
OVERLAPPING DOMAIN DECOMPOSITION PRECONDITIONER
FOR INTEGRAL EQUATIONS ∗

CHAO CHEN† AND GEORGE BIROS†

Abstract. The discretization of certain integral equations, e.g., the first-kind Fredholm equa-
tion of Laplace’s equation, leads to symmetric positive-definite linear systems, where the coefficient
matrix is dense and often ill-conditioned. We introduce a new preconditioner based on a novel
overlapping domain decomposition that can be combined efficiently with existing fast direct solvers.
Empirically, we observe that the condition number of the preconditioned system is O(1), independent
of the problem size. Our domain decomposition is designed so that we can construct approximate
factorizations of subproblems efficiently. In particular, we apply the recursive skeletonization algo-
rithm to subproblems associated with every subdomain. We present numerical results on problem
sizes up to 16 3842 in 2D and 2563 in 3D, which were solved in less than 16 hours and three hours,
respectively, on an Intel Xeon Platinum 8280M.

Key words. Integral Equations, Overlapping Domain Decomposition, Symmetric Positive-
definite Preconditioners, Fast Direct Solvers, Hierarchical Matrices

AMS subject classifications. 35R09, 65F08, 65N55,

1. Introduction. Consider the following integral equation (IE)

(1.1) a(x)u(x) + b(x)

∫
Ω

K(x− y)c(y)u(y)dy = f(x), x ∈ Ω ⊂ Rd,

where d = 2 or 3, a(x), b(x), c(x) and f(x) are given functions, K(r) ≡ K(x − y) is
the Green’s function of an elliptic operator, Ω is a finite simply-connected domain,
and u(x) is the unknown. Upon discretization of (1.1) through either Galerkin or
Nyström methods, we obtain

(1.2) Au = f,

where u and f are the discrete analogues of u(x) and f(x), respectively, and A ∈
RN×N is a dense matrix. See an example of the discretization in Section 2.

We further assume the discretized integral operator, A in (1.2), is symmetric
positive-definite (SPD). This typically occurs when (1.1) is a first-kind Fredholm
integral equation for Laplace’s equation or the Stokes equation, which has applications
in magnetostatics, electrostatics and fluid dynamics. More theory and discussion on
symmetric formulations of integral equations (including hypersingular integrals) can
be found in [26]. One challenge for solving (1.2) is that A usually has a large condition
number [39,40], and this paper is concerned with solving (1.2) iteratively using domain
decomposition preconditioners.

∗Submitted to the editors on August 22, 2022.
Funding: This material is based upon work supported by the U.S. Department of Energy,

Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program
under Award Number DE-SC0019393, by the U.S. Department of Energy, National Nuclear Security
Administration Award Number DE-NA0003969; by NIH award 5R01NS042645-11A1; and by the
Portugal Foundation for Science and Technology (FCT) and the UT Austin-Portugal program. Any
opinions, findings, and conclusions or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the DOE, NSF, and NSF. Computing time on the Texas
Advanced Computing Centers Frontera system was provided by an allocation from TACC and the
NSF.
†University of Texas at Austin, United States (chenchao.nk@gmail.com,biros@oden.utexas.edu).

1

This manuscript is for review purposes only.

ar
X

iv
:2

10
8.

12
57

4v
2

 [
m

at
h.

N
A

]
 1

9
A

ug
 2

02
2

mailto:chenchao.nk@gmail.com
mailto:biros@oden.utexas.edu

2 C. CHEN, AND G. BIROS

Fig. 1: Given two sets of points B1 and B2 inside two boxes, respectively. If the
two boxes are adjacent (weak admissibility), i.e., ` = 0, then the numerical rank of
the off-diagonal block A(B1,B2) is O(L). On the other hand, if the two boxes are
well-separated (strong admissibility), i.e., ` = O(L), then the numerical rank of the
off-diagonal block A(B1,B2) is O(1).

1.1. Previous work. Since A is a dense matrix, classical direct methods such
as Gaussian elimination require O(N3) operations and O(N2) storage. Such costs
limit the application of these methods to solving only small problems.

Although A is a dense matrix, in many applications it is data sparse in the sense
that the singular values of certain off-diagonal blocks in A decay exponentially fast.
This is typically the case for matrices related to integral equation formulations of prob-
lems with non-oscillatory coefficients and kernels. The numerical low-rank property is
exploited in the fast multipole method (FMM) [8,14,17,21,24,41], which requires only
O(N) operations and storage for applying A to a vector. Such a fast matrix-vector
multiplication can be coupled with iterative methods such as the conjugate gradient
method [30] to solve (1.2). However, the number of iterations can be large when the
condition number of A is large. Such a situation occurs when (1.1) is a first-kind
Fredholm integral equation, i.e., a(x) = 0; when b(x) or c(x) exhibits high contrast;
or when the problem domain Ω has a complex geometry.

To accelerate the convergence of an iterative method for solving (1.2), the block
Jacobi preconditioner is arguably the simplest preconditioner but may not be par-
ticularly effective. It was observed empirically that the single-level additive Schwarz
preconditioner with overlapping blocks led to better convergence for some realistic
engineering applications [27, 28]. Previous work on two-level additive Schwarz pre-
conditioners mainly focused on analyzing the condition number of the preconditioned
linear system. In [33] and [26], the authors introduced two-level additive Schwarz
preconditioners to solve first-kind boundary integral equations for the Laplace’s equa-
tion on a curve in R2 and on an open surface in R3, respectively. In [33], overlapping
domain decomposition was used, and it was proved that the condition number of the
preconditioned linear system is bounded only if the coarse mesh size is proportional
to the size of overlap. In [26], non-overlapping domain decomposition was used, and
it was proved that the condition number of the preconditioned linear system still de-
pends on the ratio between the sizes of the coarse mesh and the fine mesh. Recently,
the authors of [4] introduced a two-level additive Schwarz preconditioner based on
overlapping domain decomposition, which showed great potential in solving indefinite
dense linear systems from the discretization of the Lippmann-Schwinger equation. For
a more detailed discussion on existing preconditioners for solving discretized integral
equations, we refer interested readers to [29] and the references therein.

Fast direct solvers (FDS’s) are a class of methods that construct approximate
factorizations with a tunable accuracy. When the accuracy is low, they can be used

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 3

(a) (b) (c) (d)

Fig. 2: A subdomain (grey) in the Schwarz or the CBD preconditioner. Dashed lines

indicate the partitioning Ω =
⋃M
i=1 Pi, and every box in grey stands for an extended

partition P̃i. (a) Schwarz preconditioner with four subdomains. (b) CBD precondi-
tioner with four subdomains, where every subdomain has four separated regions. (c)
Schwarz preconditioner with 16 subdomains. (d) CBD preconditioner with four sub-
domains, where every subdomain has 16 separated regions.

as preconditioners; otherwise with a high accuracy, they behave similarly as a direct
method that is suitable for solving multiple right-hand sides. The basic idea of an
FDS is to compress certain off-diagonal blocks in A to a prescribed accuracy because
they are numerically low rank. This class of methods can be further divided into two
groups based on which off-diagonal blocks are compressed or the admissibility criteria;
see Figure 1.

The first group employs the so-called weak admissibility and compresses off-
diagonal blocks corresponding to two spatially adjacent regions. The resulting nu-
merical ranks typically increase proportionally to the perimeter or the surface area of
the regions in 2D or 3D, respectively. Consequently, the construction time of these
methods typically scale as O(N3/2) and O(N2) in 2D and 3D, respectively [2,6,7,15,
16, 19, 23, 36, 38]. Assuming the same rank behavior on the Schur complement, this
type of methods can be further accelerated to attain quasilinear complexity [11,20,37].
But existing numerical results seem to indicate that reaching the asymptotic regime
requires a really large problem size in 3D.

The second group employs the so-called strong admissibility and compresses off-
diagonal blocks corresponding to two sufficiently distant regions [1,12,25,31,32]. The
resulting numerical ranks are constant regardless of the sizes of the regions according
to standard fast multipole estimates [17,18]. Consequently, these methods can achieve
quasilinear complexity assuming the constant-rank estimates also hold for the Schur
complement, which appears be true in practice but lacks firm theoretical support. In
practice, the constants in the asymptotic scalings tend to be quite large, especially in
3D, because off-diagonal blocks corresponding to adjacent regions are treated exactly
without compression.

1.2. Contributions. We introduce a new preconditioner based on overlapping
domain decomposition to solve (1.2) iteratively with the preconditioned conjugate
gradient (PCG) method. The key feature is that the number of iterations required is
O(1), independent of the problem size. Our method is based on an empirically ob-
servation of the single-level additive-Schwarz preconditioner (Schwarz preconditioner
T−1

Schwarz hereafter): the minimum eigenvalue of the preconditioned matrix is lower
bounded away from zero. In other words, there exists a positive constant C > 0 such

This manuscript is for review purposes only.

4 C. CHEN, AND G. BIROS

that λmin(T−1
SchwarzA) ≥ C. Our preconditioner is associated with a new strategy for

constructing an overlapping domain decomposition that has a fixed number of subdo-
mains, and we apply an FDS as a subdomain solver to construct the preconditioner
efficiently. In the following, we illustrate these ideas in more details.

Let a partitioning (non-overlapping decomposition) of the problem domain be

(1.3) Ω =

M⋃
i=1

Pi, M = O(N),

where Pi ∩ Pj = ∅ if i 6= j. An overlapping decomposition Ω =
⋃M
i=1 P̃i is obtained

by extending Pi to overlap with its neighbors, so that Pi ⊂ P̃i and Pj ∩ P̃i 6= ∅
if Pi and Pj are spatially adjacent. See Figures 2a and 2c for two examples of the
domain decomposition corresponding to M = 4 and 16, respectively. In the Schwarz
preconditioner, every P̃i is a subdomain, and we solve M corresponding subproblems,
which are diagonal sub-blocks in A (up to a permutation). The Schwarz preconditioner
T−1

Schwarz can be viewed as a generalization of the block Jacobi preconditioner T−1
Jacobi,

where a subproblem is associated with Pi rather than P̃i. Numerical results show that
λmin(T−1

SchwarzA) ≥ C > 0, whereas λmin(T−1
JacobiA) decreases toward zero as N →∞.

The new overlapping domain decomposition that we introduce is a coloring-based
decomposition (CBD). The key feature of the CBD is that the number of subdomains
is fixed, and every subdomain Ωi consists of spatially distant P̃i’s. See Figures 2b
and 2d for two examples of a subdomain in the CBD corresponding to M = 16 and
64, respectively. To compute such a decomposition, we apply graph coloring to the
adjacency graph of {Pi}Mi=1, so every Pi (and P̃i) is assigned a color ci. Then, a
subdomain Ωi consists of P̃k’s of the same color, i.e.,

Ωi , {P̃k : the color ck assigned to P̃k is i} =
⋃
ck=i

P̃k.

Given a CBD, we define the corresponding preconditioner (CBD preconditioner here-
after) T−1

CBD following the same algebraic formulation of the Schwarz preconditioner
except that a subproblem Ai is associated with a subdomain Ωi instead of a single
P̃i. As a result, the diagonal blocks in Ai (with an appropriate permutation) are
the subproblems in a related Schwarz preconditioner. In other words, the CBD pre-
conditioner incorporates more information (off-diagonal blocks) from the global prob-
lem A. So we expect T−1

CBD to be a better preconditioner than T−1
Schwarz and thus

λmin(T−1
CBDA) ≥ λmin(T−1

SchwarzA) ≥ C > 0. Under mild assumptions, the number
of subdomains is upper bounded. For example, we have at most four subdomains
in 2D and eight subdomains for a uniform partitioning in 3D. This implies that the
maximum eigenvalue of the preconditioned matrix is upper bounded. Therefore, the
condition number of T−1

CBDA is bounded; consequently, (1.2) can be solved in O(1)
PCG iterations.

To accelerate the construction and reduce the memory footprint of the CBD
preconditioner, we apply an FDS to Ai associated with every subdomain Ωi. For
demonstration, we employ the recursive skeletonization (RS) factorization [20] based
on weak admissibility. RS has a relatively simple formulation, and its theoretical
complexity is well understood (without any rank assumptions on the Schur comple-
ment). If the RS is applied to the global problem A directly, the problem domain Ω is
partitioned at multiple scales, and then the interaction between every pair of adjacent
regions is compressed recursively down to the leaf (finest) level. At the leaf level, we

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 5

have Ω =
⋃M
i=1 Pi, where the interaction rank is proportional to the perimeter or the

surface area of every Pi in 2D or 3D, respectively. This type of rank estimation also
holds for coarse partitioning.

Consider a subdomain Ωi in the CBD preconditioner, which consists of distant
regions at the leaf level. When we apply RS to Ai associated with Ωi, the separation
distance among regions leads to significantly smaller number of skeletons at all scales,
compared to the case when these regions are adjacent. In particular, the interaction
rank between every pair of regions at the leaf level is provably constant (as in the
FMM) because they satisfy the strong admissibility condition. As a result, the con-
struction cost of the CBD preconditioner is much smaller than that of applying the
RS to A directly.

Finally, we clarify that it is not as efficient as the CBD preconditioner if we fix
the number of subdomains in the Schwarz preconditioner (problem size per subdo-
main increases as O(N)) and employ the RS as the subdomain solver. The reason
is basically the same as above that the interaction rank between a pair of adjacent
regions is larger than that between a pair of distant regions. So the cost associated
with every subdomain is larger than that in the CBD preconditioner. See more details
in Remark 4.8.

1.3. Outline and notations. In Section 2, we introduce a model problem and
overlapping domain decompositions that we use throughout this paper. In Section 3,
we define the Schwarz preconditioner T−1

Schwarz and show the crucial observation that
λmin(T−1

SchwarzA) ≥ C > 0. In Section 4, we introduce the CBD preconditioner T−1
CBD,

show results on the spectrum of T−1
CBDA, and discuss using the RS to construct T−1

CBD

efficiently. In Section 5, we present numerical results to demonstrate the performance
of the CBD preconditioner, and Section 6 draws conclusions.

We adopt the MATLAB notation of submatrices, e.g., A(I, :) and A(:, I) denote
the rows and columns in matrix A corresponding to an index set I, respectively.

2. Model problem and domain decomposition. In this section, we intro-
duce a model problem and the discretized linear system to be solved. We also present
two strategies for constructing an overlapping domain decomposition Ω =

⋃D
i=1 Ωi,

where Ω ⊂ Rd is the problem domain (d = 2 or 3), Ωi’s are overlapping subdomains,
and D is the number of subdomains.

For illustration purpose, we assume Ω = [0, 1]d, a uniform discretization grid of
size N = nd, and a uniform partitioning of the grid with M = md partitions, where
n and m are the number of grid points and partitions per dimension, respectively.
So every partition has N/M = (n/m)d grid points. In this paper, we always assume
M = O(N) unless stated otherwise, so the number of points per partition is fixed to
be N/M = O(1).

In Section 2.1, we introduce a model problem and the corresponding discretiza-
tion. In Section 2.2, we introduce the overlapping domain decomposition for the
Schwarz preconditioner, where the number of subdomains equals the number of parti-
tions, i.e., D = M . In Section 2.3, we introduce the CBD strategy, where the number
of subdomains D = 2d. These setups are used throughout this paper for numerical
results.

2.1. IE for Laplace’s equation. We focus on a prototypical example of (1.1),
the first-kind volume IE of Laplace’s equation in 2D and 3D:

(2.1)

∫
Ω

K(x− y)u(y) dy = f(x), x ∈ Ω = [0, 1]d,

This manuscript is for review purposes only.

6 C. CHEN, AND G. BIROS

where K(r) ≡ K(x− y) is the fundamental solution of the free-space Laplace’s equa-
tion, i.e.,

(2.2) K(r) =

{
− 1

2π log(‖r‖), d = 2,
1

4π‖r‖ , d = 3.

Here u(x) is a scalar, and the extension of our approach to cases where u(x) is a
vector (e.g., in the Stokes equation) is straightforward.

For simplicity, we discretize (2.1) with a piecewise-constant collocation method
over a uniform grid as follows. In 2D, let h = 1/n and xj = h(j1−1/2, j2−1/2), where
j is the index for an integer pair (j1, j2) for 1 ≤ j1, j2 ≤ n. Using the trapezoidal
rule and all xj ’s as the collocation points, (2.1) is discretized into the following linear
system

(2.3)
∑
j

Aij uj = fi

where uj ≈ u(xj) is to be solved, fi = f(xi) is given, and

(2.4) Aij =

{
h2K(xi − xj), i 6= j,∫ h/2

−h/2
∫ h/2
−h/2 K(r) dxdy, i = j,

can be evaluated using (2.2) and a proper singular quadrature.
In 3D, let h = 1/n and xj = h(j1 − 1/2, j2 − 1/2, j3 − 1/2), where j is the index

for an integer pair (j1, j2, j3) for 1 ≤ j1, j2, j3 ≤ n. The same procedure as above
leads to

(2.5) Aij =

{
h3K(xi − xj), i 6= j,∫ h/2

−h/2
∫ h/2
−h/2

∫ h/2
−h/2 K(r) dxdydz, i = j.

Empirically, the condition number of matrix A increases as O(1/h2), where h is
the mesh spacing. That is,

(2.6) cond(A) =

{
O(N), d = 2,
O(N2/3), d = 3.

(The same behavior as the discretized Laplace operator.)

2.2. Overlapping domain decomposition. Let a uniform partitioning or non-
overlapping domain decomposition of the problem domain Ω = [0, 1]d be

(2.7) Ω =

M⋃
i=1

Pi,

where M = O(N), and Pi ∩ Pj = ∅ if i 6= j; see Figure 3a for an example. An

overlapping domain decomposition Ω =
⋃M
i=1 P̃i, follows by extending Pi to overlap

with all of its spatially adjacent partitions Pj , i.e., Pi ⊂ P̃i and Pj ∩ P̃i 6= ∅. In
particular, we extend every partition Pi to include one extra layer of grids in every
direction (when possible) to form P̃i; see Figure 3b for an example. Except for those
extended partitions near the boundary, every P̃i has (n/m+2)d nodes given a uniform
partitioning of a uniform grid.

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 7

(a) (b) (c) (d)

Fig. 3: (a) A uniform partitioning of the unit square Ω =
⋃16
i=1 Pi. (b) A uniform

grid with 82 points and an extended partition P̃6 (shaded) containing 42 points. (c)
A four-coloring of the partitioning. (d) A subdomain Ω1 (shaded) with four spatially
separated regions in CBD.

Our first overlapping domain decomposition is simply taking Ωi = P̃i as a sub-
domain. Hence, we get

(2.8) Ω =

M⋃
i=1

P̃i =

D⋃
i=1

Ωi,

where D = M = O(N) is the number of subdomains. (The right-hand side is the
union of overlapping subsets of Ω, which quals the entire set Ω.) In Section 3, (2.8)
and (2.7) are used to construct the Schwarz preconditioner and the block Jacobi
preconditioner, respectively. In the block Jacobi preconditioner, Pi is treated as a
subdomain.

2.3. Coloring-based decomposition. Given the partitioning in (2.7), we ap-
ply graph coloring to the adjacency graph of {Pi}Mi=1, where an edge between Pi and
Pj exists if the two partitions are spatially adjacent. As a result, every partition Pi
(and its extension P̃i) is assigned a color ci in {1, 2, . . . , Nc}, where Nc is the number
of colors; see Figure 3c for an example. With the overlapping domain decomposition
in (2.8), we form a subdomain Ωi as

(2.9) Ωi = {P̃k : the color ck assigned to P̃k is i} =
⋃
ck=i

P̃k, i = 1, 2, . . . , Nc;

see Figure 3d for an example. It is easy to see

(2.10) Ω =

M⋃
i=1

P̃i =

Nc⋃
i=1

(⋃
ck=i

P̃k

)
=

D⋃
i=1

Ωi,

where D = Nc is the number of subdomains. We call (2.10) a coloring-based decom-
position (CBD), which is used in Section 4 to construct the CBD preconditioner. If
the number of partitions M = 2d in (2.7), then (2.10) reduces to (2.8) because every
subdomain (color) has only one partition.

According to the four color theorem [3], we know Nc = 4 in 2D. For a general
graph in 3D, Nc can be arbitrarily large but is usually small for practical problems
that have some regularity. For example, Nc = 8 for a uniform partitioning of a uniform
grid. To summarize, we state the following:

This manuscript is for review purposes only.

8 C. CHEN, AND G. BIROS

Table 1: Given a domain decomposition Ω =
⋃D
i=1 Ωi, the definition of a subdomain Ωi

leads to different preconditioners including the block Jacobi preconditioner (Section 3),
the Schwarz preconditioner (Section 3), and the CBD preconditioner (Section 4).

Jacobi Schwarz CBD

Ωi Pi P̃i

⋃
ck=i P̃k

Theorem 2.1. For a uniform partitioning of a uniform grid over Ω = [0, 1]d, the
number of subdomains (colors) is 2d in the CBD.

As a summary of Sections 2.2 and 2.3, Table 1 shows the three preconditioners
to be introduced associated with (2.7), (2.8), and (2.10).

3. Schwarz preconditioner. Given a domain decomposition Ω =
⋃D
i=1 Ωi (not

necessarily an overlapping domain decomposition), we construct a preconditioner as
follows. Let Ii denote the indices of the discretization points in Ωi. First, we define
the restriction operator for every subdomain Ωi:

Ri = IN (Ii, :),

a subset of rows in the identity matrix IN ∈ RN×N corresponding to indices Ii. Then,
we define the subproblem associated with Ωi:

(3.1) Ai = RiAR
>
i .

Finally, we define the preconditioner:

(3.2) T−1 =

D∑
i=1

R>i A
−1
i Ri.

With the overlapping domain decompositions (2.8) and (2.10), we obtain the Schwarz
preconditioner (technically, single-level additive Schwarz preconditioner) and the CBD
preconditioner (Section 4). With the non-overlapping domain decomposition (2.7),
we obtain the block Jacobi preconditioner.

In the following, we focus on the Schwarz preconditioner T−1
Schwarz, derive a theorem

on λmax(T−1
SchwarzA), and show empirical results on λmin(T−1

SchwarzA). We also compare
the Schwarz preconditioner to the block Jacobi preconditioner.

3.1. Maximum and minimum eigenvalues. Consider the preconditioned
matrix

(3.3) T−1A =

D∑
i=1

R>i A
−1
i RiA.

We define

(3.4) Pi = R>i A
−1
i RiA,

and we can verify that Pi is an orthogonal projection with respect to the inner product
defined by the SPD matrix A:

P 2
i = Pi, APi = P>i A.

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 9

Table 2: Maximum and minimum eigenvalues of the preconditioned matrix (3.3). The
block Jacobi and the Schwarz preconditioners are defined in Table 1. The number of
subdomains D = O(N).

N D
Jacobi Schwarz

λmax λmin λmax λmin

82 22 2.8479 0.1695 4.0000 0.8209
162 42 6.6883 0.0804 8.8046 0.9112
322 82 19.3756 0.0533 23.5948 0.9350
642 162 61.6629 0.0409 71.5192 0.9360
1282 322 205.7705 0.0336 231.7813 0.9331

(a) Discretized integral operator in 2D; see (2.4).

N D
Jacobi Schwarz

λmax λmin λmax λmin

43 23 4.0618 0.2602 8.0000 0.9750
83 43 15.4234 0.2056 33.1198 0.9942
163 83 60.9327 0.1916 134.7002 0.9967
323 163 242.9799 0.1878 547.3752 0.9972

(b) Discretized integral operator in 3D; see (2.5).

As a result, we have
λmax(Pi) = 1,

which immediately leads to the following:

Theorem 3.1. Let A be an SPD matrix and the preconditioner T−1 defined in
(3.2). Then,

λmax(T−1A) ≤ D,
where D is the number of subdomains.

Proof. λmax(T−1A) ≤
∑D
i=1 λmax(Pi) = D.

Note the theorem applies to both the block Jacobi and the Schwarz preconditioners
because it only requires a decomposition of the problem domain (not necessarily an
overlapping decomposition); see numerical results in Table 2. The table also shows
that as the problem size N increases, λmin(T−1

SchwarzA) appears to converge to a positive
constant close to one, whereas λmin(T−1

JacobiA) is much smaller and keeps decreasing.
We state the following (and provide more concrete evidence in Section 3.2):

Conjecture 3.2. Let A be the discretized integral operator in (2.4) or (2.5). Given
the overlapping domain decomposition (2.8), the Schwarz preconditioner T−1

Schwarz is
defined in (3.2). Then,

λmin(T−1
SchwarzA) ≥ C > 0,

where C is a positive constant.

Remark 3.3. If A is a sparse SPD matrix arising from a local discretization (e.g.,
by finite elements or finite differences) of a second-order self-adjoint, coercive elliptic

This manuscript is for review purposes only.

10 C. CHEN, AND G. BIROS

(a) (b)

Fig. 4: (a) D = 4 in (2.8). Shaded regions are shared by adjacent subdomains, and
the four grid points at the center are shared by all four subdomains. (b) D = 4 in
(2.7). As N →∞, all four subdomains contain the center of the square.

problem, then the upper bound in Theorem 3.1 can be reduced to a constant, inde-
pendent of the number of subdomains D [5,13]. The reason is that Pi + Pj is still an
orthogonal projection when Ωi ∩ Ωj = ∅ (because RiAR

>
j = 0 when A is sparse).

Remark 3.4. In the context of solving PDEs, the (single-level additive) Schwarz
preconditioner results in a bounded maximum eigenvalue of the preconditioned ma-
trix, whereas the minimum eigenvalue goes to zero as M = O(N)→∞.

3.2. Analysis for D = 2d. In this section, we assume the number of subdomains
D = 2d and study the maximum and minimum eigen-pairs of T−1

SchwarzA. The analysis
of the maximum eigen-pair prepares for the corresponding analysis for T−1

CBDA in Sec-
tion 4.1. The observations for the minimum eigen-pair provide insights and evidence
for Conjecture 3.2. We also compare the Schwarz preconditioner to the block Jacobi
preconditioner, for which Conjecture 3.2 does not hold.

Recall Pi defined in (3.4) is a projection associated with subdomain Ωi, so we
have

Lemma 3.5. Let x ∈ RN be nonzero only in Ωi, i.e., x = R>i Ri x. Then,

Pi x = x.

Proof. With the definitions of Ai and Pi in (3.1) and (3.4), respectively, we have

Pi x = (R>i A
−1
i RiA)(R>i Ri x) = R>i A

−1
i (RiAR

>
i)Ri x = R>i Ri x = x.

This lemma is useful for analyzing eigenvectors of the preconditioned matrix. The
following theorem addresses the maximum eigenvalue and the associated eigenvector
of T−1

SchwarzA.

Theorem 3.6. Suppose the problem domain Ω = [0, 1]d is partitioned uniformly
into D = 2d overlapping subdomains. Given the overlapping domain decomposition
(2.8), we have

λmax(T−1
SchwarzA) = 2d,

and the corresponding eigen-space is of dimension 2d and consists of vectors that are
nonzero only in the overlapped region shared by all 2d subdomains.

Proof. According to Theorem 3.1, we know that λmax(T−1
SchwarzA) ≤ 2d. Recall

that when D = 2d, we have ∩2d

i=1Ωi 6= ∅, and the shared region contains 2d grid

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 11

points; see Figure 4a for an example. Suppose x is nonzero only in the shared region.
According to Lemma 3.5, we know that Pi x = x for all i. Therefore,

T−1
SchwarzAx =

2d∑
i=1

Pi x = 2d x.

The theorem does not apply to T−1
JacobiA directly but provides insight on the maximum

eigen-pair when the problem size N →∞. In the limit, all subdomains associated with
the block Jacobi preconditioner share the center of the problem domain Ω = [0, 1]d;
see Figure 4b for an example. So we know that

(3.5) lim
N→∞

λmax(T−1
JacobiA) = 2d;

see numerical results in Table 3. The corresponding eigenvector converges to the
indicator function of the center point xc, i.e.,

(3.6) 1xc
(x) =

{
1 x = xc,
0 else;

see numerical results plotted in Figures 5a and 5c.
Next, we consider the minimum eigen-pair of T−1

JacobiA. We start with an example
in one dimension (1D). Suppose the problem domain Ω = [0, 1] is cut into two halves
of equal length (D = 2), i.e., Ω1 = [0, 1/2],Ω2 = [1/2, 1]. Suppose a uniform dis-
cretization grid has N nodes, where N is an even integer and the discretization points
are indexed from left to right. Let the indices of discretization points in Ω1 and Ω2

be I1 = {1, 2, . . . , N/2} and I1 = {N/2 + 1, N/2 + 2, . . . , N}, respectively. Recall the
block Jacobi preconditioner T−1

Jacobi defined in (3.2). Consider the eigenvalue problem

(3.7) T−1
JacobiAx = λx,

where λ is an eigenvalue. Write x = x1 + x2, where xi = Rix for i = 1, 2. We state
the following theorem and give the proof in Appendix A.

Theorem 3.7. Let x = x1 +x2 be an eigenvector associated with an eigenvalue λ
of the preconditioned matrix T−1

JacobiA in 1D. Then, x′ = x1−x2 is also an eigenvector,
and the corresponding eigenvalue is 2− λ. In other words,

T−1
JacobiAx = λx ⇔ T−1

JacobiAx
′ = (2− λ)x′.

According to the above theorem, (3.5) implies

(3.8) lim
N→∞

λmin(T−1
JacobiA) = 0

for our example in 1D; see numerical results of eigenvectors in Figures 5a and 5b.
One interpretation of the eigenvectors of T−1

JacobiA from electrostatics is the following.
The limit (N → ∞) of the eigenvector associated with λmax, namely, (3.6), can be
interpreted as putting a point charge at the domain center. The eigenvector associated
with λmin corresponds to putting dipoles near the boundaries of adjacent subdomains.
For the example in 1D, the boundary is just one point xc = 1/2; see Figure 5b. For
the unite square domain in 2D, the boundaries are two lines 1/2×[0, 1] and [0, 1]×1/2;
see Figure 5d. As a result, the electric potential induced by all charges cancels out

This manuscript is for review purposes only.

12 C. CHEN, AND G. BIROS

0 10 20 30
-1

-0.5

0

0.5

1

(a) Eigenvector for λmax in 1D

0 10 20 30
-1

-0.5

0

0.5

1

(b) Eigenvector for λmin in 1D

0

1

0.1

1

0.2

0.3

0.5

0.4

0.5

0 0

(c) Eigenvector for λmax in 2D

1

0.5-0.15

-0.1

-0.05

0

1

0.05

0.1

0.15

0.5 00

(d) Eigenvector for λmin in 2D

Fig. 5: Eigenvectors of T−1
JacobiA in 1D (N = 32, D = 2) and 2D (N = 322, D = 22).

The discretized integral operator is given in (2.4).

approximately. Based on this intuition, we conjecture that (3.8) also holds when d = 2
and 3; see numerical results in Table 3.

Finally, we consider the minimum eigen-pair of T−1
SchwarzA. Let us revisit the previ-

ous example in 1D, where the problem domain Ω = [0, 1] is discretized with a uniform
grid of size N (an even integer) and the grid points are indexed from left to right. To
construct the Schwarz preconditioner, we use the overlapping domain decomposition
where Ω1 and Ω2 contain the first and the last N/2 + 1 grid points, respectively.
Figure 6a shows the eigenvector corresponding to λmin. In the figure, there is a
“dipole” at the overlapped region, and the eigenvector decays more slowly away from
the boundary than that in Figure 5b. This observation extends to higher dimensions,
and the differences between the two eigenvectors for λmin are more pronounced in 2D;
compare Figure 6b to Figure 5d. Both eigenvectors contain “dipoles” near the bound-
aries of the four subdomains in 2D. For the eigenvector associated with the Schwarz
preconditioner, the “dipoles” mainly concentrate around (1/2, 0), (1/2, 1), (0, 1/2) and
(1, 1/2) on the boundary of the square domain. For the eigenvector associated with
the block Jacobi preconditioner, however, the “dipoles” mainly exist in the interior of
the domain. This empirical observation extends to cases when D > 2d. The difference
between the minimum eigenvalues of the preconditioned matrix is shown in Table 3
for problems in 2D and in 3D.

4. Coloring-based decomposition (CBD) and preconditioner. In this sec-
tion, we introduce the CBD preconditioner based on the decomposition (2.10). Recall

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 13

0 10 20 30
-0.5

0

0.5

(a) Eigenvector for λmin in 1D (b) Eigenvector for λmin in 2D

Fig. 6: Eigenvectors of T−1
SchwarzA in 1D (N = 32, D = 2) and 2D (N = 2562, D = 22).

In (a), two dots (in black) lie in the overlapped region of two subdomains, and two
curves (in blue and red, respectively) lie in the interior of two subdomains, respectively.
The discretized integral operator is given in (2.4).

(a) (b)

Fig. 7: (a) a square domain is partitioned uniformly into 16 partitions; (b) shared
region (in black) of the four subdomains in the CBD preconditioner. Every subdomain
has four separated regions indicated by the index.

that a subdomain consists of spatially distant regions as shown in Figure 3d and the
algebraic formulation of the CBD preconditioner is given in (3.2). In Section 4.1,
we show that the maximum and minimum eigenvalues of the preconditioned matrix
T−1

CBDA are bounded from above and from below, respectively. In Section 4.2, we
apply the recursive skeletonization (RS) factorization [20] to construct approximate
factorizations of subproblems in the CBD preconditioner, which are used to apply
the preconditioner efficiently. In Section 4.3, we compare the CBD preconditioner to
the original RS method, and in Section 4.4, we provide some analysis of the CBD
preconditioner.

4.1. Spectral equivalence. The number of subdomains used in the CBD pre-
conditioner is typically a constant independent of the problem size. This implies that
the maximum eigenvalue of the preconditioned matrix is upper bounded according
to Theorem 3.1. In addition, numerical results reveal strong evidence that the min-
imum eigenvalue is lower bounded away from zero, which can also be justified by

This manuscript is for review purposes only.

14 C. CHEN, AND G. BIROS

Table 3: Maximum and minimum eigenvalues of the preconditioned matrix (3.3). The
block Jacobi, the Schwarz and the CBD preconditioners are defined in Table 1. The
number of subdomains D = 2d is fixed.

N D
Jacobi Schwarz CBD

λmax λmin λmax λmin M λmax λmin

82 4 2.8479 0.1695 4.0000 0.8209 22 4.0000 0.8209
162 4 3.1876 0.0838 4.0000 0.8237 42 4.0000 0.9201
322 4 3.3965 0.0419 4.0000 0.8280 82 4.0000 0.9397
642 4 3.5349 0.0210 4.0000 0.8305 162 4.0000 0.9403
1282 4 3.6316 0.0105 4.0000 0.8317 322 4.0000 0.9399

(a) Discretized integral operator in 2D; see (2.4).

N D
Jacobi Schwarz CBD

λmax λmin λmax λmin M λmax λmin

43 8 4.0618 0.2602 8.0000 0.9750 23 8.0000 0.9750
83 8 4.6797 0.1532 8.0000 0.9408 43 8.0000 0.9965
163 8 5.1116 0.0850 8.0000 0.9020 83 8.0000 0.9992
323 8 5.4158 0.0451 8.0000 0.8661 163 8.0000 0.9998

(b) Discretized integral operator in 3D; see (2.5).

Conjecture 3.2. We illustrate these statements with more details in the following.
Consider the maximum eigenvalue of the preconditioned matrix T−1

CBDA. As previ-
ously mentioned in section 2, we assume the problem domain Ω = [0, 1]d is discretized
with a uniform grid and is partitioned uniformly into M = md partitions (m parti-
tions along every dimension); see Figure 7a. In this case, we have D = 2d subdomains

in the CBD preconditioner. There are (m− 1)
d

overlapped regions shared by all sub-
domains; see Figure 7b for an example. When M = D = 2d, the CBD preconditioner
is reduced to the Schwarz preconditioner. We generalize the analysis in Section 3.2
and Theorem 3.6 to the following:

Theorem 4.1. Suppose the problem domain Ω = [0, 1]d is partitioned uniformly.
Given the overlapping decomposition in (2.10), where M = md ≥ D, we have

λmax(T−1
CBDA) = 2d,

and the corresponding eigen-space is of dimension (2 (m− 1))
d

and consists of vectors
that are nonzero only in the overlapped region shared by all 2d subdomains.

Proof. The proof is almost identical to that of Theorem 3.6, except there are
(m− 1)

d
overlapped regions shared by all subdomains. (Recall that every shared

region has 2d discretization points; see Figure 4a.)

Next, we consider the minimum eigenvalue of the preconditioned matrix in (3.3).
Assume we are given a partitioning of the problem domain as in (2.7), where the
number of partitions M = O(N). We can construct the Schwarz and the CBD
preconditioners based on (2.8) and (2.10), respectively. In this case, a subdomain

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 15

in the CBD preconditioner is a union of non-adjacent subdomains in the Schwarz
preconditioner. This implies that every subproblem in the Schwarz preconditioner is
a diagonal block in a subproblem in the CBD preconditioner. As a concrete example,
we have ΩCBD

1 = ΩSchwarz
1 ∪ΩSchwarz

3 ∪ΩSchwarz
9 ∪ΩSchwarz

11 in Figure 7. Correspondingly,
we know the discretization points satisfy the same relationship, i.e., ICBD

1 = ISchwarz
1 ∪

ISchwarz
3 ∪ ISchwarz

9 ∪ ISchwarz
11 . According to the definition (3.1), we have

ACBD
1 =

ASchwarz

1 × × ×
× ASchwarz

3 × ×
× × ASchwarz

9 ×
× × × ASchwarz

11

 ,
where × stands for the “interaction” between two Schwarz subdomains, entries in the
original matrix A but not in any ASchwarz

i . In general, the CBD preconditioner uses
(much) more entries in the original problem A than the related Schwarz precondi-
tioner. A subproblem ACBD

i contains O(N/2d) entries in A, whereas a subproblem
ASchwarz
i contains only O(1) entries. Therefore, we expect the CBD preconditioner to

be a better preconditioner. Compare λmin(T−1
CBDA) in Table 3 to λmin(T−1

SchwarzA) in
Table 2. We state the following:

Conjecture 4.2. Let A be the discretized integral operator in (2.4) or (2.5). Given
the overlapping domain decomposition (2.10), the CBD preconditioner T−1

CBD is defined
in (3.2). Then,

λmin(T−1
CBDA) ≥ C > 0,

where C is a positive constant.

4.2. Recursive skeletonization (RS) as subdomain solver. To construct
the CBD preconditioner, we apply the RS algorithm to compute an approximate
factorization of every subproblem Ai in the CBD preconditioner. The resulting fac-
torizations consist of block triangular factors, which can be inverted easily for applying
the preconditioner. Suppose the subproblem Ai is associated with the subdomain

(4.1) Ωi =

M̃⋃
k=1

P̃k,

where M̃ = M/D = M/2d, and P̃k’s are spatially distant regions of the same color;
see an example in Figure 7b. To simplify notations, we drop the subscript i in Ai for
the rest of this section, and we refer interested readers to [20] for more details.

Without loss of generality, write

(4.2) A =

(
App Apq
Aqp Aqq

)
,

where rows/columns indices p and q correspond to P̃1 and the union of remaining
regions in (4.1), respectively. Assume Aqp is numerically low-rank, we compute the
following interpolative decomposition (ID) [10] :

(4.3) Aqp =
(
Aqr Aqs

)
≈ Aqs

(
Tp I

)
,

where the index set p is split into a redundant subset r and a skeleton subset s (up
to a permutation) and

(4.4) ‖Aqr −AqsT‖ ≤ ε ‖Aqr‖

This manuscript is for review purposes only.

16 C. CHEN, AND G. BIROS

for a prescribed (relative) accuracy ε. We call the indices in s skeletons, which tend
to be discretization points close to the boundary of P̃1. See a pictorial illustration
in Figure 8. Define the numerical rank k = |s|. Since P̃1 is well-separated from the
remaining regions in (4.1), we know

(4.5) k = O(1),

according to standard fast multipole estimates [17, 18]. Computing the ID requires
O(k |p| |q|) operations in general but can be accelerated to O(k |p|2) operations using
the so-called proxy trick [22,41].

With (4.3), we have the approximation

A ≈

 Arr Ars T>p Asq
Asr Ass Asq
AqsTp Aqs Aqq

 ,

so we can eliminate the original Arq and Aqr blocks without affecting the Aqq block:

(4.6) L>p ALp ≈

 Brr Brs
Bsr Ass Asq

Aqs Aqq

 , Lp =

 I
−Tp I

I

where

Brr = Arr −ArsTp − T>p Asr + T>p AssTp,

Bsr = B>rs = Asr −AssTp.

Let Brr = G>r Gr be its Cholesky factorization, and we have the following approximate
partial factorization

(4.7) U>r L
>
p ALpUr ≈

 I
Bss Asq
Aqs Aqq

 , Ur =

 G−1
r −B−1

rr Brs
I

I

 ,

where

(4.8) Bss = Ass −BsrB−1
rr Brs.

Notice that the Aqq, Asq, and Aqs blocks have not been modified. Define R1 = LpUr
corresponding to the first region P̃1 in (4.1), and we call R1 an “compress-then-
eliminate” operator.

We continue the above “compress-then-eliminate” step for the remaining block
rows/columns corresponding to each of the remaining regions in (4.1). The resulting
Schur complement is a block matrix, where off-diagonal blocks remain sub-matrices
in A. To be precise, suppose the indices of every block row/column are split into a
redundant subset ri and a skeleton subset si for i = 1, 2, . . . , M̃ , then there exists a
permutation matrix Q such that
(4.9)

Q>(R>
M̃
. . . R>2 R

>
1 AR1R2 . . . RM̃)Q ≈

I

Bs1s1 As1s2 . . . As1sM̃
As2s1 Bs2s2 . . . As2sM̃

...
...

...
AsM̃s1 AsM̃s2 . . . BsM̃sM̃

 ,

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 17

(a) DOFs at the first level. (b) DOFs at the second/last level.

Fig. 8: Illustration of applying the RS to a subproblem in the CBD preconditioner
(N = 322, M = 42, and ε = 10−6 in ID).

where the first diagonal block has size
∑
ri, and every Bsisi is computed analogously

to (4.8). Figure 8 shows a pictorial illustration of the row/column indices in the
original subproblem Ai and the Schur complement in (4.9).

To continue factorizing the Schur complement (approximately), we need a coarse
partitioning of the domain Ωi. It can be obtained by merging spatially close regions
in (4.1). With a coarse overlapping domain, we repeat the above process recursively
until only one coarse partition remains. As the last step, we factorize the remaining
Schur complement with Cholesky factorization directly. In practice, we compute a
hierarchical partitioning of the problem domain Ω, where the decomposition (4.1) is
at the first level and the last Schur complement factorized with Cholesky factorization
is at the last level. For convenience, we make the following definition:

Definition 4.3. The degrees of freedom (DOFs) at every level in a hierarchical
partitioning of the problem domain Ω are the discretization points that have not been
processed in the RS algorithm. In particular, we have

• DOFs at the first level: discretization points corresponding to A in (4.2);
• DOFs at the second level: discretization points corresponding to the Schur

complement in (4.9);
• DOFs at the last level: discretization points corresponding to the last Schur

complement factorized with Cholesky factorization.

Assume in (4.3) the numerical rank |si| ≡ k is a constant for all i. The number
of DOFs at the second level is

(4.10)

M̃∑
i=1

si = kM̃,

which immediately leads to the following:

Theorem 4.4. In the CBD preconditioner, the number of DOFs at the second
level is O(M), independent of the original problem size N .

Recall that M = DM̃ = 2dM̃ is the number of partitions of the entire domain Ω.
Here, we do not require M = O(N) as in Section 3. In fact, we show how to choose
M to achieve optimal asymptotic scaling in Section 4.4.

4.3. Comparison to the original RS factorization. The original RS factor-
ization was applied to matrix A in (1.2) directly, as other FDS’s are typically used.

This manuscript is for review purposes only.

18 C. CHEN, AND G. BIROS

(a) DOFs at the first level. (b) DOFs at the second level. (c) DOFs at the last level.

Fig. 9: Illustration of applying RS to A (N = 322, M = 42, and ε = 10−6 in ID).

To that end, the algorithm described in Section 4.2 remains the same except that
we replace (4.1) with a partitioning (non-overlapping decomposition) of the entire
problem domain as follows

(4.11) Ω = ∪Mi=1Pi, Pi ∩ Pj = ∅, if i 6= j.

In particular, we view matrix A as a block matrix as in (4.2), where p and q correspond
to P1 and ∪Mi=2Pi, respectively. Then, we compute the ID of Aqp as in (4.3). Since P1

is spatially adjacent to ∪Mi=2Pi, we know the following according to Green’s theorem:

(4.12) k = O
(

(N/M)(d−1)/d
)
.

With a uniform partitioning, P1 contains N/M discretization points, and the numer-
ical rank k scales as the perimeter or the surface area of P1 in 2D or 3D, respectively.
Compare (4.12) to the numerical rank in (4.5) corresponding to applying the RS to a
subproblem Ai in the CBD preconditioner.

After Aqp is compressed, we follow (4.6) and (4.7), and we repeat the “compress-
then-eliminate” step for each of the remaining block rows/columns and obtain the
Schur complement as in (4.9). Assuming the numerical rank k is a constant for all
blocks, the resulting Schur complement has size kM . To factorize the Schur comple-
ment, we construct a coarse partitioning of Ω by merging adjacent partitions in (4.11)
and recurse until a single partition is left. Finally, we apply Cholesky factorization
to the last Schur complement directly. Figure 9 shows a pictorial illustration of the
entire algorithm.

Let S be the number of DOFs at the last level, and we have the following [20]:

(4.13) S = O
(
N (d−1)/d

)
.

Since work required to factorize the last Schur complement typically dominates that
of the RS algorithm, we have the following [20]:

Theorem 4.5. The construction cost of applying the RS algorithm to A in (1.2)
is

tf = O
(
N3(d−1)/d

)
for d = 2, 3, and storing/applying the approximate factorization requires

mf = ta =

{
O (N logN) , d = 2,
O
(
N4/3

)
, d = 3.

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 19

Table 4: Comparison between the original RS factorization [20] (applied to A di-
rectly) and the CBD preconditioner (employing RS for every subproblem Ai). Results
of RS are from (4.12), (4.13), and Theorem 4.5. Results of CBD are from (4.5),
Theorems 4.6 and 4.7. The problem dimension d = 2 or 3.

RS CBD

Off-diagonal rank at first level O
(

(N/M)
d−1
d

)
O(1)

DOFs at last level O
(
N

d−1
d

)
O
(
M

d−1
d

)
Construction cost CN

3(d−1)
d C̃

22d−3N
3(d−1)

d

Next, we derive results analogous to (4.13) and Theorem 4.5 for the CBD pre-
conditioner. According to Theorem 4.4, the number of DOFs at the second level is
O(M) in the CBD preconditioner. The DOFs corresponds to the Schur complement
in (4.9), to which we apply the RS algorithm recursively. If we apply (4.13) to the
Schur complement of size O(M), it is easy to see the following:

Theorem 4.6. In the CBD preconditioner, the number of DOFs at the last level
is (upper bounded by)

S = O
(
M (d−1)/d

)
.

To construct the CBD preconditioner, we apply the RS algorithm to every subproblem
Ai for i = 1, 2, . . . , 2d. In general, suppose we have an FDS with CNα construction
cost, where C is a constant. Then, we immediately have

Theorem 4.7. The construction cost of the CBD preconditioner is

2d · C̃
(
N

2d

)α
=

C̃

C · 2(α−1)d
CNα < CNα,

where d = 2 or 3, C̃ < C, and α > 1. In particular, α = 3(d − 1)/d for the RS
factorization.

Here, the fact that C̃ < C comes from the decrease of off-diagonal rank from (4.12)
to (4.5). To summarize, Table 4 shows the key differences between the original RS
algorithm and the CBD preconditioner.

Remark 4.8. We can fix D = 2d and employ an FDS as the subdomain solver
in the Schwarz preconditioner. Following the analysis above, it is obvious that the
associated construct cost is CNα/2(α−1)d. In other words, the cost is higher by at
least a factor of C/C̃ than that of the CBD preconditioner.

4.4. Asymptotically faster algorithm. Unlike that in the RS method, the
number of DOFs at the last level in the CBD preconditioner depends on only the
number of partitions M according to Theorem 4.6. In this section, we show that the
construction of the CBD preconditioner can be asymptotically accelerated if we scale
M sublinearly to the problem size N .

Let us revisit the construction of the CBD preconditioner. In particular, we de-
compose the factorization cost into two terms: one for the first level and the other
for all remaining levels. As previously mentioned, we apply the “compress-then-
eliminate” step for O(M) times at the first level, where computing an ID and the

This manuscript is for review purposes only.

20 C. CHEN, AND G. BIROS

subsequent elimination both require O
(
(N/M)3

)
. If we plug in the asymptotic com-

plexities of the RS in Theorem 4.5 for the O(M) DOFs at the second level, we obtain
the following:

Theorem 4.9. Suppose we apply the RS solver to every subdomain in the CBD
preconditioner. Define P ≡ O(N/M). The following complexities holds:
(4.14)

tf = O
(
P 3M +M3(d−1)/d

)
, mf = ta =

{
O
(
P 2M +M logM

)
, d = 2

O
(
P 2M +M4/3

)
, d = 3

We note that the number of partitions M is a parameter in (4.14), so we can optimize
the complexities to obtain asymptotically more efficient methods than the RS solver
as the following corollary shows:

Corollary 4.10. In 2D, let M = O(N6/7), and we have

tf = O
(
N9/7

)
, mf = ta = O

(
N8/7

)
.

In 3D, let M = O(N3/4), and we have

tf = O
(
N3/2

)
, mf = ta = O

(
N5/4

)
,

Similarly, we can optimize the memory mf (or equivalently ta) in (4.14) with respect
to M . In general, suppose we have an FDS of work complexity O(Nα). Corollary 4.10
can be generalized to the following:

Theorem 4.11. Suppose we have an FDS with construction cost O(Nα) when
applied to A in (1.2). The optimal complexity to construct the CBD preconditioner
employing the FDS as a subdomain solver is

min
M
O
(
P 3M +Mα

)
= O

(
N3α/(2+α)

)
< O (Nα) ,

where the minimum is obtained when M = N3/(α+2).

5. Numerical results. In this section, we benchmark the CBD preconditioner
and compare it to the RS factorization [20] on problems in 2D and in 3D. Recall the
problem and the domain decompositions in Section 2. The RS solver was applied to
solve the global problem (1.2) directly, while the CBD preconditioner employed the RS
solver for every subdomain (4 and 8 subdomains in 2D and in 3D, respectively). We
fixed ε = 1e−3 in (4.4) as the relative accuracy of low-rank approximations computed
with the ID1. We used the PCG to solve (1.2), where the matrix-vector (matvec)
product with A was carried out via the fast Fourier transform (FFT). In the general
case where the discretization grid is non-uniform, the FMM could be used for fast
matvec. Below are the notations we used to report results of our experiments (timing
and storage are in seconds and in GB, respectively):

• N : problem size/matrix size/number of discretization points;
• M = O(N): number of partitions of the problem domain in (2.7);
• S: number of DOFs at the last level in the RS solver and that associated

with one subproblem in the CBD preconditioner (2d subproblems in total);

1The radius of the proxy surface used to accelerate the computation of an ID was set to 1.5 as
suggested in [20].

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 21

• tf : time of factorization to construct a preconditioner;
• mf : storage of a preconditioner;
• ts: time of applying a preconditioner;
• tpcg: total PCG time for solving (1.2) (excluding tf);
• nit: number of PCG iterations to reach a relative residual of 10−12.

All experiments were performed with MATLAB® R2020a on an Intel Xeon Plat-
inum 8280M2 (“Cascade Lake”) that has 2.1 TB of memory and 112 cores on four
sockets (28 cores/socket). Results in Section 5.2 corresponding to solving problems in
2D were obtained using one thread, since intermediate matrices are relatively small
that associated computation benefits little from multithreading. Results in Section 5.3
corresponding to solving problems in 3D were obtained using the default multithread-
ing in MATLAB, where the maximum number of computational threads equals to the
number of physical cores.

In Section 5.1, we show the convergence of the näıve CBD preconditioner, where
subproblems are solved exactly (with round-off errors) without low-rank compression.
In Sections 5.2 and 5.3, we show the practical performance of the CBD preconditioner
described in Section 4.

5.1. Näıve CBD preconditioner. We benchmarked the number of PCG it-
erations required by the näıve CBD preconditioner, where subproblems were factor-
ized exactly (with round-off errors) using Cholesky factorization rather than the RS
method. For comparison, we fixed the number of subdomains D = 2d in the Jacobi
preconditioner and the Schwarz preconditioner to be the same as in the CBD pre-
conditioner. Recall that the domain decomposition associated with the block Jacobi
preconditioner is non-overlapping but those with the other two preconditioners are
overlapping. As Table 5 shows, the number of PCG iterations was almost constant
with the two preconditioners based on overlapping domain decompositions. By con-
trast, the Jacobi preconditioner led to increasing PCG iterations as the problem size
increased.

In addition, the number of PCG iterations required by the Schwarz method and
the näıve CBD preconditioner were almost the same. For the (practical) CBD pre-
conditioner, we apply the RS method leveraging low-rank compression to every sub-
problem, which leads to efficient running time and slightly higher PCG iterations. As
Remark 4.8 mentioned, we can also apply the RS method to speedup the Schwarz
preconditioner, but it will not be as efficient as the (practical) CBD preconditioner.

5.2. Two dimensions. Tables 6a and 6b show results of experiments with a
fixed problem size but different numbers of partitions. Observe that S, the number of
DOFs at the last level, is almost a constant for the RS method (see (4.13)), whereas
S = O(M1/2) for the CBD preconditioner (Theorem 4.6). Notice that S, a deciding
factor of the computational efficiency of both methods, is much smaller with the CBD
preconditioner.

Results in Tables 6a and 6b also indicate appropriate M for the two methods. In
Table 6a, results are similar between M = 322 and M = 642; so we chose N/M = 64
in the RS solver for large problem sizes as done in [20,25]. In Table 6b, M = 322 led
to half of the factorization time and the memory footprint than M = 162; so we also
chose N/M = 64 in the CBD preconditioner as well.

Table 7a shows results for solving large problem sizes with the RS method, where
the factorization time was always an order of magnitude larger than the PCG time.

2https://frontera-portal.tacc.utexas.edu/user-guide/system/#large-memory-nodes

This manuscript is for review purposes only.

https://frontera-portal.tacc.utexas.edu/user-guide/system/#large-memory-nodes

22 C. CHEN, AND G. BIROS

Table 5: Number of PCG iterations nit with the Jacobi preconditioner, the Schwarz
preconditioner and the CBD preconditioner (without low-rank compression) in 2D
(left) and in 3D (right). The number of partitions M = D = 2d is fixed for the
block Jacobi and the Schwarz preconditioners. For the CBD preconditioner, we used
M = N/16 and M = N/8 in 2D and in 3D, respectively.

N D Jacobi Schwarz CBD

162 4 34 18 18
322 4 50 19 19
642 4 72 19 20
1282 4 102 20 20

N D Jacobi Schwarz CBD

83 8 33 26 27
163 8 50 27 27
323 8 72 29 29

Table 6: 2D results, where the problem size N is fixed and the number of non-
overlapping partitions M varies. The matrix is defined in (2.4).

N M S tf mf ts nit tpcg

2562 82 1048 1.21e+2 3.50e−1 2.94e−1 6 3.22
2562 162 1043 1.43e+1 1.37e−1 1.20e−1 7 1.17
2562 322 1048 7.68 8.73e−2 1.30e−1 6 1.07
2562 642 1048 8.62 7.98e−2 3.04e−1 6 2.19
2562 1282 1047 1.20e+1 7.98e−2 9.40e−1 6 5.94

(a) RS preconditioner based on the domain partitioning (2.7).

N M S tf mf ts nit tpcg

2562 82 64 4.76 3.39e−1 1.73e−1 26 5.71
2562 162 114 2.08 1.13e−1 8.18e−2 26 3.10
2562 322 213 1.84 5.53e−2 1.07e−1 24 3.76
2562 642 407 5.20 6.86e−2 3.27e−1 22 8.47

(b) CBD preconditioner based on the overlapping domain decomposition (2.10) (four subdo-
mains).

Due to an increasing condition number of the discretized integral operator defined
in (2.4), we observe that S increased slower than the predicted O(N1/2) scaling;
the factorization time tf scaled slower than the predicted O(N3/2) scaling, and the
number of PCG iterations nit increased. (This phenomenon is known in [20]; see
Table 5.3, 3rd row when ε = 1e−3.) The expected behaviors such as S = O(N1/2)
can be obtained by employing larger ranks in (4.3) through either decreasing ε in
(4.4) or reducing the radius of the proxy surface. Both require extra computation and
would lead to longer factorization time.

To compare with the RS solver, Table 7b shows corresponding results of the CBD
preconditioner: (1) The number of DOFs at the last level S (for one subproblem) was
much smaller. As a consequence, the factorization time tf of the CBD preconditioner
was an order of magnitude smaller. (2) the storage mf of the CBD preconditioner
was approximately half of that required by the RS solver. On a computer with 2.1

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 23

Table 7: 2D results, where the problem size per partition, i.e., N/M , is fixed. The
matrix is defined in (2.4).

N M S tf mf ts nit tpcg

5122 642 2072 5.64e+1 4.25e−1 4.42e−1 7 4.22
10242 1282 4112 4.57e+2 2.01 1.84 8 2.01e+1
20482 2562 5713 1.67e+3 7.32 7.40 15 1.34e+2
40962 5122 8897 8.05e+3 2.88e+1 3.17e+1 19 8.22e+2
81922 10242 15303 3.88e+4 1.05e+2 1.51e+2 27 5.44e+3
163842 - - - - - - -

(a) RS preconditioner based on the domain partitioning (2.7).

N M S tf mf ts nit tpcg

5122 642 338 8.94 2.27e−1 4.37e−1 24 1.41e+1
10242 1282 568 3.55e+1 9.09e−1 1.77 25 5.97e+1
20482 2562 1052 1.56e+2 3.64 7.34 25 2.31e+2
40962 5122 2066 7.99e+2 1.48e+1 3.58e+1 25∗ 1.27e+3
81922 10242 4109 3.91e+3 5.92e+1 1.80e+2 31∗ 7.52e+3
163842 20482 6759 2.03e+4 2.37e+2 8.94e+2 28∗ 3.49e+4

(b) CBD preconditioner based on the overlapping domain decomposition (2.10) (four sub-
domains). ∗PCG stagnated at relative residuals 1.13e−12, 1.71e−12, and 3.99e−12, respec-
tively.

TB memory, the CBD preconditioner could be used to solve problems as large as
N = 16 3842 ≈ 2.7 × 108, for which the RS solver ran out of memory. (3) The CBD
preconditioner required more iterations than the RS solver. Overall, the total running
time of the CBD preconditioner was approximately a quarter of that taken by the RS
solver.

In the CBD preconditioner, S, the number of DOFs at the last level, increased as
O(N1/2) until N reached 163842, indicating that the ill-conditioning effect associated
with the RS solver was mitigated. However, ill-conditioning still affected the conver-
gence of the CBD preconditioner, preventing the PCG from reaching the relative resid-
ual 1e−12 when N ≥ 40962. For environments where many right-hand sides need to
be solved, the break-even point of the two preconditioners is (tRS

f −tCBD
f)/(tCBD

pcg −tRS
pcg),

which evaluates to be about 16 for N = 81922 in Table 7.

5.3. Three dimensions. We first show results of experiments with a fixed prob-
lem size but different numbers of partitions in Tables 8a and 8b. Again, we observe
results predicted by (4.13) and Theorem 4.6: S depended on M but not on N in the
CBD preconditioner, whereas S was independent of M in the RS method. To solve
large problems, we chose N/M = 83 = 512 for both methods. Notice that this choice
for the RS method is different from that in [20] because we used multithreading, which
handled large matrices efficiently.

Table 9a shows results of the RS solver for large problem sizes, where the fac-
torization time was at least two orders of magnitude longer than the PCG time.

This manuscript is for review purposes only.

24 C. CHEN, AND G. BIROS

Table 8: 3D results, where the problem size N is fixed and the number of non-
overlapping partitions M varies. The matrix is defined in (2.5).

N M S tf mf ts nit tpcg

323 43 5987 1.33e+1 3.97e−1 1.54e−1 5 8.55e−1
323 83 5982 1.60e+1 3.77e−1 1.92e−1 5 1.04
323 163 5990 1.83e+1 3.78e−1 3.65e−1 5 1.91

(a) RS preconditioner based on the domain partitioning (2.7).

N M S tf mf ts nit tpcg

323 43 527 3.45 2.24e−1 1.22e−1 33 4.83
323 83 1358 1.01e+1 2.91e−1 1.53e−1 32 5.19
323 163 4120 6.17e+1 1.65 1.02 28 2.88e+1

(b) CBD preconditioner based on the overlapping domain decomposition (2.10) (eight subdo-
mains).

Observe that the numerical results basically match what (4.13) and Theorem 4.5 pre-
dict: S = O(N2/3), tf = O(N2), and mf = ts = O(N4/3). In addition, the number
of PCG iterations was almost constant. It is also clear that the factorization time is
prohibitive for a large problem size.

To compare with the RS solver, Table 9b shows results of the CBD precondi-
tioner, where S, the number of DOFs at the last level (for one subproblem), was at
least an order of magnitude smaller. As a result, the CBD preconditioner required
much less factorization time and storage. For example, compare the RS method to the
CBD preconditioner for N = 1283: (1) the factorization time of the CBD precondi-
tioner was approximately 50× smaller; (2) the storage of the CBD preconditioner was
approximately 7× smaller; and (3) both methods required approximately the same
PCG time (CBD took more iterations but every iteration was faster). Empirically,
the factorization time and the storage of the CBD preconditioner both scaled closely
to O(N). This indicates that the estimates in Theorems 4.6 and 4.7 may be too
pessimistic.

For environments where many right-hand sides need to be solved, the break-even
point of the two preconditioners is (tRS

f − tCBD
f)/(tCBD

pcg − tRS
pcg), which evaluates to be

about 13 for N = 643 and 2500 for N = 1283 in Table 9.

Remark 5.1 (Interface size). It seem intuitive that the smallest eigenvalue will
increase when the interface size becomes larger. Numerical experiments on our regular
problems support this; see Table 10. However, the benefit of using large interface
size, which leads to smaller number of iterations, is usually tiny compared to the
extra computational cost for constructing the preconditioner. For results of our new
preconditioner reported in the paper, the interface size is d = 1, i.e., every extended
partition contains only one extra layer of grid points (see Figure 3b). In practice, this
choice outperforms larger values of d, especially for 3D problems. The reason is that
the computation of the ID decomposition in (4.3), a significant portion of the total
running time, increases rapidly with d, whereas the reduction of iteration numbers is

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 25

Table 9: 3D results, where the problem size per partition, i.e., N/M , is fixed. The
matrix is defined in (2.5).

N M S tf mf ts nit tpcg

323 43 5987 1.33e+1 3.97e−1 1.54e−1 5 8.55e−1
643 83 24081 4.32e+2 7.60 2.57 6 1.60e+1
1283 163 97073 1.28e+4 1.40e+2 5.63e+1 7 3.99e+2
2563 - - - - - - -

(a) RS preconditioner based on the domain partitioning (2.7).

N M S tf mf ts nit tpcg

323 43 527 3.31 2.24e−1 1.23e−1 33 4.44
643 83 1205 2.68e+1 2.15 1.25 35 4.54e+1
1283 163 3560 2.60e+2 1.92e+1 1.13e+1 35 4.04e+2
2563 323 10915 2.62e+3 1.65e+2 1.90e+2 35 6.77e+3

(b) CBD preconditioner based on the overlapping domain decomposition (2.10) (eight subdo-
mains).

Table 10: Interface size d and the smallest eigenvalue λmin of the preconditioned
matrix in 2D and in 3D.

N = 642, D = 42 N = 323, D = 43

d λmin d λmin

1 0.8685 1 0.9094
2 0.9045 2 0.9624
3 0.9183 3 0.9855

very small.

6. Conclusions. We introduce the CBD for constructing an overlapping do-
main decomposition, where the number of subdomains is independent of the problem
size, and every subdomain consists of spatially distant regions. The associated CBD
(single-level additive Schwarz) preconditioner led to O(1) PCG iterations for solving
SPD linear systems, which arises from the discretization of first-kind Fredholm inte-
gral equations for Laplace’s equation in 2D and 3D. We apply the RS factorization to
construct the CBD preconditioner efficiently, and our numerical results show that the
new preconditioner is much more efficient than the original RS method, especially for
solving problems in 3D. Two future research directions include

• Incorporating other FDSs for subproblems in the CBD preconditioner. Some
candidates include the HIF [20], the RS-S [25, 31], and the IFMM [1, 12, 32],
all of which have been shown to achieve quasi-linear complexities (under mild
assumptions) for solving problems in both 2D and 3D.

• Extending our approach to solving SPD linear systems arising from machine
learning and data science, where the coefficient matrix (a.k.a., kernel matrix)

This manuscript is for review purposes only.

26 C. CHEN, AND G. BIROS

Table 11: Schwarz preconditioner in 2D: N/M fixed. The matrix is defined in (2.4).
(Compare to Table 7.) ∗PCG stagnated at relative residuals 1.31e−12 and 1.47e−12,
respectively.

N M tf mf ts nit tpcg

5122 162 9.53 1.35 6.18e−1 46 4.14e+1
10242 322 3.53e+1 5.43 3.86 71 3.33e+2
20482 642 1.41e+2 2.18e+1 1.81e+1 119∗ 2.40e+3
40962 1282 5.63e+2 8.74e+1 7.72e+1 212∗ 1.89e+4

Table 12: Schwarz preconditioner in 3D: N/M fixed. The matrix is defined in (2.5).
(Compare to Table 9.)

N M tf mf ts nit tpcg

323 43 1.03 1.90e−1 8.99e−2 39 4.22
643 83 8.98 1.77 8.50e−1 52 5.72e+1
1283 163 7.76e+1 1.52e+1 8.79 82 8.84e+2
2563 323 7.48e+2 1.26e+2 1.36e+2 156 2.62e+4

is generated by positive definite functions [35]. When the underlying data set
lies in a low-dimensional space [34] or even in a high-dimensional space for
some applications [9], the coefficient matrix also has the hierarchical low-rank
structure we exploit.

Appendix A. Proof of Theorem 3.7.

Proof. Write T−1
JacobiA = P1 + P2, where Pi is defined in (3.4). Rewrite (3.7) as

(P1 + P2)(x1 + x2) = λ(x1 + x2)

Lemma 3.5−→ P1x2 + P2x1 = (λ− 1)(x1 + x2).

Applying projections R1R
>
1 and R2R

>
2 on both sides, we obatin

(A.1)

{
P1x2 = (λ− 1)x1,
P2x1 = (λ− 1)x2.

Therefore, we know that

(P1 + P2)(x1 − x2)
Lemma 3.5

= (x1 − x2) + P2x1 − P1x2

(A.1)
= (x1 − x2)− (1− λ)x2 + (1− λ)x1

= (2− λ)(x1 − x2).

Appendix B. Numerical results for Schwarz preconditioner.
In this section, we show numerical results for the Schwarz preconditioner, where

the number of partitions M = O(N). In Tables 11 and 12, we chose N/M = 322

and N/M = 83, respectively, which empirically led to best performance. In this case,
the factorization time tf , the storage mf , and the application time of the Schwarz

This manuscript is for review purposes only.

DD PRECONDITIONER FOR IE 27

preconditioner ts all scaled approximately as O(N). However, the number of PCG
iterations nit increased rapidly as the problem size increased. As a result, the overall
running time of the Schwarz preconditioner exceeded that taken by the CBD precon-
ditioner for large problems: N ≥ 20482 in 2D or N ≥ 1283 in 3D (see running time
of the CBD preconditioner in Tables 7 and 9).

REFERENCES

[1] S. Ambikasaran and E. Darve, The inverse fast multipole method, arXiv preprint
arXiv:1407.1572, (2014).

[2] A. Aminfar, S. Ambikasaran, and E. Darve, A fast block low-rank dense solver with appli-
cations to finite-element matrices, Journal of Computational Physics, 304 (2016), pp. 170–
188.

[3] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. Part II: Reducibility,
Illinois Journal of Mathematics, 21 (1977), pp. 491–567.

[4] C. Borges and G. Biros, A domain decomposition preconditioning for the integral equation
formulation of the inverse scattering problem, arXiv preprint arXiv:1901.09162, (2019).

[5] T. F. Chan, T. P. Mathew, et al., Domain decomposition algorithms, Acta numerica, 3
(1994), pp. 61–143.

[6] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver for HSS
representations via sparse matrices, SIAM Journal on Matrix Analysis and Applications,
29 (2007), pp. 67–81.

[7] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM Journal on Matrix Analysis and Applications, 28
(2006), pp. 603–622.

[8] C. Chen, S. Aubry, T. Oppelstrup, A. Arsenlis, and E. Darve, Fast algorithms for evalu-
ating the stress field of dislocation lines in anisotropic elastic media, Modelling and Sim-
ulation in Materials Science and Engineering, 26 (2018), p. 045007.

[9] C. Chen, S. Reiz, C. D. Yu, H.-J. Bungartz, and G. Biros, Fast approximation of the
Gauss–Newton Hessian matrix for the multilayer perceptron, SIAM Journal on Matrix
Analysis and Applications, 42 (2021), pp. 165–184.

[10] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin, On the compression of low
rank matrices, SIAM Journal on Scientific Computing, 26 (2005), pp. 1389–1404.

[11] E. Corona, P.-G. Martinsson, and D. Zorin, An O(N) direct solver for integral equations
on the plane, Applied and Computational Harmonic Analysis, 38 (2015), pp. 284–317.

[12] P. Coulier, H. Pouransari, and E. Darve, The inverse fast multipole method: using a fast
approximate direct solver as a preconditioner for dense linear systems, SIAM Journal on
Scientific Computing, 39 (2017), pp. A761–A796.

[13] V. Dolean, P. Jolivet, and F. Nataf, An introduction to domain decomposition methods:
algorithms, theory, and parallel implementation, SIAM, 2015.

[14] W. Fong and E. Darve, The black-box fast multipole method, Journal of Computational
Physics, 228 (2009), pp. 8712–8725.

[15] A. Gillman, P. M. Young, and P.-G. Martinsson, A direct solver with O(N) complexity
for integral equations on one-dimensional domains, Frontiers of Mathematics in China, 7
(2012), pp. 217–247.

[16] L. Greengard, D. Gueyffier, P.-G. Martinsson, and V. Rokhlin, Fast direct solvers for in-
tegral equations in complex three-dimensional domains, Acta Numerica, 18 (2009), pp. 243–
275.

[17] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of compu-
tational physics, 73 (1987), pp. 325–348.

[18] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace
equation in three dimensions., tech. report, YALE UNIV NEW HAVEN CT DEPT OF
COMPUTER SCIENCE, 1996.

[19] K. L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive
skeletonization, SIAM Journal on Scientific Computing, 34 (2012), pp. A2507–A2532.

[20] K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: integral
equations, Comm. Pure Appl. Math, 69 (2016), pp. 1314–1353.

[21] D. Malhotra and G. Biros, PVFMM: A parallel kernel independent fMM for particle and
volume potentials, Communications in Computational Physics, 18 (2015), pp. 808–830.

[22] P.-G. Martinsson, Fast direct solvers for elliptic PDEs, SIAM, 2019.

This manuscript is for review purposes only.

28 C. CHEN, AND G. BIROS

[23] P.-G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, Journal of Computational Physics, 205 (2005), pp. 1–23.

[24] P.-G. Martinsson and V. Rokhlin, An accelerated kernel-independent fast multipole method
in one dimension, SIAM Journal on Scientific Computing, 29 (2007), pp. 1160–1178.

[25] V. Minden, K. L. Ho, A. Damle, and L. Ying, A recursive skeletonization factorization based
on strong admissibility, Multiscale Modeling & Simulation, 15 (2017), pp. 768–796.

[26] P. Mund, E. P. Stephan, and J. Weiße, Two-level methods for the single layer potential in
R3, Computing, 60 (1998), pp. 243–266.

[27] K. Nabors, S. Kim, and J. White, Fast capacitance extraction of general three-dimensional
structures, IEEE transactions on microwave theory and techniques, 40 (1992), pp. 1496–
1506.

[28] K. Nabors, F. Korsmeyer, F. T. Leighton, and J. White, Preconditioned, adaptive,
multipole-accelerated iterative methods for three-dimensional first-kind integral equations
of potential theory, SIAM Journal on Scientific Computing, 15 (1994), pp. 713–735.

[29] B. Quaife and G. Biros, On preconditioners for the Laplace double-layer in 2D, Numerical
Linear Algebra with Applications, 22 (2015), pp. 101–122.

[30] J. R. Shewchuk et al., An introduction to the conjugate gradient method without the agonizing
pain, 1994.

[31] D. Sushnikova, L. Greengard, M. O’Neil, and M. Rachh, Fmm-lu: A fast direct
solver for multiscale boundary integral equations in three dimensions, arXiv preprint
arXiv:2201.07325, (2022).

[32] T. Takahashi, C. Chen, and E. Darve, Parallelization of the inverse fast multipole method
with an application to boundary element method, Computer Physics Communications, 247
(2020), p. 106975.

[33] T. Tran, Overlapping additive Schwarz preconditioners for boundary element methods, The
Journal of Integral Equations and Applications, (2000), pp. 177–207.

[34] R. Wang, C. Chen, J. Lee, and E. Darve, PBBFMM3D: a parallel black-box algorithm for
kernel matrix-vector multiplication, Journal of Parallel and Distributed Computing, 154
(2021), pp. 64–73.

[35] H. Wendland, Scattered data approximation, vol. 17, Cambridge university press, 2004.
[36] J. Xia, Robust and effective eSIF preconditioning for general SPD matrices, arXiv preprint

arXiv:2007.03729, (2020).
[37] J. Xia, Multi-layer hierarchical structures, CSIAM Transaction of Applied Mathematics, 2

(2021), pp. 263–296.
[38] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-

arable matrices, Numerical Linear Algebra with Applications, 17 (2010), pp. 953–976.
[39] X. Xing and E. Chow, Preserving positive definiteness in hierarchically semiseparable matrix

approximations, SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 829–
855.

[40] X. Xing, H. Huang, and E. Chow, Efficient construction of an HSS preconditioner for sym-
metric positive definite H2 matrices, SIAM Journal on Matrix Analysis and Applications,
42 (2021), pp. 683–707.

[41] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm in
two and three dimensions, Journal of Computational Physics, 196 (2004), pp. 591–626.

This manuscript is for review purposes only.

	1 Introduction
	1.1 Previous work
	1.2 Contributions
	1.3 Outline and notations

	2 Model problem and domain decomposition
	2.1 IE for Laplace's equation
	2.2 Overlapping domain decomposition
	2.3 Coloring-based decomposition

	3 Schwarz preconditioner
	3.1 Maximum and minimum eigenvalues
	3.2 Analysis for D=2d

	4 Coloring-based decomposition (CBD) and preconditioner
	4.1 Spectral equivalence
	4.2 Recursive skeletonization (RS) as subdomain solver
	4.3 Comparison to the original RS factorization
	4.4 Asymptotically faster algorithm

	5 Numerical results
	5.1 Naïve CBD preconditioner
	5.2 Two dimensions
	5.3 Three dimensions

	6 Conclusions
	Appendix A. Proof of th:jacobi
	Appendix B. Numerical results for Schwarz preconditioner
	References

