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Abstract

The hard-sphere model is one of the most extensively studied models in statistical physics.
It describes the continuous distribution of spherical particles, governed by hard-core interac-
tions. An important quantity of this model is the normalizing factor of this distribution, called
the partition function. We propose a Markov chain Monte Carlo algorithm for approximating
the grand-canonical partition function of the hard-sphere model in 3 dimensions. Up to a
fugacity of _ < e/23 , the runtime of our algorithm is polynomial in the volume of the system.
This covers the entire known real-valued regime for the uniqueness of the Gibbs measure.

Key to our approach is to define a discretization that closely approximates the partition
function of the continuous model. This results in a discrete hard-core instance that is expo-
nential in the size of the initial hard-sphere model. Our approximation bound follows directly
from the correlation decay threshold of an infinite regular tree with degree equal to the max-
imum degree of our discretization. To cope with the exponential blow-up of the discrete
instance we use clique dynamics, a Markov chain that was recently introduced in the setting
of abstract polymer models. We prove rapid mixing of clique dynamics up to the tree thresh-
old of the univariate hard-core model. This is achieved by relating clique dynamics to block
dynamics and adapting the spectral expansion method, which was recently used to bound
the mixing time of Glauber dynamics within the same parameter regime.

Keywords: hard-sphere model • Markov chain • partition function • Gibbs distri-
bution • approximate counting • spectral independence
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1 Introduction

Statistical physics models particle systems as probability distributions. One of themost fundamen-
tal and mathematically challenging models in this area is the hard-sphere model, which plays a
central role in understanding the thermodynamic properties of monoatomic gases and liquids
[8, 30]. It is a continuous model that studies the distribution and macroscopic behavior of indis-
tinguishable spherical particles, assuming only hard-core interactions, i.e., no two particles can
occupy the same space.

We focus on computational properties of the grand-canonical ensemble of the hard-sphere
model in a finite 3-dimensional cubic region V = [0, ℓ)3 in the Euclidean space. In the grand-
canonical ensemble, the system can exchange particles with its surrounding based on a fugacity
parameter _, which is inverse to the temperature of the system. For the rest of the paper, we
make the common assumption that the system is normalized such that the particles have unit
volume. That means we fix their radii to A = (1/{3)1/3 , where {3 is the volume of a unit sphere in
3 dimensions.

A simple probabilistic interpretation of the distribution of particles in the grand-canonical en-
semble is that centers of points that are drawn from a Poisson point process onVwith intensity _,
conditioned on the event that no two particles overlap (i.e., every pair of centers has distance at
least 2A ). The resulting distribution over particle configurations in V is called the Gibbs distri-

bution of the model. An important quantity in such models is the so called partition function
/ (V, _), which can be seen as the normalizing constant of the Gibbs distribution. Formally, it is
defined as

/ (V, _) = 1 +
∑
:∈N>0

_:

:!

∫
V:

�
(
G (1) , . . . , G (:)

)
da3×: ,

where

�
(
G (1) , . . . , G (:)

)
=

{
1 if 3

(
G (8) , G ( 9 ) ) ≥ 2A for all 8, 9 ∈ [:] with 8 ≠ 9

0 otherwise

and a3×: is the Lebesgue measure on R3×: . Commonly, two computational task are associated
with the grand-canonical hard-sphere model: (1) approximating its partition function / (V, _),
and (2) approximately sampling from the Gibbs distribution.

Studying computational aspects of the hard-sphere model carries a historical weight, as in
the seminal work of Metropolis [43], the Monte Carlo method was introduced to investigate
a two-dimensional hard-sphere model. Approximate-sampling Markov chain approaches have
been mainly focused on the canonical ensemble of the model, that is, the system does not ex-
change particles with its surrounding and thus, the distribution is defined over a fixed number
of spheres [32, 35, 37]. Considering the grand canonical ensemble, exact sampling algorithms
have appeared in the literature for the two-dimensional model without asymptotic runtime guar-
antees [38, 39, 45]. A result that is more aligned with theoretical computer science was given
in [29], where the authors introduced an exact sampling algorithm for the grand-canonical hard-
sphere model in 3-dimensions. Their algorithm is based on rejection sampling with a runtime
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linear in the volume of the system |V| when assuming a continuous computational model and
access to a sampler from a continuous Poisson point process. Their approach is guaranteed to
apply for _ < 2−(3+1/2) .

Besides such sampling results, there is an ongoing effort to improve the known fugacity regime
where the Gibbs measure is unique and correlations decay exponentially fast [15, 23, 33, 44]. Note
that for many discrete spin systems, such as the hard-core model, correlation decay is closely re-
lated to the applicability of different methods for efficient approximation of the partition function
[25, 53, 56]. Recently, the correlation decay bounds for the hard-sphere model were improved in
[33] to _ < 2−(3−1) , using probabilistic arguments, and in [44] to _ < e/23 , based on an analytic
approach. A common feature of [33] and [44] is that they translated tools originally developed
in theoretical computer science for investigating the discrete hard-core model to the continuous
domain.

Our work is in line with the computational view on the hard-sphere model but more algorith-
mic in nature. We investigate the range of the fugacity _ for which an approximation of / (V, _)
can be obtained efficiently in terms of the volume of the system |V|, assuming a discrete com-
putational model. Our main result is that for all _ < e/23 there is a randomized algorithm for
Y-approximating the partition function in time polynomial in |V| and 1/Y .

◮ Theorem 1. Let (V, _) be an instance of the continuous hard-sphere model with V = [0, ℓ)3 .
If there is a X ∈ (0, 1] such that

_ ≤ (1 − X) e
23
,

then for each Y ∈ (0, 1] there is a randomized Y-approximation of / (V, _) computable in time

polynomial in |V|1/X2 and 1
Y . ◭

Note that this bound on _ precisely coincides with the best known bound for the uniqueness
of the Gibbs measure in the thermodynamic limit, recently established in [44]. For many discrete
spin systems, such as the hard-core model or general anti-ferromagnetic 2-state spin systems,
the region of efficient approximation of the partition function is closely related to uniqueness of
the Gibbs measure. More precisely, it can be shown that the partition function of every graph
of maximum degree J can be approximated efficiently if the corresponding Gibbs distribution
on an infinite J regular tree is unique [41, 55]. A detailed discussion for the discrete hard-core
model can be found in the next subsection. In a sense, Theorem 1 can be seen as the algorithmic
counterpart of the recent uniqueness result for the continuous hard-sphere model. This answers
an open question, asked in [44].

The way we prove our result is quite contrary to [33] and [44]. Instead of translating discrete
tools from computer science into the continuous domain, we rather discretize the hard-sphere
model. By this, existing algorithmic and probabilistic techniques for discrete models become
available, and we avoid continuous analysis.

Our applied discretization scheme is fairly intuitive and results in an instance of the discrete
hard-core model. This model has been extensively studied in the computer science community.
However, as this hard-core instance is exponential in the size of the continuous system |V|, ex-
isting approaches for approximating its partition function, such a Markov chain Monte Carlo
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methods based on Glauber dynamics, are not feasible. We overcome this problem by applying a
Markov chain Monte Carlo approach based on clique dynamics, which were introduced in [24]
in the setting of abstract polymer models. Previously known conditions for the rapid mixing of
clique dynamics were developed for the multivariate version of the hard-core model. Due to this
generality, those conditions do not result in the desired bound in our univariate setting. Instead
we relate those clique dynamics to another Markov chain, called block dynamics. We then prove
the desired mixing time for the block dynamics by adapting a recently introduced technique for
bounding the mixing time of Markov chains, based on local spectral expansion [2]. Together with
a known self-reducibility scheme for clique dynamics, this results in the desired approximation
algorithm.

Note that we aim for a rigorous algorithmic result for approximating the partition function
of the continuous hard-sphere model. To be in line with commonly used discrete computational
models, our Markov chain Monte Carlo algorithm does not assume access to a continuous sam-
pler but instead samples approximately from a discretized version of the Gibbs distribution. Note
that sampling from the continuous hard-sphere partition function cannot be done using a discrete
computation model as this would involve infinite float pointer precision. For practical matters,
our discretization of the Gibbs distribution can be seen as an approximation of the original con-
tinuous Gibbs measure. However, a rigorous comparison between both distributions based on
total variation distance is not applicable, due to the fact that one is discrete whereas the other is
continuous in nature.

Assuming access to a continuous sampler, we believe that our approach can be used to obtain
an approximation of the Gibbs distribution of the continuous model within the same fugacity
regime, by adding small perturbations to the drawn sphere centers. This would be in line with
the relation between the mixing time of continuous heat-bath dynamics and strong spatial mixing,
pointed out in [33], combined with the uniqueness bound from [44].

In Sections 1.1 to 1.3 we discuss our technical contributions in more detail and explain how
they relate to the existing literature. Finally in Section 1.4 we discuss possible extensions and
future work.

1.1 Discretization and hard-core model

Our discretization scheme expresses the hard-sphere partition function as the partition function
of an instance of the (univariate) hard-core model. An instance of the hard-core model is a tuple
(�, _) where� = (+, �) is an undirected graph and _ ∈ R>0 . Its partition function is defined as

/ (�, _) ≔
∑

� ∈I(�)
_ |� |,

where I(�) denotes the independent sets of � . A common way to obtain an approximation
for the partition function is by applying a Markov chain Monte Carlo algorithm. This involves
sampling from the Gibbs distribution ` (�,_) of (�, _), which is a probability distribution on I(�)
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that assigns each independent set � ∈ I(�) the probability

` (�,_) (� ) = _ |� |

/ (�, _) .

Conditions for efficient approximation of the hard-core partition function have been studied
extensively in the theoretical computer science community. Due to hardness results in [53] and
[25], it is known that for general graphs of maximum degree J ∈ {3} ∪ N>5 there is a critical
parameter value _c(J) = (J − 1)J−1/(J − 2)J , such that there is no FPRAS for the partition
function of (�, _) for _ > _c (J), unless RP = NP. On the other hand, in [56] it was proven that
there is a deterministic algorithm for approximating the partition function of (�, _) for _ < _c(J)
that runs in time |+ |O(J) . The critical value _c (J) is especially interesting, as it precisely coincides
with the upper bound on _ for which the hard-core model on an infinite J-regular tree exhibits
strong spatial mixing and a unique Gibbs distribution [56]. For this reason, it is also referred
to as the tree threshold. This relation between computational hardness and phase transition in
statistical physics is one of the most celebrated results in the area. Both, the hardness results [4,
26] and the approximation algorithms [31, 48] were later generalized for complex _.

Note that the computational hardness above the tree threshold _c(J) for general graphs of
maximum degree J applies to both, randomized and deterministic algorithms. However, in the
randomized setting, Markov chain Monte Carlo methods are known to improve the runtime of
the algorithm introduced in [56]. Those approaches use the vertex-wise self-reducibility of the
hard-core model to construct a randomized approximation of the partition function based on an
approximate sampler for the Gibbs distribution. Commonly, a Markov chain on the state space
I(�), called Glauber dynamics, is used to construct the sampling scheme. At each step, a vertex
{ ∈ + is chosen uniformly at random. With probability _/(1+_) the chain tries to add { to the cur-
rent independent set and otherwise it tries to remove it. The resultingMarkov chain is ergodic and
reversible with respect to the Gibbs distribution, meaning that it eventually converges to ` (�,_) . A
sequence of results has shown that for all J ≥ 3 there is a family of graphs with maximum degree
J, such that the Glauber dynamics are torpidly mixing for _ > _c (J), even without additional
complexity-theoretical assumptions [18, 28, 47]. Whether the Glauber dynamics are rapidly mix-
ing for the entire regime _ < _c(J) remained a long-standing open problem, until recently the
picture was completed [2]. By relating spectral expansion properties of certain random walks on
simplicial complexes to the Glauber dynamics, it was shown that the mixing time is polynomial in
|+ | below the tree threshold. The mixing time was recently further improved in [13] for a broader
class of spin systems by combining simplicial complexes with entropy factorization and using the
modified log-Sobolev inequality.

By mapping the hard-sphere model to an instance of the hard-core model we can make use of
the existing results about approximation and sampling below the tree threshold. Roughly, our
discretization scheme restricts the positions of sphere centers to an integer grid, while scaling
the radii of spheres and the fugacity appropriately. For a hard-sphere instance (V, _) with V =

[0, ℓ)3 the hard-core representation for resolution d ∈ R≥1 is a hard-core instance (�d , _d ) with
�d = (+d , �d ). Each vertex { ∈ +d represents a grid point in the finite integer lattice of side
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length dℓ . Two distinct vertices in +d are connected by an edge in �d if the Euclidean distance
of the corresponding grid points is less than 2dA . Furthermore, we set _d = _/d3 . We provide
the following result on the rate of convergence of /

(
�d , _d

)
to the hard-sphere partition function

/ (V, _) in terms of d .

◮ Lemma 2. Let (V, _) be an instance of the continuous hard-sphere model in 3 dimensions. For
each resolution d ≥ 2

√
3 it holds that

1 − d−1eΘ( |V | ln |V |) ≤ / (V, _)
/

(
�d , _d

) ≤ 1 + d−1eΘ( |V | ln |V |) . ◭

Although proving this rate of convergence involves some detailed geometric arguments, there
is an intuitive reason why the partition functions converge eventually as d → ∞. Increasing the
resolution d also linearly increases the side length of the grid and the minimum distance that
sphere centers can have. This is equivalent to putting a grid into V with increasing granularity
but fixing the radii of spheres instead. However, only scaling the granularity of this grid increases
the number of possible configurations by roughly d3 , which would cause the partition function
of the hard-core model to diverge as d → ∞. To compensate for this, we scale the weight of each
vertex in the hard-core model by the inverse of this factor.

Using this discretization approach, the fugacity bound fromTheorem 1 results from simply con-
sidering Jd , the maximum degree of�d and comparing _d with the corresponding tree threshold
_c

(
Jd

)
. Recall that we assume A = (1/{3)1/3 . A simple geometric argument shows that Jd is

roughly upper bounded by 23d3 for sufficiently large d . Now, observe that

_d =
_

d3
< _c

(
23d3

)
,

for _ < d3_c
(
23d3

)
. This follows from the fact that d3_c

(
23d3

)
converges to e/23 from above

for d → ∞. Thus, the approximation bound from Theorem 1 and the uniqueness bound in [44]
coincide with the regime of _, for which _d is below the tree threshold _c

(
Jd

)
in the limit d → ∞.

The arguments above show that for a sufficiently high resolution d the partition function of the
hard-sphere model / (V, _) is well approximated by the partition function of our discretization
(�d , _d ) and that (�d , _d ) is below the tree threshold for _ < e/23 . However, this does not imme-
diately imply an approximation algorithmwithin the desired runtime bounds. Based on Lemma 2,
we still need to choose d exponentially large in the volume |V|. Note that the number of vertices
in �d is roughly

��+d �� ∈ Θ
(
d3 |V|

)
. Even without explicitly constructing the graph, this causes

problems, as the best bound for the mixing time of the Glauber dynamics is polynomial in
��+d ��

and thus exponential in |V|. Intuitively, the reason for this mixing time is that the Glauber dy-
namics only change one vertex at each step. Assuming that each vertex should be updated at least
once to remove correlations with the initial state, any mixing time that is sublinear in the number
of vertices is unlikely. We circumvent this problem by applying dynamics that update multiple
vertices at each step but still allow each step to be computed efficiently without constructing the
graph explicitly.
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1.2 Block and clique dynamics

Most of the results that we discuss from now on apply to the multivariate version of the hard-core
model, that is, each vertex { ∈ + has its own weight _{. For a given graph� = (+, �) we denote
the set of such vertex weights by , = {_{}{∈+ and write (�,,) for the resulting multivariate
hard-core instance. In the multivariate setting, the contribution of an independent set � ∈ I(�)
to the partition function is defined as the product of its vertex weights (i.e.,

∏
{∈� _{), where the

contribution of the empty set is fixed to 1. Similar to the univariate hard-core model, the Gibbs
distribution assigns a probability to each independent set proportionally to its contribution to the
partition function. For a formal definition, see Section 2.2.

As we discussed before, the main problem with approximating the partition function of our
discretization (�d , _d ) is that the required graph �d is exponential in the volume of the original
continuous system |V|. As the Glauber dynamics Markov chain only updates a single vertex at
each step, the resulting mixing time is usually polynomial in the size of the graph, which is not
feasible in our case. Various extensions to Glauber dynamics for updating multiple vertices in
each step have been proposed in the literature, two of which we discuss in the following.

Clique dynamics

Recently, in [24] a Markov chain, called clique dynamics, was introduced in order to efficiently
sample from the Gibbs distribution of abstract polymer models. Note that this is similar to our
algorithmic problem, as abstract polymer models resemble multivariate hard-core instances. For
a given graph � = (+, �), we call a set L = {L8 }8∈[<] ⊆ 2+ a clique cover of size < if and
only if its union covers all vertices + and each L8 ∈ L induces a clique in � . For an instance of
the multivariate hard-core model (�,,) and a given clique cover L of � with size < the clique
dynamicsMarkov chainC(�, ,, L) is defined as follows. First, a cliqueL8 ∈ L for 8 ∈ [<] is chosen
uniformly at random. Let us write � [L8 ] for the subgraph, induced by L8 , and ,[L8 ] = {_{}{∈L8
for the corresponding set of vertex weights. Next, an independent set from I(� [L8 ]) is chosen
according to the Gibbs distribution ` (� [L8 ],, [L8 ]) . Note that, as the vertices L8 form a clique, such
an independent set is either the empty set or contains a single vertex from { ∈ L8 . If the empty
set is drawn, all vertices from L8 are removed from the current independent set. Otherwise, if a
single vertex { ∈ L8 is drawn, the chain tries to add { to the current independent set.

Using a coupling argument, it was proven in [24] that the so-called clique dynamics condition

implies that for any clique cover of size< the clique dynamics are mixing in time polynomial in
< and /max, where /max = max8∈[<] {/ (� [L8],, [L8])} denotes the maximum partition function
of a clique in L. This is important for the application to polymer models, as they are usually used
to model partition functions of other spin systems, which often results in a multivariate hard-core
model of exponential size [7, 9, 10, 11, 27, 34, 36]. As discussed in [24], those instances tend to
have polynomial size clique covers that arise naturally from the original spin system. In such
cases, the mixing time of clique dynamics is still polynomial in the size of original spin system,
as long as the clique dynamics condition is satisfied.

This is very similar to our discretization (�d , _d ). To see this, set 0 =
2d√
3
A and divide the 3-
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dimensional integer lattice of side length dℓ into cubic regions of side length 0. Every pair of
integer points within such a cubic region has Euclidean distance less than 2dA , meaning that the
corresponding vertices in�d are adjacent. Thus, each such cubic region forms a clique, resulting
in a clique cover of size (dℓ/0)3 ∈ O(|V|). This means, there is always a clique cover with size
linear in |V| and independent of the resolution d . By showing that, for the univariate hard-core
model, the mixing time of clique dynamics is polynomial in the size of the clique cover for all
_d < _c

(
Jd

)
, we obtain a Markov chain with mixing time polynomial in |V| independent of the

resolution d . Unfortunately, the clique dynamics condition does not hold for the entire regime up
to the tree threshold in the univariate hard-core model. We overcome this problem by proving a
new condition for rapid mixing of clique dynamics based on a comparison with block dynamics.

Block dynamics

Block dynamics are a very natural generalization of Glauber dynamics to arbitrary sets of vertices.
For a given graph � = (+, �), we call a set L = {L8 }8∈[<] ⊆ 2+ a block cover of size < if and
only if its union covers all vertices + . We refer to the elements of L as blocks. Note that the
clique cover discussed before is a special case of a block cover, where all blocks are restricted to
be cliques. At each step, the block dynamics Markov chain B(�, _, L) chooses a block L8 ∈ L

uniformly at random. Then, the current independent set is updated on L8 based on the projection
of the Gibbs distribution onto L8 and conditioned on the current independent set outside L8 . For
a formal definition, see Section 2.4.

In fact, block dynamics are defined for a much more general class of spin systems than the
hard-core model. However, due to the fact that each step of the Markov chain involves sampling
from a conditional Gibbs distribution, block dynamics are rarely used as an algorithmic tool on
its own. Instead, they are usually used to deduce rapid mixing of other dynamics.

For spin systems on lattice graphs, close connections between the mixing time of block dynam-
ics and Glauber dynamics are known [42]. Such connections were for example applied to improve
the mixing time of Glauber dynamics of the Monomer Dimer model on torus graphs [3]. More-
over, block dynamics were used to improve conditions for rapid mixing of Glauber dynamics on
specific graph classes, such as proper colorings [17, 19, 20, 46] or the hard-core model [19, 46] in
sparse random graphs. A very general result for the mixing time of block dynamics was achieved
in [5], who proved that for all spin systems on a finite subgraph of the 3-dimensional integer
lattice the mixing time of block dynamics is polynomial in the number of blocks if the spin sys-
tem exhibits strong spatial mixing. This result was later generalized in [6] for the Ising model on
arbitrary graphs. Very recently, block dynamics based random equally-sized blocks where used
in [13] to prove entropy factorization and improve the mixing time of Glauber dynamics for a
variety of discrete spin systems up to the tree threshold.

Although our discretization works by restricting sphere positions to the integer lattice, the
resulting graph is rather different from the lattice. Thus, results like those in [5] do not apply to
our setting. However, on the other hand, we do not need to prove rapid mixing for arbitrary block
covers. Instead, in order to obtain rapid mixing for clique dynamics, it is sufficient to establish
this result for cases where all blocks are cliques.
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Applying block dynamics directly would involve sampling from a conditional Gibbs distribu-
tion within each clique. Due to the exponential size of the cliques in our discretization, this
would impose additional algorithmic challenges. Instead, similar to the previous literature, we
rather use block dynamics as a tool for proving rapid mixing of another Markov chain, namely
clique dynamics.

Improved mixing condition for clique dynamics via block dynamics

We analyze themixing time of clique dynamics for a given clique cover by relating it to the mixing
time of block dynamics, using the cliques as blocks. This is done by investigating a notion of
pairwise influence between vertices that has also been used to establish rapid mixing of Glauber
dynamics up to the tree threshold [2]. LetP� [|] denote the probability of the event that a vertex
| ∈ + is in an independent set drawn from ` (�,,) . Further, let P� [|] denote the probability that
| is not in an independent set. We extend this abuse of notation to conditional probabilities, so
P� [· | | ] for example denotes the probability of some event conditioned on | not being in an
independent set. For a pair of vertices {,| ∈ + the influenceR� ({,|) of { on | is defined as

R� ({,|) =
{
0 if { = |,

P� [| | { ] − P� [| | { ] otherwise.

The following condition in terms of pairwise influence is central to our analysis.

◮Condition 3. Let (�,,) be an instance of themultivariate hard-coremodel. There is a constant
� ∈ R>0 and a function @ : + → R>0 such that for all ( ⊆ + and A ∈ ( it holds that∑

{∈(
|R� (A, {) |@({) ≤ �@(A ). ◭

Note that this condition appeared before in [14], where it was used for bounding the mixing
time of Glauber dynamics for anti-ferromagnetic spin systems. Given Condition 3, we obtain the
following result for the mixing time of block dynamics based on a clique cover.

◮ Theorem4. Let (�, ,) be an instance of themultivariate hard-coremodel such that Condition 3
is satisfied. Let L be a clique cover for � of size<, and let /max = max8∈[<] {/ (� [L8 ], ,[L8 ])}.
The mixing time of the block dynamics B(�,,, L), starting from ∅ ∈ I(�), is bounded by

g
(∅)
B (Y) ≤<O( (2+�)� )/O( (2+�)�)

max ln

(
1

Y

)
. ◭

Using a bound for the sum of absolute pairwise influences that was recently established in [14],
it follows that the univariate hard-core model satisfies Condition 3 up to the tree threshold. As
a result, we know that the mixing time of block dynamics is polynomial in< and /max for any
clique cover of size<. To the best of our knowledge, this is the first result for the mixing time of
block dynamics for the univariate hard-core model on general graphs that holds in this parameter
range.
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As we aim to apply clique dynamics to avoid sampling from the conditional Gibbs distribution
in each step, we still need to prove that Theorem 4 also holds in terms of clique dynamics. To
this end, we apply a Markov chain comparison argument from [16] to prove that using clique
dynamics instead of block dynamics for the same clique cover L increases the mixing time by
at most a factor 2/max. The following corollary, which is central for proving Theorem 1, follows
immediately.

◮ Corollary 5. Let (�, _) be an instance of the univariate hard-core model such that the degree
of� is bounded by J. Let L be a given clique cover of size< with /max = max8∈[<] {/ (� [L8], _)}.
Denote by C = C(�, _, L) the corresponding clique dynamics. If there is some X ∈ R>0 such
that _ ≤ (1 − X)_c(J) then the mixing time of the clique dynamics C, starting from ∅ ∈ I(�), is
bounded by

g
(∅)
C (Y) ≤ <O(1/X2)/O(1/X2)

max ln

(
1

Y

)
. ◭

A side journey: comparison to multivariate conditions

In fact, Corollary 5 is sufficient for our application to the hard-sphere model. However, we also
aim to set Condition 3 in the context of other conditions for rapid mixing of clique dynamics for
the multivariate hard-core model. Note that such a rapid mixing result for clique dynamics caries
over to Glauber dynamics by taking each vertex as a separate clique of size 1.

To this end, we compare Condition 3 to a strict version of the clique dynamics condition, orig-
inally introduced in [24] in the setting of clique dynamics for abstract polymer models. It turns
out that this strict version of the clique dynamics condition directly implies Condition 3. This is
especially interesting, as the clique dynamics condition was initially introduced as a local con-
dition (only considering the neighborhood of each vertex) and is based on a coupling argument.
However, we show that it can as well be understood as a sufficient condition for the global decay
of pairwise influence with increasing distance between vertices.

Formally, we say that the strict clique dynamics condition is satisfied for an instance of the
multivariate hard-core model (�, ,) if there is a function 5 : + → R>0 and a constant U ∈ (0, 1)
such that for all { ∈ + it holds that

∑
|∈# ({)

_|

1 + _|
5 (|) ≤ (1 − U) 5 ({),

where# ({) is the neighborhood of { in� . This is a strict version of the clique dynamics condition
in that the original clique dynamics condition would correspond to the case U = 0 (i.e., the strict
clique dynamics condition requires some strictly positive slack U).

The result of our comparison is summarized in the following statement.

◮ Lemma 6. Let (�,,) be an instance of the multivariate hard-core model. If (�,,) satisfies the
strict clique dynamics condition for a function 5 and a constant U , then it also satisfies Condition 3
for @ = 5 and � =

1
U
. ◭
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Lemma 6 is proven by translating the calculation of pairwise influences to the self-avoiding
walk tree of the graph, based on a result in [14], and applying a recursive argument on this tree.
The technical details are given in Section 5.

Despite being an interesting relationship between local coupling arguments and global pair-
wise influence, Lemma 6 also implies that, from an algorithmic perspective, Theorem 4 can be
used to produce similar results as those obtained in [24] for abstract polymer Further, note that
for the univariate model, using pairwise influence yields strictly better results than any coupling
approach in the literature. This raises the question if a refined argument based on pairwise influ-
ences can be used in the multivariate setting to improve on the clique dynamics condition, leading
to better approximation results on abstract polymer models.

1.3 Analyzing spectral expansion

As core technique for obtaining Theorem 4, we adapt an approach for bounding the mixing time
that was recently used to prove rapid mixing of Glauber dynamics for the entire regime blow
the tree threshold for several applications, such as the hard-core model [2], general two-state
spin systems [14], and proper colorings [12, 22]. The idea is to map the desired distribution to a
weighted simplicial complex.

A simplicial complex- over a groundset* is a set family- ⊆ 2* such that for each g ∈ - every
subset of g is also in - . We call the elements g ∈ - the faces of - and refer to its cardinality |g |
as dimensionality.

For a hard-core instance (�, _), the authors of [2] construct a simplicial complex over a ground
set * that contains two elements G{, G{ ∈ * for each vertex { ∈ + . For every independent set
� ∈ I(�), a face g� ∈ - is introduced such that G{ ∈ g� if { ∈ � and G{ ∈ g� otherwise. The
simplicial complex is completed by taking the downward closure of these faces. Note that by
construction all maximum faces of the resulting complex are |+ |-dimensional and there is a one-to-
one correspondence between the maximum faces and the independent sets in I(�). By assigning
each maximum face g� ∈ - an appropriate weight, the Glauber dynamics can be represented as
a random walk on those maximum faces, which is sometimes referred to as the two-step walk or
down-up walk. Using a local-to-global theorem [1], the mixing time of this two-step walk can
then be bounded based on certain local expansion properties of the simplicial complex - (see
Section 2 for the technical details). It is then proved that such local expansion properties are
well captured by the largest eigenvalue of the pairwise influence matrixR� , which is a |+ | × |+ |
matrix that contains the pairwise influenceR� ({, |) for all {,| ∈ + . Finally, by bounding those
influences a bound on this largest eigenvalue of R� is obtained. This analysis was later refined
and generalized in [14] to general two-state spin systems.

This methodwas independently extended in [12] and [22] to the non-Boolean domain by apply-
ing it to the Glauber dynamics for proper colorings. The main differences to the Boolean domain
are that elements of the simplicial complex now represent combinations of a vertex and a color.
Furthermore, the bound on the local spectral expansion was obtained by using a different influ-
encematrix, which captures the effect of selecting a certain color for one vertex on the distribution
of colors for another vertex.
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Although we are dealing with the hard-coremodel, which is Boolean in nature, the way that we
model block dynamics is mainly inspired by the existing work on proper colorings [12]. Assume
we have an instance of the multivariate hard-core model (�,,) and let L be a clique cover for �
of size< such that every pair of distinct cliques is vertex-disjoint (i.e., L is a partition of � into
cliques). We construct a simplicial complex - based on a ground set* that contains one element
G{ ∈ * for each vertex { ∈ + and one additional element ∅8 for each clique L8 ∈ L. We introduce
a face g� ∈ - for each independent set � ∈ I(�) such that for every L8 ∈ L we have ∅8 ∈ g� if
L8 ∩ � = ∅ and G{ ∈ g� if L8 ∩ � = {{} for some { ∈ L8 . The simplicial complex is completed by
taking the downward closure of these faces. As we discuss in Section 3.1, all maximum faces of
the resulting complex are<-dimensional and there is a bijection between the maximum faces and
the independent sets of � . Furthermore, there is a natural partitioning {*8 }8∈[<] of the ground
set* , each partition*8 corresponding to a clique L8 , such that every maximum face in- contains
exactly one element from each partition*8 .

By weighting each maximum face of - by the contribution of the corresponding independent
set to the partition function, the block dynamics based on L are equivalent to the two-step walk
on - . Thus, in order to bound the mixing time of the block dynamics, it is sufficient to study
the local expansion properties of - . To this end, we adapt the influence matrix used for proper
colorings in [12]. For G ∈ * , let P� [G] denote the probability that G ∈ g� for an independent set
� ∈ I(�) drawn from ` (�,,) and corresponding maximum face g� ∈ - . Similarly as for defining
pairwise influences, we extend this notation to conditional probabilities. The clique influence
matrixQ�,L contains an entryQ�,L (G, ~) for each G, ~ ∈ * with

Q�,L (G, ~) =
{
0 if G, ~ ∈ *8 for some 8 ∈ [<],
P� [~ | G ] − P� [~] otherwise.

By using similar linear-algebraic arguments as in [12] we prove that the maximum eigenvalue
ofQ�,L can be used to upper bound the local spectral expansion of - . To obtain Theorem 4 it is
then sufficient to relate Condition 3 to the maximum eigenvalue of Q�,L. The following lemma
establishes this connection.

◮ Lemma 7. Let (�,,) be an instance of themultivariatehard-coremodel that satisfiesCondition 3
for a function @ and a constant �. For every ( ⊆ + and every disjoint clique cover L of � [(] it
holds that the largest eigenvalue ofQ� [( ],L is at most (2 +�)�. ◭

Note that our simplicial-complex representation is only given under the assumption that the
cliques in the clique cover L are pairwise disjoint. Indeed, this is a necessary requirement to
map the block dynamics to the two-step walk such that the local-global-theorem from [1] can
be applied. Thus, Lemma 7 only helps to prove Theorem 4 for disjoint clique covers. However,
we relax this requirement by proving that for every clique cover L a disjoint clique cover  can
be constructed such that the block dynamics B(�, ,, L) and B(�, ,,  ) have asymptotically the
same mixing time. By this comparison argument, we extend Theorem 4 to arbitrary clique covers.

We are aware that, in the case of Glauber dynamics, more recent techniques for combining
simplical complex representations with entropy factorization as proposed in [13] yield superior
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mixing time results. However, in case of the hard-core model, this approach comes with an addi-

tional multiplicative factor of JO(J2) in the mixing time (see section 8 of [13]). Although negligi-
ble for bounded degree graphs, this would be too much for our application, as the degree of our
discretization gets exponentially large in the continuous volume |V| of the system. Thus, directly
relating local spectral expansion with the spectral gap of block dynamics is more suitable in our
case. We leave as an open question, whether a modification of the approach in [13] can be applied
to further improve our mixing time result.

1.4 Outlook

We obtain the fugacity bound from Theorem 1 based on the tree threshold _c (J) of the hard-core
model. An obvious question is whether there are any structural properties of our discretization
that can be used to improve this bound. Similar results are known for specific graph classes, such
as the 2-dimensional square lattice [50, 54, 56]. In [44] the authors discuss that a generalization
of the connective constant to the continuous Euclidean space might be applicable to improve
their uniqueness result for the hard-sphere model. A comparable algorithmic result was already
established for the discrete hard-core model in [52]. However, any such improvement for our
discretization would require the connective constant of �d to be at least by a constant factor
small than its maximum degree Jd . Unfortunately, due to a result in [49], this is not the case.
Although this does not necessarily imply that a similar concept does not work in continuous
space, it gives a strong evidence that a more specialized tool instead of the connective constant
might be required.

A different direction for future work is to seewhich other quantities and properties of themodel
are preserved under discretization. This would especially include the thermodynamic pressure
and its analyticity. As a matter of fact, non-analytic points of the pressure along the positive real
axis of fugacity in the thermodynamic limit are known to mark phase transitions in infinite vol-
ume systems (see for example [44]). Oneway to approach this could be to prove a relation between
zero-freeness of the continuous and the discretized partition function in a complex neighborhood
of the real axis by extending our convergence result to the complex domain. Along this line, in-
sights could be gained in how far properties like correlation decay and phase transitions (or their
absence) are preserved under sufficiently fine discretization.

From a purely technical point of view, it is interesting to see if our result on the mixing time
of block dynamics in Theorem 4 also holds without the requirement of using cliques as blocks.
Especially: is the mixing time for block dynamics for the univariate hard-core model polynomial
in the number of blocks for any block cover? Most of our techniques that we use for clique covers,
such as modeling the distribution as a simplicial complex and relating its local spectral expansion
to the clique influence matrix, can be generalized in a straightforward way for different choices
of blocks. However, the main difficulty is to relate generalized versions of the clique influence
matrix to pairwise influences, as we do in Lemma 7. One way to circumvent this might be to
not rely on pairwise influences at all but to rather investigate the influence matrix directly, for
example, via different computational-tree methods.

Finally, it would be interesting to see if approaches like ours can be extended to other contin-
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uous models from statistical physics (see for example coarse-graining [21]). We believe that the
variety of tools that are already established for discrete spin systems are useful in this setting
to establish rigorous computational results for different continuous models. We emphasize that
clique and block dynamics are a useful computational tool to handle the exponential blow-ups
caused by discretization.

2 Preliminaries

We denote the set of all natural numbers (including 0) byN and the set of all real numbers by R.
For each = ∈ N, let [=] denote the interval [1, =] ∩ N. Further, for a graph � = (+, �), we
write #� ({) for the open neighborhood of a vertex { ∈ + (i.e., all | ∈ + with ({,|) ∈ �) and
# [{] = #� ({) ∪ {{} for the closed neighborhood. We might omit the graph if it is clear from the
context.

2.1 Markov chains and spectral properties

For any (time-homogeneous)Markov chainM, we denote its state space bySM and its transition
probabilities by %M . If M has a unique stationary distribution, we denote it by cM . Assume
|SM | = # ∈ N>0. It is well known that, if M is reversible with respect to cM , this implies that
%M has # real eigenvalues

1 = V1 (%M) ≥ V2 (%M) ≥ · · · ≥ V# (%M) ≥ −1.

We write V∗ (%M) = max{V1 (%), |V# (%) |} for the largest absolute eigenvalue and call 1 − V∗ (%M)
the spectral gap of %M . We extend these notations to general matrices � with real eigenvalues,
e.g., we denote the largest eigenvalue by V1 (�).

If M is ergodic, we define its mixing time starting from some state G ∈ SM as

g
(G)
M (Y) = inf{C ∈ N | 3TV

(
%CM (G, ·), cM

)
≤ Y},

where %CM (G, ·) is the distribution of M on SM after C steps, starting from G , and where 3TV
(
·, ·

)
denotes the total variation distance. Recall that for any ergodic, reversible Markov chainM and
every state G ∈ SM , it holds that

g
(G)
M (Y) ≤ 1

1 − V∗ (%M) ln
(

1

cM (G) · Y

)
. (1)

For further details on Markov chains please refer to [40].

2.2 The multivariate hard-core model

Let � = (+, �) be an undirected graph, and let I(�) denote the set of independent sets in � ; if
the graph is clear from the context, we only write I. The multivariate hard-core model is a tuple
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(�,,), where , = {_{}{∈+ is a set of weights, containing one weight _{ ∈ R>0 for each vertex
{ ∈ + . The partition function of (�,,) is defined as

/ (�,,) ≔
∑
� ∈I

∏
{∈�

_{.

The Gibbs distribution ` (�,,) is a probability distribution on I, assigning each independent set
� ∈ I the probability

` (�,,) (� ) =
∏
{∈� _{

/ (�, ,) .

If the model (�,,) is clear, we only write / and `.
Large parts of our analysis consider the Gibbs distributions and the partition functions of in-

duced subgraphs � [(] for ( ⊆ + while keeping the weights of the respective vertices in ( . In
this case, we might omit the set of weights and write / (� [(]) for / (� [(], ,[(]) or ` (� [( ]) for

` (� [( ],, [( ]) . Further, for any non-empty set of vertices ( ⊆ + , we define ` (�)
|( to be the distribu-

tion of the independent sets in I(� [(]) induced by ` (�) . Formally, this means ` (�)
|( assigns every

independent set � ∈ I(� [(]) the probability

`
(�)
|( (� ) =

∑
� ′∈I(�)

1� ⊆� ′`
(�) (� ′).

We associate every independent set � ∈ I with a spin assignment f (� ) : + → {0, 1} such that(
f (� ) )−1 (1) = � . We extend this notation to restrictions on subsets ( ⊆ + . For any independent

set � ∈ I, the partial configuration on ( corresponding to � is a spin assignment f (� )
|( : ( → {0, 1}

such that
(
f
(� )
|(

)−1 (1) = � ∩ ( . By abuse of notation, we use these spin assignments as events (e.g.,
for conditioning on partial configurations). Further, for all ( ⊆ + let 0 |( : ( → {0} be the partial
configuration that fixes all vertices in ( not to be in the independent set (i.e., 0 |( = f

(∅)
|( ).

Finally, for each for { ∈ + , we write P� [{] to denote the probability of the event that { ∈ � for
� ∼ `, and P� [{] to denote the probability of the event { ∉ � for � ∼ `. Formally,

P� [{] = ` (�)
| {{} ({{}) and P� [{] = ` (�)

| {{} (∅).

2.3 Clique dynamics and clique covers

For any graph� = (+, �), a set L = {L8 }8∈[<] ⊆ 2+ is called a clique cover of� with size< ∈ N>0

if
⋃
8∈[<] L8 = + and each L8 ∈ L induces a clique in � . Further, we call L a disjoint clique cover

if every pair of distinct cliques in L is vertex-disjoint.

Note that for every ( ⊆ + it holds that ` (�)
|(

(
·
�� 0 |+ \( ) = ` (� [( ]) (·). Thus, the following defini-

tion of clique dynamics is equivalent to our description in the introduction and easier to compare
with our formalization of block dynamics in Definition 9.
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◮ Definition 8 (clique dynamics [24]). Let (�, ,) be a multivariate hard-core model, and let L
be a clique cover of� with size<. The clique dynamics C(�, ,, L) are the followingMarkov chain
with state space I(�). Let (-C )C ∈N denote a (random) sequence of states of C(�, ,, L), where -0

is arbitrary. Then, for all C ∈ N and all -C = � with � ∈ I(�), the transitions of C(�, ,, L) are as
follows:

1: choose 8 ∈ [<] uniformly at random ;
2: choose �+ ∈ I(� [L8]) according to ` |L8

(
·
�� 0 |+ \L8

)
;

3: if �+ = ∅ then -C+1 = � \ L8 ;
4: else if � ∪ �+ is an independent set then -C+1 = � ∪ �+ ;
5: else -C+1 = � ; ◭

It was shown in [24] that for any clique cover L the clique dynamics Markov chain C(�, ,, L)
is ergodic and reversible with stationary distribution ` (�,,) . In the case L = {{{} | { ∈ + }, the
clique dynamics correspond to the Glauber dynamics.

2.4 Block dynamics and block covers

For any graph� = (+, �), we call a set L = {L8 }8∈[<] ⊆ 2+ a block cover of� with size< ∈ N>0

if
⋃
8∈[<] L8 = + . We refer to the elements of L as blocks. Note that a clique cover is a special

case of a block cover, where all blocks are cliques.

◮ Definition 9 (block dynamics). Let (�,,) be a multivariate hard-core model, and let L be a
block cover of� with size<. We define the block dynamics B(�, ,, L) to be the following Markov
chain with state space I(�). Let (-C )C ∈N denote a (random) sequence of states of B(�, ,, L),
where -0 is arbitrary. Then, for all C ∈ N and any -C = � with � ∈ I(�), the transitions of
B(�, ,, L) are as follows:
1: choose 8 ∈ [<] uniformly at random ;

2: choose �+ ∈ I(� [L8]) according to ` |L8
(
·
��� f (� )

|+ \L8

)
;

3: -C+1 = (� \ L8 ) ∪ �+ ; ◭

The block dynamics Markov chain B(�, ,, L) is ergodic with stationary distribution `, inde-
pendent of the chosen block cover L. If L = {{{} | { ∈ + }, then the block dynamics correspond
to the Glauber dynamics.

2.5 Pairwise influence

Let {,| ∈ + and let ( ⊂ + such that {,| ∉ ( . Further, let f |( = f
(� )
|( be a partial configuration

on ( corresponding to any independent set � ∈ I. The pairwise influence of { on | in � under
condition f |( is defined as

R
f |(
� ({,|) =

{
0 if { = |,

P�

[
|

�� {, f |(
]
− P�

[
|

�� {, f |(
]

otherwise .
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For the case ( = ∅, we also write R� ({,|). Furthermore, we denote by R
f |(
�

and R� the corre-
sponding (= − |( |) × (= − |( |) matrices.

2.6 Simplicial complexes and local spectral expansion

Let * denote a set. A simplicial complex (over * ) is family of subsets - ⊆ 2* such that, for all
g ∈ - and all g ′ ⊆ g , it holds that g ′ ∈ - . We call the elements g ∈ - faces, and we call |g | the
dimension of a face g . We denote the set of all :-dimensional faces in - by - (:). A simplicial
complex is pure 3-dimensional if and only if the set of all inclusion-maximal faces is exactly- (3).
Last, we say that a pure 3-dimensional simplicial complex is 3-partite if and only if there is a
partition {*8 }8∈[3 ] such that, for all 8 ∈ [3] and all g ∈ - (3), it holds that |*8 ∩ g | = 1.

We extend the definition of a pure 3-dimensional simplicial complex - to a weighted simplicial
complex (-,|) with a weight function | : - → R>0 in the following inductive manner. Each
face g ∈ - (3) is assigned a weight | (g) ∈ R>0. Each non-maximal face g ′ ∈ - has the weight

| (g ′) =
∑

g∈- (3) :g′⊂g
| (g).

We are interested in two types of Markov chains on a weighted pure 3-dimensional simplicial
complex (-,|). (1) The two-step random walk V(-,|), which is a Markov chain on the state
space - (3). Let gC ∈ - (3) be the state of V(-,|) at time C ∈ N, then gC+1 is chosen according
the following transition rule:

1. choose G ∈ gC uniformly at random, let g ′ = gC \ {G}, and

2. choose gC+1 ∈ {g ∈ - (3) | g ′ ⊂ g } proportionally to their weights | (g).
(2) The 1-skeleton of (-,|) is an edge-weighted graph with vertices +- =

{
G ∈ *

�� {G} ∈
-

}
, edges �- =

{
(G, ~) ∈ + 2

-

�� {G, ~} ∈ - }
, and weights | ({G, ~}). The skeleton walk on (-,|),

denoted by S(-,|), is the non-lazy random walk on its 1-skeleton.
For a face g ∈ - , the link of g is a weighted pure (3 − |g |)-dimensional simplicial complex

(-g , |g ), where -g = {g ′ \ g | g ′ ∈ -, g ⊆ g ′ } and, for all g ′ ∈ - , we have |g (g ′) = | (g ′ ∪ g).
◮ Definition 10 (local expander). Let (-,|) be a weighted pure 3-dimensional simplicial com-
plex, and let U ∈ R>0. We say that a face g ∈ - is a local U-expander if and only if the second
largest eigenvalue of its skeleton walk Sg = S(-g , |g ) is at most U (i.e., V2

(
%Sg

)
≤ U). Further,

we say (-,|) is a local (U0, . . . , U3−2)-expander if and only if, for all : ∈ {0} ∪ [3 − 2], each face
g ∈ - (:) is a local U: -expander. ◭

In [1] the authors relate local expansion and two-step walks. We use the following formulation
of their result.

◮ Theorem 11 ([2, Theorem 1.3]). Let (-,|) be a weighted pure 3-dimensional simplicial
complex. If (-,|) is a local (U0, . . . , U3−2)-expander, then for the second-largest eigenvalue of the
two-step walkV = V(-,|), it holds that

V2 (%V) ≤ 1 − 1

3

∏
:∈{0}∪[3−2]

(1 − U: ). ◭
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3 Mixing time of block dynamics for clique covers

3.1 Simplicial-complex representation

Let (�,,) be an instance of the multivariate hard-core model and let L be a disjoint clique cover
of size<. We construct the simplicial-complex representation as follows. For each clique L8 ∈ L,
we have a set*8 that consists of an element ∅8 ∈ *8 and one element G{ ∈ *8 for each vertex { ∈ L8 .
The ground set of the simplicial complex is* =

⋃
8∈[<] *8 . Further, the complex- contains a face

g� ∈ - for each independent set � ∈ I where,

• for each 8 ∈ [<] and G{ ∈ *8 , we have G{ ∈ g� if and only if { ∈ � , and,

• for each 8 ∈ [<], we have ∅8 ∈ g� if and only if � ∩ L8 = ∅ .

Note that each independent set contains at most one vertex { ∈ L8 for each clique in the clique
cover L8 ∈ L. As L is a disjoint cover, each of the faces g� ∈ - contains exactly one element from
each*8 for 8 ∈ [<]. We complete - by taking the downward closure of these faces. We make the
following observation.

◮ Observation 12. The simplicial-complex representation - for an instance of the multivariate
hard-core model (�,,) with disjoint clique cover L of size< is pure<-dimensional and<-partite
with partition {*8}8∈[<] as constructed above. Further, there is a one-to-one correspondence
between the independent sets of� and the maximum faces - (<). ◭

We continue by equipping - (<) with weights, which induces weights for all other faces in -
as well. For a face g� ∈ - (<), corresponding to the independent set � ∈ I, we set | (g� ) = ` (� ).
We now observe the following relation to block dynamics.

◮ Observation 13. Let (�,,) be an instance of the multivariate hard-core model, and let L be a
disjoint clique cover of � . Further, let (-,|) be the corresponding simplicial-complex represen-
tation. It holds that the two-step walkV(-, ,) is equivalent to the block dynamics B(�, ,, L) in
the sense that there is a bijection between both state spaces that preserves transition probabilities.
Consequently, V(-, ,) is ergodic, reversible and has a unique stationary distribution cV (g� ) =
` (� ) for every maximum face g� ∈ - (<), corresponding to the independent set � ∈ I(�). ◭

Based on Observation 12, applying Theorem 11, we obtain a lower bound on the spectral gap
ofV = V(-,|) in terms of local expansion. Moreover, for an independent set � ∼ `, it holds that

Pr[G{ ∈ g� ] = P� [{] for all { ∈ + and Pr[∅8 ∈ g� ] = P�

[⋂
{∈L8

{

]
for all 8 ∈ [<] .

For simplicity, we also write P� [G{] and P� [∅8 ] for these probabilities.
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3.2 Bounding local expansion by clique influence

Let (�,,) be an instance of the multivariate hard-core model with disjoint clique cover L of
size<. Further, let (-,|) be the resulting simplicial-complex representation with ground set *
and partition {*8 }8∈[<] . The clique influence matrix Q�,L contains an entry Q�,L (G, ~) for each
G, ~ ∈ * with

Q�,L (G, ~) =
{
0 if G, ~ ∈ *8 for some 8 ∈ [<],
P� [~ | G ] − P� [~] otherwise.

(2)

Note that this definition includes the cases where G ∈ {∅8 | 8 ∈ [<] } or ~ ∈ {∅8 | 8 ∈ [<] }. The
following lemma and its proof are an adapted version of [12, Theorem 8].

◮ Lemma 14. Let (�,,) be an instance of themultivariate hard-coremodel with a disjoint clique
cover L of size<. Further, let (-,|) be the resulting simplicial-complex representation. Denote
by S = S(-,|) be the skeleton walk on (-,|), and let Q�,L be the clique influence matrix as
defined in equation (2). Then

V2 (%S) ≤
1

< − 1
V1

(
Q�,L

)
. (3)

◭

Proof. We first take a detailed look at the entries of the transitions %S . Note that by definition
SS = * and %S (G, G) = 0 for all G ∈ * . Further, it holds for each G ∈ * that∑

I∈* :
I≠G

| ({G, I}) =
∑
I∈* :
I≠G

P� [G, I] =
∑
8∈[<]

∑
I∈*8 :
I≠G

P� [G, I] =
∑
8∈[<]:
G∉*8

∑
I∈*8

P� [G, I] = (< − 1)P� [G],

where the third equality comes from the fact that for all 8 ∈ [<] and every pair G, I ∈ *8 it holds
that P� [G, I] = 0. Thus, we get for each ~ ∈ * with ~ ≠ G the transition probability

%S (G, ~) =
| ({G, ~})∑
I∈* :
I≠G

| ({G, I}) =
P� [G, ~]

(< − 1)P� [G]
=

1

< − 1
P� [~ | G ].

Note that this especially implies %S (G, ~) = 0 if G, ~ ∈ *8 for some 8 ∈ [<].
Let J be the matrix with J (G, G) =

1
<P� [G] for each G ∈ * and 0 everywhere else, and

let d be the vector of its diagonal, that is, for all G ∈ * , we have d (G) = J (G, G). Note that S
satisfies the detailed-balance equations with d, that is, it is reversible with respect to d. Thus,
G = J

1/2%SJ
−1/2 is symmetric. This implies that for each eigenvector z of G with eigenvalue V

there is a left eigenvector zTJ1/2
=

(
J

1/2
z
)T

and a right eigenvector J−1/2
z of %S for the same

eigenvalue V . Thus, if z ′ = J
−1/2

z is such a right eigenvector of %S , then Jz
′
= JJ

−1/2
z = J

1/2
z

yields a (transposed) left eigenvector for the same eigenvalue.
We investigate the eigenvalues of %S more carefully. Consider the column vector 1with 1(G) =

1 for all G ∈ * . Note that 1 is a right eigenvector of %S for eigenvalue 1, which is the maximum
eigenvalue, since %S is a transition matrix. We denote by 0 = (J1)T the corresponding left
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eigenvector with 0 (G) =
1
<
P� [G] for all G ∈ * . Further, we define a set of column vectors

{18 }8∈[<] and a set of row vectors {0 8 }8∈[<] such that for each 8 ∈ [<] and each G ∈ * it holds
that

18 (G) =
{
1 if G ∈ *8 ,
0 otherwise

and 08 (G) =
{

1
<P� [G] if G ∈ *8 ,
0 otherwise.

Note that for each 8, 9 ∈ [<], 8 ≠ 9 , and each G ∈ *8 it holds that
∑
~∈* 9

%S (G, ~) =
1

<−1 and∑
~∈*8

%S (G, ~) = 0. Thus, for all 8 ∈ [<], we have %S18 = 1
<−1 (1 − 18). It follows that

%S

(
1

<
1 − 18

)
=

1

<
1 − 1

< − 1
(1 − 18) = − 1

<(< − 1) 1 +
1

< − 1
18 = − 1

< − 1

(
1

<
1 − 18

)
,

which shows that for each 8 ∈ [<] the vector 1
<1−18 is a right eigenvector with eigenvalue − 1

<−1 .

Similarly, the vector
(
J

( 1
<
1 − 18

) )T
=

1
<
0 − 08 is a left eigenvector for this eigenvalue.

We use these vectors to construct an eigenbasis of %S . Let 8 ∈ [<], and consider the set

( = {1} ∪
⋃
9 ∈[<]:
9≠8

{
1

<
1 − 19

}
.

Note that ( is a set of< linearly independent right eigenvectors of %S . By the relation between
eigenvectors of %S and G, we construct a set (G =

{
J

1/2
z
�� z ∈ (

}
of independent eigenvectors

of G. As G is symmetric, such a set can always be extended to an eigenbasis (G of G, such
that the vectors in (G \ (G are orthogonal to the vectors in (G. This gives us an eigenbasis ( ={
J

−1/2
z

��� z ∈ (G
}
of right eigenvectors of %S .

We proceed by relating the eigenvalues of %S to the eigenvalues of Q�,L, using ( . Note that
both %S and Q�,L are (= +<) × (= +<) matrices. We first show (Claim 1) that all vectors of (
are in the kernel of Q�,L. Since |( | = < + 1 and since the vectors of ( are linearly independent,
the kernel of Q�,L has a dimension of at least< + 1. Thus, Q�,L has at least< + 1 eigenvectors
associated with the eigenvalue 0. Then (Claim 2) we show that all vectors of ( \ ( , which are the
remaining eigenvectors of %S in our consideration, are also right eigenvectors of Q�,L but with
eigenvalues scaled by (< − 1). Last (Claim 3), we conclude that equation (3) holds.

Claim 1. Let z ∈ ( , and let 0 denote the vector with 0(G) = 0 for all G ∈ * . If z = 1, then
Q�,Lz = 0 because for all 9 ∈ [<] and every G ∈ * 9 it holds that

Q�,L1(G) =
∑

:∈[<]:
:≠9

∑
~∈*:

(P� [~ | G ] − P� [~]) =
∑

:∈[<]:
:≠9

∑
~∈*:

P� [~ | G ] −
∑

:∈[<]:
:≠9

∑
~∈*:

P� [~] = 0.

If z = 19 for some 9 ∈ [<], again, we haveQ�,Lz = 0 because for all : ∈ [<] and every G ∈ *:
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it holds that
Q�,L19 (G) =

∑
;∈[<]:
;≠:

∑
~∈*;

Q�,L(G, ~)1{: = 9, ; = 9} = 0.

Claim 2. We first show that all vectors z ∈ ( \ ( are orthogonal to 1
<0 − 0 9 for all 9 ∈ [<].

Let z ∈ ( \ ( . First, note that

0z = (J1)Tz = 1
T
Jz =

(
J

1/2
1

)T
J

1/2
z = 0,

where the last equality is due to J
1/2

1 ∈ (G and J
1/2

z ∈ (G \ (G. Similarly, we obtain for each
9 ∈ [<] with 9 ≠ 8 that

(
1

<
0 − 0 9

)
z =

(
J

1/2
(
1

<
1 − 19

))T
J

1/2
z = 0.

Finally, note that 1
<0 −08 can be obtain as a linear combination from 0 and the vectors 1

<0 −0 9

for 9 ≠ 8, implying that it is orthogonal to z as well.
Assume that z has eigenvalue V . We define the matrix � = 10 and the matrices � 9 = 190 9 for

9 ∈ [<], and note that

Q�,L = (< − 1)%S −<©­«
� −

∑
9 ∈[<]

� 9
ª®¬
.

Since z is orthogonal to all vectors 1
<
0 −0 9 for 9 ∈ [<], we have for every : ∈ [<] and G ∈ *:

that

©­«
©­«
� −

∑
9 ∈[<]

� 9
ª®¬
z
ª®¬
(G) =

∑
~∈*

∑
9 ∈[<]

((
1

<
� (G, ~) − � 9 (G,~)

)
z

)
(~) =

∑
9 ∈[<]

(
1

<
0 − 0 9

)
z = 0.

This implies that
(
� − ∑

9 ∈[<] � 9

)
z = 0, and thus it holds that

Q�,Lz = (< − 1)%Sz = (< − 1)Vz.

Claim 3. Recall that V1 (%S) = 1 and that all eigenvectors of %S from ( \ {1} have a negative
eigenvalue. We make a case distinction with respect to the sign of V2 (%S) = V . If V > 0, then
there is an eigenvector z ∈ ( \ ( corresponding to V , as the eigenvalues of vectors from ( \ {1}
are negative. By Claim 2, there is an eigenvalue V ′ of Q�,L such that V = V ′/(< − 1). Since
V ′ ≤ V1

(
Q�,L

)
, equation (3) holds.

If V ≤ 0, then equation (3) follows immediately, as the kernel of Q�,L is nontrivial and, thus,
V1

(
Q�,L

)
≥ 0. This concludes the proof. �
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3.3 Bounding clique influence

We prove an upper bound for V1
(
Q�′,L

)
for all induced subgraphs� ′ of� and every disjoint clique

cover L of� ′, given that (�, ,) satisfy Condition 3.

◮ Lemma 7. Let (�,,) be an instance of themultivariatehard-coremodel that satisfiesCondition 3
for a function @ and a constant �. For every ( ⊆ + and every disjoint clique cover L of � [(] it
holds that the largest eigenvalue ofQ� [( ],L is at most (2 +�)�. ◭

In the proof of Lemma 7, we apply the following lemma, based on a result in [14].

◮ Lemma 15. Let = ∈ N, let� ∈ C=×= , and let d (�) denote the spectral radius of�. Assume that
there is a b ∈ R and a ? : [=] → R>0 such that for all 8 ∈ [=] it holds that ∑9 ∈[=] |�(8, 9) |? ( 9) ≤
b? (8). Then d (�) ≤ b . ◭

Note that, by Lemma 15, Condition 3 implies V1
(
R� [( ]

)
≤ � for all ( ⊆ + .

We show that Condition 3 implies the existence of a b from Lemma 15 such that for all induced
subgraphs � ′ of � and every disjoint clique cover L of � ′ there is a function ? that satisfies the
conditions of Lemma 15 forQ�′,L. To this end, we use the following lemmas.

◮ Lemma 16. Let (�,,) be an instance of the multivariate hard-core model with clique cover L
of size<. Further, let (-,|) be the corresponding simplicial-complex representation with ground
set * and partition {*8}8∈[<] . For all 8, 9 ∈ [<] and G ∈ *8 it holds that

Q�,L
(
G, ∅9

)
= −

∑
{∈L9

Q�,L(G, G{). ◭

Proof. By definition,

Q�,L
(
G, ∅9

)
= P�

[⋂
|∈L9

|

���� G
]
− P�

[⋂
|∈L9

|

]
= −

(
P�

[⋃
|∈L9

|

���� G
]
− P�

[⋃
|∈L9

|

] )
.

Note that for any pair of vertices from the same clique |1, |2 ∈ L9 with |1 ≠ |2 the events that
|1 is in an independent set and that |2 is in an independent set are disjoint. Thus, we obtain

−
(
P�

[⋃
|∈L9

|

���� G
]
− P�

[⋃
|∈L9

|

] )
= −

∑
|∈L9

(P� [| | G ] − P� [|]) = −
∑
|∈L9

Q�,L (G,|). �

◮ Lemma 17. Let (�,,) be an instance of the multivariate hard-core model with clique cover L
of size<. Further, let (-,|) be the corresponding simplicial-complex representation with ground
set * and partition {*8}8∈[<] . For all 8, 9 ∈ [<] with 8 ≠ 9 and all { ∈ L8 , | ∈ L9 it holds that

Q�,L (G{, G|) = P� [{]R� ({,|). ◭

Proof. By the law of total probability,

Q�,L(G{, G|) = P� [| | { ] − P� [|]
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= P� [| | { ] − P� [| | { ]P� [{] − P� [| | { ]P� [{]
= P� [{] (P� [| | { ] − P� [| | { ])
= P� [{]R� ({,|). �

◮ Lemma 18. Let (�,,) be an instance of the multivariate hard-core model with clique cover L
of size<. Further, let (-,|) be the corresponding simplicial-complex representation with ground
set * and partition {*8}8∈[<] . For all 8, 9 ∈ [<] with 8 ≠ 9 and every | ∈ L9 it holds that

Q�,L(∅8 , G|) =
∑
{∈L8

P� [{]R
0|L8 \{{}
�

({,|) =
∑
{∈L8

P� [{]R�{
({, |),

where�{ = � [+ \ (L8 \ {{})] . ◭

Proof. Let ∅8 denote the complementary event to ∅8 , meaning that some vertex D ∈ L8 is an
independent set drawn from the Gibbs distribution. By the law of total probability,

Q�,L (∅8 , G|) = P� [| | ∅8 ] − P� [|]

= P� [| | ∅8 ] − P� [| | ∅8 ]P� [∅8 ] − P�

[
|

��� ∅8 ]P� [
∅8

]
= P�

[
∅8

] (
P� [| | ∅8 ] − P�

[
|

��� ∅8 ] )
= P�

[⋃
D∈L8

D
] (
P�

[
|

��� ⋂
D∈L8

D
]
− P�

[
|

��� ⋃
D∈L8

D
] )
.

Because the events that two distinct vertices from the same clique are in an independent set are
disjoint, we get

P�

[
|

��� ⋃
D∈L8

D
]
=

∑
{∈L8

P� [| | { ] P� [{]
P�

[⋃
D∈L8 D

] and

P�

[
|

��� ⋂
D∈L8

D
]
= P�

[
|

��� ⋂
D∈L8

D
] P� [⋃

{∈L8 {
]

P�

[⋃
D∈L8 D

] =

∑
{∈L8

P�

[
|

��� ⋂
D∈L8

D
]

P� [{]
P�

[⋃
D∈L8 D

] .
Thus, we obtain

P�

[⋃
D∈L8

D
] (
P�

[
|

��� ⋂
D∈L8

D
]
− P�

[
|

��� ⋃
D∈L8

D
] )

=

∑
{∈L8

P� [{]
(
P�

[
|

��� ⋂
D∈L8

D
]
− P� [| | { ]

)
.

Note that for each { ∈ L8 it holds that

P�

[
|

��� ⋂
D∈L8

D
]
= P�

[
|

��� {,⋂
D∈L8\{{}

D
]
,

Further, because { being in the independent set implies that no other vertex D ∈ L8 can be in the

22



independent set too, it also holds that

P� [| | { ] = P�

[
|

��� {,⋂
D∈L8\{{}

D
]
.

Consequently, we conclude that

Q�,L (∅8 , G|) =
∑
{∈L8

P� [{]R
0|L8 \{{}
�

({, |) =
∑
{∈L8

P� [{]R�{
({,|). �

◮ Lemma 19. Let (�,,) be an instance of the multivariate hard-core model, and let { ∈ + and
| ∈ #� ({). Then P� [|] ≤ −R� ({,|) = |R� ({,|) |. ◭

Proof. Since | ∈ #� ({), it holds thatR� ({,|) = −P� [| | { ]. We conclude by noting that

P� [| | { ] = _|
/ (� [+ \ #� [|]])
/ (� [+ \ {{}]) ≥ _|

/ (� [+ \ #� [|]])
/ (�) = P� [|]. �

We now prove the main lemma of this subsection.

Proof of Lemma 7. To simplify notation, set � ′
= � [(] and< = |L |. Let (-,|) be the simplicial-

complex representation of (� ′, ,[(]) with clique cover L and let* be the corresponding ground
set of (-,|) with partition {*8 }8∈[<] .

As we aim to prove our claim using Lemma 15, we need to construct a function ? : * → R>0

such that for all G ∈ * it holds that∑
~∈*

��Q�′,L (G, ~)
��? (~) ≤ (2 +�)�? (G).

To this end, we set ? (G{) = @({) for all { ∈ ( and ? (∅8 ) =
∑
{∈L8 P�′ [{]@({) for all 8 ∈ [<]. By

Lemma 19 we have for all 8 ∈ [<] and | ∈ L8 that∑
{∈L8

P�′ [{]@({) ≤ P�′ [|]@(|) +
∑

{∈#�′ (|)
|R�′ (|, {) |@({),

which, by Condition 3, implies

? (∅8 ) < (1 +�)@(|). (4)

Without loss of generality, assume G ∈ *8 for some 8 ∈ [<]. Recall that by definitionQ�′,L (G, ~) =
0 for all ~ ∈ *8 . By Lemma 16, we obtain

∑
~∈*

��Q�′,L (G, ~)
��? (~) = ∑

9 ∈[<]:
9≠8

©­«
��Q�′,L

(
G, ∅9

)��? (∅9 ) + ∑
|∈L9

��Q�′,L (G, G|)
��? (G|)ª®¬
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≤
∑
9 ∈[<]:
9≠8

∑
|∈L9

��Q�′,L (G, G|)
��(? (∅9 ) + ? (G|)) .

Further, by our choice of ? and by equation (4), we obtain∑
9 ∈[<]:
9≠8

∑
|∈L9

��Q�′,L (G, G|)
��(? (∅9 ) + ? (G|)) < (2 +�)

∑
9 ∈[<]:
9≠8

∑
|∈L9

��Q�′,L (G, G|)
��@(|).

We proceed with a case distinction based on G . Assume that G = G{ for some { ∈ L8 . By
Lemma 17, we have

(2 +�)
∑
9 ∈[<]:
9≠8

∑
|∈L9

��Q�′,L (G{, G|)
��@(|) = (2 +�)P�′ [{]

∑
9 ∈[<]:
9≠8

∑
|∈L9

|R�′ ({,|) |@(|)

≤ (2 +�)
∑
9 ∈[<]:
9≠8

∑
|∈L9

|R�′ ({,|) |@(|).

Using that the cliques are disjoint and applying Condition 3, we get

(2 +�)
∑
9 ∈[<]:
9≠8

∑
|∈L9

|R�′ ({,|) |@(|) ≤ (2 +�)
∑
|∈(

|R�′ ({,|) |@(|) ≤ (2 +�)�@({) = (2 +�)�? (G{).

Now, assume that G = ∅8 . By Lemma 18, we have

(2 +�)
∑
9 ∈[<]:
9≠8

∑
|∈L9

��Q�′,L (∅8 , G|)
��@(|) = (2 +�)

∑
9 ∈[<]:
9≠8

∑
|∈L9

�����
∑
{∈L8

P�′ [{]R�′
{
({,|)

�����@(|)
≤ (2 +�)

∑
{∈L8

P�′ [{]
∑
9 ∈[<]:
9≠8

∑
|∈L9

��R�′
{
({,|)

��@(|),

where� ′
{ = �

′[( \ (L8 \ {{})] = � [( \ (L8 \ {{})] . As the cliques are disjoint and� ′
{ is a subgraph

of� , we apply Condition 3 to obtain

(2 +�)
∑
{∈L8

P�′ [{]
∑
9 ∈[<]:
9≠8

∑
|∈L9

��R�′
{
({,|)

��@(|) = (2 +�)
∑
{∈L8

P�′ [{]
∑

|∈(\(L8\{{})

��R�′
{
({,|)

��@(|)
≤ (2 +�)

∑
{∈L8

P�′ [{]�@({)

= (2 +�)�
∑
{∈L8

P�′ [{]@({)

= (2 +�)�? (∅8 ),
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which concludes the proof. �

3.4 Canonical paths in skeleton walks

The previous section shows that we can bound local expansion of the simplicial-complex repre-
sentation of a disjoint clique cover based on pairwise influence between vertices. The resulting
bound on the second largest eigenvalue of the skeletonwalks might in some cases be larger than 1,
which makes Theorem 11 inapplicable. Thus, we introduce a more crude bound on this second
eigenvalue by applying the canonical-path method to the skeleton walk. Although the resulting
bound is worse in most cases, it is guaranteed to be less than 1, which is sufficient to cover the
cases where using pairwise influence fails.

We start by giving a short overview on the canonical-path method. Let M be a Markov chain
that is reversible with respect to its stationary distribution cM . Let � (M) = {(G, ~) ∈ S2

M | G ≠

~, %M (G, ~) > 0} denote the edges of the Markov chain excluding self loops, and let �∗(M) =

{(G, ~) ∈ S2
M | %M (G, ~) > 0} be the set of edges including self loops. For each (G,~) ∈ �∗(M),

we set &M (G, ~) = cM (G)%M (G, ~). The idea of the canonical-path method is to construct a path
W = (G0 = G, G1, . . . , G; = ~) for every G, ~ ∈ SM with G ≠ ~ using the edges in � (M) (i.e.,
(G8−1, G8 ) ∈ � (M) for all 8 ∈ [;]). We denote by �

(
WG~

)
the set of edges that are used by the path

WG~ and by
��WG~ �� the length of a path. Further, we call a set of paths � = {WG~ | G, ~ ∈ SM, G ≠ ~}

canonical if and only if it contains exactly one path for each G, ~ ∈ SM with G ≠ ~, and its
congestion is defined to be

d (� ) = max
(|,I) ∈� (M)

1

&M (|, I)
∑

G,~∈SM :
(|,I) ∈� (WG~)

��WG~ ��cM (G)cM (~).

◮ Theorem 20 ([51, Theorem 5]). For any reversible Markov chainM and every set of canon-
ical paths � forM it holds that

V2 (%M) ≤ 1 − 1

d (� ) . ◭

By applying the canonical-path method to the skeleton walk, we obtain the following lemma.

◮ Lemma 21. Let (�,,) be an instance of the multivariate hard-core model with disjoint clique
cover L of size <, and let /max = max8∈[<]{/ (� [L8 ])}. Further, let (-,|) be the resulting
simplicial-complex representation, and let S = S(-,|) be the skeleton walk on (-,|). Then
V2 (%S) ≤ 1 − 1

12/ 2
max

. ◭

Proof. As discussed in the proof of Lemma 14, %S is reversible with respect to its stationary dis-
tribution cS , where cS (G) = 1

<P� [G] . Thus, &S (G,~) = 1
< (<−1)P� [G, ~].

We start by constructing the paths � = {WG~ | G, ~ ∈ *, G ≠ ~}. To this end, let ? be a fixed-
point-free permutation of [<]. Our construction goes as follows:

• W∅8 ∅9 = (∅8, ∅9 ) for 8 ≠ 9 ,
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• WG{∅8 = (G{, ∅8 ), W∅8G{ = (∅8, G{) for all { ∈ + with { ∉ L8 ,

• WG{G| = (G{, ∅8, ∅9 , G|) for { ∈ L9 , | ∈ L8 with 8 ≠ 9 ,

• WG~ = (G, ∅? (8) , ~) for G, ~ ∈ *8 .

Let � (� ) = ⋃
W ∈� � (W) and note that for all G ≠ ~ we have

��WG~ �� ≤ 3. It suffices to upper-bound

d (� ) ≤ 3 max
4∈� (� )

1

&S (4)
∑
G,~∈* :
4∈� (WG~)

cS (G)cS (~) .

We derive such an upper bound by partitioning � (� ) into the 3 following types of edges:

• � = {(G{, ∅8 ) ∈ � (� ) | { ∉ L8 },

• � = {(∅8 , G{) ∈ � (� ) | { ∉ L8},

• � = {(∅8 , ∅9 ) ∈ � (� ) | 8 ≠ 9}.

We make a case distinction with respect to these types.
CaseG. Let (G{, ∅8) ∈ � and without loss of generality assume { ∈ L9 for 9 ≠ 8. If ? ( 9) ≠ 8, then

(G{, ∅8 ) is only used by paths that start at G{ and go to any element in *8 (including ∅8 ). Further,
if ? ( 9) = 8, then it is also used by paths from G{ to any ~ ∈ * 9 with ~ ≠ G{. Thus, we obtain

1

&S (G{, ∅8 )
∑
G,~∈* :

(G{,∅8 ) ∈� (WG~)

cS (G)cS (~) ≤
<(< − 1)

<2

1

P� [∅8 | { ]

©­­­«
∑
~∈*8

P� [~] +
∑
~∈* 9 :
~≠G{

P� [~]
ª®®®¬

≤ 2

P� [∅8 | { ]
,

where the second inequality comes from the fact that we have
∑
~∈*:

P� [~] = P�

[⋃
~∈*:

~
]
= 1

for all : ∈ [<]. By the submultiplicativity of / ,

P� [∅8 | { ] =
/ (� [+ \ (# [{] ∪ L8)])

/ (� [+ \ # [{]]) ≥ / (� [+ \ (# [{] ∪ L8 )])
/ (� [+ \ (# [{] ∪ L8 )])/ (� [L8 \ # [{]]) ≥ 1

/ (� [L8 ])
.

We obtain the bound

1

&S (G{, ∅8)
∑
G,~∈* :

(G{,∅8 ) ∈� (WG~)

cS (G)cS (~) ≤ 2/ (� [L8 ]). (5)
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Case H. For (∅8, G{) ∈ �, by symmetry, this case is analogous to case �. Thus, we get

1

&S (∅8 , G{)
∑
G,~∈* :

(∅8 ,G{) ∈� (WG~)

cS (G)cS (~) ≤ 2/ (� [L8 ]). (6)

Case I . Finally, consider (∅8, ∅9 ) ∈ �. If ? ( 9) ≠ 8 and ? (8) ≠ 9 , then this edge is only used
by paths from G{ to G| for any pair { ∈ L9 , | ∈ L8 and for the direct transition from ∅8 to ∅9 . If
? ( 9) = 8, then it is also used by paths from any G{ for { ∈ L9 to ∅9 . Symmetrically, if ? (8) = 9 , then
it is also used by paths from ∅8 to G{ for { ∈ L8 . Thus, we obtain

1

&S
(
∅8 , ∅9

) ∑
G,~∈* :

(∅8 ,∅9 ) ∈� (WG~)

cS (G)cS (~)

≤ <(< − 1)
<2

1

P�

[
∅8 , ∅9

]
( ∑
{∈L9 :
|∈L8

P� [{]P� [|] +P� [∅8 ]P�
[
∅9

]

+ P�

[
∅9

] ∑
{∈L9

P� [{] + P� [∅8 ]
∑
{∈L8

P� [{]
)

≤ 4

P�

[
∅8 , ∅9

] .
Now, observe that

P�

[
∅8 , ∅9

]
=
/

(
�

[
+ \ (L8 ∪ L9 )

] )
/ (�) ≥

/
(
�

[
+ \ (L8 ∪ L9 )

] )
/

(
�

[
+ \ (L8 ∪ L9 )

] )
/ (� [L8 ])/

(
�

[
L9

] )
=

1

/ (� [L8 ])/
(
�

[
L9

] ) .
Thus,

1

&S
(
∅8 , ∅9

) ∑
G,~∈*

s.t. (∅8 ,∅9 ) ∈� (WG~)

cS (G)cS (~) ≤ 3/ (� [L8])/
(
�

[
L9

] )
. (7)

Combining equations (5) to (7) we get d (� ) ≤ 12/ 2
max. By Theorem 20 this implies V2 (%S) ≤

1 − 1
12/ 2

max
, which concludes the proof. �

Note that Lemmas 7, 14 and 21 only consider the skeletonwalk on the complex (-,|). However,
in order to bound the local expansion, we need to investigate the skeletonwalk on all links (-g , |g )
for every face g ∈ - (:) with 0 ≤ : ≤ < − 2. To achieve this, we map the link for any such face to
the simplicial complex representation of a smaller instance, such that we can apply Theorem 11.
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To this end, we introduce the following lemma.

◮ Lemma 22. Let - be a pure 3-dimensional simplicial complex for 3 ≥ 2, let | and | ′ be two
weight functions for - , and let S = S(-,|) and S ′

= S(-,| ′). Further, if there is an A ∈ R>0

such that for all maximum faces g ∈ - (3) we have | ′(g) = A| (g), then S = S ′ and, in particular,
V2 (%S) = V2 (%S′). ◭

Proof. We prove this statement by showing equality of the state spaces and transition probabilites.
The fact thatSS = SS′ follows directly from the fact that both walks are on the 1-skeleton of the
same complex. Now, let g ′ ∈ - be any face of - . Note that

| ′(g ′) =
∑

g∈- (3) :
g′⊆g

| ′(g) = A
∑

g∈- (3) :
g′⊆g

| (g) = A| (g ′).

Thus, the weights of all faces differ by the same factor A . Let {G}, {~} ∈ - with G ≠ ~. If {G, ~} ∉ - ,
then %S (G, ~) = 0 = %S′ (G, ~). Otherwise, if {G, ~} ∈ - , then

%S′ (G, ~) = | ′({G, ~})∑
{I }∈- :
{G,I }∈-

| ′({G, I}) =
A| ({G, ~})

A
∑

{I }∈- :
{G,I }∈-

| ({G, I}) = %S (G, ~) .

As both S and S ′ have self loop probabilities of 0, it follows %S = %S′ . This implies V2 (%S) =

V2 (%S′). �

3.5 Block dynamics for non-disjoint clique covers

So far, we investigated the two-step walk on the simplicial complex representation resulting from
a disjoint clique cover. In this section, we discuss how this can be used to obtain information
about the eigenvalues of the block dynamics based on arbitrary clique covers. We use a Markov
chain comparison theorem based on [16]. Similarly to the canonical-paths method, it is based
on constructing paths between certain pairs of vertices in the state space. Recall the notation
introduced at the beginning of Section 3.4.

◮ Theorem 23 ([16, Theorem 2.1]). LetM,M ′ be two reversible Markov chains on a common
state space SM = S = SM′. For each (G, ~) ∈ � (M), fix some path WG~ = (G0 = G, G1, ..., G; = ~)
in �∗(M ′) (i.e., (G8−1, G8 ) ∈ �∗(M ′) for all 8 ∈ [;]) and let � = {WG~ | (G,~) ∈ � (M)} be the
resulting set of paths. Further, let 0 ∈ R>0 be such that cM (G) ≥ 0cM′ (G) for all G ∈ S and set

�(� ) = max
(|,I) ∈�∗ (M′)

1

&M′ (|, I)
∑
G,~∈S :

(I,|) ∈� (WG~)

��WG~ ��&M (G, ~).
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For all 2 ≤ 8 ≤ |S | − 1 it now holds that

V8 (%M′) ≤ 1 − 0

�(� ) (1 − V8 (%M)). ◭

Although the two-step walk and block dynamics do not act directly on the same state space,
we know by Observation 12 that there is a one-to-one correspondence between their state spaces.
Thus, we can assume them to have the same state space up to relabeling of states. For every � ∈ I,
we write g� ∈ - (<) for the corresponding maximum face in the simplicial complex and, for every
maximum face g ∈ - (<), we let �g ∈ I denote the respective independent set.

◮ Lemma 24. Let (�,,) be an instance of the multivariate hard-coremodel with a clique cover L
of size<, and let/max = max8∈[<]{/ (� [L8 ])}. Further, letB = B(�, ,, L). Then there is a disjoint
clique cover  of size< such that

max
8∈[<]

{/ (� [ 8 ])} ≤ /max,

and, for (-,|) being the simplicial complex representation resulting from  and V = V(-,|),
it holds that

V2 (%B) ≤ 1 − 1

/max
(1 − V2 (%V)). (8)

◭

Proof. We start by constructing the a disjoint clique cover  from L. To this end, we set  1 = L1

and 8 = L8 \ 8−1 for 2 ≤ 8 ≤ <. Note that 8 ∩ 9 = ∅ for all 8 ≠ 9 and
⋃
8∈[<]  8 =

⋃
8∈[<] L8 = + .

Thus,  = { 8 }8∈[<] is a disjoint clique cover. Further, for all 8 ∈ [<] it holds that  8 ⊆ L8 , which
implies / (� [ 8 ]) ≤ / (� [L8 ]) and thus max8∈[<]{/ (� [ 8 ])} ≤ /max.

We now prove equation (8) by applyingTheorem 23. First note thatwe knowbyObservation 13
that cV (g) = ` (�g ) = cB (�g ), meaning that we can set 0 = 1. It remains to construct a set of paths
� and upper bound �(� ). Note that for every (g, g ′) ∈ � (V) there exists some 8 ∈ [<] such that
�g ⊕ �g′ ⊆  8 ⊆ L8 , implying that there is a corresponding edge (�g , �g′) ∈ �∗ (B). We set the path
Wgg′ between �g and �g′ to be this edge and � to be the set of all such paths.

Note that we actually only use edges in � (B), which means that we ignore self loops while
bounding �(� ). Further, for all (g, g ′) ∈ � (V) it holds that |Wgg′ | = 1. We obtain for every
(�, � ′) ∈ � (B) that

1

&B (�, � ′)
∑

g,g′∈- (<) :
(� ,� ′) ∈� (Wgg′ )

|Wgg′ |&V (g, g ′) =
{
&V (g� ,g� ′ )
&B (� ,� ′) if (g� , g� ′) ∈ � (V),
0 otherwise.

We proceed by doing a case distinction based on (�, � ′) ∈ � (B), assuming that (g� , g� ′) ∈ � (V).
Consider a transition (�, � ′) ∈ � (B) with � = � ′ ∪ {{} for some { ∉ � (i.e., removing {). Without
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loss of generality, assume { ∈  8 for some 8 ∈ [<]. First, note that

&B (�, � ′) = ` (� )
1

<

∑
9 ∈[<]:
{∈L9

` |L9

(
∅
��� f (� )

|+ \L9

)
≥ ` (� ) 1

<

1

/max
.

Further, by Observation 13 it holds that

&V (g, g ′) = ` (� ) 1
<
` | 8

(
∅
��� f (� )

|+ \ 8

)
≤ ` (� ) 1

<
.

Thus, we obtain
&V (g� , g� ′)
&B (�, � ′)

≤ /max.

Now, consider (�, � ′) ∈ � (B) with � ′ = � ∪ {{} for some { ∉ � (i.e., adding {) and assume { ∈  8
for some 8 ∈ [<]. We observe that

&B (�, � ′) = ` (� )
1

<

∑
9 ∈[<]:
{∈L9

` |L9

(
{{}

��� f (� )
|+ \L9

)
≥ ` (� ) 1

<

1

/max
_{ .

Similarly, we have

&V (g, g ′) = ` (� ) 1
<
` | 8

(
{{}

��� f (� )
|+ \ 8

)
≤ ` (� ) 1

<
_{ .

Again, we get
&V (g� , g� ′)
&B (�, � ′)

≤ /max.

Finally, consider (�, � ′) ∈ � (B) with � ′ = (� \ {|}) ∪ {{} for { ≠ | (i.e., remove | and add {).
Note that, as (�, � ′) ∈ � (B), there has to be some 9 ∈ [<] such that {,| ∈ L9 . We get that

&B (�, � ′) = ` (� )
1

<

∑
9 ∈[<]:
{,|∈L9

` |L9

(
{{}

��� f (� )
|+ \L9

)
≥ ` (� ) 1

<

1

/max
_{.

Further, as (g� , g� ′) ∈ � (V), there is exactly one 8 ∈ [<] such that {,| ∈  8 . This yields

&V (g, g ′) = ` (� ) 1
<
` | 8

(
{{}

��� f (� )
|+ \ 8

)
≤ ` (� ) 1

<
_{ .

Thus, also in this case we have
&V (g� , g� ′)
&B (�, � ′)

≤ /max.

As B changes at most one clique in L at each step, the above case distinction covers all (�, � ′) ∈
� (B). We obtain�(� ) ≤ /max, which proves the claim. �
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3.6 Bounding the mixing time

We now have everything to state and prove our main theorem on the mixing time of block dy-
namics.

◮ Theorem4. Let (�, ,) be an instance of themultivariate hard-coremodel such that Condition 3
is satisfied. Let L be a clique cover for � of size<, and let /max = max8∈[<] {/ (� [L8 ], ,[L8 ])}.
The mixing time of the block dynamics B(�,,, L), starting from ∅ ∈ I(�), is bounded by

g
(∅)
B (Y) ≤<O( (2+�)� )/O( (2+�)�)

max ln

(
1

Y

)
. ◭

Proof. By equation (1) it is sufficient to lower bound the spectral gap of %B by 1
poly(/max) and

1
poly(<)

to prove our claim. Further, transforming the chain into a lazy version only results in constant
overhead in the mixing time. Thus, we focus on lower-bounding 1 − V2 (%B), which is equivalent
to upper-bounding V2 (%B).

Let  be the disjoint clique cover, constructed from L as described in the proof of Lemma 24,

and let / ( )
max = max8∈[<]{/ (� [ 8 ])}. Further, let (-,|) be the simplicial-complex representation

based on  with groundset* and partitions {*8 }8∈[<] , and letV = V(-,|) denote the two-step
walk on (-,|). By Lemma 24,

V2 (%B) ≤ 1 − 1

/max
(1 − V2 (%V)). (9)

Thus, it is sufficient for us to upper bound V2 (%V).
We aim to apply Theorem 11, which involves upper-bounding local expansion of the simplicial-

complex representation. Let� be the constant for which (�,,) satisfies Condition 3. We proceed
by proving that (-,|) is a local (U0, . . . , U<−2)-expander, where

U: ≤ min

{
1 − 1

12/ 2
max

,
(2 +�)�
< − : − 1

}
for 0 ≤ : ≤< − 2. (10)

We start by arguing both bounds for the case : = 0. Then we generalize our arguments for the
cases : ∈ [< − 2].

Case k = 0. Let S = S(-,|) be the skeleton walk on (-,|). By definition, we have U0 =

V2 (%S). Note that the first bound U0 ≤ 1 − 1
12/ 2

max
follows directly from Lemma 21 and the fact

that / ( )
max ≤ /max by Lemma 24. To prove the second bound, we apply Lemma 14, which gives us

U0 ≤
V1

(
Q�, 

)
< − 1

.

By Lemma 7, we conclude that U0 ≤ (2+�)�
<−1 .

Case k ∈ [m − 2]. By definition, we have to show for all g ∈ - (:) that the skeleton walk
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Sg = S(-g , |g ) on the link (-g , |g ) satisfies

V2
(
%Sg

)
≤ min

{
1 − 1

12/ 2
max

,
(2 +�)�
< − : − 1

}
.

We construct a subset of vertices ( ⊆ + such that

( =

⋃
G ∈g

{
# [{] if G = G{ for some { ∈ + ,
L8 if G = ∅8 for some 8 ∈ [<].

Let � ′
= � [+ \ (] be the subgraph induced by + \ ( and let , ′

= , [+ \ (] be the corresponding
vertex weights. Further, let  ′

= { 8 \ ( | 8 ∈ [<] ∧ g ∩*8 = ∅ } and note that  ′ is a disjoint
clique cover of the multivariate hard-core instance (� ′, ,′). Let (- ′, | ′) be the corresponding
simplicial-complex representation and let S ′

= S(- ′, | ′) be the skeleton walk on (- ′, | ′). Note
that - ′

= -g and that for every maximum face g ′ ∈ -g (< − |g |) it holds that

|g (g ′) = | (g ′ ∪ g)

=
1

/ (�, ,)
©­«

∏
|∈+ \(

_|1G|∈g′
ª®¬
(∏
{∈(

_{1G{∈g

)

=
1

/ (� ′, ,′)
©­«

∏
|∈+ \(

_′|1G|∈g′
ª®¬
/ (� ′, ,′)
/ (�, ,)

(∏
{∈(

_{1G{∈g

)

= | ′(g ′)/ (� ′,, ′)| (g),

where / (� ′,, ′)| (g) > 0. Thus, by Lemma 22, we obtain V2
(
%Sg

)
= V2 (%S′).

To upper-bound V2 (%S′), observe that

• | ′ | =< − |g | =< − : ,

• max ′
8 ∈ ′{/

(
�

[
 ′
8

] )
} ≤ / ( )

max ≤ /max, and

• � ′ is and induced subgraph of� .

Thus, analogous to the case : = 0, applying Lemma 21 yields

U: ≤ 1 − 1

12max ′
8 ∈ ′{/

(
�

[
 ′
8

] )
}2

≤ 1 − 1

12/ 2
max

.

Together, Lemma 14 and Lemma 7 result in

U: ≤ (2 +�)�
| ′ | − 1

=
(2 +�)�
< − : − 1

.
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From equation (10) and Theorem 11, we conclude

V2 (%V) ≤ 1 − 1

<

∏
0≤:≤<−2

(
1 −min

{
1 − 1

12/ 2
max

,
(2 +�)�
< − : − 1

})

= 1 − 1

<

∏
0≤:≤<−2

max

{
1

12/ 2
max

, 1 − (2 +�)�
< − : − 1

}
.

Let :0 =< − 2(2 +�)� − 1 and observe that for : ≤ :0 it holds that

1 − (2 +�)�
< − : − 1

≥ 1

2
>

1

12
≥ 1

12/ 2
max

.

Thus, we have

1

<

∏
0≤:≤<−2

max

{
1

12/ 2
max

, 1 − (2 +�)�
< − : − 1

}
≥ 1

<

( ∏
0≤:≤:0

(
1 − (2 +�)�

< − : − 1

)) ( ∏
:0<:≤<−2

1

12/ 2
max

)

=
1

<

(
1

12/ 2
max

)<−2−:0 ∏
0≤:≤:0

(
1 − (2 +�)�

< − : − 1

)

=
1

<

(
1

√
12/max

)4(2+�)�−2 ∏
0≤:≤:0

(
1 − (2 +�)�

< − : − 1

)
.

Further, because ln(1 − G) ≥ −G
1−G for G < 1, we have

ln

( ∏
0≤:≤:0

(
1 − (2 +�)�

< − : − 1

))
=

∑
0≤:≤:0

ln

(
1 − (2 +�)�

< − : − 1

)

≥
∑

0≤:≤:0

−(2 +�)�/(< − : − 1)
1 − (2 +�)�/(< − : − 1)

= −(2 +�)�
∑

0≤:≤:0

1

< − (2 +�)� − : − 1

= −(2 +�)�
∑

(2+�)�≤ 9 ≤<−(2+�)�−1

1

9

≥ −(2 +�)� ln(<).

We obtain

V2 (%V) ≤ 1 − 1

<

(
1

√
12/max

)4(2+�)�−2
e−(2+�)� ln(<)

= 1 −
(
1

<

) (2+�)�+1 ( 1
√
12/max

)4(2+�)�−2
. (11)
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By combining equations (9) and (11), we get

1 − V2 (%B) ≥
1

O
(
/
4(2+�)�−1
max < (2+�)�+1

) .
As � is assumed to be a constant, this implies the desired mixing time. �

4 Univariate model: mixing up to uniqueness

We consider the univariate hard-core model, often just referred to as hard-core model, in which
all vertices { ∈ + have the same weight _{ = _ for some _ ∈ R>0. We denote an instance of this
model by (�, _).

We define _c(J) = (J−1)J−1

(J−2)J to be the critical weight of the hard-core model. As we discussed in

the introduction, _c(J) is the threshold for correlation decay on general graphs and a tight upper
bound for rapid mixing of Glauber dynamics.

We show that the univariate model (�, _) satisfies Condition 3 for all _ ≤ _c (J). To do so, we
use the following recently established result.

◮ Lemma 25 ([14]). Let (�, _) be an instance of the univariate hard-core model and assume that
the maximum degree of� is bounded by J. If there is a constant X > 0 such that _ ≤ (1−X)_c(J),
then there is a constant � ∈ O

( 1
X

)
such that for all ( ⊆ + it holds that



R� [( ]



∞ ≤ �. ◭

This implies the following result immediately.

◮ Lemma 26. Let (�, _) be an instance of the univariate hard-core model and assume that the
maximum degree of � is bounded by J. If there is a constant X > 0 such that _ ≤ (1 − X)_c(J),
then (�, _) satisfies Condition 3 for a constant � ∈ O

( 1
X

)
. ◭

Proof. By Lemma 25, there is a � ∈ O
( 1
X

)
such that, for all ( ∈ + and A ∈ ( , it holds that

∑
{∈(

��R� [( ] (A, {)
�� ≤ 

R� [( ]




∞ ≤ �.

Thus, Condition 3 is satisfied for the same constant � and @({) = 1 for all { ∈ + . �

The following claim is a direct consequence of Theorem 4 and Lemma 26.

◮ Corollary 27. Let (�, _) be an instance of the univariate hard-core model and assume that
the maximum degree of � is bounded by J. Let L be a clique cover for � of size <, and let
/max = max8∈[<] {/ (� [L8])}. If there is a constant X > 0 such that _ ≤ (1 − X)_c(J), then the
mixing time of the block dynamics B(�, _, L), starting from ∅ ∈ I(�), is bounded by

g
(∅)
B (Y) ≤ <O(1/X2)/O(1/X2)

max ln

(
1

Y

)
. ◭
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5 Multivariate model: comparison to clique dynamics condition

In this section, we relate Condition 3 to a strict version of the clique dynamics condition, first
introduced in [24].

◮ Definition 28 (Strict clique dynamics condition). An instance of the multivariate hard-
core model (�,,) satisfies the strict clique dynamics condition for a function 5 : + → R>0 and a
constant U ∈ (0, 1) if and only if for all { ∈ + it holds that

∑
|∈# ({)

_|

1 + _|
5 (|) ≤ (1 − U) 5 ({). ◭

We show that the strict clique dynamics condition is sufficient to imply Condition 3. This yields
a mixing-time bound for block dynamics based on the strict clique dynamics condition and also
bounds the eigenvalues of the pairwise influence matrix, which might be of independent interest.
To obtain our result, we translate the original instance (�, ,) to the self-avoiding-walk tree and
apply a recursive proof on this tree.

Influence in self-avoiding-walk trees

For any instance of the multivariate hard-core model (�,,) and any vertex A ∈ + , let T(�, A )
denote the tree of self-avoiding walks as defined in [56], which is constructed as follows. Assume
there is a total order of vertices in {1, . . . , {= , where = = |+ |. A self-avoiding walk of length ; ≥ 2
is a simple path {81, {82, . . . , {8; in � . Further, a closed self-avoiding walk {81, . . . , {8;−1, {8 9 of length
; ≥ 3 consists of a self-avoiding walk {81, . . . , {8;−1 of length ; − 1 and an appended vertex {8 9 such
that 9 ∈ [; − 2] and ({8;−1, {8 9 ) ∈ �. That is, the edge ({8;−1, {8 9 ) closes a cycle {8 9 , {8 9+1, . . . , {8;−1 . The
graph T(�, A ) consists of all closed self-avoiding walks with {81 = A , and all self-avoiding walks
with {81 = A and {8; having degree 1 in � . Note that any vertex { ∈ + with { ≠ A might have
multiple copies in T(�, A ).

For any root A ∈ + , the multivariate hard-core model (�,,) is translated to a multivariate
hard-core model on T(�, A ) as follows. Let {81, . . . , {8;−1, {8 9 be a closed self-avoiding walk. We
fix {8 9 always to be in the independent set (fix spin to 1) if 8 9+1 > 8;−1, and we fix it always to be
excluded from the independent (fix spin to 0) otherwise. We call such vertices fixed copies. For
each { ∈ + , let �T(�,A ) ({) denote the set of all unfixed copies of { in T(�, A ). We write � ({) if the
tree T(�, A ) is clear from the context. In the multivariate hard-core model on T(�, A ), each such
copy {̂ ∈ �T(�,A ) ({) has weight _{̂ = _{.

This way of translating (�,,) to the tree of self-avoiding walks for some root A ∈ + was shown
to have a variety of useful properties. One of them is that pairwise influences are preserved in
the following sense.

◮ Lemma 29 ([14, Lemma 8]). Let (�,,) be an instance of the multivariate hard-core model.
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For all A, { ∈ + and ) = T(�, A ) it holds that

R� (A, {) =
∑

{̂∈�) ({)
R) (A, {̂). ◭

Lemma 29 states that it suffices to discuss the pairwise influence on the self-avoiding walk
tree instead of the original graph. This allows us to use the following multiplicative property for
pairwise influence along paths in tree graphs.

◮ Lemma 30 ([2, Lemma B.2]). Let ) = (+, �) be a tree and (),,) be a multivariate hard-core
model on ) . Further, let {,| ∈ + be a pair of distinct, non-adjacent vertices, and let D ∈ + with
D ≠ { and D ≠ | be any vertex on the unique path between { and |. Then

R) ({,|) =R) ({,D)R) (D,|). ◭

Bounding pairwise influence via the strict clique dynamics condition

We start by proving that the influence of the root on a certain layer in the self-avoiding-walk
tree exhibits the following exponential decay in terms of depth. For a tree ) and integer : let
!) (:) ⊆ +̂ denote the set of vertices in ) at layer : ∈ N.

◮ Lemma 31. Let (�, ,) be a multivariate hard-core model, and let A ∈ + . Furthermore, let
) = T(A,�) and let +̂ =

⋃
{∈+ �) ({). Assume that (�,,) satisfies the strict clique dynamics

condition for a function 5 and a constant U , and define the function 5̂ : +̂ → R>0 with 5̂ ({̂) = 5 ({)
for all {̂ ∈ �) ({) and { ∈ + . Then for all : ∈ N>0 it holds that∑

|∈!) (:)
|R) (A, |) | 5̂ (|) ≤ (1 − U): 5 (A ) . ◭

Proof. Note that if (�,,) satisfies the strict clique dynamics condition for a function 5 and a
constant U , then the corresponding multivariate hard-core instance on) satisfies the strict clique

dynamics condition for 5̂ and the same constant U . Based on that, we prove our claim by induction
on : .

Base case: k = 1. Note that !) (1) = #) (A ). Further, we have for each| ∈ #) (A ) by definition

|R) (A, |) | = |P) [| | A ] − P) [| | A ] | ≤ _|

1 + _|
.

Thus, by the strict clique dynamics condition, we obtain

∑
|∈!) (1)

|R) (A, |) | 5̂ (|) ≤
∑

|∈!) (1)

_|

1 + _|
5̂ (|) ≤ (1 − U) 5̂ (A ) = (1 − U) 5 (A ),

which proves the case : = 1.
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Induction step: k > 1. Assume that the statement holds for : − 1. For every D ∈ !) (: − 1),
let )D denote the subtree rooted at D, and let !)D (;) denote the vertices at layer ; ∈ N in )D . Note
that the sets !)D (1) for D ∈ !) (: − 1) are a partition of !) (:). By Lemma 30, we get∑

|∈!) (:)
|R) (A, |) | 5̂ (|) =

∑
D∈!) (:−1)

∑
|∈!)D (1)

|R) (A, |) | 5̂ (|)

=

∑
D∈!) (:−1)

|R) (A, D) |
∑

|∈!)D (1)
|R) (D,|) | 5̂ (|).

Further, for every D ∈ !) (: − 1) it holds that !)D (1) ⊂ #) (D), and for all | ∈ !)D (1) we have

|R) (D,|) | = |P) [| | D ] − P) [| | D ] | ≤ _|

1 + _|
.

Thus, by the strict clique dynamics condition, we get

∑
D∈!) (:−1)

|R) (A, D) |
∑

|∈!)D (1)
|R) (D,|) | 5̂ (|) <

∑
D∈!) (:−1)

|R) (A, D) |
∑

|∈#) (D)

_|

1 + _|
5̂ (|)

≤ (1 − U)
∑

D∈!) (:−1)
|R) (A, D) | 5̂ (D).

By the induction hypothesis, we obtain

(1 − U)
∑

D∈!) (:−1)
|R) (A, D) | 5̂ (D) ≤ (1 − U) (1 − U):−1 5 (A ) = (1 − U): 5 (A ),

which concludes the proof. �

Now, we use this layer-wise decay in the self-avoiding-walk tree to prove that Condition 3 is
satisfied.

◮ Lemma 6. Let (�,,) be an instance of the multivariate hard-core model. If (�,,) satisfies the
strict clique dynamics condition for a function 5 and a constant U , then it also satisfies Condition 3
for @ = 5 and � =

1
U . ◭

Proof. Note that if (�, ,) satisfies the strict clique dynamics condition, the same holds for the
instance (� [(], ,[(]) for the same function 5 and constant U .

Assume � [(] is connected and let � ′
= � [(]. Further, let ) = T(A,� ′) and (̂ =

⋃
{∈( �) ({),

and define the function 5̂ : (̂ → R>0 as in Lemma 31. Recall that, by definition,R�′ (A, A ) = 0. By
Lemma 29, we get ∑

{∈(
|R�′ (A, {) | 5 ({) =

∑
{∈(\{A }

|R�′ (A, {) | 5 ({)
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=

∑
{∈(\{A }

������
∑

{̂∈�) ({)
R) (A, {̂)

������5 ({)
≤

∑
{∈(\{A }

∑
{̂∈�) ({)

|R) (A, {̂) | 5̂ (̂{).

Note that the sets�) ({) for { ∈ ( \ {A } are a partition of (̂ \ {A }. Recall that !) (:) ⊂ (̂ denotes the
vertices in) at layer : ∈ N, and observe that the sets !) (:) for : ∈ N>0 are a partition of (̂ \ {A }
as well. Thus, we have∑

{∈(\{A }

∑
{̂∈�) ({)

|R) (A, {̂) | 5̂ (̂{) ≤
∑

:∈N>0

∑
|∈!) (:)

|R) (A, |) | 5̂ (|).

By Lemma 31, we obtain the desired bound:

∑
:∈N>0

∑
|∈!) (:)

|R) (A, |) | 5̂ (|) ≤ 5 (A )
∑
:∈N>0

(1 − U): =
1

U
5 (A ) .

Now, assume� [(] is not connected. Set� ′ to be the largest connected component in� [(] that
contains A and let ( ′ ⊂ ( be the set of vertices in � ′. The claim follows from applying the proof
above to � ′ with vertex set ( ′ and by observing thatR� [( ] (A, {) = 0 for all { ∈ ( \ ( ′. �

Lemma 6 immediately implies with Theorem 4 the following result for the mixing time of block
dynamics under strict clique dynamics condition.

◮ Corollary 32. Let (�, ,) be an instance of the multivariate hard-core model. Let L be a given
clique cover for � of size <, and let /max = max8∈[<] {/ (� [L8 ])}. If (�, _) satisfies the strict
clique dynamics condition for a function 5 and a constant U , then the mixing time of the block
dynamics B = B(�, _, L), starting from ∅ ∈ I(�), is bounded by

g
(∅)
B (Y) ≤<O(1/U2)/O(1/U2)

max ln

(
1

Y

)
. ◭

Finally, Lemma 6 together with Lemma 15 imply the following result.

◮ Corollary 33. Let (�, ,) be an instance of the multivariate hard-core model that satisfies the
strict clique dynamics condition for a function 5 and a constant U . For every ( ⊆ + it holds that
V1

(
R� [( ]

)
≤ 1

U . ◭

6 Comparing clique dynamics to block dynamics

Using Theorem 23, we show that a bound on themixing time of the clique dynamics for any clique
cover is obtained based on a bound for the mixing time of the block dynamics for the same clique
cover.
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◮ Lemma 34. Let (�,,) be an instance of the multivariate hard-core model, let L be a clique
cover of � with size<, and let /max = max8∈[<] {/ (L8 )}. Let B = B(�, ,, L) denote the block
dynamics and C = C(�, ,, L) the clique dynamics based on L. Then

V2 (%C) ≤ 1 − 1

2/max

(
1 − V2 (%B)

)
. ◭

Proof. We aim to apply Theorem 23. Note that, by cC = ` = cB , we can choose 0 = 1. We
proceed by constructing a set of paths � and by upper-bounding �(� ). For every (�B, �C ) ∈ � (B),
we choose the path W�B �C via edges in �

∗(C) as follows:

• W�B �C = (�B , �C ) if �B ⊕ �C = {{} for some { ∈ + , and

• W�B �C = (�B , �B ∩ �C , �C ) if �B ⊕ �C = {{, |} for { ≠ |.

We set � to be the set of all such paths. Note that we actually only use edges in � (C), which
means that we can ignore self loops while bounding�(� ). We proceed by doing a case distinction
on the transition (�, � ′) ∈ � (C).

Case 1. Consider (�, � ′) ∈ � (C) with � = � ′ ∪ {{} for a { ∉ � (i.e., removing {). First, note that

&C (�, � ′) = ` (� )
1

<

∑
8∈[<]:
{∈L8

` |L8
(
∅
�� 0 |+ \L8 )

= ` (� ) 1
<

∑
8∈[<]:
{∈L8

1

/ (� [L8 ])

≥ ` (� ) 1
<

1

/max
|{8 ∈ [<] | { ∈ L8 }|. (12)

Further, for all (�B , �C ) ∈ � (B) such that (�, � ′) ∈ �
(
W�B �C

)
it holds that �B = � , and either �C = � ′ or

�C = �
′ ∪ {|} for some | ∈ + that shares a clique with {. If �C = � ′, then we have

&B (�, � ′) = ` (� )
1

<

∑
8∈[<]:
{∈L8

` |L8

(
∅
��� f (� )

|+ \L8

)

= ` (� ) 1
<

∑
8∈[<]:
{∈L8

` (� ′)
` (� ′) + ∑

D∈L8 :
� ′∪{D }∈I

` (� ′ ∪ {D})

= ` (� ) 1
<

∑
8∈[<]:
{∈L8

1

1 + ∑
D∈L8 :

� ′∪{D }∈I

_D
. (13)
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Otherwise, if �C = � ′ ∪ {|}, we get

&B (�, � ′ ∪ {|}) = ` (� ) 1
<

∑
8∈[<]:
{,|∈L8

` |L8

(
{|}

��� f (� )
|+ \L8

)

= ` (� ) 1
<

∑
8∈[<]:
{,|∈L8

` (� ′ ∪ {|})
` (� ′) + ∑

D∈L8 :
� ′∪{D }∈I

` (� ′ ∪ {D})

= ` (� ) 1
<

∑
8∈[<]:
{,|∈L8

_|

1 + ∑
D∈L8 :

� ′∪{D }∈I

_D
. (14)

Combining equations (13) and (14) and observing that
��W�B �C �� ≤ 2 for all involved paths yields

∑
(�B ,�C ) ∈� (B) :
(� ,� ′) ∈W�B �C

��W�B �C ��&B (�B , �C ) ≤ 2` (� ) 1
<

∑
8∈[<]:
{∈L8

©­­­­«
1

1 + ∑
D∈L8 :

� ′∪{D }∈I

_D
+

∑
|∈L8 :

� ′∪{|}∈I

_|

1 + ∑
D∈L8 :

� ′∪{D }∈I

_D

ª®®®®¬
= 2` (� ) 1

<
|{8 ∈ [<] | { ∈ L8 }|.

Together with equation (12), we get

1

&C (�, � ′)
∑

(�B ,�C ) ∈� (B) :
(� ,� ′) ∈W�B �C

��W�B �C ��&B (�B , �C ) ≤ 2/max.

Case 2. Consider (�, � ′) ∈ � (C) with � ′ = � ∪ {{} for some { ∉ � (i.e., adding {). Note that, as C
is reversible, it holds that (� ′, � ) ∈ � (C). As (� ′, � ) is a transition that deletes { from � ′, resulting
in � , it was already considered in the first case. Further, by construction of � , it holds that (�, � ′)
is on a path W�B �C for any (�B , �C ) ∈ � (B) if and only if (� ′, � ) is on the path W�C �B for (�C , �B ) ∈ � (B).
Due to reversibility of C and B, we know that&C and&B are symmetric. Thus, we can conclude
from our result for (� ′, � ) in the first case that

1

&C (�, � ′)
∑

(�B ,�C ) ∈� (B) :
(� ,� ′) ∈W�B �C

��W�B �C ��&B (�B , �C ) =
1

&C (� ′, � )
∑

(�C ,�B ) ∈� (B) :
(� ′,� ) ∈W�C �B

��W�C �B ��&B (�C , �B ) ≤ 2/max .

As C changes at most one vertex at each step, the above case distinction is complete and we
get �(� ) ≤ 2/max, which by Theorem 23 concludes the proof. �

We immediately obtain the following corollary, which is central for our proof of Theorem 1.
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◮ Corollary 5. Let (�, _) be an instance of the univariate hard-core model such that the degree
of� is bounded by J. Let L be a given clique cover of size< with /max = max8∈[<] {/ (� [L8], _)}.
Denote by C = C(�, _, L) the corresponding clique dynamics. If there is some X ∈ R>0 such
that _ ≤ (1 − X)_c(J) then the mixing time of the clique dynamics C, starting from ∅ ∈ I(�), is
bounded by

g
(∅)
C (Y) ≤ <O(1/X2)/O(1/X2)

max ln

(
1

Y

)
. ◭

Proof. Let B = B(�, _, L). Due to Lemma 34 we know that g (∅)C (Y) ≤ 2/maxg
(∅)
B (Y). Bounding

g
(∅)
B (Y) based on Corollary 27 proves the claim. �

7 The monoatomic hard-sphere model

We study the grand canonical ensemble of the monoatomic hard-sphere model in a 3-dimensional
finite cubic regionV = [0, ℓ)3 of Euclidean space with side length ℓ ∈ R≥1. We write |V| = ℓ3 for
the volume of V. The hard-sphere model describes the distribution of identical particles, repre-
sented as3-dimensional balls inV. This distribution is governed by a fugacity parameter _ ∈ R>0,
describing the contribution of each particle to the chemical potential, and hard-core interactions
between particles, meaning that no two particles are allowed to overlap. For simplicity, it is com-
mon to assume particles to have volume 1, meaning that their radius is A = (1/{3)1/3 , where {3
denotes the volume of a unit sphere in 3 dimensions.

A probabilistic interpretation of grand canonical ensemble is that the centers of particles are
distributed according to a Poisson point process onVwith activity _, conditioned on the fact that
particles are non-overlapping (i.e., each pair of distinct centers have distance at least 2A ). Note
that this implies that particles are indistinguishable, meaning that exchanging the positions of two
particles results in exactly the same configuration of the system. We aim for approximating the
grand canonical partition function, which can be seen as the normalizing constant of the resulting
distribution of system states. As a reminder, the partition function can formally be defined as

/ (V, _) = 1 +
∑
:∈N>0

_:

:!

∫
V:

�
(
G (1) , . . . , G (:)

)
da3×: ,

where

�
(
G (1) , . . . , G (:)

)
=

{
1 if 3

(
G (8) , G ( 9 ) ) ≥ 2A for all 8, 9 ∈ [:] with 8 ≠ 9

0 otherwise

and a3×: is the Lebesgue measure on R3×: .

7.1 Hard-core representation

To apply our result for clique dynamics to the continuous hard-spheremodel, wewill approximate
it by an instance of the hard-core model. The main idea of this discretization is to restrict the
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centers of spheres to vertices in an integer grid, while scaling the fugacity _ and the radius A
appropriately. The resulting discrete hard-sphere model can easily be transformed into a hard-
core instance. We proceed by formalizing the direct transformation from the continuous hard-
sphere model instance to the discrete hard-core model.

Let (V, _) be an instance of the continuous hard-sphere model with V = [0, ℓ)3 . Recall that
we fixed the radius A = (1/{3)1/3 . Let G(=) = Z3 ∩ [0, =)3 be a finite integer grid of side length
= ∈ N>0. For any d ∈ R>0 such that dℓ ∈ N>0, the hard-core representation of (V, _) with
resolution d is a hard-core model (�d , _d ) with�d = (+d , �d ) and

• there is a vertex {G ∈ +d for each grid point G ∈ G(dℓ),

• there is an edge ({G, {~) ∈ �d for any pair of grid points G,~ ∈ G(dℓ) with G ≠ ~ and
3 (G,~) ≤ 2dA , and

• _d = d−3_.

Note that in the above definition 3 (G, ~) denotes the Euclidean distance.
We will use the following convergence result for the partition function of the hard-core repre-

sentation in terms of the resolution d to approximate the hard-sphere partition function.

◮ Lemma 2. Let (V, _) be an instance of the continuous hard-sphere model in 3 dimensions. For
each resolution d ≥ 2

√
3 it holds that

1 − d−1eΘ( |V | ln |V |) ≤ / (V, _)
/

(
�d , _d

) ≤ 1 + d−1eΘ( |V | ln |V |) . ◭

Proof. Note that it suffices to bound the additive error
��/ (V, _) − / (

�d , _d
) ��. Because/ (V, _) ≥ 1,

this directly results in the desired multiplicative bound.
In order to obtain an additive bound, we start by transforming /

(
�d , _d

)
to a form that is more

similar to the form of / (V, _).
LetV = [0, ℓ)3 and leti (d) : G(dℓ) → Vwith (G1, . . . , G3 ) ↦→ i (d) (G) = (G1/d, . . . , G3/d). Note

that, for all G (8) , G ( 9 ) ∈ G(dℓ) it holds that

3
(
G (8) , G ( 9 )

)
≥ 2dA ↔ 3

(
i (d)

(
G (8)

)
, i (d)

(
G ( 9 )

))
≥ 2A .

Thus, we see that

/
(
�d , _d

)
=

∑
� ∈I (�d )

_
|� |
d

= 1 +
∑

:∈N>0

∑
� ∈I(�d )

|� |=:

_:d
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= 1 +
∑

:∈N>0

_:d

:!

∑
(G (1) ,...,G (: ))
∈(G(dℓ)):

�
(
i (d)

(
G (1)

)
, . . . , i (d)

(
G (:)

))

= 1 +
∑

:∈N>0

_:

:!

∑
(G (1) ,...,G (: ))
∈(G(dℓ)):

(
1

d

)3 ·:
�

(
i (d)

(
G (1)

)
, . . . , i (d)

(
G (:)

))
. (15)

We continue by rewriting

∑
(G (1) ,...,G (: ))
∈(G(dℓ)):

(
1

d

)3 ·:
�

(
i (d)

(
G (1)

)
, . . . , i (d)

(
G (:)

))

for any fixed : ∈ N>0. Let i (d) (G(dℓ)) ⊆ V denote the image of i (d) , and let Q (d) : V →
i (d) (G(dℓ)) with

(G1, . . . , G3 ) ↦→
(
⌊dG1⌋
d

, . . . ,
⌊dG3⌋
d

)
.

Further, for all : ∈ N>0 and all
(
G (1) , . . . , G (:) ) ∈ (

i (d) (G(dℓ))
):
, let

,
(d)
G (1) ,...,G (: ) =

{(
~ (1) , . . . , ~ (:)

)
∈ V

:
��� ∀8 ∈ [:] : Q (d)

(
~ (8)

)
= G (8)

}
=

((
Q (d)

)−1 (
G (1)

))
× · · · ×

((
Q (d)

)−1 (
G (:)

))
.

Note that the sets, (d)
G (1) ,...,G (: ) partitionV

: into (3×:)-dimensional hypercubes of side length 1/d .
Thus, for all

(
G (1) , . . . , G (:) ) ∈ (

i (d) (G(dℓ))
):
, it holds that

a3×:
(
,

(d)
G (1) ,...,G (: )

)
=

(
1

d

)3 ·:
.

By this and by the definition of a Lebesgue integral for elementary functions, we obtain

∑
(G (1) ,...,G (: ))
∈(G(dℓ)):

(
1

d

)3 ·:
�

(
i (d)

(
G (1)

)
, . . . , i (d)

(
G (:)

))

=

∑
(G (1) ,...,G (: ))
∈(G(dℓ)):

a3×:
(
,

(d)
i (d ) (G (1) ),...,i (d ) (G (: ))

)
· �

(
i (d)

(
G (1)

)
, . . . , i (d)

(
G (:)

))
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=

∑
(G (1) ,...,G (: ))

∈(i (d ) (G(dℓ))):

a3×:
(
,

(d)
G (1) ,...,G (: )

)
· �

(
G (1) , . . . , G (:)

)

=

∫
V:

�
(
Q (d)

(
G (1)

)
, . . . ,Q (d)

(
G (:)

))
da3×: .

Substituting this expression back into equation (15) yields

/
(
�d , _d

)
= 1 +

∑
:∈N>0

_:

:!

∫
V:

�
(
Q (d)

(
G (1)

)
, . . . ,Q (d)

(
G (:)

))
da3×: .

We now express
��/ (V, _) − / (

�d , _d
)�� in terms of the absolute difference of the integrals for

all : ∈ N>0. It holds that����
∫
V:

�
(
G (1) , . . . , G (:)

)
da3×: −

∫
V:

�
(
Q (d)

(
G (1)

)
, . . . ,Q (d)

(
G (:)

))
da3×:

����
≤

∫
V:

���� (
G (1) , . . . , G (:)

)
− �

(
Q (d)

(
G (1)

)
, . . . ,Q (d)

(
G (:)

))��� da3×: .
Let # (d) ⊆ V: be such that for all

(
G (1) , . . . , G (:) ) ∈ # (d) it holds that �

(
G (1) , . . . , G (:) )

≠

�
(
Q (d) (G (1) ), . . . ,Q (d) (G (:) ) ) . As � is an indicator function, it holds that∫

V:

���� (
G (1) , . . . , G (:)

)
− �

(
Q (d)

(
G (1)

)
, . . . ,Q (d)

(
G (:)

))��� da3×: = a3×:
(
# (d)

)
.

We construct a superset of # (d) , for which we calculate the Lebesgue measure. First, note that
# (d)

= ∅ for : = 1, as in this case �
(
G (1) )

= �
(
Q (d) (G (1) ) )

= 1 for all G (1) ∈ V. Further, let

 =
(
ℓ
√
3/(2A )

)3
. Note that, for all : >  , it holds that at least two particles have distance less

than 2A , meaning that such a configuration has always overlapping particles and # (d)
= ∅. We

are left with considering 2 ≤ : ≤  .
We observe that, for all

(
G (1) , . . . , G (:) ) ∈ V: such that

�
(
G (1) , . . . , G (:)

)
≠ �

(
Q (d)

(
G (1)

)
, . . . ,Q (d)

(
G (:)

))
,

there is a pair of points G (8) , G ( 9 ) for 8, 9 ∈ [:] such that 8 ≠ 9 and

3
(
G (8) , G ( 9 )

)
< 2A ≤ 3

(
Q (d)

(
G (8)

)
,Q (d)

(
G ( 9 )

))
or

3
(
G (8) , G ( 9 )

)
≥ 2A > 3

(
Q (d)

(
G (8)

)
,Q (d)

(
G ( 9 )

))
.
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As, for every point G (8) ∈ V, it holds that

3
(
G (8) ,Q (d)

(
G (8)

))
≤

√
3

d
,

there is a pair of points G (8) , G ( 9 ) for 8, 9 ∈ [:] such that 8 ≠ 9 and

���2A − 3 (
G (8) , G ( 9 )

)��� ≤ 2

√
3

d
.

For all 8, 9 ∈ [:] with 8 ≠ 9 let (
(d)
8, 9 ⊆ V: be the set of points

(
G (1) , . . . , G (:) ) ∈ V: such that this

is the case. Then

a3×:
(
# (d)

)
≤ a3×:©­«

⋃
1≤8< 9 ≤:

(
(d)
8, 9

ª®¬
≤

∑
1≤8< 9 ≤:

a3×:
(
(
(d)
8, 9

)
.

By Fubini’s theorem, noting that (
(d)
8, 9 only depends on 8 and 9 , we get

a3×:
(
(
(d)
8, 9

)
=

∫
V:

1

{���2A − 3 (
G (8) , G ( 9 )

)��� ≤ 2

√
3

d

}
da3×:

= ℓ3 (:−2)
∫
V2

1

{���2A − 3 (
G (8) , G ( 9 )

)��� ≤ 2

√
3

d

}
da3×2

≤ ℓ3 (:−1) · ©­«
(
2A + 2

√
3

d

)3
−

(
2A − 2

√
3

d

)3ª®¬
,

where the last equality comes from the fact that A was chosen as the radius of a ball of volume 1
in 3 dimensions. By the assumption d ≥ 2

√
3 and the binomial theorem, we further bound

(
2A + 2

√
3

d

)3
−

(
2A − 2

√
3

d

)3
=

3∑
8=0

2 · 1{8 is odd}
(
3

8

) (
2A

)3−8 (
2

√
3

d

)8

=
2
√
3

d

3∑
8=1

2 · 1{8 is odd}
(
3

8

) (
2A

)3−8 (
2

√
3

d

)8−1

≤ 2
√
3

d

3∑
8=1

2 · 1{8 is odd}
(
3

8

) (
2A

)3−8
18−1

≤ 2
2
√
3

d

(
2A + 1

)3
.
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Using this bound for a3×:
(
(
(d)
8, 9

)
, we obtain

a3×:
(
# (d)

)
≤ :2 · 2 · ℓ3 (:−1) · 2

√
3

d
· (2A + 1)3 .

Thus, we get

��/ (V, _) − / (
�d , _d

) �� ≤  ∑
:=2

_:

:!
a3×:

(
# (d)

)

≤ 1

d

 ∑
:=2

_:

:!
:2 · 4ℓ3 (:−1) ·

√
3 · (2A + 1)3 .

We simplify the bound further by

1

d

 ∑
:=2

_:

:!
:2 · 4ℓ3 (:−1) ·

√
3 · (2A + 1)3 ≤ 1

d
 2 · 4ℓ3 ( −1) ·

√
3 · (2A + 1)3

 ∑
:=2

_:

:!

≤ 1

d
 2 · 4ℓ3 ( −1) ·

√
3 · (2A + 1)3e_,

where the last inequality follows from the Taylor expansion of eG at 0.
Overall, we bound

��/ (V, _) − / (
�d , _d

) �� ≤ 1

d
 2 · 4ℓ3 ( −1) ·

√
3 · (2A + 1)3e_

≤ 1

d
eΘ( 3 ln(ℓ)+ln(A+1)+e_) .

Observe that A ∈ O(1) and e_ ∈ O(1). Further, for A = (1/{3)1/3 it holds that  ∈ O
(
ℓ3

)
. Thus we

have ��/ (V, _) − / (
�d , _d

)�� ≤ 1

d
eΘ(ℓ3 ln(ℓ3 )) = 1

d
eΘ( |V | ln( |V |)) ,

which concludes the proof. �

7.2 Approximation bound

We aim for applying Corollary 5 to the hard-core representation of the hard-sphere model. In
order to do so, we need a bound on the maximum degree Jd of the graph�d for any sufficiently
large resolution d . Let 13 (B) denote the number of integer grid points in a 3-dimensional sphere
of radius B centered at the origin. Note that the number of neighbors of a vertex {G ∈ +d for any
grid point G ∈ G(dℓ) is upper bounded by 13 (2dA ). We use the following bound on 13 .
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◮ Lemma 35. Let W ∈ (0, 1] and B ∈ R>0. For all d ≥
(
2
√
3
)3/(WB) it holds that 13 (dB) ≤

(1 + W) · {3 · (dB)3 . ◭

Proof. We start by considering a sphere of radius dB +
√
3 at the origin. Note that this enlarged

sphere contains for each grid point (G1, . . . , G3 ) in the original sphere the cubic region [G1, G1 +
1] × · · ·× [G3 , G3 +1] of volume 1. Thus, the volume of the enlarged sphere is a trivial upper bound
on the number of grid points in the original sphere.

Formally, we get

13 (dB) ≤ {3 ·
(
dB +

√
3
)3
,

which we rewrite as

{3 ·
(
dB +

√
3
)3

= {3 · (dB)3 + {3 ·
∑
8∈[3 ]

(
3

8

)
(dB)3−8

√
3
8
.

Further, note that for our choice of d it holds that dB ≥ 1. Thus, we get

{3 · (dB)3 + {3 ·
∑
8∈[3 ]

(
3

8

)
(dB)3−8

√
3
8
≤ {3 · (dB)3 + {3 · (dB)3−1 · 23

√
3
3
= {3 · (dB)3 ·

(
1 + 1

dB

(
2
√
3
)3 )

.

We conclude the proof by noting that
(
2
√
3
)3/dB ≤ W . �

As we fixed A = (1/{3)1/3 we can immediately conclude that for every W ∈ (0, 1] there is some
dW ∈ Θ(1/W ) such that for all d ≥ dW it holds that

Jd ≤ (1 + W) (2d)3 .

Finally, the following general lemma will help us to turn a sampling scheme for ` (�d ,_d ) into a
randomized approximation of /

(
�d , _d

)
.

◮ Lemma 36 ([24, Lemma 13]). Let (�,,) be an instance of the multivariate hard-core model
and let L be a clique cover of size < with /max = max8∈[<] {/

(
�d [L8 ]

)
}. Further, for 8 ∈ [<]

let +8 = + \ ⋃
9<8 L9 . For every Y ∈ (0, 1] there are B ∈ Θ

(
</max/Y2

)
and YB ∈ Θ(Y/(</max))

such that a randomized Y-approximation of / (�, ,) can be computed by drawing B samples YB -
approximately from ` (� [+8 ]) for each 8 ∈ [<]. ◭

Note that sampling from ` (� [+8 ]) means sampling from ` (�) for 8 = 0 and ignoring all cliques
{L9 } 9<8 for 8 ≥ 1.

◮ Theorem 1. Let (V, _) be an instance of the continuous hard-sphere model with V = [0, ℓ)3 .
If there is a X ∈ (0, 1] such that

_ ≤ (1 − X) e
23
,

then for each Y ∈ (0, 1] there is a randomized Y-approximation of / (V, _) computable in time

polynomial in |V|1/X2 and 1
Y . ◭

47



Proof. Set W = X/2 and Y ′ = Y/3. By combining Lemma 2 and Lemma 35, we know that we can

choose a resolution d ∈ Θ

(
e |V | ln |V |/(Y ′W)

)
= Θ

(
e |V | ln |V |/(YW)

)
such that

1 − Y ′ ≤ / (V, _)
/

(
�d , _d

) ≤ 1 + Y ′ and (16)

Jd ≤ (1 + W) (2d)3 . (17)

Note that (1− Y ′)2 ≥ 1 − Y and (1 + Y ′)2 ≤ 1 + Y . Thus, equation (16) implies that it is sufficient to
Y ′-approximate /

(
�d , _d

)
. We start by arguing that we can apply Corollary 5 to /

(
�d , _d

)
. Then,

we construct a clique cover and show that each step of the clique dynamics can be computed
efficiently. Finally, we will use Lemma 36 to get the desired approximation.

To apply Corollary 5, we need to show that _d ≤ (1 − X ′)_c
(
Jd

)
for some X ′ ∈ (0, 1]. To this

end, we choose X ′ = X/2. Due to equation (17) we know that

_c
(
Jd

)
=

(Jd − 1)Jd−1

(Jd − 2)Jd
≥

(
(1 + W) (2d)3 − 1

) (1+W) (2d)3−1
(
(1 + W) (2d)3 − 2

) (1+W) (2d)3 .

Now, note that

_ ≤ (1 − X) e
23

≤
1 − X

2

1 + X
2

e

23
=
1 − X ′
1 + W

e

23
≤ (1 − X ′)d3

(
(1 + W) (2d)3 − 1

) (1+W) (2d)3−1
(
(1 + W) (2d)3 − 2

) (1+W) (2d)3 ,

where the last inequality comes from the fact that G (G−1)G−1
(G−2)G converges to e from above as G → ∞.

Dividing by d3 yields _d = d−3_ ≤ (1 − X ′)_c
(
Jd

)
.

We now construct the clique cover that we are going to use. This is done by dividing the grid

G(dℓ) into cubic regions of side length 0 =

⌊
2d√
3
{
−1/3
3

⌋
. Formally, for a tuple (81, . . . , 83 ) ∈ N3 , let

H81,...,83 =
{
(G1, . . . , G3 ) ∈ G

�� ∀9 ∈ [3] : 8 90 ≤ G 9 < (8 9 + 1)0
}
.

Note that for every pair of grid points G, ~ ∈ H81,...,83 it holds that 3 (G, ~) < 2d{−1/3
3

= 2dA . Thus,
the set of vertices, corresponding to grid points inH81,...,83 , form a clique in�d . We obtain a clique

cover L of size< = |L | ∈ O
(
(dℓ/0)3

)
= O(|V|). Further, it holds that

/max ≤ 1 + 03_d = 1 + 03d−3_ ∈ O(1).

By Corollary 5, the clique dynamics based on L have mixing time polynomial in |V|1/X′2 , thus also
polynomial in |V|1/X2 , and in ln(1/YB ) for any sampling error YB ∈ (0, 1].
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We proceed by arguing that we can compute each step efficiently. Note that we cannot con-
struct the graph explicitly, as it would be far to large for our choice of resolution d . However,
by identifying each vertex by its corresponding grid point, deciding whether there is an edge be-
tween two vertices or if a vertex belongs to a certain clique can be done by comparing integers
up to size O(dℓ), which can be done in O(ln(dℓ)) = O(|V| ln|V|). Choosing a clique from the
clique cover can be done by choosing 3 integers up to size O(ℓ). Finally, for a given clique L8 , we

can sample from `
(�d ,_d )
|L8

(
·
�� 0 |+d\L8 ) = ` (�d [L8 ],_d ) by

(1) sample G ∈ H8 uniformly at random, where H8 is the region of the grid corresponding to
L8 , and

(2) return ∅ with probability 1
/ (�d [L8 ]) and {{G } otherwise.

Note that (1) involves sampling 3 integers up to size O(0). In addition, step (2) involves com-
puting /

(
�d [L8 ]

)
= 1 + |L8 |d−3_. Thus, sampling from ` (�d [L8 ],_d ) can be done in O(ln(0)) =

O(|V| ln|V|).
We now know that we can sample YB -approximately from ` (�d ,_d ) in time polynomial in |V|1/X2

and ln(1/YB). Applying Lemma 36 proves the theorem. �
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