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Abstract

Gaussian curvature is an important geometric property of surfaces, which has been used
broadly in mathematical modeling. Due to the full nonlinearity of the Gaussian curvature,
efficient numerical methods for models based on it are uncommon in literature. In this
article, we propose an operator-splitting method for a general Gaussian curvature model.
In our method, we decouple the full nonlinearity of Gaussian curvature from differential op-
erators by introducing two matrix- and vector-valued functions. The optimization problem
is then converted into the search for the steady state solution of a time dependent PDE
system. The above PDE system is well-suited to time discretization by operator splitting,
the sub-problems encountered at each fractional step having either a closed form solution or
being solvable by efficient algorithms. The proposed method is not sensitive to the choice of
parameters, its efficiency and performances being demonstrated via systematic experiments
on surface smoothing and image denoising.

1 Introduction

Gaussian curvature is a most important geometric property finding applications in many sci-
entific areas, such as biology [12, 1, 4], physics [21], graph regularization [17], image processing
and surface fairing [47]. For example: (i) Gaussian curvature is used in [12] to explain the bud-
ding process of enveloped viruses. (ii) One studies in [21] primordial black holes from Gaussian
curvature perturbations. (iii) One uses in [17] Gaussian curvature to regularize triangulated
graphs. (iv) Gaussian curvature based models have also been proposed for image regularization
[28, 49] and surface fairing [18, 5].

Consider a two-dimensional surface S. The Gaussian curvature of S at x is the product
of its principal curvatures at x [13]. The Gaussian curvature is an intrinsic quantity since it
does not depend on how S is embedded in the space. Another desirable property of Gaussian
curvature is its relation to the developability of S. A surface with zero Gaussian curvature
can be isometrically mapped onto a plane without distortion; it is then called developable.
Many simple surfaces are developable, such as cylinders and cones. The property of being
an intrinsic quantity and the relation to developability of surfaces make Gaussian curvature a
natural regularizer which has been used widely in mathematical modeling [18, 5, 28].
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Despite of the rich applications of Gaussian curvature, only few publications dedicated to
numerical methods for Gaussian curvature models can be found in the literature. Gaussian
curvature driven flows for image smoothing are proposed in [34, 37] in which the flow PDE is
numerically solved by the forward Euler scheme. Another Gaussian curvature flow is proposed
in [19]. The evolution PDE is solved by a Crank-Nicholson scheme together with a domain
decomposition technique. In [27], one proposes a weighted Gaussian curvature model in which
the weight of the Gaussian curvature term is designed such that the model simplifies to a
quadratic form leading to an explicit formula for the problem solution. Recently, the authors
of [29] proposed a robust discrete scheme to compute the weighted Gaussian curvature. The
authors of [18] propose a Gaussian curvature based model for surface fairing in which the
surface is represented by a triangulation. The proposed model is discretized using a dedicated
scheme introduced in [2] and optimized by gradient descent. The augmented Lagrangian method
(ALM) has demonstrated superior performance in image processing [45, 10, 46, 33] and has
been applied to optimize Gaussian curvature based models for image denoising [6, 40], image
registration [3, 32], and image inpainting [49]. Although the ALM may converge very quickly,
its performances are sensitive to the choice of the augmentation parameters. Indeed, finding the
optimal parameters is tricky and maybe time consuming. A two-step method has been applied
to optimize Gaussian curvature based models for image denoising [6] and surface fairing [5]. In
each step of the two-step method, the authors solve an optimization problem using gradient
descent. As shown in [6], the two-stage method is less efficient than the ALM. Numerical
algorithms for other curvature based models are developed for the total curvature [48], mean
curvature [50, 38] and Euler’s elastica model [44, 51, 15, 16].

Actually, the ALM is a special operator-splitting method which has a long history on pro-
viding efficient numerical solvers for various PDE related problems [8, 24, 25]. When solving a
complicated time-dependent PDE by an operator-splitting method, one decomposes the PDE
into several sub-PDEs such that each sub-PDE problem can be solved efficiently. For each time
step, instead of solving the original PDE, one solves these sub-PDEs sequentially [39, 35]. When
applying the above splitting strategy on optimization problems, one first derives the related
Euler-Lagrange equation and associates with it an initial value problem such that the steady
state solution of this initial value problem solves the optimization problem. Then the initial
value problem is solved by the splitting strategy mentioned above. Such a kind of operator-
splitting method has been proposed for image regularization [11, 36], and surface reconstruction
[31, 30]. The performances of these methods have a low sensitivity to the choice of parameters.
In [11], the authors focus on Euler’s elastica model for image denoising. The proposed operator-
splitting method is more efficient than the ALM proposed in [42]. The authors of [31] proposed
an operator-splitting method and an ALM to reconstruct a surface from a point cloud. The
numerical experiments reported in [31] show that the operator-splitting method is more robust
than the ALM.

In this article, we propose an operator-splitting method for a two-dimensional Gaussian
curvature based model. We consider a general model consisting of a fidelity term and of two
regularization terms: a Gaussian curvature term and a total variation one. To decouple the
nonlinearities of the model, two matrix- and vector-valued functions are introduced with some
constraints. To derive the optimality condition of the new problem, the constraints are enforced
by utilizing indicator functionals. We then associate with the optimality conditions an initial-
value problem, a time-dependent PDE system, which is time discretized by an operator-splitting
method. In our splitting scheme, each sub-problem has either a closed-form solution or can be
solved efficiently. The efficiency of the proposed method is demonstrated on surface smoothing
and image denoising examples. Our method can optimize the Gaussian curvature based model
efficiently and is not sensitive to the choice of parameters.

The remaining of this paper is organized as follows: We introduce the Gaussian curvature
based model in Section 2. The proposed operator-splitting method and solvers for each sub-
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problem are presented in Section 3. The proposed method is space discretized in Section 4. In
Section 5, we present the results of numerical experiments, where the method we propose is
applied to surface smoothing and image denoising problems. We conclude this article in Section
6.

2 The Gaussian curvature model

Let Ω ⊂ R2 be a rectangular domain and f be a noisy function of two variables. The function
f is not a surface, but its graph is one. In image processing, one can take f as a noisy image
whose function values are pixel values. We consider regularizing f by the following Gaussian
curvature-TV model

min
v∈H2(Ω)

[∫
Ω

|detD2v|
(1 + |∇v|2)2

ds+ α

∫
Ω
|∇v|dx +

1

2β

∫
Ω
|f − v|2dx

]
, (2.1)

where H2(Ω) is the Sobolev space defined by

H2(Ω) =
{
v|v ∈ L2(Ω), ∇v ∈ (L2(Ω))2, D2v ∈ (L2(Ω))2×2

}
,

with L2(Ω) =

{
v|
∫

Ω
v2dx < +∞

}
,

the derivatives being in the sense of distributions. Above, dx = dx1dx2, s denotes the surface
area, α ≥ 0, β > 0 are weighting parameters balancing these terms, and D2v is the Hessian of
v given by

D2v =

(
∂2v
∂x21

∂2v
∂x1∂x2

∂2v
∂x1∂x2

∂2v
∂x22

)
. (2.2)

In (2.1), the first two terms are regularization terms: the Gaussian curvature of v [20] and the
total variation of v, respectively. Since the Gaussian curvature is an intrinsic geometric quantity
of a surface, we integrate it with respect to the surface area. The third term in (2.1) is a fidelity
term.

Substituting ds by
√

1 + |∇v|2dx, we get

min
v∈H2(Ω)

[∫
Ω

|detD2v|
(1 + |∇v|2)3/2

dx + α

∫
Ω
|∇v|dx +

1

2β

∫
Ω
|f − v|2dx

]
. (2.3)

The full nonlinearity and the non-smoothness of the Gaussian curvature term make solving (2.3)
a challenging problem. To overcome this difficulty, we introduce two matrix- and vector-valued
functions to decouple the nonlinearities from the differential operators.

Let

q =

[
q1

q2

]
∈ (H1(Ω))2, and G =

(
G11 G12

G21 G22

)
∈ (L2(Ω))2×2.

If u is a solution to (2.3), then (u,p,H) solves
min

v∈H1(Ω), q∈(H1(Ω))2,
G∈(L2(Ω))2×2

[∫
Ω

| detG|
(1 + |q|2)3/2

dx + α

∫
Ω
|q|dx +

1

2β

∫
Ω
|f − v|2dx

]
,

q = ∇v,
G = ∇q

(2.4)

with p = ∇u,H = ∇p. Therefore (2.3) is converted to the constrained optimization problem
(2.4). Next, we relax the constraints by utilizing indicator functionals.
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Define the sets

Σ =

{
q|q ∈ (L2(Ω))2, ∃v ∈ H1(Ω) such that q = ∇v and

∫
Ω

(f − v)dx = 0

}
,

S =
{

(q,G)|(q,G) ∈
(
H1(Ω)

)2 × (L2(Ω)
)2×2

such that G = ∇q
}
,

and their indicator functionals

IΣ(q) =

{
0 if q ∈ Σ,

+∞ otherwise,
IS(q,G) =

{
0 if (q,G) ∈ S,
+∞ otherwise.

We have that (p,H) is the solution to

min
q∈(H1(Ω))2,

G∈(L2(Ω))2×2

[∫
Ω

|detG|
(1 + |q|2)3/2

dx + α

∫
Ω
|q|dx +

1

2β

∫
Ω
|f − vq|2dx + IΣ(q) + IS(q,G)

]
(2.5)

where vq is the unique solution to
∇2vq = ∇ · q in Ω,

(∇vq − q) · n = 0 on ∂Ω,∫
Ω

(f − vq)dx = 0.

(2.6)

In (2.6), ∇2 represents the Laplace operator, n is the unit outward normal vector at the bound-
ary. Compared to (2.4), in (2.5) one relaxes the constraints by introducing the two indicator
functionals IΣ and IS . Taking advantage of (2.6), one can uniquely determine v in (2.4) using
q. Therefore the triple (u,p,H) in (2.4) is reduced to (p,H) in (2.5), which is an unconstrained
optimization problem.

Remark 2.1. For any given q, problem (2.6) is a standard Poisson–Neumann problem. On
rectangular domains, there are many efficient solvers for problem (2.6), such as sparse Cholesky,
conjugate gradient, cyclic reduction, etc. In particular, when replacing in (2.6) the Neumann
boundary conditions by periodic ones, (2.6) can be solved efficiently by FFT, see Section 3.8
and 4.4 for details.

3 An operator splitting method to solve problem (2.5)

Operator-splitting methods solve complicated problems by solving a sequence of simpler sub-
problems. They have been successfully used for the numerical solutions of PDEs [23], inverse
problems [22], fluid-structure interactions [7] and problems in image processing [11, 36, 24]. We
refer the readers to [25] for a detailed discussion of operator-splitting methods. In this section,
we propose an operator splitting method to find the minimizers of (2.5).

3.1 The optimality condition associated with (2.5)

The functional in (2.5) can be written as

J1 + J2 + J3

where

J1(q,G) =

∫
Ω

|detG|
(1 + |q|2)3/2

dx, (3.1)

J2(q) = α

∫
Ω
|q|dx, (3.2)

J3(q) =
1

2β

∫
Ω
|f − vq|2dx. (3.3)
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The Euler-Lagrange equation for (2.5) reads as{
DqJ1(p,H) + ∂qJ2(p) +DqJ3(p) + ∂qIS(p,H) + ∂qIΣ(p) 3 0,

∂GJ1(p,H) + ∂GIS(p,H) 3 0,
(3.4)

where Dq (resp. ∂q) denotes the partial derivative (resp. subdifferential) of a differentiable
functional (resp. a non-smooth functional) with respect to q. Operator ∂G is defined similarly.

With the optimality system (3.4), we associate the following initial value problem (dynamical
flow): 

γ ∂p∂t +DqJ1(p,H) + ∂qJ2(p) +DqJ3(p) + ∂qIS(p,H) + ∂qIΣ(p) 3 0,
∂H
∂t + ∂GJ1(p,H) + ∂GIS(p,H) 3 0,

p(0) = p0, H(0) = H0

(3.5)

with γ > 0. In (3.5), (p0,H0) is the initial condition of the flow. The choice of (p0,H0) will be
discussed in Section 3.7. Note that the steady state solution of (3.5) solves (3.4). In the next
subsection, we propose an operator-splitting method to time-discretize (3.5) and to compute
the steady state solution.

3.2 An operator-splitting method for the dynamical-flow system

We use the Lie scheme (see [25, 26] and the references therein) to time-discretize (3.5). Denote
by τ(> 0) a time discretization step and by n the step number. Let tn = nτ . We use (pn,Gn)
to denote an approximate solution at time tn. Given an initial condition (p0,H0), we update
(pn,Hn) via the following four steps:
Initialization:

(p0,H0) = (p0,H0). (3.6)

Fractional Step 1: 
{
γ ∂p∂t +DqJ1(p,H) = 0,
∂H
∂t + ∂GJ1(p,H) 3 0,

in Ω× (tn, tn+1),

(p(tn),H(tn)) = (pn,Hn),

(3.7)

and set

(pn+1/4,Hn+1/4) = (p(tn+1),H(tn+1)). (3.8)

Fractional Step 2: 
{
γ ∂p∂t + ∂qJ2(p) 3 0,
∂H
∂t = 0,

in Ω× (tn, tn+1),

(p(tn),H(tn)) = (pn+1/4,Hn+1/4),

(3.9)

and set

(pn+2/4,Hn+2/4) = (p(tn+1),H(tn+1)). (3.10)

Fractional Step 3: 
{
γ ∂p∂t + ∂qIS(p,H) 3 0,
∂H
∂t + ∂GIS(p,H) 3 0,

in Ω× (tn, tn+1),

(p(tn),H(tn)) = (pn+2/4,Hn+2/4),

(3.11)
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and set

(pn+3/4,Hn+3/4) = (p(tn+1),H(tn+1)). (3.12)

Fractional Step 4:
{
γ ∂p∂t +DqJ3(p) + ∂qIΣ(p) = 0,
∂H
∂t = 0,

in Ω× (tn, tn+1),

(p(tn),H(tn)) = (pn+3/4,Hn+3/4),

(3.13)

and set

(pn+1,Hn+1) = (p(tn+1),H(tn+1)). (3.14)

In scheme (3.6)-(3.14), the positive constant γ > 0 controls the evolution speed of p. Scheme
(3.6)-(3.14) is only semidiscrete. One still needs to solve the subproblems (3.7), (3.9), (3.11)
and (3.13). Here we advocate a Marchuk-Yanenko type scheme (see [25] for more information
on the Marchuk-Yanenko scheme) to time-discretize (3.6)-(3.14), that is:
Set

(p0,H0) = (p0,H0). (3.15)

For n ≥ 0, (pn,Hn)→ (pn+1/4,Hn+1/4)→ (pn+2/4,Hn+2/4)→ (pn+3/4,Hn+3/4)→ (pn+1,Hn+1)
as follows: {

γ pn+1/4−pn

τ +DqJ1(pn+1/4,Hn) = 0,
Hn+1/4−Hn

τ + ∂GJ1(pn+1/4,Hn+1/4) 3 0,
(3.16){

γ pn+2/4−pn+1/4

τ + ∂qJ2(pn+2/4) 3 0,
Hn+2/4−Hn+1/4

τ = 0,
(3.17){

γ pn+3/4−pn+2/4

τ + ∂qIS(pn+3/4,Hn+3/4) 3 0,
Hn+3/4−Hn+2/4

τ + ∂GIS(pn+3/4,Hn+3/4) 3 0,
(3.18){

γ pn+1−pn+3/4

τ +DqJ3(pn+1) + ∂qIΣ(pn+1) 3 0,
Hn+1−Hn+3/4

τ = 0.
(3.19)

Problem (3.16) is a time-discrete variant of (3.7). Given {pn,Hn}, it is difficult to solve (3.7)
for {pn,Hn} directly by an implicit scheme. Therefore, we split this complicated problem into
two substeps in (3.7) by decoupling variables p and H. Problem (3.16) consists of two substeps:
In the first substep, we fix H = Hn and compute for pn+1 implicitly. In the second substep, we
fix p = pn+1/4 and update Hn+1/4 implicitly. Details on each substep can be found in Section
3.3. Such a splitting strategy is known as the Marchuk-Yanenko type scheme. The convergence
of this scheme is verified by our numerical experiments in Section 5. In the remaining part of
this section, we discuss solutions to subproblems (3.16)-(3.19).

Remark 3.1. Our operator–splitting method is an approximation of the gradient flow of the
functional (2.3). The convergence of the proposed method closely relates to that of the gradient
flow. When there is only one variable and the operator in each subproblem is smooth enough, the
approximation error is of O(τ) (see [?] and [?, Chapter 6]). In our problem, since J1, J2, IS and
IΣ are not smooth, the approximation error of the proposed method requires a separate study.
Due to the non-convexity of the functional in (2.3), all we can expect is that the gradient flow
and the proposed method converge to a local minimizer.
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3.3 On the solution to (3.16)

3.3.1 Computing pn+1/4

In (3.16), pn+1/4 solves the following minimization problem

pn+1/4 = arg min
q∈(L2(Ω))2

[
γ

2

∫
Ω
|q− pn|2dx + τ

∫
Ω

|detHn|
(1 + |q|2)3/2

dx

]
. (3.20)

By differentiating the functional in (3.20), pn+1/4 =
[
p
n+1/4
1 , p

n+1/4
2

]>
satisfies

γpn+1/4 − 3τ |∆1|
pn+1/4

(1 + |pn+1/4|2)5/2
= γb, (3.21)

where ∆1 = detHn+1/4, b = pn. System (3.21) can be solved by Newton’s method or a fixed
point method.

We first discuss Newton’s method. Define

F(q) = γq− 3τ |∆1|
q

(1 + |q|2)5/2
− γb. (3.22)

for q = [q1, q2]>. It is easy to derive that

DF(q) =

(
∂F1
∂q1

∂F1
∂q2

∂F2
∂q1

∂F2
∂q2

)
= γI +

3τ |∆1|
(1 + |q|2)7/2

(
4q2

1 − q2
2 − 1 5q1q2

5q1q2 4q2
2 − q2

1 − 1

)
, (3.23)

where I denotes the identity matrix. The Newtons method is conduced as follows:
Set q0 = b. For k > 0, we update qk → qk+1 as

qk+1 = q− ρ(DF(qk))−1F (qk), (3.24)

where ρ ∈ (0, 1] is a parameter controlling the updating rate of q. We update qk until ‖qk+1 −
qk‖∞ ≤ ξ1 for some small ξ1. Denote the converged quantity by p∗. We set

pn+1/4 = p∗.

The formulation of the fixed point method is simpler. First observe that (3.21) can be
rewritten as (

γ − 3τ |∆1|
(1 + |pn+1/4|2)5/2

)
pn+1/4 = γb. (3.25)

Set q0 = b. For k > 0, we update qk → qk+1 as

sk =

(
γ − 3τ |∆1|

(1 + |qk|2)5/2

)
, (3.26)

q̃ = γb/sk, (3.27)

qk+1 = (1− ρ1)qk + ρ1q̃, (3.28)

where ρ1 ∈ (0, 1] is a parameter controlling the updating rate of q. By using the above algorithm,
qk is updated until ‖qk+1 − qk‖∞ ≤ ξ1 for some small ξ1. Denote the converged quantity by
p∗. We set

pn+1/4 = p∗.
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In our experiments, the fixed point method is more stable and has a faster convergence compared
to Newton’s method. In all of our experiments reported in this paper, the fixed point method
is used.

In Newton’s method (3.24) and the fixed point iteration (3.26)–(3.28), initial guess q0 = pn

is used. In problems (3.16)-(3.19), τ is the artificial time step which controls the evolution
speed of p and H. As long as τ is small enough, {pn,Hn} are close to {pn−1,Hn−1} and
{pn−1+1/4,Hn−1+1/4}, where pn−1+1/4 is the minimizer of (3.20) in the previous outer iteration.
In addition, the functional in (3.20) in the current outer iteration does not change too much
from that in the previous outer iteration. It is reasonable to expect the minimizer of (3.20) at
the current outer iteration is close to pn or pn−1+1/4. Therefore pn is a good initial guess and
should converge to the minimizer fast. This is verified in our numerical experiments.

The operator splitting method we used is the Marchuk-Yanenko variant of the Lie scheme.
Unlike ADMM type splitting methods, the Lie and Marchuk-Yanenko schemes ‘enjoy’ a sys-
tematic splitting error (of order τ , at best typically). In order to have an accurate method one
has to use small values of τ , implying many time steps before reaching a steady state solution.
This drawback becomes an advantage when using Newton’s method initialized with solution at
time step n to compute solution at time step n+ 1, since the small value of τ one uses implies
that both solutions are close to each other, which helps for Newton’s method convergence. We
expect the same for the fixed point method.

3.3.2 Computing Hn+1/4

Function Hn+1/4 is the solution to

Hn+1/4 = arg min
G∈(L2(Ω))2×2

[
1

2

∫
Ω
|G−Hn|2dx + τ

∫
Ω

| detG|
(1 + |pn+1/4|2)3/2

dx

]
. (3.29)

Problem (3.29) is of the form

M = arg min
G∈(L2(Ω))2×2

[
1

2

∫
Ω
|G−B|2dx + τ

∫
Ω

∆2|G11G22 −G12G21|dx
]

(3.30)

with B = Hn,∆2 = (1 + |pn+1/4|2)−3/2. By grouping (G11, G12) and (G21, G22), we use the
following relaxation method to solve for M:
Set M0 = B, and fix ρ2 ∈ (0, 1]. For k > 0, we update Mk →Mk+1 in the following two steps:
Step 1: Solve

(M̃11, M̃12) = arg min
(z1,z2)∈(L2(Ω))2

[
1

2

∫
Ω

(
|z1 −B11|2 + |z2 −B12|2

)
dx + τ

∫
Ω

∆2|Mk
22z1 −Mk

21z2|dx
]

(3.31)

and update

Mk+1
11 = (1− ρ2)Mk

11 + ρ2M̃11, (3.32)

Mk+1
12 = (1− ρ2)Mk

12 + ρ2M̃12. (3.33)

Step 2: Solve

(M̃22, M̃21) = arg min
(z1,z2)∈(L2(Ω))2

[
1

2

∫
Ω

(
|z1 −B22|2 + |z2 −B21|2

)
dx + τ

∫
Ω

∆2|Mk+1
11 z1 −Mk+1

12 z2|dx
]

(3.34)

and update

Mk+1
22 = (1− ρ2)Mk

22 + ρ2M̃22, (3.35)

Mk+1
21 = (1− ρ2)Mk

21 + ρ2M̃21. (3.36)
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The above procedure is repeated until

max
{
‖Mk+1

11 −Mk
11‖∞, ‖Mk+1

22 −Mk
22‖∞, ‖Mk+1

12 −Mk
12‖∞, ‖Mk+1

21 −Mk
21‖∞

}
≤ ξ2

for some small ξ2.
Problems (3.31) and (3.34) can be solved pixel-wise. On each pixel, one needs to solve a

minimization problem in the form of

(v1, v2) = arg min
(w1,w2)∈R2

[
1

2

(
|w1 − b1|2 + |w2 − b2|2

)
+ c|a1w1 − a2w2|

]
(3.37)

for some constants a1, a2, b1, b2, c ∈ R with c > 0. The closed-form solution of (3.37) is summa-
rized in the following theorem.

Theorem 3.1. The closed-form solution of (3.37) is given in the following five cases:

Case 1: a1 = 0. The solution is

v1 = b1, v2 = max

{
0, 1− c|a2|

|b2|

}
b2. (3.38)

Case 2: a2 = 0. The solution is

v1 = max

{
0, 1− c|a1|

|b1|

}
b1, v2 = b2. (3.39)

Case 3: a1 6= 0, a2 6= 0 and (a1b1 − a2b2)− (a2
1 + a2

2)c > 0. The solution is

v1 = b1 − ca1, v2 = b2 + ca2. (3.40)

Case 4: a1 6= 0, a2 6= 0 and (a1b1 − a2b2) + (a2
1 + a2

2)c < 0. The solution is

v1 = b1 + ca1, v2 = b2 − ca2. (3.41)

Case 5: Other cases. The solution is

v1 =
a2

2b1 + a1a2b2
a2

1 + a2
2

, v2 =
a1a2b1 + a2

1b2
a2

1 + a2
2

. (3.42)

Proof. We derive the closed form solution for each case.
Cases 1 and 2: Case 1 and 2 are very similar to each other. We derive the expression of the

solution in Case 1. The solution in Case 2 can be derived analogously. When a1 = 0, (3.37)
reduces to

(v1, v2) = arg min
(w1,w2)∈R2

[
1

2
(|w1 − b1|2 + |w2 − b2|2) + c|a2||w2|

]
= arg min

w1∈R

1

2
|w1 − b1|2 + arg min

w2∈R

[
1

2
|w2 − b2|2 + c|a2||w2|

]
. (3.43)

In (3.43), the minimization problem with respect to w1 has solution v1 = b1. The minimization
problem with respect to w2 is a common one in image processing; its solution is given via the
shrinkage operator [14]

v2 = max

{
0, 1− c|a2|

|b2|

}
b2. (3.44)
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Case 3-5: In Case 3-5, a1, a2 6= 0. When a1v1−a2v2 > 0, the optimality condition of (v1, v2)
is {

v1 − b1 + ca1 = 0,

v2 − b2 − ca2 = 0,
(3.45)

which gives v1 = b1 − ca1, v2 = b2 + ca2. Substituting this expression into the condition
a1v1 − a2v2 > 0 yields

(a1b1 − a2b2)− c(a2
1 + a2

2) > 0, (3.46)

which proves Case 3.
When a1v1 − a2v2 < 0, the optimality condition of (v1, v2) is{

v1 − b1 − ca1 = 0,

v2 − b2 + ca2 = 0,
(3.47)

which gives v1 = b1 + ca1, v2 = b2 − ca2. Substituting this expression into the condition
a1v1 − a2v2 < 0 yields

(a1b1 − a2b2) + c(a2
1 + a2

2) < 0, (3.48)

which proves Case 4.
For Case 5, the condition is a1, a2 6= 0, (a1b1 − a2b2) − c(a2

1 + a2
2) ≤ 0 and (a1b1 − a2b2) +

c(a2
1 + a2

2) ≥ 0. Under this condition, the optimality conditions in Cases 3 and 4 can not be
satisfied. Therefore we must have a1v1− a2v2 = 0. Since a1, a2 6= 0, we can write v2 = a1v1/a2.
Then (3.37) reduces to v1 = arg min

w1∈R

1
2

(
|w1 − b1|2 +

∣∣∣a1w1
a2
− b2

∣∣∣2)
v2 = a1v1/a2.

(3.49)

The functional in (3.49) is a quadratic form of v1, implying that

v1 =
a2

2b1 + a1a2b2
a2

1 + a2
2

, v2 =
a1a2b1 + a2

1b2
a2

1 + a2
2

.

Similar to our discusion in Section 3.3 on the convergence of the fixed-point iteration for
pn+1/4, Hn is a good initial guess of the iteration (3.31)–(3.36) and the iteration should converge
to the minimizer fast. This is verified by our numerical experiments.

3.4 On the solution of (3.17)

In (3.17), pn+2/4 solves the following problem

min
q∈(L2(Ω))2

[
γ

2

∫
Ω
|q− pn+1/4|2dx + τα

∫
Ω
|q|dx

]
. (3.50)

We have pn+2/4 closed form through the shrinkage operation, namely

pn+2/4 = max

{
0, 1− τα/γ

|pn+1/4|

}
pn+1/4. (3.51)

Then we set Hn+2/4 = Hn+1/4.
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3.5 On the solution of (3.18)

In (3.18), (pn+3/4,Hn+3/4) solves
Hn+3/4 = ∇pn+3/4,

pn+3/4 = arg min
q∈(H1(Ω))2

[
1
2

∫
Ω

(
γ|q− pn+2/4|2 + |∇q−Hn+2/4|2

)
dx

]
.

(3.52)

It follows from (3.52) that pn+3/4 is the unique solution to
pn+3/4 ∈ (H1(Ω))2,∫

Ω

(
γpn+3/4 · q +∇pn+3/4 : ∇q

)
dx =

∫
Ω

(
γpn+2/4 · q + Hn+2/4 · ∇q

)
dx,

∀q ∈ (H1(Ω))2,

(3.53)

where ∇p : ∇q = ∇p1 · ∇q1 +∇p2 · ∇q2. Note that pn+3/4 is also the unique weak solution of
the following linear elliptic problem (a Neumann problem)

−∇2p
n+3/4
k + γp

n+3/4
k = γp

n+2/4
k −∇ ·Hn+2/4

k in Ω,(
∇pn+3/4

k −H
n+2/4
k

)
· n = 0 on ∂Ω,

for k = 1, 2,

(3.54)

where H
n+2/4
k = [H

n+2/4
k1 , H

n+2/4
k2 ]>.

3.6 On the solution of (3.19)

In (3.19), Hn+1 = Hn+3/4 and pn+1 is the solution tou
n+1 = arg min

v∈H1(Ω)

[
1
2

∫
Ω
γ|∇v − pn+3/4|2dx +

τ

2β

∫
Ω
|f − v|2dx

]
,

pn+1 = ∇un+1.

(3.55)

From (3.55), un+1 is the unique solution to the linear variational problem
un+1 ∈ H1(Ω),∫

Ω
γ∇un+1 · ∇vdx +

τ

β

∫
Ω
un+1vdx =

τ

β

∫
Ω
fvdx + γ

∫
Ω
pn+3/4 · ∇vdx,

∀v ∈ H1(Ω).

(3.56)

Note that un+1 ∈ H1(Ω) is also the weak solution to the following Neumann problem{
−γ∇2un+1 + τ

βu
n+1 = τ

β f −∇ · (γp
n+3/4) in Ω,(

∇un+1 − pn+3/4
)
· n = 0 on ∂Ω.

(3.57)

Our algorithm is summarized in Algorithm 1 below:

3.7 Initial condition

Scheme (3.15)-(3.19) requires an initial condition (p0,H0). One simple choice is

p0 = ∇f, H0 = ∇p0. (3.58)
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Algorithm 1: An operator-splitting method for solving problem (2.5)

Input: The noisy function f , parameters α, β, γ, τ .
Initialization: n = 0, (p0,H0) = (p0,H0).
while not converge do

1. Solve (3.16) using (3.26)-(3.28), (3.31)-(3.36) to obtain (pn+1/4,Hn+1/4).
2. Solve (3.17) using (3.51) to obtain (pn+2/4,Hn+2/4).
3. Solve (3.18) using (3.54) to obtain (pn+3/4,Hn+3/4).
4. Solve (3.19) using (3.57) to obtain (pn+1,Hn+1).
5. Set n = n+ 1.

end while
Solve (2.6) using the converged function p∗ to obtain u∗.
Output: The function u∗.

A more sophisticated choice is to set p0 as the gradient of a smoothed f . Let ε > 0 be a
small constant. We first solve

u0 ∈ H1(Ω),∫
Ω
u0vdx + ε

∫
Ω
∇u0 · ∇vdx =

∫
Ω
fvdx,

∀v ∈ H1(Ω).

(3.59)

Here u0 is the weak solution of{
u0 − ε∇2u0 = f in Ω,

∇u0 · n(= ∂u0/∂n) = 0 on ∂Ω.
(3.60)

Then we take

p0 = ∇u0, H0 = ∇p0. (3.61)

3.8 On periodic boundary conditions

Periodic boundary conditions are commonly used in image processing and enable one to use
FFT when solving certain elliptic linear PDEs. The operator-splitting method and the solvers
to each subproblem discussed so far consider Neumann boundary conditions. In this subsection,
we discuss the minimal efforts one needs to modify the aforementioned algorithm and solvers
in order to handle periodic boundary conditions.

Assume that our computational domain is Ω = [0, L1] × [0, L2]. The first modification one
needs is to replace the functional space H1(Ω) by H1

P (Ω) defined as

H1
P (Ω) =

{
v ∈ H1(Ω) : v(0, :) = v(L1, :), v(:, 0) = v(:, L2)

}
.

Correspondingly, the sets Σ and S are replaced by

Σ =

{
q|q ∈ (L2(Ω))2, ∃v ∈ H1

P (Ω) such that q = ∇v and

∫
Ω

(f − v)dx = 0

}
,

S =
{

(q,G)|(q,G) ∈
(
H1
P (Ω)

)2 × (L2(Ω)
)2×2

such that G = ∇q
}
.

Problems (2.5) and (2.6) are replaced by

min
q∈(H1

P (Ω))
2
,

G∈(L2(Ω))
2×2

[∫
Ω

|detG|
(1 + |q|2)3/2

dx + α

∫
Ω
|q|dx +

1

2β

∫
Ω
|f − vq|2dx + IΣ(q) + IS(q,G)

]
(3.62)
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and 

∇2vq = ∇ · q in Ω,

vq verifies periodic doundary conditions,

(∇vq − q) · ej is periodic in the Oxj-direction, ∀j = 1, 2,∫
Ω

(f − vq)dx = 0,

(3.63)

respectively. In (3.63), ej is the unit vector of the Oxj direction.
Finally, we modify the subproblem solvers as follows:

For (pn+3/4,Hn+3/4), replace (3.52) and (3.54) by
Hn+3/4 = ∇pn+3/4,

pn+3/4 = arg min
q∈(H1

P (Ω))
2

[
1
2

∫
Ω

(
γ|q− pn+2/4|2 + |∇q−Hn+2/4|2

)
dx

]
(3.64)

and 

−∇2p
n+3/4
k + γp

n+3/4
k = γp

n+2/4
k −∇ ·Hn+2/4

k in Ω,

p
n+3/4
k (0, x2) = p

n+3/4
k (L1, x2), 0 < x2 < L2,

p
n+3/4
k (x1, 0) = p

n+3/4
k (x1, L2), 0 < x1 < L1,(

∂p
n+3/4
k
∂x1

−Hn+2/4
k1

)
(0, x2) =

(
∂p

n+3/4
k
∂x1

−Hn+2/4
k1

)
(L1, x2), 0 < x2 < L2,(

∂p
n+3/4
k
∂x2

−Hn+2/4
k2

)
(x1, 0) =

(
∂p

n+3/4
k
∂x2

−Hn+2/4
k2

)
(x1, L2), 0 < x1 < L1,

for k = 1, 2,

(3.65)

respectively.
For pn+1, replace (3.55) and (3.57) by

un+1 = arg min
v∈H1

P (Ω)

[
1
2

∫
Ω
γ|∇v − pn+3/4|2dx +

τ

2β

∫
Ω
|f − v|2dx

]
,

pn+1 = ∇un+1,

(3.66)

and 

−γ∇2un+1 + τ
βu

n+1 = τ
β f −∇ · (γp

n+3/4) in Ω,

un+1(0, x2) = un+1(L1, x2), 0 < x2 < L2,

un+1(x1, 0) = un+1(x1, L2), 0 < x1 < L1,(
∂un+1

∂x1
− pn+3/4

1

)
(0, x2) =

(
∂un+1

∂x1
− pn+3/4

1

)
(L1, x2), 0 < x2 < L2,(

∂un+1

∂x2
− pn+3/4

2

)
(x1, 0) =

(
∂un+1

∂x2
− pn+3/4

2

)
(x1, L2), 0 < x1 < L1,

(3.67)

respectively.
We replace the initial conditions (3.59) and (3.60) by

u0 ∈ H1
P (Ω),∫

Ω
u0vdx + ε

∫
Ω
∇u0 · ∇vdx =

∫
Ω
fvdx,

∀v ∈ H1
P (Ω),

(3.68)
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and 

u0 − ε∇2u0 = f in Ω,

u0(0, x2) = u0(L1, x2), 0 < x2 < L2,

u0(x1, 0) = u0(x1, L2), 0 < x1 < L1,
∂u0
∂x1

(0, x2) = ∂u0
∂x1

(L1, x2), 0 < x2 < L2

∂u0
∂x2

(x1, 0) = ∂u0
∂x2

(x1, L2), 0 < x1 < L1,

(3.69)

respectively.
Problems (3.65), (3.67) and (3.69) are linear elliptic problems with periodic boundary con-

ditions. Their finite difference analogues can be solved efficiently by FFT, as shown in Sections
4.3, 4.4 and 4.5. In the remainder of this article (Section 4 and 5), periodic boundary conditions
are used.

4 Space discretization

In this section, we discuss the finite difference analogues of (3.15)-(3.19) with periodic boundary
conditions. Let Ω = (0, L1)× (0, L2) be discretized by M ×N grids with step size h = L1/M =
L2/N . For simplicity, we denote by v(i, j) the approximate value of v at (ih, jh) for any function
v defined on Ω. Assume that all of the variables mentioned before satisfy periodic boundary
conditions.

We first define the forward (+) and backward (−) finite differences for 1 ≤ i ≤M, 1 ≤ j ≤
N :

∂+
1 v(i, j) = (v(i+ 1, j)− v(i, j)) /h,

∂−1 v(i, j) = (v(i, j)− v(i− 1, j)) /h,

∂+
2 v(i, j) = (v(i, j + 1)− v(i, j)) /h,

∂−2 v(i, j) = (v(i, j)− v(i, j − 1)) /h,

where v(M + 1, j) = v(1, j), v(−1, j) = v(M, j) and v(i,N + 1) = v(i, 1), v(i,−1) = v(i,N) are
used. With the above notation, the forward (+) and backward (−) gradient operators for a
scalar-valued function v are defined by

∇±v(i, j) = (∂±1 v(i, j), ∂±2 v(i, j)).

Correspondingly, the forward (+) and backward (−) divergence and gradient operators for a
vector-valued function q are defined by

div±q(i, j) = ∂±1 q1(i, j) + ∂±2 q2(i, j), ∇±q(i, j) =

(
∂±1 q1(i, j) ∂±2 q1(i, j)
∂±2 q2(i, j) ∂±2 q2(i, j)

)
.

We define the shifting and identity operator by

S±1 v(i, j) = v(i± 1, j), S±2 v(i, j) = v(i, j ± 1), Iv(i, j) = v(i, j). (4.1)

Denote the discrete Fourier transform and its inverse by F and F−1, respectively. We have

F(S±1 v)(i, j) = (cos zi ±
√
−1 sin zi)F(v)(i, j), (4.2)

F(S±2 v)(i, j) = (cos zj ±
√
−1 sin zj)F(v)(i, j), (4.3)

with

zi =
2π

M
(i− 1), zj =

2π

N
(j − 1). (4.4)
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4.1 Computing the discrete analogue of pn+1/4 and Hn+1/4

For the discrete analogue of pn+1/4, we first compute

∆1(i, j) = H11(i, j)H22(i, j)−H12(i, j)H21(i, j), |qk(i, j)|2 = (qk1 (i, j))2 + (qk2 (i, j))2. (4.5)

Then qk+1 is updated according to (3.26)-(3.28) pixelwisely. After qk+1 has converged to q∗,
we set pn+1/4 = q∗.

For the discrete analogue of Hn+1/4, we compute

∆2(i, j) =

(
1 +

(
p
n+1/4
1 (i, j)

)2
+
(
p
n+1/4
2 (i, j)

)2
)−3/2

.

Then Mk+1 is updated pixelwisely according to (3.31)-(3.36) and Theorem 3.1. After Mk+1

has converged to M∗, we set Hn+1 = M∗.

4.2 Computing the discrete analogue of pn+2/4 and Hn+2/4

According to (3.51), we compute

pn+2/4(i, j) = max

0, 1− τα/γ√(
p
n+1/4
1 (i, j)

)2
+
(
p
n+1/4
2

)2

pn+1/4(i, j). (4.6)

and set Hn+2/4(i, j) = Hn+1/4(i, j).

4.3 Computing the discrete analogue of pn+3/4 and Hn+3/4

We first compute pn+3/4 according to (3.65). Problem (3.65) is discretized by

−div+∇−pn+3/4
k + γp

n+3/4
k = γp

n+2/4
k − div+H

n+2/4
k in Ω, (4.7)

for k = 1, 2. Problem (4.7) can be solved efficiently by fast Fourier transform (FFT). Note that
(4.7) can be rewritten as[

γh2I − (S+
1 − I)(I − S−1 )− (S+

2 − I)(I − S−2 )
]
p
n+3/4
k = gk (4.8)

with gk = γh2p
n+2/4
k − h2div−H

n+2/4
k for k = 1, 2. Applying Fourier transform for both sides,

we get

aF(p
n+3/4
k ) = F(gk) (4.9)

with

a(i, j) =γh2 − (cos zi +
√
−1 sin zi − 1)(1− cos zi +

√
−1 sin zi)

− (cos zj +
√
−1 sin zj − 1)(1− cos zj +

√
−1 sin zj)

=γh2 + 4− 2 cos zi − 2 cos zj ,

where zi, zj are defined in (4.4). Then p
n+3/4
k is computed as

p
n+3/4
k = Real

[
F−1

(
F(gk)

a

)]
, (4.10)

where Real(·) denotes the real part of its argument. We then compute

Hn+3/4 = ∇−pn+3/4.
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4.4 Computing the discrete analogue of pn+1 and Hn+1

We first compute un+1 by solving (3.67), which is discretized as

−γdiv−∇+un+1 +
τ

β
un+1 =

τ

β
f − γdiv−pn+3/4 in Ω. (4.11)

Problem (4.11) can be rewritten as[
τ

β
h2I − γ(I − S−1 )(S+

1 − I)− γ(I − S−2 )(S+
2 − I)

]
un+1 = g (4.12)

with g = τ
βh

2f − γh2div−pn+3/4. Taking the Fourier transform on both sides, we get

bF(un+1) = F(g) (4.13)

with b = τ
βh

2 + 4γ − 2γ cos zi − 2γ cos zj , where zi, zj are defined in (4.4).
We compute

un+1 = Real

[
F−1

(
F(g)

b

)]
(4.14)

and then set pn+1 = ∇+un+1,Hn+1 = Hn+3/4.

4.5 On the discrete analogue of (p0,H0)

For the choice of (3.58), we set

p0 = ∇+f, H0 = ∇−p0.

For the choice of (3.59), one may first follow (3.68) to compute u0 in the same way as un+1:

u0 = Real

[
F−1

(
F(f)

c

)]
(4.15)

with c = h2 + 4ε− 2ε cos zi − 2ε cos zj . Then p0,H0 are set as

p0 = ∇+u0, H0 = ∇−p0.

5 Numerical experiments

We demonstrate the effectiveness of the proposed method through several experiments on surface
smoothing and image denoising. All experiments are implemented in MATLAB(R2018b) on a
laptop of 8GB RAM and Intel Core i7-4270HQ CPU: 2.60 GHz. In our experiments, γ = 1 and
h = 1 are used. For the scheme (3.15)-(3.19), we adopt the initial condition (3.58) and stopping
criterion on the relative error ‖un+1−un‖2/‖un+1‖2 ≤ tol for some small tol > 0. In this paper,
without specification, tol = 10−5 is used, and the fixed point method (3.26)-(3.28) is used to
compute pn+1/4. When computing pn+1/4 and Hn+1/4, we set ξ1 = ξ2 = 10−5, ρ1 = ρ2 = 0.8
for (3.26)-(3.28) and (3.31)-(3.36). This article considers Gaussian noise whose magnitude is
controlled by its variance, denoted by σ. Our code is available at the homepage of the first
author1.

1https://www.math.hkbu.edu.hk/~haoliu/code.html
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(a) (b) (c)

Figure 1: (Surface smoothing.) (a) Clean surfaces. (b) Noisy surfaces with σ = 10−4. (c)
Smoothed surfaces by the proposed model with α = 1, β = 0.1.

(a) (b) (c)

0 20 40 60 80 100

Number of Iterations

400

450

500

550

600

650

700

E
n
e
rg

y

0 20 40 60 80 100

Number of Iterations

10
-5

10
-4

10
-3

10
-2

R
e
la

ti
v
e
 E

rr
o
r

0 20 40 60 80 100

Number of Iterations

350

400

450

500

550

600

650

700

E
n
e
rg

y

0 20 40 60 80 100

Number of Iterations

10
-5

10
-4

10
-3

10
-2

R
e
la

ti
v
e
 E

rr
o
r

Figure 2: (Surface smoothing.) For results in Figure 1, (a) the graph of u− f∗, and histories of
the (b) energy and (c) relative error w.r.t. the number of iterations. The first (resp. second)
row corresponds to the result in the first (resp. second) row of Figure 1(c).

Remark 5.1. Although there are several parameters in the proposed method, these parameters
can be adjusted easily and the performance of the method is not sensitive to their values. Specif-
ically, ξ1 are ξ2 are stopping criteria of the iterative methods computing p1+1/4 and H1+1/4,
respectively. ρ1 and ρ2 are parameters controlling the evolution speed of q and G when comput-
ing p1+1/4 and H1+1/4. Parameter γ controls the evolution speed of p. The proposed method
converges as long as these parameters are small enough.

Remark 5.2. As discussed in Section 3.3.1 and 3.3.2, the subiterations (3.26)–(3.28) and
(3.31)–(3.36) are expected to fast converge with initial guess pn and Hn. In all our experiments
with the choice of parameters mentioned above, in each outer iteration, most of the subiterations
only require less than 10 iterations to satisfy the stopping criterion.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: (Comparison with other models on surface smoothing.) Comparison of the proposed
model with the TV model and Euler’s elastica model on smoothing a piecewise developable
surface. (a) The clean surface. (c) The noisy surface with σ = 0.005. (b) and (d) The central
region of (a) and (c), respectively. (e) Results by the TV model with η = 0.5 (the coefficient of
the total variation term). (f) Results by Euler’s elastica model with a = b = 0.4. (g) Results by
the proposed model with α = 0.3, β = 1. (h) Results by the proposed model with α = 5× 10−5

and β = 103. The second row shows the smoothed surfaces. The third row shows the plot of
the central region. The forth row shows the graph of u− f∗.

5.1 Surface smoothing

The first problem we use to demonstrate the effectiveness of the proposed algorithm is surface
smoothing. We consider the clean surfaces defined on a 200 × 200 grid shown in Figure 1(a).
The noisy surfaces are constructed by adding Gaussian noise with σ = 10−4 and are shown in
(b). In our algorithm, we set α = 1, β = 0.1, τ = 0.01 and tol = 10−5. We present the smoothed
surfaces in Figure 1(c). The difference between the smoothed surfaces u and the clean surfaces
f∗ are shown in Figure 2(a). The smoothed surfaces are close to the clean surfaces with small
mistaches. To demonstrate the efficiency of the proposed method, we present the histories of
the energy and relative error with respect to the number of iterations in Figure 2(b) and (c),
respectively. For both examples, the energy achieves its minimum with about 40 iterations.
Sublinear convergence is observed for the relative error.

We next compare the proposed model with the TV model [41, 9] and Euler’s elastica model
[11] for the smoothing of a developable surface shown in Figure 3(a). The noisy surface is
shown in Figure 3(c). The plot of the central region of the clean and noisy surfaces are shown
in (b) and (d), respectively. In this set of experiments, we run the algorithm of each model
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until converge. The smoothed surfaces by the TV model with η = 0.5 (the coefficient of the
total variation term), Euler’s elastica model with a = b = 0.4 and the proposed model with
α = 0.3, β = 1 are shown in (e)-(g), respectively. Since the surface is developable, Gaussian
curvature is a perfect regularizer. Figure 3(h) presents the results by the proposed model with
α = 5× 10−5 and β = 103. Under this setting, the Gaussian curvature dominates the proposed
functional in (2.3). For better visualization of the difference, the graph of the central region
of the smoothed surfaces and the difference u − f∗ are presented in the third and forth row,
respectively. In this comparison, staircase effects are observed in the result by the TV model:
the peak in the smoothed surface is flattened. While the peak is kept in the result of Euler’s
elastica model, it is smoothed a lot. The central flat region in this result is also smoothed and
no longer flat. By the proposed model, the flat region is retained and the peak is recovered
well. As shown in the forth row, the proposed model gives results with the smallest mismatch.
To quantify the difference u − f∗, we report the errors ‖u − f∗‖1 and ‖u − f∗‖∞ in Table 1.
Results by the propose model give smaller errors than those of the other two models. Under
the choice of parameters in (h), the Gaussian curvature dominates the functional (2.3). The
surface f∗ in this experiment is expected to be close to the global minimum of the functional
since f∗ is piecewise developable. From Table 1, the result of (h) has a very small L∞ error,
i.e., it is very close to f∗. Therefore the proposed method provides a result that is close to the
global minimum.

Results in Figure 3 (e) (f) (g) (h)

‖u− f∗‖1 482.08 565.97 345.35 206.04

‖u− f∗‖∞ 0.2244 0.1701 0.1600 0.0717

Table 1: (Comparison with other models on surface smoothing.) Comparison of the errors
‖u − f∗‖1 and ‖u − f∗‖∞ of results in Figure 3. (e) Result by the TV model. (f) Result by
Euler’s elastica model. (g)-(h) Results by the proposed model.

τ = 0.5 τ = 0.1 τ = 0.05 τ = 0.01 CPU time per iter.

Newton 3.16 2.41 2.07 2 1.25× 10−2

Fixed point 6.42 5.12 5.08 5 7.01× 10−3

Table 2: (Comparison of the efficiency of Newton’s method and the fixed point method when
computing pn+1/4.) We take the image in the second row of Figure 4 as an example. Column
2–5 show the averaged number of iterations used in Newton’s method (3.24) and the fixed point
method (3.26)–(3.28) when computing pn+1/4 per outer iteration. Column 6 shows the CPU
time per iteration in Newton’s method and the fixed point method.

5.2 Image denoising

We then test the proposed model on image denoising. In all of the experiments, images with
pixel value varying from 0 to 1 are used. In the rest of this section, without specification,
τ = 0.05 is used.

In the first set of experiments, Gaussian noise with variance σ = 0.01 is added to the clean
images. The clean images and noisy images are shown in the first and second column of Figure
4, respectively. The denoised images by the proposed model with α = 0.2, β = 0.6 are shown
in the third column. The proposed model smooths the noisy images while keeping sharp edges.
The histories of the energy and the relative error ‖un+1 − un‖2/‖un+1‖2 of these examples are
shown in Figure 5. For both examples, the energy achieves its minimum within 200 iterations.
Sublinear convergence is observed for the relative error.
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Figure 4: (Gaussian noise with σ = 0.01.) Denoised images by the proposed model with
α = 0.2, β = 0.6. First column: Clean images. Second column: Noisy images. Third column:
Denoised images.
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Figure 5: (Gaussian noise with σ = 0.01.) Histories of ((a) and (c)) the energy and ((b) and
(d)) the relative error of results in Figure 4. Here (a)-(b) and (c)-(d) correspond to the results
in the first row and second row of Figure 4, respectively.

We then take the image in the second row of Figure 4 as an example and compare the
efficiency of Newton’s method (3.24) and the fixed point method (3.26)–(3.28) when computing
pn+1/4. We set ρ = 1 in Newton’s method and ρ1 = 0.8 in the fixed point method. For various
time steps, we present the average number of iteration used in Newton’s method and the fixed
point method per outer iteration in Table 2 Column 2-5. As we expected, smaller time step
makes pn a better initial guess of pn+1/4 so that less iterations are needed for both subiterations
to converge. Since the computation complexity in the fixed point method is lower than that
in Newton’s method, each iteration of the fixed point method uses less CPU time than that of
Newton’s method, as shown in Table 2 Column 6.

We next study the computational cost of the proposed algorithm with respect to the di-
mension of images. We use the image in the second row of Figure 4 as an example. In this
test, we generate clean images with size p× p for p = 50, 100, 150, 200, 250, 300. Then Gaussian
noise with σ = 0.01 is added to these images. In our experiments, we set α = 0.2, β = 0.6. The
number of iterations and CPU time used to satisfy the stopping criterion is summarized in Table
3. In this experiment, the total number of iteration is not sensitive to the image size: all exper-
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Image size p Num. of Iter. Total Order pn+1/4 Hn+1/4

50 505 1.32 – 0.29 0.42

100 559 3.96 1.58 1.17 0.99

150 630 8.00 1.73 2.53 2.20

200 498 9.67 0.66 3.53 2.35

250 477 13.64 1.54 4.40 3.75

300 479 20.67 2.28 6.99 5.31

Table 3: (Computational complexity with respect to image size.) Number of iterations and
CPU time in seconds required to satisfy the stopping criterion with image size p × p for p =
50, 100, 150, 200, 250, 300. We take the image in the second row of Figure 4 as an example.
Column 1: Image size p. Column 2: Number of iterations. Column 3: Total CPU time. Column
4: Power order of total CPU time in terms of p. Column 5: CPU time used to compute the
subiteration (3.26)–(3.28) for pn+1/4. Column 6: CPU time used to compute the subiteration
(3.31)–(3.36) for Hn+1/4.

iments used about 500 iterations to satisfy the stopping criterion. The total CPU time scales
quadraticly with the image size. Consider that the total dimension of an image with size p× p
is p2, the computational cost of the proposed algorithm grows linear with the total dimension
of the image. To demonstrate the efficiency of subiterations (3.26)–(3.28) and (3.31)–(3.36), we
present the CPU time used by each subiteration in Column 5 and 6, respectively. In general,
the sum of the CPU time used by both subiterations take up no more than 60% of the total
CPU time.

We then compare the proposed model with the TV and Euler’s elastica model on denoising
images whose graph contains cone-shape objects and are piecewise developable. For the first
example, the clean image is shown in Figure 6(a). The graph of the central region of the
image is shown in (b). The noisy image is generated by adding Gaussian noise with σ = 0.01,
which is shown in Figure 6(c) and (d). By the proposed model, the TV model and Euler’s
elastica model, the denoised images are shown in (e)-(g), respectively. Since the graph of the
clean image is developable, we use α = 2 × 10−3, β = 40 in the proposed model such that the
functional is dominated by the Gaussian curvature term. We use η = 0.2 in the TV model
and a = b = 0.15 in Euler’s elastica model. To better compare the details, the surface plot of
the central region of each denoised image is presented under it. In the result of the TV model,
staircase effects are observed and the peak is flattened. Compared to the TV model, Euler’s
elastica model has a stronger smoothing effect, while whose result has some oscillations in the
denoised cone. The proposed model gives the best results which recovers a smooth surface of
the cone while preserving the peak. Our second example is shown in Figure 7, in which the
noisy image contains heavy Gaussian noise with σ = 0.015. We use α = 2 × 10−3, β = 40 in
the proposed model, η = 0.2 in the TV model and a = b = 0.15 in Euler’s elastica model. In
the denoised images, staircase effects and patterned artifacts are observed in the results of the
TV and Euler’s elastica model. The proposed model provides smooth recovery of the central
sphericon together with a better recovery of the peak.

We next demonstrate the advantage of the proposed model on preserving thin textures. We
consider clean images as shown in Figure 8(a) and Figure 9(a). Noisy images are generated by
adding Gaussian noise with σ = 0.01 in Figure 8(b) and σ = 0.015 in Figure 9(b). The denoised
images (and the surface plot of the zoomed regions) by the proposed model, the TV model and
Euler’s elastica model are shown in (c)-(e) in both figures, respectively. In the results by the TV
model and Euler’s elastica model, the gaps are smoothed a lot. The proposed model provides
the best results which preserve the thin gaps well.

We then compare these three models on two natural images: ’Peppers’ and ’House’. Gaussian
noise with σ = 0.01 is added to these clean images. The noisy images and denoised images by the
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6: (Recovering cone-shape objects.) Comparison of the proposed model with the TV
model and Euler’s elastica model on denoising an image whose graph contains a cone-shape
object. (a) The clean image. (c) The noisy image with Gaussian noise and σ = 0.01. (b) and
(d) Surface plot of the central region of (a) and (c), respectively. The second and third row show
the denoised images and the surface plot of their central regions by (e) the proposed model with
α = 0.002, β = 40, (f) the TV model with η = 0.2, (g) Euler’s elastica model with a = b = 0.15.

three models are shown in Figure 10. We use α = 0.2, β = 0.6 in the proposed model, η = 0.15
in the TV model and a = b = 0.1 in Euler’s elastica model. These results are comparable while
there are some oscillations around edges in the results by the TV model. The comparison of
the PSNR and SSIM [43] values of all images in Figure 10 are shown in Table 4. The proposed
model provides results with the largest PSNR and SSIM values. To compare the efficiency, in
Table 5, we show the number of iterations and CPU time used to get results in Figure 10. Since
the TV model is the simplest model, results by it have the least CPU time. Compared to the
algorithm of Euler’s elastica model in [11], the proposed algorithm needs approximately half of
its number of iterations to meet the stopping criterion. Note that the proposed model is more
complicated than Euler’s elastica model due to the determination of the Hessian matrix. The
proposed algorithm needs more time at each iteration. The overall CPU time of the proposed
algorithm is comparable to that of the algorithm proposed in [11].
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7: (Recovering cone-shape objects.) Comparison of the proposed model with the TV
model and Euler’s elastica model on denoising an image whose graph contains a cone-shape
object. (a) The clean image. (c) The noisy image with Gaussian noise and σ = 0.01. (b) and
(d) Surface plot of the central region of (a) and (c), respectively. The second and third row show
the denoised images and the surface plot of their central regions by (e) the proposed model with
α = 0.002, β = 40, (f) the TV model with η = 0.2, (g) Euler’s elastica model with a = b = 0.15.

(a)
Noisy Proposed model TV Euler’s elastica

Peppers 19.99 27.30 26.70 27.27

House 19.99 28.91 28.37 27.78

(b)
Noisy Proposed model TV Euler’s elastica

Peppers 0.3763 0.8402 0.8198 0.8363

House 0.2876 0.8146 0.8059 0.8097

Table 4: (Gaussian noise with σ = 0.01.) Comparison of (a) the PSNR and (b) the SSIM value
of images in Figure 10. The largest value for each image is marked in bold.

5.3 Effects of parameters

We explore the effects of the parameters in the proposed model (2.3). In (2.3), β controls the
weight of the fidelity term. We expect larger β makes the result smoother, which is verified by
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(a) (b)

(c) (d) (e)

Figure 8: (Recovering thin textures.) Comparison of the proposed model with the TV and
Euler’s elastica models. (a) Clean image. (b) Noisy image with Gaussian noise and σ = 0.015.
The second and third row show the denoised images and the surface plots of the zoomed regions
by (c) the proposed model with α = 0.1, β = 1.3, (d) the TV model with η = 0.25, and (e)
Euler’s elastica model with a = b = 0.13.

Proposed model TV Euler’s elastica

Peppers (256× 256) 641 (44.39) 771 (6.25) 1395 (52.92)

House (256× 256) 556 (38.99) 702 (5.86) 1028 (39.98)

Table 5: (Gaussian noise with σ = 0.01.) Comparison of the number of iterations (CPU time
in seconds) used to get results in Figure 10.

the following experiment. We add Gaussian noise with σ = 0.005 to the clean image and fix
α = 0.2. The noisy image and denoised images with β = 0.2, 0.4 and 0.6 are shown in Figure
11.

A more interesting study is the effects of α, which balances the weight between the first order
term (the TV term) and the second order term (Gaussian curvature term). In this experiment,
the clean image is perturbed by Gaussian noise with σ = 0.005. We test α among 0.01, 0.2
and 0.8. If we fix β = 0.04 and when α is too small (like 0.005), the regularization is not
enough. To resolve this problem, we fix αη = 0.008. Under this setting, increasing α amounts
to decreasing the weight of the Gaussian curvature term. The noisy and denoised images are
shown in Figure 12. When α is too large (like 0.8), the regularization is dominated by the TV
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(a) (b)

(c) (d) (e)

Figure 9: (Recovering thin textures.) Comparison of the proposed model with the TV and
Euler’s elastica models. (a) Clean image. (b) Noisy image with Gaussian noise and σ = 0.015.
The second and third row show the denoised images and the surface plots of the zoomed regions
by (c) the proposed model with α = 0.1, β = 1.3, (d) the TV model with η = 0.25, and (e)
Euler’s elastica model with a = b = 0.13.

term. The regularization effect is not enough under this choice, as shown in Figure 12(d). As
we decrease α, i.e., the weight of the Gaussian curvature term increases, the denoised image has
a stronger smoothing effect while edges are kept well, as shown in Figure 12(b) and (c). This
experiment shows that Gaussian curvature smooths the flat region of an image while keeping
sharp edges.

6 Conclusion

We propose an efficient operator-splitting method to optimize a general Gaussian curvature
model. The optimization problem is associated with an initial-value problem whose steady state
solution solves the optimization problem. Such an initial-value problem is time-discretized by
the operator-splitting method. In our splitting scheme, each sub-problem has either a closed-
form solution or can be solved efficiently. The efficiency and performance of the proposed
method is demonstrated on systematic numerical experiments on surface smoothing and image
denoising. The proposed model has excellent performance in smoothing developable surfaces
and images, and has advantages in recovering thin textures of images.
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(a) (b) (c) (d)

Figure 10: (Natural image denoising) Comparison of the proposed model with the TV and
Euler’s elastica models. (a) Noisy images with Gaussian noise and σ = 0.01. (b) Denoised
images by the proposed model with α = 0.2, β = 0.6. (c) Denoised images by the TV model
with η = 0.15. (d) Denoised images by Euler’s elastica model with a = 0.1, b = 0.1.

(a) (b) (c) (d)

Figure 11: (Effect of β.) (a) Noisy image with Gaussian noise and σ = 0.005. (b) Denoised
image with β = 0.2. (c) Denoised image with β = 0.4. (d) Denoised image with β = 0.6. We
fix α = 0.2.

(a) (b) (c) (d)

Figure 12: (Effect of α.) (a) Noisy image with Gaussian noise and σ = 0.005. (b) Denoised
image with α = 0.01. (c) Denoised image with α = 0.2. (d) Denoised image with α = 0.8. The
Gaussian curvature term has a larger weight with a smaller α. We fix αβ = 0.08.
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