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MATCHING OF GIVEN SIZES IN HYPERGRAPHS

YULIN CHANG, HUIFEN GE, JIE HAN§, AND GUANGHUI WANG

Abstract. For all integers k, d such that k ≥ 3 and k/2 ≤ d ≤ k − 1, let n be a sufficiently large
integer (which may not be divisible by k) and let s ≤ ⌊n/k⌋ − 1. We show that if H is a k-uniform

hypergraph on n vertices with δd(H) >
(

n−d

k−d

)

−
(

n−d−s+1

k−d

)

, then H contains a matching of size s.
This improves a recent result of Lu, Yu, and Yuan and also answers a question of Kühn, Osthus,
and Townsend. In many cases, our result can be strengthened to s ≤ ⌊n/k⌋, which then covers the
entire possible range of s. On the other hand, there are examples showing that the result does not
hold for certain n, k, d and s = ⌊n/k⌋.

1. Introduction

Given k ≥ 2, a k-uniform hypergraph (for short, k-graph) H consists of a vertex set V (H) and an

edge set E(H) ⊆
(V (H)

k

)

, where every edge is a k-subset of V (H). A matching (or integer matching)
in H is a collection of vertex-disjoint edges of H. A perfect matching in H is a matching that covers
all vertices of H. Let |V (H)| = n. Clearly, a perfect matching in H exists only if k divides n.
When k does not divide n, we call a matching M in H a near perfect matching if |M | = ⌊n/k⌋.

Let H be a k-graph. For a d-subset S of V (H), where 1 ≤ d ≤ k − 1, we define degH(S) to be
the number of edges in H containing S. The minimum d-degree δd(H) of H is the minimum of
degH(S) over all d-subsets S of V (H). We refer to δ1(H) as the minimum vertex degree of H and
δk−1(H) as the minimum codegree of H.

The study of perfect matchings is one of the fundamental problems in combinatorics. In the case
of graphs, that is, k = 2, a theorem of Tutte [33] gives necessary and sufficient conditions for H to
contain a perfect matching, and Edmonds’ Algorithm [4] finds such a matching in polynomial time.
However, for the case k ≥ 3, the decision problem whether a k-graph contains a perfect matching
is famously NP-complete (see [6, 14]).

1.1. Perfect matchings. The following conjecture from [7, 20] gives a minimum d-degree condi-
tion that ensures a perfect matching in a k-graph.

Conjecture 1.1. Let k, d ∈ N and 1 ≤ d ≤ k− 1. Then there is an n0 ∈ N such that the following

holds for all n ≥ n0. Suppose H is a k-graph on n ∈ kN vertices with

δd(H) ≥
(

max

{

1

2
, 1−

(

1− 1

k

)k−d
}

+ o(1)

)

(

n− d

k − d

)

,

then H contains a perfect matching.
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There are two types of extremal examples, namely, the so-called divisibility barrier and space

barrier which show, if true, the minimum degree conditions in Conjecture 1.1 are asymptotically
best possible.

Construction 1.2 ([30], Divisibility Barrier). Fix integers j, k, n such that j ∈ {0, 1} and n ∈ kN.
Let V be a set of size n with a partition U ∪W such that |U | 6≡ jn/k mod 2. Let Hj be the k-graph
on V whose edges are k-sets e such that |e ∩ U | ≡ j mod 2.

To see why there is no perfect matching in Construction 1.2, it is not hard to see that δd(H
j) ≤

(1/2 + o(1))
(

n−d
k−d

)

and the equality is attained when |U | ≈ |V | ≈ n/2. For the case j = 0, note

that any matching in H0 covers an even number of vertices in U . Then, due to the parity of |U |,
H0 does not contain a perfect matching. For the case j = 1, suppose that there exists a perfect
matching M in H1. Note that M has n/k edges, and each edge e in M satisfies |e∩U | ≡ 1 mod 2.
Summing over all edges in M , we obtain that |U | ≡ n/k mod 2, contradicting to our assumption on
|U |. So there cannot exist a perfect matching in H1. Moreover, it is known that one can construct
such divisibility barriers with any finite number of parts (but with smaller minimum d-degrees).

Construction 1.3 (Space Barrier). Fix integers k, n such that n ∈ kN. Let V be a vertex set of

size n with a partition U ∪W , and |W | = s < n/k. Let Hk
k (U,W ) be the k-graph on V whose edges

are all k-sets that intersect W .

Note that any matching in Construction 1.3 has at most s < n/k edges, so there cannot exist
a perfect matching in Hk

k (U,W ). For 1 ≤ d ≤ k − 1, it is easy to see that δd(H
k
k (U,W )) =

(n−d
k−d

)

−
(n−d−s

k−d

)

=
(

1− (1− s/n)k−d + o(1)
)

(n−d
k−d

)

. Moreover, the maximum value of δd(H
k
k (U,W ))

is attained by s = ⌈n/k⌉ − 1, which gives the second term in Conjecture 1.1.
Conjecture 1.1 has attracted a great deal of attention in recent years, see results, e.g., [19,

25, 28]. It has been confirmed for all 0.375k ≤ d ≤ k − 1 and for 1 ≤ k − d ≤ 4 and for
(k, d) ∈ {(12, 5), (17, 7)}. In particular, Rödl, Ruciński, and Szemerédi [29] determined that the
minimum codegree threshold is n/2−k+C for sufficiently large n ∈ kN, where C ∈ {3/2, 2, 5/2, 3}
depends on the values of n and k. Furthermore, the exact thresholds for sufficiently large n are
obtained for these cases except (k, d) ∈ {(5, 1), (6, 2)} in [3, 5, 11, 17, 18, 22, 24, 30, 31, 32]. For
more results we refer the reader to the excellent surveys [26, 34].

1.2. Matchings of other sizes. When k ∤ n, Rödl, Ruciński, and Szemerédi [29] showed that a
minimum codegree roughly n/k guarantees the existence of a matching of size ⌊n/k⌋. This stands
as a steep contrast to the threshold for perfect matchings, which is roughly n/2. Since then the
study of near perfect matchings and matchings of general size s < n/k has also attracted a lot of
attention. Indeed, Rödl, Ruciński, and Szemerédi [29] determined the codegree threshold for the
existence of a matching of size s in a k-graph H for all s ≤ ⌊n/k⌋ − k + 2. Han [9] extended this
result to all s < n/k, verifying a conjecture of Rödl, Ruciński, and Szemerédi. Moreover, Han
[10] gave a divisibility barrier construction that prevents the existence of near perfect matchings
in H which generalizes Construction 1.2. He also proposed a conjecture on the minimum d-degree
threshold forcing a (near) perfect matching in H which generalizes Conjecture 1.1. In the same
paper, He determined the minimum (k − 2)-degree threshold and gave an upper bound and lower
bound for general d-degree threshold. Kühn, Osthus, and Treglown [22] determined the vertex
degree threshold for the existence of a matching of size s in a 3-graph H for all s ≤ n/3, which can
be seen as a strengthening of an old result of Bollobás, Daykin, and Erdős [2] for 3-graphs.

Kühn, Osthus, and Townsend [21] determined the d-degree threshold for the existence of a
matching of size s in a k-graph H asymptotically for 1 ≤ d ≤ k− 2 and s ≤ min{n/(2k − 2d), (1−
o(1))n/k} (when k/2 < d ≤ k − 2, this is equivalent to s ≤ (1 − o(1))n/k). They asked whether
the (1− o(1))n/k can be replaced by n/k − C for some constant C depending only on d and k. A
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recent result of Lu, Yu, and Yuan [23] shows that one can take

C = (1− d/k)

⌈

k − d

2d− k

⌉

,

which answers the aforementioned question. However, the term (1− d/k)⌈ k−d
2d−k ⌉ can be arbitrarily

large when d is close to k/2. In this paper we reduce this gap by showing that one can take C = 1
(see Corollary 1.5), and in many cases, one can actually take C = 0.

In fact, Lu, Yu, and Yuan [23] determined the exact minimum d-degree threshold for the existence
of a matching of size s in a k-graphH for k/2 < d ≤ k−1 and n/k−o(n) ≤ s ≤ n/k−(1−d/k)⌈ k−d

2d−k ⌉.
Our main improvements can be summarized in the following two results. The first one says that
the largest s we can take is either ⌊n/k⌋ (clearly the best possible) or ⌊n/k⌋ − 1 (best possible for
certain values of k, d and n).

Theorem 1.4. For all integers k, d such that k ≥ 3 and k/2 ≤ d ≤ k − 1, there exists an n0 ∈ N
such that the following holds for n ≥ n0. Let n ≡ r mod k be an integer, where 0 ≤ r ≤ k − 1.
Suppose H is an n-vertex k-graph with δd(H) >

(n−d
k−d

)

−
(n−d−s+1

k−d

)

, where

s =







⌊n/k⌋, if k/2 ≤ d < ⌈2k/3⌉ and r ≥ 2, or if ⌈2k/3⌉ ≤ d ≤ k − 1 and

r ≥ k − d;
⌊n/k⌋ − 1, otherwise.

Then H contains a matching of size s. In particular, H contains a matching covering all but at

most 2k − d− 1 vertices.

Remark. The theorem also holds for s = ⌊n/k⌋ in the case k/2 ≤ d ≤ 0.59k and r = 1 by a result
of Han [10], which we did not include above. On the other hand, one can not hope for s = ⌊n/k⌋
in the case 0.59k < d ≤ k − 1 and r = 1 due to a construction [10, Proposition 1.11]. However, for
other cases it is not clear whether the theorem holds for s = ⌊n/k⌋.

The second result is on matchings of any given size s inH for all s ≤ ⌊n/k⌋−1, which can be easily
deduced from Theorem 1.4. In particular, it says that one can take C = 1 in the aforementioned
question of Kühn, Osthus, and Townsend [21].

Corollary 1.5. For all integers k, d such that k ≥ 3 and k/2 ≤ d ≤ k − 1, there exists an

n0 ∈ N such that the following holds for n ≥ n0. Let n be an integer (which may not be divisible

by k) and let s be an integer such that s ≤ ⌊n/k⌋ − 1. Suppose H is an n-vertex k-graph with

δd(H) >
(n−d
k−d

)

−
(n−d−s+1

k−d

)

. Then H contains a matching of size s.

Proof. For s ≤ ⌊n/k⌋ − 1, let t be an integer such that t = ⌊(n + t)/k⌋ − s − 1.1 Then s + t =
⌊(n+ t)/k⌋− 1. Consider the auxiliary k-graph H ′ by adding t vertices to H such that H ′ contains
all edges of H and all k-sets containing any of these new vertices. Note that H ′ has n+ t vertices
and

δd(H
′) = δd(H) +

(

n+ t− d

k − d

)

−
(

n− d

k − d

)

>

(

n− d

k − d

)

−
(

n− d− s+ 1

k − d

)

+

(

n+ t− d

k − d

)

−
(

n− d

k − d

)

=

(

(n+ t)− d

k − d

)

−
(

(n+ t)− d− (s+ t− 1)

k − d

)

.

Thus, we apply Theorem 1.4 on H ′ and conclude that H ′ contains a matching M ′ of size s + t =
⌊(n + t)/k⌋ − 1. By deleting at most t edges from M ′ that contain the new vertices, we can get a
matching in H of size s and we are done. �

1Note that one can choose such a t by trying t = 0, 1, 2, . . .
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Combining Theorem 1.4 and Corollary 1.5, we obtain the exact minimum d-degree threshold for
a matching of size s for all s ≤ n/k if k/2 ≤ d ≤ 0.59k and r = 1, or if k/2 ≤ d < ⌈2k/3⌉ and
2 ≤ r ≤ k − 1, or if ⌈2k/3⌉ ≤ d ≤ k − 1 and k − d ≤ r ≤ k − 1.

At last, we remark that if we only target on the asymptotical minimum d-degree thresholds the
problem would be much easier. To formulate such a result, let us introduce the notion of fractional
matchings. Given a k-graph H = (V,E), a fractional matching in H is a function ω : E → [0, 1]
such that for each v ∈ V (H) we have that

∑

e∋v w(e) ≤ 1. Then
∑

e∈E(H) w(e) is the size of w. If

the size of w in H is n/k then we say that w is a perfect fractional matching. Given k, d ∈ N such
that d ≤ k − 1, define c∗k,d to be the smallest number c such that every k-graph H on n vertices

with δd(H) ≥ (c + o(1))
(

n−d
k−d

)

contains a perfect fractional matching. Alon et al. [1] conjectured

that c∗k,d = 1− (1− 1/k)k−d for all d, k ∈ N and verified the case k − d ≤ 4. So far the conjecture

was verified when d ≥ 0.4k and when k − d ≤ 4 [21, 5].

Theorem 1.6. Let k, d be integers such that 1 ≤ d ≤ k − 1 and γ > 0, then there exists an

n0 ∈ N such that the following holds for n ≥ n0. Suppose H is an n-vertex k-graph with δd(H) ≥
(c∗k,d + γ)

(n−d
k−d

)

, then H contains a matching M that covers all but at most 2k − d− 1 vertices. In

particular, when n ∈ kN, M is a perfect matching or covers all but exactly k vertices.

Theorem 1.6 has been proved by Han and Treglown [12, Theorem 7.2] under the assumption

δd(H) ≥ (max{c∗k,d, 1/3} + γ)
(

n−d
k−d

)

. Using the regularity method, under the assumption of Theo-

rem 1.6, it is easy to construct a matching that leaves o(n) vertices uncovered. Here we apply the
absorbing method and thus reduce the number of uncovered vertices to at most 2k − d− 1.

As a typical approach in this area, we employ the absorbing method, popularized by Rödl,
Ruciński, and Szemerédi [27], and distinguish the “extremal” and “non-extremal” cases, which is
also the approach used by Lu, Yu, and Yuan [23]. For example, the extremal case has been resolved
by Lu, Yu, and Yuan [23]. The main difference is in the part of absorption in the non-extremal case,
where we deal with large and small values of d with different strategies: we use the lattice-based
absorbing method of Han [10] when k/2 ≤ d < ⌈2k/3⌉, and use an argument of Rödl, Ruciński,
and Szemerédi [27] when ⌈2k/3⌉ ≤ d ≤ k− 1. The first method was initially used in [8] for solving
a complexity problem of Karpiński, Ruciński, and Szymańska [15].

Organization. Throughout the rest of the paper, k denotes an integer with k ≥ 3. As usual, for
an integer b, let [b] = {1, . . . , b}. The rest of the paper is organized as follows. In Section 2, we
first give some useful lemmas and then prove Theorem 1.4 and Theorem 1.6. In Sections 3 and 4,
we give the proofs of our absorbing lemmas (Lemma 2.3 and Lemma 2.4).

2. Proofs of Theorems 1.4 and 1.6

We first extend the definition of Hk
k (U,W ) in Construction 1.3 to Hℓ

k(U,W ) for all ℓ ∈ [k]. Again,

let V be a vertex set with a partition U ∪W . Let Hℓ
k(U,W ) be the k-graph on V whose edges are

all k-sets e such that 1 ≤ |e∩W | ≤ ℓ (see Figure 1). Given two k-graphs H1,H2 and a real number
ε > 0, we say that H2 is ε-close to H1 if V (H1) = V (H2) and |E(H1) \ E(H2)| ≤ ε|V (H1)|k.

We write x ≪ y ≪ z to mean that we can choose constants from right to left, that is, there
exist functions f and g such that, for any z > 0, whenever y ≤ f(z) and x ≤ g(y), the subsequent
statement holds. Statements with more variables are defined similarly. The following result by Lu,
Yu, and Yuan [23] is needed for the “extremal” case.

Lemma 2.1 ([23, Lemma 2.3]). Given integers d and k such that d ∈ [k − 1], suppose 0 <
1/n ≪ ε ≪ 1/k and let s ∈ {⌊n/k⌋ − 1, ⌊n/k⌋}. Suppose H is an n-vertex k-graph with δd(H) >
(n−d
k−d

)

−
(n−d−s+1

k−d

)

, and H is ε-close to Hk−d
k (U,W ), where |W | = s− 1 and |U | = n− s+1. Then

H contains a matching of size s.
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U

W

e

1 ≤ |e ∩ W | ≤ ℓ

Figure 1. An illustration of the k-graph Hℓ

k
(U,W ).

We also need the following lemma in the “non-extremal” case, which guarantees that the resulting
k-graph has an almost perfect matching after taking away an absorbing matching (from Lemma 2.3
and Lemma 2.4).

Lemma 2.2 ([23, Lemma 5.7]). Given ε, σ > 0 and integers k, d such that k/2 ≤ d ≤ k−1, suppose
0 < 1/n ≪ ρ ≪ ε, 1/k and let s ∈ {⌊n/k⌋ − 1, ⌊n/k⌋}. Suppose H is an n-vertex k-graph with

δd(H) ≥
(n−d
k−d

)

−
(n−d−s+1

k−d

)

− ρnk−d, and H is not ε-close to Hk−d
k (U,W ) for any partition U,W

of V (H) with |W | = s− 1. Then H contains a matching covering all but at most σn vertices.

Now we state our absorbing lemmas, which are the new ingredients in the proof of Theorem 1.4.
We postpone their proofs to Sections 3 and 4. Indeed, a known method of Rödl, Ruciński, and Sze-
merédi [27] can be used to prove the absorbing lemma for the case ⌈2k/3⌉ ≤ d ≤ k−1 (Lemma 2.4),
but does not apply for smaller d. Fortunately, for smaller values of d the quantity δd(H) is larger, in

particular, δd(H) ≥ (1/4 + o(1))
(

n−d
k−d

)

. This allows us to use the lattice-based absorption method,

developed by Han [10], and prove the absorbing lemma for the case min{3, k/2} ≤ d < ⌈2k/3⌉
(Lemma 2.3).

Lemma 2.3. For min{3, k/2} ≤ d < ⌈2k/3⌉ and γ > 0, suppose 0 < 1/n ≪ α ≪ γ, 1/k. Let H

be an n-vertex k-graph with δd(H) ≥ (1/4 + γ)
(n−d
k−d

)

. Then there exists a matching M in H of size

|M | ≤ γn/k such that for any subset R ⊆ V (H) \ V (M) with |R| ≤ α2n, H[R ∪ V (M)] contains a

matching covering all but at most k + 1 vertices.

Lemma 2.4. For ⌈2k/3⌉ ≤ d ≤ k − 1 and γ′ > 0, suppose 0 < 1/n ≪ β ≪ γ′, 1/k. Let H be an

n-vertex k-graph with δd(H) ≥ γ′nk−d, then there exists a matching M ′ in H of size |M ′| ≤ βn/k
and such that for any subset R ⊆ V (H)\V (M ′) with |R| ≤ β2n, H[V (M ′)∪R] contains a matching

covering all but at most 2k − d− 1 vertices.

Now we combine Lemmas 2.1, 2.2, 2.3, 2.4 and prove Theorem 1.4.

Proof of Theorem 1.4. Given k ≥ 3 and k/2 ≤ d ≤ k − 1. Let ε > 0 be as in Lemma 2.1, and we
choose additional constants satisfying the following hierarchy depending on the value of d:

0 < σ ≪ η = γ ≪ ε ≪ 1/k if k/2 ≤ d < ⌈2k/3⌉;
and

0 < σ ≪ η ≪ γ′, ε ≪ 1/k if ⌈2k/3⌉ ≤ d ≤ k − 1.

More precisely, take η := γ and σ := α2 ≪ γ in the case min{3, k/2} ≤ d < ⌈2k/3⌉, where α is
given by Lemma 2.3; and take η := β ≪ γ′ and σ := β2 ≪ η in the case ⌈2k/3⌉ ≤ d ≤ k − 2,
where β is given by Lemma 2.4. We also assume that n is sufficiently large. Let H = (V,E) be
an n-vertex k-graph satisfying the degree condition as in Theorem 1.4. We may assume d ≤ k − 2
since the case d = k−1 has been proved by Han [10, Theorem 1.1]. The extremal case immediately
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follows from Lemma 2.1. Note that this is the only place where the exact d-degree condition is
needed. Thus, we may assume that H is not ε-close to Hk−d

k (U,W ) for any partition U,W of V
with |W | = s− 1.

Note that when min{3, k/2} ≤ d < ⌈2k/3⌉, we have

(

n− d− s+ 1

k − d

)

≤
(

n− s+ 1

n− k + 1

)k−d(n− d

k − d

)

≤
(

1− s− k

n− k + 1

)k/3(n− d

k − d

)

Using 1− x ≤ e−x and sk ≥ n− 2k (as s ≥ n/k − 2), we infer
(

n− d− s+ 1

k − d

)

≤ e−
s−k

n−k+1
· k
3

(

n− d

k − d

)

≤ e−
n−2k−k2

n−k+1
· 1
3

(

n− d

k − d

)

≤ e−0.33

(

n− d

k − d

)

,

where we used that n−2k−k2

n−k+1 ≥ 0.99 as n is large. We conclude that
(n−d
k−d

)

−
(n−d−s+1

k−d

)

≥ (1/4 +

γ)
(n−d
k−d

)

as e−0.33 ≈ 0.71 and γ ≪ 1/k. On the other hand, when ⌈2k/3⌉ ≤ d ≤ k − 2, we have
(n−d
k−d

)

−
(n−d−s+1

k−d

)

≥ γ′nk−d by the choice of γ′.
First we find an absorbing set in H. Note that 2k−d−1 ≥ k+1 since d ≤ k−2. By Lemma 2.3

and Lemma 2.4, there exists a matching M in H of size |M | ≤ ηn/k such that, for every subset
R ⊆ V \ V (M) with |R| ≤ σn, the induced k-graph H[R ∪ V (M)] contains a matching covering all
but at most max{k + 1, 2k − d− 1} = 2k − d− 1 vertices.

Let H1 = H[V \V (M)] and n1 = n− k|M | ≥ (1− η)n. Next we find an almost perfect matching

in H1. Recall that δd(H) >
(n−d
k−d

)

−
(n−d−s+1

k−d

)

, then we have that

δd(H1) ≥ δd(H)− (ηn)nk−d−1 ≥
(

n1 − d

k − d

)

−
(

n1 − d− s+ 1

k − d

)

− 2ηnk−d
1

and H1 is not (ε/2)-close to Hk−d
k (U,W ) for any partition U,W of V (H1) with |W | = s− 1, since

n is sufficiently large and η ≪ ε. We now apply Lemma 2.2 with input σ and ε/2 in place of ε, H1

has a matching M1 covering all but at most σn vertices of V (H1). Denote by U the set of these
remaining vertices of V (H1). Then |U | ≤ σn.

Let ℓk + r = n, where 0 ≤ r ≤ k − 1. Recall that M is an absorbing matching in H, which
implies that H[V (M)∪U ] contains a matching M2 covering all but at most 2k−d−1 vertices. Let
m be the number of unmatched vertices by M1 ∪M2. Then for the case k/2 ≤ d < ⌈2k/3⌉ we have
m ≤ k + 1 by Lemma 2.3; more precisely, in this case m = k + r when r ∈ {0, 1} and m = r when
2 ≤ r ≤ k − 1. Moreover, for the case ⌈2k/3⌉ ≤ d ≤ k − 1 we have m ≤ 2k − d− 1 by Lemma 2.4;
more precisely, in this case m = k + r when 0 ≤ r < k − d and m = r when k − d ≤ r ≤ k − 1.
These imply that M1 ∪M2 is the desired matching. �

The following result is a weaker version of Lemma 5.6 in [21]. It allows us to convert the
fractional matchings into integer ones, and was proved by the weak hypergraph regularity lemma
(and alternative proofs avoiding the regularity method are also known, see e.g. [1]).

Lemma 2.5 ([21]). Let k ≥ 2 and 1 ≤ d ≤ k − 1 be integers, and let ε > 0. Suppose that for

some b, c ∈ (0, 1) and some n0 ∈ N, every k-graph on n ≥ n0 vertices with δd(H) ≥ c
(n−d
k−d

)

has a

fractional matching of size (b + ε)n. Then there exists an n′
0 ∈ N such that every k-graph H on

n ≥ n′
0 vertices with δd(H) ≥ (c+ ε)

(n−d
k−d

)

has an integer matching of size at least bn.

As a consequence we obtain the following result by the definition of c∗k,d.

Lemma 2.6. Let k, d be integers such that 1 ≤ d ≤ k − 1 and γ, σ > 0, the following holds for

sufficiently large n. Suppose H is an n-vertex k-graph with δd(H) ≥ (c∗k,d+γ)
(

n−d
k−d

)

, then H contains

a matching M that covers all but at most σn vertices.
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Proof. Let k, d and γ be given, and let n0 and n′
0 be given by Lemma 2.5. Without loss of generality

we may assume that 1/n ≪ σ ≪ γ, 1/k. Note that every k-graph G with δd(G) ≥ (c∗k,d+σ/k)
(n−d
k−d

)

has a perfect fractional matching of size n/k by the definition of c∗k,d; and then we use Lemma 2.5 to

transform this into an almost perfect integer matching. More precisely, since δd(H) ≥ (c∗k,d+σ)
(n−d
k−d

)

by the choice of σ, applying Lemma 2.5 on H with b = (1 − σ)/k, c = c∗k,d + σ/k and ε = σ/k,

we conclude that H contains an integer matching of size at least (1 − σ)n/k, that is, a matching
covering all but at most σn vertices, as required. �

We are now in a position to prove Theorem 1.6. Its proof is very similar to that of Theorem 1.4,
where we replace Lemma 2.2 by Lemma 2.6, and Lemma 2.1 is no longer needed.

Proof of Theorem 1.6. Let γ > 0 and integers 1 ≤ d ≤ k − 1 be given. Note that c∗k,d ≥ 1 −
(1 − 1/k)k−d (see e.g. [1]), and recall that Theorem 1.6 has been proved by Han and Treglown
when c∗k,d ≥ 1/3 [12, Theorem 7.2]. For the case 1 ≤ d ≤ k/2, we have c∗k,d ≥ 1/3. Indeed, since

(1− 1/k)k < 1/e, we have

c∗k,d ≥ 1− (1− 1/k)k−d > 1− (1/e)1−d/k ≥ 1− (1/e)1/2 ≥ 1/3.

These remarks imply that Theorem 1.6 holds for the case 1 ≤ d ≤ k/2. Furthermore, we may
assume d ≤ k− 2 since the case d = k− 1 has been proved by Han [10, Theorem 1.1]. Next we deal
with the case k/2 ≤ d ≤ k − 2.

Suppose 0 < σ ≪ η ≪ γ1, γ2 ≪ γ ≪ 1/k. Let H = (V,E) be an n-vertex k-graph with

δd(H) ≥ (c∗k,d + γ)
(n−d
k−d

)

. Recall that c∗k,d ≥ 1 − (1 − 1/k)k−d > 1 − (1/e)1−d/k . Thus, c∗k,d > 1/4

when k/2 ≤ d < ⌈2k/3⌉. Consequently we have δd(H) ≥ (1/4 + γ1)
(n−d
k−d

)

when k/2 ≤ d < ⌈2k/3⌉
by the choice of γ1, and δd(H) ≥ γ2n

k−d when ⌈2k/3⌉ ≤ d ≤ k − 2 by the choice of γ2.
The proof is almost identical to the proof of Theorem 1.4 except that we use Lemma 2.6 instead

of Lemma 2.2. First we find an absorbing set in H. Note that 2k − d− 1 ≥ k + 1 since d ≤ k − 2.
By Lemma 2.3 and Lemma 2.4, there exists a matching M in H of size |M | ≤ ηn/k such that, for
every subset R ⊆ V \V (M) with |R| ≤ σn, the induced k-graph H[R∪V (M)] contains a matching
covering all but at most max{k + 1, 2k − d− 1} = 2k − d− 1 vertices.

Let H1 = H[V \V (M)] and n1 = n− k|M | ≥ (1− η)n. Next we find an almost perfect matching

in H1. Recall that δd(H) ≥ (c∗k,d + γ)
(

n−d
k−d

)

, then we have that

δd(H1) ≥ δd(H)− (ηn)nk−d−1 ≥ (c∗k,d + γ/2)

(

n1 − d

k − d

)

,

since n is sufficiently large and η ≪ γ. Applying Lemma 2.6 on H1 with input σ and γ/2 in place
of γ, H1 has a matching M1 covering all but at most σn vertices of V (H1). Denote by U the set
of these remaining vertices of V (H1). Then |U | ≤ σn. Recall that M is an absorbing matching in
H, which implies that H[V (M) ∪ U ] contains a matching M2 covering all but at most 2k − d − 1
vertices. Thus, M1 ∪M2 is the desired matching. �

3. Proof of Lemma 2.3

In this section we prove Lemma 2.3. Because of the existence of the divisibility barrier (Con-
struction 1.2), the absorbing lemma for perfect matching requires a minimum d-degree δd(H) ≥
(1/2 + o(1))

(n−d
k−d

)

. However, we only have the minimum d-degree δd(H) ≥ (1/4 + o(1))
(n−d
k−d

)

.
Inspired by the divisibility barrier, we consider vertex partitions of H and analyze them via the
distribution of edges (robust edge-lattice). Such approach was first used by Keevash and My-
croft [16].
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3.1. Notation and preliminaries. In order to state our results, we first introduce some notation.
Let H be a k-graph on n vertices. We say that two vertices u and v are (β, i)-reachable in H if
there are at least βnik−1 (ik − 1)-sets S ⊆ V (H) such that both H[S ∪ {u}] and H[S ∪ {v}] have
perfect matchings. We say that a vertex set U is (β, i)-closed in H if every two vertices in U are
(β, i)-reachable in H.

We will work on a vertex partition P = {V0, V1, . . . , Vr} of V (H) for some integer r ≥ 1.
We consider the r-dimensional vectors on the parts of P except V0. Formally, the index vector

iP(S) ∈ Zr of a subset S ⊆ V (H) with respect to P is the vector whose coordinates are the sizes of
the intersections of S with each part of P except V0, namely, iP(S)Vi

= |S ∩ Vi| for i ∈ [r]. We call
a vector i ∈ Zr an s-vector if all its coordinates are nonnegative and their sum equals s, and we
use Irs to denote the set of all s-vectors. Given µ > 0, a k-vector v is called a µ-robust edge-vector
if there are at least µnk edges e ∈ E(H) satisfying iP(e) = v. Let IµP(H) ⊆ Irk be the set of all
µ-robust edge-vectors and let Lµ

P(H) be the lattice (additive subgroup) generated by the vectors
in IµP(H). For i ∈ [r], let ui ∈ Zr be the i-th unit vector, namely, ui has 1 on the i-th coordinate
and 0 on other coordinates. A transferral is the vector ui − uj for some i 6= j.

Suppose I is a set of k-vectors in Zr and J is a set of vectors in Zr such that any i ∈ J can be
written as a linear combination of vectors in I, namely, i =

∑

v∈I avv. We denote C(r, k, I, J) as
the maximum of |av|, v ∈ I, over all i ∈ J and C(k, J) := maxr≤k, I⊆Ir

k
C(r, k, I, J).

For a k-graph H, we first establish a partition P of V (H) and then study the so-called robust
edge-lattice with respect to this partition. The main tool for establishing the partition of V (H) is
the following lemma from [10, Lemma 3.3].

Lemma 3.1 ([10, Lemma 3.3]). Suppose 0 < 1/n ≪ β ≪ ε ≪ δ. Let H be an n-vertex k-graph

such that δ1(H) ≥ (δ + k2ε)
(

n−1
k−1

)

. Then there is a partition P of V (H) into V0, V1, . . . , Vr with

r ≤ ⌊1/δ⌋ such that |V0| ≤
√
εn and for any i ∈ [r], |Vi| ≥ ε2n and Vi is (β, 2⌊1/δ⌋−1)-closed in H.

The next result from [10, Lemma 3.4] shows that Vi∪Vj is closed in H if ui−uj ∈ Lµ
P(H), which

means that we can merge Vi and Vj and keep the closedness.

Lemma 3.2 ([10, Lemma 3.4]). Let 0 < µ, β ≪ ε ≪ 1/i0, then there exist 0 < β′ ≪ µ, β and

an integer t ≥ i0 such that the following holds for sufficiently large n. Suppose H is an n-vertex
k-graph, and P = {V0, V1, . . . , Vr} is a partition with r ≤ i0 such that |V0| ≤

√
εn and for any

i ∈ [r], |Vi| ≥ ε2n and Vi is (β, i0)-closed in H. If ui − uj ∈ Lµ
P(H), then Vi ∪ Vj is (β′, t)-closed in

H.

The following absorbing lemma from [10, Lemma 3.5] will be applied to prove Lemma 2.3. Let
H be a k-graph and let i ∈ kN. For a k-vertex set S, we say a vertex set T is an absorbing i-set
for S if |T | = i and both H[T ] and H[T ∪ S] contain perfect matchings.

Lemma 3.3 ([10, Lemma 3.5]). Suppose r ≤ k and

1/n ≪ α ≪ µ, β ≪ 1/k, 1/t.

Suppose that P0 = {V0, V1, . . . , Vr} is a partition of V (H) such that for i ∈ [r], Vi is (β, t)-closed.
Then there is a family Fabs of disjoint tk2-sets with size at most βn such that H[V (Fabs)] contains
a perfect matching and every k-vertex set S with iP0

(S) ∈ IµP0
(H) has at least αn absorbing tk2-sets

in Fabs.

Let us give the following simple and useful proposition for considering d-degree together with
d′-degree for some d 6= d′.

Proposition 3.4. Let 0 ≤ d′ ≤ d ≤ k − 1 and H be a k-graph on n vertices. If δd(H) ≥ c
(n−d
k−d

)

for some 0 ≤ c ≤ 1, then δd′(H) ≥ c
(n−d′

k−d′

)

.

This proposition is straightforward since δd′(H) ≥
(

n−d′

d−d′

)

δd(H)/
(

k−d′

d−d′

)

.
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3.2. Proof of Lemma 2.3. We now finish the proof of Lemma 2.3, which we restate below for
convenience.

Lemma 2.3. For min{3, k/2} ≤ d < ⌈2k/3⌉ and γ > 0, suppose 0 < 1/n ≪ α ≪ γ, 1/k. Let H

be an n-vertex k-graph with δd(H) ≥ (1/4 + γ)
(

n−d
k−d

)

. Then there exists a matching M in H of size

|M | ≤ γn/k such that for any subset R ⊆ V (H) \ V (M) with |R| ≤ α2n, H[R ∪ V (M)] contains a

matching covering all but at most k + 1 vertices.

One of the key steps in the proof of Lemma 2.3 is the following proposition. We postpone its
proof to the end of this section.

Proposition 3.5. Given min{3, k/2} ≤ d < ⌈2k/3⌉, suppose 0 < 1/n ≪ µ ≪ ε ≪ γ. Let H

be an n-vertex k-graph with δd(H) ≥ (1/4 + γ)
(

n−d
k−d

)

, and let P = {V0, V1, . . . , Vr} be a partition

of V (H) with r ≤ 3 such that |V0| ≤
√
εn and for each i ∈ [r], |Vi| ≥ ε2n, and Lµ

P(H) contains

no transferral. Then for every U ⊆ V (H) \ V0 with |U | = k + 2, there exist i, j ∈ [r] such that

iP(U)− ui − uj ∈ Lµ
P(H).

Now we are ready to prove Lemma 2.3. Here is a brief outline of the proof. We apply Lemma 3.1
to H and obtain a partition P of V (H) such that each part is closed and not too small. We then
merge two parts Vi and Vj if the transferral ui − uj ∈ Lµ

P(H). So we obtain a transferral-free
partition P0 = {V0, V1, . . . , Vr′}, where r′ ≤ 3. Lemma 3.3 implies the existence of a family Fabs

of disjoint absorbing tk2-sets, which can be used to absorb a small collection of k-sets each with
index vector in Lµ

P0
(H). The key point is that as long as there are at least k+2 vertices uncovered,

Proposition 3.5 implies that we can “absorb” k vertices, and our (quantitative) choice of the family
Fabs allows us to proceed the absorption to reduce the number of uncovered vertices in a greedy
manner. The absorption terminates when there are at most k + 1 vertices left uncovered.

Proof of Lemma 2.3. Fix γ > 0 and let C := C(k, Ir2k). We define additional constants such that

0 < 1/n ≪ α ≪ β′ ≪ β, µ ≪ ε ≪ γ, 1/k, 1/t, 1/C.

Let H = (V,E) be a k-graph with δd(H) ≥ (1/4 + γ)
(n−d
k−d

)

. Note that we have δ1(H) ≥ (1/4 +

γ)
(n−1
k−1

)

by Proposition 3.4. We first apply Lemma 3.1 on H with δ = 1/4 + γ/2. Then we get a

partition P = {V0, V
′
1 , . . . , V

′
r′} with r′ ≤ 3 such that |V0| ≤

√
εn and for any i ∈ [r′], |V ′

i | ≥ ε2n
and V ′

i is (β, 4)-closed in H. If ui−uj ∈ Lµ
P(H) for some i, j ∈ [r′], i 6= j, then we merge V ′

i and V ′
j

to one part, and by Lemma 3.2, V ′
i ∪ V ′

j is (β′′, t′)-closed for some β′′ > 0 and t′ ≥ 4. We greedily

merge the parts until there is no transferral in the µ-robust edge-lattice. Let P0 = {V0, V1, . . . , Vr}
be the resulting partition for some 1 ≤ r ≤ 3. Note that we may apply Lemma 3.2 at most twice,
and we see that Vi is (β′, t)-closed for each i ∈ [r] by the choice of β′. We apply Lemma 3.3 on
H and get a family Fabs of disjoint tk2-sets, and we conclude that |V (Fabs)| ≤ tk2β′n, H[V (Fabs)]
contains a perfect matching M1, and every k-vertex set S with iP0

(S) ∈ IµP0
(H) has at least αn

absorbing tk2-set in Fabs.
Let V ′ = V \ V (Fabs) and H ′ = H[V ′]. Now we find a matching M2 in H ′ as follows. For each

v ∈ IµP0
(H), we greedily pick a matching Mv of size Cα2n such that iP0

(e) = v for every e ∈ Mv.

Then let M2 be the union of Mv for all v ∈ IµP0
(H), and we have V0 ∩ V (M2) = ∅. It is possible

to pick M2 because there are at least µnk edges e with iP0
(e) = v ∈ IµP0

(H). To be more precise,

since |IµP0
(H)| ≤

(

k+r−1
r−1

)

≤
(

k+2
2

)

and α ≪ β′ ≪ µ ≪ 1/t, 1/C, we obtain

|V (M2) ∪ V (Fabs)| ≤ k|IµP0
(H)|Cα2n+ tk2β′n < µn,

which yields that the number of edges intersecting these vertices is less than µnk, as required.
Next we build a matching M3 to cover all vertices in V0 \ V (Fabs). Note that |M3| ≤ |V0| ≤√
εn. Specifically, when we greedily match a vertex v ∈ V0 \ V (Fabs), we need to avoid at most
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k|M3|+ |V (M2)∪V (Fabs)| ≤ k
√
εn+µn ≤ 2k

√
εn vertices, and thus at most 2k

√
εnk−1 (k−1)-sets.

Since δ1(H) > γ
(n−1
k−1

)

> 2k
√
εnk−1, we can always find a desired edge containing v and put it to

M3 as needed.
Let M = M1 ∪ M2 ∪ M3. It is easy to see that M is a matching because M1,M2 and M3 are

pairwise vertex disjoint. Now we prove that M is the desired matching satisfying the conclusion
of Lemma 2.3. Note that |M | ≤ |M3| + |V (M2) ∪ V (Fabs)|/k ≤ 2

√
εn ≤ γn/k since ε ≪ γ, 1/k.

Consider any subset R ⊆ V \ V (M) with |R| ≤ α2n. Fix any set U ⊆ R of k + 2 vertices, there
exist i, j ∈ [r] such that iP0

(U) − ui − uj ∈ Lµ
P0
(H) by Proposition 3.5. Note that this does not

guarantee that we can delete one vertex u from U ∩ Vi and delete another vertex v from U ∩ Vj

such that iP0
(U \ {u, v}) ∈ Lµ

P0
(H), because it is possible that U ∩ Vi = ∅ or U ∩ Vj = ∅ for the

i, j returned by the proposition. By d ≥ 2 and the degree condition, there is a vector v ∈ IµP0
(H)

such that vVi
≥ 1 and vVj

≥ 1. Notice that M2 contains Cα2n edges with index vector v. Fix
one such edge e ∈ Ev and two vertices v1 ∈ e ∩ Vi, v2 ∈ e ∩ Vj. We delete e from M2 and let
U ′ = U ∪ (e \ {v1, v2}). Clearly, iP0

(U ′) ∈ Lµ
P0
(H) and |U ′| = 2k. Hence, by the definition of

Lµ
P0
(H), there exist nonnegative integers bv, cv for all v ∈ IµP0

(H) such that

iP0
(U ′) =

∑

v∈Iµ
P0

(H)

bvv −
∑

v∈Iµ
P0

(H)

cvv,

which implies that

iP0
(U ′) +

∑

v∈Iµ
P0

(H)

cvv =
∑

v∈Iµ
P0

(H)

bvv.

We have that bv, cv ≤ C from the definition of C. For each v ∈ IµP0
(H), we pick cv edges in M2

with index vector v. By the equation above, the union of these edges and U ′ can be partitioned
as a collection of k-sets, which contains exactly bv k-sets F with iP0

(F ) = v for each v ∈ IµP0
(H).

We repeat the process at most α2n/k times until there are at most k + 1 vertices left. Note that
for each v ∈ IµP0

(H), our algorithm consumes at most (1 + C)α2n/k < Cα2n edges from M2 with
index vector v, which is possible by the definition of M2. Furthermore, after the process, we obtain

at most
(

2 +C|IµP0
(H)|

)

α2n/k ≤
(

2 + C
(k+2

2

)

)

α2n/k < αn k-sets S with iP0
(S) ∈ IµP0

(H) since

α ≪ 1/k, 1/C. By the absorbing property of Fabs, we can greedily absorb them by Fabs and get a
matching M4. Thus, H[R∪V (M)] contains a matching covering all but at most k+1 vertices. �

3.3. The transferral-free lattices. In this subsection we prove Proposition 3.5. We study the
lattice structure Lµ

P(H) when it contains no transferral.
Fix 1 ≤ p ≤ k − 1 and any p-vector v, we define its neighborhood to be N(v) := {v′ : v + v′ ∈

Lµ
P(H)}. Note that the vectors in N(v) may contain negative coordinates. Moreover, assuming

r = 2, we claim that N(v) ∩ I2k−p 6= ∅ for any 1 ≤ p ≤ d and any p-vector v = (i, p − i). Indeed,

otherwise, let v be a p-vector such that N(v)∩ I2k−p = ∅. This implies that the number of edges in

H[V \ V0] with index vector i such that i − v ∈ I2k−p is at most |I2k−p|µnk ≤ 2k−pµnk. Let Av be

the set of all p-sets S with iP(S) = v, and thus |Av| =
(|V1|

i

)(|V2|
p−i

)

≥
(ε2n

p

)

. By averaging, there is a

p-set S ∈ Av such that

degH(S) ≤ |I2k−p|µnk/|Av|+ |V0|nk−p−1 ≤ 2k−pµnk/

(

ε2n

p

)

+
√
εnk−p < γ

(

n− p

k − p

)

by µ ≪ ε ≪ γ. Since p ≤ d and by Proposition 3.4, this contradicts that δd(H) ≥ (1/4 + γ)
(n−d
k−d

)

.

Note that a similar argument works for r = 3; namely, for any p-vector v = (i, i′, p − i − i′) with
1 ≤ p ≤ d, N(v) ∩ I3k−p 6= ∅.
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Claim 3.6. Given min{3, k/2} ≤ d < ⌈2k/3⌉, suppose 0 < µ ≪ ε ≪ γ. Let H and P be as

defined in Proposition 3.5. If r = 2, then (2,−2) ∈ Lµ
P(H) or (3,−3) ∈ Lµ

P(H). If r = 3, then
(−2, 1, 1), (1,−2, 1), (1, 1,−2) ∈ Lµ

P(H).

Proof. Our proof is adapted from the proof of [10, Claim 3.7]. First assume that r = 2. Fix
(a0, b0) ∈ IµP(H). For the sake of a contradiction, assume that (2,−2), (3,−3) /∈ Lµ

P(H). Let L0 be
the sublattice (subgroup) of Lµ

P(H) such that (a, b) ∈ L0 if a+b = 0, and let Lk−d = {(a, b) : a+b =
k − d}. Let t be the smallest positive integer such that (t,−t) ∈ L0, then it is easy to see that L0

is generated by (t,−t). By our assumption, (1,−1), (2,−2), (3,−3) /∈ Lµ
P(H), and thus t ≥ 4. Let

t0 = min{t, k − d + 1}. It is easy to see that L0 partitions Lk−d into t0 cosets C0, C1, . . . , Ct0−1

such that Ci = (k − d− i, i) +L0
2 for all 0 ≤ i ≤ t0 − 1. For any 0 ≤ j ≤ d and vj := (d− j, j), by

a0 + b0 = k, we have

N(vj) = (a0, b0)− (d− j, j) + L0 = (k − d− (b0 − j), b0 − j) + L0.

This means that N(vj) = Cij , where ij ≡ b0 − j mod t0. We consider the following two cases
depending on the value of d.

Case 1. d ≥ 3. Since (1,−1), (2,−2), (3,−3) /∈ Lµ
P(H), we claim that N(v0), . . . , N(v3) are

pairwise disjoint. Indeed, if N(v0)∩N(v3) 6= ∅, say i ∈ N(v0)∩N(v3), then we have i+v0, i+v3 ∈
Lµ
P(H) and thus (3,−3) = v0 − v3 ∈ Lµ

P(H), a contradiction. Other cases can be dealt with
similarly. Note that for any 0 ≤ j ≤ d and vj := (d − j, j), we have N(vj) = Cij , where
ij ≡ b0 − j mod t0. So we have t0 ≥ 4. For j = 0, . . . , 3, consider the following sums

∑

(k−d−ij ,ij)∈Cij
, 0≤ij≤k−d

( |V1|
k − d− ij

)(|V2|
ij

)

,

and note that their sum is at most
(n−|V0|

k−d

)

. By the pigeonhole principle, there exists j′ such that

the j′-th sum is at most 1
4

(n−|V0|
k−d

)

. This implies that

δd(H) ≤ 1

4

(

n− |V0|
k − d

)

+ |I2k−d|µnk/

(

ε2n

d

)

+ |V0|nk−d−1 < (1/4 + γ)

(

n− d

k − d

)

by µ ≪ ε ≪ γ, a contradiction.

Case 2. d = 2. In this case we have k = 4 by min{3, k/2} ≤ d < ⌈2k/3⌉. Then k − d = 2,
t0 = 3, and for i = 0, 1, 2, Ci ∩ I22 = {(2 − i, i)}. Since (1,−1), (2,−2) /∈ Lµ

P(H), we know that for
j = 0, 1, 2, N(vj) ∩ I22 = Cij ∩ I22 = {(2 − ij , ij)} are pairwise distinct. So {N(vj) ∩ I22}j=0,1,2 =
{{(2, 0)}, {(1, 1)}, {(0, 2)}}. Note that

min

{(|V1|
2

)

, |V1||V2|,
(|V2|

2

)}

≤ max
x∈(0,1)

min

{(

xn

2

)

, xn(1− x)n,

(

(1− x)n

2

)}

≤ max
x∈(0,1)

(

min
{

x2, 2x(1− x), (1 − x)2
}

+ γ/4
)

(

n− 2

2

)

= (1/4 + γ/4)

(

n− 2

2

)

since n is large enough. By averaging, we get that

δ2(H) ≤ (1/4 + γ/4)

(

n− 2

2

)

+ 22µn4/

(

ε2n

2

)

+ |V0|n < (1/4 + γ)

(

n− 2

2

)

by µ ≪ ε ≪ γ, a contradiction.

2As usual, for a subgroup H of a group G and an element x of G, x + H denotes a coset of H .
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Second assume that r = 3. Indeed, in this case, by min{3, k/2} ≤ d < ⌈2k/3⌉ and Proposition

3.4, we have δ2(H) ≥ (1/4 + γ)
(n−2
k−2

)

. Consider the set of 2-vectors

I32 = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
Note that N((1, 1, 0)), N((1, 0, 1)), and N((0, 1, 1)) are pairwise disjoint because Lµ

P(H) contains no
transferral. Similarly, N((2, 0, 0)) ∩N((1, 1, 0)) = ∅ and N((2, 0, 0)) ∩N((1, 0, 1)) = ∅ (and similar
equations hold for other vectors). Moreover, recall that N(v) ∩ I3k−2 6= ∅ for all v ∈ I32 . Thus, I

3
k−2

are partitioned into classes C ′
1, · · · , C ′

m form ≥ 3 where each class has the form N(v)∩I3k−2 for some

(not necessarily unique) v ∈ I32 . If m ≥ 4, then consider the sums
∑

(j1,j2,j3)∈C′
i

(

|V1|
j1

)(

|V2|
j2

)(

|V3|
j3

)

for i = 1, . . . ,m and note that their sum is at most
(n−|V0|

k−2

)

. Similar to the previous cases, by
averaging, we have

δ2(H) ≤ 1

m

(

n− |V0|
k − 2

)

+ |I3k−2|µnk/

(

ǫ2n

2

)

+ |V0|nk−3 < (1/4 + γ)

(

n− 2

k − 2

)

by µ ≪ ǫ ≪ γ, a contradiction. Otherwise, m = 3. Since N((1, 1, 0)), N((1, 0, 1)) and N((0, 1, 1))
must be in different classes, we know that

N((1, 1, 0)) = N((0, 0, 2)), N((1, 0, 1)) = N((0, 2, 0)), and N((0, 1, 1)) = N((2, 0, 0)),

which implies that (−2, 1, 1), (1,−2, 1), (1, 1,−2) ∈ Lµ
P(H). �

Proof of Proposition 3.5. Given such a k-graph H and a partition P, the conclusion is trivial for
r = 1. So we may assume that r ∈ {2, 3}. Applying Claim 3.6, we conclude that (2,−2) or
(3,−3) ∈ Lµ

P(H) (for r = 2), or (−2, 1, 1), (1,−2, 1), (1, 1,−2) ∈ Lµ
P(H) (for r = 3).

If r = 2, then fix any U ⊆ V (H)\V0 with iP(U) = (a, k+2−a) for some 0 ≤ a ≤ k+2 and pick any
(a0, b0) ∈ IµP(H). We distinguish two cases. First we assume that (2,−2) ∈ Lµ

P(H), then we have
(a0 +2i, b0 − 2i) ∈ Lµ

P(H) for any integer i. Our goal is to show that there exist i, j ∈ [2] such that
iP(U)−ui−uj ∈ Lµ

P(H). It suffices to prove that (a−1, k+1−a) ∈ Lµ
P(H) or (a, k−a) ∈ Lµ

P(H).
Note that a− 1 and a have different parities, so exactly one of (a − 1, k + 1− a) and (a, k − a) is
in Lµ

P(H). Second we assume that (3,−3) ∈ Lµ
P(H), then we have (a0 + 3i, b0 − 3i) ∈ Lµ

P(H) for
any integer i. Our goal is to show that there exist i, j ∈ [2] such that iP(U) − ui − uj ∈ Lµ

P(H).
It suffices to prove that (a− 2, k + 2− a), (a− 1, k + 1− a), or (a, k − a) is in Lµ

P(H). Note that
exactly one of the three consecutive integers a − 2, a − 1, and a is congruent with a0 modulo 3.
Thus, exactly one of (a− 2, k + 2− a), (a− 1, k + 1− a), and (a, k − a) is in Lµ

P(H).
Next we assume r = 3 and fix any U ⊆ V (H)\V0 with iP(U) = (x1, x2, x3) for some nonnegative

integers x1 + x2 + x3 = k + 2. Pick any (y1, y2, y3) ∈ IµP(H) and let zj = xj − yj for j ∈ [3]. Note
that exactly one of the three consecutive integers z2 − z1, z2 − z1 +1, and z2− z1 +2 is divisible by
3. Let i, j ∈ {1, 3} such that v := (z′1, z

′
2, z

′
3) = (z1, z2, z3)−ui−uj satisfies that z

′
2 − z′1 is divisible

by 3. Let m′ = (z′2 − z′1)/3 and m = m′ − z′2. Note that z′1 + z′2 + z′3 = 0; then it is easy to see that

iP(U)− ui − uj − (y1, y2, y3) = v = m′(−2, 1, 1) −m(1, 1,−2) ∈ Lµ
P(H).

Thus, iP(U)− ui − uj ∈ Lµ
P(H), and the proof is complete. �

4. Proof of Lemma 2.4

We start with the following definition. Given a set S of 2k − d vertices, an edge e ∈ E(H) that
is disjoint from S is called S-absorbing if there are two disjoint edges e1 and e2 in E(H) such that
|e1 ∩S| = k−⌊d/2⌋, |e1 ∩ e| = ⌊d/2⌋, |e2∩S| = k−⌈d/2⌉, and |e2 ∩ e| = ⌈d/2⌉ (see Figure 2). Note
that this is not the absorbing structure in the usual sense because e1 ∪ e2 misses k − d vertices of
S ∪ e. Let us explain how such absorbing structure works. Consider a matching M and a (2k− d)-
set S, V (M) ∩ S = ∅. If M contains an S-absorbing edge e, then one can “absorb” S into M by
swapping e for e1 and e2 (k − d vertices of e become uncovered).
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S

e

e1 e2

k − ⌊d/2⌋

⌊d/2⌋

k − ⌈d/2⌉

⌈d/2⌉ · · ·
k − d

Figure 2. An S-absorbing edge e.

Below we restate and prove Lemma 2.4.

Lemma 2.4. For ⌈2k/3⌉ ≤ d ≤ k − 1 and γ′ > 0, suppose 0 < 1/n ≪ β ≪ γ′, 1/k. Let H be an

n-vertex k-graph with δd(H) ≥ γ′nk−d, then there exists a matching M ′ in H of size |M ′| ≤ βn/k
and such that for any subset R ⊆ V (H)\V (M ′) with |R| ≤ β2n, H[V (M ′)∪R] contains a matching

covering all but at most 2k − d− 1 vertices.

The proof of Lemma 2.4 follows an idea of Rödl, Ruciński, and Szemerédi [29, Fact 2.2, Fact
2.3], which was used for the case d = k − 1.

Proof of Lemma 2.4. Let k, d, γ′ be given and let β be a constant such that β ≤ β0 = (γ′)3/(12(k+
1)!). Denote ℓ1 := ⌊d/2⌋ and ℓ2 := ⌈d/2⌉, then ℓ1 + ℓ2 = d. Let H be an n-vertex k-graph with
δd(H) ≥ γ′nk−d. Note that we have δk−ℓ1(H) ≥ γ′nℓ1 and δk−ℓ2(H) ≥ γ′nℓ2 from Proposition 3.4
and by k − ℓ2 ≤ k − ℓ1 ≤ d.

We first show that there are many S-absorbing edges in H for any (2k − d)-set of vertices S.

Claim 4.1. For every S = {u1, . . . , u2k−d} ∈
(V (H)
2k−d

)

, there are at least 1
2(γ

′)3nk/k! S-absorbing
edges.

Proof. Fix k − ℓ1 vertices u1, . . . , uk−ℓ1 in S and let e1, e2 be as in the definition of S-absorbing
edges. Let us count only those S-absorbing edges e for which the corresponding edge e1 con-
tains u1, . . . , uk−ℓ1 . We count the ordered k-tuples of distinct vertices (v1, . . . , vk) such that
e = {v1, . . . , vk} is disjoint from S, e2 ∩ e = {vℓ1+1, . . . , vd}, and e1 = {u1, . . . , uk−ℓ1 , v1, . . . , vℓ1},
and divide the result by k!.

Note that {v1, . . . , vℓ1} must be a neighbor of an already fix (k − ℓ1)-tuple of vertices, so there
are at least δk−ℓ1(H) − 2knℓ1−1 choices for the ℓ1-tuple. Recall that ℓ2 = d − ℓ1. Having se-
lected v1, . . . , vℓ1 , {vℓ1+1, . . . , vd} must be a neighbor of an already fixed (k − ℓ2)-tuple of ver-
tices, so there are at least δk−ℓ2(H) − 2knℓ2−1 choices for the ℓ2-tuple. Having selected v1, . . . , vd,
{vd+1, . . . , vk} must be a neighbor of an already fixed d-tuple of vertices, so there are at least
δd(H)−2knk−d−1 choices for the (k−d)-tuple. Altogether since n is large enough, there are at least
(

δk−ℓ1(H)− 2knℓ1−1
) (

δk−ℓ2(H)− 2knℓ2−1
) (

δd(H)− 2knk−d−1
)

≥ 1
2 (γ

′)3nℓ1+ℓ2+k−d = 1
2(γ

′)3nk

choices of the desired ordered k-tuples. So there are at least 1
2(γ

′)3nk/k! S-absorbing edges in
H. �

Now we pick the absorbing matching M ′. Select a random subset M of E(H), where each edge
is chosen independently with probability p = βn1−k/(k + 1). Then, the expected size of M is at
most

(

n
k

)

p < βn/(k + 1)!, and the expected number of intersecting pairs of edges in M is at most

n2k−1p2 < β2n. Hence, by Markov’s inequality (see, e.g., [13, inequality (1.3)]), with probability
at least 1 − 1/2 − 1/k!, |M | ≤ βn/k and M contains at most 2β2n intersecting pairs of edges.
Moreover, for every (2k − d)-set of vertices S, let XS be the number of S-absorbing edges in M .
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Then we have

E(XS) ≥ p · 1
2
(γ′)3nk/k! =

β(γ′)3n

2(k + 1)!
.

By Chernoff’s bound (see, e.g., [13, Theorem 2.1]), with probability 1 − o(1), we have that XS ≥
1
2E(XS) ≥ β(γ′)3n

4(k+1)! for all (2k − d)-sets S in H.

Thus, there is an M ⊆ E(H) satisfying all the properties above. We delete one edge from
each intersecting pairs of edges and denote the resulting subset by M ′, which is a matching. So

|M ′| ≤ βn/k, and for every (2k − d)-set of vertices S, M ′ contains at least β(γ′)3n
4(k+1)! − 2β2n ≥ β2n

S-absorbing edges by the definition of β.
It remains to show that, for any R ⊆ V (H) \ V (M ′) with |R| ≤ β2n, H[V (M ′) ∪ R] contains a

matching covering all but at most 2k − d− 1 vertices. Fix R ⊆ V (H) \ V (M ′) with |R| ≤ β2n and
any (2k−d)-tuple S of R, then there are at least β2n S-absorbing edges in M ′. Take an S-absorbing
edge e, we replace M ′ by M ′

S := (M ′\{e})∪{e1, e2}, decreasing the number of uncovered vertices of
R by k. Since we have at most β2n/k iterations, there will always be an S-absorbing edge available
in M ′. In the end, we have at most 2k − d− 1 vertices left uncovered in H[V (M ′)∪R] and we are
done. �
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[15] M. Karpiński, A. Ruciński, and E. Szymańska. Computational complexity of the perfect matching problem in

hypergraphs with subcritical density. Internat. J. Found. Comput. Sci. 21(6):905–924, 2010.
[16] P. Keevash and R. Mycroft. A geometric theory for hypergraph matching. Mem. Amer. Math. Soc. 233(Mono-

graph 1908), 2014.
[17] I. Khan. Perfect matchings in 3-uniform hypergraphs with large vertex degree. SIAM J. Discrete Math.

27(2):1021–1039, 2013.
[18] I. Khan. Perfect matchings in 4-uniform hypergraphs. J. Combin. Theory Ser. B. 116:333–366, 2016.
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