$EMSO(FO^2)$ 0-1 law fails for all dense random graphs

M. Akhmejanova^{*}, M. Zhukovskii^{*†‡}

Abstract

In this paper, we disprove EMSO(FO²) convergence law for the binomial random graph G(n, p) for any constant probability p. More specifically, we prove that there exists an existential monadic second order sentence with 2 first order variables such that, for every $p \in (0, 1)$, the probability that it is true on G(n, p) does not converge.

1 Introduction

For undirected graphs, sentences in the monadic second order logic (MSO sentences) are constructed using relational symbols ~ (interpreted as adjacency) and =, logical connectives $\neg, \rightarrow, \leftrightarrow, \lor, \land, \land$, first order (FO) variables x, y, x_1, \ldots that express vertices of a graph, MSO variables X, Y, X_1, \ldots that express unary predicates, quantifiers \forall, \exists and parentheses (for formal definitions, see [9]). If, in an MSO sentence ϕ , all the MSO variables are existential and in the beginning, then the sentence is called *existential* monadic second order (EMSO). For example, the EMSO sentence

 $\exists X \quad [\exists x_1 \exists x_2 \ X(x_1) \land \neg X(x_2)] \land \neg [\exists y \exists z \ X(y) \land \neg X(z) \land y \sim z]$

expresses the property of being disconnected. Note that this sentence has 1 monadic variable and 4 FO variables but it can be easily rewritten with only 2 FO variables by identifying ywith x_1 and z with x_2 . In what follows, for a sentence ϕ , we use the usual notation from model theory $G \models \phi$ if ϕ is true for G.

In [8], Kaufmann and Shelah disproved the MSO 0-1 law (0-1 law for a logic \mathcal{L} states that every sentence $\varphi \in \mathcal{L}$ is either true on (asymptotically) almost all graphs on the vertex set $[n] := \{1, \ldots, n\}$ as $n \to \infty$, or false on almost all graphs). Moreover, they even disproved a weaker logical law which is called the MSO convergence law (convergence law for a logic \mathcal{L} states that, for every sentence $\varphi \in \mathcal{L}$, the fraction of graphs on the vertex set [n] satisfying φ converges as $n \to \infty$). In terms of random graphs, their result can be formulated as follows: there exists an MSO sentence φ such that $\mathsf{P}(G(n, 1/2) \models \varphi)$ does not converge as $n \to \infty$.

^{*}Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric structures, Dolgoprudny, Russia

[†]Adyghe State University, Caucasus mathematical center, Maykop, Republic of Adygea, Russia

[‡]The Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia

Recall that, for $p \in (0, 1)$, the binomial random graph G(n, p) is a graph on [n] with each pair of vertices connected by an edge with probability p and independently of other pairs. For more information, we refer readers to the books [1, 3, 7]. In contrast, G(n, 1/2) obeys first-order (FO) 0-1 law [4, 5]. In 2001, Le Bars [2] disproved EMSO convergence law for G(n, 1/2) and conjectured that, for EMSO sentences with 2 FO variables (or, shortly, EMSO(FO²) sentences), G(n, 1/2) obeys the zero-one law. In 2019, Popova and the second author [11] disproved this conjecture. Notice that all the above results but the last one can be easily generalized to arbitrary constant edge probability p. In [11], it is noticed that the Le Bars conjecture fails for a dense set of $p \in (0, 1)$. In this paper, we disprove the Le Bars conjecture for all $p \in (0, 1)$. We prove something even stronger: there exists a EMSO(FO²) sentence φ such that, for every $p \in (0, 1)$, $\{\mathbf{P}[G(n, p) \models \varphi]\}_n$ does not converge. Notice that this one sentence disproves the convergence law for all p. Let us define the sentence.

Let $X(k, \ell, m)$ be the number of 6-tuples $(X_1, x_1, X_2, x_2, X_3, x_3)$, consisting of sets $X_1, X_2, X_3 \subset [n]$ and vertices $x_1 \in X_1, x_2 \in X_2, x_3 \in X_3$, such that

- $|X_1| = k, |X_2| = \ell, |X_3| = m$ and $X_i \cap X_j = \emptyset$ for $i \neq j$,
- each X_i dominates $[n] \setminus (X_1 \sqcup X_2 \sqcup X_3)$, i.e. every vertex from $[n] \setminus (X_1 \sqcup X_2 \sqcup X_3)$ has at least one neighbor in each X_i ,
- for any distinct $i, j \in \{1, 2, 3\}$, there is exactly one edge between X_i and X_j namely, the edge between x_i and x_j .

Theorem 1. For any constant $p \in (0,1)$, $\mathsf{P}(\exists k, \ell, m \ X(k, \ell, m) > 0)$ does not converge as $n \to \infty$.

Clearly, the property $\{\exists k, \ell, m \ X(k, \ell, m) > 0\}$ can be defined in EMSO(FO²), e.g., by the following sentence:

$$\exists X_1 \exists X_2 \exists X_3 \quad \text{DIS}(X_1, X_2, X_3) \land \text{DOM}(X_1, X_2, X_3) \land \phi_1(X_1, X_2, X_3) \land \phi_2(X_1, X_2, X_3),$$

where the formula

$$DIS(X_1, X_2, X_3) = \bigwedge_{1 \le i < j \le 3} \left(\forall x \forall y \quad [X_i(x) \land X_j(y)] \Rightarrow [x \ne y] \right)$$

says that X_1, X_2, X_3 are disjoint; the formula

$$DOM(X_1, X_2, X_3) = \forall x \quad \left[\neg (X_1(x) \lor X_2(x) \lor X_3(x)) \right] \Rightarrow \left[\bigwedge_{j=1}^3 (\exists y \; X_j(y) \land (x \sim y)) \right]$$

says that each vertex from $[n] \setminus (X_1 \sqcup X_2 \sqcup X_3)$ has a neighbor in each X_i ; the formula

$$\phi_1(X_1, X_2, X_3) = \bigwedge_{i=1}^3 \left(\exists x \quad X_i(x) \land \left(\forall y \ \left[(y \neq x) \land X_i(y) \right] \Rightarrow \left[\forall x \ \left(\bigvee_{j \neq i} X_j(x) \right) \Rightarrow (x \nsim y) \right] \right) \right)$$

says that, for every $i \in \{1, 2, 3\}$, there is at most one vertex that has neighbors in sets X_j , $j \neq i$; the formula

$$\phi_2(X_1, X_2, X_3) = \bigwedge_{1 \le i < j \le 3} \left(\exists x \exists y \quad X_i(x) \land X_j(y) \land (x \sim y) \right)$$

says that, for any two distinct X_i, X_j , there exists an edge between them. Clearly, $\phi_1 \wedge \phi_2$ is true if and only if there exist $x_1 \in X_1, x_2 \in X_2, x_3 \in X_3$, such that, for any distinct $i, j \in \{1, 2, 3\}$, there is exactly one edge between X_i and X_j — the edge between x_i and x_j .

We prove Theorem 1 in the following way. First, we show that, for some sequence of positive integers $(n_i^{(1)}, i \in \mathbb{N}), \sum_{k,\ell,m} \mathsf{E}X(k,\ell,m) \to 0$ (random variables are defined on $G(n_i^{(1)},p)$) as $i \to \infty$. Then, we show that, for another sequence $(n_i^{(2)}, i \in \mathbb{N})$, there exists k = k(i) such that $\mathsf{P}(X(k,k,k) > 0)$ is bounded away from 0 for all large enough *i* (using second moment methods).

We compute $\mathsf{E}X(k,\ell,m)$ and study its behavior in Section 2. Sections 3, 4 present the sequences $n_i^{(1)}$, $n_i^{(2)}$ respectively and prove that they are as desired.

Remark. It is easy to see, using the union bound, that with asymptotical probability 1 in G(n, p), there are no three sets X_1, X_2, X_3 such that each X_i dominates $[n] \setminus (X_1 \sqcup X_2 \sqcup X_3)$ and there are no edges between distinct X_i and X_j . It means that there exists a sequence $\{n_i\}_i$ such that, with a probability that is bounded away from 0 for large enough i, one can remove at most 3 edges from $G(n_i, p)$ such that the modified graph and $G(n_i, p)$ are EMSO(FO²)–distinguishable. On the other hand, it is impossible to remove a bounded number of edges from G(n, p) to make it FO–distinguishable from the original graph (with a probability that is bounded away from 0 for large enough n). Indeed, the FO almost sure theory \mathcal{T} of G(n, p) is complete and its set of axioms \mathcal{E} consists of so called extension axioms (see, e.g., [12]). It is straightforward that all axioms from \mathcal{E} hold with asymptotical probability 1 after a deletion of any bounded set of edges from G(n, p). From the completeness and the FO 0-1 law, our observation follows.

2 Expectation

Let $D_n := \{x, y, z \ge 1 : x + y + z \le n\}$ and consider integers $k, \ell, m \in D_n$. Then, clearly,

$$\mathsf{E}X(k,\ell,m) = \frac{n!}{k!\ell!m!(n-k-\ell-m)!} (k\cdot\ell\cdot m) \times (1-p)^{k\ell+\ell m+km-3} p^3 \times \prod_{v\in[n]\setminus(X_1\cup X_2\cup X_3)} \left[(1-(1-p)^k)(1-(1-p)^\ell)(1-(1-p)^m) \right] \le (1)$$

$$\frac{n^{k+\ell+m}e^{k+\ell+m}}{k^k\ell^\ell m^m} \exp\left(\ln(k\ell m) + (k\ell + km + \ell m - 3)\ln(1-p) + 3\ln p - (n-k-\ell-m)[(1-p)^k + (1-p)^\ell + (1-p)^m]\right) = e^{f(k,\ell,m)+g(k,\ell,m)}, \quad (2)$$

where f and g are two functions defined on D_n as follows:

$$f(k,\ell,m) = k\ln(n/k) + \ell\ln(n/\ell) + m\ln(n/m) + \ln(k\ell m) + k + \ell + m$$

- $n((1-p)^k + (1-p)^\ell + (1-p)^m) + (k\ell + km + \ell m - 3)\ln(1-p) + 3\ln p, (3)$

$$g(k,\ell,m) = (k+\ell+m)[(1-p)^k + (1-p)^\ell + (1-p)^m].$$
(4)

Let us now compute the partial derivatives:

$$\frac{\partial f}{\partial k} = \ln \frac{n}{k} + (\ell + m) \ln(1 - p) + \frac{1}{k} - n(1 - p)^k \ln(1 - p) + 1,$$

$$\frac{\partial^2 f}{\partial k^2} = -\frac{1}{k} - \frac{1}{k^2} - n(1 - p)^k \ln^2(1 - p),$$

$$\frac{\partial^2 f}{\partial k \partial \ell} = \frac{\partial^2 f}{\partial \ell \partial m} = \frac{\partial^2 f}{\partial k \partial m} = \ln(1 - p).$$

Other derivatives can be obtained by using the symmetry of f. Let us find k^* such that $\frac{\partial f}{\partial k}\Big|_{(k^*,k^*,k^*)} = \frac{\partial f}{\partial \ell}\Big|_{(k^*,k^*,k^*)} = \frac{\partial f}{\partial m}\Big|_{(k^*,k^*,k^*)} = 0$. There is exactly one such k^* since the equation

$$\ln\frac{n}{k} + 2k\ln(1-p) + \frac{1}{k} - n(1-p)^k\ln(1-p) + 1 = 0$$

has the unique solution

$$k^* = \frac{\ln n - \ln \ln n + \ln \ln \frac{1}{1-p}}{\ln \frac{1}{1-p}} + O\left(\frac{\ln \ln n}{\ln n}\right).$$
 (5)

Let us show that $A = (k^*, k^*, k^*)$ is a point of local maximum of f for all n large enough. Consider the Hessian matrix

$$C = \begin{pmatrix} \frac{\partial^2 f}{\partial k^2} \Big|_A & \frac{\partial^2 f}{\partial k \partial \ell} \Big|_A & \frac{\partial^2 f}{\partial k \partial m} \Big|_A \\ \frac{\partial^2 f}{\partial k \partial \ell} \Big|_A & \frac{\partial^2 f}{\partial \ell^2} \Big|_A & \frac{\partial^2 f}{\partial \ell \partial m} \Big|_A \\ \frac{\partial^2 f}{\partial k \partial m} \Big|_A & \frac{\partial^2 f}{\partial \ell \partial m} \Big|_A & \frac{\partial^2 f}{\partial m^2} \Big|_A \end{pmatrix} = \ln(1-p) \begin{pmatrix} \ln n(1+o(1)) & 1 & 1 \\ 1 & \ln n(1+o(1)) & 1 \\ 1 & 1 & \ln n(1+o(1)) \end{pmatrix}$$

By Sylvester's criterion [6, Theorem 7.2.5], it is negative-definite for all n large enough: the leading principal minors equal

$$\ln(1-p)\ln n(1+o(1)) < 0,$$

det $\left[\ln(1-p)\left(\begin{array}{cc}\ln n(1+o(1)) & 1\\ 1 & \ln n(1+o(1))\end{array}\right)\right] = \ln^2(1-p)\ln^2 n(1+o(1)) > 0,$
det $C = \ln^3(1-p)\ln^3 n(1+o(1)) < 0.$

Therefore, A is indeed a local maximum point.

We have

$$\begin{split} f(A) &= 3k^* \left(\ln n - \ln k^*\right) - 3n(1-p)^{k^*} + 3(k^*)^2 \ln(1-p) + 3k^* + O(\ln \ln n) \\ &= 3k^* \left(\ln n - \ln k^* + k^* \ln(1-p) + 1\right) - \frac{3\ln n}{\ln \frac{1}{1-p}} + O(\ln \ln n) \\ &= 3k^* - \frac{3\ln n}{\ln \frac{1}{1-p}} + O(\ln \ln n) = O(\ln \ln n). \end{split}$$

Notice that k^* is not necessarily an integer. In Section 3, we show that n can be chosen in a way such that $k^* = \lfloor k^* \rfloor + \frac{1}{2} + o(1)$. In this case, the following lemma appears to be useful for bounding from above $\mathsf{E}X(k,\ell,m)$ for all possible k,ℓ,m (in particular, it implies that, for such n, f(A) bounds from above $f(k,\ell,m)$ for all integer $(k,\ell,m) \in D_n$).

Lemma 2. Uniformly over all $(k, \ell, m) \in D_n$ such that $\min\{|k-k^*|, |\ell-k^*|, |m-k^*|\} \ge \frac{1}{2} + o(1)$,

$$f(k,\ell,m) \le -\frac{\ln\frac{1}{1-p}}{2}\ln n(1+o(1)) \left[(k-k^*)^2 + (\ell-k^*)^2 + (m-k^*)^2 \right].$$
(6)

Proof. Let us set $\Delta_1 = k - k^*, \Delta_2 = \ell - \ell^*, \Delta_3 = m - m^*$. Due to (3),

$$f(k, \ell, m) - f(k^*, k^*, k^*) \leq -\ln \frac{1}{1-p} (\Delta_1 \Delta_2 + \Delta_1 \Delta_3 + \Delta_2 \Delta_3) +$$

$$\sum_{i=1}^{3} \left(\Delta_{i} \ln n - \ln \frac{(k^{*} + \Delta_{i})^{k^{*} + \Delta_{i}}}{(k^{*})^{k^{*}}} - n(1-p)^{k^{*}} \left((1-p)^{\Delta_{i}} - 1 \right) - 2\Delta_{i} k^{*} \ln \frac{1}{1-p} + 2|\Delta_{i}| \right) \leq \sum_{i=1}^{3} \left(\frac{\Delta_{i}^{2} \ln \frac{1}{1-p}}{2} - k^{*} \ln \frac{k^{*} + \Delta_{i}}{k^{*}} - \Delta_{i} \ln k^{*} - \frac{\ln n \left((1-p)^{\Delta_{i}} - 1 + o(1) \right)}{\ln \frac{1}{1-p}} - \Delta_{i} \ln n(1+o(1)) \right),$$

where the last inequality follows from the inequalities $-\Delta_1\Delta_2 - \Delta_1\Delta_3 - \Delta_2\Delta_3 \leq \frac{1}{2}(\Delta_1^2 + \Delta_2^2 + \Delta_3^2)$ and $-\Delta_i \ln \left(1 + \frac{\Delta_i}{k^*}\right) \leq 0.$

Notice that $-k^* \ln(1 + \Delta_i/k^*) \leq -\Delta_i \ln k^* I(\Delta_i \leq 0)$. Indeed, for positive Δ_i , the inequality is obvious. If $\Delta_i \leq 0$, then it is sufficient to verify the inequality only for boundary values $\Delta_i = 0$ and $\Delta_i = 1 - k^*$ (the function $-k^* \ln(1 + x/k^*) + x \ln k^*$ changes its monotonicity only once on $[1 - k^*, 0]$: first, it decreases and, after $x = k^* / \ln k^* - k^*$, it increases). We get

$$f(k,\ell,m) - f(k^*,k^*,k^*) \le \sum_{i=1}^3 \left(\frac{\Delta_i^2 \ln \frac{1}{1-p}}{2} - \Delta_i \ln n - \frac{\ln n}{\ln \frac{1}{1-p}} \left((1-p)^{\Delta_i} - 1 \right) \right) (1+o(1)) = \left[\sum_{i=1}^3 \frac{\Delta_i^2 \ln \frac{1}{1-p}}{2} - \ln n \sum_{i=1}^3 \left(1 - \frac{1}{1-p} - \frac{1}{2} - \frac{1}{2} \right) \right] (1+o(1)) = \frac{1+o(1)}{2} + \frac{1+$$

$$\left[\sum_{i=1}^{\infty} \frac{\Delta_i \ln \frac{1}{1-p}}{2} - \frac{\ln n}{\ln \frac{1}{1-p}} \sum_{i=1}^{\infty} \gamma \left(\Delta_i \ln \frac{1}{1-p}\right)\right] (1+o(1)) \le \frac{1+o(1)}{2} \ln \frac{1}{1-p} \sum_{i=1}^{\infty} \Delta_i^2 (1-\ln n),$$

where $\gamma(x) = x + e^{-x} - 1 \le x^2/2$ for all x > 0. Inequality (6) follows.

3 A sequence of small probabilities

Let us find a sequence $(n_i^{(1)}, i \in \mathbb{N})$ such that $\mathsf{P}(\exists k, \ell, m \ X(k, \ell, m) > 0) \to 0$ as $i \to \infty$. For $i \in \mathbb{N}$, set

$$n := n_i^{(1)} = \left\lfloor \left(\frac{1}{1-p}\right)^{i+\frac{1}{2}}i \right\rfloor$$

Clearly, $k^* = k^*(n) = i + \frac{1}{2} + o(1)$ (k^* is defined in (5)). Using Lemma 2 and inequality (2), we get that, uniformly over all $k, \ell, m \in D_n$,

$$\mathsf{E}X(k,\ell,m) \le e^{-\frac{1}{2}\ln\frac{1}{1-p}\ln n(1+o(1))\left[(k-k^*)^2 + (\ell-k^*)^2 + (m-k^*)^2\right] + g(k,\ell,m)}$$

Notice that

$$g(k,\ell,m) < 3\left[|k-k^*| + |\ell-k^*| + |m-k^*|\right] + 3k^*\left[(1-p)^k + (1-p)^\ell + (1-p)^m\right]$$

and

$$3k^* \left[(1-p)^k + (1-p)^\ell + (1-p)^m \right] = o(1) \ln n \left[(k-k^*)^2 + (\ell-k^*)^2 + (m-k^*)^2 \right]$$

Therefore,

$$\mathsf{E}X(k,\ell,m) \le e^{-\frac{1}{2}\ln\frac{1}{1-p}\ln n(1+o(1))\left[(k-k^*)^2 + (\ell-k^*)^2 + (m-k^*)^2\right]}$$

By the union bound and Markov's inequality,

$$\mathsf{P}\bigg(\exists k, \ell, m \in D_n \quad X(k, \ell, m) > 0\bigg) \le \sum_{k, \ell, m \in D_n} \mathsf{E}X(k, \ell, m) \le \left[\sum_{j=1}^{\infty} e^{-\frac{j}{8}\ln\frac{1}{1-p}\ln n(1+o(1))}\right]^3 = o(1).$$

Therefore, $(n_i^{(1)}, i \in \mathbb{N})$ is the desired sequence.

4 A sequence of large probabilities

Here, we introduce a sequence $(n_i^{(2)}, i \in \mathbb{N})$, such that, for some $k = k(n_i^{(2)})$, $\mathsf{P}(X(k,k,k) > 0)$ is bounded away from 0 for all *i* large enough. For $i \in \mathbb{N}$, define

$$n_i^{(2)} = \left\lfloor \left(\frac{1}{1-p}\right)^i i \right\rfloor.$$
(7)

Notice that $k^* = k^*(n_i^{(2)}) = i + o(1)$, where k^* is defined in (5). Setting $n = n_k^{(2)}$ for any

 $k \in \mathbb{N}$, we have

$$\begin{aligned} \mathsf{E}X(k,k,k) &= \frac{n!}{k!k!k!(n-3k)!} k^3 (1-p)^{3k^2-3} \cdot p^3 \cdot \left[(1-(1-p)^k) \right]^{3(n-3k)} \\ &= \frac{n^n \sqrt{2\pi n}}{k^{3k} \sqrt{(2\pi k)^3} \cdot (n-3k)^{n-3k} \sqrt{2\pi (n-3k)}} \cdot k^3 (1-p)^{3k^2-3} p^3 \cdot e^{-3n(1-p)^k} (1+o(1)) \\ &= \frac{n^{3k} e^{3k}}{k^{3k} \sqrt{(2\pi)^3}} \left(\frac{p}{1-p} \right)^3 k^{3/2} (1-p)^{3k^2} e^{-3k} (1+o(1)) \\ &= \left(\frac{p}{1-p} \right)^3 \frac{k^{3/2}}{\sqrt{(2\pi)^3}} (1+o(1)). \end{aligned}$$

$$(8)$$

So, $\mathsf{E}X(k,k,k) \to \infty$ as $k \to \infty$. It remains to prove that $[\mathsf{E}X(k,k,k)]^2/\mathsf{E}X^2(k,k,k)$ is bounded away from 0 and apply the Paley–Zygmund inequality [10] (stated below).

Theorem 3 (Paley–Zygmund inequality). Let X be a non-negative random variable with $\mathsf{E}X^2 < \infty$. Then for any $0 \le \lambda < 1$,

$$\mathsf{P}[X > \lambda \mathsf{E}X] \ge (1 - \lambda)^2 \frac{(\mathsf{E}X)^2}{\mathsf{E}[X^2]}.$$

4.1 Second moment

Let us call a tuple $(X_1, x_1, X_2, x_2, X_3, x_3)$ a *k*-tuple if sets $X_1, X_2, X_3 \subset [n]$ are disjoint, $|X_1| = |X_2| = |X_3| = k$ and $x_1 \in X_1, x_2 \in X_2, x_3 \in X_3$. Let us call a *k*-tuple $(X_1, x_1, X_2, x_2, X_3, x_3)$ special, if it satisfies the conditions given in Section 1:

- every vertex v from $[n] \setminus (X_1 \cup X_2 \cup X_3)$ has at least one neighbor in each X_i ,
- for any distinct $i, j \in \{1, 2, 3\}$, there is exactly one edge between X_i and X_j namely, the edge between x_i and x_j .

Let

$$\mathcal{X} = (X_1, x_1, X_2, x_2, X_3, x_3)$$
 and $\mathcal{Y} = (Y_1, y_1, Y_2, y_2, Y_3, y_3),$ (9)

be two k-tuples. Everywhere below, we denote

$$r := |(X_1 \sqcup X_2 \sqcup X_3) \cap (Y_1 \sqcup Y_2 \sqcup Y_3)|,$$

$$r_i := |Y_i \cap (X_1 \sqcup X_2 \sqcup X_3)|, \ r_{j+3} := |X_j \cap (Y_1 \sqcup Y_2 \sqcup Y_3)|, \ r_{i,j} := |Y_i \cap X_j|.$$

Let Γ be the set of all k-tuples. For $\mathcal{X} \in \Gamma$, let $\xi_{\mathcal{X}}$ be the Bernoulli random variable that equals 1 if and only if \mathcal{X} is special. Then $X(k, k, k) = \sum_{\mathcal{X} \in \Gamma} \xi_{\mathcal{X}}$. From this,

$$\mathsf{E}X^2(k,k,k) = \sum_{\mathcal{X},\mathcal{Y}\in\Gamma} \xi_{\mathcal{X}}\xi_{\mathcal{Y}}.$$

We compute this value in the usual way by dividing the summation into parts with respect to the value of r:

$$\mathsf{E}X^2(k,k,k) = S_1 + S_2 + S_3,\tag{10}$$

•
$$S_1 = \sum_{\mathcal{X}, \mathcal{Y} \in \Gamma: r \in (r_0, 3k - r_0)} \xi_{\mathcal{X}} \xi_{\mathcal{Y}}$$

• $S_2 = \sum_{\mathcal{X}, \mathcal{Y} \in \Gamma: r \leq r_0} \xi_{\mathcal{X}} \xi_{\mathcal{Y}}$,

•
$$S_3 = \sum_{\mathcal{X}, \mathcal{Y} \in \Gamma: r \geq 3k - r_0} \xi_{\mathcal{X}} \xi_{\mathcal{Y}}$$

where $r_0 = \left\lceil \frac{16}{\ln[1/(1-p)]} \right\rceil$.

In Section 4.3, we give upper bounds on S_1 and S_2 . An upper bound on S_3 is given in Section 4.4. In Section 4.5, we apply the Paley–Zygmund inequality and finish the proof. Auxiliary lemmas that are used for bounds on S_i are given in Section 4.2.

4.2 Auxiliary lemmas

For a k-tuple $\mathcal{X} = (X_1, x_1, X_2, x_2, X_3, x_3)$, let $\mathcal{N}_{\mathcal{X}}$ be the event saying that there are no edges between X_1, X_2, X_3 except for those between x_1, x_2, x_3 .

Lemma 4. Let \mathcal{X}, \mathcal{Y} be k-tuples. Then

$$\mathsf{P}(\mathcal{N}_{\mathcal{Y}}|\mathcal{N}_{\mathcal{X}}) \le (1-p)^{3k^2 - \frac{r^2}{3} - 3}.$$

Figure 1: two k-tuples X and Y with given intersections $r_{i,j}$, $i, j \in \{1, 2, 3\}$.

Proof. The number of pairs $(u, v) \in [n^2]$ such that $u \in Y_i, v \in Y_j$ for some $i \neq j$ but u and v do not belong to $X_{\tilde{i}}, X_{\tilde{j}}$ for any distinct $\tilde{i}, \tilde{j} \in \{1, 2, 3\}$ equals

$$3k^{2} - \frac{1}{2}\sum_{i,j} r_{i,j} \sum_{\tilde{i} \neq i, \tilde{j} \neq j} r_{\tilde{i},\tilde{j}} \ge 3k^{2} - (r_{1}r_{2} + r_{2}r_{3} + r_{3}r_{1}) \ge 3k^{2} - \frac{r^{2}}{3},$$

where we used that

$$\frac{r^2}{9} = \left(\frac{r_1 + r_2 + r_3}{3}\right)^2 \ge \frac{r_1 r_2 + r_2 r_3 + r_3 r_1}{3}.$$
(11)

Finally, it remains to notice that conditional probability $\mathsf{P}(\mathcal{N}_{\mathcal{Y}}|\mathcal{N}_{\mathcal{X}})$ does not exceed $(1-p)^{3k^2-\frac{r^2}{3}-3}$ since we should exclude no more than 3 pairs of vertices (u, v) that coincide with a pair of vertices from y_1, y_2, y_3 .

Lemma 5. Let \mathcal{X}, \mathcal{Y} be k-tuples and there exists $s \in \{1, 2, 3\}$ such that $r_s > k - r_0$ and $r_{s,j} < k - 6r_0$ for all $j \in \{1, 2, 3\}$. If $r_0 < \frac{1}{30}k$, then

$$\mathsf{P}(\mathcal{N}_{\mathcal{Y}}|\mathcal{N}_{\mathcal{X}}) \le (1-p)^{3k^2 - \frac{r^2}{3} - 3 + 4kr_0}.$$

Proof. Repeating previous arguments, it is sufficient to prove that $\frac{1}{2} \sum_{i,j} r_{i,j} \sum_{i \neq i, j \neq j} r_{i,j} \leq \frac{r^2}{3} - 4kr_0$. Without loss of generality, let us assume that $r_{s,1} \geq r_{s,2} \geq r_{s,3}$.

Applying (11) for r_4, r_5, r_6 , we get

$$\frac{1}{2} \sum_{i,j} r_{i,j} \sum_{p \neq i, q \neq j} r_{p,q} = (r_4 r_5 + r_4 r_6 + r_5 r_6) - \sum_{i=1}^3 (r_{i,1} r_{i,2} + r_{i,2} r_{i,3} + r_{i,1} r_{i,3}) \le (r_4 r_5 + r_4 r_6 + r_5 r_6) - (r_{s,1} r_{s,2} + r_{s,1} r_{s,3} + r_{s,2} r_{s,3}) \le \frac{r^2}{3} - (r_{s,1} r_{s,2} + r_{s,1} r_{s,3} + r_{s,2} r_{s,3}) \le \frac{r^2}{3} - r_{s,1} (r_s - r_{s,1}) < \frac{r^2}{3} - r_{s,1} (k - r_0 - r_{s,1}) \le \frac{r^2}{3} - (k - 6r_0)(k - r_0 - (k - 6r_0)) = \frac{r^2}{3} - 5r_0(k - 6r_0) \le \frac{r^2}{3} - 4r_0 k \quad (12)$$

since the function $f(x) = x(k - r_0 - x)$ is concave on $\left[\frac{k-r_0}{3}, k - 6r_0\right]$, and so, it achieves the minimum value at one of the ends of the segment. Clearly, the value at the right end is smaller.

Lemma 6. Let $r_0 > 0$ be a fixed number. Let \mathcal{X}, \mathcal{Y} be k-tuples (9) and $r \leq r_0$. Then the probability that each X_j , $j \in \{1, 2, 3\}$, and each Y_i , $i \in \{1, 2, 3\}$, are dominating sets in $[n] \setminus ((X_1 \sqcup X_2 \sqcup X_3) \cup (Y_1 \sqcup Y_2 \sqcup Y_3))$ does not exceed $(1 - 6(1 - p)^k)^n (1 + o(1))$.

Proof. Fix a vertex $v \in [n] \setminus ((X_1 \sqcup X_2 \sqcup X_3) \cup (Y_1 \sqcup Y_2 \sqcup Y_3))$. Set $X := X_1 \sqcup X_2 \sqcup X_3$, $Y := Y_1 \sqcup Y_2 \sqcup Y_3$. Then $\{v \text{ has neighbors in each } X_j \text{ and each } Y_i\} \subset \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$, where

- $\mathcal{A} = \left\{ \forall i \in \{1, 2, 3\} \mid v \text{ has neighbors both in } X_i \setminus Y \text{ and in } Y_i \setminus X \right\},$
- $\mathcal{B} = \left\{ \exists i \in \{1, 2, 3\} \quad v \text{ has a neighbor in } X_i \cap Y \text{ and does not have a neighbor in } X_i \setminus Y \right\},$

•
$$C = \left\{ \exists i \in \{1, 2, 3\} \ v \text{ has a neighbor in } Y_i \cap X \text{ and does not have a neighbor in } Y_i \setminus X \right\}.$$

Clearly,

$$\mathsf{P}(\mathcal{A}) = \prod_{i=1}^{6} (1 - (1 - p)^{k - r_i}).$$

 $\mathsf{P}(v \text{ has a neighbor in } Y_i \cap X \text{ and does not have a neighbor in } Y_i \setminus X) = (1-p)^{k-r_i}(1-(1-p)^{r_i}),$ $\mathsf{P}(v \text{ has a neighbor in } X_j \cap Y \text{ and does not have a neighbor in } X_j \setminus Y) = (1-p)^{k-r_{j+3}}(1-(1-p)^{r_{j+3}}).$ Therefore,

$$\mathsf{P}(\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}) \le \prod_{i=1}^{6} (1 - (1 - p)^{k - r_i}) + \sum_{i=1}^{6} (1 - p)^{k - r_i} (1 - (1 - p)^{r_i}) = 1 - \sum_{i=1}^{6} (1 - p)^{k - r_i} + O\left((1 - p)^{2k}\right) + \sum_{i=1}^{6} ((1 - p)^{k - r_i} - (1 - p)^k) = 1 - 6(1 - p)^k + O\left((1 - p)^{2k}\right).$$

So, multiplying over $v \in n \setminus ((X_1 \sqcup X_2 \sqcup X_3) \cup (Y_1 \sqcup Y_2 \sqcup Y_3))$ and recalling that $n = \lfloor k/(1-p)^k \rfloor$, we get the desired bound.

4.3 Small and medium intersections

In this section, we estimate S_1 and S_2 .

By Lemma 4 and Lemma 6,

$$S_{1} \leq \sum_{r=r_{0}}^{3k-r_{0}} \binom{n}{3k} 3^{3k} k^{3} \binom{n}{3k-r} \binom{3k}{r} 3^{3k} k^{3} (1-p)^{3k^{2}-3} (1-p)^{3k^{2}-\frac{r^{2}}{3}-3},$$
(13)

$$S_{2} \leq \sum_{r \leq r_{0}} \frac{n!}{k!k!k!(n-3k)!} (1-p)^{3k^{2}-3} k^{3} \sum_{s_{1},s_{2},s_{3}} \frac{n^{s_{1}}n^{s_{2}}n^{s_{3}}}{s_{1}!s_{2}!s_{3}!} (1-p)^{3k^{2}-\frac{r^{2}}{3}-3} k^{3} (1-6(1-p)^{k})^{n} (1+o(1)),$$

$$(14)$$

where the second summation is over all non-negative integers s_1, s_2, s_3 such that $s_1+s_2+s_3 = 3k - r$ and, for each $i \in \{1, 2, 3\}, |s_i - k| \leq r_0$.

From (13), we get that, for k large enough,

$$S_{1} \leq \sum_{r=r_{0}}^{3k-r_{0}} \left(\frac{en}{3k}\right)^{3k} \left(\frac{en}{3k-r}\right)^{3k-r} 2^{3k} 3^{6k} k^{6} (1-p)^{6k^{2}-6-\frac{r^{2}}{3}} \leq \sum_{r=r_{0}}^{3k-r_{0}} \left(\frac{n}{k}\right)^{6k-r} \frac{(3^{6}2^{3})^{k} k^{6} e^{6k-r}}{\left(1-\frac{r}{3k}\right)^{3k-r}} (1-p)^{6k^{2}-6-\frac{1}{3}r^{2}} \leq \sum_{r=r_{0}}^{3k-r_{0}} (1-p)^{rk-6-\frac{r^{2}}{3}} e^{15k},$$

where the last inequality is obtained from

- the definition of n (we get $n \le k(1-p)^{-k}$),
- the inequality $\ln(1-x) > -x x^2$ that is true for all $x \in (0,1)$ (it is applied here with $x = \frac{r}{3k}$),
- and the inequality $k^6 < C^k$ that is true for any C > 1 and large enough k (it is applied here with $C = \frac{e^9}{3^6 2^3} > 1$).

Finally, we get that

$$S_1 < \sum_{r=r_0}^{3k-r_0} \left((1-p)^{r-\frac{6}{k} - \frac{r^2}{3k}} \cdot e^{15} \right)^k = o(1)$$
(15)

since, for $r \in [r_0, 3k - r_0]$, we have $r - \frac{6}{k} - \frac{r^2}{3k} \ge r_0(1 - \frac{6}{kr_0} - \frac{r_0}{3k}) = r_0(1 - o(1))$ and due to the choice of $r_0 > \frac{16}{\ln[1/(1-p)]}$.

It remains to bound S_2 . For k large enough, we get

$$S_{2} \leq \frac{(n/k)^{3k}}{k^{3/2} \left(1 - \frac{3k}{n}\right)^{n-3k}} (1-p)^{6k^{2} - \frac{r_{0}^{2}}{3} - 6} k^{6} (1 - 6(1-p)^{k})^{n} \times \sum_{r \leq r_{0}} \sum_{s_{1}, s_{2}, s_{3}} \frac{n^{s_{1}} n^{s_{2}} n^{s_{3}}}{s_{1}! s_{2}! s_{3}!} \leq c_{1} e^{3k} k^{9/2} (1-p)^{3k^{2}} (1 - 6(1-p)^{k})^{n} \sum_{r \leq r_{0}} \sum_{s_{1}, s_{2}, s_{3}} \frac{n^{3k-r}}{s_{1}! s_{2}! s_{3}!}$$

for some positive constant c_1 , where the last inequality follows from the definition of n and the inequality $\ln(1-x) \ge -\frac{x}{1-x}$ applied to $x = \frac{3k}{n}$. Notice that, for s_1, s_2, s_3 such that $s_1 + s_2 + s_3 = 3k - r$ and $|s_i - k| \le r_0$, we get that

$$s_1!s_2!s_3! \ge \sqrt{s_1s_2s_3}s_1^{s_1}s_2^{s_2}s_3^{s_3}e^{-s_1-s_2-s_3} \ge \sqrt{(k-r_0)^3}\left(k-\frac{r}{3}\right)^{3k-r}e^{r-3k}$$

since the minimum value of $s_1^{s_1} s_2^{s_2} s_3^{s_3}$ is achieved when $s_1 = s_2 = s_3$. Therefore, we get

$$S_{2} \leq c_{2}e^{3k}k^{3}(1-p)^{3k^{2}}\left(1-6(1-p)^{k}\right)^{n}\sum_{r\leq r_{0}}\left(\frac{en}{k-r/3}\right)^{3k-r}$$
$$\leq r_{0}c_{2}e^{3k}k^{3}(1-p)^{3k^{2}}e^{-6n(1-p)^{k}}\left(\frac{en}{k}\right)^{3k}\leq c_{3}k^{3}$$
(16)

for some positive constants c_2 and c_3 .

4.4 Large intersections

In this section we produce an upper bound for S_3 . We let $S_3 = S_3^1 + S_3^2$, where S_3^1 is the summation over all \mathcal{X}, \mathcal{Y} such that $r > 3k - r_0$ and for each Y_i there exists X_i which almost coincides with Y_i (see Figure 2):

$$\forall i \in \{1, 2, 3\} \; \exists j \in \{1, 2, 3\}: \quad r_{i,j} \ge k - 6r_0. \tag{17}$$

Notice that given \mathcal{X} and r_4, r_5, r_6 , the number of ways to choose $Y_i \cap (X_1 \sqcup X_2 \sqcup X_3)$, $i \in \{1, 2, 3\}$, is bounded from above by

$$\binom{k}{k-r_4}\binom{k}{k-r_5}\binom{k}{k-r_6}3^{3k-r} \le (3k)^{3k-r}.$$

Also, given \mathcal{X} and Y_1, Y_2, Y_3 such that (17) holds, the number of choices of y_1, y_2, y_3 such that $(Y_1, y_1, Y_2, y_2, Y_3, y_3)$ has a chance to be special is O(k) since, for every possible choice

Figure 2: two types of intersections between Y_i and X_j . Case 1 is presented in simplified form (in general, each Y_i may have a non-empty intersection with each X_j).

of (y_1, y_2, y_3) , there exists $j \in \{1, 2, 3\}$ such that, for every $i \in \{1, 2, 3\}$, y_i belongs to either $\{x_1, x_2, x_3\}$, or $(Y_1 \sqcup Y_2 \sqcup Y_3) \setminus (X_1 \sqcup X_2 \sqcup X_3)$ (this set has a bounded size), or X_j . Indeed, it is not possible that two *y*-vertices belong to different *X*-sets and do not belong to $\{x_1, x_2, x_3\}$ because there are no edges between X_1, X_2, X_3 other than those between x_1, x_2, x_3 .

Finally, given \mathcal{X} and \mathcal{Y} ,

$$\mathsf{P}(\mathcal{N}_{\mathcal{Y}}|\mathcal{N}_{\mathcal{X}}) \le (1-p)^{-3+\sum_{i \in \{1,2,3\}} (k-r_i)(r-r_i)}.$$

Since $r_1 + r_2 + r_3 = r$, we get

$$\sum_{i} (k-r_i)(r-r_i) = 3kr - k\sum_{i} r_i - r^2 + \sum_{i} r_i^2 = 2kr - r^2 + \sum_{i} r_i \ge 2kr - r^2 + r^2/3 = 2r(3k-r)/3.$$

Combining all the above bounds, we get that there exists C > 0 such that

$$S_{3}^{1} \leq \frac{n!}{k!k!k!(n-3k)!} p^{3}(1-p)^{3k^{2}-3}k^{3}(1-(1-p)^{k})^{3(n-6k)} \times Ckn^{3k-r}(3k)^{3k-r}(1-p)^{2r(3k-r)/3}.$$
 (18)

The product in the first line of (18) asymptotically equals to $\mathsf{E}X(k,k,k) = O(k^{3/2})$ due to (8). Moreover,

$$\left(3nk(1-p)^{2r/3}\right)^{3k-r} \le \left(3\left(\frac{1}{1-p}\right)^k k^2(1-p)^{2k-2r_0/3}\right)^{3k-r} = O(1).$$

Therefore, $S_3^1 = O(k^{5/2}).$

It remains to bounds S_3^2 . Applying Lemma 5 and inequalities $3k - r \le r_0, r_0 \ge 16/\ln \frac{1}{1-p}$, we get

$$S_3^2 \le \left[\frac{n!}{k!k!k!(n-3k)!}(1-p)^{3k^2-3}k^3(1-(1-p)^k)^{3(n-6k)}\right]n^{3k-r}3^{3k}k^3(1-p)^{4kr_0-3} = O\left(k^{4.5}3^{3k}\left(\frac{k}{(1-p)^k}\right)^{3k-r}(1-p)^{4kr_0}\right) = O\left(k^{4.5}3^{3k}k^{r_0}(1-p)^{3kr_0}\right) = o(1).$$

Finally,

$$S_3 = S_3^1 + S_3^2 = O(k^{5/2}). (19)$$

4.5 Final steps

Set X = X(k, k, k). Due to (8), $\mathsf{E}X \sim \frac{p^3}{(\sqrt{2\pi}(1-p))^3}k^{3/2}$. On the other hand, combining (10) with bounds (15), (16), (19), we get that there exists c > 0 such that $\mathsf{E}X^2 = S_1 + S_2 + S_3 < ck^3$. By Paley-Zygmund inequality (Theorem 3), for k large enough,

$$\mathbb{P}(X > 0) \ge \frac{(\mathbb{E}X)^2}{\mathbb{E}X^2} > \frac{p^6}{2\pi(1-p)^6c}.$$

Therefore, $(n_i^{(2)}, i \in \mathbb{N})$ is the desired sequence.

5 Acknowledgements

The first author is a Young Russian Mathematics award winner and would like to thank its sponsors and jury. She is supported by the program "Leading Scientific Schools" (grant no. NSh-2540.2020.1). The second author is supported by by the Ministry of Science and Higher Education of the Russian Federation (Goszadaniye No. 075-00337-20-03), project No. 0714-2020-0005.

References

- [1] N. Alon, J.H. Spencer, *The Probabilistic Method*, John Wiley & Sons, 2000.
- [2] J.-M. Le Bars, The 0-1 law fails for monadic existential second-order logic on undirected graphs, Information Processing Letters 77 (2001) 43–48.
- [3] B. Bollobás, Random Graphs, 2nd Edition, Cambridge University Press, 2001.
- [4] R. Fagin, Probabilities in finite models, J. Symbolic Logic 41 (1976): 50–58.
- [5] Y.V. Glebskii, D.I. Kogan, M.I. Liogon'kii, V.A. Talanov, Range and degree of realizability of formulas the restricted predicate calculus, Cybernetics 5 (1969) 142–154 (Russian original: Kibernetica 2, 17–27).

- [6] R.A. Horn, C.R. Johnson, *Matrix Analysis*, Second Edition, Cambridge University Press, 2012.
- [7] S. Janson, T. Luczak, A. Rucinski, *Random Graphs*, New York, Wiley, 2000.
- [8] M. Kaufmann, S. Shelah, On random models of finite power and monadic logic, Discrete Math. 54 (1985) 285–293.
- [9] L. Libkin, *Elements of finite model theory*, Texts in Theoretical Computer Science. An EATCS Series, Springer-Verlag Berlin Heidelberg, 2004.
- [10] R. Paley, A. Zygmund, A note on analytic functions in the unit circle, In Mathematical Proceedings of the Cambridge Philosophical Society. 28 (1932) 266–272.
- [11] S.N. Popova, M.E. Zhukovskii, *Existential monadic second order logic of undirected graphs:* The Le Bars conjecture is false, Annals of Pure and Applied Logic **170**:4 (2019) 505–514.
- [12] J.H. Spencer, The Strange Logic of Random Graphs, Springer Verlag, 2001.