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DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH CONVECTION

AND MULTIVALUED MIXED BOUNDARY VALUE CONDITIONS

SHENGDA ZENG, VICENŢIU D. RĂDULESCU, AND PATRICK WINKERT

Abstract. In this paper we consider a mixed boundary value problem with a nonhomoge-
neous, nonlinear differential operator (called double phase operator), a nonlinear convection
term (a reaction term depending on the gradient), three multivalued terms and an implicit
obstacle constraint. Under very general assumptions on the data, we prove that the solution
set of such implicit obstacle problem is nonempty (so there is at least one solution) and weakly
compact. The proof of our main result uses the Kakutani-Ky Fan fixed point theorem for
multivalued operators along with the theory of nonsmooth analysis and variational methods

for pseudomonotone operators.

1. Introduction

Obstacle problems go back to the pioneering work by Stefan [53] who studied the temperature
distribution in a homogeneous medium undergoing a phase change, typically a body of ice at
zero degrees centigrade submerged in water. Obstacle problems are also commonly used in
physics, biology, and financial mathematics. Some relevant examples include the dam problem,
the Hele-Shaw flow, pricing of American options, quadrature domains, random matrices, etc.

This paper is devoted to the study of a nonlinear partial differential system with a nonlinear
convection term, three multivalued terms and an implicit obstacle effect. To this end, let Ω be
a bounded domain in R

N , N ≥ 2, such that its boundary Γ := ∂Ω is Lipschitz continuous and
it is divided into three mutually disjoint parts Γ1, Γ2 and Γ3 with Γ1 having positive Lebesgue
measure. It should be pointed out that in our setting the parts Γ2 and Γ3 can be empty, i.e., Γ1

could be the whole boundary Γ1 = Γ. Moreover, let 1 < p < q < N and let µ : Ω → [0,∞) be a
given function, U1 : Ω×R → 2R, U2 : Γ2×R → 2R be two multivalued mappings, φ : Γ3×R → R

be a convex function with respect to the second argument and f : Ω×R×R
N → R be a nonlinear

convection function. We study the following problem

− div
(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

+|u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ U2(x, u) on Γ2,

−
∂u

∂νa
∈ ∂cφ(x, u) on Γ3,

L(u) ≤ J(u),

(1.1)

where

∂u

∂νa
:=

(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

· ν,
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with ν being the unit normal vector on Γ, ∂cφ(x, u) is the convex subdifferential of s 7→ φ(x, s),
and L, J : W 1,H(Ω) → R are given functions defined on the Musielak-Orlicz Sobolev space
W 1,H(Ω), see Section 2 for its precise definition.

We point out that problem (1.1) combines several interesting phenomena. First the differen-
tial operator involved is the so-called double phase operator which is given by

div
(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

for u ∈ W 1,H(Ω). (1.2)

The corresponding energy functional related to (1.2) is given by

ω 7→

∫

Ω

(

|∇ω|p + µ(x)|∇ω|q
)

dx, (1.3)

and was initially introduced by Zhikov [60] in 1986. Such functional was used to describe models
for strongly anisotropic materials and it also demonstrated its importance in the study of dual-
ity theory as well as in the context of the Lavrentiev phenomenon, see Zhikov [61]. The main
feature of the variational integral (1.3) is the fact that the energy density changes its ellipticity
and growth properties according to the point in the domain. Indeed, the energy density of (1.3)
exhibits ellipticity in the gradient of order q on the points x where µ(x) is positive and of order
p on the points x where µ(x) vanishes. In general, double phase differential operators and cor-
responding energy functionals interpret various comprehensive natural phenomena, and model
several problems in Mechanics, Physics and Engineering Sciences. For instance, in the elasticity
theory, the modulating coefficient µ(·) dictates the geometry of composites made of two different
materials with distinct power hardening exponents p and q, see Zhikov [62]. Further, we mention
some famous results in the regularity theory of local minimizers of (1.3), see, for example, the
papers of Baroni-Colombo-Mingione [6, 7], Colombo-Mingione [16, 17] and Marcellini [34, 35].

A second interesting phenomenon is the appearance of a nonlinearity that depends on the gra-
dient of the solution. Such terms are said to be convection functions. The difficulty in the study
of such terms is their nonvariational character, that is, the standard variational tools to corre-
sponding energy functionals cannot be applied. In the past years several interesting works have
been published with convection terms, we refer to the papers of de Araujo-Faria [1], El Manouni-
Marino-Winkert [19], Faraci-Motreanu-Puglisi [20], Faraci-Puglisi [21], Figueiredo-Madeira [23],
Gasiński-Papageorgiou [25], Liu-Motreanu-Zeng [32], Marano-Winkert [33], Papageorgiou-Ră-
dulescu-Repovš [45], and Pucci-Temperini [49].

Further interesting phenomena are the combination of an implicit obstacle effect along with
mixed boundary conditions in a very general setting and the appearance of multivalued mappings
(which include as special case Clarke’s generalized gradients) and convex subdifferentials. We
point out that in several critical situations arising in engineering and economic models, such
as Nash equilibrium problems with shared constraints, semipermeability problems with free
boundary conditions, and transport route optimization with feedback control, the constraint
conditions, usually, depend explicitly on the unknown solution. On the other hand, the theory
of (variational-)hemivariational inequalities was originally developed by Panagiotopoulos [41, 42]
(see also Naniewicz-Panagiotopoulos [40]) in order to study the nonsmooth mechanical problems.
The main feature in hemivariational inequalities is to remove the hypotheses on differentiability
and convexity of energy functionals with the help of generalized subgradients introduced by
Clarke [14]. Nowadays such problems with implicit obstacle effect and generalized gradient
for homogeneous Dirichlet problems have been considered by many authors, see, for example
the works of Alleche-Rădulescu [2], Aussel-Sultana-Vetrivel [3], Bonanno-Motreanu-Winkert [9],
Carl-Winkert [12], Migórski-Khan-Zeng [37, 38], Gwinner [28], Zeng-Migórski-Khan [58] and
the references therein. We also refer to the recent monograph of Carl-Le [11] about multivalued
variational inequalities and inclusions.

Let us comment on some relevant special cases of problem (1.1).

(i) Let j1 : Ω × R → R and j2 : Γ2 × R → R be such that x 7→ j(x, s) and x 7→ j2(x, s)
are measurable in Ω and on Γ2, respectively, and s 7→ j1(x, s) and s 7→ j2(x, s) are
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both locally Lipschitz continuous. Moreover, let r1 : R → R and r2 : R → R be two
functions and denote by ∂ji Clarke’s generalized gradient of ji (with respect to the
second variable) for i = 1, 2. If U1 and U2 are defined by U1(x, s) = r1(s)∂j1(x, s) for
a. a.x ∈ Ω, s ∈ R and U2(x, s) = r2(s)∂j2(x, s) for a. a.x ∈ Γ2, s ∈ R, then problem
(1.1) becomes

− div
(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

+|u|p−2u+ µ(x)|u|q−2u ∈r1(u)∂j1(x, u) + f(x, u,∇u) in Ω,

u =0 on Γ1,

∂u

∂νa
∈r2(u)∂j2(x, u) on Γ2,

−
∂u

∂νa
∈∂cφ(x, u) on Γ3.

L(u) ≤J(u).

(1.4)

As far as we know problem (1.4) has not been studied yet. As a special of our main
theorem we state in Theorem 3.11 that the solution set of (1.4) is nonempty and weakly
compact.

(ii) If Γ2 = ∅ and Γ3 = ∅, i.e., Γ1 = Γ, then problem (1.1) reduces to the following double
phase implicit obstacle system with Dirichlet boundary condition

− div
(

|∇u|p−2∇u + µ(x)|∇u|q−2∇u
)

+|u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ,

L(u) ≤ J(u).

(1.5)

If U1(x, s) = −∂j(x, s) with j : Ω × R → R being locally Lipschitz continuous with
respect to the second argument, problem (1.5) has been recently studied by Zeng-Bai-
Papageorgiou-Rǎdulescu [57]. Further special case when f is independent of u or U1 ≡ 0
and J(u) = ∞ has been treated by Zeng-Bai-Gasiński-Winkert [54, 55, 56]. Additionally
to U1 ≡ 0, if we suppose J(u) ≡ +∞, (1.5) reduces to single valued equation studied by
Gasiński-Winkert [26]. Note that the techniques used in these papers differ from ours.

(iii) Let Ψ: Ω → R be a given obstacle. When J(u) ≡ 0 and L(u) :=
∫

Ω(u(x) − Ψ(x))+ dx

for all u ∈ W 1,H(Ω), then our problem (1.1) can be rewritten to the following obstacle
inclusion problem

− div
(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

+|u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ U2(x, u) on Γ2,

−
∂u

∂νa
∈ ∂cφ(x, u) on Γ3,

u(x) ≤ Ψ(x) in Ω.

(1.6)

To the best of our knowledge, this special case of (1.1) has not been considered yet.
The same can be said when Φ: Γ → R is a given obstacle on the boundary. Then the
last inequality in (1.6) is replaced by u(x) ≤ Φ(x) on Γ.



4 S. ZENG, V.D. RĂDULESCU, AND P. WINKERT

(iv) If J(u) ≡ +∞ for all u ∈ W 1,H(Ω), then problem (1.1) turns into the following mixed
boundary value problem without obstacle effect

− div
(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

+|u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ U2(x, u) on Γ2,

−
∂u

∂νa
∈ ∂cφ(x, u) on Γ3,

(1.7)

which has not been investigated yet. As a corollary we can prove that there exists a
solution of (1.7) and the solution set of (1.7) is weakly compact (see Corollary 3.10
below).

The main goal of the paper is to develop a general framework for determining the existence of
a (weak) solution to the nonlinear double phase differential inclusion problem (1.1) via employing
the Kakutani-Ky Fan fixed point theorem for multivalued operators, the theory of nonsmooth
analysis and variational methods for pseudomonotone operators. In fact, to the best of our
knowledge, this is the first work which combines a double phase phenomena along with an
implicit obstacle constraint, a nonlinear convection term (i.e., a reaction term depending on the
gradient) and multivalued mixed boundary conditions which include a convex subdifferential
operator and an abstract multivalued function.

The features of this paper are the following:
(i) the presence of a nonhomogeneous differential operator with different isotropic growth,

which generates a double phase associated energy;
(ii) the analysis developed in this paper is concerned with the combined effects of a nonstan-

dard operator with unbalanced growth, a convection nonlinearity, three multivalued terms, and
an implicit obstacle constraint;

(iii) the proofs rely on fixed point methods for multivalued operators in combination with
tools from nonsmooth analysis and theory of pseudomonotone operators.

To the best of our knowledge, this is the first paper dealing with multivalued double phase
obstacle implicit problems with convection.

In order to give a complete picture of existence results for double phase problems, we also refer
to some recent works dealing with different types of problems. In Bahrouni-Rădulescu-Repovš
[4] and Bahrouni-Rădulescu-Winkert [5] the authors studied a class of double phase energy
functionals arising in the theory of transonic flow which are driven by the Baouendi-Grushin
operator with variable exponents. Very recently, Biagi-Esposito-Vecchi [8] considered positive
singular solutions of double phase type equations and proved symmetry as well as monotonicity
properties of such solutions. A new class of double phase problems with variable growth has been
developed in Cencelj-Rădulescu-Repovš [13] while Colasuonno-Squassina [15] studied existence
and properties of related variational eigenvalues. A new type of so-called Finsler double phase
operators has been introduced in Farkas-Winkert [22] in order to prove an existence result
for corresponding singular problems. Furthermore, a Nehari manifold treatment for finding
sign changing solutions can be found in Gasiński-Papageorgiou [24] for locally Lipschitz right-
hand side, in Gasiński-Winkert [27] for nonlinear boundary conditions and in Liu-Dai [29] for
superlinear right-hand sides. Existence and multiplicity results for double phase problems with
Robin boundary conditions has been recently studied in Papageorgiou-Rădulescu-Repovš [44]
and Papageorgiou-Vetro-Vetro [46]. Perera-Squassina [48] used a Morse theoretical approach
in order to prove the existence of a solution where they used a cohomological local splitting to
get an estimate of the critical groups at zero. Existence results for general quasilinear elliptic
equations of double phase type in R

N have been obtained in Zhang-Rădulescu [59] by using
the tools of critical points theory in generalized Orlicz–Sobolev spaces with variable exponent.
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Finally, we mention the overview articles of Rădulescu [51, 50] about isotropic and anistropic
double-phase problems and of Mingione-Rădulescu [39] about recent developments for problems
with nonstandard growth and nonuniform ellipticity.

The paper is organized as follows. Section 2 presents a detailed overview about Musielak-
Orlicz Sobolev spaces including several useful embedding results. Moreover, we state some
fundamental results in nonsmooth analysis as well as the Kakutani-Ky Fan fixed point theorem
for multivalued functions. In Section 3, we first impose the full assumptions on the data of
problem (1.1) and introduce an auxiliary problem defined in (3.5). Then, we apply an existence
theorem for a class of mixed variational inequalities involving pseudomonotone operators in
which the constraint set is a bounded, closed and convex set, to show that the solution map of the
auxiliary problem (3.5) is well-defined and completely continuous, see Theorem 3.4. Moreover,
we use the Kakutani-Ky Fan fixed point theorem along with the theory of nonsmooth analysis
to explore the nonemptiness and compactness of the solution set of problem (1.1). Finally,
several special cases of our problem (1.1) are discussed and the corresponding existence results
are obtained at the end of the paper.

2. Preliminaries

In this section we are going to provide the main definitions and tools which will be needed
in the sequel. To this end, let Ω ⊂ R

N be a bounded domain with Lipschitz boundary Γ := ∂Ω
such that Γ is divided into three mutually disjoint parts Γ1, Γ2 and Γ3 with Γ1 having positive
Lebesgue measure. For any fixed r ∈ [1,∞) and for any subset D of Ω we denote the usual
Lebesgue spaces by Lr(D) := Lr(D;R) and Lr(D;RN ) equipped with the norm ‖ · ‖r,D given
by

‖u‖r,D :=

(
∫

D

|u|r dx

)
1
r

for all u ∈ Lr(D).

We set Lr(D)+ := {u ∈ Lr(D) : u(x) ≥ 0 for a.a.x ∈ D} and define by W 1,r(Ω) the corre-
sponding Sobolev space endowed with the norm ‖ · ‖1,r,Ω given by

‖u‖1,r,Ω := ‖u‖r,Ω + ‖∇u‖r,Ω for all u ∈ W 1,r(Ω).

Throughout the paper the symbols ”
w

−→ ” and ”→” stand for the weak and the strong conver-
gence, respectively. Furthermore, r′ > 1 is the conjugate of r > 1, that is, 1

r
+ 1

r′
= 1. Moreover,

we denote by r∗ and r∗ the critical exponents to r in the domain and on the boundary, respec-
tively, given by

r∗ =

{

Nr
N−r

if r < N,

+∞ if r ≥ N,
and r∗ =

{

(N−1)r
N−r

if r < N,

+∞ if r ≥ N,
(2.1)

respectively.
Since Γ1 has positive measure we know from Korn’s inequality that the function space

W :=
{

u ∈ W 1,p(Ω) : u = 0 for a. a.x ∈ Γ1

}

equipped with the norm ‖∇ · ‖p,Ω, is a reflexive Banach space. In what follows, let λ > 0 and
ρ > 0 be the smallest constants such that

‖u‖pp,Ω ≤ λ‖∇u‖pp,Ω and ‖u‖pp,Γ2
≤ ρ‖∇u‖pp,Ω (2.2)

for all u ∈ W . From Simon [52, formula (2.2)] we have the well-known inequality
(

|x|r−2x− |y|r−2y
)

· (x− y) ≥ k(r)|x − y|r (2.3)

for r ≥ 2 and for all x, y ∈ R
N , where k(r) is a positive constant.

In the entire paper, we assume that

1 < p < q < N, q < p∗ and 0 ≤ µ(·) ∈ L∞(Ω). (2.4)
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Next we introduce the function H : Ω× [0,∞) → [0,∞) defined by

H(x, t) = tp + µ(x)tq for all (x, t) ∈ Ω× [0,∞),

and recall that M(Ω) stands for the space of all measurable functions u : Ω → R, where we
identify two such functions which differ on a Lebesgue-null set. Then, the Musielak-Orlicz
Lebesgue space LH(Ω) is given by

LH(Ω) = {u ∈ M(Ω) : ρH(u) < +∞}

equipped with the Luxemburg norm

‖u‖H = inf
{

τ > 0 : ρH

(u

τ

)

≤ 1
}

,

where the modular function is given by

ρH(u) :=

∫

Ω

H(x, |u|) dx =

∫

Ω

(

|u|p + µ(x)|u|q
)

dx.

We know that LH(Ω) is uniformly convex, so it is a reflexive Banach space. Additionally, let us
introduce the seminormed function space Lq

µ(Ω)

Lq
µ(Ω) =

{

u ∈ M(Ω) :

∫

Ω

µ(x)|u|q dx < +∞

}

endowed with the seminorm

‖u‖q,µ =

(
∫

Ω

µ(x)|u|q dx

)
1
q

.

Furthermore, we recall that the Musielak-Orlicz Sobolev space W 1,H(Ω) is given by

W 1,H(Ω) =
{

u ∈ LH(Ω) : |∇u| ∈ LH(Ω)
}

equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. Clearly, W 1,H(Ω) is a reflexive Banach space.
Let us now introduce a closed subspace V of W 1,H(Ω) defined by

V := {u ∈ W 1,H(Ω) : u = 0 on Γ1}.

It is clear that V is also a reflexive Banach space. In the following we denote the norm of V by
‖u‖V = ‖u‖1,H for all u ∈ V , and by ‖ · ‖V ∗ we denote the norm of the dual space V ∗ of V .

The following proposition states the main embeddings for the spaces LH(Ω) and W 1,H(Ω),
see Gasiński-Winkert [27, Proposition 2.2] or Crespo-Blanco-Gasiński-Harjulehto-Winkert [18,
Propositions 2.17 and 2.19].

Proposition 2.1. Let (2.4) be satisfied and let p∗ as well as p∗ be the critical exponents to p

as given in (2.1) for r = p. Then the following embeddings hold:

(i) LH(Ω) →֒ Lr(Ω) and W 1,H(Ω) →֒ W 1,r(Ω) are continuous for all r ∈ [1, p];
(ii) W 1,H(Ω) →֒ Lr(Ω) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(iii) W 1,H(Ω) →֒ Lr(∂Ω) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(iv) LH(Ω) →֒ Lq

µ(Ω) is continuous;

(v) Lq(Ω) →֒ LH(Ω) is continuous.

Remark 2.2. Note that if we replace the space W 1,H(Ω) by V in Proposition 2.1, then the
embeddings (ii) and (iii) remain valid.

The following proposition is due to Liu-Dai [29, Proposition 2.1].

Proposition 2.3. Let (2.4) be satisfied and let y ∈ LH(Ω). Then the following hold:

(i) if y 6= 0, then ‖y‖H = λ if and only if ρH
(

y
λ

)

= 1;
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(ii) ‖y‖H < 1 (resp. > 1 and = 1) if and only if ρH(y) < 1 (resp. > 1 and = 1);
(iii) if ‖y‖H < 1, then ‖y‖qH ≤ ρH(y) ≤ ‖y‖pH;
(iv) if ‖y‖H > 1, then ‖y‖pH ≤ ρH(y) ≤ ‖y‖qH;
(v) ‖y‖H → 0 if and only if ρH(y) → 0;
(vi) ‖y‖H → +∞ if and only if ρH(y) → +∞.

Further, we introduce the nonlinear operator A : V → V ∗ given by

〈A(u), v〉 :=

∫

Ω

(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

· ∇v dx (2.5)

+

∫

Ω

(

|u|p−2u+ µ(x)|u|q−2u
)

v dx,

for u, v ∈ V with 〈·, ·〉 being the duality pairing between V and its dual space V ∗. The following
proposition states the main properties of A : V → V ∗. We refer to Liu-Dai [29, Proposition 3.1]
or Crespo-Blanco-Gasiński-Harjulehto-Winkert [18, Proposition 3.4] for its proof.

Proposition 2.4. The operator A defined by (2.5) is bounded, continuous, monotone (hence
maximal monotone) and of type (S+), that is,

un
w

−→ u in V and lim sup
n→∞

〈Aun, un − u〉 ≤ 0,

imply un → u in V .

Subsequently, we recall some notion and results concerning nonsmooth analysis and multi-
valued analysis. We start by recalling definitions and properties of semicontinuous multivalued
operators.

Definition 2.5. Let Y and Z be topological spaces, let D ⊂ Y be a nonempty set, and let
G : Y → 2Z be a multivalued map.

(i) The map G is called upper semicontinuous (u.s.c. for short) at y ∈ Y, if for each
open set O ⊂ Z such that G(y) ⊂ O, there exists a neighborhood N(y) of y satisfying
G(N(y)) := ∪z∈N(y)G(z) ⊂ O. If it holds for each y ∈ D, then G is called to be upper
semicontinuous in D.

(ii) The map G is closed at y ∈ Y , if for every sequence {(yn, zn)}n∈N ⊂ Gr(G) satisfying
(yn, zn) → (y, z) in Y × Z, then it holds (y, z) ∈ Gr(G), where Gr(G) is the graph of G
defined by

Gr(G) := {(y, z) ∈ Y × Z : z ∈ G(y)} .

If it holds for each y ∈ Y , then G is called to be closed or G has a closed graph.

The following proposition provides two useful ways to determinate that a multi-valued map
is u.s.c.

Proposition 2.6. Let F : X → 2Y with X and Y being topological spaces. The following
statements are equivalent:

(i) F is upper semicontinuous.
(ii) For each closed set C ⊂ Y , F−(C) := {x ∈ X : F (x) ∩ C 6= ∅} is closed in X.
(iii) For each open set O ⊂ Y , F+(O) := {x ∈ X : F (x) ⊂ O} is open in X.

Let (E, ‖ · ‖E) be a real Banach space. Recall that a function ϕ : E → R := R ∪ {+∞} is
called to be proper, convex and lower semicontinuous, if the following conditions are satisfied:

• D(ϕ) := {u ∈ E : ϕ(u) < +∞} 6= ∅;
• for any u, v ∈ E and t ∈ (0, 1), it holds ϕ(tu+ (1− t)v) ≤ tϕ(u) + (1− t)ϕ(v);

• lim infn→∞ ϕ(un) ≥ ϕ(u) where the sequence {un}n∈N ⊂ E is such that un
w

−→ u as
n → ∞ for some u ∈ E.
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If the map ϕ is convex, an element x∗ ∈ E∗ is called a subgradient of ϕ at u ∈ E, if

〈x∗, v − u〉 ≤ ϕ(v) − ϕ(u) for all v ∈ E. (2.6)

The set of all elements x∗ ∈ E∗ which satisfies (2.6) is called the convex subdifferential of ϕ at
u and is denoted by ∂cϕ(u).

We call a function j : E → R to be locally Lipschitz at x ∈ E, if there is a neighborhood O(x)
of x and a constant Lx > 0 such that

|j(y)− j(z)| ≤ Lx‖y − z‖E for all y, z ∈ O(x).

Moreover, we denote by

j◦(x; y) := lim sup
z→x, λ↓0

j(z + λy)− j(z)

λ
,

the generalized directional derivative of j at the point x in the direction y and ∂j : E → 2E
∗

given by

∂j(x) := { ξ ∈ E∗ : j◦(x; y) ≥ 〈ξ, y〉E∗×E for all y ∈ E} for all x ∈ E

is the generalized gradient of j at x in the sense of Clarke.
The next proposition summarizes the properties of generalized gradients and generalized

directional derivatives of a locally Lipschitz functions, see, for example, Migórski-Ochal-Sofonea
[36, Proposition 3.23].

Proposition 2.7. Let j : E → R be locally Lipschitz with Lipschitz constant Lx > 0 at x ∈ E.
Then we have the following:

(i) The function y 7→ j◦(x; y) is positively homogeneous, subadditive, and satisfies

|j◦(x; y)| ≤ Lx‖y‖E for all y ∈ E.

(ii) The function (x, y) 7→ j◦(x; y) is upper semicontinuous.
(iii) For each x ∈ E, ∂j(x) is a nonempty, convex, and weakly∗ compact subset of E∗ with

‖ξ‖E∗ ≤ Lx for all ξ ∈ ∂j(x).
(iv) j◦(x; y) = max {〈ξ, y〉E∗×E : ξ ∈ ∂j(x)} for all y ∈ E.
(v) The multivalued function E ∋ x 7→ ∂j(x) ⊂ E∗ is upper semicontinuous from E into

w∗-E∗.

The following theorem provides a useful criterion to determinate the existence of solutions for
a class of mixed variational inequalities involving pseudomonotone operators, see, for example,
Liu-Liu-Wen-Yao-Zeng [31, Proposition 5].

Theorem 2.8. Let V be a reflexive Banach space, T : V → 2V
∗

be a pseudomonotone operator
in the sense of Brézis, C ⊂ V be nonempty, bounded, closed and convex, and ϕ : V → R :=
R ∪ {+∞} be a proper, convex and l.s.c. function. Then, for a given element f ∈ V ∗, there
exist u ∈ C and u∗ ∈ T (u) such that

〈u∗ − f, v − u〉+ ϕ(v) − ϕ(u) ≥ 0 for all v ∈ C.

We end this section by recalling the so-called Kakutani-Ky Fan fixed point theorem, see,
for example, Papageorgiou-Kyritsi-Yiallourou [43, Theorem 2.6.7]. We are going to apply this
theorem in order to prove the existence of solutions of problem (1.1).

Theorem 2.9. Let Y be a reflexive Banach space and D ⊆ Y be a nonempty, bounded, closed
and convex set. Let Λ: D → 2D be a multivalued map with nonempty, closed and convex values
such that its graph is sequentially closed in Yw × Yw topology. Then Λ has a fixed point.
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3. Main results

This section is devoted to the main results of this paper proving the existence of weak solutions
to problem (1.1). First we state the hypotheses on the data of problem (1.1).

H(f): f : Ω×R×R
N → R is a Carathéodory function which satisfies the following conditions:

(i) there exist af , bf ≥ 0 and a function αf ∈ L
q1

q1−1 (Ω)+ satisfying

|f(x, s, ξ)| ≤ af |ξ|
p(q1−1)

q1 + bf |s|
q1−1 + αf (x)

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ R
N , where 1 < q1 < p∗ and p∗ is the

critical exponents to p in the domain given in (2.1);
(ii) there exist cf , df ≥ 0, θ1, θ2 ∈ [1, p] and a function βf ∈ L1(Ω)+ such that

f(x, s, ξ)s ≤ cf |ξ|
θ1 + df |s|

θ2 + βf (x)

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ R
N ;

(iii) there exist ef , hf ≥ 0 such that

(f(x, s, ξ)− f(x, t, ξ))(s− t) ≤ ef |s− t|p

|f(x, s, ξ1)− f(x, s, ξ2)| ≤ hf |ξ1 − ξ2|
p−1

for a. a.x ∈ Ω, for all s, t ∈ R and for all ξ, ξ1, ξ2 ∈ R
N .

H(U1): U1 : Ω× R → 2R satisfies the following conditions:
(i) U1(x, s) is a nonempty, bounded, closed and convex set in R for a. a.x ∈ Ω and all

s ∈ R;
(ii) x 7→ U1(x, s) is measurable in Ω for all s ∈ R;
(iii) s 7→ U1(x, s) is u.s.c;

(iv) there exist θ3 ∈ [1, p], αU1 ∈ Lp′

(Ω)+ and βU1 > 0 such that

|U1(x, s)| ≤ αU1(x) + βU1 |s|
θ3−1

for a. a.x ∈ Ω and for all s ∈ R.

H(U2): U2 : Γ2 × R → 2R satisfies the following conditions:
(i) U2(x, s) is a nonempty, bounded, closed and convex set in R for a. a.x ∈ Γ2 and all

s ∈ R;
(ii) x 7→ U2(x, s) is measurable on Γ2 for all s ∈ R;
(iii) s 7→ U2(x, s) is u.s.c;

(iv) there exist θ4 ∈ [1, p], αU2 ∈ Lp′

(Γ2)+ and βU2 > 0 such that

|U2(x, s)| ≤ αU2(x) + βU2 |s|
θ4−1

for a. a.x ∈ Γ2 and for all s ∈ R.

H(φ): φ : Γ3 × R → R satisfies the following conditions:
(i) x 7→ φ(x, r) is measurable on Γ3 for all r ∈ R such that x 7→ φ(x, 0) belongs to

L1(Γ3);
(ii) for a. a.x ∈ Γ3, r 7→ φ(x, r) is convex and l.s.c.

H(L): L : V → R is positively homogeneous and subadditive such that

L(u) ≤ lim sup
n→∞

L(un) (3.1)

whenever {un}n∈N ⊂ V is such that un
w

−→ u in V for some u ∈ V .

H(J): J : V → (0,+∞) is weakly continuous, that is, for any sequence {un}n∈N ⊂ V such that

un
w

−→ u for some u ∈ V , we have

J(un) → J(u).
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H(0): The inequalities

max{ef , hfλ
1
p } < k(p) and max{cfδ(θ1), dfλδ(θ2) + βU1δ(θ3) + βU2δ(θ4)} < 1

hold, where k(p) > 0 is given in (2.3), λ, ρ are given in (2.2) and δ : [1, p] → {1, 0} is
defined by

δ(θ) =

{

1 if θ = p,

0 otherwise.

Remark 3.1. The homogeneity and subadditivity of L reveals that L is a convex function. So,
it is not difficult to verify that if L : V → R is lower semicontinuous, then inequality (3.1) holds
automatically.

We consider the following multivalued map K : V → 2V given by

K(u) := {v ∈ V : L(v) ≤ J(u)} (3.2)

for all u ∈ V .
Next, we give the definition of a weak solution to problem (1.1).

Definition 3.2. A function u ∈ V is said to be a weak solution of problem (1.1), if there exist

functions η ∈ Lp′

(Ω), ξ ∈ Lp′

(Γ2) with η(x) ∈ U1(x, u(x)) for a. a. x ∈ Ω, ξ(x) ∈ U2(x, u(x)) for
a. a. x ∈ Γ2 and if

∫

Ω

(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

· ∇(v − u) dx+

∫

Γ3

φ(x, v) dΓ−

∫

Γ3

φ(x, u) dΓ

+

∫

Ω

(

|u|p−2u+ µ(x)|u|q−2u
)

(v − u) dx

≥

∫

Ω

η(x)(v − u) dx+

∫

Γ2

ξ(x)(v − u) dΓ +

∫

Ω

f(x, u,∇u)(v − u) dx

is satisfied for all v ∈ K(u), where the multivalued function K : V → 2V is defined by (3.2).

The following lemma states several properties of K, which will be used in the sequel.

Lemma 3.3. Let J : V → (0,+∞) and L : V → R be two functions such that H(L) and H(J)
are satisfied. Then, the following statements hold:

(i) for each u ∈ V , K(u) is closed and convex in V such that 0 ∈ K(u);
(ii) the graph Gr(K) of K is sequentially closed in Vw ×Vw, that is, K is sequentially closed

from V with the weak topology into the subsets of V with the weak topology;
(iii) if {un}n∈N ⊂ V is a sequence such that

un
w

−→ u in V as n → ∞

for some u ∈ V , then for each v ∈ K(u) there exists a sequence {vn}n∈N ⊂ V such that

vn ∈ K(un) and vn → v in V as n → ∞.

Proof. (i) Note that J(u) > 0 for each u ∈ V and L is positively homogeneous. So we have
0 = L(0V ) < J(u) for each u ∈ V , thus, K(u) 6= ∅ for every u ∈ V . The convexity of L (see
Remark 3.1) deduces directly that K(u) is convex for each u ∈ V . On the other hand, inequality
(3.1) implies that K(u) is closed for each u ∈ V .

(ii) Let {(un, vn)}n∈N ⊂ V × V be a sequence and (u, v) ∈ V × V such that vn ∈ K(un) for
each n ∈ N and

(un, vn)
w

−→ (u, v) in V × V as n → ∞.

Then, for each n ∈ N, it holds vn ∈ K(un), namely, L(vn) ≤ J(un). Keeping in mind that J is
weakly continuous on V (see hypotheses H(J)), we obtain

lim
n→∞

J(un) = J(u). (3.3)



DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS 11

However, hypotheses H(L) turn out

L(v) ≤ lim sup
n→∞

L(vn). (3.4)

Combining (3.3) and (3.4) yields

L(v) ≤ lim sup
n→∞

L(vn) ≤ lim sup
n→∞

J(un) = J(u).

This means that v ∈ K(u), that is, (u, v) ∈ Gr(K). Therefore, we conclude that Gr(K) is
sequentially closed in Vw × Vw.

(iii) Let {un}n∈N ⊂ V be a sequence such that

un
w

−→ u in V as n → ∞

for some u ∈ V and let v ∈ K(u) be arbitrary. Because of J(w) > 0 for every w ∈ V , we
construct the sequence {vn}n∈N ⊂ V given by

vn =
J(un)

J(u)
v.

Due to v ∈ K(u) (i.e., L(v) ≤ J(u)), it follows from hypotheses H(L) that

L(vn) = L

(

J(un)

J(u)
v

)

=
J(un)

J(u)
L(v) ≤

J(un)

J(u)
J(u) = J(un).

Therefore, vn ∈ K(un). Moreover, a simply calculation shows

‖vn − v‖V =

∣

∣

∣

∣

J(un)

J(u)
− 1

∣

∣

∣

∣

‖v‖V = 0.

Hence, we get that vn → v in V as n → ∞. This completes the proof of the lemma. �

Let X = Lp(Ω) × Lp(Γ2) and (η, ξ) ∈ X∗ := Lp′

(Ω) × Lp′

(Γ2), w ∈ V be arbitrary. We
introduce the following nonlinear auxiliary elliptic unilateral obstacle system

− div
(

|∇u|p−2∇u + µ(x)|∇u|q−2∇u
)

+|u|p−2u+ µ(x)|u|q−2u = η(x) + f(x, u,∇u) in Ω,

u = 0 on ∂Γ1,

∂u(x)

∂νa
= ξ(x) on ∂Γ2,

−
∂u(x)

∂νa
∈ ∂cφ(x, u) on ∂Γ3,

L(u) ≤ J(w).

(3.5)

By virtue of Definition 3.2, a function u ∈ V is said to be a weak solution of problem (3.5),
if the following holds: u ∈ K(w) and

∫

Ω

(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

· ∇(v − u) dx+

∫

Γ3

φ(x, v) dΓ−

∫

Γ3

φ(x, u) dΓ

+

∫

Ω

(

|u|p−2u+ µ(x)|u|q−2u
)

(v − u) dx

≥

∫

Ω

η(x)(v − u) dx+

∫

Γ2

ξ(x)(v − u) dΓ +

∫

Ω

f(x, u,∇u)(v − u) dx

for all v ∈ K(w).
Next, we prove the existence and uniqueness of weak solutions to problem (3.5).

Theorem 3.4. Let p ≥ 2. Suppose that (2.4), H(f), H(L) and H(φ) are satisfied. If, in

addition, the inequality max{ef , hfλ
1
p } < k(p) holds , then, for every (w, (η, ξ)) ∈ V ×X∗, there

exists a unique weak solution u ∈ K(w) of problem (3.5).
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Proof. Uniqueness: Let (w, (η, ξ)) ∈ V × X∗ be fixed and assume that the solution set of
problem (3.5) associated with (w, (η, ξ)) ∈ V × X∗ is nonempty. Let u1, u2 ∈ V be two weak
solutions of problem (3.5) corresponding to (w, (η, ξ)) ∈ V ×X∗. This means that ui ∈ K(w)
and

∫

Ω

(

|∇ui|
p−2∇ui + µ(x)|∇ui|

q−2∇ui

)

· ∇(v − ui) dx+

∫

Γ3

φ(x, v) dΓ

−

∫

Γ3

φ(x, ui) dΓ +

∫

Ω

(

|ui|
p−2ui + µ(x)|ui|

q−2ui

)

(v − ui) dx

≥

∫

Ω

η(x)(v − ui) dx+

∫

Γ2

ξ(x)(v − ui) dΓ +

∫

Ω

f(x, u,∇ui)(v − ui) dx

for all v ∈ K(w) and for i = 1, 2. Taking v = u2 and v = u1 for the inequalities above with
i = 1 and i = 2, respectively, we sum up the resulting inequalities to get

∫

Ω

(

|∇u1|
p−2∇u1 + µ(x)|∇u1|

q−2∇u1

)

· ∇(u1 − u2) dx

−

∫

Ω

(

|∇u2|
p−2∇u2 + µ(x)|∇u2|

q−2∇u2

)

· ∇(u1 − u2) dx

+

∫

Ω

(

|u1|
p−2u1 + µ(x)|u1|

q−2u1

)

(u1 − u2) dx

−

∫

Ω

(

|u2|
p−2u2 + µ(x)|u2|

q−2u2

)

(u1 − u2) dx

≤

∫

Ω

(f(x, u1,∇u1)− f(x, u2,∇u2))(u1 − u2) dx

=

∫

Ω

(f(x, u1,∇u1)− f(x, u2,∇u1))(u1 − u2) dx

+

∫

Ω

(f(x, u2,∇u1)− f(x, u2,∇u2))(u1 − u2) dx.

Taking (2.3), (2.4) and H(f)(iii) into account implies

k(p)
(

‖∇u1 −∇u2‖
p
p,Ω + ‖u1 − u2‖

p
p,Ω

)

≤

∫

Ω

ef |u1 − u2|
p dx+

∫

Ω

hf |∇u1 −∇u2|
p−1|u1 − u2| dx.

Applying Hölder’s inequality and (2.2) gives

k(p)
(

‖∇u1 −∇u2‖
p
p,Ω + ‖u1 − u2‖

p
p,Ω

)

≤ ef‖u1 − u2‖
p
p,Ω + hf‖∇u1 −∇u2‖

p−1
p,Ω ‖u1 − u2‖p,Ω

≤ ef‖u1 − u2‖
p
p,Ω + hfλ

1
p ‖∇u1 −∇u2‖

p
p,Ω.

Hence,

min
{

(k(p)− ef ), (k(p)− hfλ
1
p )
}(

‖∇u1 −∇u2‖
p
p,Ω + ‖u1 − u2‖

p
p,Ω

)

≤ 0.

By assumption, we know that max{ef , hfλ
1
p } < k(p), thus u1 = u2. Therefore, for each

(w, (η, ξ)) ∈ V ×X∗ problem (3.5) has a unique weak solution u ∈ V provided the solution set
of problem (3.5) is nonempty.

Existence: Let n ∈ N be fixed such that Kn := B(0, n) ∩K(w) 6= ∅, where B(0, n) is the

closed ball centered at the origin with radius n > 0, that is, B(0, n) := {u ∈ V : ‖u‖V ≤ n}.
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We first consider the following auxiliary problem: find un ∈ Kn such that
∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇(v − un) dx

+

∫

Ω

(

|un|
p−2un + µ(x)|un|

q−2un

)

(v − un) dx

+

∫

Γ3

φ(x, v) dΓ −

∫

Γ3

φ(x, un) dΓ

≥

∫

Ω

η(x)(v − un) dx+

∫

Γ2

ξ(x)(v − un) dΓ

+

∫

Ω

f(x, un,∇un)(v − un) dx for all v ∈ Kn.

(3.6)

Let us consider the function ϕ : V → R ∪ {+∞} defined by

ϕ(u) :=

∫

Γ3

φ(x, u) dΓ for all u ∈ V. (3.7)

Moreover, let Nf : V ⊂ Lq1(Ω) → Lq1(Ω) be the Nemytskij operator associated to f and let ι

be the embedding operator from V to Lq1(Ω) with its adjoint operator ι∗ : Lq′1(Ω) → V ∗. We
set T : V → V ∗

Tu = Au− ι∗Nf (u) for all u ∈ V,

where A : V → V ∗ is defined by (2.5). Based on this, it is easy to see that problem (3.6) can be
rewritten equivalently to the following one: find un ∈ Kn such that

〈Tun, v − un〉+ ϕ(v)− ϕ(un) ≥ 〈g, v − un〉 (3.8)

for all v ∈ Kn, where g ∈ V ∗ is defined by (because of Riesz’s representative theorem)

〈g, w〉 :=

∫

Ω

η(x)w(x) dx +

∫

Γ2

ξ(x)w(x) dΓ for all w ∈ V.

Note that Kn is a bounded, closed and convex subset of V . We are going to apply Theorem
2.8 to prove that problem (3.8) has at least one solution. By hypothesis H(φ) it is obvious to
see that ϕ defined in (3.7) is a proper, convex and l.s.c. function. Reasoning as in the proof of
Theorem 3.2 in Gasiński-Winkert [26], we conclude that T is a bounded and pseudomonotone
operator. Therefore, all conditions of Theorem 2.8 are satisfied and so for each n ∈ N there
exists one solution un ∈ Kn of problem (3.8). Applying the same arguments as in the proof of
uniqueness part, we conclude that un is the unique solution to problem (3.8).

Furthermore, we claim that there exists a number N0 ∈ N such that the unique solution uN0

of problem (3.8) with n = N0 satisfies the inequality

‖uN0‖V < N0. (3.9)

Let us suppose (3.9) is not true. Then for each n ∈ N we have ‖un‖V = n. So, it holds
‖un‖V → +∞ as n → ∞.

Recall that 0 ∈ K(w) (see Lemma 3.3(i)), a simple calculation shows
∫

Ω

|∇un|
p + µ(x)|∇un|

q + |un|
p + µ(x)|un|

q dx+

∫

Γ3

φ(x, un) dΓ

≤

∫

Ω

η(x)un dx+

∫

Γ2

ξ(x)un dΓ +

∫

Γ3

φ(x, 0) dΓ +

∫

Ω

f(x, un,∇un)un dx.

(3.10)

Since ϕ is a proper, convex and l.s.c. function, there are constants αϕ > 0 and βϕ ≥ 0 satisfying

ϕ(v) ≥ −αϕ‖v‖V − βϕ for all v ∈ V , (3.11)
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owing to Brézis [10, Proposition 1.10]. Let ε1, ε2 > 0. Employing hypothesis H(f)(ii), we have
∫

Ω

f(x, un,∇un)un(x) dx

≤

∫

Ω

cf |∇un(x)|
θ1 + df |un(x)|

θ2 + βf (x) dx

≤



















cf‖∇u‖pp,Ω + df‖un‖
p
p,Ω + ‖βf‖1,Ω if θ1 = θ2 = p,

cf‖∇un‖
p
p,Ω + ε1‖un‖

p
p,Ω + c1(ε1) + ‖βf‖1,Ω if θ1 = p and θ2 < p,

ε2‖∇un‖
p
p,Ω + c2(ε2) + df‖un‖

p
p,Ω + ‖βf‖1,Ω if θ1 < p and θ2 = p,

ε2‖∇un‖
p
p,Ω + c2(ε2) + ε1‖un‖

p
p,Ω + c1(ε1) + ‖βf‖1,Ω if θ1 < p and θ2 < p,

(3.12)

for some c1(ε1), c2(ε2) > 0. Keeping in mind that (η, ξ) ∈ X∗, we use Hölder’s inequality to get
∫

Ω

η(x)un dx+

∫

Γ2

ξ(x)un dΓ ≤ ‖η‖p′,Ω‖un‖p,Ω + ‖ξ‖p′,Γ2‖un‖p,Γ2 . (3.13)

Combining (3.11), (3.12) and (3.13) with (3.10) and using (2.2), (2.4) as well as Young’s in-
equality we obtain

∫

Ω

|∇un|
p + µ(x)|∇un|

q + |un|
p + µ(x)|un|

q dx ≤ c3

for some c3 > 0. Using Proposition 2.3, it is not difficult to see that the inequality above is
a contradiction to the fact that ‖un‖V → +∞ as n → ∞. Therefore, there exists a number
N0 ∈ N such that (3.9) is satisfied.

For any z ∈ K(w), we can choose t ∈ (0, 1) small enough such that vt = uN0 +(1− t)z ∈ KN0

thanks to (3.9). Taking v = vt in (3.8) gives

〈TuN0, z − uN0〉+ ϕ(z)− ϕ(uN0) ≥ 〈g, z − uN0〉.

Since z ∈ K(w) is arbitrary, we see that uN0 ∈ K(w) is a weak solution of problem (3.5).
In conclusion, we have shown that for every (w, (η, ξ)) ∈ V ×X∗ problem (3.5) has a unique

solution. �

Particularly, when J(w) = +∞ for all w ∈ V , then problem (3.5) becomes the following
non-obstacle nonlinear elliptic system with mixed boundary conditions: find u ∈ V such that

− div
(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

+|u|p−2u+ µ(x)|u|q−2u = η(x) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
= ξ(x) on Γ2,

−
∂u

∂νa
∈ ∂cφ(x, u) on Γ3.

(3.14)

We have the following corollary for problem (3.14)

Corollary 3.5. Let p ≥ 2. Assume that (2.4), H(f) and H(φ) are fulfilled. If the inequality

max{ef , hfλ
1
p } < k(p) holds, then for each pair of function (η, ξ) ∈ X∗, problem (3.14) has a

unique weak solution.

We define γ : V → X by γu = (γ1u, γ2u) for all u ∈ V , where γ1 : V → Lp(Ω) is the embedding
operator of V to Lp(Ω) and γ2 : V → Lp(Γ2) is the trace operator. From Proposition 2.1 we
know that γ is a linear, bounded and compact operator. Next we introduce the multivalued
mapping U : X → 2X

∗

defined by

U(u, v) :=
{

(η, ξ) ∈ X∗ : η(x) ∈ U1(x, u(x)) a. a. in Ω, ξ(x) ∈ U2(x, v(x)) a. a. on Γ2

}

(3.15)

for all (u, v) ∈ X .
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Lemma 3.6. Assume that H(U1) and H(U2) are satisfied. Then, the following hold:

(i) U is well-defined and for each (u, v) ∈ X the set U(u, v) is bounded, closed and convex
in X∗;

(ii) U is strongly-weakly u.s.c.

Proof. (i) Note that U1 and U2 satisfy an upper Carathéodory condition, that is, x 7→ U1(x, s)
and x 7→ U2(x, s) are measurable and s 7→ U1(x, s) and s 7→ U2(x, s) are u.s.c. Therefore,
we can apply Theorem 1.3.4 of Kamenskii-Obukhovskii-Zecca [30] to conclude that for each
(u, v) ∈ X the functions x 7→ U1(x, u(x)) and x 7→ U2(x, v(x)) are both measurable in Ω and
on Γ2, respectively. Additionally, from the Yankov-von Neumann-Aumann selection theorem
(see e. g. Papageorgiou-Winkert [47, Theorem 2.7.25]), we are able to find measurable selections
η : Ω → R and ξ : Γ2 → R such that η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω and ξ(x) ∈ U2(x, v(x)) for
a. a.x ∈ Γ2. From hypotheses H(U1)(iv) and H(U2)(iv) we have that

‖η‖p
′

p′,Ω =

∫

Ω

|η(x)|p
′

dx ≤

∫

Ω

(

αU1(x) + βU1 |u(x)|
θ3−1

)p′

dx

≤



















∫

Ω

(

αU1(x) + βU1 |u(x)|
p−1

)p′

dx if θ3 = p,

∫

Ω

(

αU1(x) + c4 + |u(x)|p−1
)p′

dx if θ3 < p,

≤



















∫

Ω

c5

(

|αU1(x)|
p′

+ βU1 |u(x)|
p
)

dx if θ3 = p,

∫

Ω

c5

(

|αU1(x)|
p′

+ 1 + |u(x)|p
)

dx if θ3 < p,

< +∞,

(3.16)

for some c4, c5 > 0, and

‖ξ‖p
′

p′,Γ2
=

∫

Γ2

|ξ(x)|p
′

dΓ ≤

∫

Γ2

(

αU2(x) + βU2 |v(x)|
θ4−1

)p′

dΓ

≤



















∫

Γ2

(

αU2(x) + βU2 |v(x)|
p−1

)p′

dΓ if θ4 = p,

∫

Γ2

(

αU2(x) + c6 + |v(x)|p−1
)p′

dΓ if θ4 < p,

≤



















∫

Γ2

c7

(

|αU2(x)|
p′

+ βU2 |v(x)|
p
)

dΓ if θ4 = p,

∫

Γ2

c7

(

|αU2(x)|
p′

+ 1 + |v(x)|p
)

dΓ if θ4 < p,

< +∞,

(3.17)

for some c6, c7 > 0, where we have used Young inequality for the cases θ3 < p and θ4 < p.
This means that U is well-defined and for each (u, v) ∈ X the set U(u, v) is bounded in X∗.
Moreover, the closedness and convexity of U1 and U2 guarantee that the set U(u, v) is closed
and convex in X∗ for all (u, v) ∈ X .

(ii) From Proposition 2.6, it is sufficient to prove that for each weakly closed set D of X∗,
the set U−(D) is closed in X . Let {(un, vn)}n∈N ⊂ U−(D) be such that (un, vn) → (u, v) in X
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as n → ∞ for some (u, v) ∈ X . Without any loss of generality, we may assume that

un(x) → u(x) as n → ∞ for a. a.x ∈ Ω,

vn(x) → v(x) as n → ∞ for a. a.x ∈ Γ2.
(3.18)

Let {(ηn, ξn)}n∈N ⊂ X∗ be a sequence such that (ηn, ξn) ∈ U(un, vn) for each n ∈ N. From (3.16)
and (3.17), we can see that {(ηn, ξn)}n∈N is bounded in X∗. The reflexivity of X permits us to

assume that, passing to a subsequence if necessary, (ηn, ξn)
w

−→ (η, ξ) in X∗ as n → ∞ for some
(η, ξ) ∈ D, owing to the weak closedness of D. Our objective is to prove that (η, ξ) ∈ U(u, v),
that is, η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω and ξ(x) ∈ U2(x, v(x)) for a. a.x ∈ Γ2. Subsequently,
we only show that η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω, the other proof works similarly.

From Mazur’s theorem we know that there exists a sequence {ζn}n∈N of convex combinations
of {ηn}n∈N such that

ζn → η in Lq′(Ω) and ζn(x) → u(x) for a. a.x ∈ Ω as n → ∞. (3.19)

The convexity of U1 reveals that ζn(x) ∈ U1(x, un(x)) for a. a.x ∈ Ω. Applying the convergences
in (3.18) and (3.19) along with the upper semicontinuity of U1 (see hypothesis H(U1)(iii)), we
get that η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω. Likewise, it is true that ξ(x) ∈ U2(x, v(x)) for
a. a.x ∈ Γ2. This means that (η, ξ) ∈ U(u, v) ∩ D, thus, (u, v) ∈ U−(D). Therefore, we can
apply Proposition 2.6 to conclude that U is strongly-weakly u.s.c. �

By virtue of Theorem 3.4, we are now in a position to consider the solution mapping S : V ×
X∗ → V of problem (3.5) defined by

S(w, (η, ξ)) := u(w, (η, ξ)) for all (w, (η, ξ)) ∈ V ×X∗,

where u(w, (η, ξ)) ∈ V is the unique solution of problem (3.5) corresponding to (w, (η, ξ)) ∈
V ×X∗.

The following lemma indicates that the solution map S is completely continuous, that is, for

any sequence {(wn, (ηn, ξn))}n∈N ⊂ V × X∗ and (u, (η, ξ)) ∈ V × X∗ with (wn, (ηn, ξn))
w

−→

(w, (η, ξ)) in V ×X∗ as n → ∞ it holds S(wn, (ηn, ξn))
w

−→ S(w, (η, ξ)) in V as n → ∞.

Lemma 3.7. Let p ≥ 2. Assume that (2.4), H(f), H(φ), H(L), H(J) and H(0) are fulfilled.
Then, the solution map S : V ×X∗ → V of problem (3.5) is completely continuous.

Proof. Let {(wn, (ηn, ξn))}n∈N ⊂ V ×X∗, {un}n∈N ⊂ V be sequences and (w, (η, ξ)) ∈ V ×X∗

such that

(wn, (ηn, ξn))
w

−→ (w, (η, ξ)) in V ×X∗ as n → ∞

and un = S(wn, (ηn, ξn)) for each n ∈ N. Then, for each n ∈ N, we have un ∈ K(wn) and
∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇(v − un) dx

+

∫

Ω

(

|un|
p−2un + µ(x)|un|

q−2un

)

(v − un) dx

+

∫

Γ3

φ(x, v) dΓ −

∫

Γ3

φ(x, un) dΓ

≥

∫

Ω

ηn(x)(v − un) dx+

∫

Γ2

ξn(x)(v − un) dΓ

+

∫

Ω

f(x, un,∇un)(v − un) dx for all v ∈ K(wn).

(3.20)

Claim: {un}n∈N is bounded in V .
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Arguing by contradiction, without any loss of generality, we may assume that ‖un‖V → +∞
as n → ∞. Lemma 3.3(i) indicates that 0 ∈ K(wn) for each n ∈ N. Taking v = 0 in (3.20)
yields

∫

Ω

|∇un|
p + µ(x)|∇un|

q + |un|
p + µ(x)|un|

q dx+

∫

Γ3

φ(x, un(x)) dΓ

≤

∫

Ω

ηn(x)un(x) dx+

∫

Γ2

ξn(x)un(x) dΓ +

∫

Ω

f(x, un,∇un)un(x) dx

+

∫

Γ3

φ(x, 0) dΓ

≤ ‖φ(·, 0)‖1,Γ3 +

∫

Ω

cf |∇un(x)|
θ1 + df |un(x)|

θ2 + βf (x) dx + ‖ηn‖p′,Ω‖un‖p,Ω

+ ‖ξn‖p′,Γ2‖un‖p,Γ2 ,

where we have used Hölder’s inequality and hypotheses H(f)(ii) and H(φ)(i). Using (2.2), (2.4),
(3.11), (3.12) and inequality max{cfδ(θ1), dfδ(θ2)} < 1 we obtain

∫

Ω

|∇un|
p + µ(x)|∇un|

q + |un|
p + µ(x)|un|

q dx ≤ c8

for some c8 > 0 which is independent of n thanks to the boundedness of {(ηn, ξn)}n∈N in X∗.
Combining the inequality above and Proposition 2.3, we get a contradiction. So, the Claim is
proved.

From the Claim we may assume, passing to a subsequence if necessary, that

un
w

−→ u in V as n → ∞

for some u ∈ V .
We assert that u = S(w, (η, ξ)), i.e., u is the unique solution of problem (3.5) corresponding

to (w, (η, ξ)) ∈ V ×X∗. Lemma 3.3(ii) indicates that Gr(K) is sequentially closed in Vw × Vw.

Keeping in mind {(un, wn)}n∈N ⊂ Gr(K) and (un, wn)
w

−→ (u,w) in V × V as n → ∞, we
have u ∈ K(w). On the other hand, it follows from Lemma 3.3(iii) that there exists a sequence
{yn}n∈N ⊂ V satisfying yn ∈ K(wn) and

yn → u in V as n → ∞.

Inserting v = yn in (3.20) and passing to the upper limit as n → ∞ to the resulting inequality,
we have

lim sup
n→∞

∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇(un − yn) dx

+ lim sup
n→∞

∫

Ω

(

|un|
p−2un + µ(x)|un|

q−2un

)

(un − yn) dx

≤ lim sup
n→∞

∫

Ω

f(x, un,∇un)(un − yn) dx+ lim sup
n→∞

∫

Γ3

φ(x, yn) dΓ

− lim inf
n→∞

∫

Γ3

φ(x, un) dΓ + lim sup
n→∞

∫

Γ2

ξn(x)(yn − un) dΓ

+ lim sup
n→∞

∫

Ω

ηn(x)(un − yn) dx.

Because the embeddings of V into Lq1(Ω), V into Lp(Ω) and V into Lp(Γ2) are all compact
(due to q1 < p∗, see Proposition 2.1), the sequences {(ηn, ξn)}n∈N and {f(·, un,∇un)}n∈N are

bounded in X∗ and Lq′1(Ω) (see hypothesis H(f)(i)), respectively. We obtain

lim sup
n→∞

∫

Ω

ηn(x)(un − yn) dx+ lim sup
n→∞

∫

Γ2

ξn(x)(un − yn) dΓ
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+ lim sup
n→∞

∫

Ω

f(x, un,∇un)(un − yn) dx = 0.

From the convexity and continuity of φ (hence, V ∋ u 7→
∫

Γ3
φ(x, u(x)) dΓ is weakly l.s.c.), it is

not difficult to see that

lim sup
n→∞

∫

Γ3

φ(x, yn(x)) dΓ − lim inf
n→∞

∫

Γ3

φ(x, un(x)) dΓ ≤ 0.

Taking into account the last three inequalities, we have

lim sup
n→∞

∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇(un − u) dx

+ lim sup
n→∞

∫

Ω

(

|un|
p−2un + µ(x)|un|

q−2un

)

(un − u) dx

≤ lim sup
n→∞

∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇(un − u) dx

+ lim inf
n→∞

∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇(u − yn) dx

+ lim sup
n→∞

∫

Ω

(

|un|
p−2un + µ(x)|un|

q−2un

)

(un − u) dx

+ lim inf
n→∞

∫

Ω

(

|un|
p−2un + µ(x)|un|

q−2un

)

(u− yn) dx

≤ lim sup
n→∞

∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇(un − yn) dx

+ lim sup
n→∞

∫

Ω

(

|un|
p−2un + µ(x)|un|

q−2un

)

(un − yn) dx

≤ 0.

The latter together with the convergence un
w

−→ u in V as n → ∞, and Proposition 2.4 (i.e.,
A is of type (S+)) deduces that

un → u in V as n → ∞.

For any fixed v ∈ K(w), Lemma 3.3(iii) permits us to find a sequence {vn}n∈N ⊂ V such that

vn ∈ K(wn) and vn → v in V as n → ∞.

Taking v = vn in (3.20) and passing to the upper limit as n → ∞ we obtain
∫

Ω

(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

· ∇(v − u) dx+

∫

Γ3

φ(x, v) dΓ−

∫

Γ3

φ(x, u) dΓ

+

∫

Ω

(

|u|p−2u+ µ(x)|u|q−2u
)

(v − u) dx

≥ lim sup
n→∞

∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇(vn − un) dx

+ lim sup
n→∞

∫

Γ3

φ(x, vn) dΓ− lim inf
n→∞

∫

Γ3

φ(x, un) dΓ

+ lim sup
n→∞

∫

Ω

(

|un|
p−2un + µ(x)|un|

q−2un

)

(vn − un) dx

≥ lim sup
n→∞

∫

Ω

ηn(x)(vn − un) dx+ lim sup
n→∞

∫

Γ2

ξn(x)(vn − un) dΓ

+ lim sup
n→∞

∫

Ω

f(x, un,∇un)(vn − un) dx
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≥

∫

Ω

η(x)(v − u) dx+

∫

Γ2

ξ(x)(v − u) dΓ +

∫

Ω

f(x, u,∇u)(v − u) dx.

Note that v ∈ K(w) is arbitrary, so we conclude that u is the unique solution of problem (3.5)
corresponding to (w, (η, ξ)), that is, u = S(w, (η, ξ)). Since every convergent subsequence of
{un}n∈N converges to the same limit u, we know that the whole sequence {un}n∈N converges
strongly to u in V . This means that S : V ×X∗ → V is completely continuous. �

The following lemma gives a priori estimates for the weak solutions of problem (1.1).

Lemma 3.8. Let p ≥ 2. Suppose that (2.4), H(f), H(φ), H(U1), H(U2), H(L), H(J) and H(0)
are satisfied. If the solution set of problem (1.1), denoted by Υ, is nonempty, then there exists
a constant M > 0 such that

‖u‖V ≤ M for all u ∈ Υ. (3.21)

Proof. Let u ∈ V be a weak solution of problem (1.1). Then, there exist functions (η, ξ) ∈ X∗

with η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω and ξ(x) ∈ U2(x, u(x)) for a. a.x ∈ Γ2 such that
∫

Ω

(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

· ∇(v − u) dx+

∫

Γ3

φ(x, v) dΓ−

∫

Γ3

φ(x, u) dΓ

+

∫

Ω

(

|u|p−2u+ µ(x)|u|q−2u
)

(v − u) dx

≥

∫

Ω

f(x, u,∇u)(v − u) dx+

∫

Ω

η(x)(v − u) dx+

∫

Γ2

ξ(x)(v − u) dΓ

for all v ∈ K(u). Since 0 ∈ K(u), we can take v = 0 in the inequality above to get
∫

Ω

(

|∇u|p−2∇u + µ(x)|∇u|q−2∇u
)

· ∇u+ |u|p + µ(x)|u|q dx

≤

∫

Γ3

φ(x, 0) dΓ−

∫

Γ3

φ(x, u) dΓ +

∫

Ω

f(x, u,∇u)u dx+

∫

Ω

η(x)u dx +

∫

Γ2

ξ(x)u dΓ.

(3.22)

Let ε3, ε4 > 0. From hypotheses H(U1)(iv) and H(U2)(iv) it follows that
∫

Ω

η(x)u dx ≤

∫

Ω

|η(x)||u| dx ≤

∫

Ω

(

αU1(x) + βU1 |u|
θ3−1

)

|u| dx

≤



















∫

Ω

αU1(x)|u|+ βU1 |u|
p dx if θ3 = p,

∫

Ω

(αU1(x) + c9(ε3))|u|+ ε3|u|
p dx if θ3 < p,

≤

{

‖αU1‖p′,Ω‖u‖p,Ω + βU1‖u‖
p
p,Ω if θ3 = p,

‖αU1(·) + c9(ε3)‖p′,Ω‖u‖p,Ω + ε3‖u‖
p
p,Ω if θ3 < p,

(3.23)

for some c9(ε3) > 0, and
∫

Γ2

ξ(x)u dΓ ≤

∫

Γ2

|ξ(x)||u| dΓ ≤

∫

Γ2

(αU2(x) + βU2 |u|
θ4−1)|u| dΓ

≤



















∫

Γ2

αU2(x)|u|+ βU2 |u|
p dΓ if θ4 = p,

∫

Γ2

(αU2(x) + c10(ε4))|u|+ ε4|u|
p dΓ if θ4 < p,

≤

{

‖αU2‖p′,Γ2‖u‖p,Γ2 + βU2‖u‖
p
p,Γ2

if θ4 = p,

‖αU2(·) + c10(ε3)‖p′,Γ2‖u‖p,Γ2 + ε4‖u‖
p
p,Γ2

if θ4 < p,

(3.24)
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for some c10(ε4) > 0, where we have used Young’s inequality (for the cases θ3 < p and θ4 < p)
and Hölder’s inequality. Taking (2.4), (3.12), (3.13) and (3.22), (3.23), (3.24) into account, we
take ε3 (for the case θ3 < p) and ε4 (for the case θ4 < p) small enough and use the inequality
max{cfδ(θ1), df δ(θ2) + βU1δ(θ3) + βU2δ(θ4)} < 1 to infer that there exists a constant c11 > 0
which is independent of u such that

∫

Ω

(

|∇u|p−2∇u + µ(x)|∇u|q−2∇u
)

· ∇u+ |u|p + µ(x)|u|q dx ≤ c11.

Therefore, it follows that the solution set of problem (1.1) is bounded, namely, there exists a
constant M > 0 such that (3.21) is satisfied. This completes the proof of the lemma. �

Now we are in the position to state and prove our main result in this paper concerning the
nonemptiness and weak compactness of the solution set Υ to problem (1.1).

Theorem 3.9. Let p ≥ 2. Under the assumptions of Lemma 3.7, the solution set Υ of problem
(1.1) is nonempty and weakly compact in V .

Proof. Nonemptiness: We consider the multivalued mapping Ξ: V ×X∗ → 2V×X∗

defined by

Ξ(u, (η, ξ)) := (S(u, (η, ξ)), U(γu)),

where U is given in (3.15) and γu = (γ1u, γ2u) for all u ∈ V . From Theorem 3.4 and Lemma 3.6,
we know that Ξ has nonempty, bounded, closed and convex values. Observe that if (u, (η, ξ)) is
a fixed point of Ξ, then we have u = S(u, (η, ξ)) and (η, ξ) ∈ U(γu). By the definitions of S and
U it is not difficult to see that u is also a weak solution of problem (1.1). Based on this fact, we
are going to apply the Kakutani-Ky Fan fixed point theorem stated as Theorem 2.9, to verify
that the fixed point set of Ξ is nonempty.

First, we claim that there exists a constant M∗ > 0 such that

S(BV (0,M∗), U(γBV (0,M∗))) ⊂ BV (0,M∗), (3.25)

where BV (0,M∗) := {u ∈ V : ‖u‖V ≤ M∗}. Arguing by contradiction, suppose there is not a

constant M∗ such that the inclusion holds. Then for each n > 0 there exist wn, zn ∈ BV (0, n)
and (ηn, ξn) ∈ X∗ with (ηn, ξn) ∈ U(γzn) such that

un = S(wn, (ηn, ξn)) and ‖un‖V > n.

Hence, for every n > 0, we have
∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇(v − un) dx

+

∫

Ω

(

|un|
p−2un + µ(x)|un|

q−2un

)

(v − un) dx

+

∫

Γ3

φ(x, v) dΓ −

∫

Γ3

φ(x, un) dΓ

≥

∫

Ω

ηn(x)(v − un) dx+

∫

Γ2

ξn(x)(v − un) dΓ +

∫

Ω

f(x, un,∇un)(v − un) dx

for all v ∈ K(wn). Choosing v = 0 in the inequality above, we obtain
∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇un + |un|
p + µ(x)|un|

q dx

≤

∫

Γ3

φ(x, 0) dΓ−

∫

Γ3

φ(x, un) dΓ +

∫

Ω

ηn(x)un dx+

∫

Γ2

ξn(x)un dΓ

+

∫

Ω

f(x, un,∇un)un dx.

(3.26)
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Let ε5, ε6 > 0. Applying hypotheses H(U1)(iv) and H(U2)(iv) gives
∫

Ω

ηn(x)un dx ≤

∫

Ω

(αU1(x) + βU1 |zn|
θ3−1)|un| dx

≤



















∫

Ω

(

αU1(x) + βU1 |zn|
p−1

)

|un| dx if θ3 = p,

∫

Ω

(

(αU1(x) + c12(ε5)) |un|+ ε5|zn|
p−1|un|

)

dx if θ3 < p,

≤

{

‖αU1‖p′,Ω‖un‖p,Ω + βU1‖zn‖
p−1
p,Ω ‖un‖p,Ω if θ3 = p,

‖αU1(·) + c12(ε5)‖p′,Ω‖un‖p,Ω + ε6‖zn‖
p−1
p,Ω ‖un‖p,Ω if θ3 < p,

(3.27)

for some c12(ε5) > 0, and
∫

Γ2

ξn(x)un dΓ ≤

∫

Γ2

(

αU2(x) + βU2 |zn|
θ4−1

)

|un| dΓ

≤



















∫

Γ2

(

αU2(x) + βU2 |zn|
p−1

)

|un(x)| dΓ if θ4 = p,

∫

Γ2

(αU2(x) + c13(ε6)) |un|+ ε6|zn|
p−1|un| dΓ if θ4 < p,

≤

{

‖αU2‖p′,Γ2‖un‖p,Γ2 + βU2‖zn‖
p−1
p,Γ2

‖un‖p,Γ2 if θ4 = p,

‖αU2(·) + c13(ε6)‖p′,Γ2‖un‖p,Γ2 + ε5‖zn‖
p−1
p,Γ2

‖un‖p,Γ2 if θ4 < p,

(3.28)

for some c13(ε6) > 0. Taking (3.11), (3.12) and (3.26), (3.27), (3.28) into account, we are able
to find a constant c14 > 0 which is independent of n such that

∫

Ω

(

|∇un|
p−2∇un + µ(x)|∇un|

q−2∇un

)

· ∇un + |un|
p + µ(x)|un|

q dx ≤ c14

for all n > 0, where we have used the fact that ‖zn‖V ≤ n = ‖un‖V . Letting n → ∞ for the
inequality above, it leads to a contradiction. So, there exists a constant M∗ > 0 such that (3.25)
is fulfilled.

From hypotheses H(U1)(iv) and H(U2)(iv), we can see that U : X → 2X
∗

is a bounded
mapping. Let M1 > 0 be such that

‖U(γBV (0,M∗))‖X∗ ≤ M1.

Now we introduce a bounded, closed and convex subset D of V ×X∗ given by

D = {(u, (η, ξ)) ∈ V ×X∗ : ‖u‖V ≤ M∗ and ‖(η, ξ)‖X∗ ≤ M1} .

From this and (3.25) we see that Ξ maps D into itself.
Next, we are going to prove that the graph of Ξ is sequentially closed in (V ×X∗)w×(V ×X∗)w.

Let {(wn, (ηn, ξn))}n∈N ⊂ V × X∗ and {(un, (δn, σn))}n∈N ⊂ V × X∗ be sequences such that
(δn, σn) ∈ U(γ(wn)), un = S(wn, (ηn, ξn)) and

(wn, (ηn, ξn)
w

−→ (w, (η, ξ)) in V ×X∗ as n → ∞

(un, (δn, σn))
w

−→ (u, (δ, σ)) in V ×X∗ as n → ∞

for some (w, (η, ξ)) ∈ V ×X∗ and (u, (δ, σ)) ∈ V ×X∗. From Lemma 3.7 we know that

un = S(wn, (ηn, ξn)) → S(w, (η, ξ)) in V ×X∗ as n → ∞.

This means that u = S(w, (η, ξ)). Recall that U is strongly-weakly u.s.c. with bounded, closed
and convex values (see Lemma 3.6), it allows us to apply Theorem 1.1.4 of Kamenskii-Obukhovskii-
Zecca [30] to conclude that the graph of U is strongly-weakly closed. The latter combined with
the compactness of γ implies that the graph of u 7→ U(γu) is weakly-weakly closed. We conclude
that the graph of Ξ is closed in (V ×X∗)w × (V ×X∗)w.
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Therefore, all conditions of Theorem 2.9 are verified. Using this theorem, we conclude that
Ξ has at least a fixed point, say (u∗, (η∗, ξ∗)) ∈ V × X . Hence, u∗ ∈ V is a weak solution of
problem (1.1).

Weak compactness. The boundedness of the solution set Υ of problem (1.1) is a direct
consequence of Lemma 3.8. Since V is reflexive, we shall verify the weak closedness of the
solution set Υ of problem (1.1). Let u be a solution of problem (1.1). Then, by the definitions
of weak solutions (see Definition 3.2) and of Ξ, there exist (η, ξ) ∈ X∗ such that u = S(u, (η, ξ))
and (η, ξ) ∈ U(γu), that is, (u, (η, ξ)) ∈ Ξ(u, (η, ξ)). Let {un}n∈N be a sequence of solutions

to problem (1.1) such that un
w

−→ u in V as n → ∞. Hence, we are able to find a sequence
{(ηn, ξn)}n∈N ⊂ X∗ such that (un, (ηn, ξn)) ∈ Ξ(un, (ηn, ξn)). Recall that U is a bounded
mapping, it follows that {(ηn, ξn)}n∈N is bounded in X∗. Passing to a subsequence if necessary,

we may suppose that (ηn, ξn)
w

−→ (η, ξ) in X∗ for some (η, ξ) ∈ X∗. Recall that Ξ is weakly

sequentially closed, (un, (ηn, ξn)) ∈ Ξ(un, (ηn, ξn)) and (un, (ηn, ξn))
w

−→ (u, (η, ξ)) in V ×X∗,
it holds (u, (η, ξ)) ∈ Ξ(u, (η, ξ)). This means that u is a solution to problem (1.1). Consequently,
the solution set of problem (1.1) is weakly compact. �

We end this section by considering special cases of problem (1.1).
If J(u) ≡ +∞ for all u ∈ W 1,H(Ω), then problem (1.1) becomes the non-obstacle mixed

boundary value problem (1.7). A careful observation gives the following corollary.

Corollary 3.10. Let p ≥ 2. Assume that (2.4), H(f), H(φ), H(U1), H(U2) and H(0) are
satisfied. Then, the solution set of problem (1.7) is nonempty and weakly compact in V .

Next, we assume the following conditions.

H(j1): j1 : Ω× R → R and r1 : R → R are functions which satisfy the following conditions:
(i) the function x 7→ j1(x, s) is measurable in Ω for all s ∈ R with x 7→ j1(x, 0)

belonging to L1(Ω);
(ii) for a. a.x ∈ Ω, s 7→ j1(x, s) is locally Lipschitz continuous and r1 is continuous;

(iii) there exist θ3 ∈ [1, p], αj1 ∈ Lp′

(Ω)+ and βj1 > 0 such that for all s ∈ R and
a. a.x ∈ Ω, we have

|r1(s)ξ| ≤ αj1(x) + βj1 |s|
θ3−1

for all ξ ∈ ∂j1(x, s).

H(j2): j2 : Γ2 × R → R and r2 : R → R are functions which satisfy the following conditions:
(i) the function x 7→ j2(x, s) is measurable on Γ2 for all s ∈ R with x 7→ j2(x, 0)

belonging to L1(Γ2);
(ii) for a. a.x ∈ Γ2, s 7→ j2(x, s) is locally Lipschitz continuous and r2 is continuous;

(ii) there exist θ4 ∈ [1, p], αj2 ∈ Lp′

(Γ2)+ and βj2 > 0 such that for all s ∈ R and
a. a.x ∈ Γ2, we have

|r2(s)η| ≤ αj2(x) + βj2 |s|
θ4−1

for all η ∈ ∂j2(x, s).

If U1 and U2 are given by U1(x, s) = r1(s)∂j1(x, s) for a. a.x ∈ Ω, s ∈ R and U2(x, s) =
r2(s)∂j2(x, s) for a. a.x ∈ Γ2, s ∈ R, then problem (1.1) becomes problem (1.4). We have the
following result.

Theorem 3.11. Let p ≥ 2. Assume that (2.4), H(f), H(φ), H(L), H(J), H(j1), H(j2) and
H(0) are satisfied. Then, the solution set of problem (1.4) is nonempty and weakly compact in
V .

Proof. It is obvious that the conclusion is a direct consequence of Theorem 3.9. So, we have
to verify that the functions U1 and U2, defined by U1(x, s) = r1(s)∂j1(x, s) for a. a.x ∈ Ω,
s ∈ R and U2(x, s) = r2(s)∂j2(x, s) for a. a.x ∈ Γ2, s ∈ R, fulfill hypotheses H(U1) and H(U2),
respectively.



DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS 23

It follows from Proposition 2.7 that for a. a.x ∈ Ω (resp. for a.a. x ∈ Γ2) and all s ∈ R the
set U1(x, s) (resp. U2(x, s)) is nonempty, bounded, closed and convex in R, namely, conditions
H(U1) and H(U2) are satisfied. Hypotheses H(j1)(i) and H(j2)(ii) indicate that for all s ∈ R,
the functions x 7→ U1(x, s) = r1(s) ∂j1(x, s) and x 7→ U2(x, s) = r2(s)∂j2(x, s) are measurable
in Ω and on Γ2, respectively. This means that H(U1)(i) and H(U2)(i) hold.

We claim that s 7→ r1(s)∂j1(x, s) is u.s.c. From Proposition 2.6, it is sufficient to show that
(r1(·)∂j1(x, ·))−(D) is closed for each closed set D ⊂ R. Let {sn}n∈N ⊂ (r1(·)∂j1(x, ·))−(D)
be such that sn → s as n → ∞. Then, there exists a sequence {ηn}n∈N ⊂ R satisfying
ηn ∈ r1(sn)∂j1(x, sn) ∩ D for each n ∈ N. We are able to find a sequence {ξn}n∈N such that
ηn = r1(sn)ξn and ξn ∈ ∂j1(x, sn) for all n ∈ N and for a. a.x ∈ Ω. Recall that sn → s, we can
apply Proposition 2.7(iii) and (v) to conclude that {ξn}n∈N is bounded in R. Hence, without
any loss of generality, we may assume that ξn → ξ in R as n → ∞ for some ξ ∈ D, because of the
closedness of D. But, the closedness of ∂j1 (see Proposition 2.7(v)) admits that ξ ∈ ∂j1(x, s).
This combined with the continuity of r1 deduces that ηn = r1(sn)ξn → r1(s)ξ ∈ r1(s)∂j1(x, s).
This implies that s ∈ (r1(·)∂j1(x, ·))−(D), that is, (r1(·)∂j1(x, ·))−(D) is closed. Applying
Proposition 2.6 we see that s 7→ r1(s)∂j1(x, s) is u.s.c. Using the same arguments as before, we
can also show that s 7→ r2(s)∂j2(x, s) is u.s.c. Therefore, H(U1)(iii) and H(U2)(iii) are verified.

Finally, hypotheses H(U1)(iv) and H(U2)(iv) are the consequences of the assumptions H(j1)(iii)
and H(j2)(iii). Consequently, we apply Theorem 3.9 to obtain the desired conclusion. �
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24 S. ZENG, V.D. RĂDULESCU, AND P. WINKERT
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[51] V.D. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121

(2015), 336–369.
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