Distribution of distances in five dimensions and related problems

François Clément* Thang Pham ${ }^{\dagger}$

Abstract

In this paper, we study the Erdős-Falconer distance problem in five dimensions for sets of Cartesian product structures. More precisely, we show that for $A \subset \mathbb{F}_{p}$ with $|A| \gg p^{\frac{13}{22}}$, then $\Delta\left(A^{5}\right)=\mathbb{F}_{p}$. When $|A-A| \sim|A|$, we obtain stronger statements as follows: 1. if $|A| \gg p^{\frac{13}{22}}$, then $(A-A)^{2}+A^{2}+A^{2}+A^{2}+A^{2}=\mathbb{F}_{p}$. 2. if $|A| \gg p^{\frac{4}{7}}$, then $(A-A)^{2}+(A-A)^{2}+A^{2}+A^{2}+A^{2}+A^{2}=\mathbb{F}_{p}$.

We also prove that if $p^{4 / 7} \ll|A-A|=K|A| \leq p^{5 / 8}$, then $$
\left|A^{2}+A^{2}\right| \gg \min \left\{\frac{p}{K^{4}}, \frac{|A|^{8 / 3}}{K^{7 / 3} p^{2 / 3}}\right\} .
$$

As a consequence, $\left|A^{2}+A^{2}\right| \gg p$ when $|A| \gg p^{5 / 8}$ and $K \sim 1$, where $A^{2}=\left\{x^{2}: x \in A\right\}$.

1 Introduction

Let $q=p^{n}$ be an odd prime power, and \mathbb{F}_{q} be the finite field of order q. For any two points $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$ in \mathbb{F}_{q}^{d}, the algebraic distance between them is defined by the formula:

$$
\|x-y\|=\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{d}-y_{d}\right)^{2} .
$$

Let E be a set in \mathbb{F}_{q}^{d}, we denote the set of distances determined by pairs of points in E by $\Delta(E)$. The Erdős-Falconer distance problem asks for the smallest number $\alpha>0$ such that for any $E \subset \mathbb{F}_{q}^{d}$ with $|E| \gg q^{\alpha}$, we have $\Delta(E)=\mathbb{F}_{q}$, or $|\Delta(E)| \gg q$.

We use the following notations in this paper: we write $X \ll Y$ if there exists an absolute constant $K>0$ such that $X \leq K Y, X \sim Y$ if $X \ll Y$ and $Y \ll X$, and $X \gtrsim Y$ if there exists an absolute constant $K^{\prime}>0$ such that $X \gg(\log (Y))^{-K^{\prime}} Y$.

Iosevich and Rudnev [4] proved that for any dimension d we have $\alpha \leq \frac{d+1}{2}$ by using discrete Fourier analysis. Hart, Iosevich, Koh, and Rudnev [2] showed that, in general over arbitrary finite fields, the exponent $\frac{d+1}{2}$ is optimal in odd dimensions. It is conjectured in even dimensions that $\alpha=\frac{d}{2}$. In a recent paper, Murphy, Petridis, Pham, Rudnev, and Stevens [10] established that for

[^0]any $E \subset \mathbb{F}_{p}^{2}$, if $|E| \gg p^{5 / 4}$, then $|\Delta(E)| \gg p$. This improves the 10 -year-old exponent $\frac{4}{3}$ given by Chapman, Erdogan, Hart, Iosevich and Koh in [1] over arbitrary finite fields.

Using Rudnev's point-plane incidence bound [13], Pham and Vinh [12] proved that when E is of Cartesian product structures, then, to cover all possible distances, the exponent $\frac{d+1}{2}$ can be improved. More precisely, they obtained the following theorem.
Theorem 1.1 ([12]). Let $E=A^{d} \subset \mathbb{F}_{p}^{d}$. Suppose that $d \geq 6$, then there exist $\epsilon_{d}=\frac{\frac{3 \cdot 2}{} \frac{d-5}{2}-\left(\frac{d+1}{2}\right)}{3 \cdot 2^{\frac{d-3}{2}}-1}$ for d odd, and $\epsilon_{d}=\frac{2^{\frac{d}{2}-d-1}}{2^{\frac{d}{2}+1}-2}$ for d even, such that if $\left|A^{d}\right|=|A|^{d} \gtrsim p^{\frac{d+1}{2}-\epsilon_{d}}$, then $\Delta\left(A^{d}\right)=\mathbb{F}_{p}$.
Corollary 1.2 ([12]). For $A \subset \mathbb{F}_{p}$ with $|A| \gtrsim p^{4 / 7}$, we have $\Delta\left(A^{6}\right)=\mathbb{F}_{p}$.
In the first theorem of this paper, we show that the exponent $\frac{d+1}{2}$ can also be improved in five dimensions.

Theorem 1.3. For $A \subset \mathbb{F}_{p}$ with $|A| \gg p^{13 / 22}$, then we have

$$
\Delta\left(A^{5}\right)=(A-A)^{2}+(A-A)^{2}+(A-A)^{2}+(A-A)^{2}+(A-A)^{2}=\mathbb{F}_{p} .
$$

We remark here that this theorem is the finite field analogue of a recent result on the Falconer distance problem in the continuous setting by Koh, Pham, and Shen in [7, namely, for $A \subset \mathbb{R}$ of Hausdorff dimension at least $13 / 22$, then the distance set $\Delta\left(A^{5}\right)=\left\{|x-y|: x, y \in A^{5}\right\}$ has non-empty interior, where $|x|$ is the Euclidean norm. In higher dimensions, the same conclusion holds under the condition

$$
\operatorname{dim}_{H}(A)> \begin{cases}\frac{d+1}{2 d} & \text { if } 2 \leq d \leq 4 \\ \frac{d+1}{2 d}-\frac{d-4}{2 d(3 d-4)} & \text { if } 5 \leq d \leq 26 \\ \frac{d+1}{2 d}-\frac{23 d-228}{114 d(d-4)} & \text { if } 27 \leq d\end{cases}
$$

Notice that these dimensional thresholds are bigger than the corresponding sizes of sets in the finite field analogue (Theorem 1.1) when $d \geq 6$.

Since the distance function is invariant under translations, we can always assume that $0 \in A$. If $|A-A| \sim|A|$, then we are able to improve Theorem 1.3 further as follows.

Theorem 1.4. Let $A \subset \mathbb{F}_{p}$. Suppose that $|A-A| \sim|A|$ and $|A| \gg p^{13 / 22}$, then we have

$$
(A-A)^{2}+A^{2}+A^{2}+A^{2}+A^{2}=\mathbb{F}_{p} .
$$

Theorem 1.5. Let $A \subset \mathbb{F}_{p}$. Suppose that $|A-A| \sim|A|$ and $|A| \gg p^{4 / 7}$, then we have

$$
(A-A)^{2}+(A-A)^{2}+A^{2}+A^{2}+A^{2}+A^{2}=\mathbb{F}_{p}
$$

The main ingredient in the proofs of these improvements is the next result which is interesting on its own and says that the size of $A^{2}+A^{2}$ is quite large when $|A-A| \sim|A|$, where $A^{2}:=\left\{x^{2}: x \in A\right\}$.

Theorem 1.6. Let A be a set of \mathbb{F}_{p} with $|A-A|=K|A|$.

1. If $K|A| \ll p^{2 / 3}$, then

$$
\left|A^{2}+A^{2}\right| \gg \min \left\{\frac{p}{K^{4}}, \frac{|A|^{19 / 8}}{K^{21 / 8} p^{1 / 2}}\right\} .
$$

2. If $p^{4 / 7} \ll K|A| \leq p^{5 / 8}$, then we have a better bound

$$
\left|A^{2}+A^{2}\right| \gg \min \left\{\frac{p}{K^{4}}, \frac{|A|^{8 / 3}}{K^{7 / 3} p^{2 / 3}}\right\} .
$$

In particular, when $K \sim 1$:

1. if $|A| \gg p^{5 / 8}$, then we have $\left|A^{2}+A^{2}\right| \gg p$.
2. if $p^{\frac{4}{7}+\epsilon} \leq|A| \leq p^{\frac{2}{3}-\epsilon}$ for some $\epsilon>0$, then $\left|A^{2}+A^{2}\right| \gg|A|^{\frac{3}{2}+\epsilon^{\prime}}$ with $\epsilon^{\prime}=\epsilon^{\prime}(\epsilon)>0$.

It is worth noting that a similar theorem was obtained by Iosevich, Koh and Pham for very small sets in [5, namely, when $|A||A-A|\left|A^{2}-A^{2}\right| \leq p^{2}$ and $|A-A|=|A|^{1+\epsilon}, 0<\epsilon<1 / 54$, then $\left|A^{2}-A^{2}\right| \gtrsim|A|^{1+\frac{9-27 \epsilon}{17}}$. Moreover, the approach in their paper does not work for the case of $A^{2}+A^{2}$.

We also remark that our proofs of Theorem 1.3 and Theorem 1.6 rely on recent results on bisector energies and distance sets due to Murphy et al. in 10 .

The rest of this paper is organized as follows: Proofs of Theorem 1.3 and Theorem 1.6 are presented in Section 2 and 3, respectively. We discuss variants of Theorem 1.6 in Section 4. The last section is devoted for proofs of Theorems 1.4 and 1.5 .

2 Proof of Theorem 1.3

To prove Theorem [1.3, we recall the following theorems. The first is a point-line incidence bound due to Vinh [16], and the second is a distance result of sets of medium size due to Murphy et al. 10.

Theorem 2.1 (Theorem 3, [16). Let P be a set of points and L be a set of lines in \mathbb{F}_{p}^{2}. Then the number of incidences between P and L, denoted by $I(P, L)$, satisfies

$$
\left|I(P, L)-\frac{|P||L|}{p}\right| \leq p^{1 / 2} \sqrt{|P||L|} .
$$

Theorem 2.2 (Theorem 2, [10]). Let E be a set in \mathbb{F}_{p}^{2}. Suppose that $4 p<|E| \leq p^{5 / 4}$, then

$$
\begin{equation*}
|\Delta(E)| \gg \frac{|E|^{4 / 3}}{p^{2 / 3}} \tag{1}
\end{equation*}
$$

With these results in hand, we are ready to prove Theorem 1.3 .

Proof of Theorem 1.3. Let λ be an arbitrary element in \mathbb{F}_{p}. We now show that if $|A| \gg p^{13 / 22}$, then there exist $x, y \in A^{5}$ such that $\|x-y\|=\lambda$.

It is enough to show that under the condition on the size of A, the following equation has at least one solution:

$$
\begin{equation*}
(x-y)^{2}+u+v=\lambda, \tag{2}
\end{equation*}
$$

where $x, y \in A, u, v \in \Delta\left(A^{2}\right)$.
Let $P=\left\{\left(-2 x, v+x^{2}\right): x \in A, v \in \Delta\left(A^{2}\right)\right\}$ be a point set in \mathbb{F}_{p}^{2}. Let L be the set of lines of the form

$$
y X+Y=\lambda-u-y^{2},
$$

where $y \in A, u \in \Delta\left(A^{2}\right)$.
It is not hard to see that the number of solutions of the equation (2) is equal to the number of incidences between P and L in \mathbb{F}_{p}^{2}.

Theorem [2.1] tells us that whenever $|P \| L| \gg p^{3}$, then there is at least one incidence between P and L.

On the other hand, we know that $|P|=|A| \cdot\left|\Delta\left(A^{2}\right)\right|=|L|$. Thus, to conclude the proof, we only need the condition

$$
|A|^{2} \cdot\left|\Delta\left(A^{2}\right)\right|^{2} \gg p^{3},
$$

which is satisfied by the fact that $|A| \gg p^{13 / 22}$ and the inequality (11) with $E=A \times A$.
Remark 2.1. Compared to the approach of Theorem [1.1] in [12], our proof is much shorter. For any $t \in \mathbb{F}_{p}$, let $\nu(t)$ be the number of pairs $(x, y) \in E \times E, E \subset \mathbb{F}_{p}^{2}$, such that $\|x-y\|=t$. It follows from computations in [10, pages 15, 17], we know that $\sum_{t \neq 0} \nu(t)^{2}$, which is $\sum_{r \neq 0}\left|S_{r}\right|^{2}$ in [10], is at most $p^{2 / 3}|E|^{8 / 3}$. With this estimate, to obtain the number of pairs $(x, y) \in A^{5} \times A^{5}$ of a given distance, one can follow identically the proof in [12] to show that for any $A \subset \mathbb{F}_{p}^{5}$ and $\lambda \in \mathbb{F}_{p}$ with $p^{13 / 22} \lesssim|A| \leq p^{5 / 8}$, the number of pairs of distance λ is at least $(1+o(1)) \frac{|A|^{10}}{p}$. We need to mention that in the proof of Pham and Vinh, an upper bound for $\sum_{t \neq 0} \nu(t)^{2}$, instead of $\sum_{t \in \mathbb{F}_{p}} \nu(t)^{2}$, would be sufficient.

Remark 2.2. In dimensions $d \leq 4$, the above argument breaks down, and even implies an exponent which is bigger than $\frac{d+1}{2}$. If for any two points x and y we consider the Minkowski distance function between them, namely, $\|x-y\|_{M}:=\left(x_{1}-y_{1}\right)^{2}-\left(x_{2}-y_{2}\right)^{2}$, then Rudnev and Wheeler [14] proved that for any $A \subset \mathbb{F}_{p}$ with $|A+A|,|A-A| \leq K|A|<\sqrt{p}$, the number of pairs in $A \times A$ of a given distance is at most $O\left(K^{6 / 5}|A|^{29 / 10}\right)$.

3 Proof of Theorem 1.6

To prove Theorem 1.6, we need a variant of Theorem 2.1 for multi-sets. A proof can be found in [3, Lemma 14].

Theorem 3.1 (Lemma 8, 3]). Let P be a multi-set of points in \mathbb{F}_{p}^{2} and L be a multi-set of lines in \mathbb{F}_{p}^{2}. The number of incidences between P and L satisfies

$$
I(P, L) \leq \frac{|P||L|}{p}+p^{1 / 2}\left(\sum_{u \in \bar{P}} m(u)^{2}\right)^{1 / 2} \cdot\left(\sum_{\ell \in \bar{L}} m(\ell)^{2}\right)^{1 / 2}
$$

where \bar{X} is the set of distinct elements in the multi-set X and $m(x)$ is the multiplicity of x, $|X|=\sum_{x \in \bar{X}} m(x)$.

3.1 Bisector energy of a set

Let $A \subset \mathbb{F}_{p}$, and $E:=A \times A$. For any two points $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$, the bisector line of the segment $a b$ is defined by the equation

$$
\|x-a\|=\|x-b\|
$$

This line is called isotropic if $\|a-b\|=0$, and non-isotropic otherwise.
Notice that there might exist pairs $(a, b) \in E \times E$ and $\left(a^{\prime}, b^{\prime}\right) \in E \times E$ such that they have the same bisector line. Let L_{B} be the multi-set of bisector lines determined by pairs of points in E, and \bar{L}_{B} be the set of distinct bisector lines determined by pairs of points in E, and for each $\ell \in \bar{L}_{B}$, let $m(l)$ be its multiplicity. The quantity $\sum_{\ell \in \bar{L}_{B}} m(\ell)^{2}$ is called the bisector energy of \bar{L}_{B}. When the size of E is not too big, we have the following lemma, which is a summary of some results from [10, 11].

Lemma 3.2. Suppose $|A| \leq p^{2 / 3}$, then we have

$$
\begin{equation*}
\sum_{\ell \in \bar{L}_{B}, \ell \text { non-i sotropic }} m(\ell)^{2} \ll|A|^{21 / 4} . \tag{3}
\end{equation*}
$$

In addition, when $p^{4 / 7} \ll|A| \ll p^{5 / 8}$, we have a better bound, namely,

$$
\begin{equation*}
\sum_{\ell \in \bar{L}_{B}, \ell \text { non-isotropic }} m(\ell)^{2} \ll p^{1 / 3}|A|^{14 / 3} . \tag{4}
\end{equation*}
$$

Proof. For any $r \in \mathbb{F}_{p}$, let S_{r} be the number of pairs $(x, y) \in E \times E$ such that $\|x-y\|=r$. It has been proved in [10, Proposition 12] that

$$
\sum_{\ell \in \bar{L}_{B}, \ell \text { non-isotropic }} m(\ell)^{2} \ll M|E|+\sum_{r \neq 0}\left|S_{r}\right|^{3 / 2}
$$

where M is the maximal number of points from E on a circle or on a line. Since $E=A \times A$, we can bound $M \leq|A|$. Using the Cauchy-Schwarz inequality and the fact that $\sum_{r}\left|S_{r}\right|=|E|^{2}$, one
has

$$
\sum_{\ell \in \bar{L}_{B}, \ell \text { non-isotropic }} m(\ell)^{2} \ll|A|^{3}+|A|^{2} \cdot\left(\sum_{r \neq 0}\left|S_{r}\right|^{2}\right)^{1 / 2}
$$

Note that $\sum_{r \neq 0}\left|S_{r}\right|^{2}$ is equal to the number of tuples $(x, y, z, t) \in E \times E \times E \times E$ such that $\|x-y\|=\|z-t\|$. This can be bounded by at most $|E|$ times the number of isosceles triangles in E, as a consequence of the Cauchy-Schwarz inequality. Note that here we only need to count the triangles $(a, b, c) \in E \times \times E$ with $\|a-b\|=\|a-c\| \neq 0$. There will be three types of these isosceles triangles: $\|b-c\|=0,\|b-c\| \neq 0$, and $b=c$.

It has been proved in [11] that if $|A| \leq p^{2 / 3}$, then the number of isosceles triangles in $A \times A$ is at most $\ll|A|^{9 / 2}$. Thus,

$$
\sum_{\ell \in \bar{L}_{B}, \ell \text { non-isotropic }} m(\ell)^{2} \ll|A|^{2} \cdot\left(|A|^{2} \cdot|A|^{9 / 2}\right)^{1 / 2}=|A|^{21 / 4}
$$

When $p^{4 / 7} \ll|A| \ll p^{5 / 8}$, by a direct computation, the number of isosceles triangles of the form (a, b, c) with $\|a-b\|=\|a-c\| \neq 0$ is at most $|E|^{2}$ for $b=c$, at most $3|E|^{2}$ for $\|b-c\|=0$. Moreover, it has been proved in [10, Proposition 15] that the number of isosceles triangles with $\|b-c\| \neq 0$ in $E=A \times A$ is at most $p^{2 / 3}|A|^{10 / 3}$. So the above argument gives us the desired result.

Remark 3.1. We note that one can adapt the methods from [5, 6] to prove that the bisector energy is at most $|A-A|$ times the number of collinear triples in $A \times A$, which is bounded by $|A-A| \cdot|A|^{9 / 2}$. This is slightly weaker than the bound of Lemma 3.2 when $|A-A| \sim|A|$.

3.2 Proof of Theorem 1.6

Set $D=A-A$. We now consider the equation

$$
u=(x+y)^{2}+(z+t)^{2}
$$

where $x, z \in D, y, t \in A, u \in A^{2}+A^{2} \backslash\{0\}$.
Let N be the number of solutions of this equation. It is not hard to see that $N \geq|A|^{4}-2|A|$.
On the other hand, by the Cauchy-Schwarz inequality, we have

$$
N \leq \sqrt{\left|A^{2}+A^{2}\right|} \cdot E^{1 / 2}
$$

where E is the number of tuples $\left(d_{1}, d_{2}, d_{3}, d_{4}, a_{1}, a_{2}, a_{3}, a_{4}\right) \in D^{4} \times A^{4}$ such that

$$
\left(d_{1}+a_{1}\right)^{2}+\left(d_{2}+a_{2}\right)^{2}=\left(d_{3}+a_{3}\right)^{2}+\left(d_{4}+a_{4}\right)^{2} \neq 0
$$

By the Cauchy-Schwarz inequality, E can be bounded by at most $|A \times A| \cdot T$, where T is the number
of isosceles triangles $(x, y, z) \in(-A \times-A) \times(D \times D) \times(D \times D)$ such that $\|x-y\|=\|x-z\| \neq 0$.
Let T_{1} be the number of isosceles triangles with $\|y-z\| \neq 0$, and T_{2} be the number of isosceles triangles with $y=z$ or $\|y-z\|=0$. A direct computation implies $T_{2} \leq 4|A|^{2}|D|^{2}$. We now bound T_{1}.

Let L_{B} be the multi-set of bisector lines determined by pairs of points in $D \times D$. We observe that T_{1} is equal to the number of incidences between points in $-A \times-A$ and non-isotropic lines in L_{B}.

We now fall into two cases:

Case 1: Assume $|D| \leq p^{2 / 3}$. If we use the estimate (3), namely,

$$
\sum_{\ell \in \bar{L}_{B}, \ell \text { non-isotropic }} m(\ell)^{2} \ll|D|^{21 / 4}
$$

then, applying Theorem 3.1, we have

$$
T_{1} \ll \frac{|D|^{4}|A|^{2}}{p}+p^{1 / 2}|A||D|^{21 / 8}
$$

So,

$$
E \ll \frac{|D|^{4}|A|^{4}}{p}+p^{1 / 2}|A|^{3}|D|^{21 / 8}+|A|^{2}|D|^{2}
$$

Putting lower and upper bounds of N together, we have

$$
|A|^{8} \ll\left|A^{2}+A^{2}\right| \cdot\left(\frac{|D|^{4}|A|^{4}}{p}+p^{1 / 2}|A|^{3}|D|^{21 / 8}\right) .
$$

If the first term dominates, we obtain

$$
\left|A^{2}+A^{2} \| A-A\right|^{4} \gg p|A|^{4}
$$

otherwise, we have

$$
\left|A^{2}+A^{2} \| A-A\right|^{21 / 8} \gg \frac{|A|^{5}}{p^{1 / 2}}
$$

Hence, if $|A-A|=K|A|$, then we have

$$
\left|A^{2}+A^{2}\right| \gg \min \left\{\frac{p}{K^{4}}, \frac{|A|^{19 / 8}}{K^{21 / 8} p^{1 / 2}}\right\}
$$

In other words, when $K \sim 1$, we have

1. if $|A| \gg p^{12 / 19}$, then we have $\left|A^{2}+A^{2}\right| \gg p$.
2. if $p^{\frac{4}{7}+\epsilon} \leq|A| \leq p^{\frac{2}{3}-\epsilon}$ for some $\epsilon>0$, then $\left|A^{2}+A^{2}\right| \gg|A|^{\frac{3}{2}+\epsilon^{\prime}}$ with $\epsilon^{\prime}=\epsilon^{\prime}(\epsilon)>0$.

Case 2: Assume $|D| \ll p^{5 / 8}$. If we use the estimate (4), namely,

$$
\sum_{\ell \in \bar{L}_{B}, \ell \text { non-isotropic }} m(\ell)^{2} \ll p^{1 / 3}|D|^{14 / 3},
$$

then the same argument gives us

$$
|A|^{8} \ll\left|A^{2}+A^{2}\right| \cdot\left(\frac{|D|^{4}|A|^{4}}{p}+p^{1 / 2}|A|^{3} p^{1 / 6}|D|^{7 / 3}\right) .
$$

This estimate tells us that

$$
\left|A^{2}+A^{2}\right| \gg \min \left\{\frac{p}{K^{4}}, \frac{|A|^{8 / 3}}{K^{7 / 3} p^{2 / 3}}\right\} .
$$

Therefore, when $K \sim 1$,

1. if $|A| \sim p^{5 / 8}$, then we have $\left|A^{2}+A^{2}\right| \gg p$.
2. if $p^{\frac{4}{7}+\delta} \leq|A| \leq p^{\frac{2}{3}-\delta}$ for some $\delta>0$, then $\left|A^{2}+A^{2}\right| \gg|A|^{\frac{3}{2}+\delta^{\prime}}$ with $\delta^{\prime}=\delta^{\prime}(\delta)>0$.

4 Variants of Theorem 1.6

In this section, we discuss variants of Theorem 1.6, which will be obtained by using different bounds for the number of isosceles triangles T (the same notation as above) in the proof of Theorem 1.6, Compared to lower bounds of Theorem [1.6, we observe that all of them are weaker. For simplicity, we only consider the case $|A-A| \sim|A|$.

We recall from the previous section that T_{1} is the number of isosceles triangles $(x, y, z) \in(-A \times$ $-A) \times(D \times D) \times(D \times D)$ such that $\|x-y\|=\|x-z\| \neq 0$ and $\|y-z\| \neq 0$.

4.1 Bounding T_{1} via a point-line incidence bound for small sets

Let us first recall the following variant of a point-line incidence bound due to Stevens and De Zeeuw stated in 9 .

Theorem 4.1. Let A be a set in \mathbb{F}_{p} and L a set of lines in \mathbb{F}_{p}^{2}. The number of incidences between $A \times A$ and L is bounded by

$$
I(A \times A, L) \leq \frac{|A|^{3 / 2}|L|}{p^{1 / 2}}+|A|^{5 / 4}|L|^{3 / 4}+|A|^{2}+|L| .
$$

Using an argument which is similar to that of [8, Proof of Lemma 15], we have the following result.
Lemma 4.2. Let $Q:=\sum_{\ell \in \bar{L}_{B}, \ell \text { non-isotropic }} m(\ell)^{2}$. We have

$$
T_{1} \lesssim \frac{|A|^{3 / 2}|D|^{4}}{p^{1 / 2}}+|A|^{5 / 4}|Q|^{1 / 4}|D|^{2}+|D|^{4}+|A|^{2}|D|^{2}
$$

Proof. For $k \geq 1$, let L_{k} be the set of distinct non-isotropic lines in \bar{L}_{B} with multiplicity between k and $2 k$. We observe

$$
|D|^{4} \geq \sum_{\ell \text { non-isotropic }} m(\ell) \geq k\left|L_{k}\right|,
$$

and

$$
Q=\sum_{\ell \text { non-isotropic }} m(\ell)^{2} \geq k^{2}\left|L_{k}\right| .
$$

Thus,

$$
\begin{aligned}
T_{1} & =\sum_{\ell \text { non-isotropic }} m(\ell) i(\ell)<\sum_{i} \sum_{\ell: 2^{i} \leq m(\ell)<2^{i+1}} 2^{i+1} \cdot i(l)=\sum_{i} 2^{i+1} \cdot I\left(-A \times-A, L_{2^{i}}\right) \\
& =\sum_{i, 2^{i+1} \leq \frac{Q}{|D|^{4}}} 2^{i+1} \cdot I\left(-A \times-A, L_{2^{i}}\right)+\sum_{i, 2^{i+1}>\frac{Q}{|D|^{4}}} 2^{i+1} \cdot I\left(-A \times-A, L_{2^{i}}\right) \\
& =I+I I .
\end{aligned}
$$

Using $\left|L_{k}\right| \leq|D|^{4} / k$ and Theorem 4.1, one has

$$
\begin{aligned}
I & \lesssim \frac{|A|^{3 / 2}|D|^{4}}{p^{1 / 2}}+\sum_{i, 2^{i+1} \leq \frac{Q}{|D|^{4}}} 2^{i+1} \cdot\left(|A|^{5 / 4}\left(\frac{|D|^{4}}{2^{i}}\right)^{3 / 4}+|A|^{2}+\left|L_{2^{2}}\right|\right) \\
& \lesssim \frac{|A|^{3 / 2}|D|^{4}}{p^{1 / 2}}+|A|^{5 / 4}|D|^{2} Q^{1 / 4}+|A|^{2}|D|^{2}+|D|^{4} .
\end{aligned}
$$

Similarly, using $\left|L_{k}\right| \leq Q / k^{2}$, we have

$$
\begin{aligned}
I I & \lesssim \frac{|A|^{3 / 2}|D|^{4}}{p^{1 / 2}}+\sum_{i, 2^{i+1}>\frac{Q}{|D|^{4}}} 2^{i+1} \cdot\left(|A|^{5 / 4}\left(\frac{Q}{2^{2 i}}\right)^{3 / 4}+|A|^{2}+\left|L_{2^{i}}\right|\right) \\
& \lesssim \frac{|A|^{3 / 2}|D|^{4}}{p^{1 / 2}}+|A|^{5 / 4}|D|^{2} Q^{1 / 4}+|A|^{2}|D|^{2}+|D|^{4} .
\end{aligned}
$$

In other words,

$$
T_{1} \lesssim \frac{|A|^{3 / 2}|D|^{4}}{p^{1 / 2}}+|A|^{5 / 4}|Q|^{1 / 4}|D|^{2}+|D|^{4}+|A|^{2}|D|^{2}
$$

We now follow the proof of Theorem 1.6,

Case 1: If $|A-A| \sim|A| \ll p^{2 / 3}$, then $Q \leq|D|^{21 / 4}$. Hence

$$
|A|^{8} \lesssim\left|A^{2}+A^{2}\right||A|^{2}\left(\frac{|A|^{3 / 2}|D|^{4}}{p^{1 / 2}}+|D|^{4}+|A|^{2}|D|^{2}+|A|^{5 / 4}|D|^{2}|D|^{21 / 16}\right)
$$

This implies

$$
\left|A^{2}+A^{2}\right| \gtrsim \min \left\{|A|^{\frac{23}{16}},|A|^{1 / 2} p^{1 / 2}\right\} .
$$

Case 2: If $|A-A| \sim|A| \ll p^{5 / 8}$, then $Q \leq p^{1 / 3}|D|^{14 / 3}$. We get

$$
|A|^{8} \lesssim\left|A^{2}+A^{2}\right||A|^{2}\left(\frac{|A|^{3 / 2}|D|^{4}}{p^{1 / 2}}+|D|^{4}+|A|^{2}|D|^{2}+p^{1 / 12}|A|^{5 / 4}|D|^{2}|D|^{14 / 12}\right)
$$

This implies

$$
\left|A^{2}+A^{2}\right| \gtrsim \min \left\{\frac{|A|^{\frac{19}{12}}}{p^{1 / 12}},|A|^{1 / 2} p^{1 / 2}\right\}
$$

4.2 Bounding T_{1} via Rudnev's point-plane incidence bound

Instead of using the bisector energy for lines in L_{B} and the point-line incidence bound in Theorem 3.1. we can bound T_{1} directly by using Rudnev's point-plane incidence bound [13] as Petridis did in (11.

More precisely, we can follow his proof identically to bound for the case of T_{1}, namely, we have

$$
T_{1} \ll \frac{|A|^{2}|D|^{4}}{p}+|A|^{3 / 2}|D|^{3} .
$$

So, with the argument as in the proof of Theorem 1.6, one has

$$
\begin{aligned}
& |A|^{8} \leq\left|A^{2}+A^{2}\right| \cdot|A|^{2} \cdot\left(\frac{|A|^{2}|D|^{4}}{p}+|A|^{3 / 2}|D|^{3}\right) \\
& |A|^{6} \leq\left|A^{2}+A^{2}\right| \cdot\left(\frac{|A|^{2}|A-A|^{4}}{p}+|A|^{3 / 2}|A-A|^{3}\right) .
\end{aligned}
$$

If $|D|=|A-A| \sim|A|$, then

$$
\left|A^{2}+A^{2}\right| \gg \min \left\{p,|A|^{3 / 2}\right\} .
$$

4.3 Bounding T_{1} via the Cauchy-Schwarz inequality

We use the fact that

$$
T_{1}=\sum_{\ell \text { non-istropic }} i(\ell) m(\ell) \leq\left(\sum_{\ell \in \bar{L}_{B}} i(\ell)^{2}\right)^{1 / 2} \cdot\left(\sum_{\ell \text { non-istropic }} m(\ell)^{2}\right)^{1 / 2}
$$

where $i(\ell)$ is the number of points from $-A \times-A$ on the line ℓ. Thus,

$$
T_{1} \leq|A|^{2} \cdot\left(\sum_{\ell \text { non-istropic }} m(\ell)^{2}\right)^{1 / 2}
$$

Case 1: If $|A-A| \sim|A| \ll p^{2 / 3}$, then using (3), we have $T_{1} \ll|A|^{\frac{37}{8}}$. This gives us

$$
|A|^{8} \ll\left|A^{2}+A^{2}\right| \cdot|A|^{2} \cdot|A|^{37 / 8}
$$

so $\left|A^{2}+A^{2}\right| \gg|A|^{11 / 8}$.
Case 2: If $|A-A| \sim|A| \ll p^{5 / 8}$, then using (4), we have

$$
T_{1} \leq|A|^{2} \cdot|A|^{7 / 3} \cdot p^{1 / 6} .
$$

Hence,

$$
|A|^{8} \ll\left|A^{2}+A^{2}\right| \cdot|A|^{2} \cdot|A|^{2+\frac{7}{3}} \cdot p^{1 / 6}
$$

so $\left|A^{2}+A^{2}\right| \gg \frac{|A|^{5 / 3}}{p^{1 / 6}}$.

5 Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. This proof is very similar to that of Theorem 1.3, Let λ be an arbitrary element in \mathbb{F}_{p}. To obtain the desired result, it is enough to show that the following equation has at least one solution:

$$
\begin{equation*}
(x-y)^{2}+u+v=\lambda \tag{5}
\end{equation*}
$$

where $x, y \in A, u, v \in A^{2}+A^{2}$.
Let $P=\left\{\left(-2 x, v+x^{2}\right): x \in A, v \in A^{2}+A^{2}\right\}$ be a point set in \mathbb{F}_{p}^{2}. Let L be the set of lines of the form

$$
y X+Y=\lambda-u-y^{2}
$$

where $y \in A, u \in A^{2}+A^{2}$. The number of solutions of (15) is equal to the number of incidences between P and L in \mathbb{F}_{p}^{2}. By Theorem [2.1, if $|P||L| \gg p^{3}$, then there is at least one incidence between P and L. We also have that $|P|=|L|=|A|\left|A^{2}+A^{2}\right|$. We now need to verify the condition

$$
|A|^{2} \cdot\left|A^{2}+A^{2}\right|^{2} \gg p^{3} .
$$

Because $|A-A| \sim|A|$, we can use the second bound of Theorem 1.6, and verifying both cases for the lower bound of $\left|A^{2}+A^{2}\right|$, we obtain the condition $|A| \gg p^{13 / 22}$.

To prove Theorem 1.5, we need a point-plane incidence bound in \mathbb{F}_{p}^{3}.
Theorem 5.1 (Theorem 5, [16]). Let P be a set of points and H be a set of planes in \mathbb{F}_{p}^{3}. Then
the number of incidences between P and H, denoted by $I(P, H)$, satisfies

$$
\left|I(P, H)-\frac{|P||H|}{p}\right| \leq p \sqrt{|P \| H|} .
$$

Proof of Theorem 1.5. Let λ be an arbitrary element of \mathbb{F}_{p}. We need to show that the following equation has at least one solution

$$
\begin{equation*}
(x-y)^{2}+(s-t)^{2}+u+v=\lambda \tag{6}
\end{equation*}
$$

where $x, y, s, t \in A$ and $u, v \in A^{2}+A^{2}$.
Let $P=\left\{\left(-2 x,-2 s, v+x^{2}+s^{2}\right): x \in A, s \in A, v \in A^{2}+A^{2}\right\}$ be a point set in \mathbb{F}_{p}^{3} and H the set of planes of the form

$$
y X+t Y+Z=\lambda-u-y^{2}-t^{2}
$$

where $y, t \in A, u \in A^{2}+A^{2}$. One can see that the number of solutions of (6) is equal to the number of incidences between P and H in \mathbb{F}_{p}^{3}. Using Theorem 5.1, we obtain at least one incidence between P and H when $|P||H| \gg p^{4}$. Given our choice of P and H, we have $|P|=|A|^{2}\left|A^{2}+A^{2}\right|=|H|$. With our hypothesis $|A-A| \sim|A|$, we can use an appropriate bound on $A^{2}+A^{2}$ in Theorem 1.6 (the first bound is sufficient for the result, but the second bound for $p^{4 / 7} \ll|A| \leq p^{5 / 8}$ leads to the same result), to obtain the condition $|A| \gg p^{4 / 7}$. Therefore equation (6) has at least one solution when $|A| \gg p^{4 / 7}$, which is the desired result.

Acknowledgments

The second listed author was supported by Swiss National Science Foundation grant P4P4P2191067.

References

[1] J. Chapman, M. Burak Erdoğan, D. Hart, A. Iosevich, and D. Koh, Pinned distance sets, k-simplices, Wolff's exponent in finite fields and sum-product estimates, Math Z. 271 (2012), no. 1, 63-93.
[2] D. Hart, A. Iosevich, D. Koh, M. Rudnev, Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Trans. Amer. Math. Soc. 363, (2011), no. 6, 3255-3275.
[3] B. Hanson, B. Lund, O. Roche-Newton, On distinct perpendicular bisectors and pinned distances in finite fields, Finite Fields and Their Applications 37, (2016), 240-264.
[4] A. Iosevich, M. Rudnev, Erdős distance problem in vector spaces over finite fields, Trans. Am. Math. Soc. 359 (2007), 6127-6142.
[5] A. Iosevich, D. Koh, T. Pham, New bounds for distance-type problems over prime fields, European Journal of Combinatorics, 86 (2020): 103080.
[6] D. Koh, T. Pham, C-Y. Shen, L. A. Vinh, A sharp exponent on sum of distance sets over finite fields, Mathematische Zeitschrift, 297(3) (2021): 1749-1765.
[7] D. Koh, T. Pham, C-Y. Shen, On the Mattila-Sjölin distance theorem for product sets, accepted in Mathematika, arXiv: 2103.11418 (2021).
[8] B. Lund, G. Petridis, Bisectors and pinned distances, Discrete and Computational Geometry, 64(3) (2020): 995-1012.
[9] B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev, I. Shkredov, New results on sumproduct type growth over fields, Mathematika, 65(3) (2019): 588-642.
[10] B. Murphy, G. Petridis, T. Pham, M. Rudnev, S. Stevens, On the pinned distances problem over finite fields, accepted in Journal of London Mathematical Society, arXiv:2003.00510 (2021).
[11] G. Petridis, Pinned algebraic distances determined by Cartesian products in \mathbb{F}_{p}^{2}, Proceedings of the American Mathematical Society, 145(11) (2017): 4639-4645.
[12] T. Pham, L. A. Vinh, Distribution of distances in vector spaces over prime fields, Pacific Journal of Mathematics, 309(2) (2021): 437-451.
[13] M. Rudnev, On the number of incidences between points and planes in three dimensions, Combinatorica, 38(1) (2018): 219-254.
[14] M. Rudnev, J. Wheeler, Incidence bounds with Möbius hyperbolae in positive characteristic, arXiv:2104.10534 (2021).
[15] S. Stevens, F. De Zeeuw, An improved point-line incidence bound over arbitrary fields, Bulletin of the London Mathematical Society, 49(5) (2017): 842-858.
[16] Le Anh Vinh, The Szemerédi-Trotter type theorem and the sum-product estimate in finite fields, European J. Combin. 32 (2011) no.8, 1177-1181.

[^0]: *ETH Zurich, Switzerland. Email: fclement@student.ethz.ch
 ${ }^{\dagger}$ The group Theory of Combinatorial Algorithms, ETH Zurich. Email: vanthang.pham@inf.ethz.ch

