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STATE-DEPENDENT TEMPERATURE CONTROL FOR LANGEVIN
DIFFUSIONS\ast 

XUEFENG GAO\dagger , ZUO QUAN XU\ddagger , AND XUN YU ZHOU\S 

Abstract. We study the temperature control problem for Langevin diffusions in the context of
nonconvex optimization. The classical optimal control of such a problem is of the bang-bang type,
which is overly sensitive to errors. A remedy is to allow the diffusions to explore other temperature
values and hence smooth out the bang-bang control. We accomplish this by a stochastic relaxed
control formulation incorporating randomization of the temperature control and regularizing its
entropy. We derive a state-dependent, truncated exponential distribution, which can be used to
sample temperatures in a Langevin algorithm, in terms of the solution to an Hamilton--Jacobi--
Bellman partial differential equation. We carry out a numerical experiment on a one-dimensional
baseline example, in which the Hamilton--Jacobi--Bellman equation can be easily solved, to compare
the performance of the algorithm with three other available algorithms in search of a global optimum.

Key words. Langevin diffusion, nonconvex optimization, stochastic relaxed control, entropy
regularization, Boltzmann exploration, HJB equation
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1. Introduction. Consider the problem of finding the global minimizer of a
nonconvex function f : \BbbR d \rightarrow \BbbR , where f is assumed to be differentiable. Traditional
algorithms such as gradient descent often end up at a local optimum. The simulated
annealing (SA) technique [19] has been developed to resolve the problem of algorithms
being trapped in local optima. The main thrust of an SA algorithm is exploration via
randomization: At each iteration, the algorithm randomly samples a solution close to
the current one and moves to it according to a (possibly time-dependent) probability
distribution, which in the literature is mostly exogenous as a predefined schedule. This
scheme allows for a more extensive search or exploration for the global optima with the
risk of moving to worse solutions at some iterations. The risk is, however, controlled
by slowly cooling down over time the ``temperature"" which is used to characterize the
level of exploration or randomization.

The Langevin algorithm applies the SA technique by adding an independent series
of Gaussian noises to the classical gradient descent algorithm, where the variance of
the noises is linearly scaled by a sequence of temperature parameters \{ \beta k\} which
control the level of exploration/randomization. The continuous-time version of the
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TEMPERATURE CONTROL FOR LANGEVIN DIFFUSIONS 1251

Langevin algorithm is the so-called overdamped (or first-order) Langevin diffusion
governed by a stochastic differential equation (SDE), where the temperature is now
a stochastic process \{ \beta (t) : t \geq 0\} . There is a large volume of literature on Langevin
diffusions for studying nonconvex optimization; see, to name just a few, [8, 14, 22].
The advantage of studying a diffusion process instead of a discrete-time iteration lies
in the simplicity and tractability of the former thanks to the many available analytical
tools such as stochastic calculus, stochastic control, and partial differential equations
(PDEs).

If we fix the temperature process in a Langevin diffusion to be a constant \beta > 0,
then one can prove that, under some mild assumptions on f , the Langevin diffusion
process converges to a unique stationary distribution whose density is aGibbs measure,

1
Z(\beta )e

 - f(x)
\beta , where Z(\beta ) is the normalizing factor [8]. As the temperature cools down

(i.e., as \beta \rightarrow 0), this stationary distribution increasingly concentrates around the
global minimizers of f which in turn justifies the use of the Langevin diffusion for
nonconvex optimization. Indeed, Langevin diffusions and their variants have recently
found many applications in data science including large-scale Bayesian inference and
stochastic nonconvex optimization arising from machine learning; see, e.g., [9, 15, 26,
34] and the references therein.

A critical question for solving global nonconvex optimization using the Langevin
diffusions is the design of the temperature schedule \{ \beta (t) : t \geq 0\} . In the literature,
the temperature \beta (\cdot ) is typically taken either as a constant (a hyperparameter) or
various functions of time t, mostly exogenously given; see, e.g., [8, 13, 14, 18]. When
\beta (t) \equiv \beta > 0, it is well known that the expected transition time between different
local minima for the overdamped Langevin diffusion is exponential in 1/\beta , a phe-
nomenon known as metastability [3, 4]. [26] and [35] further upper bound the time
of Langevin dynamics converging to an approximate global minimum of nonconvex
functions, and [37] and [7] analyze the hitting time of Langevin dynamics to a lo-
cal minimum, where the temperature is all assumed to be a constant. On the other
hand, [24] formulates a deterministic optimal control problem to investigate optimal
temperature schedules and derive an ordinary differential equation (ODE) for the
time-dependent temperature \beta (\cdot ).

Ideally, in implementing an algorithm for finding the global optimizers of a func-
tion, the temperature should be fine tuned based on where the current iterate is;
namely, it should be a function of the state. For instance, in order to quickly escape
a deeper local minimum, one should impose a higher temperature on the process. On
the other hand, only lower temperatures are needed when the current process is not
trapped in local minima in order to stay near a good solution. As a result of the
need for this state-dependence, the temperature should be formulated as a stochastic
process because the state itself follows a stochastic process. [12] considers a tempera-
ture process as a specific, exogenously given increasing function of the current function
value f(x), so that the trajectory can perform larger steps in the search space when
the current solution is seen to be far from optimal. They show numerically that this
scheme yields more rapid convergence to global optimizers.

The goal of this paper is to develop a theoretical framework (instead of a heuris-
tic approach) for designing endogenous state-dependent temperature schedule for
Langevin diffusions in the context of nonconvex optimization. It is natural to for-
mulate an optimal stochastic control problem in which the controlled dynamic is the
Langevin diffusion with the temperature process taken as the control, while the objec-
tive is to minimize a cost functional related to the original function f to be minimized.
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1252 XUEFENG GAO, ZUO QUAN XU, AND XUN YU ZHOU

However, because the temperature appears linearly in the variance term of the dif-
fusion, optimal control is of a ``bang-bang"" nature; i.e., the temperature ought to
repeatedly switch between two extreme points which are the lower and upper bounds
of the temperature parameter. Such a bang-bang solution is not desirable in practice
because it is extremely sensitive to errors: a tiny error may cause the control to take
the wrong extreme point; see, e.g., [2, 27]. To address this issue, we take the so-
called exploratory control formulation, developed by [33], in which classical controls
are randomized and replaced by distributions of controls. This allows the control to
take other values than just the extreme ones. Moreover, to encourage certain level of
randomization, we explicitly incorporate the entropy of the distributions---which mea-
sures the extent of randomization---into the cost functional as a regularization term.
This formulation smoothes out the temperature control and motivates the solution to
deviate, if discreetly, from the overly rigid bang-bang strategy.

Entropy regularization is a widely used heuristic in reinforcement learning (RL)
in discrete time and space; see, e.g., [16]. [33] extends it to continuous time/space
using a stochastic relaxed control formulation. The motivation behind [33]'s formu-
lation is repeated learning in unknown environments. Policy evaluation is achieved
by repeatedly sampling controls from the same distribution and applying the law of
large numbers. In the present paper there is not really an issue of learning (as in RL)
because we can assume that f is a known function. The commonality that prompts
us to use the same formulation of [33] is exploration aiming at escaping from possible
``traps."" Exploration is used to broaden the search in order to get rid of over-fitted
solutions in RL, to jump out of local optima in SA, and to remove too rigid schedules
in temperature control.

Under the infinite time horizon setting, we show that the optimal exploratory
control is a truncated exponential distribution whose domain is the prespecified range
of the temperature. The parameter of this distribution is state dependent, which is
determined by a nonlinear elliptic PDE in the general multidimensional case and an
ODE in the one-dimensional case. The distribution is a continuous version of the
Boltzmann (or softmax) exploration, a widely used heuristic strategy in the discrete-
time RL literature [5, 29] that applies exponential weighting of the state-action value
function (also known as Q-function) to balance exploration and exploitation. In our
setting, the Q-function needs to be replaced by the (generalized) Hamiltonian. This,
however, is not surprising because in classical stochastic control theory optimal feed-
back control is to deterministically maximize the Hamiltonian [36].

As discretization of the optimal state process in our exploratory framework, which
satisfies an SDE, naturally leads to a Langevin algorithm with state-dependent noise,
our results have algorithmic implications whenever the Hamilton--Jacobi--Bellman
equations involved can be easily solved. In particular, the HJB equation in our setting
is an ODE when the state space is one-dimensional, which can be efficiently solved.
For numerical demonstration, we compare the performance of this new algorithm with
three other existing algorithms for the global minimization of a one-dimensional base-
line nonconvex function. The first method is a Langevin algorithm with a constant
temperature [26], the second one is a Langevin algorithm where the temperature de-
cays with time in a prescribed power-law form [25, 34], and the last one is a replica ex-
change algorithm [10]. The experiment indicates that, at least in the one-dimensional
case, our Langevin algorithm with state-dependent noise finds the global minimizer
faster and outperforms the other three methods.

We must, however, emphasize that the main contribution of this paper is theo-
retical rather than algorithmic. It establishes and develops a theoretical framework
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TEMPERATURE CONTROL FOR LANGEVIN DIFFUSIONS 1253

for studying state-dependent temperature control in SA, in which a nonconvex opti-
mization problem is connected to an HJB PDE. Among other theoretical interests in
this connection, one observation is that solving the HJB requires global information
on the underlying function f , whereas most existing SA algorithms use only local
information of f at any given iteration. Intuitively, the former is more advantageous
other things being equal. This is actually demonstrated by the outperformance of
our algorithm in the one-dimensional case when solving the HJB equation poses no
numerical challenge. The insight is that one should try to make use of the global
information of f as much as possible. That said, for high-dimensional nonconvex
optimization, we are not advocating our theory for actual algorithmic implementa-
tion before the curse of dimensionality for PDEs has been resolved. Recently there
has been some encouraging progress using deep neural networks to numerically and
efficiently solve high-dimensional PDEs [1, 17]; so hopefully our results could also con-
tribute to devising SA algorithms in the future when that line of research has come
to full fruition.

The rest of the paper proceeds as follows. In section 2, we describe the problem
motivation and formulation. Section 3 presents the optimal temperature control. In
section 4, we report numerical results comparing the performance of our algorithm
with three other methods. Finally, we conclude in section 5.

2. Problem background and formulation.

2.1. Nonconvex optimization and Langevin algorithm. Consider a non-
convex optimization problem

(2.1) min
x\in \BbbR d

f(x),

where f : \BbbR d \rightarrow [0,\infty ) is a continuously differentiable, nonconvex function. The
Langevin algorithm aims to have global convergence guarantees and has the following
iterative scheme:

(2.2) Xk+1 = Xk  - \eta fx(Xk) +
\sqrt{} 
2\eta \beta k\xi k , k = 0, 1, 2, . . . ,

where fx is the gradient of f , \eta > 0 is the step size, \{ \xi k\} is independent and iden-
tically distributed (i.i.d) Gaussian noise, and \{ \beta k\} is a sequence of the temperature
parameters (also referred to as a cooling or annealing schedule) that typically decays
over time to zero. This algorithm is based on the discretization of the overdamped
Langevin diffusion:

(2.3) dX(t) =  - fx(X(t))dt+
\sqrt{} 
2\beta (t)dW (t), X(0) = x \in \BbbR d,

where x is an initialization, \{ W (t) : t \geq 0\} is a standard d-dimensional Brownian
motion with W (0) = 0, and \{ \beta (t) : t \geq 0\} is an adapted, nonnegative stochastic
process, both defined on a filtered probability space (\Omega ,\scrF ,\BbbP ; \{ \scrF t\} t\geq 0) satisfying the
usual conditions.

When \beta (t) \equiv \beta > 0, under some mild assumptions on f , the solution of (2.3)

admits a unique stationary distribution with the density \pi (x) \propto e - 
1
\beta f(x). Moreover,

Raginsky, Rakhlin, and Telgarskyet [26] show that for a finite \beta > 0,

(2.4) \BbbE X\sim \pi f(X) - min
x\in \BbbR d

f(x) \leq \scrI (\beta ) := d\beta 

2
log

\biggl( 
eM

m

\biggl( 
b

d\beta 
+ 1

\biggr) \biggr) 
,
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1254 XUEFENG GAO, ZUO QUAN XU, AND XUN YU ZHOU

where \BbbE X\sim \pi f(X) :=
\int 
\BbbR d f(x)\pi (dx), M,m, b are constants associated with f . It is

clear that \scrI (\beta ) \rightarrow 0 when \beta \rightarrow 0.
Our problem is to control the temperature process \{ \beta (t) : t \geq 0\} so that the

performance of the continuous Langevin algorithm (2.3) is optimized. We measure the
performance using the expected total discounted values of the iterate \{ X(t) : t \geq 0\} ,
which is \BbbE 

\int \infty 
0

e - \rho tf(X(t))dt, where \rho > 0 is a discount factor. The discounting puts
smaller weights on function values that happen in later iterations; hence in effect it
dictates the computational budget (i.e., the number of iterations budgeted) to run
the algorithm (2.3). Clearly, if this performance or cost functional value (which is
always nonnegative) is small, then it implies that, on average, the algorithm strives
to achieve smaller values of f over iterations and terminates at a budgeted number of
iterations, T , with an iterate X(T ) that is close to the global optimum.

Mathematically, given \rho > 0, an arbitrary initialization X(0) = x \in \BbbR d and the
range of the temperature U = [a, 1], where 0 < a < 1, we aim to solve the following
stochastic control problem where the temperature process is taken as the control:

Minimize \BbbE 
\int \infty 
0

e - \rho tf(X(t))dt,

subject to

\biggl\{ 
(2.3),
\beta := \{ \beta (t) : t \geq 0\} is adapted, and \beta (t) \in U a.e. t \geq 0 a.s.

(2.5)

Remark 2.1 (choice of the range of the temperature). Naturally the temperature
has a nonnegative lower bound. We suppose that it also has an upper bound, assumed
to be 1 without loss of generality. In the Langevin algorithm and SA literature, one
usually uses a determinist temperature schedule \beta (t) that is either a constant or decays
with time t. Hence there is a natural upper bound which is the initial temperature.
This quantity is generally problem dependent and can be a hyperparameter chosen
by the user. The upper bound of the temperature should be tuned to be reasonably
large for the Langevin algorithm to overcome all the potential barriers and to avoid
early trapping into a bad local minimum.

2.2. Solving (2.5) classically. Define the optimal value function of (2.5):

V0(x) = inf
\beta \in \scrA 0(x)

\BbbE 
\biggl[ \int \infty 

0

e - \rho tf(X(t))dt
\bigm| \bigm| \bigm| X(0) = x

\biggr] 
,(2.6)

where x \in \BbbR d, and \scrA 0(x) is the set of admissible controls \beta satisfying the constraint
in (2.5). A standard dynamic programming argument [36] yields that V0 satisfies the
following HJB equation:

(2.7)  - \rho v(x) + f(x) + min
\beta \in [a,1]

[\beta tr(vxx(x)) - fx(x) \cdot vx(x)] = 0, x \in \BbbR d,

where tr(A) denotes the trace of a square matrix A, and ``x \cdot y"" is the inner product
between two vectors x and y.

The standard verification theorem in stochastic control theory [36, Chapter 5]
yields that an optimal feedback control policy should achieve the minimum in the
above equation. However, the term inside the min operator is linear in the control
variable \beta ; hence the optimal policy has the following bang-bang form: \beta \ast (x) = 1 if
tr(vxx(x)) < 0, and \beta \ast (x) = a otherwise. In economics terms, intuitively, the value
v(x) can be regarded as the disutility of the resource x (here, it is disutility, instead
of utility, because the objective is to minimize). When tr(vxx(x)) < 0, v is locally
concave around x suggesting a risk-seeking preference. Hence one should randomize at
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TEMPERATURE CONTROL FOR LANGEVIN DIFFUSIONS 1255

the maximum possible level. A symmetric intuition applies to the opposite case when
tr(vxx(x)) > 0. This temperature control scheme shows that one should in some states
heat at the highest possible temperature, while in other states cool down completely,
depending on the sign of tr(vxx(x)). This is theoretically the optimal scheme; but
practically it is just too rigid to achieve good performance as it concentrates on two
actions only, thereby leaving no room for errors which are inevitable in computation.
This motivates the introduction of relaxed controls and entropy regularization in order
to smooth out the temperature process in the next subsection.

Remark 2.2 (bang-bang control and parallel/simulated tempering). The bang-
bang control policy bears some resemblance to the so-called parallel tempering (or
replica exchange) and simulated tempering in the Markov chain Monte Carlo litera-
ture [11, 21, 32], although there are important differences. Both tempering algorithms
swap processes with different temperatures based on certain mechanisms in order to
sample the desired target distribution; so there is switching at work between different
prespecified temperatures like the bang-bang control. However, these algorithms are
mostly designed for probabilistic sampling with the Metropolis--Hastings rule used to
accept or reject a swap between processes, while our focus is (nonconvex) optimiza-
tion. Moreover, the tempering algorithms use state space augmentation. Specifically,
parallel tempering runs n \geq 2 copies of Langevin dynamics with different constant
temperature parameters; hence the state space is \BbbR dn. Simulated tempering treats
the temperature \{ \beta (t) : t \geq 0\} as a stochastic process taking only finite values and
augments it to the original dynamics so that the state space is (d+1)-dimensional. In
contrast, if we apply the bang-bang control, we obtain only one copy of the Langevin
dynamics where the temperature parameter is state-dependent which is not a con-
stant. Recently, [10] proposes to use the replica exchange algorithm for nonconvex
optimization. In the numerical experiments reported in section 4, we will compare
the performance of our algorithm with that of [10].

2.3. Relaxed control and entropy regularization. We now present our
entropy-regularized relaxed control formulation of the problem. Instead of a clas-
sical control \{ \beta (t) : t \geq 0\} , where \beta (t) \in U = [a, 1] for t \geq 0, we consider a relaxed
control \pi = \{ \pi (t, \cdot ) : t \geq 0\} , which is a distribution (or randomization) of classical
controls over the control space U where a temperature \beta (t) \in U can be sampled from
this distribution whose probability density function is \pi (t, \cdot ) at time t.

Specifically, we study the following entropy-regularized stochastic relaxed control
problem, also termed as exploratory control problem, following [33]:

V\lambda (x) = inf
\pi \in \scrA (x)

\BbbE 
\Bigl[ \int \infty 

0

e - \rho tf(X\pi (t))dt(2.8)

 - \lambda 

\int \infty 

0

e - \rho t

\int 
U

 - \pi (t, u) ln\pi (t, u)dudt
\bigm| \bigm| \bigm| X\pi (0) = x

\Bigr] 
,

where x \in \BbbR d, the term
\int 
U
 - \pi (t, u) ln\pi (t, u)du is the differential entropy of the prob-

ability density function \pi (t, \cdot ) of the randomized temperature at time t, \lambda > 0 is a
weighting parameter for entropy regularization, \scrA (x) is the set of admissible distri-
butional controls to be precisely defined below, and the state process X\pi is governed
by

(2.9) dX\pi (t) =  - fx(X
\pi (t))dt+ \~\sigma (\pi (t))dW (t), X\pi (0) = x \in \BbbR d,
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1256 XUEFENG GAO, ZUO QUAN XU, AND XUN YU ZHOU

where

(2.10) \~\sigma (\mu ) :=

\sqrt{} \int 
U

2u\mu (u)du, \mu \in \scrP (U),

with \scrP (U) being the set of probability density functions over U .
The form of \~\sigma (\mu ) follows from the general formulation presented in [33]. The

function V\lambda is called the (optimal) value function.
Denote by \frakB (U) the Borel algebra on U .

Definition 2.3. We say a density-function--valued stochastic process \pi = \{ \pi (t, \cdot ) :
t \geq 0\} , defined on a filtered probability space (\Omega ,\scrF ,\BbbP ; \{ \scrF t\} t\geq 0) along with a standard
d-dimensional \{ \scrF t\} t\geq 0-adapted Brownian motion \{ W (t) : t \geq 0\} , is an admissible
(distributional) control, denoted simply by \pi \in \scrA (x), if

(i) For almost every t \geq 0, \pi (t, \cdot ) \in \scrP (U) a.s.;
(ii) For any A \in \frakB (U), the process (t, \omega ) \mapsto \rightarrow 

\int 
A
\pi (t, u, \omega )du is \scrF t-progressively

measurable;
(iii) The SDE (2.9) admits solutions on the same filtered probability space, whose

distributions are all identical.

So an admissible distributional control is defined in the weak sense, namely, the
filtered probability space and the Brownian motion are also part of the control. Con-
dition (iii) ensures that the performance measure in our problem (2.8) is well defined
even under the weak formulation. For notational simplicity, however, we will hence-
forth only write \pi \in \scrA (x).

Remark 2.4 (choice of the weighting parameter \lambda ). The weighting parameter \lambda 
dictates a trade-off between optimization (exploitation) and randomization (explo-
ration), and is also called a temperature parameter in [33]. [31] proves through a
PDE argument that V\lambda converges to V0 as \lambda \rightarrow 0 and provides a convergence rate.
Note that this temperature \lambda is different from the temperature \beta in the original
Langevin diffusion. These are temperatures at different levels: \beta is at a lower, local
level related to injecting Gaussian noises to the gradient descent algorithm, whereas
\lambda is at a higher, global level associated with adding (not necessarily Gaussian) noises
to the bang-bang control. It is certainly an open interesting question to endogenize \lambda ,
which is yet another temperature control problem at a different level. In implementing
the Langevin algorithm, however, \lambda can be fine tuned as a hyperparameter.

3. Optimal temperature control.

3.1. A formal derivation. To solve the control problem (2.8), we apply Bell-
man's principle of optimality to derive the following HJB equation:

 - \rho v(x) - fx(x) \cdot vx(x) + f(x) + inf
\pi \in \scrP (U)

\int 
U

[tr(vxx(x))u+ \lambda ln\pi (u)]\pi (u)du = 0.

(3.1)

The verification approach then yields that the optimal distributional control can
be obtained by solving the minimization problem in \pi in the HJB equation. This
problem has a constraint \pi \in \scrP (U), which amounts to

(3.2)

\int 
U

\pi (u)du = 1, \pi (u) \geq 0 a.e. on U.
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For any k \in \BbbR ,\int 
U

[tr(vxx(x))u+ \lambda ln\pi (u)]\pi (u)du =

\int 
U

[tr(vxx(x))u+ \lambda ln\pi (u) + k]\pi (u)du - k.

The integrand on the right-hand side is a convex function of \pi (u); so the first-order
condition gives its unique global minimum at

\=\pi (u;x) = exp

\biggl( 
 - 1

\lambda 
[tr(vxx(x))u] - 

k

\lambda 
 - 1

\biggr) 
:=

1

Z(\lambda , vxx(x))
exp

\biggl( 
 - 1

\lambda 
[tr(vxx(x))u]

\biggr) 
, u \in U, x \in \BbbR d.(3.3)

Since \=\pi (\cdot ;x) must satisfy (3.2), we deduce

Z(\lambda , vxx(x)) =

\int 
U

exp

\biggl( 
 - 1

\lambda 
[tr(vxx(x))u]

\biggr) 
du > 0.

This gives the optimal feedback law \=\pi (\cdot ;x), which is a truncated (in U) exponential

distribution with the (state-dependent) parameter c(x) := tr(vxx(x))
\lambda . Note we do not

require tr(vxx(x)) > 0 (i.e., v is in general nonconvex) or c(x) > 0 here.
Substituting (3.3) back to the (3.1) and noting\int 

U

[tr(vxx(x))u+ \lambda ln \=\pi (u;x)] \=\pi (u;x)du

=

\int 
U

[tr(vxx(x))u - tr(vxx(x))u - \lambda ln(Z(\lambda , vxx(x)))] \=\pi (u;x)du

=  - \lambda ln(Z(\lambda , vxx(x))),

we obtain the following equivalent form of the HJB equation, a nonlinear elliptic PDE:

 - \rho v(x) - fx(x) \cdot vx(x) + f(x) - \lambda ln(Z(\lambda , vxx(x))) = 0, x \in \BbbR d.(3.4)

Remark 3.1 (Gibbs measure and Boltzmann exploration). In reinforcement lean-
ing there is a widely used heuristic exploration strategy called the Boltzmann explo-
ration. In the setting of maximizing cumulative rewards, Boltzmann exploration uses
the Boltzmann distribution (or the Gibbs measure) to assign a probability p(st, a) to
action a when in state st at time t:

(3.5) p(st, a) =
eQt(st,a)/\lambda \sum m
a=1 e

Qt(st,a)/\lambda 
, a = 1, 2, . . . ,m,

where Qt(s, a) is the Q-function value of a state-action pair (s, a), and \lambda > 0 is a
parameter that controls the level of exploration; see, e.g., [5, 6, 29]. When \lambda is high,
the actions are chosen in almost equal probabilities. When \lambda is low, the highest-
valued actions are more likely to be chosen, giving rise to something resembling the
so-called epsilon-greedy policies in multiarmed bandit problems. When \lambda = 0, (3.5)
degenerates into the Dirac measure concentrating on the action that maximizes the
Q-function; namely, the best action is always chosen. In the setting of continuous
time and continuous state/control, the Q-function Qt(s, a) is not well defined and can
not be used to rank and select actions [30]. However, we can use the (generalized)
Hamiltonian [36], which in the special case of the classical problem (2.5) is
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H(x, u, vx, vxx) :=  - fx(x) \cdot vx(x) + f(x) + tr(vxx(x))u.

Then it is easy to see that (3.3) is equivalent to the following:

\=\pi (u;x) =
exp( - 1

\lambda [H(x, u, vx, vxx)])\int 
u\in U

exp( - 1
\lambda [H(x, u, vx, vxx)])du

, u \in U, x \in \BbbR d,(3.6)

which is analogous to (3.5) with x being the state and u being the action. The neg-
ative sign in the above expression is due to the minimization problem instead of a
maximization one. The importance of this observation is that here we lay a theoret-
ical underpinning of the Boltzmann exploration via entropy regularization, thereby
providing interpretability/explainability of a largely heuristic approach.1

3.2. Admissibility and optimality. The derivation above is formal and is
legitimate only after we rigorously establish the verification theorem and check the
admissibility of the distributional controls induced by the feedback law (3.3).

To this end we need to impose some assumptions.

Assumption 3.2. We assume
(i) U = [a, 1] for some 0 < a < 1;
(ii) f \in C1(\BbbR d) and | fx(x)| < C for some constant C > 0.

Assumption (i) imposes some minimal heating, a > 0, to the Langevin diffusion,
capturing the fact that in practice we would generally not know whether we have
reached the global minimum at any given time; therefore we always carry out explo-
ration, however small it might be, until some prescribed stopping criterion is met. On
the other hand, the difficulty of the original nonconvex optimization lies in the pos-
sibility of many local optima, while it is relatively easier to know (sometime from the
specific context of an applied problem under consideration) the approximate range of
the possible location of a global optimum. Therefore, the assumption of the gradient
of f in Assumption (ii) is reasonable as the function value outside of the above range
is irrelevant.

Apply the feedback law (3.3) to the controlled system (2.9) to obtain the following
SDE:

(3.7) dX\ast (t) =  - fx(X
\ast (t))dt+ h(X\ast (t))dWt, X\ast (0) = x,

where

(3.8) h(x) :=

\sqrt{} 
2

Z(\lambda , vxx(x))

\int 1

a

u exp

\biggl( 
 - 1

\lambda 
[tr(vxx(x))u]

\biggr) 
du.

It is clear that 0 <
\surd 
2a \leq h(x) \leq 

\surd 
2. Thus the drift and diffusion coefficients

of (3.7) are both uniformly bounded, while the latter satisfies the uniform elliptic
condition. It follows from [20, Page 87, Theorem 1] that (3.7) has a weak solution.
Moreover, [28, Theorem 6.2] asserts that the weak solution is unique.

Now define for t \geq 0, u \in [a, 1],

(3.9) \pi \ast (t, u) := \=\pi (u;X\ast (t)) \equiv 1

Z(\lambda , vxx(X\ast (t)))
exp

\biggl( 
 - 1

\lambda 
[tr(vxx(X

\ast (t)))u]

\biggr) 
,

where \{ X\ast (t) : t \geq 0\} is a weak solution to (3.7). Let \pi \ast := \{ \pi \ast (t, \cdot ) : t \geq 0\} . Then
clearly \pi \ast \in \scrA (x).

1The formula (3.6) was derived in [33, equation (17)] for a more general setting, but the connection
with Boltzmann exploration and Gibbs measure was not noted there.
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Theorem 3.3. Suppose v \in C2 is a solution to the HJB equation (3.1), and
| v(x)| < C(1 + | x| k) \forall x \in \BbbR d for some constants C > 0 and k > 0. Then v = V\lambda .
Moreover, in this case the distributional control \pi \ast defined by ( 3.9) is optimal.

We need a series of technical preliminaries to prove this theorem.

Lemma 3.4. For any \pi \in \scrA (x), we have\int 1

a

\pi (t, u) ln\pi (t, u)du \geq a a.s., a.e. t \geq 0.(3.10)

Proof. Applying the general inequality x lnx \geq x - 1 for x > 0, we have\int 1

a

\pi (t, u) ln\pi (t, u)du \geq 
\int 1

a

(\pi (t, u) - 1)du = a.(3.11)

Lemma 3.5. Suppose \{ X(t) : t \geq 0\} follows

dX(t) = b(t)dt+ \sigma (t)dW (t), t \geq 0,

with
Cb := ess sup

(t,\omega )

| b(t)| < \infty , C\sigma := ess sup
(t,\omega )

| \sigma (t)| < \infty .

Then, for any k \geq 1, there exists a constant C > 0, which is independent of T and
X(0), such that

(3.12) \BbbE 
\biggl[ 

sup
0\leq t\leq T

| X(t)| k
\biggr] 
< C(1 + T k + | X(0)| k) \forall T \geq 0.

Proof. By the elementary inequality

(a+ b+ c)k \leq (3max\{ a, b, c\} )k \leq 3kak + 3kbk + 3kck, a, b, c \geq 0,

we have

\BbbE 
\biggl[ 

sup
0\leq t\leq T

| X(t)| k
\biggr] 
\leq \BbbE 

\Biggl[ \biggl( 
| X(0)| + sup

0\leq t\leq T

\int t

0

| b(s)| ds+ sup
0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \int t

0

\sigma (s)dWs

\bigm| \bigm| \bigm| \bigm| \biggr) k
\Biggr] 

\leq \BbbE 

\Biggl[ \biggl( 
| X(0)| + CbT + sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \int t

0

\sigma (s)dWs

\bigm| \bigm| \bigm| \bigm| \biggr) k
\Biggr] 

\leq 3k| X(0)| k + 3kCk
b T

k + 3k\BbbE 

\Biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \int t

0

\sigma (s)dWs

\bigm| \bigm| \bigm| \bigm| k
\Biggr] 

\leq 3k| X(0)| k + 3kCk
b T

k + 3kCk

\Biggl( 
\BbbE 

\Biggl[ \int T

0

| \sigma (s)| 2ds

\Biggr] \Biggr) k/2

\leq 3k| X(0)| k + 3kCk
b T

k + 3kCkC
k
\sigma T

k/2,

where the second to last inequality is due to the Burkholder--Davis--Gundy inequality.
This proves (3.12).

Proposition 3.6. There exists a constant C1 > 0 such that the value function V
satisfies

(3.13) | V\lambda (x)| \leq C1(1 + | x| ) \forall x \in \BbbR d.
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Proof. It follows from Assumption 3.2(ii) that | f(x)| \leq C| x| + | f(0)| . Let \pi be
the uniform distribution on [a, 1]. It then follows from Lemma 3.5 that

V\lambda (x) \leq \BbbE 
\biggl[ \int \infty 

0

e - \rho t(C| X\pi (t)| + | f(0)| )dt+ \lambda 

\int \infty 

0

e - \rho t

\int 1

a

\pi (u) ln\pi (u)dudt

\biggr] 
< C \prime (| x| + 1)

for some constant C \prime independent of x. On the other hand, for any \pi \in \scrA (x), by
virtue of Lemma 3.4 we have

\BbbE 
\biggl[ \int \infty 

0

e - \rho tf(X\pi (t))dt - \lambda 

\int \infty 

0

e - \rho t

\int 1

a

 - \pi t(u) ln\pi t(u)dudt

\biggr] 
\geq \BbbE 

\biggl[ \int \infty 

0

 - e - \rho t(C| X\pi (t)| + | f(0)| )dt+ \lambda 

\int \infty 

0

e - \rho tadt

\biggr] 
>  - C \prime \prime (| x| + 1)

for some constant C \prime \prime independent of x. The proof is complete.

We have indeed established in the above that

\BbbE 
\biggl[ \int \infty 

0

e - \rho t| f(X\pi (t))| dt
\biggr] 
< \infty .

To solve (2.8), we only need to consider those admissible controls \pi such that

(3.14) \BbbE 
\biggl[ \int \infty 

0

e - \rho t

\int 
U

\pi (t, u) ln\pi (t, u)dudt

\biggr] 
< \infty ,

because any control violating (3.14) renders the infinite value of the minimization
problem (2.8) and hence can be excluded from consideration. In view of this, (3.14)
is henceforth assumed for any admissible distributional control.

Now we prove Theorem 3.3.
For any \pi \in \scrA (x), let \{ X\pi (t) : t \geq 0\} be the solution to (2.9). Define \tau n :=

inf\{ s \geq 0 : | X\pi (s)| > n\} . For any T > 0, by It\^o's lemma,

e - \rho (\tau n\wedge T )v(X\pi (\tau n \wedge T ))

= v(X\pi (0)) +

\int \tau n\wedge T

0

e - \rho tvx(X
\pi (t)) \cdot \~\sigma (\pi (t))dW (t)

+

\int \tau n\wedge T

0

e - \rho t
\Bigl( 
 - \rho v(X\pi (t)) - fx(X

\pi (t)) \cdot vx(X\pi (t)) +
1

2
\~\sigma 2(\pi (t))tr(vxx(X

\pi (t)))
\Bigr) 
dt

=

\int \tau n\wedge T

0

e - \rho tvx(X
\pi (t)) \cdot \~\sigma (\pi (t))dW (t) +

\int \tau n\wedge T

0

e - \rho t

\biggl( \int 1

a

tr(vxx(X
\pi (t)))u\pi (t, u)du

 - f(X\pi (t)) - inf
\pi \prime \in \scrP ([a,1])

\int 1

a

[tr(vxx(X
\pi (t)))u+ \lambda ln\pi \prime (u)]\pi \prime (u)du

\biggr) 
dt+ v(x)

\geq v(x) +

\int \tau n\wedge T

0

e - \rho tvx(X
\pi (t)) \cdot \~\sigma (\pi (t))dW (t)

+

\int \tau n\wedge T

0

e - \rho t

\biggl( 
 - f(X\pi (t) - \lambda 

\int 1

a

\pi (t, u) ln\pi (t, u)du)

\biggr) 
dt.
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It follows

v(x) \leq \BbbE 
\Bigl[ 
e - \rho (\tau n\wedge T )v(X\pi (\tau n \wedge T ))

\Bigr] 
+ \BbbE 

\Biggl[ \int \tau n\wedge T

0

e - \rho t

\biggl( 
f(X\pi (t)) + \lambda 

\int 1

a

\pi (t, u) ln\pi (t, u)du

\biggr) 
dt

\Biggr] 

= \BbbE 
\Bigl[ 
e - \rho (\tau n\wedge T )v(X\pi (\tau n \wedge T ))

\Bigr] 
+ \BbbE 

\Biggl[ \int \tau n\wedge T

0

e - \rho tf(X\pi (t))dt

\Biggr] 

+ \lambda \BbbE 

\Biggl[ \int \tau n\wedge T

0

e - \rho t

\int 1

a

\pi (t, u) ln\pi (t, u)dudt

\Biggr] 
.

Sending n \rightarrow \infty , we have by Lemma 3.5 and the dominated convergence theorem that
the sum of the first two terms converges to

\BbbE 
\bigl[ 
e - \rho T v(X\pi (T ))

\bigr] 
+ \BbbE 

\Biggl[ \int T

0

e - \rho tf(X\pi (t))dt

\Biggr] 
,

while it follows from (3.14) along with the monotone convergence theorem (noticing
\pi (t, u) ln\pi (t, u) \geq \pi (t, u) - 1) that the last term converges to

\lambda \BbbE 

\Biggl[ \int T

0

e - \rho t

\int 1

a

\pi (t, u) ln\pi (t, u)dudt

\Biggr] 
.

So

v(x) \leq \BbbE 
\bigl[ 
e - \rho T v(X\pi (T ))

\bigr] 
+ \BbbE 

\Biggl[ \int T

0

e - \rho tf(X\pi (t))dt

\Biggr] 

+ \lambda \BbbE 

\Biggl[ \int T

0

e - \rho t

\int 1

a

\pi (t, u) ln\pi (t, u)dudt

\Biggr] 
.

Noting Lemma 3.5 along with the assumption that v is of polynomial growth, we have

(3.15) lim
T\rightarrow \infty 

\BbbE 
\bigl[ 
e - \rho T v(X\pi (T ))

\bigr] 
= 0.

Applying the same limiting argument as above we let T \rightarrow \infty to get

v(x) \leq \BbbE 
\biggl[ \int \infty 

0

e - \rho t

\biggl( 
f(X\pi (t)) + \lambda 

\int 
U

\pi (t, u) ln\pi (t, u)du

\biggr) 
dt

\biggr] 
.

Since \pi is arbitrarily chosen, it follows v \leq V\lambda ; in other words v is a lower bound of
V\lambda .

All the inequalities in the above analysis become equalities when we take \pi =
\pi \ast \in \scrA (x) defined by (3.9), because \pi \ast attains the infimum in the HJB equation
(3.1). This yields that the aforementioned lower bound is achieved by \pi \ast ; hence \pi \ast 

is optimal and v = V\lambda .

Remark 3.7 (existence and uniqueness of solution to HJB). Due to the linear
growth of the value function V\lambda (Proposition 3.6), we can prove by a standard ar-
gument (part of it is similar to the argument used in the above proof) that V\lambda is a
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solution to the HJB equation (3.1) as long as V\lambda \in C2. Moreover, Theorem 3.3 yields
that the solution is unique among C2 functions of polynomial growth. The uniqueness
follows from (3.15) which is essentially a boundary condition of (3.1). When V\lambda is not
C2, we can apply viscosity solution theory to study the well-posedness of the HJB
equation. However, we will not pursue this direction as it is not directly related to
the objective of this paper.

4. Algorithm and numerical example. As discussed in the introduction,
the main contribution of this paper is to develop a theory that connects the state-
dependent temperature control problem for SA to an HJB equation, the latter con-
cerning the global information about the underlying function f . The theory also
naturally gives rise to an algorithm that can be employed to solve the original non-
convex optimization problem to the extent that the HJB equation can be efficiently
solved. Specifically, the optimal state process \{ X\ast (t) : t \geq 0\} is determined by the
SDE (3.7). Discretization of this equation then leads to a Langevin algorithm with
state-dependent noise. One can use the Euler--Maruyama discretization (see, e.g.,
[23]) due to its simplicity and popularity in practice. We now report a numerical
experiment for a baseline nonconvex optimization example in a one-dimensional state
space for which the HJB equation is an ODE.

Consider the problem of finding the global minima of the following asymmetric
double-well function:

f(x) =

\left\{               

4x - 20 for x > 6,

(x - 4)2 for 2 < x \leq 6,

8 - x2 for  - 2 < x \leq 2,

2(x+ 3)2 + 2 for  - 6 < x \leq  - 2,

 - 12x - 52 for x \leq  - 6.

Note that f : \BbbR \rightarrow \BbbR is a continuously differentiable function with two local minima
at x1 =  - 3 and x2 = 4, where the latter is the (unique) global minimum. See Figure 1
for an illustration.

We now present four algorithms, described below, for minimizing f , and we
compare their performances. All the algorithms are initialized at x =  - 3, the

Fig. 1. A double-well function f .
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suboptimal local minimum of f. We examine the convergence of the performance
quantity \BbbE (f(Xk)), where Xk is the location of the iterate at iteration k, k = 1, 2, . . ..
In each of the algorithms, \{ \xi k\} is a sequence of i.i.d. standard normal random vari-
able, and \eta is the constant step size which we tune respectively for best performance.
In implementation, we change the upper bound of the allowed temperature to be
500, instead of 1 in our theoretical analysis, without loss of validity. This allows the
iterates of the algorithms to climb over the barrier between the two local minimizers
quickly.

The four algorithms are
(1) Langevin algorithm with constant temperature \beta [26]:

(4.1) Xk+1 = Xk  - \eta f \prime (Xk) +
\sqrt{} 

2\eta \beta \xi k .

We choose the step size \eta \in \{ (1/2)n : n = 0, 1, 2, . . . , 10\} and the temperature
\beta \in \{ 500 \cdot (1/2)n : n = 0, 1, 2, . . . , 15\} . The best-tuned step size \eta = (1/2)1 =
0.5 and temperature \beta = 500 \cdot (1/2)10 = 0.4883.

(2) Langevin algorithm with the power-law temperature schedule [25]:

(4.2) Xk+1 = Xk  - \eta f \prime (Xk) +
\sqrt{} 

2\eta \beta k\xi k ,

where we choose \beta k = ( d
1+k )

b with b \in \{ 0.5, 0.6, . . . , 1\} , and d \in \{ 500 \cdot 
(1/2)n : n = 0, 1, 2, . . . , 7\} ; we also choose the step size \eta \in \{ (1/2)n :
n = 0, 1, 2, . . . , 10\} . The best-tuned parameters are given by: \eta = (1/2)1 =
0.5, b = 0.9, d = 500 \cdot (1/2)4 = 31.25.

(3) Replica exchange (GDxLD in Algorithm 1 of [10]): one runs a copy of the
gradient descent \{ Xk\} and a copy of the Langevin algorithm \{ Yk\} with a
constant temperature \gamma > 0. If f(Xk) > f(Yk), then the positions of Xk

and Yk are swaped. Output XN as an optimizer of f when the algorithm
terminates at iteration N. We choose X0 = Y0 =  - 3 and tune parameters
where step size \eta \in \{ (1/2)n : n = 0, 1, 2, . . . , 10\} and constant temperature
\gamma \in \{ 500 \cdot (1/2)n : n = 0, 1, 2, . . . , 15\} . The best-tuned parameters are given
by \eta = (1/2)1 = 0.5, \gamma = 500 \cdot (1/2)1 = 250.

(4) Our Langevin algorithm based on the Euler--Maruyama discretization of the
SDE (3.7):

(4.3) X\ast 
k+1 = X\ast 

k  - \eta f \prime (X\ast 
k) +

\surd 
\eta h(X\ast 

k)\xi k .

In dimension one we can deduce from (3.8) that h(x) = g(vxx(x)
\lambda ), where v

satisfies the ODE in (3.4) with

Z(\lambda , vxx(x)) =
e - a

vxx(x)
\lambda  - e - c

vxx(x)
\lambda 

vxx(x)
\lambda 

,(4.4)

and

g(y) :=

\sqrt{} 
2
(c+ 1/y) \cdot e - cy  - (a+ 1/y) \cdot e - ya

e - cy  - e - ya
, y \in ( - \infty ,\infty ).(4.5)

Here, [a, c] is the range of the allowed temperature. The hyperparameter a in
(4.4) is fixed at 0.0001 for simplicity, and the hyperparameter c, which is the
upper bound on the allowed temperature, is fixed at 500. We choose \rho , \lambda \in 
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\{ 5 \cdot (1/2)n : n = 0, 1, 2, . . . , 8\} and step size \eta \in \{ (1/2)n : n = 0, 1, 2, . . . , 10\} .
To implement the algorithm (4.3), we need to solve the second-order nonlinear
ODE in (3.4). We use random initial conditions [v(0), v\prime (0)] where both v(0)
and v\prime (0) are independently sampled from a standard normal distribution.
We select 20 random initializations for the ODE. The best-tuned parameters
are given by \eta = (1/2)3 = 0.125, \lambda = 5 \cdot (1/2)4 = 0.3125, \rho = 5 \cdot (1/2)2 = 1.25,
with the ODE initialization [v(0), v\prime (0)] = [ - 0.2853, 1.1575].

Figure 2 shows the performance of the four algorithms, where the expectation
\BbbE (f(Xk)) is approximated by its sample average with the sample size 500. Each
algorithm is terminated if the number of iterations exceeds the allowed number of
iterations, which we set to be 1000 in our experiment. In the first 100 iterations,
the expected function values \BbbE (f(Xk)) from our algorithm are very large, primarily
because large noises are injected into the iterates during these initial iterations so as
to escape the local minimum at  - 3; see Figure 3 for a zoomed-in version. Hence,

Fig. 2. Performance comparison of the four algorithms, all initialized at X1 =  - 3.

Fig. 3. Performance of our algorithm initialized at X1 =  - 3.
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(a) v(x) on ( - 6, 4) (b) v\prime \prime (x) on ( - 6, 2)

Fig. 4. The HJB solution v and its second-order derivative v\prime \prime .

for better visualization, we plot in Figure 2 the expected function values \BbbE (f(Xk))
from k = 100 up to only k = 500 iterations. As we can see, Langevin algorithms with
constant temperature and power-law temperature schedule have difficulties in locating
the global minima within 500 iterations. By its very definition, replica exchange is
expected to perform better than the Langevin algorithm with a constant temperature.
This is confirmed by Figure 2 in which the replica exchange algorithm finds the
global minimum quickly, although it needs to run two algorithms (the gradient descent
and a Langevin algorithm) instead of only one algorithm. Our Langevin algorithm
with state-dependent noises can find the global minimum faster than the other three
algorithms. It is, however, computationally more expensive compared with other
three methods, needing to solve a nonlinear ODE.

The temperature process for our algorithm depends on the solution v to the ODE
(3.4). We plot in Figure 4(a) the function values v(x) where x \in ( - 6, 4). We observe
that when x is close to 4, the global minimum of f , v grows very quickly. This is
because much less exploration is needed near the global minimum, in which case the
subtraction of the entropy value from the overall objective value in (2.8) is much less,
boosting the value of v. We also plot in Figure 4(b) the second-order derivative of
v on the interval ( - 6, 2).2 However, v or v\prime \prime affects the temperature process of our
algorithm only indirectly, through the function h given by (4.3). So the plots of v
and v\prime \prime are less informative than that of the state-dependent temperature function
h2

2 which is proportional to the variance of the noise in our algorithm; see Figure 5.
We see that the temperature is close to zero for x > 3 and is mostly large elsewhere.
This indicates that our state-dependent algorithm is ``intelligent"": it uses the lowest
temperature when close to the global minimum and uses a large temperature (recall
the largest temperature allowed is 500) to escape from traps such as suboptimal local
minima or saddle points. We also observe that there is a prominent kink at x =  - 2
in Figure 5. This is primarily due to the spike of v\prime \prime at  - 2 in Figure 4(b) and the fact

that h(x) = g( vxx(x)
\lambda ) with g given in (4.5).

5. Conclusion. This paper aims to develop an endogenous temperature control
scheme for applying Langevin diffusions to find non-convex global minima. We take
the exploratory stochastic control framework, originally proposed by [33] for RL, to

2We do not plot v\prime \prime (x) for x > 2 in Figure 4(b) for better visualization because v\prime \prime (x) becomes
very large when x > 2.
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Fig. 5. State-dependent temperature function h2/2.

account for the need of smoothing out the temperature process. We derive a state-
dependent, Boltzmann-exploration type distributional control, which can be used to
sample temperatures in a Langevin algorithm. Numerical analysis shows that our al-
gorithm outperforms three alternative ones based on a constant temperature, a power
decay schedule, and a replica exchange method, respectively. However, the function
used in the numerical example is one-dimensional, for which the HJB equation is an
ODE and hence easy to solve. For high-dimensional problems, the HJB equation is a
PDE whose numerical solutions may suffer from the curse of dimensionality. There-
fore, at least for now, the main contribution of this paper is not algorithmic. Rather,
it is, generally, to lay a theoretical underpinning for smoothing out often overly rigid
classical optimal controls (such as bang-bang controls) and, specifically, to provide an
interpretable state-dependent temperature control scheme for Langevin diffusions via
HJB equations.

Acknowledgments. We thank Mert G\"urb\"uzbalaban and Lingjiong Zhu for their
comments and Yi Xiong for the help with the experiments.
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