulate than (1.2). Also, using
(2.10), we see that for i ∈ {0, 1} we have that

ṽi = ˜(u+ ri (c)ϕ′ (ρ) ∂xρ) = ũ+ ri (c) ρ̃ϕ
′ (ρ̃) ∂mρ̃ = ũ+ ri (c) ∂mψ (ρ̃) . (2.11)

The mass equation rewrites in terms of the so-called specific volume:

∂

∂t

1

ρ̃
= ∂mũ. (2.12)
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2.3 Basic energy estimates and some properties of regular solutions

The natural energy functional associated to system (2.6) is for any t > 0

∫

R

(
ũ2

2
+ e (ρ̃) +

c

2
(∂mψ (ρ̃))2

)
(t, x)dx+

∫ t

0

∫

R

ρ̃µ (ρ̃) (∂mũ)
2dsdx ≤ Ec (ρ0, u0) , (2.13)

where Ec (ρ0, u0) is defined in (1.16) while e is defined by the relation (1.18). Obviously, the functional in (2.13) is
nothing other than the Eulerian energy transformed via the formulae (2.9) and (2.10). Moreover we see that

∫

R

(
ṽ20
2

+ e(ρ̃)

)
(t, x)dx+ (1− r0(c))

∫ t

0

∫

R

ρ̃µ (ρ̃) (∂mṽ0)
2dsdx (2.14)

≤
∫

R

(
1

2
ṽ20 + e(ρ̃0)

)
(x)dx ≤ 2Ec (ρ0, u0) . (2.15)

Remark 2.3.1 In the rest of the paper, in order to ease the reading we will rather use the notation Ec instead of
Ec (ρ0, u0) .

Using the uniform bounds ensured by the energy inequality (2.13), we deduce the following proposition.

Proposition 2.3.1 Consider ℓ ∈ R and θ ∈ (0, 1]. Then,





1
2 (2 (γ − 1)Ec + γ)

− θ
γ−1 ≤

∫ ℓ+1

ℓ

dq

ρ̃θ (t, q)
≤
(
Ec +

γ
γ−1

) 1
θ

,
∫ ℓ+1

ℓ

ρ̃γ−1 (t, q) dq ≤ (γ − 1)Ec + γ.

(2.16)

Proof of Proposition 2.3.1:
The upper bound is easy to obtain as we can write that

∫ ℓ+1

ℓ

1

ρ̃
≤
∫ ℓ+1

ℓ

ρ̃γ−1

γ − 1
+

1

ρ̃
=

∫ ℓ+1

ℓ

e (ρ̃) +
γ

γ − 1
≤ Ec +

γ

γ − 1
.

Obviously, using Jensen’s inequality, we have that

∫ ℓ+1

ℓ

1

ρ̃θ
≤
(∫ ℓ+1

ℓ

1

ρ̃

)θ

,

from which we deduce the right hand side of the first inequality in (2.16). The lower bound is deduced in the
following way: we suppose now that there exists ε > 0 such that

∫ ℓ+1

ℓ

dq

ρ̃θ (t, q)
≤ ε. (2.17)

We set now:

A =

{
m ∈ [ℓ, ℓ+ 1] : ρ̃ (t,m) ≥ 1

(2ε)
1
θ

}
.

Then using (2.17) we deduce that:

2ε|cA| ≤
∫

cA

dq

ρ̃θ (t, q)
≤
∫ ℓ+1

ℓ

dq

ρ̃θ (t, q)
≤ ε.

It implies that

meas

{
m ∈ [ℓ, ℓ+ 1] : ρ̃ (t,m) ≥ 1

(2ε)
1
θ

}
≥ 1

2
.
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But then, we have that

Ec ≥
∫ ℓ+1

ℓ

e (ρ̃) ≥ 1

2

{
1

γ − 1

(
1

2ε

) γ−1

θ

− γ

γ − 1

}
,

which implies that

ε ≥ 1

2
(2 (γ − 1)Ec + γ)

− θ
γ−1 .

This concludes the proof of Proposition 2.3.1 for the first estimate in (2.16). The second one is a direct consequence
of the energy estimate (2.13). �

Proposition 2.3.2 There exists a constant C (Ec) that depends only on the initial energy Ec such that the following
holds true. For any t > 0 and ℓ ∈ R there exists a point m (t, ℓ) ∈ [ℓ, ℓ+ 1] such that

sup
s∈[0,t]

Ξ (ρ̃ (s,m (t, ℓ))) ≤ sup
m∈[ℓ,ℓ+1]

Ξ (ρ0 (m)) + C (Ec) t.

Proof of Proposition 2.3.2: We recall that the mass equation is

∂tρ̃ (t,m) = −ρ̃2 (t,m) ∂mũ

and as such, we get that

Ξ (ρ̃ (s,m)) = Ξ (ρ̃0 (m))−
∫ s

0

ρ̃
γ−1

2 (ρ̃µ (ρ̃))
1
2 ∂mũ.

From the last identity we get that

sup
s∈[0,t]

Ξ (ρ̃ (s,m)) ≤ Ξ (ρ̃0 (m)) +

∫ t

0

ρ̃
γ−1

2 (ρ̃µ (ρ̃))
1
2 |∂mũ| .

Consider ℓ ∈ R and integrate the above relation and using the second inequality from Proposition 2.3.1 we obtain

∫ ℓ+1

ℓ

sup
s∈[0,t]

Ξ (ρ̃ (s,m)) dm ≤
∫ ℓ+1

ℓ

Ξ (ρ̃0 (m)) dm+

∫ t

0

∫ ℓ+1

ℓ

ρ̃
γ−1

2 (ρ̃µ (ρ̃))
1
2 |∂mũ|

≤
∫ ℓ+1

ℓ

Ξ (ρ̃0 (m)) dm+

∫ t

0

∫ ℓ+1

ℓ

ρ̃γ−1 +

∫ t

0

∫ ℓ+1

ℓ

ρ̃µ (ρ̃) |∂mũ|2

≤ sup
m∈[ℓ,ℓ+1]

Ξ (ρ0 (m)) + t ((γ − 1)Ec + γ) + Ec.

From this we infer that
∫ ℓ+1

ℓ
sups∈[0,t] Ξ (ρ̃ (s,m)) dm is controlled by a linear in time function the coefficients of

which are controlled uniformly with respect to the initial data. It then follows that there is a pointm (t, ℓ) ∈ [ℓ, ℓ+ 1]
where

sup
s∈[0,t]

Ξ (ρ̃ (s,m (t, ℓ))) ≤ sup
m∈[ℓ,ℓ+1]

Ξ (ρ0 (m)) + C (Ec) t.

This concludes the proof of Proposition 2.3.2. �

Corollary 2.3.1 Suppose that µ (ρ) verifies hypothesis (µ5). There exists a constant C (Ec, ‖ρ0‖L∞ , t) that depends
only on the initial energy Ec, ‖ρ0‖L∞ and time such that the following holds true. For any t > 0 and any ℓ ∈ R

there exists a point m (t, ℓ) ∈ [ℓ, ℓ+ 1] such that

sup
s∈[0,t]

ρ̃ (s,m (t, ℓ)) ≤ C (Ec, ‖ρ0‖L∞ , t) .

Obviously, 2.3.1 is a consequence of Proposition 2.3.2 and of the hypothesis (µ5) assumed for the function Ξ.
In the next section we show how to use these two basic estimates in order to obtain upper and lower bounds for

the density.
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2.4 Upper bound for the density

The first step is to recover an upper bound for the density that does not degenerate when the capillarity coefficient
c goes to 0. It transpires that for this purpose we cannot use the so called BD-entropy.

Proposition 2.4.1 Assume that µ verifies the hypothesis (µ1), (µ2), (µ3). Consider (ρ̃, ũ) regular enough solutions
for the (2.6) system verifying the energy estimate:

∫

R

(
ũ2

2
+ e (ρ̃) +

c

2
(∂mψ (ρ̃))2

)
(t, x)dx+

∫ t

0

∫

R

ρ̃µ (ρ̃) (∂mũ)
2dsdx ≤ Ec.

Also, we assume that
ρ̃|t=0 = ρ0 ∈ L∞ (R) .

1. The general case: Assume that µ also verifies (µ5). Then, there exists a continuous function C : [0,∞) ×
[0,∞)× [0,∞) → [0,∞) which is increasing w.r.t. to the first variable and such that

ρ̃ (t,m) ≤ C (t, Ec, ‖ρ0‖L∞) . (2.18)

2. The NS system: If c = 0, i.e. we are considering the Navier-Stokes system, the same conclusion as in (2.18)
holds true without assuming hypothesis (µ5) for the viscosity function µ.

Remark 2.4.1 The results of Proposition 2.3.1, Proposition 2.3.2 and Corollary 2.3.1 hold true for the pair (ρ̃, ũ)
of Proposition 2.4.1.

Remark 2.4.2 In the case of the Navier-Stokes system for coefficients of the form µ (ρ) = ρα, the only restriction
that we need is

0 < α ≤ γ.

Remark 2.4.3 Owing to the fact that
ρ (t, x) = ρ̃ (t,m (t, x)) ,

with (2.8), we also have that
ρ (t, x) ≤ C (t, Ec, ‖ρ0‖L∞) . (2.19)

Remark 2.4.4 The proof of the above proposition is rather technical and uses a lot of tricks inspired by earlier
works of the Russian school of PDEs, see [Kan68],[KS77] or the monography [AKM90] for a systematic treatment
of the NS system with various boundary conditions. Loosely speaking, the idea is to work with a primitive of the
function defining the velocity’s equation. Taking in account that the viscosity term can be written as the time
derivative of ψ (ρ̃), in the case of the NS system, one obtains a dumped differential equation for ψ (ρ̃) while the
source terms are integrals of the unknowns for which it turns out that we can provide estimates using only Ec. The
same conclusion holds true for the NSK system although things become more complicated. In this case, ψ (ρ̃) verifies
a parabolic equation such that we need to use a maximum principle. The fact that we work with functions defined
on the whole real line adds another difficulty to the proof because we need to localize the arguments. We point out
that Proposition 2.3.2 turns out to be crucial in order to carry out our proof.

Proof of Proposition 2.4.1:
Consider m, q, ℓ ∈ R fixed arbitrarily. We are going to use the following identity which is obtained by integrating

the mass-Lagrangian velocity’s equation (2.6) between m and q :

d

dt

{∫ m

q

ũ

}
+
(
−ρ̃µ (ρ̃) ∂mũ+ ρ̃γ − cρ̃µ (ρ̃) ∂2mmψ (ρ̃)

)∣∣m
q

= 0 (2.20)

We put the above relation under the form

d

dt

{∫ m

ℓ

ũ

}
+
(
−ρ̃µ (ρ̃) ∂mũ+ ρ̃γ − cρ̃µ (ρ̃) ∂2mmψ (ρ̃)

)
(t,m)

=
d

dt

{∫ q

ℓ

ũ

}
+
(
−ρ̃µ (ρ̃) ∂mũ+ ρ̃γ − cρ̃µ (ρ̃) ∂2mmψ (ρ̃)

)
(t, q) ,
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Next we multiply the above equation with
1

ρ̃ (t, q)
and we integrate between ℓ and ℓ+ 1 w.r.t. q. We infer that

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

){
d

dt

{∫ m

ℓ

ũ

}
+
(
−ρ̃µ (ρ̃) ∂mũ+ ρ̃γ − cρ̃µ (ρ̃) ∂2mmψ (ρ̃)

)
(t,m)

}

=

∫ ℓ+1

ℓ

{
1

ρ̃ (t, q)

d

dt

{∫ q

ℓ

ũ

}}
dq +

∫ ℓ+1

ℓ

(
−µ (ρ̃) ∂mũ+ ρ̃γ−1 − cµ (ρ̃) ∂2mmψ (ρ̃)

)
(t, q) dq.

Now, using (2.12) and a simple integration by parts gives us:

∫ ℓ+1

ℓ

{
1

ρ̃ (t, q)

d

dt

{∫ q

ℓ

ũ

}}
dq =

d

dt

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq −

∫ ℓ+1

ℓ

(
d

dt

1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq

=
d

dt

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq −

∫ ℓ+1

ℓ

(
∂mũ (t, q)

∫ q

ℓ

ũ

)
dq

=
d

dt

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq − ũ (t, ℓ+ 1)

∫ ℓ+1

ℓ

ũ (t, q) dq +

∫ ℓ+1

ℓ

ũ2 (t, q) dq.

The above identity is rearranged to give

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

){
d

dt

{∫ m

ℓ

ũ

}
+
(
−ρ̃µ (ρ̃) ∂mũ+ ρ̃γ − cρ̃µ (ρ̃) ∂2mmψ (ρ̃)

)
(t,m)

}

=
d

dt

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq − ũ (t, ℓ+ 1)

∫ ℓ+1

ℓ

ũ (t, q) dq +

∫ ℓ+1

ℓ

ũ2 (t, q) dq

+

∫ ℓ+1

ℓ

(
−µ (ρ̃) ∂mũ+ ρ̃γ−1 − cµ (ρ̃) ∂2mmψ (ρ̃)

)
(t, q) dq.

Recalling that c = r1(1− r1), and using that

−ρ̃µ (ρ̃) ∂mũ− cρ̃µ (ρ̃) ∂2mmψ (ρ̃) = −r1ρ̃µ (ρ̃) ∂mũ− (1− r1) ρ̃µ (ρ̃) ∂mũ− cρ̃µ (ρ̃) ∂2mmψ (ρ̃)

=
d

dt
r1ψ (ρ̃)− (1− r1) ρ̃µ (ρ̃) ∂m (ũ+ r1∂mψ (ρ̃))

=
d

dt
r1ψ (ρ̃)− (1− r1) ρ̃µ (ρ̃) ∂mm

(∫ m

ℓ

ũ+ r1ψ (ρ̃)

)
,

the left hand side of the above identity is arranged as to obtain

d

dt

{∫ m

ℓ

ũ+ r1ψ(ρ̃) (t,m)

}
− (1− r1) ρ̃µ (ρ̃) ∂

2
mm

{∫ m

ℓ

ũ+ r1ψ(ρ̃)

}
+ ρ̃γ (t,m)

=

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1{
d

dt

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq − ũ (t, ℓ+ 1)

∫ ℓ+1

ℓ

ũ (t, q) dq

+

∫ ℓ+1

ℓ

(
ũ2 − µ (ρ̃) ∂mũ+ ρ̃γ−1 − cµ (ρ̃) ∂2mmψ (ρ̃)

)
(t, q) dq

}
(2.21)

From (2.12), we get

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1
d

dt

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq =

d

dt





(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 ∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq





+

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−2(∫ ℓ+1

ℓ

d

dt

dq

ρ̃ (t, q)

)
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=
d

dt





(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 ∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq



+

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−2

(ũ (t, ℓ+ 1)− ũ (t, ℓ))

(2.22)

Owing to (2.21) and (2.22) we get that

d

dt

{∫ m

ℓ

ũ+ r1ψ(ρ̃) (t,m)

}
− (1− r1) ρ̃µ (ρ̃) ∂

2
mm

{∫ m

ℓ

ũ+ r1ψ(ρ̃) (t,m)

}
+ ρ̃γ (t,m)

=
d

dt





(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 ∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq





+

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−2

(ũ (t, ℓ+ 1)− ũ (t, ℓ))

+

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 {
−ũ (t, ℓ+ 1)

∫ q

ℓ

ũ (t, q′) dq′ +

∫ ℓ+1

ℓ

(
ũ2 − µ(ρ̃)∂mũ+ ρ̃γ−1 − cµ(ρ̃)∂2mmψ(ρ̃)

)
(t, q) dq

}

Now, fix N ∈ Z and recalling that the above identity holds for all ℓ ∈ R, we integrate w.r.t. ℓ on [N,N + 1] in order
to obtain that

d

dt

{∫ N+1

N

(∫ m

ℓ

ũ

)
dℓ+ r1ψ(ρ̃) (t,m)

}
− (1− r1) ρ̃µ (ρ̃) ∂

2
mm

{∫ N+1

N

(∫ m

ℓ

ũ

)
dℓ+ r1ψ(ρ̃) (t,m)

}
+ ρ̃γ (t,m)

=
d

dt





∫ N+1

N

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 ( ∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq
)
dℓ





+

∫ N+1

N



∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−2

(ũ (t, ℓ+ 1)− ũ (t, ℓ))


 dℓ

+

∫ N+1

N

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 {
−ũ (t, ℓ+ 1)

∫ q

ℓ

ũ (t, q′) dq′ +

∫ ℓ+1

ℓ

(
ũ2 − µ(ρ̃)∂mũ+ ρ̃γ−1 − cµ(ρ̃)∂2mmψ(ρ̃)

)
(t, q) dq

}
dℓ

(2.23)

Observe that the term appearing in the RHS depends only on time. In the following lines, we analyze the different
terms appearing in the right hand side of the previous inequality and we want to prove that (2.23) implies that

d

dt

{∫ N+1

N

(∫ m

ℓ

ũdℓ

)
+ r1ψ(ρ̃) (t,m)

}
− (1− r1) ρ̃µ (ρ̃) ∂

2
mm

{∫ N+1

N

(∫ m

ℓ

ũdℓ

)
+ r1ψ(ρ̃) (t,m)

}

+ρ̃γ (t,m) ≤ dΓ

dt
(t) ,

where Γ is such that
Γ (t) ≤ C (Ec) (1 + t) , (2.24)

for some constant that depends only on Ec. Let us write that

cµ(ρ̃)∂2mmψ(ρ̃) = r1µ(ρ̃)r0∂
2
mmψ(ρ̃) = −r1µ(ρ̃)∂mũ+ r1µ(ρ̃)∂mṽ0

such that we get using Proposition 2.3.1

∫ N+1

N

∫ ℓ+1

ℓ

(
ũ2 − µ(ρ̃)∂mũ+ ρ̃γ−1 − cµ(ρ̃)∂2mmψ(ρ̃)

)
(t, q) dqdℓ

=

∫ N+1

N

∫ ℓ+1

ℓ

(
ũ2 + ρ̃γ−1

)
(t, q) dq − (1− r1)

∫ N+1

N

∫ ℓ+1

ℓ

µ(ρ̃)∂mũdℓ− r1

∫ N+1

N

∫ ℓ+1

ℓ

µ(ρ̃)∂mṽ0dℓ
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≤ (γ + 1)Ec + γ + (1− r1)

∫ N+1

N

∫ ℓ+1

ℓ

|µ(ρ̃)∂mũ| dℓ+ r1

∫ N+1

N

∫ ℓ+1

ℓ

|µ(ρ̃)∂mṽ0| dℓ. (2.25)

Using Proposition 2.3.1 and hypothesis (µ3) we get that

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 ∫ ℓ+1

ℓ

|µ(ρ̃)∂mũ| ≤
(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1(∫ ℓ+1

ℓ

ρ̃−1µ (ρ̃)

) 1
2
(∫ ℓ+1

ℓ

ρ̃µ(ρ̃)(∂mũ)
2

) 1
2

≤ C (Ec, γ) +

∫ ℓ+1

ℓ

ρ̃µ(ρ̃)(∂mũ)
2.

Thus, we get that

∫ N+1

N

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 ∫ ℓ+1

ℓ

|µ(ρ̃)∂mũ| dℓ ≤ C (Ec, γ) +

∫ N+1

N

(∫ ℓ+1

ℓ

ρ̃µ(ρ̃)(∂mũ)
2

)
dℓ

We may treat in the same manner the last term appearing in (2.25). Thus we get that

∫ N+1

N





(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 ∫ ℓ+1

ℓ

(
ũ2 − µ(ρ̃)∂mũ+ ρ̃γ−1 − cµ(ρ̃)∂2mmψ(ρ̃)

)
(t, q) dq



 dℓ

≤ C (Ec, γ) +

∫ N+1

N

(∫ ℓ+1

ℓ

ρ̃µ(ρ̃)(∂mũ)
2

)
dℓ+

∫ N+1

N

(∫ ℓ+1

ℓ

ρ̃µ(ρ̃)(∂mṽ0)
2

)
dℓ. (2.26)

Next, using Proposition 2.3.1 we get that

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1{
ũ (t, ℓ+ 1)

∫ ℓ+1

ℓ

ũ (t, q′) dq′

}

≤ 4ũ (t, ℓ+ 1)E
1
2
c (2 (γ − 1)Ec + γ)

1
γ−1 ≤ C (Ec, γ) |ũ (t, ℓ+ 1)| , (2.27)

respectively

∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−2

(ũ (t, ℓ+ 1)− ũ (t, ℓ))

≤ C (Ec, γ) (|ũ (t, ℓ+ 1)|+ |ũ (t, ℓ)|) . (2.28)

We thus get that

∫ N+1

N





(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1(
−ũ (t, ℓ+ 1)

∫ ℓ+1

ℓ

ũ (t, q′) dq′

)
 dℓ+

+

∫ N+1

N





[∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq

](∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−2

(ũ (t, ℓ+ 1)− ũ (t, ℓ))



 dℓ

≤ C (Ec, γ)

∫ N+1

N

(|ũ (t, ℓ+ 1)|+ |ũ (t, ℓ)|) dℓ ≤ C (Ec, γ) . (2.29)

Obviously, for all t ≥ 0 we have that

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 ∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũdq

)
dq ≤ C (Ec, γ) . (2.30)

Gathering the estimates (2.26), (2.29), (2.30) along with the maximum principle we see that
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∂

∂t

{∫ N+1

N

(∫ m

ℓ

ũdℓ

)
+ r1ψ(ρ̃) (t,m)

}

− (1− r1) ρ̃µ (ρ̃) ∂
2
mm

{∫ N+1

N

(∫ m

ℓ

ũdℓ

)
+ r1ψ(ρ̃) (t,m)

}
+ ρ̃γ (t,m) ≤ dΓ

dt
(t) (2.31)

We denote by

Θ (t,m) =

∫ N+1

N

(∫ m

ℓ

ũdℓ

)
+ r1ψ(ρ̃) (t,m)− Γ (t)

and we see that (2.31) implies that

∂Θ

∂t
(t,m)− (1− r1) ρ̃µ (ρ̃) ∂

2
mmΘ(t,m) ≤ 0.

Recall the conclusion of Corollary 2.3.1, let m1 (t,N) ∈ [N − 1, N ] and m2 (t,N) ∈ [N + 1, N + 2] such that

i ∈ {1, 2} ∀s ∈ [0, t] : ρ (s,mi (t,N)) ≤ C (t, Ec, ‖ρ0‖L∞) .

It then follows that
Θ (s,mi (t,N)) ≤ C̄ (t, Ec, ‖ρ0‖L∞) (2.32)

Using a maximum-principle, we aim at showing that Θ is bounded on the whole interval ∀m ∈ [m1 (t,N) ,m2 (t,N)],
namely

∀s ∈ [0, t] : Θ (s,m) ≤ max

{
sup

[N−1,N+2]

Θ(0,m) , C̄ (t, Ec, ‖ρ0‖L∞)

}
.

consider

A =

{
s ∈ (0, t) : sup

m∈[m1(t,N),m2(t,N)]

Θ(s,m) > max

{
sup

[N−1,N+2]

Θ(0,m) , C̄ (t, Ec, ‖ρ0‖L∞)

}}
(2.33)

where C̄ (t, Ec, ‖ρ0‖L∞) is the same constant as in (2.32). The function

s→ sup
m∈[m1(t,N),m2(t,N)]

Θ(s,m)

is continuous on [0, t] and therefore the set A appearing in (2.33) is open and therefore it is the union of a at most
countable union of open intervals I. Now, there are two ingredients that put together imply that the set A is empty:

❼ In each of the endpoint of such an interval, say I = (tI,g, tI,d) we have that

sup
m∈[m1(t,N),m2(t,N)]

Θ(tI,g,m) =





sup
m∈[m1(t,N),m2(t,N)]

Θ(0,m) if tI,g = 0,

max
{
sup[N−1,N+2] Θ(0,m) , C̄ (t, Ec, ‖ρ0‖L∞)

}
if tI,g > 0

(2.34)

while

sup
m∈[m1(t,N),m2(t,N)]

Θ(tI,d,m) = max

{
sup

[N−1,N+2]

Θ(0,m) , C̄ (t, Ec, ‖ρ0‖L∞)

}
.

This fact and (2.32) imply that for all s ∈ I the supremum over [m1 (t,N) ,m2 (t,N)] of Θ (s,m) is achieved
in the interior of the segment [m1 (t,N) ,m2 (t,N)] i.e.

∀s ∈ I ∃m (s) ∈ (m1 (t,N) ,m2 (t,N)) such that Θ (s,m (s)) = sup
m∈[m1(t,N),m2(t,N)]

Θ(s,m) .
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❼ Classical considerations lead to the fact that the function s→ Θ(s,m (s)) is differentiable almost everywhere
on I w.r.t. s and that

d

ds
[Θ (s,m (s))] =

∂Θ

∂s
(s,m (s)) .

The fact that m (s) is a maximum point achieved in the interior of [m1 (t,N) ,m2 (t,N)] implies that

∂2mmΘ(s,m (s)) ≤ 0.

Using the above relations we see that s → Θ(s,m (s)) is non-increassing on I and therefore it is controlled by

the value achieved in tI,g which is, in turn controlled by max

{
sup

[N−1,N+2]

Θ(0,m) , C̄ (t, Ec, ‖ρ0‖L∞)

}
, see (2.34).

We thus obtain a contradiction of the very definition of I. The contradiction comes from the fact that we assumed
the set A defined in (2.33) in non-empty. Therefore, for all s ∈ [0, t] and all m ∈ [m1 (t,N) ,m2 (t,N)] we have that

Θ (s,m) ≤ max

{
sup

[N−1,N+2]

Θ(0,m) , C̄ (t, Ec, ‖ρ0‖L∞)

}
.

Since [N,N + 1] ⊂ [m1 (t,N) ,m2 (t,N)] and N ∈ Z and t > 0 where chosen arbitrarily we conclude that

Θ (t,m) ≤ C (t, Ec, ‖ρ0‖L∞) for all m ∈ R.

Owing to the definition of Θ (t,m), the estimate (2.24) on Γ, the energy estimates and the hypothesis (µ1) and (µ2)
we conclude that there exists a constant such that

ρ̃ (t,m) ≤ C (t, Ec, ‖ρ0‖L∞) for all m ∈ R. (2.35)

In order to prove the second part of Proposition 2.4.1, let us recall that relation (2.23) when c = 0 reads

d

dt

{∫ N+1

N

(∫ m

ℓ

ũ

)
dℓ+ r1ψ(ρ̃) (t,m)

}
+ ρ̃γ (t,m)

=
d

dt





∫ N+1

N

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 ( ∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq
)
dℓ





+

∫ N+1

N



∫ ℓ+1

ℓ

(
1

ρ̃ (t, q)

∫ q

ℓ

ũ

)
dq

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−2

(ũ (t, ℓ+ 1)− ũ (t, ℓ))


 dℓ

+

∫ N+1

N

(∫ ℓ+1

ℓ

dq

ρ̃ (t, q)

)−1 {
−ũ (t, ℓ+ 1)

∫ q

ℓ

ũ (t, q′) dq′ +

∫ ℓ+1

ℓ

(
ũ2 − µ(ρ̃)∂mũ+ ρ̃γ−1

)
(t, q) dq

}
dℓ (2.36)

for all N ∈ Z and for all m ∈ [N,N + 1]. Hypothesis (µ5) is needed in order to have the validity of Proposition
2.3.2 in order to apply the maximum principle. However, as one can see from relation (2.36), the situation for the
NS system is simpler: we just integrate in time 2.3.2 and proceed exactly as in estimates (2.26),(2.27), (2.30) in
order to conclude that the validity of (2.35).

2.5 Bounds for the effective velocities

In the following, we will deduce a one sided inequality concerning ṽ1, the equation of which can be put under the
form

∂tṽ1 − (1− r1) ∂m (ρ̃µ (ρ̃) ∂mṽ1) +
γρ̃γ

r1µ (ρ̃)
(ṽ1 − ũ) = 0. (2.37)

Lemma 2.5.1 Assume that µ satisfies the hypothesis (µ1), (µ2), (µ3) and (µ6). Then, the following estimates hold
true:
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1. In the general NSK case: we also suppose that (µ5) holds true. Then, we have that for all m ∈ R

ṽ1 (t,m) ≤ max

{
sup
m∈R

ṽ1 (0,m) , 0

}
+ (1 + t)C (Ec)

+ C (Ec, γ)

∫ t

0

sup
q∈R

Φ

(
1

ρ̃ (s, q)

)(∫ +∞

−∞

ρ̃ (s)µ (ρ̃ (s)) |∂mũ (s)|2
) 1

2

ds

2. In the case of the NS system: we do not need to impose (µ5) and, moreover, the following more precise
statement holds true for all m ∈ R:

ṽ1 (t,m) ≤ ṽ1 (0,m) + (1 + t)C (Ec)

+ C (Ec, γ)

∫ t

0

sup
q∈R

Φ

(
1

ρ̃ (s, q)

)(∫ +∞

−∞

ρ̃ (s)µ (ρ̃ (s)) |∂mũ (s)|2
) 1

2

ds

Corollary 2.5.1 Assume that µ satisfies the hypothesis (µ1), (µ2), (µ3) and (µ6). Then, the following estimates
hold true:

1. In the general NSK case: we also suppose that (µ5) holds true. For all x ∈ R we have that

v1 (t, x) = u (t, x) + r1∂xϕ (ρ) (t, x)

≤ max

{
sup
x∈R

(u0 (x) + r1∂xϕ (ρ0 (x))) , 0

}
+ C (Ec) (1 + t)

+ C (Ec, γ)

∫ t

0

sup
z∈R

Φ

(
1

ρ (s, z)

)(∫ +∞

−∞

µ (ρ (s, z)) |∂xu (s, z)|2 dz
) 1

2

ds. (2.38)

2. In the case of the NS system: we do not need to impose (µ5) and for all x ∈ R we have that

v1 (t, x) = u (t, x) + r1∂xϕ (ρ) (t, x)

≤ u0 (x) + r1∂xϕ (ρ0) (x) + C (Ec) (1 + t)

+ C (Ec, γ)

∫ t

0

sup
z∈R

Φ

(
1

ρ (s, z)

)(∫ +∞

−∞

µ (ρ (s, z)) |∂xu (s, z)|2 dz
) 1

2

ds. (2.39)

Remark 2.5.1 We mention that this is the key estimate leading to the fact that the density is bounded away from
vacuum. In some sense, in the same way as working with a primitive for the momentum equation leads to an upper
bound for the density, working with a primitive of the equation of the effective velocity will enable us to obtain a
lower bound for the density.

Remark 2.5.2 The local nature of the estimate (2.39) with respect to the initial data allows us to show that, in the
case of the NS system, the density is bounded away from vacuum without using any information on the derivatives
of ρ0.

Proof of Lemma 2.5.1: Let us notice that for all t > 0 and m, q ∈ [N,N + 1] we have that

ũ (t,m)− ũ (t, q) =

∫ m

q

∂mũ ≤
(∫ m

q

1

ρ̃µ (ρ̃)

) 1
2
(∫ m

q

ρ̃µ (ρ̃) |∂mũ|2
) 1

2

=

(∫ m

q

1

ρ̃
Λ

(
1

ρ̃

)) 1
2
(∫ m

q

ρ̃µ (ρ̃) |∂mũ|2
) 1

2

≤
(∫ m

q

1

ρ̃

) 1
2
(∫ m

q

ρ̃µ (ρ̃) |∂mũ|2
) 1

2
(
1 + sup

ℓ∈R

Φ

(
1

ρ̃ (t, ℓ)

))
, (2.40)
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where we recall that Λ and Φ are defined in (1.23) and that hypothesis (µ6) reads:

∀τ > 0 : Λ (τ) =
1

µ

(
1

τ

) ≤ (1 + Φ (τ))
2
.

Integrating the relation (2.40) w.r.t. q on [N,N + 1] and using Proposition 2.3.1 yields

ũ (t,m) ≤
∫ N+1

N

|ũ (t, q)| dq +
(
1 + sup

q∈R

Φ

(
1

ρ̃ (t, q)

))∫ N+1

N

(∫ m

q

1

ρ̃

) 1
2
(∫ m

q

ρ̃µ (ρ̃) |∂mũ|2
) 1

2

dq

≤ C (Ec) + C (Ec, γ)

(
1 + sup

q∈R

Φ

(
1

ρ̃ (t, q)

))(∫ +∞

−∞

ρ̃µ (ρ̃) |∂mũ|2
) 1

2

. (2.41)

Since m ∈ [N,N + 1], the RHS of the above estimate is independent of N and N was arbitrarly fixed we conclude
that (2.41) holds true for all m ∈ R. Using (2.41) in (2.37) along with the fact that ρ̃ is bounded and (µ3), we
obtain that

∂tṽ1 − (1− r1) ∂m (ρ̃µ (ρ̃) ∂mṽ1) +
γρ̃γ

r1µ (ρ̃)
ṽ1

≤ C (Ec) + C (Ec, γ)

(
1 + sup

q∈R

Φ

(
1

ρ̃ (t, q)

))(∫ +∞

−∞

ρ̃µ (ρ̃) |∂mũ|2
) 1

2

. (2.42)

We denote by

Ψ (t) = tC (Ec) + C (Ec, γ)

∫ t

0

(
1 + sup

q∈R

Φ

(
1

ρ̃ (s, q)

))(∫ +∞

−∞

ρ̃µ (ρ̃) |∂mũ|2
) 1

2

ds,

the primitive vanishing at t = 0 of the RHS term appearing in (2.42). The inequality (2.42) can be put under the
following form:

d

dt
(ṽ1 −Ψ)− (1− r1) ∂m (ρ̃µ (ρ̃) ∂m(ṽ1 −Ψ)) +

γρ̃γ

r1µ (ρ̃)
(ṽ1 −Ψ) ≤ − γρ̃γ

r1µ (ρ̃)
Ψ ≤ 0.

We remark that owing to the fact that ∫

R

ṽ21 (t,m) dm <∞,

we have that for all t ≥ 0:
lim

|m|→∞
(ṽ1 (t,m)−Ψ(t)) = −Ψ(t) ≤ 0.

The maximum principle then implies that

ṽ1 (t,m)−Ψ(t) ≤ max

{
sup
q∈R

ṽ1 (0, q) , sup
s∈[0,t]

(−Ψ(s))

}
≤ max

{
sup
q∈R

ṽ1 (0, q) , 0

}

and accordingly we get that

ṽ1 (t,m) ≤ max

{
sup
q∈R

ṽ1 (0, q) , 0

}
+Ψ(t)

≤ max

{
sup
q∈R

ṽ1 (0, q) , 0

}
+ C (t, Ec)

+ C (t, Ec)

∫ t

0

sup
q∈R

Φ

(
1

ρ̃ (s, q)

)(∫ +∞

−∞

ρ̃ (s)µ (ρ̃ (s)) |∂mũ (s)|2
) 1

2

ds. (2.43)
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In order to prove the second part of Lemma 2.5.1, we remark that in the case of the Navier-Stokes system i.e.
r1 (c) = 1, with c = 0 we can get a much more precise estimate since, in this case, (2.37) does not have a diffusion
operator. Thus, we see that there is no need to invoke the maximum principle and the estimate is localized: for all
m ∈ R we get using (2.37), (2.35), (µ3), (2.41) that

ṽ1 (t,m) ≤ ṽ1 (0,m) +

∫ t

0

γρ̃γ (s,m)

r1µ (ρ̃ (s,m))
ũ (s,m) exp

(
−
∫ t

s

γρ̃γ

µ (ρ̃)

)
ds

≤ ṽ1 (0,m) + C (t, Ec)

∫ t

0

‖ũ (s)‖L∞ ds

≤ ṽ1 (0,m) + C (t, Ec) + C (Ec)

∫ t

0

(
1 + sup

q∈R

Φ

(
1

ρ̃ (s, q)

))(∫ +∞

−∞

ρ̃ (s)µ (ρ̃ (s)) |∂mũ (s)|2
) 1

2

ds

≤ ṽ1 (0,m) + C (t, Ec)

+ C (Ec, γ)

∫ t

0

sup
q∈R

Φ

(
1

ρ̃ (s, q)

)(∫ +∞

−∞

ρ̃ (s)µ (ρ̃ (s)) |∂mũ (s)|2
) 1

2

ds.

This concludes the proof of Lemma 2.5.1�
The result announced in Corollary is obtained just by returning back to the Eulerian variables, taking in

consideration that for all x ∈ R it holds true that

v1 (t, x) = ṽ1 (t,m (t, x))

where m (t, x) is the inverse of the function m→ X(t, Y (m)).
In the next section we show how to use the estimates provided by Corollary 2.5.1 in order to obtain the fact

that the density is bounded away from vacuum.

2.6 Lower bound for the density

In the following, we show how it is possible to find a lower bound for the density with the use of the inequality
(2.43). At this point, we need an Eulerian-equivalent for Proposition 2.3.1. We claim that:

Proposition 2.6.1 Consider ℓ ∈ R. Then, for all t ≥ 0 there exists a point y (t, ℓ) ∈ [ℓ, ℓ+ 2E0] such that

ρ (t, y (t, ℓ)) ≥ π−1 (1/2) ,

where we recall that π (ρ) = ρe (ρ).

Proof of Proposition 2.6.1. Recall that according to the energy inequality for all t ≥ 0 we have

∫ ℓ+2E0

ℓ

ρ (t, x) e (ρ (t, x)) dx ≤ E0.

Assume that for all x ∈ [ℓ, ℓ+ 2E0] one has
ρ (t, x) < ε,

with 0 < ε ≤ 1 then, as the function π is strictly decreasing on [0, 1] we find that

π (ρ (t, x)) ≥ π (ε) .

Integrating the previous inequality on [ℓ, ℓ+ 2E0] yields

E0 ≥ 2π (ε)E0,

such that
ε ≥ π−1 (1/2) ,

with π−1 (1/2) is here the unique element α of [0, 1] such that π(α) = 1
2 . The conclusion follows. �

We are now in the position of obtaining a lower bound for the density.
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Proposition 2.6.2 Assume that µ satisfies the hypothesis (µ1), (µ2), (µ3), (µ4), (µ6) and (µ7).

1. In the general NSK case we also suppose that (µ5) holds true. Suppose that

a.e. x ∈ R : u0 (x) + ∂xϕ (ρ0 (x)) ≤M0,

with M0 ∈ R. Then, we have that for all x ∈ R:

C

(
t, Ec,M0,

∥∥∥∥(ρ0,
1

ρ0
)

∥∥∥∥
L∞

)
≤ ρ (t, x) . (2.44)

2. In the case when c = 0, i.e. for the NS system, we have that for all x ∈ R:

C

(
t, Ec,

∥∥∥∥(ρ0,
1

ρ0
)

∥∥∥∥
L∞

)
≤ ρ (t, x) . (2.45)

Remark 6 At this level, it is important to mention that we can obtain similar estimates if we assume that

M1 ≤ u0 + r1 (c) ∂xϕ(ρ0)

for some M1 ∈ R. It suffices to repeat the same argument except that we take y ∈ [N − 2E0(c), N ] and we integrate
between x and y.

Remark 7 In the case of the NSK system, we also have that

u (t, x) + r1 (c) ∂xϕ (ρ (t, x)) ≤ C

(
t, Ec,M0,

∥∥∥∥(ρ0,
1

ρ0
)

∥∥∥∥
L∞

)
(2.46)

Proof of Proposition 2.6.2: As before, let N ∈ Z, consider any x ∈ [N,N + 1] and y ∈ [N + 1, N + 1 + 2Ec] (we
have in particular x ≤ y) and integrate (2.38) between x and y in order to obtain that

∫ y

x

u (t, z) dz+r1(ϕ (ρ(t, y))− ϕ (ρ (t, x))

≤ (y − x)

(
max(M0, 0) + C (Ec) (1 + t)

+ C (Ec, γ)

∫ t

0

sup
z∈R

Φ

(
1

ρ (s, z)

)(∫ +∞

−∞

µ (ρ (s, z)) |∂xu (s, z)|2 dz
) 1

2

ds

)

≤ (2Ec + 1)max(M0, 0) + C (Ec) (1 + t)

+ C (Ec, γ)

∫ t

0

sup
z∈R

Φ

(
1

ρ (s, z)

)(∫ +∞

−∞

µ (ρ (s, z)) |∂xu (s, z)|2 dz
) 1

2

ds. (2.47)

Using Proposition 2.6.1, there exists yN (t) ∈ [N + 1, N + 1 + 2Ec] with the property that

ρ (t, yN (t)) ≥ π−1 (1/2) .

We take y = yN (t) in (2.47) and recalling that

Φ (τ) = −ϕ
(
1

τ

)

we get that

r1Φ

(
1

ρ (t, x)

)
≤r1Φ

(
1

ρ (t, yN (t))

)
+ (2Ec + 1)max(M0, 0) + C (Ec, γ) (1 + t)

−
∫ yN (t)

x

u (t, z) dz + C (Ec, γ)

∫ t

0

sup
z∈R

Φ

(
1

ρ (t, z)

)(∫ +∞

−∞

µ (ρ) |∂xu|2
) 1

2

. (2.48)
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The only term that needs to be treated in (2.48) is the integral of u over [x, yN (t)]. This is done in the following
lines using hypothesis (µ7) we infer that for all ε > 0 we have:

−
∫ yN (t)

x

u (t, z) dz = −
∫ yN (t)

x

1√
ρ (t, z)

√
ρ (t, z)u (t, z) dz

≤
∫ yN (t)

x

1√
ρ (t, z)

∣∣∣
√
ρ (t, z)u (t, z)

∣∣∣ dz

≤
∫ yN (t)

x

(
1 + Φ

(
1

ρ (t, z)

))1−η ∣∣∣
√
ρ (t, z)u (t, z)

∣∣∣ dz

≤
(
1 + sup

z∈R

Φ

(
1

ρ (t, z)

))1−η ∫ yN (t)

x

∣∣∣
√
ρ (t, z)u (t, z)

∣∣∣ dz

≤
(
1 + sup

z∈R

Φ

(
1

ρ (t, z)

))1−η

(2Ec + 1)
1
2

√
Ec

≤ C (Ec, η)

4ε
+ ε sup

z∈R

Φ

(
1

ρ (t, z)

)
.

Thus, we get that for all x ∈ R and all ε > 0 we have that

r1Φ

(
1

ρ (t, x)

)
≤ C

(
t, Ec,M0,

∥∥∥∥(ρ0,
1

ρ0
)

∥∥∥∥
L∞

)

+
C (Ec, η)

4ε
+ ε sup

z∈R

Φ

(
1

ρ (t, z)

)

+ C (Ec, γ)

∫ t

0

sup
z∈R

Φ

(
1

ρ (t, z)

)(∫ +∞

−∞

µ (ρ) |∂xu|2
) 1

2

. (2.49)

Taking the supremum w.r.t. x ∈ R in the LHS, taking ε = r1/2 and using Grönwall’s inequality we obtain that

Φ

(
1

ρ (t, x)

)
≤ C

(
t, Ec,M0,

∥∥∥∥(ρ0,
1

ρ0
)

∥∥∥∥
L∞

)
.

Thus using the hypothesis (µ4) we get that ρ is bounded below and that we have for any (t, x) ∈ R+ × R

C

(
t, Ec,M0,

∥∥∥∥(ρ0,
1

ρ0
)

∥∥∥∥
L∞

)
≤ ρ (t, x) . (2.50)

The second part of Proposition 2.6.2 follows owing to the fact that in the case of the Navier-Stokes system, a
more precise information can be obtained (we recall that r1 = 1 in this case). Recall that according to (2.39), for
all x ∈ R we have that

v1 (t, x) = u (t, x) + r1∂xϕ (ρ) (t, x)

≤ u0 (x) + r1∂xϕ (ρ0) (x) + C(Ec, γ) (1 + t) (2.51)

+ C (Ec, γ)

∫ t

0

sup
z∈R

Φ

(
1

ρ (t, z)

)(∫ +∞

−∞

µ (ρ) |∂xu|2
) 1

2

. (2.52)

Choosing as above x ∈ [N,N + 1] , yN (t) ∈ [N + 1, N + 1 + 2Ec] with

ρ (t, yN (t)) ≥ π−1 (1/2)

and integrating we get that

∫ yN (t)

x

u (t, z) dz + r1Φ

(
1

ρ (t, x)

)
− r1Φ

(
1

ρ (t, yN (t))

)
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≤
∫ yN (t)

x

(u0 (z) + r1∂xϕ (ρ0) (z)) dz

C (Ec) (1 + t) + C (Ec, γ)

∫ t

0

sup
x∈R

Φ

(
1

ρ (t, x)

)(∫ +∞

−∞

µ (ρ) |∂xu|2
) 1

2

≤
∫ yN (t)

x

u0 (z) dz + r1 (ϕ (ρ0 (yN (t))− ϕ(ρ0(x))) + C (Ec, γ)

∫ t

0

sup
z∈R

Φ

(
1

ρ (t, z)

)(∫ +∞

−∞

µ (ρ) |∂xu|2
) 1

2

.

We deduce that

r1Φ

(
1

ρ (t, x)

)
≤ r1Φ

(
1

ρ (t, yN (t))

)

+

∫ yN (t)

x

u0 (z) dz + r1 {ϕ(ρ0(yN (t)))− ϕ (ρ0(x))}

−
∫ yN (t)

x

u (t, z) dz

+ C (Ec, γ)

∫ t

0

sup
x∈R

Φ

(
1

ρ (t, x)

)(∫ +∞

−∞

µ (ρ) |∂xu|2
) 1

2

,

from which it yields

r1Φ

(
1

ρ (t, x)

)
≤ r1Φ

(
1

ρ (t, yN (t))

)
+ (2E0 + 1)

1
2 ‖u0‖L2 + 2 sup

p∈[ 1
‖ρ0‖L∞

,‖ρ0‖L∞ ]

|ϕ (p)|

−
∫ yN (t)

x

u (t, z) dz

+ C (Ec, γ)

∫ t

0

sup
x∈R

Φ

(
1

ρ (t, x)

)(∫ +∞

−∞

µ (ρ) |∂xu|2
) 1

2

and since the terms on the RHS can be controlled we use Grönwall’s lemma in order to obtain that

Φ

(
1

ρ (t, x)

)
≤ C

(
t, Ec,

∥∥∥∥(ρ0,
1

ρ0
)

∥∥∥∥
L∞

)
,

from which we can deduce that

C

(
t, Ec,

∥∥∥∥(ρ0,
1

ρ0
)

∥∥∥∥
L∞

)
≤ ρ (t, x) .

This concludes the proof of Proposition 2.6.2. �
The estimate from (2.46) follows by combining the conclusion of Proposition 2.6.2 with the inequality (2.38).

2.7 Global existence of the approximate solutions

Now we can come back to the sequence of solution (ρn, un)n∈N of the Navier-Stokes Korteweg system (1.2) and of
the compressible Navier-Stokes system (1.1) constructed in the subsection 2.1. We recall that these are defined on
a finite time interval (0, Tn) for each n ∈ N.

In view of Proposition 2.4.1 and the estimate (2.19) from Remark 2.4.3 that follows we obtain that:

‖ρn(t, ·)‖L∞(R) ≤ C (t, Ec (ρ
n
0 , u

n
0 ) , ‖ρn0‖L∞) < +∞. (2.53)

for any n ∈ N and t ∈ (0, Tm). Next, owing to Proposition 2.6.2, and (2.35) we know that for all t ∈ (0, Tn) and
x ∈ R we have that: ∥∥∥∥

1

ρn (t, ·)

∥∥∥∥
L∞(R)

≤ C

(
t, Ec (ρ

n
0 , u

n
0 ) ,M

n
0 ,

∥∥∥∥
(
ρn0 ,

1

ρn0

)∥∥∥∥
L∞

)
,

‖ρn (t, ·)‖L∞(R) ≤ C (t, Ec (ρ
n
0 , u

n
0 ) , ‖ρn0‖L∞)

(2.54)
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where
vn1|t=0 ≤Mn

0 ,

with C a continuous function for the NSK system (there is no Mn
0 in the case of the NS system). Of course, owing

to subsection 2.1 we know that

Ec (ρ
n
0 , u

n
0 ) ,M

n
0 ,

∥∥∥∥
(
ρn0 ,

1

ρn0

)∥∥∥∥
L∞

are uniformly bounded in n and we thus deduce, that, for a larger C if necessary, we have that

‖ρn(t, ·)‖L∞(R) ≤ C (t, Ec (ρ0, u0) , ‖ρ0‖L∞) < +∞. (2.55)

and that ∥∥∥∥
1

ρn (t, ·)

∥∥∥∥
L∞(R)

≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
(2.56)

The blow-up criterion of the Theorem 2.1 and (2.55), (2.56) imply that for any n ∈ N we have Tn = +∞ and that
(2.55) and (2.56) hold true in fact for all t ≥ 0.

In the case of the NSK system, for all n ∈ N and all t ≥ 0 we also have

un + r1 (c) ∂xϕ (ρn0 ) ≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
(2.57)

2.8 Total variation estimates for solutions of the NSK system

Using the estimate (2.56) we deduce immediately for any n ∈ N, an estimate for the total variation of ϕ(ρn). Indeed
recall that (2.57) states that

un (t, x) + r1 (c) ∂xϕ (ρn (t, x)) ≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
(2.58)

This implies that for all n ∈ N, for all t ≥ 0, the function

x→
∫ x

0

un (t, z) dz + r1 (c)ϕ (ρn (t, x))− C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
x

is deacreasing and, taking in account (2.56), it is of bounded variation on any compact. Using the energy estimate
along with (2.56) we obtain that:

TV ([−L,L] , ϕ (ρn (t, x))) ≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
(1 + L) , (2.59)

for all t ≥ 0 and L > 0 with TV ([−L,L] , ϕ (ρn (t, ·))) the total variation of ϕn(t, ·) on [−L,L]. Moreover, we have
that

∂tϕ(ρ
n) = −un∂xϕ(ρn) +

µ (ρn)

ρn
∂xu

n

such that
∫ T

0

∫ L

−L

|∂tϕ(ρn)| ≤ ‖un‖L1
tL

∞
x

sup
t∈[0,T ]

TV ([−L,L] , ϕ(ρn(t, ·))) +
∥∥∥∥∥
µ

1
2 (ρn)

ρn

∥∥∥∥∥
L∞(R+×R)

∥∥∥µ
1
2 (ρn)∂xu

n
∥∥∥
L1([0,T ]×[−L,L])

Using (2.56), (2.55), (2.59) and the energy estimate, we deduce that ϕ(ρn) belongs uniformly to BVloc ([0,∞)× R)
namely

‖ϕ(ρn)‖BV ([0,t]×[−L,L]) ≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
. (2.60)

From (2.56), (2.55) we deduce that for any T, L > 0 we have:

‖ρn‖BV ([0,T ]×[−L,L]) ≤ C

(
t, L,Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
. (2.61)

with C(T, L) independent on n.
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3 Estimates in the Hoff regularity class

We recall the Eulerian effective velocity’s equation with v̇0 = ∂tv0 + u∂xv0:

ρv̇0 − (1− r0) ∂x(µ (ρ) ∂xv0) + ∂xρ
γ = 0. (3.1)

In the computations that follow, we drop the 0−lowerscript of v0 and r0 in order to ease readability. As it is by now
well-known, once we have uniform bounds for the density we can obtain some higher order estimates by using the
energy-type functionals first considered by Hoff in [Hof87] (see also [Hof98]). These are gathered in the following
proposition:

Proposition 3.0.1 The following estimates hold true:

A (ρ, v0) =

∫ t

0

∫

R

σρ |v̇0|2 +
(1− r0)

2
σ (t)

∫

R

µ (ρ (t)) (∂xv0 (t))
2 ≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
,

B (ρ, v0) =
1

2

∫

R

σ2 (t) ρ (t) v̇20 (t) + (1− r0)

∫ t

0

∫

R

σ2µ (ρ) (∂xv̇0)
2 ≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
,

where σ (t) = min {1, t}. As consequence we deduce that

∫ t

0

σ (t) ‖∂xv0‖2L∞ + σ (t)
1
2 ‖∂xv0(t)‖L∞ ≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
.

Remark 3.0.1 In the case of the Navier-Stokes system (1.1) the functionals A (ρ, u) and B (ρ, u) are bounded by

functions of the form C
(
t, Ec (ρ0, u0) ,

∥∥∥
(
ρ0,

1
ρ0

)∥∥∥
L∞

)
.

3.1 The first Hoff energy

Multiplying the equation (3.1) with v̇ and after some cumbersome yet straightforward computations we get that

∫

R

ρ |v̇|2 + d

dt

{
(1− r)

2

∫

R

µ (ρ) (∂xv)
2 −

∫

R

ργ∂xv

}

=
1− r

2

∫

R

(µ (ρ) + ρµ′ (ρ)) ∂xu (∂xv)
2
+ γ

∫

R

ργ∂xu∂xv.

We multiply the previous identity with σ (t) = min {1, t} and, by time integration we get that

∫ t

0

∫

R

σρ |v̇|2 + (1− r)

2
σ (t)

∫

R

µ (ρ (t)) (∂xv (t))
2

= σ (t)

∫

R

(ρ (t)
γ − 1)∂xv (t) +

∫ min{1,t}

0

{
(1− r)

2

∫

R

µ (ρ) (∂xv)
2 −

∫

R

(ργ − 1)∂xv

}

+
1− r

2

∫ t

0

∫

R

σ (µ (ρ) + ρµ′ (ρ)) ∂xu (∂xv)
2
+ γ

∫ t

0

∫

R

σργ∂xu∂xv.

Also, we write that

1

2

∫ t

0

∫

R

σ (µ (ρ) + ρµ′ (ρ)) ∂xu (∂xv)
2
=

1

2

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
∂xu (µ (ρ) ∂xv − (ργ − 1))

2

+
1

2

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
(ργ − 1)2∂xu

+

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
(ργ − 1)∂xu∂xv.
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Combining the last two identities we get that

A (ρ, v) =

∫ t

0

∫

R

σρ |v̇|2 + (1− r)

2
σ (t)

∫

R

µ (ρ (t)) (∂xv (t))
2

= σ (t)

∫

R

(ρ (t)
γ − 1)∂xv (t) +

∫ min{1,t}

0

{
(1− r)

2

∫

R

µ (ρ) (∂xv)
2 −

∫

R

(ργ − 1)∂xv

}

+

∫ t

0

∫

R

σγργ∂xu∂xv + (1− r)

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
(ργ − 1) ∂xu∂xv

+
1− r

2

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
(ργ − 1)2∂xu

+
1− r

2

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
(µ (ρ) ∂xv − (ργ − 1))

2
∂xu. (3.2)

Owing to the basic energy estimate and using (2.56), (2.55), the following inequality holds true:

∫ min{1,t}

0

{
(1− r)

2

∫

R

µ (ρ) (∂xv)
2 −

∫

R

(ργ − 1)∂xv

}

+

∫ t

0

∫

R

σγργ∂xu∂xv + (1− r)

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
(ργ − 1) ∂xu∂xv

+
1− r

2

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
(ργ − 1)2∂xu ≤ C (t) . (3.3)

Next using again energy estimate and ,(2.56), (2.55), we have that

σ (t)

∫

R

(ρ (t)
γ − 1)∂xv (t) ≤ ε

1− r

2
σ (t)

∫

R

µ (ρ (t)) (∂xv (t))
2 +

1

2ε (1− r)
σ (t)

∫

R

(ρ (t)
γ − 1)2

µ (ρ (t))

≤ ε
1− r

2
σ (t)

∫

R

µ (ρ (t)) (∂xv (t))
2 + C (t) . (3.4)

Finally, let us observe that combining (2.56), (2.55), energy estimate and Young inequality we get for any ε > 0

1

2

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
(µ (ρ) ∂xv − (ργ − 1))

2
∂xu

≤ 1

2

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
|∂xu| |µ (ρ) ∂xv − (ργ − 1)| ‖µ (ρ) ∂xv − (ργ − 1)‖L∞

≤ 1

2

∫ t

0

∫

R

σ
(µ (ρ) + ρµ′ (ρ))

(µ (ρ))2
|∂xu| |µ (ρ) ∂xv − (ργ − 1)| ‖µ (ρ) ∂xv − (ργ − 1)‖

1
2

L2 ‖∂x (µ (ρ) ∂xv − ργ)‖
1
2

L2

≤ 1

2
C (t)

∫ t

0

σ ‖ρv̇‖
1
2

L2 ‖∂xu‖L2 ‖µ (ρ) ∂xv − (ργ − 1)‖
3
2

L2

≤ ε

2

∫ t

0

σ ‖ρv̇‖2L2 +
C (t)

2ε

∫ t

0

‖∂xu‖
4
3

L2 σ ‖µ (ρ) ∂xv‖2L2 . (3.5)

Using in the identity (3.2) the estimates (3.3), (3.4) and (3.5) along with Gronwall’s lemma we get that

∫ t

0

∫

R

σρ |v̇0|2 +
(1− r)

2
σ (t)

∫

R

µ (ρ (t)) (∂xv0 (t))
2 ≤ C (t) . (3.6)

As it is well known from previous works [Hof87], [BH20] we can already recover that

∫ t

0

‖∂xv0‖L∞ ≤
(∫ t

0

σ− 1
2 (τ) dτ

) 1
2
(∫ t

0

σ (t) ‖∂xv0‖2L∞

) 1
2

.

Furthermore for the NSK system we have similar estimate for v1 but these estimates are not uniform in c > 0.
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3.2 The second Hoff energy

In the following lines, we aim at obtaining higher order estimates. In order to do so, we apply the operator ∂t+u∂x
to the equation of v0 (again we drop the 0−lower script) in order to obtain that

(∂t + u∂x) (ρv̇)− (1− r) (∂t + u∂x) ∂x (µ (ρ) ∂xv) + (∂t + u∂x) ∂xρ
γ = 0.

Multiplying with v̇ we see that

∫

R

∂t(ρv̇)v̇ =

∫

R

∂tρv̇
2 +

∫

R

ρ
d

dt

v̇2

2
=

1

2

d

dt

{∫

R

ρv̇2
}
+

1

2

∫

R

∂tρv̇
2

∫

R

(∂t + u∂x) (ρv̇) v̇ =
1

2

d

dt

{∫

R

ρv̇2
}
−
∫

R

ρv̇2∂xu.

Next, we have that

−
∫

R

(∂t + u∂x) ∂x (µ (ρ) ∂xv) v̇

=

∫

R

∂tµ (ρ) ∂xv∂xv̇ +

∫

R

µ (ρ) ∂x∂tv∂xv̇ −
∫

R

µ (ρ) ∂xv∂
2
xx (uv̇)

Let us deal with the last term

−
∫

R

µ (ρ) ∂xv∂xx(uv̇)

= −
∫

R

µ (ρ) ∂xv(u∂
2
xxv̇ + 2∂xu∂xv̇ + v̇∂2xxu)

=

∫

R

∂x(µ (ρ) ∂xvu)∂xv̇ − 2

∫

R

µ (ρ) ∂xv∂xu∂xv̇ −
∫

R

µ (ρ) v̇∂xv∂
2
xxu

=

∫

R

u∂x(µ (ρ))∂xv∂xv̇ +

∫

R

µ(ρ)∂x(u∂xv)∂xv̇ − 2

∫

R

µ (ρ) ∂xv∂xu∂xv̇ −
∫

R

µ (ρ) v̇∂xv∂
2
xxu

Putting togeather the last two relations, we get that

−
∫

R

(∂t + u∂x) ∂x (µ (ρ) ∂xv) v̇

=

∫

R

∂tµ (ρ) ∂xv∂xv̇ +

∫

R

µ (ρ) ∂x∂tv∂xv̇

+

∫

R

u∂x(µ (ρ))∂xv∂xv̇ +

∫

R

µ(ρ)∂x(u∂xv)∂xv̇ − 2

∫

R

µ (ρ) ∂xv∂xu∂xv̇ −
∫

R

µ (ρ) v̇∂xv∂
2
xxu

=

(∫

R

∂tµ (ρ) ∂xv∂xv̇ +

∫

R

u∂x(µ (ρ))∂xv∂xv̇

)
+

(∫

R

µ (ρ) ∂x∂tv∂xv̇ +

∫

R

µ(ρ)∂x(u∂xv)∂xv̇

)

− 2

∫

R

µ (ρ) ∂xv∂xu∂xv̇ −
∫

R

µ (ρ) v̇∂xv∂
2
xxu

= −
∫

R

ρµ′ (ρ) ∂xu∂xv∂xv̇ +

∫

R

µ (ρ) (∂xv̇)
2 − 2

∫

R

µ (ρ) ∂xv∂xu∂xv̇ −
∫

R

µ (ρ) v̇∂xv∂
2
xxu

= −
∫

R

ρµ′ (ρ) ∂xu∂xv∂xv̇ +

∫

R

µ (ρ) (∂xv̇)
2 −

∫

R

µ (ρ) ∂xv∂xu∂xv̇ −
∫

R

µ (ρ) ∂x (v̇∂xu) ∂xv

= −
∫

R

ρµ′ (ρ) ∂xu∂xv∂xv̇ +

∫

R

µ (ρ) (∂xv̇)
2 −

∫

R

µ (ρ) ∂xv∂xu∂xv̇ +

∫

R

v̇∂xu∂x(µ (ρ) ∂xv)

Next, let us take a look at

∫

R

(
∂x∂tρ

γ + u∂2xxρ
γ
)
v̇ = −

∫

R

∂tρ
γ∂xv̇ +

∫

R

u∂xxρ
γ v̇
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=

∫

R

u∂xρ
γ∂xv̇ + γ

∫

R

ργ∂xu∂xv̇ +

∫

R

u∂xxρ
γ v̇

= γ

∫

R

ργ∂xu∂xv̇ +

∫

R

u∂x(v̇∂xρ
γ)

= γ

∫

R

ργ∂xu∂xv̇ −
∫

R

v̇(∂xρ
γ)(∂xu)

We gather the last three relations in order to obtain

0 =
1

2

d

dt

{∫

R

ρv̇2
}
−
∫

R

ρv̇2∂xu

− (1− r)

∫

R

ρµ′ (ρ) ∂xu∂xv∂xv̇ + (1− r)

∫

R

µ (ρ) (∂xv̇)
2

− (1− r)

∫

R

µ (ρ) ∂xv∂xu∂xv̇ + (1− r)

∫

R

v̇∂xu∂x(µ (ρ) ∂xv)

+ γ

∫

R

ργ∂xu∂xv̇ −
∫

R

v̇(∂xρ
γ)(∂xu)

=
1

2

d

dt

{∫

R

ρv̇2
}
+ (1− r)

∫

R

µ (ρ) (∂xv̇)
2

− (1− r)

∫

R

(ρµ′ (ρ) + µ (ρ))∂xu∂xv∂xv̇ −
∫

R

ρv̇2∂xu+ γ

∫

R

ργ∂xu∂xv̇

+

∫

R

v̇∂xu∂x((1− r)µ (ρ) ∂xv − ργ).

We end up with

1

2

d

dt

{∫

R

ρv̇2
}
+ (1− r)

∫

R

µ (ρ) (∂xv̇)
2

= (1− r)

∫

R

(ρµ′ (ρ) + µ (ρ))∂xu∂xv∂xv̇ + γ

∫

R

ργ∂xu∂xv̇.

We multiply the last relation with σ2 (t) and we integrate in time in order to obtain

B (ρ, v) =
1

2

∫

R

σ2 (t) ρ (t) v̇2 (t) + (1− r)

∫ t

0

∫

R

σ2µ (ρ) (∂xv̇)
2

=
1

2

∫ 1

0

∫

R

σρv̇2 + (1− r)

∫ t

0

∫

R

σ2(ρµ′ (ρ) + µ (ρ))∂xu∂xv∂xv̇ + γ

∫ t

0

∫

R

σ2ργ∂xu∂xv̇ (3.7)

So, we see that owing to (3.6) we have that

1

2

∫ 1

0

∫

R

σρv̇2 ≤ C (t) . (3.8)

The second term in (3.7), we see that

(1− r)

∫ t

0

∫

R

σ2(ρµ′ (ρ) + µ (ρ))∂xu∂xv∂xv̇

=

∫ t

0

∫

R

σ2 (ρµ
′ (ρ) + µ (ρ))

µ (ρ)
(1− r) (µ (ρ) ∂xv − (ργ − 1)) ∂xu∂xv̇

+

∫ t

0

∫

R

σ2 (ρµ
′ (ρ) + µ (ρ))

µ (ρ)
(ργ − 1)∂xu∂xv̇. (3.9)

We observe that using (2.56), (2.55) and Young inequality

∫ t

0

∫

R

σ2 (ρµ
′ (ρ) + µ (ρ))

µ (ρ)
(ργ − 1)∂xu∂xv̇ + γ

∫ t

0

∫

R

σ2ργ∂xu∂xv̇
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≤ ε

∫ t

0

∫

R

σ2µ (ρ) (∂xv̇)
2 + C (t) . (3.10)

Also, we have for any ε > 0 by using again (2.56), (2.55, Young inequality) and Gagliardo-Nirenberg inequality
∫ t

0

∫

R

σ2 (ρµ
′ (ρ) + µ (ρ))

µ (ρ)
(1− r) (µ (ρ) ∂xv − (ργ − 1)) ∂xu∂xv̇

≤
∫ t

0

∫

R

σ2 ‖µ (ρ) ∂xv − (ργ − 1)‖
1
2

L2 ‖ρv̇‖
1
2

L2 ‖∂xu‖L2 ‖∂xv̇‖L2

≤ C (t)

∫ t

0

σ2 ‖∂xu‖2L2 ‖µ (ρ) ∂xv − (ργ − 1)‖L2

∥∥∥ρ
1
2 v̇
∥∥∥
L2

+ ε

∫ t

0

∫

R

σ2µ (ρ) (∂xv̇)
2

≤ C (t)

∫ t

0

σ2 ‖∂xu‖2L2

∥∥∥ρ
1
2 v̇
∥∥∥
2

L2
+ C (t)

∫ t

0

σ2 ‖∂xu‖2L2 ‖µ (ρ) ∂xv − (ργ − 1)‖2L2 + ε

∫ t

0

∫

R

σ2µ (ρ) (∂xv̇)
2 (3.11)

Putting together (3.6) , (3.7), (3.8), (3.9) , (3.10) , and (3.11) we get that

1

2

∫

R

σ2 (t) ρ (t) v̇2 (t) + (1− r)

∫ t

0

∫

R

σ2µ (ρ) (∂xv̇)
2 ≤ C (t) .

The control over
∥∥∥ 1
ρ

∥∥∥
L∞

, A (ρ, u) and B (ρ, u) gives us

σ (t)
1
2 ‖∂xv0(t)‖L∞ ≤ C (t) , (3.12)

for any t ≥ 0. The same estimate are again true for v1 for the NSK system but are not uniform in c > 0. This
concludes the proof of Proposition 3.0.1

3.3 End of proof of the main results

The sequence of solutions constructed in Section 2.1 (ρn, un)n∈N
are globally defined owing to the intermediary

results proved in Proposition 2.4.1, Proposition 2.6.2, the estimates from Proposition 3.0.1 and the remark that
follows. Using this, we may extract a subsequence that converges to a solution of the NS system (1.1). The fact
that the solution itself verifies the estimates announced in Theorem 1.1 is a consequence of the Fatou lemma. We
skip the technical details and we refer the reader to [MV08, JX08] for more details on this subject. It proves in
particular the Theorem 1.1.

Regarding Theorem 1.2, we skip the details showing that the approximate solution (ρn, un)n∈N converge up
to a subsequence to a unique solution (ρ, u) of the system (1.2) on [0, T ]. Again, the fact that the solution itself
verifies the estimates announced in Theorem 1.2 is a consequence of the Fatou lemma. One can consult in particular
[BH20].

In what Theorem 1.3 is concerned, we only mention that the only not so-classical estimates (2.60) and (2.61)
are used in order to justify the fact that the condition

uc (t, x) + r1 (c) ∂xϕ (ρc (t, x)) ≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
,

is obtained also in the limit c→ 0, namely

u+ ∂xϕ (ρ) ≤ C

(
t, Ec (ρ0, u0) ,M0,

∥∥∥∥
(
ρ0,

1

ρ0

)∥∥∥∥
L∞

)
,

in the sense of measures. The arguments concerning the weak convergence up to subsequence of the sequence
(ρc, uc)c>0 are the same as those in the proof of the Theorem 1.3. It is important to point out that in fact
(ρc, uc)c>0 converges weakly and not only up to a subsequence because (ρc, uc)c>0 has a unique accumulation point,
indeed the limit (ρ, u) when c goes to 0 is solution of the NS system and this solution is unique as we will see.

From the Hoff type estimates, we can deduce that ∂xu belongs to L2([0, T ], L∞(R)) for any T > 0. The
uniqueness of the solution (ρ, u) is then a consequence of the fact that on [0, T ], ∂xu belongs to L1([0, T1], L

∞). We
refer to [BH20] for the details of the proof in the case of the compressible Navier-Stokes system where we use a
Lagrangian formulation. The adaptation of the proof to the Navier-Stokes Korteweg system is direct.
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