$\operatorname{EMSO}\left(\mathrm{FO}^{2}\right)$ 0-1 law fails for all dense random graphs

M. Akhmejanova, ${ }^{*}$ M. Zhukovskii ${ }^{* \dagger \ddagger}$

Abstract

In this paper, we disprove $\operatorname{EMSO}\left(\mathrm{FO}^{2}\right)$ convergence law for the binomial random graph $G(n, p)$ for any constant probability p. More specifically, we prove that there exists an existential monadic second order sentence with 2 first order variables such that, for every $p \in(0,1)$, the probability that it is true on $G(n, p)$ does not converge.

1 Introduction

For undirected graphs, sentences in the monadic second order logic (MSO sentences) are constructed using relational symbols \sim (interpreted as adjacency) and $=$, logical connectives $\neg, \rightarrow, \leftrightarrow, \vee, \wedge$, first order (FO) variables x, y, x_{1}, \ldots that express vertices of a graph, MSO variables X, Y, X_{1}, \ldots that express unary predicates, quantifiers \forall, \exists and parentheses (for formal definitions, see [9]). If, in an MSO sentence ϕ, all the MSO variables are existential and in the beginning, then the sentence is called existential monadic second order (EMSO). For example, the EMSO sentence

$$
\exists X \quad\left[\exists x_{1} \exists x_{2} X\left(x_{1}\right) \wedge \neg X\left(x_{2}\right)\right] \wedge \neg[\exists y \exists z X(y) \wedge \neg X(z) \wedge y \sim z]
$$

expresses the property of being disconnected. Note that this sentence has 1 monadic variable and 4 FO variables but it can be easily rewritten with only 2 FO variables by identifying y with x_{1} and z with x_{2}. In what follows, for a sentence ϕ, we use the usual notation from model theory $G \models \phi$ if ϕ is true for G.

In [8], Kaufmann and Shelah disproved the MSO 0-1 law (0-1 law for a logic \mathcal{L} states that every sentence $\varphi \in \mathcal{L}$ is either true on (asymptotically) almost all graphs on the vertex set $[n]:=\{1, \ldots, n\}$ as $n \rightarrow \infty$, or false on almost all graphs). Moreover, they even disproved a weaker logical law which is called the MSO convergence law (convergence law for a logic \mathcal{L} states that, for every sentence $\varphi \in \mathcal{L}$, the fraction of graphs on the vertex set $[n]$ satisfying φ converges as $n \rightarrow \infty$). In terms of random graphs, their result can be formulated as follows: there exists an MSO sentence φ such that $\mathrm{P}(G(n, 1 / 2) \models \varphi)$ does not converge as $n \rightarrow \infty$.

[^0]Recall that, for $p \in(0,1)$, the binomial random graph $G(n, p)$ is a graph on $[n]$ with each pair of vertices connected by an edge with probability p and independently of other pairs. For more information, we refer readers to the books [1, 3, 7]. In contrast, $G(n, 1 / 2)$ obeys first-order (FO) 0-1 law [4, 5]. In 2001, Le Bars [2] disproved EMSO convergence law for $G(n, 1 / 2)$ and conjectured that, for EMSO sentences with 2 FO variables (or, shortly, $\mathrm{EMSO}\left(\mathrm{FO}^{2}\right)$ sentences), $G(n, 1 / 2)$ obeys the zero-one law. In 2019, Popova and the second author [11] disproved this conjecture. Notice that all the above results but the last one can be easily generalized to arbitrary constant edge probability p. In [11], it is noticed that the Le Bars conjecture fails for a dense set of $p \in(0,1)$. In this paper, we disprove the Le Bars conjecture for all $p \in(0,1)$. We prove something even stronger: there exists a $\operatorname{EMSO}\left(\mathrm{FO}^{2}\right)$ sentence φ such that, for every $p \in(0,1),\{\mathbf{P}[G(n, p) \models \varphi]\}_{n}$ does not converge. Notice that this one sentence disproves the convergence law for all p. Let us define the sentence.

Let $X(k, \ell, m)$ be the number of 6 -tuples $\left(X_{1}, x_{1}, X_{2}, x_{2}, X_{3}, x_{3}\right)$, consisting of sets $X_{1}, X_{2}, X_{3} \subset$ [n] and vertices $x_{1} \in X_{1}, x_{2} \in X_{2}, x_{3} \in X_{3}$, such that

- $\left|X_{1}\right|=k,\left|X_{2}\right|=\ell,\left|X_{3}\right|=m$ and $X_{i} \cap X_{j}=\varnothing$ for $i \neq j$,
- each X_{i} dominates $[n] \backslash\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right)$, i.e. every vertex from $[n] \backslash\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right)$ has at least one neighbor in each X_{i},
- for any distinct $i, j \in\{1,2,3\}$, there is exactly one edge between X_{i} and X_{j} - namely, the edge between x_{i} and x_{j}.

Theorem 1. For any constant $p \in(0,1), \mathrm{P}(\exists k, \ell, m X(k, \ell, m)>0)$ does not converge as $n \rightarrow \infty$.

Clearly, the property $\{\exists k, \ell, m X(k, \ell, m)>0\}$ can be defined in $\operatorname{EMSO}\left(\mathrm{FO}^{2}\right)$, e.g., by the following sentence:

$$
\exists X_{1} \exists X_{2} \exists X_{3} \quad \operatorname{DIS}\left(X_{1}, X_{2}, X_{3}\right) \wedge \operatorname{DOM}\left(X_{1}, X_{2}, X_{3}\right) \wedge \phi_{1}\left(X_{1}, X_{2}, X_{3}\right) \wedge \phi_{2}\left(X_{1}, X_{2}, X_{3}\right),
$$

where the formula

$$
\operatorname{DIS}\left(X_{1}, X_{2}, X_{3}\right)=\bigwedge_{1 \leq i<j \leq 3}\left(\forall x \forall y \quad\left[X_{i}(x) \wedge X_{j}(y)\right] \Rightarrow[x \neq y]\right)
$$

says that X_{1}, X_{2}, X_{3} are disjoint; the formula

$$
\operatorname{DOM}\left(X_{1}, X_{2}, X_{3}\right)=\forall x \quad\left[\neg\left(X_{1}(x) \vee X_{2}(x) \vee X_{3}(x)\right)\right] \Rightarrow\left[\bigwedge_{j=1}^{3}\left(\exists y X_{j}(y) \wedge(x \sim y)\right)\right]
$$

says that each vertex from $[n] \backslash\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right)$ has a neighbor in each X_{i}; the formula
$\phi_{1}\left(X_{1}, X_{2}, X_{3}\right)=\bigwedge_{i=1}^{3}\left(\exists x \quad X_{i}(x) \wedge\left(\forall y\left[(y \neq x) \wedge X_{i}(y)\right] \Rightarrow\left[\forall x\left(\bigvee_{j \neq i} X_{j}(x)\right) \Rightarrow(x \nsim y)\right]\right)\right)$
says that, for every $i \in\{1,2,3\}$, there is at most one vertex that has neighbors in sets X_{j}, $j \neq i$; the formula

$$
\phi_{2}\left(X_{1}, X_{2}, X_{3}\right)=\bigwedge_{1 \leq i<j \leq 3}\left(\exists x \exists y \quad X_{i}(x) \wedge X_{j}(y) \wedge(x \sim y)\right)
$$

says that, for any two distinct X_{i}, X_{j}, there exists an edge between them. Clearly, $\phi_{1} \wedge \phi_{2}$ is true if and only if there exist $x_{1} \in X_{1}, x_{2} \in X_{2}, x_{3} \in X_{3}$, such that, for any distinct $i, j \in\{1,2,3\}$, there is exactly one edge between X_{i} and X_{j} - the edge between x_{i} and x_{j}.

We prove Theorem 1 in the following way. First, we show that, for some sequence of positive integers $\left(n_{i}^{(1)}, i \in \mathbb{N}\right), \sum_{k, \ell, m} \mathrm{E} X(k, \ell, m) \rightarrow 0$ (random variables are defined on $\left.G\left(n_{i}^{(1)}, p\right)\right)$ as $i \rightarrow \infty$. Then, we show that, for another sequence $\left(n_{i}^{(2)}, i \in \mathbb{N}\right)$, there exists $k=k(i)$ such that $\mathrm{P}(X(k, k, k)>0)$ is bounded away from 0 for all large enough i (using second moment methods).

We compute $\mathrm{E} X(k, \ell, m)$ and study its behavior in Section 2. Sections 3, 4 present the sequences $n_{i}^{(1)}, n_{i}^{(2)}$ respectively and prove that they are as desired.

Remark. It is easy to see, using the union bound, that with asymptotical probability 1 in $G(n, p)$, there are no three sets X_{1}, X_{2}, X_{3} such that each X_{i} dominates $[n] \backslash\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right)$ and there are no edges between distinct X_{i} and X_{j}. It means that there exists a sequence $\left\{n_{i}\right\}_{i}$ such that, with a probability that is bounded away from 0 for large enough i, one can remove at most 3 edges from $G\left(n_{i}, p\right)$ such that the modified graph and $G\left(n_{i}, p\right)$ are $\operatorname{EMSO}\left(\mathrm{FO}^{2}\right)-$ distinguishable. On the other hand, it is impossible to remove a bounded number of edges from $G(n, p)$ to make it FO-distinguishable from the original graph (with a probability that is bounded away from 0 for large enough n). Indeed, the FO almost sure theory \mathcal{T} of $G(n, p)$ is complete and its set of axioms \mathcal{E} consists of so called extension axioms (see, e.g., [12]). It is straightforward that all axioms from \mathcal{E} hold with asymptotical probability 1 after a deletion of any bounded set of edges from $G(n, p)$. From the completeness and the FO $0-1$ law, our observation follows.

2 Expectation

Let $D_{n}:=\{x, y, z \geq 1: x+y+z \leq n\}$ and consider integers $k, \ell, m \in D_{n}$. Then, clearly,

$$
\begin{align*}
\mathrm{E} X(k, \ell, m)= & \frac{n!}{k!\ell!m!(n-k-\ell-m)!}(k \cdot \ell \cdot m) \times(1-p)^{k \ell+\ell m+k m-3} p^{3} \times \\
& \times \prod_{v \in[n] \backslash\left(X_{1} \cup X_{2} \cup X_{3}\right)}\left[\left(1-(1-p)^{k}\right)\left(1-(1-p)^{\ell}\right)\left(1-(1-p)^{m}\right)\right] \leq \tag{1}
\end{align*}
$$

$$
\begin{align*}
\frac{n^{k+\ell+m} e^{k+\ell+m}}{k^{k} \ell^{\ell} m^{m}} \exp & (\ln (k \ell m)+(k \ell+k m+\ell m-3) \ln (1-p)+3 \ln p \\
& \left.-(n-k-\ell-m)\left[(1-p)^{k}+(1-p)^{\ell}+(1-p)^{m}\right]\right)=e^{f(k, \ell, m)+g(k, \ell, m)} \tag{2}
\end{align*}
$$

where f and g are two functions defined on D_{n} as follows:

$$
\begin{gather*}
f(k, \ell, m)=k \ln (n / k)+\ell \ln (n / \ell)+m \ln (n / m)+\ln (k \ell m)+k+\ell+m \\
-n\left((1-p)^{k}+(1-p)^{\ell}+(1-p)^{m}\right)+(k \ell+k m+\ell m-3) \ln (1-p)+3 \ln p \tag{3}\\
\quad g(k, \ell, m)=(k+\ell+m)\left[(1-p)^{k}+(1-p)^{\ell}+(1-p)^{m}\right] \tag{4}
\end{gather*}
$$

Let us now compute the partial derivatives:

$$
\begin{aligned}
& \frac{\partial f}{\partial k}=\ln \frac{n}{k}+(\ell+m) \ln (1-p)+\frac{1}{k}-n(1-p)^{k} \ln (1-p)+1, \\
& \frac{\partial^{2} f}{\partial k^{2}}=-\frac{1}{k}-\frac{1}{k^{2}}-n(1-p)^{k} \ln ^{2}(1-p) \\
& \frac{\partial^{2} f}{\partial k \partial \ell}=\frac{\partial^{2} f}{\partial \ell \partial m}=\frac{\partial^{2} f}{\partial k \partial m}=\ln (1-p)
\end{aligned}
$$

Other derivatives can be obtained by using the symmetry of f. Let us find k^{*} such that $\left.\frac{\partial f}{\partial k}\right|_{\left(k^{*}, k^{*}, k^{*}\right)}=\left.\frac{\partial f}{\partial \ell}\right|_{\left(k^{*}, k^{*}, k^{*}\right)}=\left.\frac{\partial f}{\partial m}\right|_{\left(k^{*}, k^{*}, k^{*}\right)}=0$. There is exactly one such k^{*} since the equation

$$
\ln \frac{n}{k}+2 k \ln (1-p)+\frac{1}{k}-n(1-p)^{k} \ln (1-p)+1=0
$$

has the unique solution

$$
\begin{equation*}
k^{*}=\frac{\ln n-\ln \ln n+\ln \ln \frac{1}{1-p}}{\ln \frac{1}{1-p}}+O\left(\frac{\ln \ln n}{\ln n}\right) \tag{5}
\end{equation*}
$$

Let us show that $A=\left(k^{*}, k^{*}, k^{*}\right)$ is a point of local maximum of f for all n large enough. Consider the Hessian matrix
$C=\left(\begin{array}{cc}\left.\frac{\partial^{2} f}{\partial k^{2}}\right|_{A} & \left.\frac{\partial^{2} f}{\partial k \partial \ell}\right|_{A} \\ \left.\frac{\partial^{2} f}{\partial k \partial m}\right|_{A} \\ \left.\frac{\partial^{2} f}{\partial k \partial \ell}\right|_{A} & \left.\frac{\partial^{2} f}{\partial \ell^{2}}\right|_{A} \\ \left.\frac{\partial^{2} f}{\partial \ell \partial m}\right|_{A} \\ \left.\frac{\partial^{2} f}{\partial k \partial m}\right|_{A} & \left.\frac{\partial^{2} f}{\partial \ell \partial m}\right|_{A} \\ \left.\frac{\partial^{2} f}{\partial m^{2}}\right|_{A}\end{array}\right)=\ln (1-p)\left(\begin{array}{ccc}\ln n(1+o(1)) & 1 & 1 \\ 1 & \ln n(1+o(1)) & 1 \\ 1 & 1 & \ln n(1+o(1))\end{array}\right)$.
By Sylvester's criterion [6, Theorem 7.2.5], it is negative-definite for all n large enough: the leading principal minors equal

$$
\begin{gathered}
\ln (1-p) \ln n(1+o(1))<0 \\
\operatorname{det}\left[\ln (1-p)\left(\begin{array}{cc}
\ln n(1+o(1)) & 1 \\
1 & \ln n(1+o(1))
\end{array}\right)\right]=\ln ^{2}(1-p) \ln ^{2} n(1+o(1))>0 \\
\operatorname{det} C=\ln ^{3}(1-p) \ln ^{3} n(1+o(1))<0
\end{gathered}
$$

Therefore, A is indeed a local maximum point.

We have

$$
\begin{aligned}
f(A) & =3 k^{*}\left(\ln n-\ln k^{*}\right)-3 n(1-p)^{k^{*}}+3\left(k^{*}\right)^{2} \ln (1-p)+3 k^{*}+O(\ln \ln n) \\
& =3 k^{*}\left(\ln n-\ln k^{*}+k^{*} \ln (1-p)+1\right)-\frac{3 \ln n}{\ln \frac{1}{1-p}}+O(\ln \ln n) \\
& =3 k^{*}-\frac{3 \ln n}{\ln \frac{1}{1-p}}+O(\ln \ln n)=O(\ln \ln n)
\end{aligned}
$$

Notice that k^{*} is not necessarily an integer. In Section 3, we show that n can be chosen in a way such that $k^{*}=\left\lfloor k^{*}\right\rfloor+\frac{1}{2}+o(1)$. In this case, the following lemma appears to be useful for bounding from above $\mathrm{E} X(k, \ell, m)$ for all possible k, ℓ, m (in particular, it implies that, for such $n, f(A)$ bounds from above $f(k, \ell, m)$ for all integer $\left.(k, \ell, m) \in D_{n}\right)$.

Lemma 2. Uniformly over all $(k, \ell, m) \in D_{n}$ such that $\min \left\{\left|k-k^{*}\right|,\left|\ell-k^{*}\right|,\left|m-k^{*}\right|\right\} \geq \frac{1}{2}+o(1)$,

$$
\begin{equation*}
f(k, \ell, m) \leq-\frac{\ln \frac{1}{1-p}}{2} \ln n(1+o(1))\left[\left(k-k^{*}\right)^{2}+\left(\ell-k^{*}\right)^{2}+\left(m-k^{*}\right)^{2}\right] . \tag{6}
\end{equation*}
$$

Proof. Let us set $\Delta_{1}=k-k^{*}, \Delta_{2}=\ell-\ell^{*}, \Delta_{3}=m-m^{*}$. Due to (3),

$$
\begin{array}{r}
f(k, \ell, m)-f\left(k^{*}, k^{*}, k^{*}\right) \quad \leq-\ln \frac{1}{1-p}\left(\Delta_{1} \Delta_{2}+\Delta_{1} \Delta_{3}+\Delta_{2} \Delta_{3}\right)+ \\
\sum_{i=1}^{3}\left(\Delta_{i} \ln n-\ln \frac{\left(k^{*}+\Delta_{i}\right)^{k^{*}+\Delta_{i}}}{\left(k^{*}\right)^{k^{*}}}-n(1-p)^{k^{*}}\left((1-p)^{\Delta_{i}}-1\right)-2 \Delta_{i} k^{*} \ln \frac{1}{1-p}+2\left|\Delta_{i}\right|\right) \leq \\
\sum_{i=1}^{3}\left(\frac{\Delta_{i}^{2} \ln \frac{1}{1-p}}{2}-k^{*} \ln \frac{k^{*}+\Delta_{i}}{k^{*}}-\Delta_{i} \ln k^{*}-\frac{\ln n\left((1-p)^{\Delta_{i}}-1+o(1)\right)}{\ln \frac{1}{1-p}}-\Delta_{i} \ln n(1+o(1))\right),
\end{array}
$$

where the last inequality follows from the inequalities $-\Delta_{1} \Delta_{2}-\Delta_{1} \Delta_{3}-\Delta_{2} \Delta_{3} \leq \frac{1}{2}\left(\Delta_{1}^{2}+\Delta_{2}^{2}+\Delta_{3}^{2}\right)$ and $-\Delta_{i} \ln \left(1+\frac{\Delta_{i}}{k^{*}}\right) \leq 0$.

Notice that $-k^{*} \ln \left(1+\Delta_{i} / k^{*}\right) \leq-\Delta_{i} \ln k^{*} I\left(\Delta_{i} \leq 0\right)$. Indeed, for positive Δ_{i}, the inequality is obvious. If $\Delta_{i} \leq 0$, then it is sufficient to verify the inequality only for boundary values $\Delta_{i}=0$ and $\Delta_{i}=1-k^{*}$ (the function $-k^{*} \ln \left(1+x / k^{*}\right)+x \ln k^{*}$ changes its monotonicity only once on $\left[1-k^{*}, 0\right]$: first, it decreases and, after $x=k^{*} / \ln k^{*}-k^{*}$, it increases). We get

$$
\begin{aligned}
& f(k, \ell, m)-f\left(k^{*}, k^{*}, k^{*}\right) \leq \sum_{i=1}^{3}\left(\frac{\Delta_{i}^{2} \ln \frac{1}{1-p}}{2}-\Delta_{i} \ln n-\frac{\ln n}{\ln \frac{1}{1-p}}\left((1-p)^{\Delta_{i}}-1\right)\right)(1+o(1))= \\
& {\left[\sum_{i=1}^{3} \frac{\Delta_{i}^{2} \ln \frac{1}{1-p}}{2}-\frac{\ln n}{\ln \frac{1}{1-p}} \sum_{i=1}^{3} \gamma\left(\Delta_{i} \ln \frac{1}{1-p}\right)\right](1+o(1)) \leq \frac{1+o(1)}{2} \ln \frac{1}{1-p} \sum_{i=1}^{3} \Delta_{i}^{2}(1-\ln n)}
\end{aligned}
$$

where $\gamma(x)=x+e^{-x}-1 \leq x^{2} / 2$ for all $x>0$. Inequality (6) follows.

3 A sequence of small probabilities

Let us find a sequence $\left(n_{i}^{(1)}, i \in \mathbb{N}\right)$ such that $\mathrm{P}(\exists k, \ell, m X(k, \ell, m)>0) \rightarrow 0$ as $i \rightarrow \infty$. For $i \in \mathbb{N}$, set

$$
n:=n_{i}^{(1)}=\left\lfloor\left(\frac{1}{1-p}\right)^{i+\frac{1}{2}} i\right\rfloor .
$$

Clearly, $k^{*}=k^{*}(n)=i+\frac{1}{2}+o(1)\left(k^{*}\right.$ is defined in (5)).
Using Lemma 2 and inequality (2), we get that, uniformly over all $k, \ell, m \in D_{n}$,

$$
\mathrm{E} X(k, \ell, m) \leq e^{-\frac{1}{2} \ln \frac{1}{1-p} \ln n(1+o(1))}\left[\left(k-k^{*}\right)^{2}+\left(\ell-k^{*}\right)^{2}+\left(m-k^{*}\right)^{2}\right]+g(k, \ell, m) .
$$

Notice that

$$
g(k, \ell, m)<3\left[\left|k-k^{*}\right|+\left|\ell-k^{*}\right|+\left|m-k^{*}\right|\right]+3 k^{*}\left[(1-p)^{k}+(1-p)^{\ell}+(1-p)^{m}\right]
$$

and

$$
3 k^{*}\left[(1-p)^{k}+(1-p)^{\ell}+(1-p)^{m}\right]=o(1) \ln n\left[\left(k-k^{*}\right)^{2}+\left(\ell-k^{*}\right)^{2}+\left(m-k^{*}\right)^{2}\right]
$$

Therefore,

$$
\mathrm{E} X(k, \ell, m) \leq e^{-\frac{1}{2} \ln \frac{1}{1-p} \ln n(1+o(1))}\left[\left(k-k^{*}\right)^{2}+\left(\ell-k^{*}\right)^{2}+\left(m-k^{*}\right)^{2}\right] .
$$

By the union bound and Markov's inequality,

$$
\mathrm{P}\left(\exists k, \ell, m \in D_{n} \quad X(k, \ell, m)>0\right) \leq \sum_{k, \ell, m \in D_{n}} \mathrm{E} X(k, \ell, m) \leq\left[\sum_{j=1}^{\infty} e^{-\frac{j}{8} \ln \frac{1}{1-p} \ln n(1+o(1))}\right]^{3}=o(1) .
$$

Therefore, $\left(n_{i}^{(1)}, i \in \mathbb{N}\right)$ is the desired sequence.

4 A sequence of large probabilities

Here, we introduce a sequence $\left(n_{i}^{(2)}, i \in \mathbb{N}\right)$, such that, for some $k=k\left(n_{i}^{(2)}\right), \mathrm{P}(X(k, k, k)>$ 0) is bounded away from 0 for all i large enough. For $i \in \mathbb{N}$, define

$$
\begin{equation*}
n_{i}^{(2)}=\left\lfloor\left(\frac{1}{1-p}\right)^{i} i\right\rfloor . \tag{7}
\end{equation*}
$$

Notice that $k^{*}=k^{*}\left(n_{i}^{(2)}\right)=i+o(1)$, where k^{*} is defined in (5). Setting $n=n_{k}^{(2)}$ for any
$k \in \mathbb{N}$, we have

$$
\begin{align*}
\mathrm{E} X(k, k, k) & =\frac{n!}{k!k!k!(n-3 k)!} k^{3}(1-p)^{3 k^{2}-3} \cdot p^{3} \cdot\left[\left(1-(1-p)^{k}\right)\right]^{3(n-3 k)} \\
& =\frac{n^{n} \sqrt{2 \pi n}}{k^{3 k} \sqrt{(2 \pi k)^{3}} \cdot(n-3 k)^{n-3 k} \sqrt{2 \pi(n-3 k)}} \cdot k^{3}(1-p)^{3 k^{2}-3} p^{3} \cdot e^{-3 n(1-p)^{k}}(1+o(1)) \\
& =\frac{n^{3 k} e^{3 k}}{k^{3 k} \sqrt{(2 \pi)^{3}}}\left(\frac{p}{1-p}\right)^{3} k^{3 / 2}(1-p)^{3 k^{2}} e^{-3 k}(1+o(1)) \\
& =\left(\frac{p}{1-p}\right)^{3} \frac{k^{3 / 2}}{\sqrt{(2 \pi)^{3}}}(1+o(1)) \tag{8}
\end{align*}
$$

So, $\mathrm{E} X(k, k, k) \rightarrow \infty$ as $k \rightarrow \infty$. It remains to prove that $[\mathrm{E} X(k, k, k)]^{2} / \mathrm{E} X^{2}(k, k, k)$ is bounded away from 0 and apply the Paley-Zygmund inequality [10] (stated below).
Theorem 3 (Paley-Zygmund inequality). Let X be a non-negative random variable with $\mathrm{E} X^{2}<\infty$. Then for any $0 \leq \lambda<1$,

$$
\mathrm{P}[X>\lambda \mathrm{E} X] \geq(1-\lambda)^{2} \frac{(\mathrm{E} X)^{2}}{\mathrm{E}\left[X^{2}\right]}
$$

4.1 Second moment

Let us call a tuple $\left(X_{1}, x_{1}, X_{2}, x_{2}, X_{3}, x_{3}\right)$ a k-tuple if sets $X_{1}, X_{2}, X_{3} \subset[n]$ are disjoint, $\left|X_{1}\right|=\left|X_{2}\right|=\left|X_{3}\right|=k$ and $x_{1} \in X_{1}, x_{2} \in X_{2}, x_{3} \in X_{3}$. Let us call a k-tuple ($X_{1}, x_{1}, X_{2}, x_{2}, X_{3}, x_{3}$) special, if it satisfies the conditions given in Section 1;

- every vertex v from $[n] \backslash\left(X_{1} \cup X_{2} \cup X_{3}\right)$ has at least one neighbor in each X_{i},
- for any distinct $i, j \in\{1,2,3\}$, there is exactly one edge between X_{i} and X_{j} - namely, the edge between x_{i} and x_{j}.
Let

$$
\begin{equation*}
\mathcal{X}=\left(X_{1}, x_{1}, X_{2}, x_{2}, X_{3}, x_{3}\right) \quad \text { and } \quad \mathcal{Y}=\left(Y_{1}, y_{1}, Y_{2}, y_{2}, Y_{3}, y_{3}\right), \tag{9}
\end{equation*}
$$

be two k-tuples. Everywhere below, we denote

$$
\begin{gathered}
r:=\left|\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right) \cap\left(Y_{1} \sqcup Y_{2} \sqcup Y_{3}\right)\right|, \\
r_{i}:=\left|Y_{i} \cap\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right)\right|, \quad r_{j+3}:=\left|X_{j} \cap\left(Y_{1} \sqcup Y_{2} \sqcup Y_{3}\right)\right|, \quad r_{i, j}:=\left|Y_{i} \cap X_{j}\right| .
\end{gathered}
$$

Let Γ be the set of all k-tuples. For $\mathcal{X} \in \Gamma$, let $\xi_{\mathcal{X}}$ be the Bernoulli random variable that equals 1 if and only if \mathcal{X} is special. Then $X(k, k, k)=\sum_{\mathcal{X} \in \Gamma} \xi_{\mathcal{X}}$. From this,

$$
\mathrm{E} X^{2}(k, k, k)=\sum_{\mathcal{X}, \mathcal{Y} \in \Gamma} \xi_{\mathcal{X}} \xi_{\mathcal{Y}} .
$$

We compute this value in the usual way by dividing the summation into parts with respect to the value of r :

$$
\begin{equation*}
\mathrm{E} X^{2}(k, k, k)=S_{1}+S_{2}+S_{3} \tag{10}
\end{equation*}
$$

- $S_{1}=\sum_{\mathcal{X}, \mathcal{Y} \in \Gamma: r \in\left(r_{0}, 3 k-r_{0}\right)} \xi_{\mathcal{X}} \xi_{\mathcal{Y}}$,
- $S_{2}=\sum_{\mathcal{X}, \mathcal{Y} \in \Gamma: r \leq r_{0}} \xi_{\mathcal{X}} \xi_{\mathcal{Y}}$,
- $S_{3}=\sum_{\mathcal{X}, \mathcal{Y} \in \Gamma: r \geq 3 k-r_{0}} \xi_{\mathcal{X}} \xi_{\mathcal{Y}}$,
where $r_{0}=\left\lceil\frac{16}{\ln [1 /(1-p)]}\right\rceil$.
In Section 4.3, we give upper bounds on S_{1} and S_{2}. An upper bound on S_{3} is given in Section 4.4. In Section 4.5, we apply the Paley-Zygmund inequality and finish the proof. Auxiliary lemmas that are used for bounds on S_{i} are given in Section 4.2.

4.2 Auxiliary lemmas

For a k-tuple $\mathcal{X}=\left(X_{1}, x_{1}, X_{2}, x_{2}, X_{3}, x_{3}\right)$, let $\mathcal{N}_{\mathcal{X}}$ be the event saying that there are no edges between X_{1}, X_{2}, X_{3} except for those between x_{1}, x_{2}, x_{3}.
Lemma 4. Let \mathcal{X}, \mathcal{Y} be k-tuples. Then

$$
\mathrm{P}\left(\mathcal{N}_{\mathcal{Y}} \mid \mathcal{N}_{\mathcal{X}}\right) \leq(1-p)^{3 k^{2}-\frac{r^{2}}{3}-3}
$$

Figure 1: two k-tuples X and Y with given intersections $r_{i, j}, i, j \in\{1,2,3\}$.

Proof. The number of pairs $(u, v) \in\left[n^{2}\right]_{\sim}$ such that $u \in Y_{i}, v \in Y_{j}$ for some $i \neq j$ but u and v do not belong to $X_{\tilde{i}}, X_{\tilde{j}}$ for any distinct $\tilde{i}, \tilde{j} \in\{1,2,3\}$ equals

$$
3 k^{2}-\frac{1}{2} \sum_{i, j} r_{i, j} \sum_{\tilde{i} \neq i, \tilde{j} \neq j} r_{i, \tilde{j}} \geq 3 k^{2}-\left(r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}\right) \geq 3 k^{2}-\frac{r^{2}}{3}
$$

where we used that

$$
\begin{equation*}
\frac{r^{2}}{9}=\left(\frac{r_{1}+r_{2}+r_{3}}{3}\right)^{2} \geq \frac{r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}}{3} \tag{11}
\end{equation*}
$$

Finally, it remains to notice that conditional probability $\mathrm{P}\left(\mathcal{N}_{\mathcal{Y}} \mid \mathcal{N}_{\mathcal{X}}\right)$ does not exceed $(1-$ $p)^{3 k^{2}-\frac{r^{2}}{3}-3}$ since we should exclude no more than 3 pairs of vertices (u, v) that coincide with a pair of vertices from y_{1}, y_{2}, y_{3}.

Lemma 5. Let \mathcal{X}, \mathcal{Y} be k-tuples and there exists $s \in\{1,2,3\}$ such that $r_{s}>k-r_{0}$ and $r_{s, j}<k-6 r_{0}$ for all $j \in\{1,2,3\}$. If $r_{0}<\frac{1}{30} k$, then

$$
\mathrm{P}\left(\mathcal{N}_{\mathcal{Y}} \mid \mathcal{N}_{\mathcal{X}}\right) \leq(1-p)^{3 k^{2}-\frac{r^{2}}{3}-3+4 k r_{0}}
$$

Proof. Repeating previous arguments, it is sufficient to prove that $\frac{1}{2} \sum_{i, j} r_{i, j} \sum_{\tilde{i} \neq i, \tilde{j} \neq j} r_{\tilde{i}, \tilde{j}} \leq$ $\frac{r^{2}}{3}-4 k r_{0}$. Without loss of generality, let us assume that $r_{s, 1} \geq r_{s, 2} \geq r_{s, 3}$.

Applying (11) for r_{4}, r_{5}, r_{6}, we get

$$
\begin{align*}
& \frac{1}{2} \sum_{i, j} r_{i, j} \sum_{p \neq i, q \neq j} r_{p, q}=\left(r_{4} r_{5}+r_{4} r_{6}+r_{5} r_{6}\right)-\sum_{i=1}^{3}\left(r_{i, 1} r_{i, 2}+r_{i, 2} r_{i, 3}+r_{i, 1} r_{i, 3}\right) \leq \\
& \quad\left(r_{4} r_{5}+r_{4} r_{6}+r_{5} r_{6}\right)-\left(r_{s, 1} r_{s, 2}+r_{s, 1} r_{s, 3}+r_{s, 2} r_{s, 3}\right) \leq \\
& \frac{r^{2}}{3}-\left(r_{s, 1} r_{s, 2}+r_{s, 1} r_{s, 3}+r_{s, 2} r_{s, 3}\right) \leq \frac{r^{2}}{3}-r_{s, 1}\left(r_{s}-r_{s, 1}\right)<\frac{r^{2}}{3}-r_{s, 1}\left(k-r_{0}-r_{s, 1}\right) \leq \\
& \frac{r^{2}}{3}-\left(k-6 r_{0}\right)\left(k-r_{0}-\left(k-6 r_{0}\right)\right)=\frac{r^{2}}{3}-5 r_{0}\left(k-6 r_{0}\right) \leq \frac{r^{2}}{3}-4 r_{0} k \tag{12}
\end{align*}
$$

since the function $f(x)=x\left(k-r_{0}-x\right)$ is concave on $\left[\frac{k-r_{0}}{3}, k-6 r_{0}\right]$, and so, it achieves the minimum value at one of the ends of the segment. Clearly, the value at the right end is smaller.

Lemma 6. Let $r_{0}>0$ be a fixed number. Let \mathcal{X}, \mathcal{Y} be k-tuples (9) and $r \leq r_{0}$. Then the probability that each $X_{j}, j \in\{1,2,3\}$, and each $Y_{i}, i \in\{1,2,3\}$, are dominating sets in $[n] \backslash$ $\left(\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right) \cup\left(Y_{1} \sqcup Y_{2} \sqcup Y_{3}\right)\right)$ does not exceed $\left(1-6(1-p)^{k}\right)^{n}(1+o(1))$.

Proof. Fix a vertex $v \in[n] \backslash\left(\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right) \cup\left(Y_{1} \sqcup Y_{2} \sqcup Y_{3}\right)\right)$. Set $X:=X_{1} \sqcup X_{2} \sqcup X_{3}$, $Y:=Y_{1} \sqcup Y_{2} \sqcup Y_{3}$. Then $\left\{v\right.$ has neighbors in each X_{j} and each $\left.Y_{i}\right\} \subset \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$, where

- $\mathcal{A}=\left\{\forall i \in\{1,2,3\} \quad v\right.$ has neighbors both in $X_{i} \backslash Y$ and in $\left.Y_{i} \backslash X\right\}$,
- $\mathcal{B}=\left\{\exists i \in\{1,2,3\} \quad v\right.$ has a neighbor in $X_{i} \cap Y$ and does not have a neighbor in $\left.X_{i} \backslash Y\right\}$,
- $\mathcal{C}=\left\{\exists i \in\{1,2,3\} \quad v\right.$ has a neighbor in $Y_{i} \cap X$ and does not have a neighbor in $\left.Y_{i} \backslash X\right\}$.

Clearly,

$$
\mathrm{P}(\mathcal{A})=\prod_{i=1}^{6}\left(1-(1-p)^{k-r_{i}}\right)
$$

$\mathrm{P}\left(v\right.$ has a neighbor in $Y_{i} \cap X$ and does not have a neighbor in $\left.Y_{i} \backslash X\right)=(1-p)^{k-r_{i}}\left(1-(1-p)^{r_{i}}\right)$, $\mathrm{P}\left(v\right.$ has a neighbor in $X_{j} \cap Y$ and does not have a neighbor in $\left.X_{j} \backslash Y\right)=(1-p)^{k-r_{j+3}}\left(1-(1-p)^{r_{j+3}}\right)$.

Therefore,

$$
\begin{gathered}
\mathrm{P}(\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}) \leq \prod_{i=1}^{6}\left(1-(1-p)^{k-r_{i}}\right)+\sum_{i=1}^{6}(1-p)^{k-r_{i}}\left(1-(1-p)^{r_{i}}\right)= \\
1-\sum_{i=1}^{6}(1-p)^{k-r_{i}}+O\left((1-p)^{2 k}\right)+\sum_{i=1}^{6}\left((1-p)^{k-r_{i}}-(1-p)^{k}\right)=1-6(1-p)^{k}+O\left((1-p)^{2 k}\right)
\end{gathered}
$$

So, multiplying over $v \in n \backslash\left(\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right) \cup\left(Y_{1} \sqcup Y_{2} \sqcup Y_{3}\right)\right)$ and recalling that $n=\left\lfloor k /(1-p)^{k}\right\rfloor$, we get the desired bound.

4.3 Small and medium intersections

In this section, we estimate S_{1} and S_{2}.
By Lemma 4 and Lemma 6 ,

$$
\begin{gather*}
S_{1} \leq \sum_{r=r_{0}}^{3 k-r_{0}}\binom{n}{3 k} 3^{3 k} k^{3}\binom{n}{3 k-r}\binom{3 k}{r} 3^{3 k} k^{3}(1-p)^{3 k^{2}-3}(1-p)^{3 k^{2}-\frac{r^{2}}{3}-3}, \tag{13}\\
S_{2} \leq \sum_{r \leq r_{0}} \frac{n!}{k!k!k!(n-3 k)!}(1-p)^{3 k^{2}-3} k^{3} \sum_{s_{1}, s_{2}, s_{3}} \frac{n^{s_{1}} n^{s_{2}} n^{s_{3}}}{s_{1}!s_{2}!s_{3}!}(1-p)^{3 k^{2}-\frac{r^{2}}{3}-3} k^{3}\left(1-6(1-p)^{k}\right)^{n}(1+o(1)), \tag{14}
\end{gather*}
$$

where the second summation is over all non-negative integers s_{1}, s_{2}, s_{3} such that $s_{1}+s_{2}+s_{3}=$ $3 k-r$ and, for each $i \in\{1,2,3\},\left|s_{i}-k\right| \leq r_{0}$.

From (13), we get that, for k large enough,

$$
\begin{gathered}
S_{1} \leq \sum_{r=r_{0}}^{3 k-r_{0}}\left(\frac{e n}{3 k}\right)^{3 k}\left(\frac{e n}{3 k-r}\right)^{3 k-r} 2^{3 k} 3^{6 k} k^{6}(1-p)^{6 k^{2}-6-\frac{r^{2}}{3}} \leq \\
\sum_{r=r_{0}}^{3 k-r_{0}}\left(\frac{n}{k}\right)^{6 k-r} \frac{\left(3^{6} 2^{3}\right)^{k} k^{6} e^{6 k-r}}{\left(1-\frac{r}{3 k}\right)^{3 k-r}}(1-p)^{6 k^{2}-6-\frac{1}{3} r^{2}} \leq \sum_{r=r_{0}}^{3 k-r_{0}}(1-p)^{r k-6-\frac{r^{2}}{3}} e^{15 k}
\end{gathered}
$$

where the last inequality is obtained from

- the definition of n (we get $\left.n \leq k(1-p)^{-k}\right)$,
- the inequality $\ln (1-x)>-x-x^{2}$ that is true for all $x \in(0,1)$ (it is applied here with $x=\frac{r}{3 k}$),
- and the inequality $k^{6}<C^{k}$ that is true for any $C>1$ and large enough k (it is applied here with $C=\frac{e^{9}}{3^{6} 2^{3}}>1$).

Finally, we get that

$$
\begin{equation*}
S_{1}<\sum_{r=r_{0}}^{3 k-r_{0}}\left((1-p)^{r-\frac{6}{k}-\frac{r^{2}}{3 k}} \cdot e^{15}\right)^{k}=o(1) \tag{15}
\end{equation*}
$$

since, for $r \in\left[r_{0}, 3 k-r_{0}\right]$, we have $r-\frac{6}{k}-\frac{r^{2}}{3 k} \geq r_{0}\left(1-\frac{6}{k r_{0}}-\frac{r_{0}}{3 k}\right)=r_{0}(1-o(1))$ and due to the choice of $r_{0}>\frac{16}{\ln [1 /(1-p)]}$.

It remains to bound S_{2}. For k large enough, we get

$$
\begin{gathered}
S_{2} \leq \frac{(n / k)^{3 k}}{k^{3 / 2}\left(1-\frac{3 k}{n}\right)^{n-3 k}}(1-p)^{6 k^{2}-\frac{r_{0}^{2}}{3}-6} k^{6}\left(1-6(1-p)^{k}\right)^{n} \times \sum_{r \leq r_{0}} \sum_{s_{1}, s_{2}, s_{3}} \frac{n^{s_{1}} n^{s_{2}} n^{s_{3}}}{s_{1}!s_{2}!s_{3}!} \leq \\
c_{1} e^{3 k} k^{9 / 2}(1-p)^{3 k^{2}}\left(1-6(1-p)^{k}\right)^{n} \sum_{r \leq r_{0}} \sum_{s_{1}, s_{2}, s_{3}} \frac{n^{3 k-r}}{s_{1}!s_{2}!s_{3}!}
\end{gathered}
$$

for some positive constant c_{1}, where the last inequality follows from the definition of n and the inequality $\ln (1-x) \geq-\frac{x}{1-x}$ applied to $x=\frac{3 k}{n}$.

Notice that, for s_{1}, s_{2}, s_{3} such that $s_{1}+s_{2}+s_{3}=3 k-r$ and $\left|s_{i}-k\right| \leq r_{0}$, we get that

$$
s_{1}!s_{2}!s_{3}!\geq \sqrt{s_{1} s_{2} s_{3}} s_{1}^{s_{1}} s_{2}^{s_{2}} s_{3}^{s_{3}} e^{-s_{1}-s_{2}-s_{3}} \geq \sqrt{\left(k-r_{0}\right)^{3}}\left(k-\frac{r}{3}\right)^{3 k-r} e^{r-3 k}
$$

since the minimum value of $s_{1}^{s_{1}} s_{2}^{s_{2}} s_{3}^{s_{3}}$ is achieved when $s_{1}=s_{2}=s_{3}$. Therefore, we get

$$
\begin{align*}
S_{2} & \leq c_{2} e^{3 k} k^{3}(1-p)^{3 k^{2}}\left(1-6(1-p)^{k}\right)^{n} \sum_{r \leq r_{0}}\left(\frac{e n}{k-r / 3}\right)^{3 k-r} \\
& \leq r_{0} c_{2} e^{3 k} k^{3}(1-p)^{3 k^{2}} e^{-6 n(1-p)^{k}}\left(\frac{e n}{k}\right)^{3 k} \leq c_{3} k^{3} \tag{16}
\end{align*}
$$

for some positive constants c_{2} and c_{3}.

4.4 Large intersections

In this section we produce an upper bound for S_{3}. We let $S_{3}=S_{3}^{1}+S_{3}^{2}$, where S_{3}^{1} is the summation over all \mathcal{X}, \mathcal{Y} such that $r>3 k-r_{0}$ and for each Y_{i} there exists X_{j} which almost coincides with Y_{i} (see Figure 2):

$$
\begin{equation*}
\forall i \in\{1,2,3\} \exists j \in\{1,2,3\}: \quad r_{i, j} \geq k-6 r_{0} \tag{17}
\end{equation*}
$$

Notice that given \mathcal{X} and r_{4}, r_{5}, r_{6}, the number of ways to choose $Y_{i} \cap\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right)$, $i \in\{1,2,3\}$, is bounded from above by

$$
\binom{k}{k-r_{4}}\binom{k}{k-r_{5}}\binom{k}{k-r_{6}} 3^{3 k-r} \leq(3 k)^{3 k-r}
$$

Also, given \mathcal{X} and Y_{1}, Y_{2}, Y_{3} such that (17) holds, the number of choices of y_{1}, y_{2}, y_{3} such that $\left(Y_{1}, y_{1}, Y_{2}, y_{2}, Y_{3}, y_{3}\right)$ has a chance to be special is $O(k)$ since, for every possible choice

Case 1

Case 2

Figure 2: two types of intersections between Y_{i} and X_{j}. Case 1 is presented in simplified form (in general, each Y_{i} may have a non-empty intersection with each X_{j}).
of $\left(y_{1}, y_{2}, y_{3}\right)$, there exists $j \in\{1,2,3\}$ such that, for every $i \in\{1,2,3\}, y_{i}$ belongs to either $\left\{x_{1}, x_{2}, x_{3}\right\}$, or $\left(Y_{1} \sqcup Y_{2} \sqcup Y_{3}\right) \backslash\left(X_{1} \sqcup X_{2} \sqcup X_{3}\right)$ (this set has a bounded size), or X_{j}. Indeed, it is not possible that two y-vertices belong to different X-sets and do not belong to $\left\{x_{1}, x_{2}, x_{3}\right\}$ because there are no edges between X_{1}, X_{2}, X_{3} other than those between x_{1}, x_{2}, x_{3}.

Finally, given \mathcal{X} and \mathcal{Y},

$$
\mathrm{P}\left(\mathcal{N}_{\mathcal{Y}} \mid \mathcal{N}_{\mathcal{X}}\right) \leq(1-p)^{-3+\sum_{i \in\{1,2,3\}}\left(k-r_{i}\right)\left(r-r_{i}\right)} .
$$

Since $r_{1}+r_{2}+r_{3}=r$, we get
$\sum_{i}\left(k-r_{i}\right)\left(r-r_{i}\right)=3 k r-k \sum_{i} r_{i}-r^{2}+\sum_{i} r_{i}^{2}=2 k r-r^{2}+\sum_{i} r_{i} \geq 2 k r-r^{2}+r^{2} / 3=2 r(3 k-r) / 3$.
Combining all the above bounds, we get that there exists $C>0$ such that

$$
\begin{align*}
& S_{3}^{1} \leq \frac{n!}{k!k!k!(n-3 k)!} p^{3}(1-p)^{3 k^{2}-3} k^{3}\left(1-(1-p)^{k}\right)^{3(n-6 k)} \times \\
& \quad C k n^{3 k-r}(3 k)^{3 k-r}(1-p)^{2 r(3 k-r) / 3} \tag{18}
\end{align*}
$$

The product in the first line of (18) asymptotically equals to $\mathrm{E} X(k, k, k)=O\left(k^{3 / 2}\right)$ due to (8). Moreover,

$$
\left(3 n k(1-p)^{2 r / 3}\right)^{3 k-r} \leq\left(3\left(\frac{1}{1-p}\right)^{k} k^{2}(1-p)^{2 k-2 r_{0} / 3}\right)^{3 k-r}=O(1)
$$

Therefore, $S_{3}^{1}=O\left(k^{5 / 2}\right)$.

It remains to bounds S_{3}^{2}. Applying Lemma 5 and inequalities $3 k-r \leq r_{0}, r_{0} \geq 16 / \ln \frac{1}{1-p}$, we get

$$
\begin{aligned}
& S_{3}^{2} \leq\left[\frac{n!}{k!k!k!(n-3 k)!}(1-p)^{3 k^{2}-3} k^{3}\left(1-(1-p)^{k}\right)^{3(n-6 k)}\right] n^{3 k-r} 3^{3 k} k^{3}(1-p)^{4 k r_{0}-3}= \\
& O\left(k^{4.5} 3^{3 k}\left(\frac{k}{(1-p)^{k}}\right)^{3 k-r}(1-p)^{4 k r_{0}}\right)=O\left(k^{4.5} 3^{3 k} k^{r_{0}}(1-p)^{3 k r_{0}}\right)=o(1)
\end{aligned}
$$

Finally,

$$
\begin{equation*}
S_{3}=S_{3}^{1}+S_{3}^{2}=O\left(k^{5 / 2}\right) \tag{19}
\end{equation*}
$$

4.5 Final steps

Set $X=X(k, k, k)$. Due to 8 , $\mathrm{E} X \sim \frac{p^{3}}{(\sqrt{2 \pi}(1-p))^{3}} k^{3 / 2}$. On the other hand, combining 10 , with bounds (15), (16), (19), we get that there exists $c>0$ such that E $X^{2}=S_{1}+S_{2}+S_{3}<c k^{3}$.

By Paley-Zygmund inequality (Theorem 3), for k large enough,

$$
\mathbb{P}(X>0) \geq \frac{(\mathbb{E} X)^{2}}{\mathbb{E} X^{2}}>\frac{p^{6}}{2 \pi(1-p)^{6} c}
$$

Therefore, $\left(n_{i}^{(2)}, i \in \mathbb{N}\right)$ is the desired sequence.

5 Acknowledgements

The first author is a Young Russian Mathematics award winner and would like to thank its sponsors and jury. She is supported by the program "Leading Scientific Schools" (grant no. NSh-2540.2020.1). The second author is supported by by the Ministry of Science and Higher Education of the Russian Federation (Goszadaniye No. 075-00337-20-03), project No. 0714-2020-0005.

References

[1] N. Alon, J.H. Spencer, The Probabilistic Method, John Wiley \& Sons, 2000.
[2] J.-M. Le Bars, The 0-1 law fails for monadic existential second-order logic on undirected graphs, Information Processing Letters 77 (2001) 43-48.
[3] B. Bollobás, Random Graphs, 2nd Edition, Cambridge University Press, 2001.
[4] R. Fagin, Probabilities in finite models, J. Symbolic Logic 41 (1976): 50-58.
[5] Y.V. Glebskii, D.I. Kogan, M.I. Liogon'kii, V.A. Talanov, Range and degree of realizability of formulas the restricted predicate calculus, Cybernetics 5 (1969) 142-154 (Russian original: Kibernetica 2, 17-27).
[6] R.A. Horn, C.R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, 2012.
[7] S. Janson, T. Luczak, A. Rucinski, Random Graphs, New York, Wiley, 2000.
[8] M. Kaufmann, S. Shelah, On random models of finite power and monadic logic, Discrete Math. 54 (1985) 285-293.
[9] L. Libkin, Elements of finite model theory, Texts in Theoretical Computer Science. An EATCS Series, Springer-Verlag Berlin Heidelberg, 2004.
[10] R. Paley, A. Zygmund, A note on analytic functions in the unit circle, In Mathematical Proceedings of the Cambridge Philosophical Society. 28 (1932) 266-272.
[11] S.N. Popova, M.E. Zhukovskii, Existential monadic second order logic of undirected graphs: The Le Bars conjecture is false, Annals of Pure and Applied Logic 170:4 (2019) 505-514.
[12] J.H. Spencer, The Strange Logic of Random Graphs, Springer Verlag, 2001.

[^0]: *Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric structures, Dolgoprudny, Russia
 ${ }^{\dagger}$ Adyghe State University, Caucasus mathematical center, Maykop, Republic of Adygea, Russia
 \ddagger The Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia

