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Abstract

We introduce a notion of the crux of a graph G, measuring the order of a smallest dense
subgraph in G. This simple-looking notion leads to some generalisations of known results
about cycles, offering an interesting paradigm of ‘replacing average degree by crux’. In
particular, we prove that every graph contains a cycle of length linear in its crux.

Long proved that every subgraph of a hypercube Qm (resp. discrete torus Cm
3 ) with

average degree d contains a path of length 2d/2 (resp. 2d/4), and conjectured that there
should be a path of length 2d− 1 (resp. 3d/2 − 1). As a corollary of our result, together with
isoperimetric inequalities, we close these exponential gaps giving asymptotically optimal
bounds on long paths in hypercubes, discrete tori, and more generally Hamming graphs.

We also consider random subgraphs of C4-free graphs and hypercubes, proving near
optimal lower bounds on the lengths of long cycles.

1 Introduction

The study on the existence of long cycles in graphs has a rich history. A celebrated result of
Dirac [8] states that every graph G on n ≥ 3 vertices with minimum degree δ(G) ≥ n/2 contains
a Hamiltonian cycle. However, any graph satisfying Dirac’s condition is dense, having Θ(n2)
edges. A natural line of work is to consider how long a cycle we can ensure in a well-connected
sparse graph.

1.1 Motivations

A folklore result on cycles is that any cyclic graph G contains a cycle of length linear in its
average degree, i.e. Ω(d(G)). Indeed, remove low-degree vertices to obtain a subgraph H with
δ(H) ≥ d(G)/2 and then greedily extend a path to find a cycle in H of length at least δ(H)+ 1.
This linear in average degree lower bound is the best we could hope for, as the graph G might be
a disjoint union of cliques. It seems intuitive that better bounds can be obtained if we step away
from such examples. This motivates the following notion of the crux of a graph; it measures the
order of the smallest subgraph of G which retains a positive fraction of the average degree of G.
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Definition 1.1 (Crux). For a constant α ∈ (0, 1), a subgraph H ⊆ G is an α-crux if d(H) ≥
α · d(G). Define the α-crux function, cα(G), of G to be the order of a minimum α-crux in G,
that is,

cα(G) = min{|H| : H ⊆ G and d(H) ≥ α · d(G)}.

Note that trivially we have cα(G) > α · d(G), cα(G) ≥ cα′(G) for α ≥ α′, and that if H ⊆ G
with d(H) ≥ d(G)/2 then c2α(H) ≥ cα(G).

In this paper, we investigate the following ‘replacing average degree by crux’ heuristic.

Question A. Suppose we have a result guaranteeing the existence of a certain substructure
whose size is a function of d(G) (or δ(G)). Under what circumstances can we replace d(G) (or
δ(G)) with cα(G)?

Positive instances for the above question would lead to improvements on embedding problems
for graph classes whose crux size is much larger than their average degree.

Example B. There are many natural classes of graphs having cα(G) much larger than d(G).
Some specific classes are graphs with geometric structure, such as hypercubes Qm and Hamming
graphs H(m, r), which are Cartesian products of m complete graphs Kr:

cα(Q
m) ≥ 2αm, cα(H(m, r)) ≥ rαm; 1 (1)

Ks,t-free graphs G with s, t ≥ 2, which satisfy cα(G) ≥ (αd(G))s/(s−1)

2t (since, by a result of Kővári,

Sós and Turán [25], we have 2t|H| ≥ (d(H))s/(s−1) for every Ks,t-free graph H with s, t ≥ 2);
and blow-ups of r-regular expander graphs for a constant r.

Let us first see an example of a positive answer to Question A.

Example C. A classical result of Komlós and Szemerédi [24] and of Bollobás and Thomason [6]
says that every graph G contains a topological clique of order Ω(

√

d(G)). This result is tight by
the example of disjoint union of complete bipartite graphs. However, in upcoming work [19], it is
proved that every graph G contains a topological clique of order Ω(

√

cα(G)/(log cα(G))
1/2+o(1)).

Since cα(G) = Ω(d(G)2) when G is a C4-free graph, this implies Mader’s conjecture that C4-free
graphs contains topological cliques of order linear in its average degree, up to polylogarithmic
factors [38]. (Actually, Liu and Montgomery [34] have demonstrated that Mader’s conjecture is
true using different tools.)

From this example, we suspect that the following can be a possible philosophical answer
to Question A: replacement is possible when when ‘spatial constraints’ (not having enough
vertices) rather than ‘degree constraints’ (not having a vertex of sufficiently large degree) are
the main obstruction to finding the desired substructure. So, for instance, crux is helpful for
finding subdivisions of long cycles or large complete graphs but not of wheels. Indeed, when
finding cycles or clique subdivisions, the average degree d(G) may act as a ‘spatial constraint’.
In other words, the extremal examples in these cases are either disjoint union of cliques Kd

or complete bipartite graphs Kd,d, hence there is not enough ‘space’ to find Cω(d) or Kω(
√
d)-

subdivision. However, a larger value of cα(G) lifts up this ‘spatial constraint’ so we can improve
the result (see Theorem 1.2 and Example C). On the other hand, if d(G) acts as a strong
‘degree constraint’, then this improvement might not be possible. For an example, let Wt be a
wheel, which is obtained from a cycle Ct by adding a new vertex adjacent to all other vertices.
Indeed, using the fact that we can always find a subgraph of connectivity linear in d(G) and
Menger’s theorem, one can always find a WΩ(d)-subdivision in a graph with average degree d.
However, in this problem, as the graph G could be almost regular, imposing a large crux size

1See Propositions 2.5 and 2.7.
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on G does not help us to find a subdivision of Wω(d). This is because d(G) acts as an essential
degree constraint rather than a spatial constraint. In this spirit, cycles are perfect examples
to investigate Question A, because ‘spatial constraints’ are much more important than ‘degree
constraints’ in finding cycles as every vertex in a cycle has degree only two.

Let us consider another motivating question regarding cycles in expanders, i.e. graphs in
which vertex subsets expand to large neighbourhoods. Originally introduced for network design,
expanders, apart from being a central notion in graph theory, also have close interplay with other
areas of mathematics and theoretical computer science, see e.g. the comprehensive survey of
Hoory, Linial and Wigderson [18]. The type of expanders hitherto studied usually have constant
expansion, i.e. are linear expanders. We consider here instead expanders with sublinear expan-
sion, introduced by Komlós and Szemerédi in the 90s [23, 24]. We defer the formal definition of
sublinear expanders to Section 2.2. This notion of sublinear expanders has proved to be a power-
ful tool for embedding sparse graphs, playing an essential role in the recent resolutions of several
long-standing conjectures that were previously out of reach, see e.g. [12, 16, 19, 21, 34, 35, 37].
It would therefore be useful to study these sublinear expanders.

Cycle lengths in linear expanders have been well studied, see e.g. [13, 28]. In particular,
Krivelevich [28] proved that every linear expander contains a cycle of length linear in its order.
What about sublinear expanders? Note that we cannot necessarily find a linear-sized cycle,
unlike the linear expander case, as the following example shows.

Example D. The imbalanced complete bipartite graph Kn, n
log2 n

is a sublinear expander, but

any cycle must take half its vertices from the smaller part, and consequently has length sublinear
in the total number of vertices.

However, in the case of Kn, n
log2 n

we can instead consider a subexpander H = Kn′,n′ , where

n′ = n
log2 n

, which has average degree about half of Kn, n
log2 n

. Now this subexpander H does have

a cycle of length linear in the order of H. Does such a phenomenon always occur? That is, is
it true that if we cannot find a linear-sized cycle in a sublinear expander G, then we can find
within G a subgraph H, with about the same average degree as G, that has a cycle of length
linear in the order of H? We shall see shortly that this is indeed the case.

1.2 Crux and cycles

Our first result finds a cycle of length linear in the crux size in generic graphs, extending the
aforementioned folklore result of cycles linear in average degree and giving an instance of a
positive answer to Question A.

Theorem 1.2. Let 0 < α < 1. Then every graph G contains a cycle of length at least

1− α

16000
· cα(G),

provided that a single edge is considered to be a cycle of length one.

It is worth mentioning that the above statement for α < 1/2 can be deduced using a variant
of the classical Pósa’s lemma [39] that if sets up to size k expands linearly, then there is a
cycle of length Ω(k). To see this, first pass to a subgraph H with δ(H) ≥ d(G)/2; clearly
|H| ≥ c1/2(G) ≥ cα(G). Then every set X ⊆ V (H) of size O(cα(G)) must expand linearly, for
otherwise H[X ∪NH(X)] has average degree almost d/2 while having smaller order than cα(G),
a contradiction. Such argument, however, cannot push α beyond 1/2 as we cannot guarantee
the minimum degree of a graph to be larger than half of its average degree, see the bipartite
graph in Example D.
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Remark E. The value of Theorem 1.2 is that we can take α = 1−o(1), which is needed to close
the exponential gaps in the applications below, see Corollaries 1.4 and 1.5. The idea to get the
whole range 0 < α < 1 is to pass to an expander subgraph with different expansion threshold t
to have better expansions for large sets.

We have the following corollary on cycles in sublinear expanders. The bipartite graph in
Example D, which is an (ε, t)-expander for any 0 < ε ≤ 1 and t = 15, shows that both terms in
the bound below are best possible up to multiplicative constants.

Corollary 1.3. Let 0 < α < 1, 0 < ε ≤ 1−α
500 , t ≥ 1 and suppose n ≥ 150t. Then every n-vertex

(ε, t)-expander G contains a cycle of length

max
{ ε

32
cα(G) ,

εn

1200 log2 n

}

.

1.3 Application to Long’s conjecture

Long [36, Conjecture 8.9] conjectured that any subgraph of the hypercube Qm that has average
degree d contains a path of length at least 2d − 1. He obtained a weaker bound and showed
that there is a path of length at least 2d/2 − 1, by passing to a subgraph of minimum degree at
least d/2. A similar conjecture for discrete tori Cm3 was made in the same paper. Long proved
that every subgraph of Cm3 that has average degree at least d contains a path of length at least
2d/4−1, and he conjectured [36, Conjecture 8.3] that the correct bound should be 3d/2−1. Both
conjectures, if true, would be best possible by considering sub-hypercubes or sub-torus.

Using Theorem 1.2 and the isoperimetric inequalities (1), we immediately close the above
exponential gaps and settle both conjectures asymptotically. It would be interesting to see if
stability methods can be combined to obtain exact results.

Corollary 1.4. Every subgraph of the hypercube with average degree d contains a cycle of length

2d−o(d).

Proof. Fix arbitrary 0 < ε < 1 and let H ⊆ Qm be a subgraph with d(H) = d. By the definition
of crux and (1), we have c1−ε(H) ≥ c(1−ε) d

m
(Qm) ≥ 2(1−ε)d. Then by Theorem 1.2, H contains

a cycle of length at least ε
160002

(1−ε)d as desired.

The same proof applies also to Hamming graphs. The case r = 3 below covers discrete tori.

Corollary 1.5. Every subgraph of the Hamming graph H(m, r) with average degree d contains

a cycle of length

r
d

r−1
−o(d).

1.4 Random subgraphs of a given graph

Our next instances of positive answers to Question A concern long cycles in random subgraphs
of a given graph. For a given finite graph G and a real p ∈ [0, 1], let Gp be a random subgraph of
G obtained by taking each edge independently with probability p. Analysis of Gp can be used to
demonstrate the robustness of a graph G with respect to a graph property P, see e.g. [30, 31]. If
G is the complete graph Kn, then Gp is simply the Erdős–Rényi binomial random graph G(n, p).
We say an event happens asymptotically almost surely (a.a.s.) or with high probability (w.h.p.)
in G(n, p) if its probability tends to 1 as n→ ∞.

Long paths, cycles and Hamiltonicity in G(n, p) have been intensively studied, see e.g. [1, 3,
4, 5, 14, 22, 26, 33, 39]. In particular, Frieze [14] proved that for large C, w.h.p. G(n,C/n) has
a cycle of length at least (1− (1− oC(1))Ce

−C )n. Krivelevich, Lee and Sudakov [31] extended
these classical results of long paths and cycles in G(n, p) to random subgraphs Gp, where G
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has large minimum degree. For long cycles, they proved that given a graph G with minimum
degree k, if pk → ∞, then w.h.p. Gp contains a cycle of length at least (1 − o(1))k. Riordan
[41] subsequently gave a shorter proof, and Ehard and Joos [9] further improved the error term.
Krivelevich and Samotij [32] later considered graphs without a fixed bipartite subgraph H; in
the case of C4-free G with δ(G) ≥ k, they showed that for p = 1+ε

k , w.h.p. Gp contains a cycle
of length Ωε(k

2). We give a short proof for random subgraphs of C4-free graphs with p = ω( 1k ).
Note that the constant 1 below is best possible, as there are C4-free graphs with minimum degree
k and order (1 + o(1))k2, see the C4-free construction due to Erdős, Rényi and Sós [11].

Theorem 1.6. Suppose that pk → ∞ as k → ∞. Let G be a C4-free graph with minimum

degree k. Then w.h.p. Gp contains a cycle of length at least (1− o(1))k2.

Random subgraphs of the hypercube are also well studied, see e.g. [2, 7, 17]. For hypercubes,
we obtain the following near linear bound. It would be interesting to prove a linear bound.
While this paper was being prepared, Erde, Kang and Krivelevich [10] proved Theorem 1.7 with
a better error term Ω( 2m

m3 log3m
).

Theorem 1.7. Let Qm be the m-dimensional hypercube. If p = 1+ε
m , where ε > 0, then w.h.p.

Qmp contains a cycle of length 2m

4m32 = 2(1−o(1))m.

Organisation. The rest of the paper is organised as follows. Section 2 contains some necessary
tools needed in our proofs. In Section 3, we give the proofs of Theorem 1.2 and Corollary 1.3.
We prove Theorems 1.6 and 1.7 in Section 4. Concluding remarks are given in Section 5.

2 Preliminaries

For a, b ∈ N with a < b, let [a] := {1, . . . , a} and [a, b] := {a, a + 1, . . . , b}. We use the
standard Landau symbols O,Ω,Θ, o, ω to denote the asymptotic behavior of functions. If a
hidden constant depends on some other constant ε, we write Ωε(·). In many cases, we treat
large numbers as if they were integers, by omitting floors and ceilings if it does not affect the
argument. We write log for the natural logarithm.

Given a graph G, denote its order and size by |G| and e(G) respectively, and its average
degree 2e(G)/|G| by d(G). For a vertex subset U ⊆ V (G), write NG(U) := {v ∈ V (G) \ U :
v has a neighbour in U} for its external neighbourhood; write ∂U for the edge boundary of U ,
that is, EG(U, V (G)\U); and write G−U = G[V (G)\U ] for the subgraph induced on V (G)\U .

2.1 Depth First Search

We will need Depth First Search (DFS), which is a graph exploration algorithm that visits all
the vertices of an input graph. It may be summarised as follows. We maintain a searching stack
S (initially empty), a set of unexplored vertices U (initially V (G)), and a set of explored vertices
X (initially empty), as well as a spanning subgraph F , initially empty. At each step, if S is
empty but U is not, remove an arbitrary vertex of U and push it onto S. If the top vertex of
S has a neighbour in U , remove such a neighbour, push it onto S, and add the corresponding
edge to F . If the top vertex of S has no neighbour in U , then pop it from S and add it to X.
Stop when X = V (G).

We will use the following straightforward properties of S, U and X which hold throughout
the process.

• The stack S forms an induced path in G.

• There is no edge of G between U and X.

5



2.2 Sublinear expanders

For ε > 0 and t > 0, let ρ(x) be the function

ρ(x) = ρ(x, ε, t) :=

{

0 if x < t/5,

ε/ log2(15x/t) if x ≥ t/5,
(2)

where, when it is clear from context, we will not write the dependency of ρ(x) on ε and t. Note
that when x ≥ t/2, ρ(x) is decreasing, while ρ(x) · x is increasing.

Definition 2.1 (Sublinear expander). A graph G is an (ε, t)-expander if for any subset X ⊆
V (G) of size t/2 ≤ |X| ≤ |V (G)|/2, we have |NG(X)| ≥ ρ(|X|) · |X|.

Compared with expanders having constant expansion factors, sublinear expanders have a
weaker expansion property, but one key advantage of them is that any graph contains a sublinear
expander subgraph that, furthermore, is almost as dense as the original graph, as shown by
Komlós and Szemerédi [23, 24]. We shall use the following strengthening of their results due to
Haslegrave, Kim and Liu [16].

Lemma 2.2 ([16], Lemma 3.2). Let C > 30, 0 < ε ≤ 1/(10C), t > 0, d > 0 and ρ(x) = ρ(x, ε, t)
as in (2). Then every graph G with d(G) = d has a subgraph H such that H is an (ε, t)-expander,
d(H) ≥ (1− δ)d and δ(H) ≥ d(H)/2, where δ := Cε

log 3 .

The following lemma shows the key property of sublinear expanders that we will utilise. It
roughly says that in a sublinear expander, we can connect two sets X1,X2 using a short path
while avoiding another set W as long as W is a bit smaller than X1,X2. Although in many
applications the bound on the length of such a path will be important, in this paper all we shall
actually need is the existence of a path avoiding a certain set.

Lemma 2.3 (Small diameter lemma [24, Corollary 2.3]). If G is an n-vertex (ε, t)-expander,
then for any two vertex sets X1,X2 each of size at least x ≥ t/2, and a vertex set W of size at

most ρ(x)x/4, there exists a path in G−W between X1 and X2 of length at most 2
ε log

3(15nt ).

2.3 Isoperimetry

To find long cycles in subgraphs of hypercubes and Hamming graphs, we will need the following
isoperimetric result.

Theorem 2.4 ([20, Theorem 1]). Every U ⊆ V (Qm) satisfies |∂U | ≥ |U | · log2(2m/|U |).

The bound on the order of a subgraph of Qm with average degree d in (1) then immediately
follows.

Proposition 2.5. Every subgraph G of Qm with average degree d has at least 2d vertices.

Proof. By Theorem 2.4, |∂V (G)| ≥ |G| · log2(2m/|G|). Since 2|E(G)| + |∂V (G)| = m|G|, we
have |E(G)| = d · |G|/2 ≤ |G| · log2|G|/2. Hence, |G| ≥ 2d.

A similar result for Hamming graphs holds.

Proposition 2.6 ([42, Proposition 2]). Every subgraph G of the Hamming graph H(m, r) has

at most (r − 1)|G| · logr|G|/2 edges.

Consequently, in such a graph d(G) ≤ (r − 1) logr|G|, giving the following corollary.

Proposition 2.7. Every subgraph G of H(m, r) with average degree d has at least r
d

r−1 vertices.
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3 Cycles of length linear in crux

3.1 Proof of Theorem 1.2

Theorem 3.1 ([27, Theorem 1]). Let k > 0, t ≥ 2 be integers. Let G be a graph on more than

k vertices, satisfying:

|NG(W )| ≥ t, for every W ⊆ V (G) with k/2 ≤ |W | ≤ k.

Then G contains a cycle of length at least t+ 1.

Proof of Theorem 1.2. Let δ = 1 − α and take C = 40, ε = δ
500 , so δ >

Cε
log 3 . Write nc = cα(G)

and let H ⊆ G be a subgraph that is an (ε, nc/2)-expander, guaranteed by Lemma 2.2. Then
d(H) ≥ (1− δ)d(G), by the definition of the crux, we have nH := |H| ≥ nc. Set K = nH

nc
≥ 1.

As ρ(x)x is increasing in x and K ≥ 1, by the expansion property of H, every set of size
nH/4 ≤ x ≤ nH/2 has an external neighbourhood of size at least

ρ
(nH

4

)nH
4

=
εnH

4 log2(15nH/4
nc/2

)
=

εKnc

4 log2(15K/2)
≥ ε

32
· nc.

We may assume that ε
32 · nc ≥ 2, for otherwise we can take a single edge as a degenerate

cycle. Then by Theorem 3.1, the graph H, hence also G, contains a cycle of length at least
ε
32nc =

1−α
16000cα(G).

3.2 Proof of Corollary 1.3

A cycle of length ε
32cα(G) follows from the proof of Theorem 1.2. The second term εn/(1200 log2 n)

follows from the expansion property of sublinear expanders and Theorem 3.1, since any set of
size between n/4 and n/2 has a neighbourhood of size at least εn/(4 log2(15n/t)). We give a
direct proof for completeness.

First, as ε < 1/500, the conditions on n imply that n/300 ≥ t/2, that εn/(1200 log2 n) ≤
(n/300) · ρ(n/300)/4, and that εn/(1200 log2 n) ≤ n/300.

Consequently, if there is a path of length n/100, then we are done, because after remov-
ing the middle εn/(1200 log2 n) vertices of the path, there is still a short path avoiding the
middle part connecting the two halves by Lemma 2.3. This gives a cycle containing the middle
εn/(1200 log2 n) vertices of the path. So assume that such a path does not exist.

We run DFS until some point where |X| = n/3. Since the stack S always induces a path in
G, we have |S| < n/100, and so |U | > 0.65n. By Lemma 2.3 and the fact that S is a cut between
X and U , we have |S| > 0.3n · ρ(0.3n)/4 > εn/(1200 log2 n). Let P1 be the path induced by S
at that point and set i = 2. Now continue running DFS. Whenever a new vertex is added to S,
call the new path Pi and increment i. Do this until i = n/3. By the same reasoning throughout
this process we have εn/(1200 log2 n) < |S| < n/100, and in particular the lower bound implies
the first εn/(1200 log2 n) vertices of the path never change. Thus we have a set of n/3 paths
with a long common first section and different endpoints.

Now consider the largest common first section P . This corresponds to the point between P1

and Pn/3 where S is smallest (and equals P ). Fix X and U corresponding to their values at that
point. Again, P is a cut between X and U , both of which have size at least 0.32n. Let P ′ be
the subpath of P consisting of the final εn/(1200 log2 n) vertices, and u be the same endpoint
of P ′ and P . Since |P | = |S| > εn/(1200 log2 n), we have V (P ) \ V (P ′) 6= ∅.

Suppose without loss of generality (if not, exchange X and U) more than half of the paths
P1, . . . , Pn/3 come before this point. This means their endpoints are in X; let Y be the set of
these endpoints, giving |Y | ≥ 0.16n. For any vertex in Y , there is a path to u which lies entirely
in X. Let Z = U ∪V (P )\V (P ′). Then Z has size more than 0.32n > t/2. By Lemma 2.3, there
exists a short path in G − V (P ′) connecting Y and Z. Indeed, as there are no edges between
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U and X, the short path connects Y and V (P ) \ V (P ′). This gives a cycle containing P ′ with
desired length.

4 Random subgraphs

4.1 Long cycles in random subgraphs of C4-free graphs

We prove Theorem 1.6 by adapting Riordan’s proof [41]. Recall that G is an n-vertex C4-free
graph with minimum degree k. Fix 0 < ε < 1/10 and let C = 10/ε. It suffices to show that
w.h.p. Gp contains a cycle of length at least (1− 20ε)k2 when pk = ω(1).

Consider a DFS forest T of Gp, leaving edges unrevealed if they are not needed in the
exploration. To be precise, when checking whether the top vertex v of the stack has a neighbour
in U , we list the remaining edges between v and U (in an arbitrary order) and reveal whether
each in turn is in Gp until either we find such an edge or exhaust the list. If an edge vw is
found, then we add it to the forest, put w on the top of the stack, and repeat. (While the final
forest found is an undirected graph, we also think of edges being associated with an orientation,
so that the edge vw just added is oriented from v to w; taking these orientations into account
makes each component an arborescence.) If the list is exhausted, we remove the vertex v from
the stack and consider the next vertex on top of the stack to repeat. Note that a vertex is
removed from the stack only when no incident edges to U remain (either because they have
been revealed or because vertices have been removed from U).

We consider each component of the obtained forest T to be rooted at the first vertex to be
added to the stack S (that is, the natural root of the associated arborescence), and we consider
the set D(v) of descendants of a vertex v to be the set of vertices w such that the path from w
to the root of its component contains v (note in particular that v ∈ D(v)). Likewise we consider
v to be an ancestor of w if w ∈ D(v). For a non-root vertex v of T , the neighborhood NT (v)
consists of one ancestor of v called the parent of v and possibly some descendants of v called
children of v.

We write n for the order of G and Q ⊆ G for the subgraph consisting of all unrevealed edges.
Throughout the process, each edge in Q is present in Gp independently with probability p; in
particular this means that for any given set of εk edges of Q, w.h.p. at least one is present since
εkp→ ∞.

We frequently use the following property which results from the use of DFS: every edge of
Q joins two vertices in T one of which is an ancestor of the other (and in particular, joins two
vertices in the same component of T ). To see this, let vw be an edge of Q, and suppose without
loss of generality that v was added to the stack first. If w was added to the stack before u was
removed, then v is an ancestor of w, since the vertices on the stack always form a path in T
(which respects orientations). If not, then w must have remained in U until v was removed from
the stack; however, this is impossible since the edge vw was not revealed, and v cannot have left
the stack while an unrevealed edge between v and U existed. (See [41, Lemma 2].)

Note that we are done provided there is a set R ⊆ V (T ) satisfying the following:
∑

v∈R

∣

∣{u : uv ∈ Q, (1− 20ε)k2 ≤ dT (u, v) <∞}
∣

∣ ≥ εk, (3)

where dT (u, v) is the distance in T , since then w.h.p. at least one of these εk edges is present,
say uv, and creates a cycle of length at least (1− 20ε)k2 together with the path in T from u to
v. Thus we assume from now on that (3) is not true for any set R.

The property described above means that uv ∈ Q with u ∈ V (T ) already implies dT (u, v) <
∞, and that the distance requirement in (3) only rules out some descendants and ancestors of
u that are too close. Note also that every ancestor of u has a different distance to u.

A vertex is full if it has at least (1 − ε)k incident edges in Q, meaning that most of the
edges incident with v were never explored. As the forest T has at most n − 1 edges, standard
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concentration inequalities show that w.h.p. at most 2n/p = o(kn) edges are revealed in the
whole process; and so w.h.p. all but o(n) vertices are full. We may therefore assume in what
follows that all but o(n) vertices are full.

Claim 4.1. For any set A of Ck full vertices, we have |NQ(A)| ≥ (1− 4ε)k2.

Proof. Consider the bipartite graph H = Q[A,B] consisting of the unrevealed edges between A
and B where B = NQ(A). Note that G[A] is a C4-free graph with Ck vertices, hence by standard
bounds on ex(Ck,C4), e.g. [40], it contains at most (Ck)1.5 < ε2k2 edges for k sufficiently large.
Then, as the vertices in A are full, H contains at least (1− ε− ε2)Ck2 edges.

If
∑

v∈B
(dH (v)

2

)

>
(|A|

2

)

=
(Ck

2

)

, then there exists a pair of vertices in A having two com-
mon neighbours, a contradiction to the C4-freeness of G. Hence, by convexity of the function
f(x) =

(x
2

)

, we have

(

Ck

2

)

≥
∑

v∈B

(

dH(v)

2

)

≥ |B|
(

(1− ε− ε2)Ck2/|B|
2

)

≥ (1− 3ε)
(C2k4

2|B| − Ck2

2

)

.

As C > 10/ε, this yields that |B| ≥ (1− 3ε)(1 − 1
C+1)k

2 ≥ (1− 4ε)k2.

We say that a vertex is poor if it has at most εk2 descendants, and rich otherwise. We wish
to show that at most o(n) vertices are poor. In [41] where we aim for a cycle of length (1−o(1))k,
and the definition of poor and the condition (3) are adjusted appropriately by replacing k2 with
k, this is immediate, since if v is both poor and full then {v} satisfies the equivalent of (3) (at
most εk incident edges are not in Q, at most εk go to descendants, and so the remainder go to
ancestors, of which at most 20εk are too close). However, this does not translate to our setting.
Consequently establishing that there are few poor vertices is the main difficulty in extending
the proof.

Lemma 4.2. If (3) does not hold for any set R, then o(n) vertices are poor.

Proof. Let W be a subset of children of some vertex v and write R(W ) =
⋃

w∈W D(w). Suppose
2Ck ≤ |R(W )| ≤ εk2. If some set S of at least Ck vertices in R(W ) are full, then by Claim 4.1,
we may choose (1− 4ε)k2 neighbours of vertices in S via edges of Q. Recall that each edge in Q
goes to a descendant or ancestor, so each of these neighbours is either in R(W ) or is an ancestor
of v. However, at least (1− 5ε)k2 of these neighbours are not in R(W ) and must be ancestors of
v; since v has at most one ancestor at each distance, at least εk2 of them are at distance at least
(1− 6ε)k2 from R(W ), and so (3) holds for R(W ). Thus, for a vertex v ∈ V (T ) and a subset W
of children of v satisfying 2Ck ≤ |R(W )| ≤ εk2, at most half of the vertices in R(W ) are full.

Write P for the set of poor vertices, and F for the set of full vertices. We divide P into
groups, according to their nearest rich ancestor. However, there may be some poor vertices with
no rich ancestor, corresponding to small components of T ; we deal with these separately. Write
Pv for the set of poor vertices whose nearest rich ancestor is v. Notice that Pv = R(W poor

v ),
where W poor

v is the set of poor children of v. Write A for the set of vertices v with Pv 6= ∅.
Finally, write P∗ for the set of poor vertices with no rich ancestor.

First, note that P∗ consists of all vertices in components of T of order at most εk2. Let X
be the vertices of some component of T having order ℓ ≤ εk2. Since G[X] is C4-free, it contains
at most ℓ1.5 ≤ ε0.5kℓ edges. Suppose X contains at least 3ℓ/4 full vertices. Then, since any
edges of Q meeting X are in G[X], G[X] has at least 3(1 − ε)kℓ/8 edges, a contradiction since
ε < 1/10. Consequently at least one quarter of the vertices in any such component, and hence
of P∗, are not full. Since there are o(n) such vertices, |P∗| = o(n).

We now split A into two parts, which we deal with in different ways. Set

A1 = {v ∈ A : |Pv ∩ F| ≤ 3|Pv|/4} and A2 = A \ A1.
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Recall that we may assume all but at most o(n) vertices are full. Since at least one quarter of
vertices in

⋃

v∈A1
Pv are not full, it follows that

∣

∣

⋃

v∈A1
Pv

∣

∣ = o(n). Thus it suffices to show that
∣

∣

⋃

v∈A2
Pv

∣

∣ = o(n).
Suppose v ∈ A satisfies |Pv| ≥ 2Ck. Then we may divide W poor

v into disjoint subsets
W1, . . . ,Wr, L such that each of R(W1), . . . , R(Wr) have size between 2Ck and εk2 and R(L)
has size less than 2Ck, for some r ≥ 1. It follows that at most half of the vertices in R(Wi) are
full for each i, and since r ≥ 1 and |R(L)| < |R(W1)|, at most three quarters of the vertices in
Pv are full. Thus v ∈ A1. In particular, this is the case for any vertex v which is rich but has
no rich children.

In order to show that
∣

∣

⋃

v∈A2
Pv

∣

∣ = o(n), we will associate each y ∈ ⋃

v∈A2
Pv with a set Zy

of size ⌊εk/(4C)⌋ = ω(1), ensuring that all of these sets are disjoint. Since the total size of all
sets Zy is at most n, it will follow that

∣

∣

⋃

v∈A2
Pv

∣

∣ ≤ n/⌊εk/(4C)⌋ = o(n).
We will construct the sets Zy in several stages. We let Y0 = A2 and in each stage i we will

choose a subset Xi ⊆ Yi−1, and construct Zy for each y ∈ ⋃

v∈Xi
Pv. Setting Yi = A2 \ (

⋃

j<iXj)
to be the remaining vertices in A2 after i− 1 stages, we continue until Yi = ∅.

In stage i, choose vi ∈ Yi as close to the root of its component as possible, so that u 6∈ Yi
for each ancestor u of vi. Define a path Pi, starting at vi and proceeding downwards, using only
rich vertices, until one of the following is satisfied:

1. The total size of
⋃

w∈Pi∩Yi Pw is at least 2Ck, or

2. the last vertex on the path has no rich children.

Clearly it is possible to construct such a path, since so long as neither 1 nor 2 is satisfied we can
extend the path by adding a rich child of the last vertex. Write xi for the last vertex of Pi. We
then choose Xi to be the set Pi ∩ Yi.

Suppose 1 is satisfied. In this case, the last vertex added to the path must be in Yi ⊆ A2.
Since every vertex w ∈ A2 satisfies |Pw| ≤ 2Ck, we must have 2Ck ≤ |⋃w∈Xi

Pw| ≤ 4Ck.
Furthermore, since Xi ⊆ Yi ⊆ A2, at least three quarters of the vertices in

⋃

w∈Xi
Pw are full.

Consequently, Claim 4.1 ensures that there are at least (1 − 4ε)k2 distinct vertices adjacent to
⋃

w∈Xi
Pw by unrevealed edges. Since every unrevealed edge from a vertex goes to an ancestor

or descendant, all such vertices must be either in
⋃

w∈Xi
Pw, or on Pi, or ancestors of vi. If

|Pi| ≤ εk2 then at least (1 − 5ε)k2 − 4Ck ≤ (1 − 6ε)k2 of the vertices must be ancestors of
vi (for k sufficiently large). Of these, at least 14εk2 must be at least at distance (1 − 20ε)k2

from vi (since it has at most one ancestor at each distance), and so
⋃

w∈Xi
Pw satisfies (3), a

contradiction. Thus |Pi| ≥ εk2. We may therefore choose disjoint sets Zy ⊆ Pi of size ⌊εk/(4C)⌋
for each y ∈ ⋃

w∈Xi
Pw.

Alternatively, suppose 1 is not satisfied, and so 2 is satisfied and
∣

∣

⋃

w∈Xi
Pw

∣

∣ < 2Ck. Note
that, since xi is rich but has only poor children, it is in A1 and so not in Yi. Also we have
|D(xi)| ≥ εk2. We may therefore choose disjoint sets Zy ⊆ D(xi) of size ⌊εk/(4C)⌋ for each
y ∈ ⋃

w∈Xi
Pw.

We now proceed to stage i + 1, and continue in this manner until we reach some stage j
with Yj = ∅; since Yi decreases at each stage, this eventually happens. It only remains to show
that the sets Zy chosen in different stages are disjoint. Each such set constructed in stage i is
either chosen from Pi, in which case it consists only of rich vertices, or from D(xi), in which
case it consists only of poor vertices. It suffices to show that the paths Pi are disjoint, since
then the rich sets chosen in different stages come from disjoint paths, and the poor sets chosen
in different stages have different nearest rich ancestors. Suppose this is not the case, so that
w ∈ Pi ∩ Pj for some i < j. Then, since both vi and vj are ancestors of w, we must have that
either vi is an ancestor of vj or vice versa. Also, we have vi ∈ Yi and vj ∈ Yj ⊂ Yi. As we have
chosen vi ∈ Yi as close to the root of its component as possible, we know that vj cannot be an
ancestor of vi. However, as w ∈ Pi, if vi is an ancestor of vj it follows that vj ∈ Pi, and hence
vj ∈ Xi, a contradiction since vj ∈ Yj.
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This completes the proof that the sets Zy for y ∈ ⋃

v∈A2
Pv are disjoint. Since each has size

ω(1), it follows that
∣

∣

⋃

v∈A2
Pv

∣

∣ = o(n). Thus |P| = o(n), as required.

A path in a rooted tree is vertical if one of its endpoints is a descendant of the other. Define
a vertex v ∈ V (T ) to be light if

∣

∣D≤(1−10ε)k2(v)
∣

∣ ≤ (1 − 9ε)k2, where D≤i(v) ⊆ D(v) are the
descendants within distance i of v. If a vertex v ∈ V (T ) is not light, we call it heavy. Let H be
the set of heavy vertices. The proof of the following lemma, which we include for completeness,
is the same as [41, Lemmas 5, 6] up to slight changes in the parameters.

Lemma 4.3. Suppose that T contains o(n) poor vertices and Y ⊆ V (T ) satisfies |Y | = o(n).
Then for k sufficiently large, T contains a vertical path P of length 2Ck2, containing at most

ε2k2 vertices in Y ∪H.

Proof. Define the height of a vertex to be the maximum distance to a descendant. We first show
that almost all vertices are at height at least ε−2k2.

For each rich vertex v of height less than ε−2k2, let S(v) be a set of ⌈εk2⌉ descendants of v
with total distance from v as large as possible. Notice that this implies each w ∈ S(v) has at
most ⌈εk2⌉ − 1 descendants, so is poor. We count pairs (v,w) with w ∈ S(v); since each such
pair has w being one of the o(n) poor vertices, and v being one of the ε−2k2 lowest ancestors of
w, there are at most ε−2k2o(n) pairs. However, each rich vertex of height less than ε−2k2 is in
at least εk2 pairs, so there are at most ε−3o(n) + o(n) = o(n) vertices of height less than ε−2k2.

We next show that there are few heavy vertices. We count pairs (u, v) of distinct vertices
where u is an ancestor of v at distance at most (1− 10ε)k2. Since each vertex has at most one
ancestor at each distance, there are at most (1 − 10ε)k2n pairs. Since all but o(n) vertices are
of height at least ε−2k2 > (1 − 10ε)k2, and so are the first vertex in at least (1 − 10ε)k2 pairs,
and since each heavy vertex is the first vertex in at least (1− 9ε)k2 pairs, we have

(1− 10ε)k2n ≥ (1− 10ε)k2(n− o(n)− |H|) + (1− 9ε)k2|H|,

implying (1− 10ε)k2o(n) ≥ εk2|H|, and so |H| = o(n).
Finally, consider the pairs (u, v) where v ∈ Y ∪ H and v ∈ D≤ε−2k2(u). Since each vertex

v ∈ Y ∪ H is the second vertex in at most ε−2k2 pairs, and |Y ∪ H| = o(n), there are o(k2n)
pairs. Therefore at most o(n) vertices u appear in more than ε2k2 pairs as a first entry, and as
shown above at most o(n) vertices have height less than ε−2k2. Choosing a vertex u in neither
of these categories, there exists a vertical path of length ⌈ε−2k2⌉ with top vertex u, and any
such path contains at most ε2k2 vertices in Y ∪H, as required.

We are now ready to complete the proof of Theorem 1.6. We are done if any set satisfies (3),
so assume not. Then Lemmas 4.2 and 4.3 ensure the long vertical path P described above exists.
Write Z for the set of vertices on P which are both full and light. We order Z according to
height on the path, and will consider blocks of Ck consecutive vertices of Z in this ordering. By
Lemma 4.3, there are at most ε2k2 vertices on the path which are not in Z, so the total distance
on the path between the top and bottom vertices of any such block is at most ε2k2 +Ck < εk2.
By Claim 4.1, any block A satisfies |NQ(A)| ≥ (1− 4ε)k2.

Fix some block A, and let u and v be the highest and lowest vertices of that block respectively.
Recall that every vertex in NQ(A) is either an ancestor or a descendant of its neighbour in A,
and hence either an ancestor or a descendant of u. Since u is light, it has at most (1 − 9ε)k2

descendants within distance (1− 10ε)k2, hence |NQ(A) ∩D≤(1−10ε)k2(u)| ≤ (1− 9ε)k2.
We also have |NQ(A) ∩ (D(v) \ D≤(1−10ε)k2(u))| ≤ εk. Indeed, if not, let R be a set of at

least εk such vertices. Then the vertices in R are at distance at least (1 − 10ε)k2 from u and
every vertex in A is within distance εk2 of u, so every edge uv of Q between R and A satisfy
dT (uv) ≥ (1− 11ε)k2, a contradiction to (3). Hence, we have |NQ(A)∩D(u)| ≤ (1− 9ε)k2 + εk.
As |NQ(A)| ≥ (1 − 5ε)k2, at least 4εk2 − εk neighbours of vertices in A are ancestors of its
highest vertex u.
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Taking V0 to be the bottom Ck vertices of Z we know that, for k sufficiently large, these
have at least 4εk2 − 2εk > εk neighbours at least distance 4εk2 − 2εk ≥ 3εk2 above the highest
vertex of V0, so w.h.p. we can find a v0 ∈ V0 and u0 at least this distance above, connected by an
edge of Q which is present in Gp. Then we choose V1 to be the highest Ck vertices in Z below u0
and continue. Note that those Ck vertices are disjoint from V0 as 3εk2 > Ck+ ε2k2. Note that
we go up at least 3εk2 steps from the top vertex of V0 to u0 and down at most ε2k2 steps from
u0 to the top of V1. Since 0 < ε < 1/10 and dT (v0, u0) < k2 (for otherwise we have a length-k2

cycle), and the path P has length 2Ck2, w.h.p. we may continue in this way to find overlapping
‘chords’ viui for 0 ≤ i ≤ C. Since dT (ui, vi+2) ≥ 3εk2−2ε2k2−Ck > εk2, w.h.p. there is a cycle
of length at least Cεk2 ≥ k2 consisting of these chords together with the sections of the path
v0 · · · v1 and ui · · · vi+2 for 0 ≤ i ≤ C − 2, and uC−1 · · · uC . See Figure 1 for an illustration.

P
V0

v0 u0

V1

v1 u1

V2

v2 u2

V3

v3 u3

V4

v4 u4

Figure 1: An example cycle (shown in bold) constructed from the vertical path P , drawn
horizontally for ease of presentation (higher vertices are positioned further to the right).

4.2 Long cycles in random subgraphs of hypercubes

To prove Theorem 1.7, we use concentration of the size of the giant component to show that
w.h.p. there is no small separators. This idea is not new and appeared earlier in the work of
Krivelevich, Lubetzky and Sudakov [29]. To carry out this argument, we need a result relating
separability of graphs to separator size; we first give the necessary definitions.

Definition 4.4. Given a graph G = (V,E) on n vertices, a vertex set S ⊆ V is called a separator

if there is a partition V = A ∪ B ∪ S of the vertex set of G such that G has no edges between
A and B, and |A|, |B| ≤ 2n/3.

Definition 4.5. Let s, t be positive integers. A graph G is (s, t)-separable if there exists a vertex
subset S ⊆ V (G) such that |S| ≤ s and every component of G− S has at most t vertices.

Lemma 4.6. Let G be a graph with n vertices and fix t, r > 0. If G is not (4n
2

rt , t)-separable,
then G has a subgraph H such that |H| ≥ t and H has no separator with size at most 1

r |H|.
Proof. Suppose that every subgraph H of G with at least t vertices has a separator with size
at most 1

r |H|. Then G has a separator S such that |S| ≤ 1
r |G| and V (G) \ S = X1∪̇X2 with

|X1|, |X2| ≤ 2n
3 and eG(X1,X2) = 0. For each Xi (i ∈ {1, 2}), if |Xi| ≥ t, then G[Xi] has a

separator Si such that |Si| ≤ 1
r |Xi| and Xi \ Si = Xi1∪̇Xi2 with |Xi1|, |Xi2| ≤ 2|Xi|

3 ≤ (23 )
2n

and eG(Xi1,Xi2) = 0. For each Xij (i, j ∈ {1, 2}), if |Xij | ≥ t, then G[Xij ] has a separator

Sij such that |Sij| ≤ 1
r |Xij | and Xij \ Sij = Xij1∪̇Xij2 with |Xij1|, |Xij2| ≤ 2|Xij |

3 ≤ (23 )
3n

and eG(Xij1,Xij2) = 0. We repeat this to obtain Sijk,Xijk1,Xijk2 (i, j, k ∈ {1, 2}) and so on.
Assume that this process stops when Si1i2i3...iℓ ,Xi1i2i3...iℓ+1

are obtained, i.e. each Xi1i2i3...iℓ+1

has size less than t. For each k ≤ ℓ+ 1 let Ak = {i1 . . . ik : Xi1...ik is defined}.
As t ≤ |Xi1i2i3...iℓ | ≤ (23 )

ℓn, we know that ℓ ≤ log3/2(n/t). Let S0 = S and for 1 ≤ k ≤ ℓ,

Sk =
⋃

i1...ik∈Ak

Si1i2i3...ik . Then

|Sk| ≤
∑

i1...ik∈Ak

1

r
|Xi1i2i3...ik | ≤ 2k · 1

r
·
(2

3

)k
n ≤

(4

3

)k
· n
r
.

Let S∗ =
⋃

0≤k≤ℓ S
k. Then |S∗| ≤ 3 · (43 )ℓ+1 · nr ≤ 4n2

rt and every component in G− S∗ has size

less than t. Hence, G is (4n
2

rt , t)-separable, a contradiction.
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By taking r = 4ψ(n)3 and t = n
ψ(n) , where ψ(n) = no(1), we have the following corollary.

Corollary 4.7. If G is not ( n
ψ(n)2 ,

n
ψ(n))-separable, then G has a subgraph H such that |H| ≥ n

ψ(n)

and H has no separator with size at most 1
4ψ(n)3

|H|.

Write C1(G) for the largest component in a graph G. Let ε > 0 be fixed and sufficiently
small. Set p = (1 + ε)/m and p′ = (1 − ε

4)p > (1 + ε
2 )/m. Write p1 = (1 + ε

4)/m and choose
p2 ≥ ε

4m such that (1− p1)(1− p2) = 1− p′ and n = 2m. We assume that m is sufficiently large.
For our argument, we prove the following claim. The same result was proved by Ajtai, Komlós
and Szemerédi in [2] with a weaker bound of 1− o(1) on the probability. However, the bound on
the probability that their argument provide is much worse than the following near-exponential
bound on the probability, which is crucial for our purpose.

Claim 4.8. There exists c = c(ε) satisfying the following: P[|C1(Qmp′ )| ≥ cn] ≥ 1−exp(−n/m14).

Proof. We prove this in two steps. The first step (clustering) is performed in Qmp1 , and we deduce
that w.h.p. Ω(2m) vertices are contained in components of size at least m4 and most of vertices
are adjacent to at least one such a component. For the second step (sprinkling), we mainly
follow the sprinkling process in [17, Section 1.3]: add the edges of Qmp2 and show that they can
connect many of the clusters of size at least

√
m into a giant cluster of size Θ(2m).

Step 1. Let V = V (Qm). Let the random variable B = B(Qm) be the set of vertices in Qmp1
that belong to a component of order at least m4. By the main theorem in [2], there exists
c1 = c1(ε/12) < 1/12 such that for any q ≥ (1 + ε/12)/m,

P[C1(Qmq ) > 12c12
m] ≥ 1− c1. (4)

Since c12
m > m4, it follows that E[|B|] ≥ 6c12

m.
For a vertex v ∈ V (Qm), we can find distinct vertices v1, . . . , vεm/12 ∈ NQm(v) and vertex-

disjoint subhypercubes Q1, . . . , Qεm/12 of dimension (1 − ε/12)m in Qm with vi ∈ Qi for each
i.

Note that conditioning on the existence of a component of size 12c1|Qm| in Qmq , the probabil-
ity that such a component contains a specific vertex v is at least 12c1 as Qm is vertex-transitive.
Hence, the equation (4) (with (1−ε/12)m playing the role ofm) implies that the vertex vi belongs
to a component of size 12c1|Qi| ≥ m4 in (Qi)p1 with probability at least 12c1(1 − c1) ≥ c1. As
Q1, . . . , Qεm/12 are disjoint subgraphs of Qm, those events are mutually independent. Moreover,
if one such event happens, then we have v ∈ NQm[B], where we write NQm [B] = B ∪NQm(B).
Hence, we have

E[|V \NQm [B]|] =
∑

v∈V
P[v /∈ NQm [B]] ≤ (1− c1)

εm/12 · 2m ≤ 2m

m2
.

Enumerate edges of Qm as e1, e2, . . . , em2m−1 ; let Ii be the indicator random variable that
ei ∈ E(Qmp1) and let Fi be the σ-algebra generated by (Ij)j≤i. Consider the edge-exposure
martingale X0,X1, . . . ,Xn and Y1, . . . , Yn with

Xi = E[|B| : Fi] and Yi = E[|V \NQm(B)| : Fi].

Note that changing one Ii changes |B| by at most 2m4 and |NQ[B]| by at most 2m5, since any
vertex for which ei is critical is in a component of order less than m4 in Qmp1 − ei containing
exactly one endpoint of ei, and such a component has at most m5 neighbours in Qm. Thus the
martingales are 2m4-Lipschitz and 2m5-Lipschitz respectively, and by Azuma’s inequality we
have

P [|B| < 3c12
m] ≤ P [|B| < E[|B|]− 3c12

m] ≤ exp

(

− 9(c1)
222m

2(2m4)2 ·m2m−1

)

≤ exp
(

− 2m

m10

)

,
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P

[

|V \NQm [B]| > 2m+1

m

]

≤ P

[

|V \NQm [B]| > E [|V \NQm[B]|] + 2m

m

]

≤ exp

(

− 22m/m2

2(2m5)2 ·m2m−1

)

≤ exp
(

− 2m

4m13

)

.

Step 2. From Step 1, we have |B| ≥ 3c12
m and |V \ NQm[B]| ≤ 2m+1/m with probability

at least 1 − 2 exp(−2m/4m13). We say that sprinkling fails when these high probability events
happen but |C1(Qmp1 ∪ Qmp2)| ≤ c12

m. If sprinkling fails, then we can partition B = C∪̇D such
that |C|, |D| ≥ c12

m, each of C and D is a union of components in Qmp1 , and any C-D path in
Qm has an edge missing in Qmp2 . Since every component of Qmp1 meeting B has size at least m4,

the number of partitions meeting the second condition is at most 22
m/m4

.
It follows from Harper’s vertex isoperimetric inequality for the hypercube [15] that any set

X ⊂ V (Qm) of size at most 2m−1 satisfies |NQm(X)| ≥ (1 + o(1))|X|
√

2/(πm). Consequently,
for a particular partition C∪̇D with |C|, |D| ≥ c12

m there is no C-D separating set of size less
than c1

100
√
m
·2m, so by Menger’s theorem there exist at least this many internally vertex-disjoint

C-D paths in Qm.
Take such a collection P of paths with the minimum total sum of lengths. Note that a path

in P has at most four vertices in NQm[B]. Indeed, if a vertex ui in the path u1u2 . . . us with
u1 ∈ C, us ∈ D and 3 ≤ i ≤ s−2 has a neighbour w in B = C∪D, then either the path u1 . . . uiw
or the path wuiui+1 . . . us can replace the path u1 . . . us in P to contradict the minimality of
P. Hence, at most |V (Qm) \NQm [B]| ≤ 2m+1/m paths in P have length at least 4 and at least
c1

100
√
m
· 2m− 2m+1

m ≥ c1
200

√
m
2m paths have length at most 3. Hence, the probability that all such

paths have an edge missing in Qmp2 is at most

(

1−
( ε

4m

)3
)

c12
m

200
√

m
< exp

(

− 1

2

( ε

4m

)3 · c12
m

200
√
m

)

< 2−2m+2/m4
.

Consequently the probability that sprinkling fails is at most

22
m/m4 · 2−2m+2/m4 ≤ exp(−2m/m4).

By the above two steps, we obtain that

P[|C1(Qmp′ )| ≥ c1n] ≥ 1− exp
(

− 2m/m14
)

.

Proof of Theorem 1.7. Let G = Qm. Note that Gp′ can be obtained by deleting edges in Gp with
probability ε/4 independently. Let A be the event that Gp is (n/m

16, n/m8)-separable and B be
the event that |C1(Gp′)| < n/m8. Assume that A occurs. Then we have a vertex subset S with
size at most n/m16 such that every component of G− S has at most n/m8 vertices. If all edges
between S and G−S are deleted when passing from Qmp to Qmp′ , then B happens. This deletion

of all edges between S and G − S happens with probability at least (ε/4)|S|m ≥ (ε/4)n/m
15
.

Hence, P[B] ≥ P[A] · (ε/4)n/m15
. However, P[B] ≤ exp(−n/m14) by Claim 4.8. Thus we have

P[A] ≤ exp(−n/m14) · (ε/4)−n/m15
= o(1).

By Corollary 4.7, w.h.p. Gp has a subgraph H such that |H| ≥ n/m8 and H has no separator
with size at most |H|/(4m24). Thus we have NH(W ) ≥ |H|/(4m24) ≥ n/(4m32) for any W ⊆
V (H) with |H|/3 ≤ |W | ≤ 2|H|/3. Applying Theorem 3.1 we obtain that H, and so also Gp,
has a cycle of length at least n/(4m32) = 2(1−o(1))m .

5 Concluding remarks

In this paper, we introduce the crux of a graph, corresponding to the order of the smallest dense
patch of a graph, and study the ‘replacing average degree by crux’ paradigm. As a first example,

14



we find in generic graphs cycles of length linear in the crux size and apply this result to address
two conjectures of Long regarding long paths in subgraphs of hypercubes and Hamming graphs.
As the crux of a C4-free graph is quadratic in its average degree, and the crux of a hypercube is
exponential in its dimension, Theorems 1.6 and 1.7, on cycles in random subgraphs of C4-free
graphs and hypercube graphs are two more examples of this paradigm. It would be interesting
to see more results of this form.
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[25] T. Kővári, V.T. Sós, P. Turán, On a problem of K. Zarankiewicz. Colloquium Mathematicum, 3, (1954),
50–57.

[26] M. Krivelevich, Long paths and Hamiltonicity in random graphs. Random graphs, geometry and asymptotic
structure, 84, (2016), 1.

[27] M. Krivelevich, Long cycles in locally expanding graphs, with applications. Combinatorica, 39, (2019),
135–151.

[28] M. Krivelevich, Expanders - how to find them, and what to find in them. Surveys in Combinatorics, 456,
(2019), 115–142.

[29] M. Krivelevich, E. Lubetzky, B. Sudakov, Asymptotics in percolation on high-girth expanders. Random
Structures & Algorithms, (2020), 1–21.

[30] M. Krivelevich, C. Lee, B. Sudakov, Robust Hamiltonicity of Dirac graphs. Transactions of the American
Mathematical Society, 366(6), (2014), 3095–3130.

[31] M. Krivelevich, C. Lee, B. Sudakov, Long paths and cycles in random subgraphs of graphs with large
minimum degree. Random Structures & Algorithms, 46, (2015), 320–345.

[32] M. Krivelevich, W. Samotij, Long paths and cycles in random subgraphs of H-free graphs. Electronic
Journal of Combinatorics, 21(1), (2014), P1.30.

[33] C. Lee, B. Sudakov, Dirac’s theorem for random graphs. Random Structure & Algorithms, 41(3) (2012),
293–305.

[34] H. Liu, R.H. Montgomery, A proof of Mader’s conjecture on large clique subdivisions in C4-free graphs.
Journal of the London Mathematical Society, 95(1), (2017), 203–222.
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