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Abstract. Robust low-rank tensor completion (RTC) problems have received considerable attention in recent
years such as in signal processing and computer vision. In this paper, we focus on the bound
constrained RTC problem for third-order tensors which recovers a low-rank tensor from partial ob-
servations corrupted by impulse noise. A widely used convex relaxation of this problem is to minimize
the tensor nuclear norm for low rank and the \ell 1-norm for sparsity. However, it may result in biased
solutions. To handle this issue, we propose a nonconvex model with a novel nonconvex tensor rank
surrogate function and a novel nonconvex sparsity measure for RTC problems under limited sample
constraints and two bound constraints, where these two nonconvex terms have a difference of convex
functions structure. Then, a proximal majorization-minimization (PMM) algorithm is developed to
solve the proposed model and this algorithm consists of solving a series of convex subproblems with
an initial estimator to generate a new estimator which is used for the next subproblem. Theoreti-
cally, for this new estimator, we establish a recovery error bound for its recoverability and give the
theoretical guarantee that lower error bounds can be obtained when a reasonable initial estimator
is available. Then, by using the Kurdyka--\Lojasiewicz property exhibited in the resulting problem,
we show that the sequence generated by the PMM algorithm globally converges to a critical point
of the problem. Extensive numerical experiments including color images and multispectral images
show the high efficiency of the proposed model.
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error bounds, impulse noise
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1. Introduction. Multidimensional data is becoming prevalent in many areas such as com-
puter vision [27, 44], data mining [32], signal processing [10], and machine learning [39]. Tensor
based modeling has the capability of capturing these underlying multidimensional structures.
However, the tensor data observed may suffer from information loss and be perturbed by dif-
ferent kinds of noise originating from human errors or signal interference. The purpose of this
paper is to study robust low-rank tensor completion (RTC) problems for third-order tensors,
in which few available entries are defiled by impulse noise.
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626 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

The original model of RTC problems is to minimize an optimization problem which con-
sists of the tensor rank function plus the \ell 0-norm under limited sample constraints, which is
a generalization of robust matrix completion (RMC) [8, 22]. As the rank function is non-
convex, the nuclear norm is widely used to approximate the rank function. Cand\`es et al.
[8] studied the RMC problem by solving a convex optimization problem that minimizes a
weighted combination of the nuclear norm and the \ell 1-norm under limited sample constraints,
and theoretical conditions to ensure the perfect recovery in the probabilistic sense have been
analyzed. Although the nuclear norm is a convex relaxation of the rank function, this kind
of surrogate may make the solution seriously deviate from the solution of rank minimization.
To improve the recovery quality of the solution for matrix completion with fixed basis coeffi-
cient, Miao, Pan, and Sun [31] proposed a rank-corrected procedure to generate an estimator
with a preestimator and established a nonasymptotic recovery error bound. Liu, Bi, and Pan
[28] recently reformulated the rank regularized problem as a family of nonconvex equivalent
surrogates by establishing its global exact penalty.

Compared with RMC, RTC is more difficult to solve due to the fact that the rank of a
tensor is not unique. The two commonly used tensor ranks are the CANDECOMP/PARAFAC
(CP) rank [9] and the Tucker rank [43]. However, computing the CP rank of a given tensor
is known to be NP-hard [16]. Liu et al. [27] proposed the sum of nuclear norms of unfolding
matrices of a tensor to approximate the Tucker rank to solve the low-rank tensor completion
problem, which has since appeared frequently in practical settings. Although the sum of
nuclear norms is easy to compute, Romera-Paredes and Pontil [36] showed that it is not
the tightest convex envelope of the sum of entries of the Tucker rank. Recently, Huang
et al. [17] proposed a tensor ring decomposition that factorizes a high-order tensor into a
sequence of third-order tensors and used a number of tensor ring unfoldings for RTC problems.
However, the matricization of a tensor may break the intrinsic structures and correlations in
the tensor data, hence the rank defined by the unfolding matrices cannot accurately describe
the low-rank property of the tensor. Different from the rank based matricization above,
Kilmer et al. [19] proposed the tensor multirank and tubal rank definitions based on a tensor
singular value decomposition (t-SVD) framework [20] and Semerci et al. [37] developed a
new tubal nuclear norm (TNN), which is a convex surrogate of the multirank [57]. In recent
years, the tubal rank and the TNN have been widely studied for tensor recovery problems
[18, 29, 45, 55]. Jiang and Ng [18] showed that one can recover a low tubal rank tensor
exactly with overwhelming probability by solving a convex program, where the objective
function is a weighted combination of the TNN and the \ell 1-norm. However, as pointed out in
[38], the low-rank property of most natural images is mainly affected by a few large singular
values, which present a heavy-tailed distribution. It means that the larger singular values are
expected to be penalized mildly while the smaller ones are penalized severely. Nevertheless,
the TNN treats the singular values with the same penalty, which will overpenalize large
singular values and hence get the suboptimal performance. To address this issue, Zhang
and Ng [55] proposed a corrected TNN (CTNN) model for third-order tensor recovery from
partial observations corrupted by Gaussian noise based on the rank-corrected procedure [31]
and provided a nonasymptotic error bound of the CTNN model. However, [55] is not able to
address the observations with impulse noise and the outer loop convergence of the adaptive
correction procedure is unknown.D
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ROBUST TENSOR COMPLETION 627

On the other hand, it is challenging to solve the \ell 0 regularization problem since it is NP-
hard [33]. As a convex relaxation of the \ell 0-norm, the \ell 1-norm has been widely used for sparsity
in statistics. The least absolute shrinkage and selection operator (lasso) problem is the \ell 1-norm
penalized least squares method, which was proposed in [42] and has been used extensively in
high-dimensional statistics and machine learning. However, as indicated by [12], the \ell 1-norm
has long been known by statisticians to yield biased estimators and cannot achieve the best
estimation performance, and might not be statistically optimal in more challenging scenarios.
Hence, to solve the above mentioned problems, some nonconvex penalties have been proposed
to substitute sparsity measures [13, 14, 41, 50, 51, 58]. In [41], a sparse semismooth Newton
based proximal majorization-minimization (PMM) algorithm for nonconvex square-root-loss
regression problems was introduced where the nonconvex regularizer has the difference of
convex functions (DC) structure. Ahn, Pang, and Xin [1] gave a unified DC representation
for a family of surrogate sparsity functions that are employed as approximations of the \ell 0-norm
in statistical learning and established some sparsity properties of the directional stationary
points. Yang, Feng, and Suykens [51] proposed nonconvex models for RTC by the regularizing
redescending M-estimators as sparsity measures and developed the linearized and proximal
block coordinate methods to solve the nonconvex problems. Zhao, Bai, and Ng [58] studied
a nonconvex model, consisting of the data-fitting term combined with the TNN and the
nonconvex data fidelity term, for RTC problems and presented a Gauss--Seidel DC algorithm
to solve the resulting optimization. By numerical experiments, [51] and [58] all showed that
these nonconvex penalties outperformed the \ell 1-norm penalty. Actually, the TNN is the sum
of nuclear norms of all frontal slides of the tensor in the Fourier domain, which is the \ell 1-norm
of all singular vectors. In other words, the TNN results in a biased estimator as well as the
\ell 1-norm does. Therefore, some works [26, 49, 50, 54] proposed nonconvex penalties to replace
the \ell 1-norm in TNN. For example, Li, Shang, and Huang [26] established a nonconvex \ell p-norm
relaxation model for the low Tucker rank tensor recovery problem, which can recover the data
in lower sampling ratios compared to the convex nuclear norm relaxation model, and the
alternating direction method of multipliers (ADMM) was used to solve the resulting model.
Xu et al. [49] proposed a novel nonconvex surrogate for the tensor multirank based on the
Laplace function, which can more tightly approximate to the \ell 0-norm than the tensor nuclear
norm. However, there are few works on the mechanism to produce equivalent surrogates for the
rank and the zero-norm optimization problems, although much research has been considering
the nonconvex surrogates. What's more, prior studies mentioned above only focused on the
algorithm and its convergence analysis, but statistical error bounds of obtained solutions were
rarely discussed.

With an eye toward statistical performance, some researchers have studied the error bound
for various models. Wu [48] proposed a two-stage rank-sparsity-correction procedure to deal
with the problem of noisy low-rank and sparse matrix decomposition by adding adaptive rank-
correction terms designed in [31], and examined its recovery performance by developing an
error bound. However, [48] did not establish any theoretical guarantee that the recovery error
bound obtained by the corrected model is smaller than that of the model without correction
terms. Furthermore, it is difficult to generalize the error bound to tensor cases directly. In
the tensor algebra framework, Bai et al. [4] proposed an adaptive correction approach for
higher-order tensor completion and showed that the correction term with a suitable estimatorD
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628 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

could reduce the error bound of the corrected model, while the corrected model mainly deals
with data missing problems without noises. In order to derive solutions with higher accuracy,
Zhang and Ng [55] presented the CTNN model for low-rank tensor recovery and provided a
nonasymptotic error bound, but this model could not address the sparse outliers.

To address the above problems, in this paper, we not only pay attention to nonconvex
surrogates of the rank function and the \ell 0-norm to overcome biased estimators yielded by the
\ell 1-norm penalty and the TNN penalty, but also study the statistical performance analysis
of our method by establishing the recovery error bounds. We propose a bound constrained
nonconvex robust tensor completion (BCNRTC) model which aims to recover a third-order
tensor corrupted by impulse noise with partial observations. The proposed model consists
of two nonconvex regularization terms with the DC structure for low-rank and sparsity un-
der limited sample constraints and two bound constraints. These two nonconvex penalties
can be chosen as the minimax concave penalty (MCP) function, the smoothly clipped abso-
lute deviation (SCAD) function since such functions are continuous, sparsity promoting, and
nearly unbiased [12, 52]. In addition, we prove the equivalence of global solutions between the
bound constrained RTC problems and our proposed nonconvex model in theory. Recently,
some works [6, 15, 40, 46] have been proposed to solve nonconvex and nonsmooth problems.
Unfortunately, these works could not be applied to solve our proposed model directly. For
example, Bolte, Sabach, and Teboulle [6] proposed a proximal alternating linearized mini-
mization algorithm to solve the nonconvex and nonsmooth problems, but no constraints were
considered. Guo, Han, and Wu [15] studied the convergence of ADMM for minimizing the sum
of two nonconvex functions with linear constraints; however, one of the nonconvex functions
was required to be differentiable. [46] analyzed the convergence of ADMM for minimizing a
nonconvex problem with coupled linear equality constraints, but the objective functions also
needed to be Lipschitz differentiable. Therefore, for the proposed nonconvex and nonsmooth
model, we design a PMM algorithm similar to [24, 41, 53] to solve it. The key idea of the
PMM algorithm is to solve a series of convex subproblems with an initial estimator to generate
a new estimator which is used for the next subproblem. Specifically, each subproblem solves
a convex program which is to minimize a weighted combination of the TNN and the \ell 1-norm
minus two linear terms, where the linear terms can be seen as the rank-correction term and a
sparsity-correction term constructed on the initial estimator. Meanwhile, we establish the re-
covery error bound between new estimators and initial estimators and also discuss the impact
of the correction term on recovery error. Compared with the one obtained without these two
linear terms, the error bound has a certain degree of reduction. Finally, the convergence of
the PMM algorithm is established by using the Kurdyka--\Lojasiewicz property and extensive
numerical experiments are presented to demonstrate the efficiency of the proposed BCNRTC
model. Therefore, our work not only improves the tensor rank surrogate function but also
modifies the tensor sparsity measure.

The main contributions of this paper are four aspects.
\bullet We produce and prove equivalent nonconvex surrogates with DC structures in the

sense that they have the same global optimal solution set as RTC problems with the
tensor average rank and the \ell 0-norm do. We also show that these equivalent surro-
gates include the popular MCP function and SCAD function in statistics as special
cases.D
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ROBUST TENSOR COMPLETION 629

\bullet A PMM algorithm with convergence analysis is presented to solve the BCNRTC model,
which is a nonconvex optimization problem with linear constraints and bound con-
straints. Each subproblem of the PMM algorithm is to solve a convex program, where
the two linear terms obtained by majorization can be seen as the tensor rank-correction
term and the sparsity-correction term constructed on the initial estimator.

\bullet We establish a nonasymptotic recovery error bound for the subproblem of the PMM
algorithm, which gives the theoretical guarantee that under the mild condition the
subproblem of the PMM algorithm can reduce recovery error bounds. Our results
of recovery error bounds also suggest a criterion for constructing a suitable rank-
correction function and a sparsity-correction function. We show that rank-correction
functions and sparsity-correction functions constructed by the MCP function and the
SCAD function satisfy the above criterion.

\bullet Numerically, we confirm that the error bounds decrease as the number of outer it-
erations increases. Moreover, extensive numerical experiments on color images and
multispectral images demonstrate the superiority of the proposed model over several
existing methods.

The rest of this paper is organized as follows. Some notation used throughout this paper is
introduced in section 2. The BCNRTC model is proposed in section 3. The PMM algorithm
is presented to solve the resulting model and its global convergence is also established in
section 4. In section 5, we establish a recovery error bound for the estimator generated from
the PMM algorithm. Finally, we report numerical results to validate the efficiency of our
proposed model in section 6 and draw conclusions in section 7.

2. Preliminaries. Throughout this paper, tensors are denoted by Euler script letters, e.g.,
\scrX . Matrices are denoted by boldface capital letters, e.g., \bfitX . Vectors are denoted by bold
lowercase letters, e.g., \bfitx , and scalars are denoted by ordinary letters, e.g., x. The fields of real
numbers and complex numbers are denoted as \BbbR and \BbbC , respectively. For a third-order tensor
\scrX \in \BbbC n1\times n2\times n3 , we denote its (i, j, k)th entry as \scrX ijk. A slice of a tensor \scrX is a matrix defined
by fixing all indices but two. We use the notation \scrX (i, :, :),\scrX (:, i, :), and \scrX (:, :, i) to denote
the ith horizontal, lateral, and frontal slices, respectively. Specifically, the front slice \scrX (:, :, i)
is also denoted by \bfitX (i). A fiber of a tensor \scrX is a vector defined by fixing all indices but one.
The fiber along the third dimension \scrX (i, j, :) is also called the (i, j)th tube of \scrX . We denote
\lfloor t\rfloor as the nearest integer less than or equal to t and \lceil t\rceil as the one greater than or equal to t.

For \scrX \in \BbbR n1\times n2\times n3 , \pi (\scrX ) \in \BbbR n1n2n3 means the vector obtained by arranging the entries
of | \scrX | in a nonincreasing order, where | \scrX | means the tensor whose (i, j, k)th component is
| \scrX ijk| , and \pi i(\cdot ) denotes the ith entry of \pi (\cdot ). For \bfitX \in \BbbC n1\times n2 , \sigma (\bfitX ) means the singular value
vector of \bfitX with entries arranged in a nonincreasing order, and \sigma i(\cdot ) denotes the ith entry of
\sigma (\cdot ). For any given vector \bfitx , Diag(\bfitx ) denotes a rectangular diagonal matrix of suitable size
with the ith diagonal entry being xi. For any matrix \bfitX , diag(\bfitX ) denotes a vector of suitable
size with the ith diagonal entry being xii. Denote the function sign : \BbbR \rightarrow \BbbR by sign(t) = 1 if
t > 0, sign(t) =  - 1 if t < 0, and sign(t) = 0 if t = 0, for t \in \BbbR . For any \scrX \in \BbbR n1\times n2\times n3 , let
sign(\scrX ) be the sign tensor of \scrX where [sign(\scrX )]ijk = sign(\scrX ijk).

The inner product of two matrices \bfitX and \bfitY in \BbbC n1\times n2 is defined as \langle \bfitX ,\bfitY \rangle := Tr(\bfitX H\bfitY ),
where \bfitX H denotes the conjugate transpose of \bfitX , and Tr(\cdot ) denotes the matrix trace. TheD
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630 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

inner product of two tensors \scrX ,\scrY \in \BbbC n1\times n2\times n3 is defined as \langle \scrX ,\scrY \rangle :=
\sum n3

i=1\langle \bfitX 
(i),\bfitY (i)\rangle . The

Frobenius norm of a tensor \scrX is defined as \| \scrX \| F =
\sqrt{} 

\langle \scrX ,\scrX \rangle . And the infinity norm and the
l1-norm of a tensor are defined as \| \scrX \| \infty = maxijk | \scrX ijk| and \| \scrX \| 1 =

\sum n1
i=1

\sum n2
j=1

\sum n3
k=1 | \scrX ijk| ,

respectively. For any \scrX \in \BbbC n1\times n2\times n3 , the complex conjugate of \scrX is denoted as conj(\scrX ),
which takes the complex conjugate of each entry of \scrX .

For any tensor \scrX \in \BbbR n1\times n2\times n3 , we denote \widehat \scrX \in \BbbC n1\times n2\times n3 as the results of the fast
Fourier transform (FFT) of all tubes along the third dimension. Using MATLAB command
fft, \widehat \scrX = fft(\scrX , [ ], 3). One can also compute \scrX from \widehat \scrX by using the inverse FFT operation
along the third dimension, i.e., \scrX = ifft( \widehat \scrX , [ ], 3) . Let \bfitX denote the block diagonal matrix of

the tensor \widehat \scrX , where the ith diagonal block of \bfitX is the ith frontal slice \widehat \bfitX (i)
of \widehat \scrX , i.e.,

\bfitX := bdiag( \widehat \scrX ) =

\left[       
\widehat \bfitX (1)

\widehat \bfitX (2)

. . . \widehat \bfitX (n3)

\right]       .

We define a block circular matrix from the frontal slices \bfitX (i) of \scrX as

bcirc(\scrX ) :=

\left[     
\bfitX (1) \bfitX (n3) \cdot \cdot \cdot \bfitX (2)

\bfitX (2) \bfitX (1) \cdot \cdot \cdot \bfitX (3)

...
...

. . .
...

\bfitX (n3) \bfitX (n3 - 1) \cdot \cdot \cdot \bfitX (1)

\right]     .
It can be block diagonalized by using the FFT, i.e., (\bfitF n3 \otimes \bfitI n1) \cdot bcirc(\scrX ) \cdot (\bfitF  - 1

n3
\otimes \bfitI n2) = \bfitX ,

where \bfitF n is the n\times n discrete Fourier matrix, \bfitI n is the n\times n identity matrix, \otimes denotes the
Kronecker product, and (\bfitF n3 \otimes \bfitI n1)/

\surd 
n3 is unitary. The command unfold(\scrX ) takes \scrX into

a block n1n3 \times n2 matrix:

unfold(\scrX ) :=

\left[     
\bfitX (1)

\bfitX (2)

...

\bfitX (n3)

\right]     .
The inverse operator fold takes unfold(\scrX ) into a tensor form: fold(unfold(\scrX )) = \scrX . It is
shown in [29] that

conj(\widehat \bfitX (i)
) = \widehat \bfitX (n3 - i+2)

\forall i = 2, . . . ,

\biggl\lfloor 
n3 + 1

2

\biggr\rfloor 
.

The tensor spectral norm of \scrX is defined as \| \scrX \| := \| \bfitX \| , i.e., the spectral norm of the block
diagonal matrix \bfitX in the Fourier domain. The following properties will be used frequently:
\langle \scrX ,\scrY \rangle = 1

n3
\langle \bfitX ,\bfitY \rangle , \| \scrX \| F = 1\surd 

n3
\| \bfitX \| F .

Now we give some basic definitions about tensors, which serve as the foundation for our
further analysis.D
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ROBUST TENSOR COMPLETION 631

Definition 2.1 (t-product [20]). The t-product \scrX \ast \scrY of \scrX \in \BbbC n1\times n2\times n3 and \scrY \in \BbbC n2\times n4\times n3

is a tensor \scrZ \in \BbbC n1\times n4\times n3 given by \scrZ = fold(bcirc(\scrX ) \cdot unfold(\scrY )). Moreover, we have the
following equivalence: \scrX \ast \scrY = \scrZ \leftrightarrow \bfitX \bfitY = \bfitZ .

Definition 2.2 (tensor transpose [20]). The conjugate transpose of a tensor \scrX \in \BbbC n1\times n2\times n3

is the tensor \scrX H \in \BbbC n2\times n1\times n3 obtained by conjugate transposing each of the frontal slices and
then reversing the order of transposed frontal slices 2 through n3.

Definition 2.3 (f-diagonal tensor [20]). A tensor \scrX is called f -diagonal if each frontal slice
\bfitX (i) is a diagonal matrix.

Definition 2.4 (tensor singular value decomposition: t-SVD [20]). For \scrX \in \BbbR n1\times n2\times n3, the
t-SVD of \scrX is given by \scrX = \scrU \ast \scrS \ast \scrV H , where \scrU \in \BbbR n1\times n1\times n3 and \scrV \in \BbbR n2\times n2\times n3 are
orthogonal tensors, and \scrS \in \BbbR n1\times n2\times n3 is an f-diagonal tensor, respectively. The entries in \scrS 
are called the singular fibers of \scrX .

Definition 2.5 (tubal multirank [19, 57]). The multirank of a tensor \scrX \in \BbbR n1\times n2\times n3 is a

vector \bfitr \in \BbbR n3 with its ith entry as the rank of the ith frontal slice \widehat \bfitX (i)
of \widehat \scrX , i.e., ri =

rank(\widehat \bfitX (i)
).

Definition 2.6 (tensor average rank [29]). For \scrX \in \BbbR n1\times n2\times n3, the tensor average rank,

denoted as ranka(\scrX ), is defined as ranka(\scrX ) = 1
n3

\sum n3
i=1 rank(\widehat \bfitX (i)

).

Definition 2.7 (tubal nuclear norm [29]). The TNN of \scrX \in \BbbR n1\times n2\times n3, denoted as \| \scrX \| \mathrm{T}\mathrm{N}\mathrm{N},

is the average of the nuclear norm of all the frontal slices of \widehat \scrX , i.e., \| \scrX \| \mathrm{T}\mathrm{N}\mathrm{N} = 1
n3

\sum n3
i=1 \| \widehat \bfitX (i)

\| \ast ,
where \| \cdot \| \ast denote the nuclear norm of matrix, i.e., the sum of all singular values of matrix.

Definition 2.8 (tensor basis [56]). The column basis, denoted by \vec{}ei is a tensor of size n1 \times 
1 \times n3 with the (i, 1, 1)th entry equaling to 1 and the rest equaling to 0. The row basis is the
transpose of \vec{}ei, i.e., \vec{}e

T
i . The tube basis, denoted by \r ei, is a tensor of size 1 \times 1 \times n3 with the

(1, 1, k)th entry equaling to 1 and the rest equaling to 0. Hence, one can obtain a unit tensor
\Theta ijk \in \BbbR n1\times n2\times n3 with the (i, j, k)th nonzero entry equaling 1 via \Theta ijk = \vec{}ei \ast \r ek \ast \vec{}eTj . Now for
any tensor \scrX \in \BbbR n1\times n2\times n3, its description based on the basis form can be given as follows:
\scrX =

\sum n1
i=1

\sum n2
j=1

\sum n3
k=1\langle \Theta ijk,\scrX \rangle \Theta ijk.

Other notation will be defined in appropriate sections if necessary.

3. The equivalent surrogates for robust tensor completion model. Since the tensor is
bounded in many practical applications, such as an 8-byte image with elements ranging from
0 to 255, in this section, we introduce a nonconvex optimization model for bound constrained
RTC problems.

3.1. Robust tensor completion model. Given the noisy data tensor \scrX \in \BbbR n1\times n2\times n3 ,
only partial entries of \scrX are observed, and the noisy data tensor \scrX is an unknown low-rank
tensor \scrL  \star \in \BbbR n1\times n2\times n3 corrupted by an unknown sparse noise \scrM  \star \in \BbbR n1\times n2\times n3 . Then, we
can recover the low-rank tensor \scrL  \star by solving the following bound constrained robust tensor
completion model:D
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632 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

min
\scrL ,\scrM 

ranka(\scrL ) + \lambda \| \scrM \| 0

s.t. \scrP \Omega (\scrL + \scrM ) = \scrP \Omega (\scrX ), \| \scrM \| \infty \leq bm, \| \scrL \| \leq bl,
(3.1)

where bl, bm > 0 are given constants, \lambda > 0 is a regularization parameter, \| \cdot \| 0 denotes the
number of nonzero elements, ranka(\scrL ) is the tensor average rank, \| \cdot \| \infty denotes the infinity
norm, \| \cdot \| is the tensor spectral norm, \Omega is an index set, and \scrP \Omega is the orthogonal projection
operator on \Omega , i.e.,

\scrP \Omega (\scrX ) :=

\biggl\{ 
\scrX ijk, (i, j, k) \in \Omega ,

0 otherwise.

It is well known that the rank and zero-norm optimization problems are in general NP-hard.
Next, in terms of the variational characterization of the rank function and the zero-norm,
we give its equivalent surrogates of (3.1) and prove that they have the same global optimal
solution set as (3.1).

3.2. Equivalent surrogates. Let \Phi denote the family of closed proper convex functions
\phi : \BbbR \rightarrow ( - \infty ,+\infty ] satisfying [0, 1] \subseteq int(dom\phi ), \phi (1) = 1 and \phi (t\ast \phi ) = 0 where t\ast \phi is the
unique minimizer of \phi over [0, 1]. Let \bfite be the vector of all ones. Then

(3.2) \| \bfitz \| 0 = min
\bfitw 

\{ \Sigma p
i=1\phi (wi) s.t.\langle \bfite  - \bfitw , | \bfitz | \rangle = 0, 0 \leq \bfitw \leq \bfite \} 

and

(3.3) rank(\bfitX ) = min
\bfitW 

\{ \Sigma n
i=1\phi (\sigma i(\bfitW )) s.t.\| \bfitX \| \ast  - \langle \bfitW ,\bfitX \rangle = 0, \| \bfitW \| \leq 1\} ,

which are introduced in [28]. By the variational characterization of the zero-norm and the rank
function in (3.2) and (3.3), the rank plus zero-norm minimization problem (3.1) is equivalent
to the problem

min
\scrL ,\scrM ,\scrB ,\scrS 

1

n3
\Sigma n3
i=1\Sigma 

\widetilde n
j=1\phi (\sigma j(\widehat \bfitS (i)

)) + \lambda \Sigma n1
i=1\Sigma 

n2
j=1\Sigma 

n3
k=1\phi (\scrB ijk)

s.t.
1

n3
\Sigma n3
i=1(\| \widehat \bfitL (i)

\| \ast  - \langle \widehat \bfitS (i)
, \widehat \bfitL (i)

\rangle ) + \lambda \langle \scrE  - \scrB , | \scrM | \rangle = 0, 0 \leq \scrB \leq \scrE , \| \widehat \bfitS (i)
\| \leq 1,

\scrP \Omega (\scrL + \scrM ) = \scrP \Omega (\scrX ), \| \scrM \| \infty \leq bm, \| \scrL \| \leq bl,

(3.4)

where \widetilde n = min\{ n1, n2\} and \scrE is the tensor of all ones. Notice that 1
n3

\Sigma n3
i=1(\| \widehat \bfitL (i)

\| \ast  - 

\langle \widehat \bfitS (i)
, \widehat \bfitL (i)

\rangle ) + \lambda \langle \scrE  - \scrB , | \scrM | \rangle = 0, 0 \leq \scrB \leq \scrE , and \| \widehat \bfitS (i)
\| \leq 1 if and only if \| \widehat \bfitL (i)

\| \ast  - 
\langle \widehat \bfitS (i)

, \widehat \bfitL (i)
\rangle = 0, \langle \scrE  - \scrB , | \scrM | \rangle = 0, 0 \leq \scrB \leq \scrE , and \| \widehat \bfitS (i)

\| \leq 1, which can be obtained by the
definition of the dual norm.

For brevity, we denote J := \{ (i, j, k)\} . Now we consider the following penalty problem:

min
\scrL ,\scrM ,\scrB ,\scrS 

1

n3
\Sigma n3
i=1\Sigma 

\widetilde n
j=1\phi (\sigma j(\widehat \bfitS (i)

)) + \lambda \Sigma 
(n1,n2,n3)
J \phi (\scrB J) +

\rho 

n3
\Sigma n3
i=1(\| \widehat \bfitL (i)

\| \ast  - \langle \widehat \bfitS (i)
, \widehat \bfitL (i)

\rangle )

+ \rho \lambda \langle \scrE  - \scrB , | \scrM | \rangle 

s.t. 0 \leq \scrB \leq \scrE , \| \widehat \bfitS (i)
\| \leq 1, \scrP \Omega (\scrL + \scrM ) = \scrP \Omega (\scrX ), \| \scrM \| \infty \leq bm, \| \scrL \| \leq bl,

(3.5)

where \rho > 0 is the penalty factor. Next, we show that the penalty problem (3.5) is a global
exact penalty for (3.4) in the sense that it has the same global optimal solution set as (3.4)
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does. The proof follows the line of [28, Theorem 5.1] in the matrix case by proving that the
problem (3.4) is partially calm in its optimal solution set. The partial calmness is defined in
[28], which is also given in Appendix A.

Theorem 3.1. Let \phi \in \Phi . The penalty problem (3.5) is a global exact penalty for (3.4).

Proof. Let (\scrL \ast ,\scrM \ast ,\scrB \ast ,\scrS \ast ) be an arbitrary global optimal solution of (3.4) and conse-

quently \scrL \ast \not = 0 and \scrM \ast \not = 0. For all i \in \{ 1, 2, . . . , n3\} , we write r\ast i = rank(\widehat \bfitL \ast (i)) and

s\ast = \| \scrM \ast \| 0. Then \sigma r\ast i (\widehat \bfitL \ast (i)) > 0 and \pi s\ast (\scrM \ast ) > 0. By the continuity of \sigma r\ast i (\cdot ) and \pi s\ast (\cdot ),
there exists \varepsilon > 0 such that for any (\scrL ,\scrM ) \in \BbbB ((\scrL \ast ,\scrM \ast ), \varepsilon ),
(3.6)

\sigma r\ast i (\widehat \bfitL \ast (i)) \geq \alpha and \pi s\ast (\scrM ) \geq \alpha with \alpha = min(\sigma r\ast i (\widehat \bfitL \ast (i)), \pi s\ast (\scrM \ast ))/2 \forall i \in \{ 1, 2, . . . , n3\} .

We consider the perturbed problem of (3.4) whose feasible set takes the following form:

\scrF \epsilon :=

\biggl\{ 
(\scrL ,\scrM ,\scrB ,\scrS )

\bigm| \bigm| \bigm| \bigm| 1

n3
\Sigma n3
i=1(\| \widehat \bfitL (i)

\| \ast  - \langle \widehat \bfitS (i)
, \widehat \bfitL (i)

\rangle ) + \lambda (\| \scrM \| 1  - \langle \scrB , | \scrM | \rangle ) = \epsilon ,

0 \leq \scrB \leq \scrE , \| \widehat \bfitS (i)
\| \leq 1, \scrP \Omega (\scrL + \scrM ) = \scrP \Omega (\scrX ), \| \scrM \| \infty \leq bm, \| \scrL \| \leq bl

\biggr\} 
.

Fix an arbitrary \epsilon \in \BbbR . It suffices to consider the case \epsilon \geq 0. Let (\scrL ,\scrM ,\scrB ,\scrS ) be an arbitrary
point from \scrF \epsilon 

\bigcap 
\BbbB ((\scrL \ast ,\scrM \ast ,\scrB \ast ,\scrS \ast ), \varepsilon ). Then, with \=\rho = \phi 

\prime 
(1)/\alpha ,

1

n3
\Sigma n3

i=1\Sigma \widetilde n
j=1\phi (\sigma j(\widehat \bfitS (i)

)) + \lambda \Sigma 
(n1,n2,n3)
J \phi (\scrB J) +

\=\rho 

n3
\Sigma n3

i=1(\| \widehat \bfitL (i)
\| \ast  - \langle \widehat \bfitS (i)

, \widehat \bfitL (i)
\rangle )

+ \=\rho \lambda (\| \scrM \| 1  - \langle \scrB , | \scrM | \rangle )

\geq 1

n3
\Sigma n3

i=1\Sigma \widetilde n
j=1[\phi (\sigma j(\widehat \bfitS (i)

)) + \=\rho \sigma j(\widehat \bfitL (i)
)(1  - \sigma j(\widehat \bfitS (i)

))] + \lambda \Sigma n1n2n3
j=1 [\phi (\pi j(\scrB )) + \=\rho \pi j(\scrM )(1  - \pi j(\scrB ))]

\geq 1

n3
\Sigma n3

i=1\Sigma 
r\ast i
j=1[\phi (\sigma j(\widehat \bfitS (i)

)) + \=\rho \sigma r\ast i (\widehat \bfitL (i)
)(1  - \sigma j(\widehat \bfitS (i)

))] + \lambda \Sigma s\ast 

j=1[\phi (\pi j(\scrB )) + \=\rho \pi s\ast (\scrM )(1  - \pi j(\scrB ))]

\geq 1

n3
\Sigma n3

i=1\Sigma 
r\ast i
j=1[\phi (\sigma j(\widehat \bfitS (i)

)) + \phi 
\prime 
(1)(1  - \sigma j(\widehat \bfitS (i)

))] + \lambda \Sigma s\ast 

j=1[\phi (\pi j(\scrB )) + \phi 
\prime 
(1)(1  - \pi j(\scrB ))]

\geq 
\biggl( 

1

n3
\Sigma n3

i=1r
\ast 
i + \lambda s\ast 

\biggr) 
\phi (1) =

1

n3
\Sigma n3

i=1rank(\widehat \bfitL \ast (i)) + \lambda \| \scrM \ast \| 0,

(3.7)

where the first inequality is by the von Neumann's inequality and \langle \scrB , | \scrM | \rangle \leq \langle \pi (\scrB ), \pi (\scrM )\rangle ,
the second one is by the nonnegativity of \phi in [0, 1], the third one is due to (3.6) and
\=\rho = \phi 

\prime 
(1)/\alpha , and the last one is using \phi (t) \geq \phi (1) + \phi 

\prime 
(1)(t  - 1) for t \in [0, 1]. Since

1
n3

\Sigma n3
i=1rank(\widehat \bfitL \ast (i)) +\lambda \| \scrM \ast \| 0 is exactly the optimal value of (3.4), by the arbitrariness of \epsilon in

\BbbR and that of (\scrL ,\scrM ,\scrB ,\scrS ) in \scrF \epsilon 
\bigcap 
\BbbB ((\scrL \ast ,\scrM \ast ,\scrB \ast ,\scrS \ast ), \varepsilon ), (3.7) shows that (3.4) is partially

calm at (\scrL \ast ,\scrM \ast ,\scrB \ast ,\scrS \ast ), where the definition of partial calmness and its properties are intro-
duced in [28]. By the arbitrariness of (\scrL \ast ,\scrM \ast ,\scrB \ast ,\scrS \ast ) in the global optimal solution set, it is
partially calm in its optimal solution set. Since the feasible set of problem (3.5) is compact,
the penalty problem (3.5) is a global exact penalty for (3.4) follows from [28, Proposition
2.1(b)].D
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Then, by letting \psi (t) := \{ \phi (t),+\infty 
t\in [0,1],

otherwise and using the conjugate \psi \ast of \psi , i.e., \psi \ast (s) :=
supt\in \BbbR \{ st - \psi (t)\} , we can obtain the following conclusion.

Corollary 3.2. Let \phi \in \Phi . There exists \rho \ast > 0 such that the problem (3.1) has the same
global optimal solution set as the following problem with \rho > \rho \ast does:

min
\scrL ,\scrM 

\rho 

n3
\Sigma n3
i=1\| \widehat \bfitL (i)

\| \ast  - 
1

n3
\Sigma n3
i=1\Sigma 

\widetilde n
j=1\psi 

\ast (\rho \sigma j(\widehat \bfitL (i)
)) + \lambda (\rho \| \scrM \| 1  - \Sigma J\psi 

\ast (\rho | \scrM J | ))

s.t. \scrP \Omega (\scrL + \scrM ) = \scrP \Omega (\scrX ), \| \scrM \| \infty \leq bm, \| \scrL \| \leq bl.

(3.8)

Let u > 0. Denote

(3.9) \widetilde \theta (s) := u\theta (\rho s)

with \theta (s) := | s|  - \psi \ast (| s| ). Then the problem (3.8) is equivalent to the following problem:

min
\scrL ,\scrM 

1

n3
\Sigma n3
i=1\Sigma 

\widetilde n
j=1
\widetilde \theta (\sigma j(\widehat \bfitL (i)

)) + \lambda \Sigma J
\widetilde \theta (| \scrM J | )

s.t. \scrP \Omega (\scrL + \scrM ) = \scrP \Omega (\scrX ), \| \scrM \| \infty \leq bm, \| \scrL \| \leq bl.

(3.10)

It is worth noting that \phi can be chosen as different functions satisfying \phi \in \Phi . In particular,
if \phi is chosen as the one in Example 3.1, then \widetilde \theta becomes the MCP function (3.14); if \phi is
chosen as the one in Example 3.2, then \widetilde \theta becomes the SCAD function (3.16).

Example 3.1. Let \phi (t) := \varphi (t)
\varphi (1) with \varphi (t) := a2

4 t
2  - a2

2 t + at +
(a - 2)2+

4 , where a > 0 is

a constant. Clearly, \phi \in \Phi with t\ast \phi = (a - 2)+
a . Simple calculations show that \psi \ast takes the

following form:

\psi \ast (s) =

\left\{       
 - (a - 2)2+

4 if s \leq a - a2/2
\varphi (1) ,

1
a2\varphi (1)

(a
2 - 2a
2 + s\varphi (1))2  - (a - 2)2+

4\varphi (1) if a - a2/2
\varphi (1) < s \leq a

\varphi (1) ,

s - 1 if s > a
\varphi (1) .

When a \geq 2, we have \varphi (1) = 1 and

\theta (s) = | s|  - \psi \ast (| s| ) =

\biggl\{ 
2| s| 
a  - s2

a2
, | s| \leq a,

1, | s| > a.

Setting s := as
\gamma for some constants \gamma > 0, we have

\gamma 

2
\theta 

\biggl( 
as

\gamma 

\biggr) 
=
\gamma 

2

\biggl( 
a| s| 
\gamma 

 - \psi \ast 
\biggl( 
a| s| 
\gamma 

\biggr) \biggr) 
=

\Biggl\{ 
| s|  - s2

2\gamma , | s| \leq \gamma ,
\gamma 
2 , | s| > \gamma .

If \rho = a
\gamma , u = \gamma 

2 , and a \geq 2, then the function \widetilde \theta (s) defined in (3.9) is the MCP function.

Example 3.2. Let \phi (t) := \varphi (t)
\varphi (1) with \varphi (t) := a - 1

2 t2 + t, where a > 1 is a constant. Clearly,
\phi \in \Phi . Then,

\psi \ast (s) =

\left\{     
0, s \leq 1

\varphi (1) ,

s - 1, s > a
\varphi (1) ,

1
2(a - 1)\varphi (1)(s\varphi (1)  - 1)2, 1

\varphi (1) < s \leq a
\varphi (1) .
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Then,

\theta (s) = | s|  - \psi \ast (| s| ) =

\left\{     
| s| , | s| \leq 1

\varphi (1) ,

1, | s| > a
\varphi (1) ,

| s|  - 1
2(a - 1)\varphi (1)(| s| \varphi (1)  - 1)2, 1

\varphi (1) < | s| \leq a
\varphi (1) .

Setting s := s
\gamma \varphi (1) for some constants \gamma > 0, we have

\theta 

\biggl( 
s

\gamma \varphi (1)

\biggr) 
=

| s| 
\gamma \varphi (1)

 - \psi \ast 
\biggl( 

| s| 
\gamma \varphi (1)

\biggr) 
=

\left\{     
| s| 

\gamma \varphi (1) , | s| \leq \gamma ,

1, | s| > a\gamma ,
| s| 

\gamma \varphi (1)  - 
1

2(a - 1)\varphi (1)(| s| /\gamma  - 1)2, \gamma < | s| \leq a\gamma ,

and

\gamma 2\varphi (1)\theta 

\biggl( 
s

\gamma \varphi (1)

\biggr) 
= \gamma 2\varphi (1)

\biggl( 
| s| 

\gamma \varphi (1)
 - \psi \ast 

\biggl( 
| s| 

\gamma \varphi (1)

\biggr) \biggr) 
=

\left\{     
\gamma | s| , | s| \leq \gamma ,

\gamma 2(a+1)
2 , | s| > a\gamma ,

 - s2+2a| s| \gamma  - \gamma 2
2(a - 1) , \gamma < | s| \leq a\gamma .

If \rho = 1
\gamma \varphi (1) , u = \gamma 2\varphi (1), and a > 1, then the function \widetilde \theta (s) defined in (3.9) is the SCAD

function.

3.3. BCNRTC for RTC problems. From the above discussion, the equivalent surrogates
problem (3.10) can be rewritten in a simplified BCNRTC form as follows:

min
\scrL ,\scrM 

\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - H1(\scrL ) + \lambda (\| \scrM \| 1  - H2(\scrM ))

s.t. \scrP \Omega (\scrL + \scrM ) = \scrP \Omega (\scrX ), \| \scrM \| \infty \leq bm, \| \scrL \| \leq bl,
(3.11)

where H1 and H2 are defined as

(3.12) H1(\scrL ) =
1

n3
\Sigma n3
i=1g(\sigma (\widehat \bfitL (i)

)), H2(\scrM ) = \Sigma n1
i=1\Sigma 

n2
j=1\Sigma 

n3
k=1h(\scrM ijk),

where g(\bfitx ) = \Sigma 
\mathrm{d}\mathrm{i}\mathrm{m}(\bfitx )
j=1 h(\bfitx j), and h is a convex and continuous differentiable function which

can be defined as

(3.13) h(x) :=

\Biggl\{ 
x2

2\gamma , | x| \leq \gamma ,

| x|  - \gamma 
2 , | x| > \gamma ,

which is related to the MCP function \varpi M with h(x) = | x|  - \varpi M (x), where

(3.14) \varpi M (x) =

\Biggl\{ 
| x|  - x2

2\gamma , | x| \leq \gamma ,
\gamma 
2 , | x| > \gamma .

The convex function h can also be defined as

(3.15) h(x) :=

\left\{     
0, | x| \leq \gamma 1,

x2 - 2\gamma 1| x| +\gamma 21
2(\gamma 2 - \gamma 1) , \gamma 1 < | x| \leq \gamma 2,

| x|  - \gamma 1+\gamma 2
2 , | x| > \gamma 2,D
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which is related to the SCAD function \varpi S with h(x) = | x|  - \varpi S(x), where

(3.16) \varpi S(x) =

\left\{     
| x| , | x| \leq \gamma 1,

2\gamma 2| x|  - x2 - \gamma 21
2(\gamma 2 - \gamma 1) , \gamma 1 < | x| \leq \gamma 2,
\gamma 1+\gamma 2

2 , | x| > \gamma 2.

Remark 3.3. When H1 \equiv 0 and H2 \equiv 0, the BCNRTC model (3.11) reduces to a convex
model (CRTC for short)

min
\scrL ,\scrM 

\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N} + \lambda \| \scrM \| 1

s.t. \scrP \Omega (\scrL + \scrM ) = \scrP \Omega (\scrX ), \| \scrM \| \infty \leq bm, \| \scrL \| \leq bl,
(3.17)

which is actually a reformulation of the robust tensor completion (RTC\ell 1) [18] with two
bound constraints. We use the symmetric Gauss--Seidel based alternating direction method
of multipliers (sGS-ADMM) to solve the CRTC, which will be illustrated in subsection 6.2 for
a warm start of BCNRTC.

Notice that the feasible set of the problem (3.11) is bounded and closed, and the objective
function is continuous and proper, and by the Weierstrass theorem, the solution set of (3.11)
is nonempty and compact.

In the next section, we will propose an algorithm to solve the BCNRTC model (3.11).

4. The proximal majorization-minimization algorithm. In this section, we will develop
a PMM algorithm to solve the BCNRTC model (3.11).

By using the indicator function, we can rewrite the BCNRTC model (3.11) to an uncon-
strained optimization problem as follows:

(4.1) min
\scrL ,\scrM 

\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - H1(\scrL ) + \lambda (\| \scrM \| 1  - H2(\scrM )) + \delta \Gamma 1(\scrL ,\scrM ) + \delta D1(\scrM ) + \delta D2(\scrL ),

where D1 := \{ \scrM | \| \scrM \| \infty \leq bm\} , D2 := \{ \scrL | \| \scrL \| \leq bl\} , \Gamma 1 := \{ (\scrL ,\scrM ) | \scrP \Omega (\scrL + \scrM ) =
\scrP \Omega (\scrX )\} , and \delta D1(\scrM ) is the indicator function of the nonempty set D1.

The proposed PMM algorithm is to linearize the concave terms  - H1(\cdot ) and  - H2(\cdot ) in the
objective function of (4.1) at each iteration with respect to the current iterate, say, (\scrL k,\scrM k),
and generate the next iterate (\scrL k+1,\scrM k+1) by solving a convex subproblem inexactly:

min
\scrL ,\scrM 

\biggl\{ 
F (\scrL ,\scrM ;\scrL k,\scrM k) :=\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - H1(\scrL k)  - \langle \nabla H1(\scrL k),\scrL  - \scrL k\rangle + \lambda (\| \scrM \| 1  - H2(\scrM k)

 - \langle \nabla H2(\scrM k),\scrM  - \scrM k\rangle ) +
\eta 

2
\| \scrM  - \scrM k\| 2F +

\eta 

2
\| \scrL  - \scrL k\| 2F

+ \delta \Gamma 1(\scrL ,\scrM ) + \delta D1(\scrM ) + \delta D2(\scrL )

\biggr\} 
.

(4.2)

Let \scrL k = \scrU k \ast \Sigma k \ast (\scrV k)H be the t-SVD; then it holds that \nabla H1(\scrL k) = \scrU k \ast \scrR k \ast (\scrV k)H , where

\scrR k = ifft(\widehat \scrR k, [ ], 3) and \widehat \bfitR k
(i)

= Diag(\nabla g(diag (\widehat \Sigma k
(i)

))) = Diag(\nabla g(\sigma (\widehat \bfitL k(i)))). For brevity,D
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ROBUST TENSOR COMPLETION 637

the proximal parameter \eta > 0 is assumed to be a constant, although it is frequently varying
in practice to accelerate convergence.

By casting some constants, the subproblem (4.2) can be rewritten as follows:

min
\scrL ,\scrM 

\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - \langle \nabla H1(\scrL k),\scrL \rangle + \lambda (\| \scrM \| 1  - \langle \nabla H2(\scrM k),\scrM \rangle ) +
\eta 

2
\| \scrM  - \scrM k\| 2F

+
\eta 

2
\| \scrL  - \scrL k\| 2F + \delta \Gamma 1(\scrL ,\scrM ) + \delta D1(\scrM ) + \delta D2(\scrL ).

(4.3)

For convenience, we define \scrW := (\scrL ,\scrM ). Note that F (\scrW ;\scrW k) is strongly convex; by [35,
Theorem 1.9, Theorem 2.6], we obtain that F (\scrW ;\scrW k) has a unique minimizer.

Motivated by [3], we use an error criterion to describe the inexact solution in (4.3), i.e.,
we need to find \scrW k+1 and \scrC k+1 := (\scrC k+1

\scrL , \scrC k+1
\scrM ) such that

(4.4) \scrC k+1 \in \partial F (\scrL k+1,\scrM k+1;\scrL k,\scrM k) and \| \scrC k+1\| F \leq \eta c\| \scrW k+1  - \scrW k\| F ,

where 0 \leq c < 1
2 is a given constant.

Now, we summarize the PMM algorithm for solving the BCNRTC (3.11) in Algorithm 4.1.

Algorithm 4.1 The PMM algorithm for solving the BCNRTC (3.11).

1: Input: \scrL 0,\scrM 0,\scrP \Omega (\scrX ), \lambda , \gamma , and \eta . Set k = 0.
2: Find \scrW k+1, \scrC k+1 such that \scrC k+1 \in \partial F (\scrL k+1,\scrM k+1;\scrL k,\scrM k) and \| \scrC k+1\| F \leq \eta c\| \scrW k+1  - 

\scrW k\| F .
3: If a termination criterion is met, set \scrL \ast := \scrL k+1, \scrM \ast := \scrM k+1; else, set k := k+1, return

to 2.

4.1. Convergence analysis. In this section, we establish the global convergence of the
PMM algorithm when h is chosen as the one in (3.13) or (3.15). Recall that the notation
\scrW := (\scrL ,\scrM ). Let

Q(\scrW ) := \| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - H1(\scrL ) + \lambda (\| \scrM \| 1  - H2(\scrM )) + \delta \Gamma 1(\scrL ,\scrM ) + \delta D1(\scrM ) + \delta D2(\scrL ).

It is easy to see that F (\scrW k;\scrW k) = Q(\scrW k). First, we show a descent lemma for Q(\scrW ).

Lemma 4.1. Let \{ \scrW k\} k\in \BbbN be the sequence generated by Algorithm 4.1. Then, for any \eta > 0
and 0 \leq c < 1

2 ,

Q(\scrW k+1) +
\eta 

2
(1  - 2c)| | \scrW k+1  - \scrW k| | 2F \leq Q(\scrW k) \forall k \geq 0,

and furthermore, limk\rightarrow \infty \| \scrW k+1  - \scrW k\| F = 0, where \| \scrW k\| F =
\sqrt{} 
\| \scrL k\| 2F + \| \scrM k\| 2F .

Next, we show Q(\scrW ) satisfies the relative error condition.

Lemma 4.2. Let \{ \scrW k\} k\in \BbbN be the sequence generated by Algorithm 4.1, \scrW \ast be a cluster
point, and \scrB k+1 := (\scrB k+1

\scrL ,\scrB k+1
\scrM ) \in \partial Q(\scrW k+1). Then, there exist \delta 0 > 0 and \widetilde m > 0 such that

\| \scrB k+1\| F \leq (\widetilde m+ \lambda /\gamma + \eta + \eta c)\| \scrW k+1  - \scrW k\| F \forall \scrW k,\scrW k+1 \in B(\scrW \ast , \delta 0).D
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Lemma 4.3. The function Q(\scrW ) is a KL function when h is chosen as the one in (3.13)
or (3.15).

The proofs of Lemmas 4.1, 4.2, and 4.3 are given in Appendix C. Combining Lemmas
4.1--4.3, we obtain the following convergence result of the PMM algorithm.

Theorem 4.4. Let h be chosen as the one in (3.13) or (3.15), \{ \scrW k\} k\in \BbbN be the sequence
generated by Algorithm 4.1, and \scrW \ast be a cluster point. Then, for any \eta > 0 and 0 \leq c < 1

2 ,
the sequence \{ \scrW k\} k\in \BbbN converges to \scrW \ast as k goes to infinity, and \scrW \ast is a critical point of
BCNRTC model (3.11), i.e., 0 \in \partial Q(\scrW \ast ). Moreover, the sequence \{ \scrW k\} k\in \BbbN has a finite
length ,i.e.,

\sum \infty 
k=0 | | \scrW k+1  - \scrW k| | F <\infty .

Proof. As mentioned in Lemma 4.2, the sequence \{ \scrW k\} k\in \BbbN generated by Algorithm 4.1 is
bounded, which admits a converging subsequence, i.e., there exists a subsequence \scrW kj such
that \scrW kj \rightarrow \scrW \ast , as kj \rightarrow \infty . Moreover, \scrW k belongs to \Gamma 1, D1, and D2, which leads to
\delta \Gamma 1(\scrL kj ,\scrM kj ) = 0, \delta D1(\scrM kj ) = 0, and \delta D2(\scrL kj ) = 0. So we have

Q(\scrW kj ) =\| \scrL kj\| \mathrm{T}\mathrm{N}\mathrm{N}  - H1(\scrL kj ) + \lambda (\| \scrM kj\| 1  - H2(\scrM kj )) + \delta \Gamma 1(\scrL kj ,\scrM kj )

+\delta D1(\scrM kj ) + \delta D2(\scrL kj )
=\| \scrL kj\| \mathrm{T}\mathrm{N}\mathrm{N}  - H1(\scrL kj ) + \lambda (\| \scrM kj\| 1  - H2(\scrM kj ))

\rightarrow \| \scrL \ast \| \mathrm{T}\mathrm{N}\mathrm{N}  - H1(\scrL \ast ) + \lambda (\| \scrM \ast \| 1  - H2(\scrM \ast )), as kj \rightarrow \infty ,

(4.5)

where the last limit holds by the continuity of \| \cdot \| \mathrm{T}\mathrm{N}\mathrm{N}  - H1(\cdot ) + \lambda (\| \cdot \| 1  - H2(\cdot )). Since the
sets \Gamma 1, D1, and D2 are closed and \scrW k belongs to \Gamma 1, D1, and D2, we have \scrW \ast belongs to \Gamma 1,
D1, and D2, and so Q(\scrW \ast ) = \| \scrL \ast \| \mathrm{T}\mathrm{N}\mathrm{N} - H1(\scrL \ast )+\lambda (\| \scrM \ast \| 1 - H2(\scrM \ast )), which together with
(4.5) implies that Q(\scrW kj ) \rightarrow Q(\scrW \ast ) as kj \rightarrow \infty . Combining Lemmas 4.1--4.3, the conclusion
is obtained according to [3, Theorem 2.9]. This completes the proof.

4.2. Solving the subproblem. In this section, the sGS-ADMM [25] is applied to solve the
subproblem in the PMM algorithm. Each PMM iteration solves a strongly convex subproblem
of the following form inexactly:

min
\scrL ,\scrM 

\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - \langle \nabla H1(\scrL k),\scrL \rangle + \lambda (\| \scrM \| 1  - \langle \nabla H2(\scrM k),\scrM \rangle ) +
\eta 

2
\| \scrM  - \scrM k\| 2F +

\eta 

2
\| \scrL  - \scrL k\| 2F

s.t. \scrP \Omega (\scrL + \scrM ) = \scrP \Omega (\scrX ), \| \scrM \| \infty \leq bm, \| \scrL \| \leq bl.

(4.6)

Let \scrL + \scrM = \scrZ and add a proximal term. The problem (4.6) can be rewritten as

min
\scrL ,\scrM ,\scrZ 

\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - \langle \nabla H1(\scrL k),\scrL \rangle + \lambda (\| \scrM \| 1  - \langle \nabla H2(\scrM k),\scrM \rangle ) +
\eta 

2
\| \scrM  - \scrM k\| 2F

+
\eta 

2
\| \scrL  - \scrL k\| 2F +

\eta 

2
\| \scrZ  - \scrZ k\| 2F + \delta D1(\scrM ) + \delta D2(\scrL )

s.t. \scrL + \scrM = \scrZ , \scrP \Omega (\scrX ) = \scrP \Omega (\scrZ ).

(4.7)
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ROBUST TENSOR COMPLETION 639

Let \Gamma 2 := \{ \scrZ | \scrP \Omega (\scrX ) = \scrP \Omega (\scrZ )\} . The augmented Lagrangian function associated with (4.7) is
defined by

L (\scrL ,\scrM ,\scrZ ;\scrY ) :=\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - \langle \nabla H1(\scrL k),\scrL \rangle + \lambda (\| \scrM \| 1  - \langle \nabla H2(\scrM k),\scrM \rangle ) + \langle \scrY ,\scrZ  - \scrL  - \scrM \rangle 

+
\eta 

2
\| \scrM  - \scrM k\| 2F +

\eta 

2
\| \scrL  - \scrL k\| 2F +

\mu 

2
\| \scrL + \scrM  - \scrZ \| 2F +

\eta 

2
\| \scrZ  - \scrZ k\| 2F

+ \delta D1(\scrM ) + \delta D2(\scrL ),

where \mu > 0 is the penalty parameter and \scrY is a multiplier. The iterative scheme of sGS-
ADMM is given explicitly by

\scrZ t+ 1
2 = arg min

\scrZ \in \Gamma 2

\{ L (\scrL t,\scrM t,\scrZ ;\scrY t)\} ,(4.8)

\scrL t+1 = arg min
\scrL 

\{ L (\scrL ,\scrM t,\scrZ t+ 1
2 ;\scrY t)\} ,(4.9)

\scrZ t+1 = arg min
\scrZ \in \Gamma 2

\{ L (\scrL t+1,\scrM t,\scrZ ;\scrY t)\} ,(4.10)

\scrM t+1 = arg min
\scrM 

\{ L (\scrL t+1,\scrM ,\scrZ t+1;\scrY t)\} ,(4.11)

\scrY t+1 = \scrY t  - \tau \mu (\scrL t+1 + \scrM t+1  - \scrZ t+1),(4.12)

where \tau \in (0, (1 +
\surd 

5)/2) is the step length. Next, we turn to compute the concrete forms of
solutions in each subproblem.

The optimal solution with respect to \scrZ is given explicitly by

\scrZ = \scrP \Omega (\scrX ) +
1

\mu + \eta 
\scrP \Omega (\mu (\scrL + \scrM ) + \eta \scrZ k  - \scrY ).

Before giving the solution of the problem (4.9), we need to present the following lemma.

Lemma 4.5. For any \scrY \in \BbbR n1\times n2\times n3, \tau > 0 and \rho > 0. Let \scrY = \scrU \ast \Sigma \ast \scrV H be the t-SVD.
Then the optimal solution of the problem

min
\scrX \in \BbbR n1\times n2\times n3

\biggl\{ 
\tau \| \scrX \| TNN +

1

2
\| \scrX  - \scrY \| 2F | \| \scrX \| \leq \rho 

\biggr\} 
is given by \scrX \ast = \scrU \ast \scrD \tau ,\rho \ast \scrV H , where \scrD \tau ,\rho = ifft(min\{ max\{ \widehat \Sigma  - \tau , 0\} , \rho \} , [ ], 3).

Lemma 4.5 can be proved easily. For brevity, we omit it here. It follows from Lemma 4.5
that the optimal solution with respect to \scrL in (4.9) can be given by

\scrL t+1 = arg min
\| \scrL \| \leq bl

\Bigl\{ 
\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - \langle \nabla H1(\scrL k)  - \scrY t1,\scrL \rangle +

\mu 

2
\| \scrL + \scrM t  - \scrZ t+ 1

2 \| 2F +
\eta 

2
\| \scrL  - \scrL k\| 2F

\Bigr\} 
= arg min

\| \scrL \| \leq bl

\biggl\{ 
\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N} +

\eta + \mu 

2
\| \scrL  - \scrA \| 2F

\biggr\} 
= \scrU t \ast \scrD t

\tau ,\rho \ast (\scrV t)H ,

(4.13)

where \scrA = ( - \mu \scrM t + \mu \scrZ t+ 1
2 + \eta \scrL k + \scrY t1 + \nabla H1(\scrL k))/(\eta + \mu ) = \scrU t \ast \Sigma t \ast (\scrV t)H and \scrD t

\tau ,\rho =

ifft(min\{ max\{ \widehat \Sigma t  - 1/(\eta + \mu ), 0\} , bl\} , [ ], 3).D
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On the other hand, the optimal solution with respect to (4.11) is given by

\scrM t+1 = arg min
\| \scrM \| \infty \leq bm

\Bigl\{ 
\lambda (\| \scrM \| 1  - \langle \nabla H2(\scrM k),\scrM \rangle )  - \langle \scrY t1,\scrM \rangle +

\eta 

2
\| \scrM  - \scrM k\| 2F

+
\mu 

2
\| \scrM + \scrL t+1  - \scrZ t+1\| 2F

\Bigr\} 
= arg min

\| \scrM \| \infty \leq bm

\biggl\{ 
\| \scrM \| 1 +

\eta + \mu 

2\lambda 
\| \scrM  - \scrG \| 2F

\biggr\} 
,

where \scrG = (\lambda \nabla H2(\scrM k) + \mu \scrZ t+1  - \mu \scrL t+1 + \eta \scrM k + \scrY t1)/(\eta + \mu ). Simple calculations show
that the closed form solution with respect to \scrM t+1 can be given by

\scrM t+1
ijk =

\biggl\{ 
sign(\scrG ijk) max\{ | \scrG ijk|  - \lambda /(\mu + \eta ), 0\} , | \scrG ijk| \leq bm + \lambda /(\mu + \eta ),

sign(\scrG ijk)bm, | \scrG ijk| > bm + \lambda /(\mu + \eta ).
(4.14)

Now we are ready to state the sGS-ADMM for solving (4.7) in Algorithm 4.2.

Algorithm 4.2 A symmetric Gauss--Seidel ADMM for solving (4.7).

1: Input: \tau , \Omega , \lambda , \gamma , \mu , \eta , \scrP \Omega (\scrX ), \scrL 0, \scrM 0, \scrY 0, \scrM k, \scrL k, and \scrZ k. Set t = 0.

2: Compute \scrZ t+ 1
2 by \scrZ t+ 1

2 = \scrP \Omega (\scrX ) + 1
\mu +\eta \scrP \Omega (\mu (\scrL t + \scrM t) + \eta \scrZ k  - \scrY t).

3: Compute \scrL t+1 via (4.13).
4: Compute \scrZ t+1 by \scrZ t+1 = \scrP \Omega (\scrX ) + 1

\mu +\eta \scrP \Omega (\mu (\scrL t+1 + \scrM t) + \eta \scrZ k  - \scrY t).
5: Compute \scrM t+1 via (4.14).
6: Compute \scrY t+1 by (4.12).
7: If a termination criterion is not met, set t := t+ 1 and return to 2.

Note that the objective function of (4.7) is nonsmooth with respect to \scrL , \scrM and quadratic
with respect to \scrZ . By [25, Theorem 3], we can show the convergence of Algorithm 4.2, which
is summarized in the following theorem.

Theorem 4.6. Let \{ (\scrL t,\scrM t,\scrZ t,\scrY t)\} t\in \BbbN be generated by Algorithm 4.2. Choose \mu > 0 and
\gamma \in (0, (

\surd 
5 + 1)/2); then the sequence \{ (\scrL t,\scrM t,\scrZ t)\} t\in \BbbN converges to an optimal solution of

the problem (4.7) and \{ \scrY t\} t\in \BbbN converges to an optimal solution of the dual problem of (4.7).

Proof. Notice that the problem (4.7) has a unique minimizer and the following constraint
qualification is satisfied:

There exists (\scrL \ast ,\scrM \ast ,\scrZ \ast ) \in ri(D2 \times D1 \times \Gamma 2) \cap \frakC ,

where \frakC := \{ (\scrL ,\scrM ,\scrZ )| \scrL +\scrM = \scrZ \} . By [25, Theorem 3], we can easily obtain the conclusion
of this theorem.

Remark 4.7. Actually, Algorithm 4.2 shows the process of solving the CRTC model if \eta ,
\scrM k, \scrL k, and \scrZ k are all equal to zero. For simplicity, we don't give the specific algorithm
frame here.

Now we give the computational cost of algorithms. At each iteration of solving the sub-
problem of the PMM algorithm, we need to calculate (4.8)--(4.12). The main cost of (4.9) is
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the tensor SVD. The number of the floating point operations of FFT is \scrO (n3 log2(n3)), and
we need to calculate it n1n2 times. So the total cost of the tensor FFT is \scrO (n3 log2(n3)n1n2).
Meanwhile the cost of SVDs for n3 n1-by-n2 matrix is \scrO (\widetilde n\widetilde m2n3), where \widetilde n = min\{ n1, n2\} and\widetilde m = max\{ n1, n2\} . Therefore, the total cost of the tensor SVD is \scrO (n3 log2(n3)n1n2 +\widetilde n\widetilde m2n3)
operations. The complexities of computing \scrZ t+1, \scrM t+1, and \scrY t+1 are all \scrO (n1n2n3) oper-
ations since each entry of the tensor is computed independently. Then the total cost of the
subproblem of the PMM algorithm at each iteration is \scrO (n3 log2(n3)n1n2 + \widetilde n\widetilde m2n3). During
the algorithm execution, the largest data we store is the n1 \times n2 \times n3 tensor, so the memory
complexity is \scrO (n1n2n3).

5. Error bounds. In this section, we establish the error bound between the optimal solu-
tion (\scrL c,\scrM c) of (4.3) and the ground truth (\scrL  \star ,\scrM  \star ) in Frobenius norm. Meanwhile, we give
the analysis that the error bound of BCNRTC can be reduced compared with that of CRTC
as long as the given initial estimator is not far from the ground truth.

We assume that \| \scrM  \star \| 0 = \widetilde s and the tubal multirank of \scrL  \star is \bfitr = (r1, r2, . . . , rn3). Denote\widetilde \Delta \scrL := \scrL c  - \scrL  \star and \widetilde \Delta \scrM := \scrM c  - \scrM  \star . First, we provide the connection among \| \widetilde \Delta \scrL \| \mathrm{T}\mathrm{N}\mathrm{N},
\| \widetilde \Delta \scrM \| 1, and the Frobenius norms of \widetilde \Delta \scrL and \widetilde \Delta \scrM . Similar results have been studied in [55],
which established the relationship between the TNN and the Frobenius norm of the tensor
by using the tubal rank. We show a structure constructed by the average rank, which may
provide a more clear result of the error bound.

In order to display the structure, we study the subgradient of the TNN at first. Consider

the \bfitL  \star with the structure \bfitL  \star = Diag(\widehat \bfitL  \star (1),\widehat \bfitL  \star (2), . . . ,\widehat \bfitL  \star (n3)
), where \widehat \bfitL  \star (i) \in \BbbC n1\times n2 with

the SVD \widehat \bfitL  \star (i) = \bfitU (i)\bfitS (i)(\bfitV (i))H . Noticing that rank(\widehat \bfitL  \star (i)) = ri, by dividing the first ri

columns and the last n1 - ri columns, we have the \bfitU (i) = [\bfitU 
(i)
1 ,\bfitU 

(i)
2 ], where \bfitU 

(i)
1 \in \BbbC n1\times ri and

\bfitU 
(i)
2 \in \BbbC n1\times (n1 - ri). Similarly, \bfitV (i) = [\bfitV 

(i)
1 ,\bfitV 

(i)
2 ], where \bfitV 

(i)
1 \in \BbbC n2\times ri and \bfitV 

(i)
2 \in \BbbC n2\times (n2 - ri).

From the subgradient of the nuclear norm of the matrix, we have\Bigl\{ 
\bfitU 

(i)
1 (\bfitV 

(i)
1 )H + \bfitU 

(i)
2 \bfitW (i)(\bfitV 

(i)
2 )H | \bfitW (i) \in \BbbC (n1 - ri)\times (n2 - ri), \| \bfitW (i)\| \leq 1

\Bigr\} 
= \partial \| \widehat \bfitL  \star (i)\| \ast .

We denote that \widehat \bfitU 1
(i)

= [\bfitU 
(i)
1 , 0] \in \BbbC n1\times r\mathrm{m}\mathrm{a}\mathrm{x} , \widehat \bfitV 1

(i)
= [\bfitV 

(i)
1 , 0] \in \BbbC n2\times r\mathrm{m}\mathrm{a}\mathrm{x} , \widehat \bfitU 2

(i)
= [0,\bfitU 

(i)
2 ] \in 

\BbbC n1\times (n1 - r\mathrm{m}\mathrm{i}\mathrm{n}), \widehat \bfitV 2
(i)

= [0,\bfitV 
(i)
2 ] \in \BbbC n2\times (n2 - r\mathrm{m}\mathrm{i}\mathrm{n}), and

\widehat \bfitW (i)
=

\biggl[ 
0 0

0 \bfitW (i)

\biggr] 
\in \BbbC (n1 - r\mathrm{m}\mathrm{i}\mathrm{n})\times (n2 - r\mathrm{m}\mathrm{i}\mathrm{n}),

where r\mathrm{m}\mathrm{a}\mathrm{x} = max\{ r1, r2, . . . , rn3\} , r\mathrm{m}\mathrm{i}\mathrm{n} = min\{ r1, r2, . . . , rn3\} , and \| \bfitW (i)\| \leq 1. Then we

have \widehat \bfitU 1
(i)

(\widehat \bfitV 1
(i)

)H + \widehat \bfitU 2
(i)\widehat \bfitW (i)

(\widehat \bfitV 2
(i)

)H = \bfitU 
(i)
1 (\bfitV 

(i)
1 )H + \bfitU 

(i)
2 \bfitW (i)(\bfitV 

(i)
2 )H \in \partial \| \widehat \bfitL  \star (i)\| \ast .

Since \widehat \bfitU 1
(i)

\in \BbbC n1\times r\mathrm{m}\mathrm{a}\mathrm{x} have the same size for i = 1, 2, . . . , n3, we can stack the matrices
to form a tensor \widehat \scrU 1 \in \BbbC n1\times r\mathrm{m}\mathrm{a}\mathrm{x}\times n3 . Let \widehat \scrU 2, \widehat \scrV 1, \widehat \scrV 2, and \widehat \scrW be constructed likewise; we can
see the following proposition holds.

Proposition 5.1. Let \widehat \scrU 1, \widehat \scrU 2, \widehat \scrV 1, \widehat \scrV 2, and \widehat \scrW be defined as above, and \scrU 1 = ifft(\widehat \scrU 1, [ ], 3),

\scrU 2 = ifft(\widehat \scrU 2, [ ], 3), \scrV 1 = ifft(\widehat \scrV 1, [ ], 3), \scrV 2 = ifft(\widehat \scrV 2, [ ], 3),\scrW = ifft(\widehat \scrW , [ ], 3). Then we have

D
ow

nl
oa

de
d 

09
/2

5/
22

 to
 1

58
.1

32
.1

61
.6

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

642 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

(5.1)

S(\scrL  \star ) :=
\Bigl\{ 
\scrU 1 \ast \scrV H1 + \scrU 2 \ast \scrW \ast \scrV H2 | \scrW \in \BbbC (n1 - r\mathrm{m}\mathrm{i}\mathrm{n})\times (n2 - r\mathrm{m}\mathrm{i}\mathrm{n})\times n3 , \| \scrW \| \leq 1

\Bigr\} 
= \partial \| \scrL  \star \| TNN.

The proof of Proposition 5.1 is given in Appendix D.1. Obviously, \scrU 1 \in \BbbR n1\times r\mathrm{m}\mathrm{a}\mathrm{x}\times n3 and
\scrV 1 \in \BbbR n2\times r\mathrm{m}\mathrm{a}\mathrm{x}\times n3 have the same tubal multirank with \scrL  \star .

Remark 5.2. A similar work is given in [29]:

G(\scrL  \star ) :=
\bigl\{ 
\scrU s \ast \scrV Hs + \scrR | \scrU Hs \ast \scrR = 0,\scrR \ast \scrV s = 0, \| \scrR \| \leq 1

\bigr\} 
= \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N},

where \scrL  \star = \scrU s \ast \scrS s \ast \scrV Hs is the skinny t-SVD of \scrL  \star . However, its proof is not given, and it is
not shown how to construct \scrU s and \scrV s. If \scrU s and \scrV s are constructed the same as those in [55]
similarly to the skinny SVD of matrix, then S(\scrL  \star ) \supseteq G(\scrL  \star ), and the ``equality"" relationship
holds when ri = r\mathrm{m}\mathrm{a}\mathrm{x} for i = 1, 2, . . . , n3. If \scrU s and \scrV s are constructed the same as ours, i.e.,
\scrU s = \scrU 1 and \scrV s = \scrV 1, then S(\scrL  \star ) = G(\scrL  \star ).

Denote the set \scrT by

\scrT := \{ \scrU 1 \ast \scrY H + \scrW \ast \scrV H1 | \scrY \in \BbbR n2\times r\mathrm{m}\mathrm{a}\mathrm{x}\times n3 ,\scrW \in \BbbR n1\times r\mathrm{m}\mathrm{a}\mathrm{x}\times n3\} 

and its orthogonal complement by \scrT \bot . The set \scrT is the tangent space with respect to the
rank constraint tensors \{ \scrX \in \BbbR n1\times n2\times n3 | ranka(\scrX ) \leq r\mathrm{m}\mathrm{a}\mathrm{x}\} at \scrL  \star .

Proposition 5.3. For any tensor \scrX \in \BbbR n1\times n2\times n3, the orthogonal projection of \scrX onto \scrT 
and \scrT \bot is given by

\scrP \scrT (\scrX ) = \scrU 1 \ast \scrU H1 \ast \scrX + \scrX \ast \scrV 1 \ast \scrV H1  - \scrU 1 \ast \scrU H1 \ast \scrX \ast \scrV 1 \ast \scrV H1 ,

\scrP \scrT \bot (\scrX ) = \scrU 2 \ast \scrU H2 \ast \scrX \ast \scrV 2 \ast \scrV H2 .

The proof of Proposition 5.3 is given in Appendix D.2. For simplicity of subsequent
analysis, we denote

(5.2) d\scrL :=
1\surd 
r
\| \scrU 1 \ast \scrV H1  - \nabla H1(\scrL k)\| F , d\scrM :=

1\surd \widetilde s\| sign(\scrM  \star )  - \nabla H2(\scrM k)\| F ,

r :=
\sum n3

i=1 ri
n3

, | \Omega | := m, and \widetilde \Delta := \widetilde \Delta \scrL + \widetilde \Delta \scrM .
Denote \Theta ijk as a unit tensor with the (i, j, k)th nonzero entry equaling 1. Let the set of

the standard orthogonal basis of \BbbR n1\times n2\times n3 be denoted by \Theta := \{ \Theta ijk| 1 \leq i \leq n1, 1 \leq j \leq 
n2, 1 \leq k \leq n3\} . For each unit tensor \Theta ijk, there exists a unique index \omega l = j + (i  - 1)n2 +
(k  - 1)n1n2 such that \Theta \omega l

= \Theta ijk, \omega l \in \{ 1, 2, . . . , n1n2n3\} , which is a bijective mapping from
\{ 1, 2, . . . , n1\} \times \{ 1, 2, . . . , n2\} \times \{ 1, 2, . . . , n3\} to \{ 1, 2, . . . , n1n2n3\} . Then let \Omega be the multiset
of all sampled independent and identically distributed (i.i.d.) indices \omega 1, . . . , \omega m mapping to
the subset of \{ 1, 2, . . . , n1\} \times \{ 1, 2, . . . , n2\} \times \{ 1, 2, . . . , n3\} .

Lemma 5.4. For any \eta > 0 and \lambda > 0, we have

(5.3) \| \widetilde \Delta \scrL \| TNN \leq p1\| \widetilde \Delta \scrL \| F + p2\| \widetilde \Delta \scrM \| F , \| \widetilde \Delta \scrM \| 1 \leq q1\| \widetilde \Delta \scrL \| F + q2\| \widetilde \Delta \scrM \| F ,

where p1 :=
\surd 

2r + d\scrL 
\surd 
r + \eta \| \scrL  \star  - \scrL k\| F , p2 := \lambda d\scrM 

\surd \widetilde s + \eta \| \scrM  \star  - \scrM k\| F , q1 := (d\scrL 
\surd 
r +

\eta \| \scrL  \star  - \scrL k\| F )/\lambda , and q2 :=
\surd \widetilde s+ d\scrM 

\surd \widetilde s+ \eta \| \scrM  \star  - \scrM k\| F /\lambda .D
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The proof of Lemma 5.4 is given in Appendix D.3. Letting pijk denote the probability
to observe the (i, j, k)th entry of \scrX , we suppose that each element is sampled with positive
probability.

Assumption 5.1. There exists a positive constant \mu 1 \geq 1 such that pijk \geq (\mu 1n1n2n3)
 - 1.

Note that Assumption 5.1 implies that

(5.4) \BbbE [\langle \Theta ,\scrX \rangle 2] =

n1\sum 
i=1

n2\sum 
j=1

n3\sum 
k=1

pijk\scrX 2
ijk \geq (\mu 1n1n2n3)

 - 1\| \scrX \| 2F .

Define the operator \frakD \Omega : \BbbR n1\times n2\times n3 \rightarrow \BbbR m by \frakD \Omega (\scrX ) := (\langle \Theta \omega 1 ,\scrX \rangle , . . . , \langle \Theta \omega m ,\scrX \rangle )T . The
adjoint \frakD \ast 

\Omega : \BbbR m \rightarrow \BbbR n1\times n2\times n3 by \frakD \ast 
\Omega (\frakD \Omega (\scrX )) =

\sum m
l=1\langle \Theta \omega l

,\scrX \rangle \Theta \omega l
. Let \epsilon = (\epsilon 1, . . . , \epsilon m)T be

an i.i.d. Rademacher sequence, i.e., i.i.d. sequence of Bernoulli random variables taking the
values 1 and  - 1 with probability 1

2 . Define

(5.5) \beta \scrL := \BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| , \beta \scrM := \BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
.

The following lemma shows that the sampling operator \scrP \Omega satisfies some property specified
in a certain set with high probability. Similar results can also be found in [21].

Lemma 5.5. Suppose that Assumption 5.1 holds. Given any positive numbers p1, p2, q1,
q2, and t, define

K(p, q,t) := \{ \Delta = \Delta \scrL + \Delta \scrM | \| \Delta \scrL \| TNN \leq p1\| \Delta \scrL \| F + p2\| \Delta \scrM \| F ,
\| \Delta \scrM \| 1 \leq q1\| \Delta \scrL \| F + q2\| \Delta \scrM \| F , \| \Delta \| \infty = 1, \| \Delta \scrL \| 2F + \| \Delta \scrM \| 2F \geq t\mu 1n1n2n3\} ,

(5.6)

where p := (p1, p2) and q := (q1, q2). Denote \beta \scrS := (\beta 2\scrL p
2
1 + \beta 2\scrL p

2
2 + \beta 2\scrM q21 + \beta 2\scrM q22)

1
2 . Then, it

holds that for all \Delta \in K(p, q, t),

(5.7)
1

m
\| \scrP \Omega (\Delta )\| 2F \geq \BbbE [\langle \Theta ,\Delta \rangle 2]  - 

\| \Delta \scrL \| 2F + \| \Delta \scrM \| 2F
2\mu 1n1n2n3

 - 256\mu 1n1n2n3\beta 
2
\scrS 

with probability at least 1  - \mathrm{e}\mathrm{x}\mathrm{p}[ - mt2 \mathrm{l}\mathrm{o}\mathrm{g}(2)/64]
1 - \mathrm{e}\mathrm{x}\mathrm{p}[ - mt2 \mathrm{l}\mathrm{o}\mathrm{g}(2)/64] . In particular, the inequality (5.7) holds with

probability at least 1  - 1
n1+n2+n3

if t = 8
\sqrt{} 

\mathrm{l}\mathrm{o}\mathrm{g}(n1+n2+n3+1)
m \mathrm{l}\mathrm{o}\mathrm{g}(2) .

The proof of Lemma 5.5 is given in Appendix D.4.

Proposition 5.6. Suppose that Assumption 5.1 holds. Then, there exists C2 > 0 such that
it holds that either

\| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F
n1n2n3

\leq 32(bm + bl)
2\mu 1

\sqrt{} 
log(n1 + n2 + n3 + 1)

m log(2)
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or

\| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F
n1n2n3

\leq 64b2l
n1n2n3

\Biggl[ 
(d\scrL 

\surd 
r + \eta \| \scrL  \star  - \scrL k\| F )2

\lambda 2
+

\biggl( \surd \widetilde s+ d\scrM 
\surd \widetilde s+

\eta \| \scrM  \star  - \scrM k\| F
\lambda 

\biggr) 2
\Biggr] 

+ C2

\Bigl[ 
\beta 2
\scrL (
\surd 

2r + d\scrL 
\surd 
r + \eta \| \scrL  \star  - \scrL k\| F )2

+ \beta 2
\scrL (\lambda d\scrM 

\surd \widetilde s+ \eta \| \scrM  \star  - \scrM k\| F )2 +
\beta 2
\scrM (d\scrL 

\surd 
r + \eta \| \scrL  \star  - \scrL k\| F )2

\lambda 2

+ \beta 2
\scrM 

\biggl( \surd \widetilde s+ d\scrM 
\surd \widetilde s+

\eta \| \scrM  \star  - \scrM k\| F
\lambda 

\biggr) 2
\Biggr] 

with probability at least 1  - 1
n1+n2+n3

.

Proof. Let \widetilde b := \| \widetilde \Delta \| \infty . Since (\scrL c,\scrM c) is the optimal and (\scrL  \star ,\scrM  \star ) is feasible to the
problem (4.3), we have \| \widetilde \Delta \scrM \| \infty \leq 2bm and \| \widetilde \Delta \scrL \| \infty \leq \| \scrL c\| + \| \scrL  \star \| \leq 2bl. Hence, \widetilde b \leq 
\| \widetilde \Delta \scrL \| \infty + \| \widetilde \Delta \scrM \| \infty \leq 2(bm + bl). We consider the following two cases:

Case 1: Suppose that \| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F \leq 8\widetilde b2\mu 1n1n2n3\sqrt{} \mathrm{l}\mathrm{o}\mathrm{g}(n1+n2+n3+1)
m \mathrm{l}\mathrm{o}\mathrm{g}(2) . Then we im-

mediately obtain that

\| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F
n1n2n3

\leq 32(bm + bl)
2\mu 1

\sqrt{} 
log(n1 + n2 + n3 + 1)

m log(2)
.

Case 2: Suppose that \| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F \geq 8\widetilde b2\mu 1n1n2n3\sqrt{} \mathrm{l}\mathrm{o}\mathrm{g}(n1+n2+n3+1)
m \mathrm{l}\mathrm{o}\mathrm{g}(2) . It follows from

the definition of \widetilde b that \widetilde \Delta /\widetilde b \in K(p, q, t), where t = 8
\sqrt{} 

\mathrm{l}\mathrm{o}\mathrm{g}(n1+n2+n3+1)
m \mathrm{l}\mathrm{o}\mathrm{g}(2) , and p = (p1, p2) and

q = (q1, q2) are given in Lemma 5.4. Due to (5.4) and Lemma 5.5, we obtain that with
probability at least 1  - 1

n1+n2+n3
,

(5.8)
\| \widetilde \Delta \| 2F
n1n2n3

\leq \mu 1
m

\| \scrP \Omega (\widetilde \Delta )\| 2F +
\| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F

2n1n2n3
+ 256\mu 21n1n2n3\beta 

2
\scrS 
\widetilde b2.

Since (\scrL c,\scrM c) is the optimal solution of (4.3) and (\scrL  \star ,\scrM  \star ) is the true tensor, we obtain
\scrP \Omega (\widetilde \Delta ) = 0. In addition, due to \| \widetilde \Delta \scrL \| \infty \leq 2bl, we then derive from (5.3) that

\| \widetilde \Delta \| 2F \geq \| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F  - 2\| \widetilde \Delta \scrL \| \infty \| \widetilde \Delta \scrM \| 1
\geq \| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F  - 4bl(q1\| \widetilde \Delta \scrL \| F + q2\| \widetilde \Delta \scrM \| F )

\geq \| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F  - 16b2l (q
2
1 + q22)  - 

\| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F
4

=
3

4
(\| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F )  - 16b2l (q

2
1 + q22).

(5.9)

By combining (5.8) with (5.9), we obtain that

(5.10)
\| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F

n1n2n3
\leq 

64b2l (q
2
1 + q22)

n1n2n3
+ 1024\mu 21n1n2n3\beta 

2
\scrS 
\widetilde b2.

Recall that \beta \scrS := (\beta 2\scrL p
2
1 +\beta 2\scrL p

2
2 +\beta 2\scrM q21 +\beta 2\scrM q22)

1
2 . By plugging this together with Lemma 5.4

into (5.10) and taking C2 := 4096\mu 21n1n2n3(bm + bl)
2, we complete the proof.D
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For the third-order tensor, we need to avoid the case that each fiber is sampled with very
high probability. Letting R:jk := \Sigma n1

i=1pijk, Ci:k := \Sigma n2
j=1pijk, Tij: := \Sigma n3

k=1pijk, the following
assumption is used to avoid this situation.

Assumption 5.2. There exists a positive constant \mu 2 \geq 1 such that max\{ i,j,k\} \{ R:jk, Ci:k,
Tij:\} \leq \mu 2

\mathrm{m}\mathrm{i}\mathrm{n}\{ n1,n2,n3\} .

We now estimate an upper bound of \BbbE \| 1
m\frakD \ast 

\Omega (\epsilon )\| . First, we give a brief introduction about
the Orlicz \psi s-norm. Given any s \geq 1, the Orlicz \psi s-norm of a random variable z is defined
by \| z\| \psi s := inf\{ t > 0| \BbbE exp(| z| s/ts) \leq 2\} . The proofs of the following two lemmas are given
in Appendices D.5 and D.6, respectively.

Lemma 5.7. Under Assumption 5.2, for m \geq \widetilde n log((n1 + n2)n3)(log(\widetilde n))2/\mu 2, there exists
a positive constant C1 such that

\beta \scrL = \BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| \leq C1

\sqrt{} 
3e\mu 2 log((n1 + n2)n3)\widetilde nm ,

where \widetilde n := min\{ n1, n2\} .
Lemma 5.8. There exist C > 0 and M > 0 that depend on the Orlicz \psi 1-norm of \epsilon l such

that

\beta \scrM = \BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq M(log(2m) + 1)

Cm
.

We first define two fundamental terms:\Biggl\{ 
\Upsilon 1 := (d\scrL 

\surd 
r+\eta \| \scrL  \star  - \scrL k\| F

\lambda )2 + (
\surd \widetilde s+ d\scrM 

\surd \widetilde s+ \eta \| \scrM  \star  - \scrM k\| F
\lambda )2,

\Upsilon 2 := (
\surd 

2r + d\scrL 
\surd 
r + \eta \| \scrL  \star  - \scrL k\| F )2 + (d\scrM 

\surd \widetilde s\lambda + \eta \| \scrM  \star  - \scrM k\| F )2.

By combining Proposition 5.6 with Lemmas 5.7 and 5.8, we can easily establish the following
error bound results.

Theorem 5.9. Suppose that Assumptions 5.1 and 5.2 hold. Then, for m \geq \widetilde n log((n1 +
n2)n3)(log(\widetilde n))2/\mu 2, there exist constants C > 0, C1 > 0, and C2 > 0 such that

\| \widetilde \Delta \scrL \| 2F + \| \widetilde \Delta \scrM \| 2F
n1n2n3

\leq 
64b2l
n1n2n3

\Upsilon 1 + C2

\Biggl[ 
C2
13e\mu 2 log((n1 + n2)n3)\widetilde nm \Upsilon 2 +

\biggl( 
M(log(2m) + 1)

Cm

\biggr) 2

\Upsilon 1

\Biggr] (5.11)

with probability at least 1  - 1
n1+n2+n3

.

When H1 \equiv 0, H2 \equiv 0, and \eta \equiv 0, the error bound in Theorem 5.9 is just the error
bound of the CRTC problem (3.17). From Theorem 5.9, we can see that the second term in
the maximum of (5.11) dominates the first term. Thus, the error bound is dominated by the
second term. Now, we denote the second term as \frakL m. In fact, when H1 \equiv 0 and H2 \equiv 0, we
obtain that d\scrL = 1 and d\scrM = 1 according to (5.2). In this case, we denote the second term
as \frakL 

\prime 
m. Note that \frakL m < \frakL 

\prime 
m when d\scrL < 1 and d\scrM < 1.D
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Let \widehat \bfitU k
1

(i)

and \widehat \bfitV k
1

(i)

denote the first ri columns of \widehat \bfitU k
(i)

and \widehat \bfitV k
(i)

, where \widehat \bfitL k(i) =\widehat \bfitU k
(i)\widehat \Sigma k

(i)\widehat \bfitV k
(i)

is the SVD of \widehat \bfitL k(i). Next, we show that the error bound of (4.3) is lower
than that of (3.17), i.e., d\scrL < 1 and d\scrM < 1.

Theorem 5.10. Let \varepsilon \nabla H1(\widehat \bfitL k(i)) := 1\surd 
ri
\| \widehat \nabla H1(\scrL k)

(i)
 - \widehat \bfitU k

1

(i)

(\widehat \bfitV k
1

(i)

)H\| F for i = 1, . . . , n3,

and assume that

(5.12)
\| \widehat \bfitL k(i)  - \widehat \bfitL  \star (i)\| F

\sigma ri(
\widehat \bfitL  \star (i)) < min

\biggl\{ 
1\surd 
2

\biggl( 
1  - exp

\biggl( 
 - 
\surd 

2ri

\biggl( 
1  - \varepsilon \nabla H1(\widehat \bfitL k(i))\biggr) \biggr) \biggr) , 1

2

\biggr\} 
,

then d\scrL < 1.

Proof. Let \widehat \bfitL  \star (i) = \bfitU (i)\bfitS (i)(\bfitV (i))H with \bfitU (i) = [\bfitU 
(i)
1 ,\bfitU 

(i)
2 ] and \bfitV (i) = [\bfitV 

(i)
1 ,\bfitV 

(i)
2 ], \bfitU 

(i)
1 \in 

\BbbC n1\times ri , \bfitV 
(i)
1 \in \BbbC n2\times ri , for i = 1, . . . , n3. Note that

\| \widehat \bfitU k
1

(i)

(\widehat \bfitV k
1

(i)

)H  - \bfitU 
(i)
1 (\bfitV 

(i)
1 )H\| F \leq  - 1\surd 

2
log

\biggl( 
1  - 

\surd 
2
\| \widehat \bfitL k

(i)

 - \widehat \bfitL  \star 
(i)
\| F

\sigma ri(
\widehat \bfitL  \star 

(i)
)

\biggr) 
<

\surd 
ri(1  - \varepsilon \nabla H1(\widehat \bfitL k

(i)

)),

where the first inequality follows from the proof of [31, Theorem 3] and the second inequality
is due to the inequality (5.12). So we obtain

\| \widehat \nabla H1(\scrL k)
(i)

 - \bfitU 
(i)
1 (\bfitV 

(i)
1 )H\| F \leq \| \widehat \nabla H1(\scrL k)

(i)

 - \widehat \bfitU k
1

(i)

(\widehat \bfitV k
1

(i)

)H\| F + \| \widehat \bfitU k
1

(i)

(\widehat \bfitV k
1

(i)

)H  - \bfitU 
(i)
1 (\bfitV 

(i)
1 )H\| F

<
\surd 
ri\varepsilon \nabla H1

(\widehat \bfitL k
(i)

) +
\surd 
ri(1  - \varepsilon \nabla H1

(\widehat \bfitL k
(i)

)) =
\surd 
ri.

On the other hand, it follows from \widehat \bfitU 1
(i)

= [\bfitU 
(i)
1 , 0] \in \BbbC n1\times r\mathrm{m}\mathrm{a}\mathrm{x} and \widehat \bfitV 1

(i)
= [\bfitV 

(i)
1 , 0] \in 

\BbbC n2\times r\mathrm{m}\mathrm{a}\mathrm{x} that

d2\scrL =
1

r
\| \scrU 1 \ast \scrV H1  - \nabla H1(\scrL k)\| 2F =

1

rn3

n3\sum 
i=1

\| \widehat \nabla H1(\scrL k)
(i)

 - \widehat \bfitU 1
(i)

(\widehat \bfitV 1
(i)

)H\| 2F <
1

rn3

n3\sum 
i=1

ri = 1.

This completes the proof.

Theorem 5.10 guarantees that d\scrL < 1 if the estimator \scrL k does not deviate too much from
\scrL  \star .

Remark 5.11. Theorem 5.10 removes the rank constraint condition r1 <
6

4n3 - 7(r2 + \cdot \cdot \cdot +
rn3) in [54, Lemma 4.2].

Theorem 5.12. Let \bfitM  \star := Diag(vec(\scrM  \star )), \bfitM k := Diag(vec(\scrM k)), and \varepsilon \nabla H2(\scrM k) :=
1\surd \widetilde s\| \nabla H2(\scrM k)  - sign(\scrM k)\| F . Assume that

\| \bfitM k  - \bfitM  \star \| F
\sigma \widetilde s(\bfitM  \star )

< min

\biggl\{ 
1\surd 
2

(1  - exp( - 
\surd 

2\widetilde s(1  - \varepsilon \nabla H2(\scrM k)))),
1

2

\biggr\} 
,

where \sigma \widetilde s(\bfitM  \star ) := min\{ | \scrM  \star 
ijk| | \scrM  \star 

ijk \not = 0\} . Then, we have d\scrM < 1.D
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ROBUST TENSOR COMPLETION 647

Proof. We can obtain the following decomposition:

\bfitM  \star =Diag(vec(sign(\scrM  \star )))Diag(vec(| \scrM  \star | ))Diag(vec(sign2(\scrM  \star )))

=Diag(vec(sign(\scrM  \star )))\bfitP 1\bfitP 2 . . .\bfitP \widetilde sDiag(\pi (vec(| \scrM  \star | )))
\bfitP H\widetilde s \bfitP H\widetilde s - 1 . . .\bfitP 

H
1 Diag(vec(sign2(\scrM  \star ))),

where \bfitP 1,\bfitP 2, . . . ,\bfitP \widetilde s are elementary transformation matrices. Denote

\bfitU  \star := Diag(vec(sign(\scrM  \star )))\bfitP 1\bfitP 2 . . .\bfitP \widetilde s = [\bfitU  \star 
1, 0],

(\bfitV  \star )H := \bfitP H\widetilde s \bfitP H\widetilde s - 1 . . .\bfitP 
H
1 Diag(vec(sign2(\scrM  \star ))) = [\bfitV  \star 

1, 0]H ,

where \bfitU  \star 
1 \in \BbbR n1n2n3\times \widetilde s and \bfitV  \star 

1 \in \BbbR n1n2n3\times \widetilde s. This implies that

\bfitU  \star (\bfitV  \star )H =[\bfitU  \star 
1, 0]

\biggl[ 
(\bfitV  \star 

1)
H

0

\biggr] 
= \bfitU  \star 

1(\bfitV 
 \star 
1)
H

=Diag(vec(sign(\scrM  \star )))\bfitP 1\bfitP 2 . . .\bfitP \widetilde s\bfitP H\widetilde s \bfitP H\widetilde s - 1 . . .\bfitP 
H
1 Diag(vec(sign2(\scrM  \star )))

=Diag(vec(sign(\scrM  \star ))).

(5.13)

Noticing that \sigma \widetilde s(\bfitM  \star ) = min\{ | \scrM  \star 
ijk| | \scrM  \star 

ijk \not = 0\} , we have

d\scrM =
1\surd \widetilde s\| \nabla H2(\scrM k)  - sign(\scrM  \star )\| F =

1\surd \widetilde s\| Diag(vec(\nabla H2(\scrM k)))  - Diag(vec(sign(\scrM  \star )))\| F

=
1\surd \widetilde s\| Diag(vec(\nabla H2(\scrM k)))  - \bfitU  \star 

1(\bfitV 
 \star 
1)
H\| F

\leq  - 1\surd 
2\widetilde s log

\biggl( 
1  - 

\surd 
2
\| \bfitM k  - \bfitM  \star \| F

\sigma \widetilde s(\bfitM  \star )

\biggr) 
+ \varepsilon \nabla H2(\scrM k) < 1,

where the third equation follows from (5.13), and the first inequality follows from [31, Theorem
3].

The above theorem demonstrates that d\scrM < 1 if \scrM k does not deviate too much from
\scrM  \star .

Now, we analyze the constructions of \nabla H1 and \nabla H2. In order to get a small error bound,
according to Theorem 5.9, we desire d\scrL and d\scrM as small as possible, i.e., \nabla H1(\scrL k) is close to
\scrU 1 \ast \scrV H1 and \nabla H2(\scrM k) is close to sign(\scrM  \star ). First, let \nabla H1(\scrL k) = \scrU k \ast \scrR k \ast (\scrV k)H , where
\scrU k = [\scrU k1 \scrU k2 ] and \scrV k = [\scrV k1 \scrV k2 ] with \scrU k1 \in \BbbR n1\times r\mathrm{m}\mathrm{a}\mathrm{x}\times n3 and \scrV k1 \in \BbbR n2\times r\mathrm{m}\mathrm{a}\mathrm{x}\times n3 . If \scrL k is close
to \scrL  \star , we desire \nabla H1(\scrL k) to be close to \scrU k1 \ast (\scrV k1 )H . Notice from (3.13) that

(5.14) h
\prime 
(x) :=

\biggl\{ x
\gamma , | x| \leq \gamma ,

sign(x), | x| > \gamma .

It is observed from (5.14) that the function h
\prime 

is S-shaped with two inflection points at \pm \gamma 
and the parameter \gamma mainly controls the shape of h

\prime 
, and the steepness of h

\prime 
increases when

\gamma decreases. So, there exist some \gamma \in (0, bl] such that the following property holds:

(5.15) (\nabla g(\sigma (\widehat \bfitL k(i))))j = h
\prime 
(\sigma j(

\widehat \bfitL k(i))) \approx \biggl\{ 1, 1 \leq j \leq ri,
0 otherwise,

\forall i = 1, . . . , n3.
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648 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

Similarly, the SVD of \bfitM k is given by \widetilde \bfitU \widetilde \Sigma ( \widetilde \bfitV )H . Let \widetilde \bfitU 1 and \widetilde \bfitV 1 denote the first \widetilde s columns

of \widetilde \bfitU and \widetilde \bfitV . If \scrM k is close to \scrM  \star , we desire Diag(vec(\nabla H2(\scrM k))) to be close to \widetilde \bfitU 1
\widetilde \bfitV H

1 .
So, there also exist some \gamma \in (0, bm] such that the following property holds:

(5.16) h
\prime 
(\bfitM k

jj) \approx 

\left\{   
1, \bfitM k

jj > 0,

 - 1, \bfitM k
jj < 0,

0 otherwise.

Remark 5.13. Notice that if \nabla H1 and \nabla H2 are obtained from the derivative of (3.15),
i.e.,

(5.17) h
\prime 
(x) :=

\left\{     
0, | x| \leq \gamma 1,

x - \gamma 1\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(x)
\gamma 2 - \gamma 1 , \gamma 1 < | x| \leq \gamma 2,

sign(x), | x| > \gamma 2,

then the properties (5.15) and (5.16) hold. And the results can also be established if \nabla H1

and \nabla H2 are chosen as the correction function in [31].

Remark 5.14. By numerical experiments, we verify that d\scrL < 1 and d\scrM < 1 when h is
chosen as the one in (3.13). The relevant results can be found in Table 1.

6. Numerical experiments. In this section, we present numerical experiments to show the
effectiveness of our BCNRTC method in recovering color images and multispectral images,
and compare it with robust tensor ring completion (RTRC) [17], robust tensor completion
(RTC\ell 1) [18], and nonconvex robust tensor completion (NCRTC) [58]. The RTC\ell 1 model is a
convex model and the NCRTC model is nonconvex, which gives the nonconvex approximation
of the sparse term compared to the RTC\ell 1. The superior performance of NCRTC compared to
the RTC\ell 1 in terms of recovery quality has been demonstrated in [58] via extensive numerical
results. To show the effectiveness of the BCNRTC more clearly, we also present results of
RTC\ell 1. For fair comparisons, the parameters in each method are tuned to give optimal
performance. All experiments are performed on an Intel i7-2600 CPU desktop computer with
8 GB of RAM and MATLAB R2020a.

We define the sample ratio (SR) as SR:= | \Omega | 
n1n2n3

for an n1 \times n2 \times n3 tensor, where \Omega is
generated uniformly at random and | \Omega | represents the cardinality of \Omega . Meanwhile, we use \alpha 
to represent the impulse noise level. For each tensor, we randomly add the salt-and-pepper
impulse noise with ratio \alpha , and the observed tensor \scrP \Omega (\scrX ) is generated by the given SR.

To evaluate the performance of different methods, the peak signal-to-noise ratio (PSNR)
is used to measure the quality of the recovered tensors, which is defined as follows:

PSNR(\scrL ) := 10 log10
n1n2n3(maxi,j,k \scrL  \star  - mini,j,k \scrL  \star )2

\| \scrL  \star  - \scrL \| 2F
,

where \scrL and \scrL  \star are the recovered tensor and the ground-truth tensor, respectively. The
relative error (RE) between the recovered and the true tensor is defined by RE := \| \scrL  - \scrL  \star \| F

\| \scrL  \star \| F .
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ROBUST TENSOR COMPLETION 649

6.1. Stopping criteria.

6.1.1. The stopping criterion for the PMM algorithm. For the nonconvex BCNRTC
model (3.11), we adopt the relative KKT residual

(6.1) \eta \mathrm{k}\mathrm{k}\mathrm{t} := max\{ \eta \scrL , \eta \scrM , \eta P \} \leq 3 \times 10 - 3

to measure the accuracy of an approximate optimal solution obtained by the PMM algorithm,
where

\eta P :=
\| \scrL + \scrM  - \scrZ \| F

1 + \| \scrZ \| F + \| \scrL \| F + \| \scrM \| F
, \eta \scrL :=

\| \scrL  - Prox\| \cdot \| \mathrm{T}\mathrm{N}\mathrm{N}+\delta D2
(\cdot )(\scrY + \scrL + \nabla H1(\scrL ))\| F

1 + \| \scrY \| F + \| \scrL \| F + \| \nabla H1(\scrL )\| F
,

\eta \scrM :=
\| \scrM  - Prox\lambda \| \cdot \| 1+\delta D1

(\cdot )(\scrY + \scrM + \lambda \nabla H2(\scrM ))\| F
1 + \| \scrY \| F + \| \scrM \| F + \| \lambda \nabla H2(\scrM )\| F

(6.2)

with

Prox\lambda f (x) := arg min
\bfw \in \BbbR p

f(w) +
1

2\lambda 
\| w  - x\| 2F

denoting the proximal mapping of f with parameter \lambda [35].

6.1.2. The stopping criterion for the sGS-ADMM algorithm. In order to evaluate the
performance of sGS-ADMM for solving convex subproblem (4.7), we use the primal infeasi-
bility \eta P and relative duality gap defined by

\eta gap :=
| pobj  - dobj| 

1 + | pobj| + | dobj| 
,

where

pobj :=\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}  - \langle \nabla H1(\scrL k),\scrL \rangle + \lambda (\| \scrM \| 1  - \langle \nabla H2(\scrM k),\scrM \rangle ) +
\eta 

2
\| \scrM  - \scrM k\| 2F

+
\eta 

2
\| \scrL  - \scrL k\| 2F +

\eta 

2
\| \scrZ  - \scrZ k\| 2F

and

dobj :=\lambda min
\| \scrM \| \infty \leq bm

\Biggl[ 
\| \scrM \| 1 +

\eta 

2\lambda 

\bigm\| \bigm\| \bigm\| \bigm\| \scrM  - 
\biggl( 
\scrM k +

\lambda \nabla H2(\scrM k) + \scrY 
\eta 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
F

\Biggr] 
 - \eta 

2

\bigm\| \bigm\| \bigm\| \bigm\| \scrL k +
\scrY + \nabla H1(\scrL k)

\eta 

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

+ min
\| \scrL \| \leq bl

\Biggl[ 
\| \scrL \| TNN +

\eta 

2

\bigm\| \bigm\| \bigm\| \bigm\| \scrL  - 
\biggl( 
\scrL k +

\scrY + \nabla H1(\scrL k)

\eta 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
F

\Biggr] 
 - \eta 

2

\bigm\| \bigm\| \bigm\| \bigm\| \scrM k +
\lambda \nabla H2(\scrM k) + \scrY 

\eta 

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

+ min
\scrP \Omega (\scrX )=\scrP \Omega (\scrZ )

\Biggl[ 
\eta 

2

\bigm\| \bigm\| \bigm\| \bigm\| \scrZ  - 
\biggl( 
\scrZ k  - \scrY 

\eta 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
F

\Biggr] 
+ \langle \scrY ,\scrZ k\rangle +

\eta 

2
\| \scrL k\| 2F +

\eta 

2
\| \scrM k\| 2F  - 1

2\eta 
\| \scrY \| 2F

are the primal and dual objective function values, respectively. For given tolerance Tols,
we will terminate the sGS-ADMM when max\{ \eta gap, \eta P \} \leq Tols or the number of iterations
reaches the maximum of 200. We initialize Tol0s to be 3\times 10 - 2 and decrease it by a ratio, i.e.,
Tolk+1

s =Tolks/1.1.D
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6.2. The setting of parameters. In order to improve the convergence speed of Algo-
rithm 4.2, based on the KKT optimality conditions of problem (4.7), we adopt the following
relative residuals of \scrL and \scrM to update the penalty parameter \mu in the augmented Lagrangian
function,

\eta D1 =

\bigm\| \bigm\| \bigm\| \scrL  - Prox 1
\eta 
(\| \cdot \| \mathrm{T}\mathrm{N}\mathrm{N}+\delta D2

(\cdot ))

\Bigl( 
\scrL k + \scrY +\nabla H1(\scrL k)

\eta 

\Bigr) \bigm\| \bigm\| \bigm\| 
F

1 + 1
\eta \| \scrY \| F + \| \scrL k\| F + 1

\eta \| \nabla H1(\scrL k)\| F
,

\eta D2 =

\bigm\| \bigm\| \bigm\| \scrM  - Prox 1
\eta 
(\lambda \| \cdot \| 1+\delta D1

(\cdot ))

\Bigl( 
\scrM k + \scrY +\lambda \nabla H2(\scrM k)

\eta 

\Bigr) \bigm\| \bigm\| \bigm\| 
F

1 + 1
\eta \| \scrY \| F + \| \scrM k\| F + \lambda 

\eta \| \nabla H2(\scrM k)\| F
,

which is a similar strategy as [23]. Let \eta D := max\{ \eta D1 , \eta D2\} . Specifically, set \mu 0 = 0.1. At

the tth iteration, compute \chi t+1 =
\eta t+1
P

\eta t+1
D

and then set

\mu t+1 =

\left\{   
\xi \mu t, \chi t+1 > 7,
\xi  - 1\mu t, 1

\chi t+1 > 7,

\mu t otherwise

with \xi =

\left\{       
1.1, max

\Bigl\{ 
\chi t+1, 1

\chi t+1

\Bigr\} 
\leq 50,

2, max
\Bigl\{ 
\chi t+1, 1

\chi t+1

\Bigr\} 
> 500,

1.5 otherwise.

For the proximal term in the PMM algorithm, the parameter \eta 0 is initialized as 10 - 4 and
gradually decreased by some factors \varsigma \in (0, 1), i.e., \eta k+1 = \varsigma \eta k, where \eta k denotes the penalty
parameter value at the kth PMM iteration.

In our following experiments, the function h in (3.13) which is related to the MCP function
is used in bothH1 andH2 for simplicity. Meanwhile, we use \gamma 1 and \gamma 2 to denote the parameters
in H1 and H2, respectively. The parameters \lambda , \gamma 1, and \gamma 2 are sensitive to the recovery
performance. For different sample ratios and different noise levels, we use the grid search
method to get the best values of \lambda , \gamma 1, and \gamma 2 in terms of PSNR values of the recovered
images. These best values show that the value of \lambda depends on the sample ratio, the noise
level, \gamma 2, and the size of tensors. By using the data-fitting method, we obtain the fitting
function of \lambda , i.e., \lambda = \~c\surd 

SR\gamma 2\alpha n3 \widetilde m , where \~c is chosen from \{ 0.4, 0.5, 0.6, 0.7\} to get the best

recovery performance. The parameter \gamma 1 is chosen as 10(1.2  - SR) and \gamma 2 is chosen from
\{ 0.3, 0.4\} , respectively. For practical problems, we adjust the above parameters slightly to
obtain the best possible results. The step length \tau in (4.12) can vary in the range (0, (

\surd 
5+1)/2)

[25]. In our numerical test, we find that in general the larger the step length, the faster the
convergence speed. Hence, we set \tau = 1.618 in all our experiments. In experiments, all testing
images are normalized to [0, 1]. Therefore, we set bm = 1 and \| \scrL \| \infty \leq 1. According to the
equivalence between norms, we have \| \scrL \| \leq \surd 

n1n2n3\| \scrL \| \infty . So we set bl =
\surd 
n1n2n3 in our

numerical experiments.
As mentioned in Theorems 5.10 and 5.12, a lower recovery error bound can be obtained

if the estimator (\scrL k,\scrM k) in the PMM algorithm does not deviate from the ground truth
(\scrL  \star ,\scrM  \star ) too much. Therefore, we use the solution obtained from solving the CRTC problem
(3.17) as the initial estimator to warm start our PMM algorithm. The sGS-ADMM is imple-
mented to solve the CRTC method and will be terminated if (6.1) is satisfied or the number
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Table 1
The values of d\scrL , d\scrM and the performance of the PMM algorithm for Pepper image in different outer

iterations with different sample ratios and noise levels.

\mathrm{S}\mathrm{R} \alpha \mathrm{C}\mathrm{R}\mathrm{T}\mathrm{C} 1 2 3

0.8

0.2
d\scrL 1 0.9432 0.923 0.9131
d\scrM 1 0.5317 0.5153 0.5104

\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} 29.27 34.04 36.56 37.72

0.3
d\scrL 1 0.963 0.9379 0.9262
d\scrM 1 0.5339 0.5195 0.5146

\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} 26.47 30.6 32.93 34.12

0.4
d\scrL 1 0.9817 0.9559 0.9451
d\scrM 1 0.5364 0.5241 0.5195

\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} 23.8 27.18 29.13 30.21

0.7

0.2
d\scrL 1 0.952 0.935 0.926
d\scrM 1 0.6143 0.6011 0.5968

\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} 28.17 32.34 34.4 35.46

0.3
d\scrL 1 0.9672 0.9474 0.9386
d\scrM 1 0.6262 0.6201 0.619

\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} 25.47 29.43 31.37 32.11

0.4
d\scrL 1 0.9802 0.963 0.9552
d\scrM 1 0.6253 0.6213 0.6209

\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} 22.91 26.28 27.98 28.7

of iterations reaches the maximum of 200, where \nabla H1(\cdot ) and \nabla H2(\cdot ) in (6.2) vanish. We use
the grid search method to get the best choice of \lambda , i.e., a value that gives nearly the highest
possible PSNR value. And we use a similar strategy as [23] to update the penalty parameter
\mu .

6.3. Error bounds and the performance of the PMM algorithm. In this subsection, we
test error bounds and the performance of the PMM algorithm in different outer iterations.
The test image is Pepper, and the test results are given in Table 1, which reports d\scrL , d\scrM , and
PSNR values of the CRTC and the first three outer iterations. In all experiments in Table 1,
the stopping criterion of the PMM algorithm is achieved in the third outer iteration.

We can see from Table 1 that d\scrL = 1 and d\scrM = 1 in CRTC, and d\scrL < 1 and d\scrM < 1 in
each outer iteration of PMM algorithm, which verifies the results of Theorems 5.10 and 5.12.
The PMM algorithm substantially reduces d\scrL and d\scrM in the first iteration. Compared with
the CRTC model, the first outer iteration improves the recovery quality nearly 4dB PSNR
values.

Table 1 also shows that d\scrL and d\scrM continue to decrease as the number of outer iterations
increases, which implies that the upper error bounds in (5.11) in Theorem 5.9 continue to
decrease. The PMM algorithm significantly improves the recovery quality in terms of the
PSNR values.

6.4. Random data. In this section, we present the results of our method to analyze the
success ratio on random data. The stopping criteria for the PMM algorithm is the relative
KKT residual \eta \mathrm{k}\mathrm{k}\mathrm{t} \leq 1 \times 10 - 3.

We present the colormap of third-order random tensors \scrL with size 100 \times 100 \times 30 and
all entries in [0, 1]. The tensor average ranks are 2, 5, and 8, respectively. The sample ratio
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652 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

(a) Average rank=2 (b) Average rank=5 (c) Average rank=8

Figure 1. The success ratio for varying sample ratio and noise level under different average ranks.

SR increases from 0.3 to 0.8 with increment 0.1 and the noise level \alpha increases from 0.1 to
0.6 with increment 0.1. For each pair (SR, \alpha ), we simulate 100 test instances, and the success
ratio is the fraction of instances that are recovery successful for each pair. If the relative
error is smaller than 10 - 2, then the tensor recovery is regarded as successful. Figure 1 reports
the success ratios for each pair of tensors with different sample ratios and noise levels under
different average ranks. Figure 1 shows that the rank, sample ratio, and noise level of tensors
greatly affect the recovery of tensors. If the average rank is smaller, the much larger success
region is produced. If the sample rate is lower and the noise level is higher, the tensor data is
more difficult to recover.

6.5. Experiments on color images. In this subsection, we test color images including
Pepper (512 \times 512 \times 3), Lena (512 \times 512 \times 3),1 and Flower (321 \times 481 \times 3).2 Although the
color images are not low-rank exactly, most information on each frontal slice of the color
images is dominated by a few top singular values. In our experiments, these testing images
are normalized on [0, 1] and are all corrupted by removing arbitrary voxels and adding salt-
and-pepper noise.

Figures 2 and 3 show the recovered results and corresponding zoomed regions of RTRC,
RTC\ell 1, NCRTC, and BCNRTC. It can be observed that the BCNRTC performs better
than others in terms of PSNR values and visual quality, where the BCNRTC preserves
more details for the Pepper image and many more sharp edges for the Flower image than
others.

In Table 2, we report the PSNR values of RTRC, RTC\ell 1, NCRTC, and BCNRTC for
three color images. We set SR = 0.6, 0.7, and 0.8 to illustrate the performance of methods
and noise levels are considered as \alpha \in \{ 0.2, 0.3, 0.4, 0.5\} simultaneously. It can be observed
that the PSNR values obtained by our proposed BCNRTC model are much higher than
those obtained by RTRC, RTC\ell 1, and NCRTC, especially for low noise levels. The PSNR
values of the restored image by the BCNRTC increase at least 3dB relative to those of the
RTC\ell 1 model. The performance of the nonconvex BCNRTC model can be improved greatly

1http://sipi.usc.edu/database/.
2https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.D
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ROBUST TENSOR COMPLETION 653

(a) Original (b) Observation (c) RTRC:17.07

(d) RTC\ell 1: 22.53 (e) NCRTC: 24.31 (f) BCNRTC: 26.53

Figure 2. Recovered images (with PSNR(dB)) and zoomed regions of four different methods for the Flower
image, where SR= 0.8 and \alpha = 0.4.

(a) Original (b) Observation (c) RTRC:22.95

(d) RTC\ell 1: 25.16 (e) NCRTC: 29.74 (f) BCNRTC: 32.12

Figure 3. Recovered images (with PSNR(dB)) and zoomed regions of four different methods for the Pepper
image, where SR= 0.7 and \alpha = 0.3.
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654 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

Table 2
PSNR(dB) values for restoring results of different methods for color images corrupted by sample

losing and salt-and-pepper noise. The boldface numbers are the best performance.

\mathrm{S}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e} \mathrm{N}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} \mathrm{P}\mathrm{e}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{r} \mathrm{L}\mathrm{e}\mathrm{n}\mathrm{a} \mathrm{F}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}
\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{s} \mathrm{l}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l} \mathrm{R}\mathrm{T}\mathrm{R}\mathrm{C} \mathrm{R}\mathrm{T}\mathrm{C}\ell 1 \mathrm{N}\mathrm{C}\mathrm{R}\mathrm{T}\mathrm{C} \mathrm{B}\mathrm{C}\mathrm{N}\mathrm{R}\mathrm{T}\mathrm{C} \mathrm{R}\mathrm{T}\mathrm{R}\mathrm{C} \mathrm{R}\mathrm{T}\mathrm{C}\ell 1 \mathrm{N}\mathrm{C}\mathrm{R}\mathrm{T}\mathrm{C} \mathrm{B}\mathrm{C}\mathrm{N}\mathrm{R}\mathrm{T}\mathrm{C} \mathrm{R}\mathrm{T}\mathrm{R}\mathrm{C} \mathrm{R}\mathrm{T}\mathrm{C}\ell 1 \mathrm{N}\mathrm{C}\mathrm{R}\mathrm{T}\mathrm{C} \mathrm{B}\mathrm{C}\mathrm{N}\mathrm{R}\mathrm{T}\mathrm{C}

0.8

0.2 27.98 29.08 34.99 \bfthree \bfseven .\bfseven \bftwo 28.12 29.5 34.36 \bfthree \bfsix .\bfthree \bfone 25.92 26.97 29.85 \bfthree \bftwo .\bffive \bffour 
0.3 24.15 26.09 31.24 \bfthree \bffour .\bfone \bftwo 24.78 26.98 31.48 \bfthree \bfthree .\bfeight \bffour 23.68 24.64 26.85 \bftwo \bfnine .\bffour \bfeight 
0.4 17.07 23.56 27.39 \bfthree \bfzero .\bftwo \bfone 17.41 24.96 28.44 \bfthree \bfzero .\bfsix 19.62 22.5 24.25 \bftwo \bfsix .\bfthree \bfseven 
0.5 11.66 21.25 23.87 \bftwo \bfsix .\bfeight \bfsix 11.79 23.07 25.26 \bftwo \bfseven .\bfthree \bfthree 14.9 20.36 21.72 \bftwo \bfthree .\bfthree \bfone 

0.7

0.2 27.01 27.85 32.82 \bfthree \bffive .\bffour \bfsix 27.25 28.43 32.58 \bfthree \bffive .\bfzero \bftwo 25.17 26.02 28.55 \bfthree \bfzero .\bfseven \bfseven 
0.3 22.95 25.12 29.74 \bfthree \bftwo .\bfone \bfone 23.73 26.17 30.16 \bfthree \bfone .\bfnine \bfeight 22.84 23.84 25.84 \bftwo \bfeight .\bfzero \bfthree 
0.4 16.11 22.71 25.98 \bftwo \bfeight .\bfseven 16.44 24.3 27.29 \bftwo \bfnine .\bftwo \bfnine 18.88 21.75 23.37 \bftwo \bffive .\bfthree \bfthree 
0.5 11.48 20.51 22.94 \bftwo \bffive .\bfone 11.67 22.51 24.62 \bftwo \bfsix .\bffour \bfeight 14.55 19.61 20.76 \bftwo \bftwo .\bfone \bfone 

0.6

0.2 25.86 26.56 30.69 \bfthree \bfthree .\bfthree \bfone 26.3 27.34 30.98 \bfthree \bftwo .\bfnine \bftwo 24.3 25.01 27.15 \bftwo \bfnine .\bfzero \bfseven 
0.3 21.6 24.09 27.98 \bfthree \bfzero .\bftwo \bfseven 22.52 25.32 28.72 \bfthree \bfzero .\bfthree \bfone 21.86 22.94 24.8 \bftwo \bfsix .\bfsix \bfseven 
0.4 15.17 21.82 24.77 \bftwo \bfseven .\bfzero \bffive 15.52 23.57 26.18 \bftwo \bfseven .\bfnine \bfsix 18.1 20.9 22.43 \bftwo \bffour .\bfone \bfseven 
0.5 11.32 19.75 21.94 \bftwo \bfthree .\bffive \bfseven 11.54 21.81 23.86 \bftwo \bffive .\bfthree \bfeight 14.19 18.82 19.69 \bftwo \bfone .\bfzero \bfsix 

compared with that of the convex RTC\ell 1 model. The PSNR values of the restored image
by the BCNRTC is at least 2dB higher than that of the nonconvex NCRTC model, which
shows that both low-rank and sparse terms are nonconvex better than only sparse term is
nonconvex.

6.6. Experiments on multispectral images. In this subsection, we test the multispectral
images datasets including Cloth (521 \times 521 \times 31)3 and the Indian Pines dataset (145 \times 145 \times 
224), 4 which is a synthetic data. Since the Cloth dataset is too large, we resize the Cloth
dataset to 128\times 128 in each image, and the size of the resulting tensor is 128\times 128\times 31. This
testing image is normalized on [0, 1]. For multispectral images, we compute the PSNR values
between each ground-truth band and the recovered band, and then average them. This metric
is denoted as mean PSNR (MPSNR).

In Figure 4, we show the 20th band of the recovered images and corresponding zoomed
regions of different methods for the Indian dataset, where SR= 0.5 and \alpha = 0.2. It is obvious
that the details of the zoomed region obtained by BCNRTC are more clear than those obtained
by RTRC and RTC\ell 1. The performance of NCRTC and BCNRTC is almost the same for the
testing images in terms of visual quality. But PSNR values also show the BCNRTC is quite
a bit more effective than NCRTC.

Table 3 presents detailed comparison results of four different methods for the two multi-
spectral images with different sample ratios and noise levels, where the MPSNR values, the
relative error (RE), the number of iterations (Iter), and the CPU time (in seconds) are given.
Note that for the columns ``Iter"" and ``Time"" in the BCNRTC, we list the total inner sGS-
ADMM iterations and CPU times outside brackets. Meanwhile, the values in brackets in this
table mean the number of iterations and CPU times of CRTC for a warm start. In addition,
the outer PMM iterations in Indian are four when SR= 0.8, 0.7, and the rest of the cases
are three. Table 3 shows the advantage of BCNRTC over the other three methods no matter

3https://www.cs.columbia.edu/CAVE/databases/multispectral/stuff/.
4https://engineering.purdue.edu/\~biehl/MultiSpec/hyperspectral.html.
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ROBUST TENSOR COMPLETION 655

(a) Original (b) Observation (c) RTRC:22.19

(d) RTC\ell 1: 38.06 (e) NCRTC: 40.84 (f) BCNRTC: 45.19

Figure 4. The 20th band of recovered images (with PSNR(dB)) and zoomed regions of four different methods
for the Indian dataset, where SR= 0.5 and \alpha = 0.2.

Table 3
Numerical results of different methods for the multispectral images dataset with different SRs and \alpha .

\mathrm{I}\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} \alpha \mathrm{S}\mathrm{R}
\mathrm{R}\mathrm{T}\mathrm{R}\mathrm{C} \mathrm{R}\mathrm{T}\mathrm{C}\ell 1 \mathrm{N}\mathrm{C}\mathrm{R}\mathrm{T}\mathrm{C} \mathrm{B}\mathrm{C}\mathrm{N}\mathrm{R}\mathrm{T}\mathrm{C}

\mathrm{M}\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} \mathrm{R}\mathrm{E} \mathrm{I}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{M}\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} \mathrm{R}\mathrm{E} \mathrm{I}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{M}\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} \mathrm{R}\mathrm{E} \mathrm{I}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{M}\mathrm{P}\mathrm{S}\mathrm{N}\mathrm{R} \mathrm{R}\mathrm{E} \mathrm{I}\mathrm{t}\mathrm{e}\mathrm{r} \mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}

\mathrm{I}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{n} 0.2

0.8 23.19 1.17\mathrm{e}-1 100 308 38.06 3.24\mathrm{e}-2 68 349 42.7 2.54\mathrm{e}-2 55 211 50.47 1.3\mathrm{e}-2 26(26) 87(78)
0.7 22.74 1.23\mathrm{e}-1 100 291 37.87 3.26\mathrm{e}-2 69 345 41.11 2.72\mathrm{e}-2 57 219 48.66 1.46\mathrm{e}-227(34)89(100)
0.6 22.25 1.3\mathrm{e}-1 100 292 36.33 3.67\mathrm{e}-2 69 339 39.61 2.97\mathrm{e}-2 59 225 45.98 1.79\mathrm{e}-224(35)78(101)
0.5 21.67 1.39\mathrm{e}-1 100 295 35.39 3.92\mathrm{e}-2 69 332 37.59 3.38\mathrm{e}-2 59 225 43.74 2.03\mathrm{e}-228(42)89(119)

\mathrm{C}\mathrm{l}\mathrm{o}\mathrm{t}\mathrm{h} 0.4

0.8 18.34 5.53\mathrm{e}-1 100 28 32.53 1.29\mathrm{e}-1 58 20 37.18 7.39\mathrm{e}-2 41 17 39.68 5.81\mathrm{e}-233(15) 12(8)
0.7 17.69 5.98\mathrm{e}-1 100 27 31.25 1.42\mathrm{e}-1 57 19 35.84 8.51\mathrm{e}-2 42 17 38.14 6.67\mathrm{e}-236(17) 13(6)
0.6 17.45 6.14\mathrm{e}-1 100 27 30.24 1.64\mathrm{e}-1 58 19 34.1 1.02\mathrm{e}-1 45 18 36.59 7.67\mathrm{e}-240(17) 15(5)
0.5 17.24 6.28\mathrm{e}-1 100 27 28.96 1.88\mathrm{e}-1 58 19 31.89 1.31\mathrm{e}-1 50 20 34.85 1.25\mathrm{e}-146(17) 17(5)

in terms of MPSNR values (largest) or relative errors (smallest). Meanwhile, the BCNRTC
takes less CPU time and iteration numbers than the others when a suitable initial point is
given. Specifically, BCNRTC is able to outperform others by a factor of about 2 to 4 in terms
of computation times for the Indian dataset.

7. Conclusions. In this paper, we propose a BCNRTC model for the RTC problem which
aims to recover a third-order low-rank tensor from partial observations corrupted by impulse
noise. Then, we prove the equivalence of global solutions between RTC problems and our
proposed nonconvex model, which gives the theoretical guarantee that the nonconvex penalties
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656 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

are superior to convex penalties. Due to the nonconvexity, the resulting model is difficult to
solve. To tackle this problem, we devise the PMM algorithm to solve the nonconvex model and
show that the sequence generated by the PMM algorithm globally converges to a critical point
of the problem. Next, we establish a recovery error bound and give the theoretical guarantee
that the proposed model can get lower error bounds when the initial estimator is close to
the ground truth. Extensive numerical experiments including color images and multispectral
images demonstrate that the proposed BCNRTC method outperforms several state-of-the-art
methods.

In the future, it would be of great interest to extend the BCNRTC to higher-order tensors
since some real datasets are higher-order tensors, such as color videos or traffic data.

Appendix A. Partial calmness. The partial calmness is defined in detail in [28], which is
used in the proof of Theorem 3.1. Let \theta : \BbbR n \rightarrow ( - \infty ,+\infty ] be a proper lower semicontinuous
function, h : \BbbR n \rightarrow \BbbR be a continuous function, and \Delta be a nonempty closed set of \BbbR n.
Consider the following problem:

(MP) min
\bfitz 

\{ \theta (z) : h(\bfitz ) = 0, \bfitz \in \Delta \} .

Let \scrF and \scrF \ast denote the feasible set and the global optimal solution set of (MP), respectively,
and v\ast (MP) is the optimal value of (MP). Assume that \scrF \ast \not = \emptyset . Consider the perturbed
problem of (MP):

(MP\epsilon ) min
\bfitz 

\{ \theta (\bfitz ) : h(\bfitz ) = \epsilon , \bfitz \in \Delta \} ,

where \epsilon \in \BbbR , \scrF \epsilon denotes the feasible set of (MP\epsilon ) associated to \epsilon .

Definition A.1. The problem (MP) is said to be partially calm at a solution point \bfitz \ast if
there exist \varepsilon > 0 and \mu > 0 such that for all \epsilon \in [ - \varepsilon , \varepsilon ] and all \bfitz \in (\bfitz \ast + \varepsilon \BbbB ) \cap \scrF \epsilon , one has
\theta (\bfitz )  - \theta (\bfitz \ast ) + \mu | h(\bfitz )| \geq 0.

The partial calmness plays a critical role in the proof of Theorem 3.1. [28, Proposition 2.1]
shows that under the compactness of the feasible set of problem (3.5), the partial calmness of
(3.4) over its global optimal solution set implies the global exact penalization of (3.5).

Appendix B. The Kurdyka--\Lojasiewicz property. The Kurdyka--\Lojasiewicz property
is defined in detailed in [3], which is used in the proof of Lemma 4.3.

Definition B.1. Let f : \BbbR n \rightarrow ( - \infty ,+\infty ] be a proper and lower semicontinuous function.
(i) The function f is said to have the KL property at x \in dom(\partial f) if there exist \eta \in 

(0,+\infty ], a neighborhood U of x, and a continuous concave function \varphi : [0, \eta ) \rightarrow [0,+\infty )
such that (a) \varphi (0) = 0; (b) \varphi is continuously differentiable on (0, \eta ), and continuous at
0; (c) \varphi \prime (s) > 0 for all s \in (0, \eta ); (d) for all y \in U\cap [y \in \BbbR n : f(x) < f(y) < f(x) + \eta ],
the following KL inequality holds:

\varphi \prime (f(y)  - f(x)) dist(0, \partial f(y)) \geqslant 1.
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ROBUST TENSOR COMPLETION 657

(ii) If f satisfies the KL property at each point of dom(\partial f), then f is called a KL function.

Appendix C. Proofs of the results in section 4. This part includes the proofs of part
of the results in section 4.

C.1. Proof of Lemma 4.1. From the definition of Q, we have

Q(\scrW )  - F (\scrW ;\scrW k) =H1(\scrL k)  - H1(\scrL ) + \langle \nabla H1(\scrL k),\scrL  - \scrL k\rangle 

+ \lambda (H2(\scrM k)  - H2(\scrM ) + \langle \nabla H2(\scrM k),\scrM  - \scrM k\rangle )  - \eta 

2
\| \scrW  - \scrW k\| 2F .

(C.1)

On the other hand, the convexity of H1 and H2 implies that

(C.2) H1(\scrL ) \geq H1(\scrL k) + \langle \nabla H1(\scrL k),\scrL  - \scrL k\rangle , H2(\scrM ) \geq H2(\scrM k) + \langle \nabla H2(\scrM k),\scrM  - \scrM k\rangle .

Combining (C.1) with (C.2), we obtain that Q(\scrW ) - F (\scrW ;\scrW k) \leq  - \eta 
2\| \scrW  - \scrW k\| 2F . Thus, we

obtain

(C.3) Q(\scrW k+1) +
\eta 

2
\| \scrW k+1  - \scrW k\| 2F \leq F (\scrW k+1;\scrW k).

Since \scrC k+1 \in \partial F (\scrW k+1;\scrW k), we have

Q(\scrW k) = F (\scrW k;\scrW k) \geq F (\scrW k+1;\scrW k) + \langle \scrC k+1,\scrW k  - \scrW k+1\rangle 
\geq F (\scrW k+1;\scrW k)  - \| \scrC k+1\| F \| \scrW k+1  - \scrW k\| F
\geq F (\scrW k+1;\scrW k)  - \eta c\| \scrW k+1  - \scrW k\| 2F ,

(C.4)

where the last inequality follows from (4.4). Combining (C.3) with (C.4), we have

(C.5) Q(\scrW k+1) +
\eta 

2
(1  - 2c)| | \scrW k+1  - \scrW k| | 2F \leq Q(\scrW k),

which completes the first part of the proof. Let N be a positive integer. Summing (C.5) from
k = 0 to N  - 1, we get

N - 1\sum 
k=0

(\| \scrL k+1 - \scrL k\| 2F +\| \scrM k+1 - \scrM k\| 2F ) =

N - 1\sum 
k=0

\| \scrW k+1 - \scrW k\| 2F \leq 2

\eta (1  - 2c)
(Q(\scrW 0) - Q(\scrW N )),

where the inequality is valid since the condition \eta (1  - 2c) > 0 holds. By the inequality
(C.5), we can get the sequence \{ Q(\scrW k)\} k\in \BbbN is nonincreasing. Since Q(\scrW ) is bounded be-
low, the sequence \{ Q(\scrW k)\} k\in \BbbN converges. Taking the limit as N \rightarrow \infty , we obtain that\sum \infty 

k=0 \| \scrW k+1  - \scrW k\| 2F <\infty and the sequence \{ \| \scrW k+1  - \scrW k\| F \} k\in \BbbN converges to zero. There-
fore, the conclusion is obtained.D
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C.2. Proof of Lemma 4.2. By [2, Proposition 2.1], [35, Exercise 8.8(c)], and \scrC k+1 \in 
\partial F (\scrW k+1;\scrW k), we have

(C.6) \scrC k+1
\scrL = \widetilde Y k+1 - \nabla H1(\scrL k)+\eta (\scrL k+1 - \scrL k), \scrC k+1

\scrM = \widetilde Zk+1 - \nabla H2(\scrM k)+\eta (\scrM k+1 - \scrM k)

for some \widetilde Y k+1 \in \partial \scrL [\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N}+\delta \Gamma 1(\scrL ,\scrM )+\delta D2(\scrL )]\scrW =\scrW k+1 , \widetilde Zk+1 \in \partial \scrM [\lambda \| \scrM \| 1+\delta \Gamma 1(\scrL ,\scrM )+
\delta D1(\scrM )]\scrW =\scrW k+1 . From the definition of Q, we get

\partial \scrL Q(\scrW ) = \partial \scrL [\| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N} + \delta \Gamma 1(\scrL ,\scrM ) + \delta D2(\scrL )]  - \nabla H1(\scrL ),

\partial \scrM Q(\scrW ) = \partial \scrM [\lambda \| \scrM \| 1 + \delta \Gamma 1(\scrL ,\scrM ) + \delta D1(\scrM )]  - \nabla H2(\scrM ).

By the definitions of \widetilde Y k+1 and \widetilde Zk+1, we obtain that

\scrB k+1
\scrL := \widetilde Y k+1  - \nabla H1(\scrL k+1) \in \partial \scrL Q(\scrW k+1), \scrB k+1

\scrM := \widetilde Zk+1  - \nabla H2(\scrM k+1) \in \partial \scrM Q(\scrW k+1).

Then, we have \scrB k+1 \in \partial Q(\scrW k+1). Define

(C.7) \scrH k+1
\scrL := \widetilde Y k+1  - \nabla H1(\scrL k), \scrH k+1

\scrM := \widetilde Zk+1  - \lambda \nabla H2(\scrM k).

We now have to estimate the norm of \scrB k+1. By the definitions of \scrB k+1 and \scrH k+1, we have

(C.8) \| \scrB k+1  - \scrH k+1\| F = \| (\nabla H1(\scrL k)  - \nabla H1(\scrL k+1), \lambda (\nabla H2(\scrM k)  - \nabla H2(\scrM k+1)))\| F .

Since \scrW k is an approximate solution of F (\scrW ;\scrW k - 1), by the definition of the indicator func-
tion, we get that \scrW k belongs to \Gamma 1, D1, and D2. Thus, \{ \scrW k\} k\in \BbbN is bounded and \scrW \ast is a
cluster point. Then, it follows from [11, Theorem 3.10] that there exist constants \delta 0 > 0 and\widetilde m > 0 such that for any \scrW k,\scrW k+1 \in B(\scrW \ast , \delta 0),

(C.9) \| \nabla H1(\scrL k)  - \nabla H1(\scrL k+1)\| F \leq \widetilde m\| \scrL k+1  - \scrL k\| F .

It follows from \nabla H2 is Lipschitz continuous with constant 1
\gamma that

(C.10) \lambda \| \nabla H2(\scrM k)  - \nabla H2(\scrM k+1)\| F \leq \lambda 

\gamma 
\| \scrM k+1  - \scrM k\| F .

By combining (C.6) with (C.7), we have that \scrH k+1 = \scrC k+1  - \eta (\scrW k+1  - \scrW k). Moreover, by
\| \scrB k+1  - \scrH k+1\| F \geq \| \scrB k+1\| F  - \| \scrH k+1\| F , we obtain that

\| \scrB k+1\| F \leq \| \scrB k+1  - \scrH k+1\| F + \| \scrH k+1\| F

\leq \widetilde m\| \scrL k+1  - \scrL k\| F +
\lambda 

\gamma 
\| \scrM k+1  - \scrM k\| F + \| \scrC k+1\| F + \eta \| \scrW k+1  - \scrW k\| F

\leq (\widetilde m+ \lambda /\gamma + \eta + \eta c)\| \scrW k+1  - \scrW k\| F ,

where the second inequality holds by (C.8) and the last inequality holds by (4.4), (C.9), and
(C.10). The desired result is proven.D
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ROBUST TENSOR COMPLETION 659

C.3. Proof of Lemma 4.3. It is easy to see that \delta \Gamma 1 , \delta D1 , and \delta D2 are semialgebraic [6].
On the other hand, the MCP function and the SCAD function are shown to be semialgebraic
in [50], and \| \scrL \| \mathrm{T}\mathrm{N}\mathrm{N} is also shown to be semialgebraic in [58]. Hence, the function Q(\scrW ) is
semialgebraic since it is the finite sum of semialgebraic functions. Since Q(\scrW ) is also proper
lower semicontinuous, it follows from [6, Theorem 3] that the function Q is a KL function,
which completes the proof.

Appendix D. Proofs of the results in section 5. This part includes the proofs of part of
the results in section 5.

D.1. Proof of Proposition 5.1. Recall that

S(\scrL  \star ) :=
\Bigl\{ 
\scrU 1 \ast \scrV H1 + \scrU 2 \ast \scrW \ast \scrV H2 | \scrW \in \BbbC (n1 - r\mathrm{m}\mathrm{i}\mathrm{n})\times (n2 - r\mathrm{m}\mathrm{i}\mathrm{n})\times n3 , \| \scrW \| \leq 1

\Bigr\} 
.

First we are going to show that S(\scrL  \star ) \subseteq \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}. For any \scrZ \in S(\scrL  \star ), we have

\langle \scrZ ,\scrL  \star \rangle =
\bigl\langle 
\scrU 1 \ast \scrV H1 + \scrU 2 \ast \scrW \ast \scrV H2 ,\scrU \ast \scrS \ast \scrV H

\bigr\rangle 
=

1

n3

n3\sum 
i=1

\biggl\langle \widehat \bfitU 1
(i)

(\widehat \bfitV 1
(i)

)H + \widehat \bfitU 2
(i)\widehat \bfitW (i)

(\widehat \bfitV 2
(i)

)H , \widehat \bfitU (i)\widehat \bfitS (i)
( \widehat \bfitV (i)

)H
\biggr\rangle 

=
1

n3

n3\sum 
i=1

\Bigl\langle 
\bfitU 

(i)
1 (\bfitV 

(i)
1 )H + \bfitU 

(i)
2 \bfitW (i)(\bfitV 

(i)
2 )H ,\bfitU (i)\bfitS (i)(\bfitV (i))H

\Bigr\rangle 
=

1

n3

n3\sum 
i=1

\Biggl\langle 
\bfitU (i)

\biggl( 
\bfitI ri 0

0 \bfitW (i)

\biggr) 
(\bfitV (i))H ,\bfitU (i)

\Biggl( 
Diag(\sigma (\widehat \bfitL  \star (i))) 0

0 0

\Biggr) 
(\bfitV (i))H

\Biggr\rangle 

=
1

n3

n3\sum 
i=1

\| \widehat \bfitL  \star (i)\| \ast 
= \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}.

It is easy to verify that \| \scrZ \| \leq 1. Then, by [47], we have \scrZ \in \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}. So we have
S(\scrL  \star ) \subseteq \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}.

Next, we are going to prove that \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N} \subseteq S(\scrL  \star ). We argue it by contradiction.
Assume there exist \scrG \prime \in \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N} but \scrG \prime /\in S(\scrL  \star ). It can be verified that S(\scrL  \star ) is convex
and closed. Then, by the strict separation theorem [5], there exists \scrR \in \BbbR n1\times n2\times n3 satisfying
\langle \scrG \prime ,\scrR \rangle > \langle \scrH ,\scrR \rangle for any \scrH \in S(\scrL  \star ). So that

max
\scrG \in \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}

\langle \scrG ,\scrR \rangle > max
\scrH \in S(\scrL  \star )

\langle \scrH ,\scrR \rangle .

Let f(\scrL  \star ) := \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}. We use f \prime (\scrL  \star ;\scrR ) to denote the directional derivative of f at \scrL  \star with
the direction \scrR . It follows from [34, Theorem 23.4] that f \prime (\scrL  \star ;\scrR ) = max\scrG \in \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}

\langle \scrG ,\scrR \rangle .
Moreover,
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f \prime (\scrL  \star ;\scrR ) = lim
\gamma \rightarrow 0+

\| \scrL  \star + \gamma \scrR \| \mathrm{T}\mathrm{N}\mathrm{N}  - \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}

\gamma 

= lim
\gamma \rightarrow 0+

1

n3

n3\sum 
i=1

\| \widehat \bfitL  \star + \gamma \bfitR 
(i)
\| \ast  - \| \widehat \bfitL  \star (i)\| \ast 
\gamma 

=
1

n3

n3\sum 
i=1

lim
\gamma \rightarrow 0+

\| \widehat \bfitL  \star (i) + \gamma \widehat \bfitR (i)
\| \ast  - \| \widehat \bfitL  \star (i)\| \ast 
\gamma 

=
1

n3

n3\sum 
i=1

max
\bfitd (i)\in \partial \| \bfitsigma (i)\| 1

n1\sum 
j=1

\bfitd 
(i)
j (\bfitu 

(i)
j )H \widehat \bfitR (i)

\bfitv 
(i)
j

=
1

n3

n3\sum 
i=1

max
\bfitd (i)\in \partial \| \bfitsigma (i)\| 1

\langle 
n1\sum 
j=1

\bfitd 
(i)
j \bfitu 

(i)
j (\bfitv 

(i)
j )H , \widehat \bfitR (i)

\rangle 

=
1

n3

n3\sum 
i=1

max
\bfitd (i)\in \partial \| \bfitsigma (i)\| 1

\langle \bfitU (i)Diag(\bfitd (i))\bfitV (i)H , \widehat \bfitR (i)
\rangle 

=
1

n3

n3\sum 
i=1

max
\bfitd (i)\in \partial \| \bfitsigma (i)\| 1

\Biggl\langle \Bigl[ 
\bfitU 

(i)
1 \bfitU 

(i)
2

\Bigr] \Biggl[ Diag(\bfitd 
(i)
\leq ri) 0

0 Diag(\bfitd 
(i)
>ri)

\Biggr] \Biggl[ 
(\bfitV 

(i)
1 )H

(\bfitV 
(i)
2 )H

\Biggr] 
, \widehat \bfitR (i)

\Biggr\rangle 

=
1

n3

n3\sum 
i=1

max
\bfitd (i)\in \partial \| \bfitsigma (i)\| 1

\Bigl\langle 
\bfitU 

(i)
1 (\bfitV 

(i)
1 )H + \bfitU 

(i)
2 Diag(\bfitd 

(i)
>ri)(\bfitV 

(i)
2 )H , \widehat \bfitR (i)

\Bigr\rangle 
=

1

n3

n3\sum 
i=1

max
\bfitd (i)\in \partial \| \bfitsigma (i)\| 1

\Biggl\langle \widehat \bfitU 1
(i)

(\widehat \bfitV 1
(i)

)H + \widehat \bfitU 2
(i)

\Biggl[ 
0 0

0 Diag(\bfitd 
(i)
>ri)

\Biggr] 
(\widehat \bfitV 2

(i)
)H , \widehat \bfitR (i)

\Biggr\rangle 
,

where \bfitu 
(i)
j is the jth column of the \bfitU (i) (also the jth column of \widehat \bfitU (i)

when j \leq ri) and the

fourth equality is due to [47, Theorem 1]. Notice that | \bfitd (i)
j | \leq 1 when j > ri. Denote

\widehat \bfitD (i)
:=

\Biggl[ 
0 0

0 Diag(\bfitd 
(i)
>ri)

\Biggr] 
\in \BbbC (n1 - r\mathrm{m}\mathrm{i}\mathrm{n})\times (n2 - r\mathrm{m}\mathrm{i}\mathrm{n}).

Then we have \widehat \bfitD (i)
\in \{ \widehat \bfitW (i)

| \| \widehat \bfitW (i)
\| \leq 1\} , which means that

\{ \widehat \bfitD (i)
| diag( \widehat \bfitD (i)

) = (0,\bfitd 
(i)
>ri)

H , \bfitd (i) \in \partial \| \bfitsigma (i)\| 1\} \subseteq \{ \widehat \bfitW (i)
| \| \widehat \bfitW (i)

\| \leq 1\} .

Let \Lambda (i) := \{ \widehat \bfitD (i)
| diag( \widehat \bfitD (i)

) = (0,\bfitd 
(i)
>ri)

H , \bfitd (i) \in \partial \| \bfitsigma (i)\| 1\} . Then we have
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max
\scrH \in S(\scrL  \star )

\langle \scrH ,\scrR \rangle 

= max
\| \scrW \| \leq 1

\bigl\langle 
\scrU 1 \ast \scrV H1 + \scrU 2 \ast \scrW \ast \scrV H2 ,\scrR 

\bigr\rangle 
=

1

n3

n3\sum 
i=1

max
\| \widehat \bfitW (i)

\| \leq 1

\biggl\langle \widehat \bfitU 1
(i)\widehat \bfitV 1

(i)H
+ \widehat \bfitU 2

(i)\widehat \bfitW (i)
(\widehat \bfitV 2

(i)
)H , \widehat \bfitR (i)

\biggr\rangle 

\geq 1

n3

n3\sum 
i=1

max\widehat \bfitW (i)
\in \Lambda (i)

\biggl\langle \widehat \bfitU 1
(i)\widehat \bfitV 1

(i)H
+ \widehat \bfitU 2

(i)\widehat \bfitW (i)
(\widehat \bfitV 2

(i)
)H , \widehat \bfitR (i)

\biggr\rangle 
=f \prime (\scrL  \star ;\scrR ),

which implies max\scrH \in S(\scrL  \star ) \langle \scrH ,\scrR \rangle \geq max\scrG \in \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}
\langle \scrG ,\scrR \rangle . This contradicts the assumption.

Therefore, we have \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N} \subseteq S(\scrL  \star ). This completes the proof.

D.2. Proof of Proposition 5.3. Considering \bfitX = Diag(\widehat \bfitX (1)
,\widehat \bfitX (2)

, . . . ,\widehat \bfitX (n3)
), for all i =

1, 2, . . . , n3, we have

\widehat \bfitX (i)
=[\bfitU 

(i)
1 ,\bfitU 

(i)
2 ][\bfitU 

(i)
1 ,\bfitU 

(i)
2 ]H\widehat \bfitX (i)

[\bfitV 
(i)
1 ,\bfitV 

(i)
2 ][\bfitV 

(i)
1 ,\bfitV 

(i)
2 ]H

=[\bfitU 
(i)
1 ,\bfitU 

(i)
2 ]

\Biggl[ 
(\bfitU 

(i)
1 )H\widehat \bfitX (i)

\bfitV 
(i)
1 (\bfitU 

(i)
1 )H\widehat \bfitX (i)

\bfitV 
(i)
2

(\bfitU 
(i)
2 )H\widehat \bfitX (i)

\bfitV 
(i)
1 0

\Biggr] 
[\bfitV 

(i)
1 ,\bfitV 

(i)
2 ]H+

[\bfitU 
(i)
1 ,\bfitU 

(i)
2 ]

\Biggl[ 
0 0

0 (\bfitU 
(i)
2 )H\widehat \bfitX (i)

\bfitV 
(i)
2

\Biggr] 
[\bfitV 

(i)
1 ,\bfitV 

(i)
2 ]H

=\bfitU 
(i)
1 (\bfitU 

(i)
1 )H\widehat \bfitX (i)

+\widehat \bfitX (i)
\bfitV 

(i)
1 (\bfitV 

(i)
1 )H  - \bfitU 

(i)
1 (\bfitU 

(i)
1 )H\widehat \bfitX (i)

\bfitV 
(i)
1 (\bfitV 

(i)
1 )H

+ \bfitU 
(i)
2 (\bfitU 

(i)
2 )H\widehat \bfitX (i)

\bfitV 
(i)
2 (\bfitV 

(i)
2 )H

=\widehat \bfitU 1
(i)

(\widehat \bfitU 1
(i)

)H\widehat \bfitX (i)
+\widehat \bfitX (i)\widehat \bfitV 1

(i)
(\widehat \bfitV 1

(i)
)H  - \widehat \bfitU 1

(i)
(\widehat \bfitU 1

(i)
)H\widehat \bfitX (i)\widehat \bfitV 1

(i)
(\widehat \bfitV 1

(i)
)H

+ \widehat \bfitU 2
(i)

(\widehat \bfitU 2
(i)

)H\widehat \bfitX (i)\widehat \bfitV 2
(i)

(\widehat \bfitV 2
(i)

)H ,

which means that

\bfitX = \bfitU 1 \bfitU 1
H
\bfitX + \bfitX \bfitV 1 \bfitV 1

H  - \bfitU 1 \bfitU 1
H

\bfitX \bfitV 1 \bfitV 1
H

+ \bfitU 2 \bfitU 2
H
\bfitX \bfitV 2 \bfitV 2

H
.

So we have

\scrX = \scrU 1 \ast \scrU H1 \ast \scrX + \scrX \ast \scrV 1 \ast \scrV H1  - \scrU 1 \ast \scrU H1 \ast \scrX \ast \scrV 1 \ast \scrV H1 + \scrU 2 \ast \scrU H2 \ast \scrX \ast \scrV 2 \ast \scrV H2 .

By the definition of \scrT , we can see that

\scrP \scrT (\scrX ) = \scrU 1 \ast \scrU H1 \ast \scrX + \scrX \ast \scrV 1 \ast \scrV H1  - \scrU 1 \ast \scrU H1 \ast \scrX \ast \scrV 1 \ast \scrV H1 .

Therefore, it follows from \scrX = \scrP \scrT (\scrX ) + \scrP \scrT \bot (\scrX ) that

\scrP \scrT \bot (\scrX ) = \scrU 2 \ast \scrU H2 \ast \scrX \ast \scrV 2 \ast \scrV H2 .

This completes the proof.D
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D.3. Proof of Lemma 5.4. Since (\scrL c,\scrM c) is optimal and (\scrL  \star ,\scrM  \star ) is feasible to the
problem (4.3), we have

0 \geq (\| \scrL c\| \mathrm{T}\mathrm{N}\mathrm{N}  - \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}  - \langle \nabla H1(\scrL k), \widetilde \Delta \scrL \rangle ) + \lambda (\| \scrM c\| 1  - \langle \nabla H2(\scrM k), \widetilde \Delta \scrM \rangle  - \| \scrM  \star \| 1)

+
\eta 

2
(\| \scrL c  - \scrL k\| 2F  - \| \scrL  \star  - \scrL k\| 2F ) +

\eta 

2
(\| \scrM c  - \scrM k\| 2F  - \| \scrM  \star  - \scrM k\| 2F ).

(D.1)

By (5.1), we know that \{ \scrU 1 \ast \scrV H1 + \scrU 2 \ast \scrW \ast \scrV H2 | \| \scrW \| \leq 1\} = \partial \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}. Thus, by the
convexity of \| \cdot \| \mathrm{T}\mathrm{N}\mathrm{N}, we have

\| \scrL c\| \mathrm{T}\mathrm{N}\mathrm{N}  - \| \scrL  \star \| \mathrm{T}\mathrm{N}\mathrm{N}  - \langle \nabla H1(\scrL k), \widetilde \Delta \scrL \rangle 

\geq \langle \scrU 1 \ast \scrV H1 + \scrU 2 \ast \scrW \ast \scrV H2 , \widetilde \Delta \scrL \rangle  - \langle \nabla H1(\scrL k), \widetilde \Delta \scrL \rangle 

=
1

n3
\langle \bfitU 1 \bfitV 1

H  - \nabla H1(\scrL k), \widetilde \Delta \scrL \rangle +
1

n3
\langle \bfitU 2 \bfitW \bfitV 2

H
, \widetilde \Delta \scrL \rangle 

\geq 1

n3
sup

\| \bfitW \| \leq 1

\langle \bfitW ,\bfitU 2
H \widetilde \Delta \scrL \bfitV 2\rangle  - 

1

n3
\| \bfitU 1 \bfitV 1

H  - \nabla H1(\scrL k)\| F \| \widetilde \Delta \scrL \| F

=
1

n3
\| \bfitU 2

H \widetilde \Delta \scrL \bfitV 2\| \ast  - 
1

n3
\| \bfitU 1 \bfitV 1

H  - \nabla H1(\scrL k)\| F \| \widetilde \Delta \scrL \| F

=\| \scrU 2 \ast \widetilde \Delta \scrL \ast \scrV H2 \| \mathrm{T}\mathrm{N}\mathrm{N}  - \| \scrU 1 \ast \scrV H1  - \nabla H1(\scrL k)\| F \| \widetilde \Delta \scrL \| F
=\| \scrP \scrT \bot (\widetilde \Delta \scrL )\| \mathrm{T}\mathrm{N}\mathrm{N}  - d\scrL 

\surd 
r\| \widetilde \Delta \scrL \| F ,

(D.2)

where the second equality follows directly from the definition of dual norm.
Similarly, we know that \{ sign(\scrM  \star ) + \scrF | \scrP supp\scrM  \star (\scrF ) = 0, \| \scrF \| \infty \leq 1\} \subseteq \partial \| \scrM  \star \| 1, where

supp\scrX := \{ (i, j, k)| \langle \Theta ijk,\scrX \rangle \not = 0\} . Thus, by the convexity of \| \cdot \| 1, we have

\| \scrM c\| 1  - \| \scrM  \star \| 1  - \langle \nabla H2(\scrM k), \widetilde \Delta \scrM \rangle 

\geq \langle sign(\scrM  \star ) + \scrP suppc
\scrM  \star 

(\scrF ), \widetilde \Delta \scrM \rangle  - \langle \nabla H2(\scrM k), \widetilde \Delta \scrM \rangle 

\geq sup
\| \scrF \| \infty \leq 1

\langle \scrF ,\scrP suppc
\scrM  \star 

(\widetilde \Delta \scrM )\rangle  - \| sign(\scrM  \star )  - \nabla H2(\scrM k)\| F \| \widetilde \Delta \scrM \| F

=\| \scrP suppc
\scrM  \star 

(\widetilde \Delta \scrM )\| 1  - d\scrM 
\surd \widetilde s\| \widetilde \Delta \scrM \| F .

(D.3)

By the convexity of \| \cdot \| 2F , we also have

\eta 

2
(\| \scrL c  - \scrL k\| 2F  - \| \scrL  \star  - \scrL k\| 2F ) +

\eta 

2
(\| \scrM c  - \scrM k\| 2F  - \| \scrM  \star  - \scrM k\| 2F )

\geq \eta (\langle \scrL  \star  - \scrL k,\scrL c  - \scrL  \star \rangle + \langle \scrM  \star  - \scrM k,\scrM c  - \scrM  \star \rangle )

\geq  - \eta \| \scrL  \star  - \scrL k\| F \| \widetilde \Delta \scrL \| F  - \eta \| \scrM  \star  - \scrM k\| F \| \widetilde \Delta \scrM \| F .

(D.4)

By substituting (D.2), (D.3), and (D.4) into (D.1), we get that

\| \scrP \scrT \bot (\widetilde \Delta \scrL )\| \mathrm{T}\mathrm{N}\mathrm{N} + \lambda \| \scrP suppc
\scrM  \star 

(\widetilde \Delta \scrM )\| 1
\leq (d\scrL 

\surd 
r + \eta \| \scrL  \star  - \scrL k\| F )\| \widetilde \Delta \scrL \| F + (\lambda d\scrM 

\surd \widetilde s+ \eta \| \scrM  \star  - \scrM k\| F )\| \widetilde \Delta \scrM \| F .D
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ROBUST TENSOR COMPLETION 663

Thus,

max\{ \| \scrP \scrT \bot (\widetilde \Delta \scrL )\| \mathrm{T}\mathrm{N}\mathrm{N}, \lambda \| \scrP suppc
\scrM  \star 

(\widetilde \Delta \scrM )\| 1\} 

\leq (d\scrL 
\surd 
r + \eta \| \scrL  \star  - \scrL k\| F )\| \widetilde \Delta \scrL \| F + (\lambda d\scrM 

\surd \widetilde s+ \eta \| \scrM  \star  - \scrM k\| F )\| \widetilde \Delta \scrM \| F .
(D.5)

It follows from Proposition 5.3 that ranka(\scrP \scrT (\widetilde \Delta \scrL )) \leq 2r, which together with \| \scrP supp\scrM  \star 

(\widetilde \Delta \scrM )\| 0 \leq \widetilde s gives

\| \scrP \scrT (\widetilde \Delta \scrL )\| \mathrm{T}\mathrm{N}\mathrm{N} =
1

n3
\| \scrP \scrT (\widetilde \Delta \scrL )\| \ast \leq 

\surd 
2rn3
n3

\| \scrP \scrT (\widetilde \Delta \scrL )\| F =
\surd 

2r\| \scrP \scrT (\widetilde \Delta \scrL )\| F \leq 
\surd 

2r\| \widetilde \Delta \scrL \| F ,

\| \scrP supp\scrM  \star (\widetilde \Delta \scrM )\| 1 \leq 
\surd \widetilde s\| \scrP supp\scrM  \star (\widetilde \Delta \scrM )\| F \leq 

\surd \widetilde s\| \widetilde \Delta \scrM \| F .

(D.6)

Note that \| \widetilde \Delta \scrL \| \mathrm{T}\mathrm{N}\mathrm{N} \leq \| \scrP \scrT (\widetilde \Delta \scrL )\| \mathrm{T}\mathrm{N}\mathrm{N} + \| \scrP \scrT \bot (\widetilde \Delta \scrL )\| \mathrm{T}\mathrm{N}\mathrm{N} and \| \widetilde \Delta \scrM \| 1 \leq \| \scrP supp\scrM  \star (\widetilde \Delta \scrM )\| 1 +

\| \scrP suppc
\scrM  \star 

(\widetilde \Delta \scrM )\| 1. By combining (D.5) and (D.6) together with the above inequalities, we
complete the proof.

D.4. Proof of Lemma 5.5. First, we will show that the following event holds with small
probability:

E :=

\biggl\{ 
\exists \Delta \in K(p, q, t)such that

\bigm| \bigm| \bigm| \bigm| 1

m
\| \scrP \Omega (\Delta )\| 2F  - \BbbE [\langle \Theta ,\Delta \rangle 2]

\bigm| \bigm| \bigm| \bigm| \geq \| \Delta \scrL \| 2F + \| \Delta \scrM \| 2F
2\mu 1n1n2n3

+ 256\mu 1n1n2n3\beta 
2
\scrS 

\biggr\} 
.

It is clear that the complement of the interested event is included in E. Now we estimate the
probability of the event E. We decompose the set K(p, q, t) into

K(p, q, t) =
\infty \bigcup 
j=1

\biggl\{ 
\Delta \in K(p, q, t)

\bigm| \bigm| 2j - 1t \leq 
\| \Delta \scrL \| 2F + \| \Delta \scrM \| 2F

\mu 1n1n2n3
\leq 2jt

\biggr\} 
.

For any s \geq t, we define the set

K(p, q, t, s) :=

\biggl\{ 
\Delta \in K(p, q, t)

\bigm| \bigm| \| \Delta \scrL \| 2F + \| \Delta \scrM \| 2F
\mu 1n1n2n3

\leq s

\biggr\} 
.

Let

Ej :=

\biggl\{ 
\exists \Delta \in K(p, q, t, 2jt) s.t.

\bigm| \bigm| \bigm| \bigm| 1

m
\| \scrP \Omega (\Delta )\| 2F  - \BbbE [\langle \Theta ,\Delta \rangle 2]

\bigm| \bigm| \bigm| \bigm| \geq 2j - 2t+ 256\mu 1n1n2n3\beta 
2
\scrS 

\biggr\} 
.

Note that E \subseteq 
\bigcup \infty 
j=1Ej . In the following, we estimate the probability of the event Ej . Letting

Zs := sup
\Delta \in K(p,q,t,s)

\bigm| \bigm| \bigm| \bigm| 1

m
\| \scrP \Omega (\Delta )\| 2F  - \BbbE [\langle \Theta ,\Delta \rangle 2]

\bigm| \bigm| \bigm| \bigm| ,
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664 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

we have

(D.7)
1

m
\| \scrP \Omega (\Delta )\| 2F  - \BbbE [\langle \Theta ,\Delta \rangle 2] =

1

m

m\sum 
l=1

(\langle \Theta \omega l
,\Delta \rangle 2  - \BbbE [\langle \Theta ,\Delta \rangle 2]).

Since \| \Delta \| \infty = 1 for all \Delta \in K(p, q, t), it follows that

| \langle \Theta \omega l
,\Delta \rangle 2  - \BbbE [\langle \Theta ,\Delta \rangle 2]| \leq max\{ \langle \Theta \omega l

,\Delta \rangle 2,\BbbE [\langle \Theta ,\Delta \rangle 2]\} \leq 1.

Thus, it follows from Massart's Hoeffding type concentration inequality [30, Theorem 1.4] that

(D.8) \BbbP (Zs \geq \BbbE [Zs] + \varepsilon ) \leq exp

\biggl( 
 - m\varepsilon 

2

2

\biggr) 
\forall \varepsilon > 0.

In order to be able to apply the inequality (D.8), we need to estimate an upper bound of
\BbbE [Zs]. By (D.7), we have

\BbbE [Zs] =\BbbE 

\Biggl[ 
sup

\Delta \in K(p,q,t,s)

\bigm| \bigm| \bigm| \bigm| 1

m
\| \scrP \Omega (\Delta )\| 2F  - \BbbE [\langle \Theta ,\Delta \rangle 2]

\bigm| \bigm| \bigm| \bigm| 
\Biggr] 
\leq 2\BbbE 

\Biggl[ 
sup

\Delta \in K(p,q,t,s)

\bigm| \bigm| \bigm| \bigm| \bigm| 1

m

m\sum 
l=1

\epsilon l\langle \Theta \omega l
,\Delta \rangle 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 

\leq 8\BbbE 

\Biggl[ 
sup

\Delta \in K(p,q,t,s)

\bigm| \bigm| \bigm| \bigm| \bigm| 1

m

m\sum 
l=1

\langle \epsilon l\Theta \omega l
,\Delta \rangle 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 

= 8\BbbE 

\Biggl[ 
sup

\Delta \in K(p,q,t,s)

\bigm| \bigm| \bigm| \bigm| 1

m
\langle \frakD \ast 

\Omega (\epsilon ),\Delta \rangle 
\bigm| \bigm| \bigm| \bigm| 
\Biggr] 

\leq 8\BbbE 

\Biggl[ 
sup

\Delta \in K(p,q,t,s)

\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

n3
\Delta \scrL 

\bigm\| \bigm\| \bigm\| \bigm\| 
\ast 

+ sup
\Delta \in K(p,q,t,s)

\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\| \Delta \scrM \| 1

\Biggr] 

=8\BbbE 

\Biggl[ 
sup

\Delta \in K(p,q,t,s)

\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| \| \Delta \scrL \| TNN + sup
\Delta \in K(p,q,t,s)

\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\| \Delta \scrM \| 1

\Biggr] 

\leq 8\BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 

sup
\Delta \in K(p,q,t,s)

\| \Delta \scrL \| TNN

\Biggr) 
+ 8\BbbE 

\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\Biggl( 
sup

\Delta \in K(p,q,t,s)

\| \Delta \scrM \| 1

\Biggr) 
,

where the first inequality is due to the symmetrization theorem [7, Theorem 14.3] and the
second inequality follows from the contraction theorem [7, Theorem 14.4]. Notice that for any
u \geq 0,v \geq 0 and \Delta \in K(p, q, t, s),

u\| \Delta \scrL \| F +v\| \Delta \scrM \| F \leq 32\mu 1n1n2n3(u
2+v2)+

\| \Delta \scrL \| 2F + \| \Delta \scrM \| 2F
128\mu 1n1n2n3

\leq 32\mu 1n1n2n3(u
2+v2)+

s

128
,

where the first inequality follows from the fact 2ab \leq a2 + b2. Then, following from (5.5),
(5.6), the definition of K(p, q, t), and the above inequality, we derive that

\BbbE [Zs] \leq 8

\Biggl[ 
sup

\Delta \in K(p,q,t,s)

\beta \scrL (p1\| \Delta \scrL \| F + p2\| \Delta \scrM \| F ) + sup
\Delta \in K(p,q,t,s)

\beta \scrM (q1\| \Delta \scrL \| F + q2\| \Delta \scrM \| F )

\Biggr] 
\leq 256\mu 1n1n2n3\beta 

2
\scrS +

s

8
.

(D.9)

Then it follows from (D.8) and (D.9) that

\BbbP 
\Bigl( 
Zs \geq 256\mu 1n1n2n3\beta 

2
\scrS +

s

4

\Bigr) 
\leq \BbbP 

\Bigl( 
Zs \geq \BbbE [Zs] +

s

8

\Bigr) 
\leq exp

\biggl( 
 - ms

2

128

\biggr) 
.
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ROBUST TENSOR COMPLETION 665

This, together with the choice of s = 2jt, implies that \BbbP (Ej) \leq exp( - 4jmt2

128 ). Therefore, it
follows from the simple fact 4j > log(4j) = 2j log(2) that

\BbbP (E) \leq 
\infty \sum 
j=1

\BbbP (Ej) \leq 
\infty \sum 
j=1

exp

\biggl( 
 - 4jmt2

128

\biggr) 
\leq 

\infty \sum 
j=1

exp

\biggl( 
 - jmt

2 log(2)

64

\biggr) 
\leq exp[ - mt2 log(2)/64]

1  - exp[ - mt2 log(2)/64]
.

Then, taking t = 8
\sqrt{} 

\mathrm{l}\mathrm{o}\mathrm{g}(n1+n2+n3+1)
m \mathrm{l}\mathrm{o}\mathrm{g}(2) , we obtain that \BbbP (E) \leq 1

n1+n2+n3
. The proof is completed.

D.5. Proof of Lemma 5.7. For l = 1, . . .m, define the random tensor \scrZ \omega l
:= \epsilon l\Theta \omega l

.
Then 1

m\frakD \ast 
\Omega (\epsilon ) = 1

m

\sum m
l=1\scrZ \omega l

. Since \epsilon l is an i.i.d. Rademacher sequence, we have that | \epsilon l| \leq 1,
\BbbE [\epsilon l]=0, and \BbbE [\epsilon 2l ]=1. Notice that \epsilon l and \Theta \omega l

are independent; we get \BbbE [\scrZ \omega l
] = \BbbE [\epsilon l]\BbbE [\Theta \omega l

] = 0.
Since \| \Theta \omega l

\| F = 1, we have

\| \scrZ \omega l
\| \leq \| \scrZ \omega l

\| F = | \epsilon l| \| \Theta \omega l
\| F = | \epsilon l| .

It is easy to obtain that there exists a constant M > 0 such that \| \| \scrZ \omega l
\| \| \psi 1 \leq \| \epsilon l\| \psi 1 \leq M

and \BbbE 
1
2 [\| \scrZ \omega l

\| 2] \leq \BbbE 
1
2 [\epsilon 2l ] = 1. Define

\sigma \scrZ := max

\left\{   
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

m

m\sum 
l=1

\BbbE [\scrZ \omega l
\ast \scrZ H

\omega l
]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1
2

,

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

m

m\sum 
l=1

\BbbE [\scrZ H
\omega l

\ast \scrZ \omega l
]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1
2

\right\}   .

By direct calculations we can see that \BbbE [\scrZ \omega l
\ast \scrZ H

\omega l
] = \BbbE [\epsilon 2l \Theta \omega l

\ast \Theta H
\omega l

] = \BbbE [\Theta \omega l
\ast \Theta H

\omega l
]. The

calculation for \BbbE [\scrZ H
\omega l

\ast \scrZ \omega l
] is similar. We obtain from Assumption 5.2 that \sigma 2\scrZ \leq \mu 2\widetilde n . By

applying [48, Lemma 2.6], we obtain\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| \leq C1

\Biggl\{ \sqrt{} 
\mu 2(t+ log((n1 + n2)n3))\widetilde nm ,

(t+ log((n1 + n2)n3)) log(\widetilde n)

m

\Biggr\} 

with probability at least 1  - exp( - t). Set \tau \ast = \mu 2C1\widetilde n \mathrm{l}\mathrm{o}\mathrm{g}(\widetilde n) . Then we can derive

(D.10) \BbbP 
\biggl[ \bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| > \tau 

\biggr] 
\leq 

\left\{   ((n1 + n2)n3) exp
\Bigl( 
 - \tau 2\widetilde nm
C2

1\mu 2

\Bigr) 
, \tau \leq \tau \ast ,

((n1 + n2)n3) exp
\Bigl( 
 - \tau m
C1 \mathrm{l}\mathrm{o}\mathrm{g}(\widetilde n)

\Bigr) 
, \tau > \tau \ast .

We set v1 = \widetilde nm
C2

1\mu 2
and v2 = m

C1 \mathrm{l}\mathrm{o}\mathrm{g}(\widetilde n) . By H\"older's inequality, we get

(D.11) \BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| \leq 

\Biggl[ 
\BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 2 \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)
\Biggr] 1

2 \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)

.

Combining (D.10) with (D.11), we obtain that

\BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| \leq 
\biggl( \int \infty 

0

\BbbP 
\biggl( \bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| > \tau 
1

2 \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)

\biggr) 
d\tau 

\biggr) 1
2 \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)

=
\surd 
e
\Bigl[ 
log((n1 + n2)n3))v

 - log((n1+n2)n3)
1 \Gamma (log((n1 + n2)n3))

+2 log((n1 + n2)n3))v
 - 2 log((n1+n2)n3)
2 \Gamma (2 log((n1 + n2)n3))

\Bigr] 1
2 \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)

.

(D.12)

D
ow

nl
oa

de
d 

09
/2

5/
22

 to
 1

58
.1

32
.1

61
.6

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

666 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

Since the Gamma function satisfies the inequality \Gamma (x) \leq 
\bigl( 
x
2

\bigr) x - 1
for all x \geq 2. Plugging this

inequality into (D.12), we obtain that

\BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| \leq 
\surd 
e
\Bigl[ 
(log((n1 + n2)n3))

\mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)v
 - \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)
1 21 - \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)

+ 2(log((n1 + n2)n3))
2 \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)v

 - 2 \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3)
2

\Bigr] 1
2 \mathrm{l}\mathrm{o}\mathrm{g}((n1+n2)n3) .

Observe that m \geq \widetilde n log((n1+n2)n3)(log(\widetilde n))2/\mu 2 implies that v1 log((n1+n2)n3)) \leq v22. Thus,
we have

\BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| \leq 

\sqrt{} 
3e log((n1 + n2)n3)

v1
= C1

\sqrt{} 
3e\mu 2 log((n1 + n2)n3)\widetilde nm .

This completes the proof.

D.6. Proof of Lemma 5.8. For any index (i, j, k) such that 1 \leq i \leq n1, 1 \leq j \leq n2,
1 \leq k \leq n3 and (\Theta \omega l

)ijk \not = 0 for some \omega l \in \Omega , let \omega ijk := ((\Theta \omega 1)ijk, . . . , (\Theta \omega l
)ijk)

T . From [48,
Lemma 2.4], we know that there exists a constant C > 0 such that for any \tau > 0,

\BbbP 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 1

m

m\sum 
l=1

\omega ijkl \epsilon l

\bigm| \bigm| \bigm| \bigm| \bigm| > \tau 

\Biggr] 
\leq 2 exp

\biggl[ 
 - C min

\biggl( 
m2\tau 2

M2\| \omega ijk\| 22
,

m\tau 

M\| \omega ijk\| \infty 

\biggr) \biggr] 
.

By taking a union bound, we get that

\BbbP 
\biggl[ \bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
> \tau 

\biggr] 
\leq 2m exp

\biggl[ 
 - C min

\biggl( 
m2\tau 2

M2 max \| \omega ijk\| 22
,

m\tau 

M max \| \omega ijk\| \infty 

\biggr) \biggr] 
,

where both of the maximums are taken over all such indices (i, j, k). Evidently, \| \omega ijk\| 22 \leq 1
and \| \omega ijk\| \infty \leq 1. By letting

 - t : =  - C min

\biggl( 
m2\tau 2

M2
,
m\tau 

M

\biggr) 
+ log(m)

\geq  - C min

\biggl( 
m2\tau 2

M2 max \| \omega ijk\| 22
,

m\tau 

M max \| \omega ijk\| \infty 

\biggr) 
+ log(m),

we obtain that with probability no greater than 2 exp( - t),\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
> M max

\Biggl\{ \sqrt{} 
log(m) + t

Cm2
,

log(m) + t

Cm

\Biggr\} 
.

Set \tau \ast = max\{ Mm ,
M(\mathrm{l}\mathrm{o}\mathrm{g}(2m))

mC \} . Then we can derive that

\BbbP 
\biggl[ \bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
> \tau 

\biggr] 
\leq 
\biggl\{ 

1, \tau \leq \tau \ast ,

2m exp
\bigl( 
 - Cm

M \tau 
\bigr) 
, \tau > \tau \ast .D
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Then it follows that

\BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m
\frakD \ast 

\Omega (\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq 
\int \tau \ast 

0
1d\tau +

\int +\infty 

\tau \ast 
2m exp

\biggl( 
 - Cm
M

\tau 

\biggr) 
d\tau =

M(log(2m) + 1)

Cm
,

which completes the proof.
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