arXiv:2008.04760v2 [math.AP] 23 Jun 2022

NON-UNIQUENESS IN LAW FOR TWO-DIMENSIONAL NAVIER-STOKES
EQUATIONS WITH DIFFUSION WEAKER THAN A FULL LAPLACIAN

KAZUO YAMAZAKI

AssTrRACT. We study the two-dimensional Navier-Stokes equations forced by random noise
with a diffusive term generalized via a fractional Laplacian that has a positive exponent
strictly less than one. Because intermittent jets are inherently three-dimensional, we in-
stead adapt the theory of intermittent form of the two-dimensional stationary flows to
the stochastic approach presented by Hofmanovd, Zhu & Zhu (2019, larXiv:1912.11841
[math.PR]) and prove its non-uniqueness in law.
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1. INTRODUCTION

1.1. Motivation from physics. The study of turbulence was pioneered by Novikov [47]
more than half a century ago. Motivations to investigate the two-dimensional (2-d) tur-
bulence include applications in meteorology and atmospheric sciences, and its attraction
from researchers that led to remarkable progress can be accredited to many reasons: the
2-d flows are easier to simulate than the counterpart in the three-dimensional (3-d) case;
vorticity, in addition to kinetic energy, becomes a bounded quantity allowing more flex-
ibility in directions to explore. Indeed, the 2-d turbulence has been extensively studied
theoretically (e.g., [37]), numerically (e.g., [3]), as well as experimentally (e.g., [49]).
Various forms of dissipation have been introduced in the physics literature: frictional
dissipation in [50]; fractional Laplacian (—A)™ as a Fourier operator with its Fourier symbol
of [£*™ so that (—/A)\’” F(&) = 1EP" £(&) in the study of surface quasi-geostrophic equations
(e.g., [16, Equation (1)]). In fact, the study of the Navier-Stokes (NS) equations with
diffusive term in the latter form, to which we shall hereafter refer as the generalized NS
(GNS) equations (), can be traced back as far as [40, Equation (8.7) on pg. 263] in 1959
by Lions. The purpose of this manuscript is to prove a certain non-uniqueness for the 2-d
GNS equations forced by random noise which we introduce next.
1.2. Previous results. Throughout this manuscript we define T" £ [—n, 7]" to be the prin-
cipal spatial domain for x = (x',...,x"), denote 9, = %, V£ @,,...,0m), as well as
u@W',...,u"), and & that map from R, x T" as the n-dimensional (n-d) velocity vector
and pressure scalar fields, respectively. We let v > O represent the viscosity coefficient so
that the GNS equations read

ou+v(-AN"u+diviu®u)+Vrer =0, V-u=0, t>0, @))]
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which recovers the classical NS equations when m = 1 and v > 0, as well as the Euler
equations when v = 0. We call u € CtL)zc a weak solution to over [0, T] if u(t,-) is
weakly divergence-free, is mean-zero; i.e., »[]F” u(t, x)dx = 0, and satisfies (I)) distribution-
ally against a smooth and divergence-free function. A Leray-Hopf weak solution, only in
case v > 0, due to [33,39] requires an additional regularity of L>H" and must satisfy an
energy inequality

1 ! 1
Sl +v f lu(5)Ipds < 5 lluCO)IZ, )
‘X 0 X X

for all + > 0 (see [9, Definitions 3.1, 3.5, and 3.6] for precise statements). Due to the
rescaling property of the GNS equations that (1, )¢, x) = (22" 'u, 2%"~27)(A>"t, Ax)
solves () if (u, m)(z, x) solves it, a standard classification states that () is sub-critical,
critical and super-critical with respect to L>(T")-norm if m > % +q.m = % + %, and
m < 3 + %, respectively.

Only a decade after [40], Lions (see [41, Remark 6.11 on pg. 96]) already claimed the
uniqueness of a Leray-Hopf weak solution when v > 0 and m > % + 4. It has been more
than 50 years since then, and we still find this threshold to be sharp; specifically, except a
logarithmic improvement by Tao [|55] (and also [2] for further logarithmic improvements),
it is not known whether (I) with v > 0 and m < % + 7 for n > 3 admits a unique solution
that emanates from a smooth initial data and preserves the initial regularity or not (e.g. see
[56) Theorem 4.1] for such a result under a smallness constraint on initial data). The case
n = 2 offers a strikingly different picture when initial data has high regularity. Indeed,
Yudovich [60] proved that if the vorticity V X u belongs initially to L' (R?) N L®(R?), then
even the 2-d Euler equations admit a globally unique solution, essentially due to the fact
that the nonlinear term vanishes upon an L?(R?)-estimate of the vorticity for any p € [2, o]
(e.g., [44, pg. 320]). That being said, starting from an arbitrary initial data in L2, the lack
of diffusion and therefore a lack of high regularity creates an obstacle in constructing a
weak solution via a classical argument relying on Aubin-Lions compactness lemma (e.g.
[411153]).

We now discuss the recent developments on Onsager’s conjecture which led to a better
understanding of equations of fluid and various new techniques. In 1949 a chemist and
a physicist Onsager [48]] conjectured the following dichotomy in any spatial dimension
n>2:

e every weak solution to the n-d Euler equations with Holder regularity in space of

exponent @ > 1, i.e., C¢, conserves kinetic energy %Ilu(t)lliz;

e for any a < % there exists a weak solution in CY that dissipates kinetic energy
1
Hi@l..

The case a > % proved to be easier to demonstrate, settled partially by Eyink [26] and
then fully by Constantin, E, and Titi [17]. Towards Onsager’s conjecture in case & < 1,
Scheffer [51] and subsequently Shnirelman [52] proved the existence of a weak solution to
2-d Euler equations with compact support in space and time so that kinetic energy is both
created and destroyed; however, the solutions in [51} 52] were only in L%L)zc and thus far
from the threshold of C¢{,a < % The remarkable series of breakthroughs which unfolded
next were inspired by the work of Nash [46] who proved the C! isometric embedding by
constructing a sequence of short isometric embeddings, each of which fails to be isometric
by a certain error that vanishes in the limit. Gromov considered the work of Nash, as
well as that of Kuiper [38]], as part of A-principle ([31, pg. 3]) and initiated the theory of
convex integration [31} Part 2.4]; we refer to [24]] for further discussions on the A-principle.
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After Miiller and Sverak [45] extended the convex integration to Lipschitz maps, De Lellis
and Székelyhidi Jr. [22] reformulated the Euler equations as a differential inclusion and
improved the results of [31}52] by constructing a weak solution in L7 LY with compact
support in space and time in any spatial dimension n > 2 (see also [23]). Subsequently, in
[25] they proved the existence of weak solutions to 3-d Euler equations in C([0, T'] X T3
which dissipate the kinetic energy through a novel application of Beltrami flows. Together
with Buckmaster and Isett in [6], they improved the regularity of the solution up to C7", for

any @ < 1 where we write fe Cct. if there exists C > 0 such that
|f(+ At, x + Ax) — f(t, x)| < C(|At] + |Ax[)® uniformly in 7, x, At, and Ax

(see also (9)). At last, via a certain gluing approximation technique and Mikado flows, Isett
[36] proved that for any @ < % there exists a non-zero weak solution to n-d Euler equations
forn > 3 in C7, that fails to conserve kinetic energy ([36, Theorem 1] only states the claim
for n = 3, but [36| pg. 877] claims that it can be extended to any n > 3). Integrating ideas
of intermittency from turbulence to Beltrami flows and constructing intermittent Beltrami
waves, Buckmaster and Vicol [8] proved the non-uniqueness of weak solutions to the 3-
d NS equations in the class CTHf for some 8 > 0, which can be seen to be quite small
from its proof. Relying on the intermittent Beltrami waves, Luo and Titi [43] extended the
result of [8]] up to Lions’ exponent m < % for (I) when n = 3. Mimicking the benefits of
Mikado flows, Buckmaster, Colombo, and Vicol [7] introduced intermittent jets to prove
non-uniqueness for a class of weak solutions to 3-d GNS equations with m < % which
have bounded kinetic energy, integrable vorticity, and are smooth outside a fractal set of
singular times with Hausdorff dimension strictly less than one.

As already mentioned in Subsection[I.T] the study of NS equations forced by random
noise, to which hereafter we refer as the stochastic NS (SNS) equations, has a long history
since [47] (see also [4]). Our focus will be on the following stochastic GNS (SGNS)

equations: for x € T,
du + (—A)"udt + div(u ® u)dt + Vadt = F(u)dB, V-u=0, t>0, 3)

where F(u)dB represents the random noise, to be specified subsequently. Via a proba-
bilistic Galerkin approximation and variations of Aubin-Lions compactness results afore-
mentioned, Flandoli and Gatarek [28] proved the existence of a weak solution to the n-d
SNS equations for n > 2 under some assumptions on the noise; their solution has the
regularity of L°L2 N L>H! but does not necessarily satisfy the energy inequality (see [28]
Definition 3.1] and also [27, Definition 4.3]). Via the approach of martingale problem due
to Stroock and Varadhan [54]], Flandoli and Romito constructed a Leray-Hopf weak solu-
tion to the 3-d SNS equations; i.e., the solutions constructed therein have the regularity of
L®L* N L?H! and satisfy a stochastic analogue of the energy inequality (see [29, MP3 in
Definition 3.3]). Very recently, Hofmanova, Zhu, and Zhu [33] adapted the convex inte-
gration approach through intermittent jets from [9, Chapter 7] to the 3-d SNS equations
and proved the non-uniqueness in law within a class of weak solutions, which also implies
the lack of path-wise uniqueness by Yamada-Watanabe theorem (see also [, [13| [34] for
probabilistic convex integration on stochastic Euler equations); we must emphasize that
their result does not extend to the Leray-Hopf weak solution from [29].

Remark 1.1. It is worth pointing out that the proof of non-uniqueness in the stochastic
case has a layer of complexity that is absent in the deterministic case in the following
manner. For example, Buckmaster and Vicol in [8, Theorem 1.2] specifically proved that
there exists B > 0 such that for any non-negative smooth function e(t):[0,T] — R, U {0},
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there exists u € CTHE that is a weak solution to the NS equations and satisfies ||u(t)||i2 =

e(t) for all t € [0, T]. One may take e.g. e(t) = e' — 1 so that e(0) = 0. Because u = Ofor
all (t,x) € [0, T] x T3 solves the NS equations and satisfies ||u(0)||i2 = 0, this immediately
deduces non-uniqueness. This approach clearly fails in the stochastic case because u = 0
forall (t, x) € [0, T] x T? does not solve the stochastic NS equations due to the presence of
the noise (see [27, Remark 4.16] for a similar discussion). More precisely, particularly in
the case of an additive noise, one may split @) to a linear stochastic PDE solved by z and
the rest of the terms solved by v as in (37d)-(37D) in hope to adapt the proof of [8, Theorem
1.2] to the equation of v; unfortunately, v = 0 does not solve (31D) as aforementioned.
Another major difficulty that arises in the stochastic case will be discussed in Remark[[.2]

Similarly to our discussion in Subsection the 2-d SNS equations have received a
considerable amount of attention from researchers who have produced a wealth of results
many of which remain open in the 3-d case. Path-wise uniqueness, and consequently
uniqueness in law due to Yamada-Watanabe theorem, of the aforementioned weak solution
with regularity L°L2 N L2H! that does not necessarily satisfy the energy inequality which
was constructed in [28]] are well-known. In the case of an additive noise, upon considering
the difference of two possible solutions, the noise cancels out and thus a deterministic
approach immediately implies uniqueness (see [27, Exercise 3.1 on p. 72]); in the case
of a multiplicative noise we refer to [[15, Theorem 2.4]. Same uniqueness results for the
Leray-Hopf weak solutions to the 2-d SNS equations directly follow. We also refer to
[15, Theorem 3.2] and [32] concerning large deviation principle and ergodicity with hypo-
elliptic noise, respectively. The purpose of this manuscript is to prove the non-uniqueness
in law, and therefore a lack of path-wise uniqueness, for (B) when n = 2 and m € (0, 1),
which has been studied by many authors previously (e.g., [18]).

Remark 1.2. As we remarked already, the theory of global well-posedness for (1)) in the 2-
d case is significantly richer than that in the 3-d case. Vice versa, proving non-uniqueness
in the 2-d case should present considerable difficulty, not seen in the 3-d case. A natural
approach to prove the non-uniqueness in law for Q) with n = 2 and m € (0, 1) will be to
try to follow the arguments in [33] on the 3-d SNS equations. Concerning the fractional
Laplacian, we can follow the arguments in [38|] in which the analogous result was proven
for @) whenn =3 andm € (%, %).

First major obstacle arises in the fact that intermittent jets, utilized in [33} 58] following
[9, Chapter 71, are inherently 3-d in space and thus inapplicable to () when n = 2; we
recall that the lack of a suitable replacement for Mikado flows in the 2-d case is precisely
the reason the case n = 2 was left out in the resolution of Onsager’s conjecture by Isett
(see [36, pg. 877]). Fortunately, a 2-d analogue of the 3-d Beltrami flows from [25] was
already established by Choffrut, De Lellis, and Székelyhidi Jr. [14], to which we refer as
2-d stationary flows. Moreover, its intermittent form, to which we refer as 2-d intermittent
stationary flows, was very recently introduced by Luo and Qu [42]. Thus, a good candidate
for strategy now is to somehow adapt the application of 2-d intermittent stationary flows
in [42] to the stochastic setting in [33]].

Second major obstacle that arises in this endeavor is that the arguments in [42]] follow
closely those of [8] and not |9, Chapter 7], quite naturally because the 2-d intermittent
stationary flows is an extension of the intermittent Beltrami waves in [8|, not intermittent
Jjets in |9 Chapter 7]. It turns out that some of the crucial estimates achieved in [8/42]] seem
to be difficult in the stochastic setting. E.g., while [8, Equation (2.4)] and [42| Equation
(2.13)] claim certain bounds on the C},X-norm of Reynolds stress, our Reynolds stress in
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({I16) includes R.om> defined in (I00€) that consists of z, and z is known to be only in

C,%726 for 6 > 0 from @9). Therefore, obtaining an analogous estimate to [8), Equation
(2.4)] and [42], Equation (2.13)] seems to be completely out of reach. Thus, our task is
not only to apply the theory of 2-d intermittent stationary flows from [42] but consider
an extension of the arguments in [42] to that of [9, Chapter 7] and then adjust that in
the stochastic setting of (33|, while simultaneously considering the approach of [S8] to
treat the fractional Laplacian. We will carefully define various parameters, all of which
depend on the value of m (e.g., (63)-[0), and (A17)). Our proofs are inspired by those
of 8119} 133L 142]] while on various occasions we need to make crucial modifications (e.g.,

Remarksd 114.4).

2. STATEMENT OF MAIN RESULTS

Only for simplicity of presentations, we assume v = 1 hereafter. Following [33] we
consider two types of random noises within (3): additive; linear multiplicative.

2.1. The case of an additive noise. In the case of an additive noise, we consider (3) with
n =2, F = 1, and B to be a GG*-Wiener process on a probability space (2, ¥, P) where
G is a certain Hilbert-Schmidt operator to be described in more detail subsequently (see
(10)), and the asterisk denotes the adjoint operator. Finally, (%;);»o denotes the filtration
generated by B.

Theorem 2.1. Suppose thatn = 2,F = 1,m € (0,1), B is a GG*-Wiener process, and
Tr((=A)?"™27GG*) < oo for some o > 0. Then given T > 0,K > 1, and « € (0, 1), there
exists € € (0,1) and a P-almost surely (a.s.) strictly positive stopping time t such that
P({t > T}) > k and the following is additionally satisfied. There exists an (F;)=0-adapted
process u that is a weak solution to (3) starting from a deterministic initial condition u™,
satisfies

esssup cq sup |lu(s, w)|lg: < oo, “4)
s€[0,t] ’
and on the set {t > T},
. ol
(D)l 2 > Kllu™llz + K(TTHGG"))?. @)

Remark 2.1. For the 3-d SGNS equations () with m € (%, %), [S8]] required a hypoth-
esis of Tr((—A)%"’”z‘TGG*) < oo (see 58, Remark 2.1]). Here in the 2-d case, we need

Tr((=A)? ™29 GG*) < oo for the purpose of Proposition 4.4

Theorem 2.2. Suppose thatn = 2,F = 1,m € (0,1), B is a GG*-Wiener process, and
Tr((=A)?™27GG*) < oo for some o > 0. Then non-uniqueness in law holds for (3) on
[0, 00). Moreover, for all T > 0 fixed, non-uniqueness in law holds for (3) on [0, T].

2.2. The case of a linear multiplicative noise. In the case of a linear multiplicative noise,
we will consider F(u) = u and B to be an R-valued Wiener process on (2, 7, P).

Theorem 2.3. Suppose thatn = 2, F(u) = u, m € (0, 1), and B is an R-valued Wiener
process on (Q,F,P). Then given T > 0,K > 1, and k € (0, 1), there exists € € (0,1)
and a P-a.s. strictly positive stopping time t such that P({t > T}) > « and the following is
additionally satisfied. There exists an (F,)>0-adapted process u that is a weak solution to
@) starting from a deterministic initial condition u™, satisfies

esssUp ,eqy Sup |[u(s, w)|lgs < oo, (6)
s€[0,t]
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and on the set {t > T},
Iy, in
(T2 > Ke* [l )

Theorem 2.4. Suppose that n = 2, F(u) = u, m € (0,1), and B is an R-valued Wiener
process on (Q,F, P). Then non-uniqueness in law holds for @) on [0, o). Moreover, for
any T > 0 fixed, non-uniqueness in law holds for () on [0, T].

Remark 2.2. After this work was completed, Cheskidov and Luo [12]] proved non-uniqueness
for the 2-d deterministic Navier-Stokes equations in the class of C,L% for p € [1,2). We
point out that on one hand, they proved non-uniqueness with a full Laplacian while The-
orems are concerned with the GNS equations diffused via (-A)",m € (0,1). On
the other hand, the spatial regularity of the solutions constructed in [12] are in L% for
p € [1,2) while those in Theorems[2Z_IH2.4 are in HE, although for € € (0, 1) very small, as

can be seen from their proofs.

The rest of this manuscript is organized as follows: Section Bl with a minimum amount
of notations, assumptions, and past results; Section with proofs of Theorems[2.1land 2.2}
Section [§] with proofs of Theorems 2.3 and 2.4 Appendix with additional past results and
details of some proofs.

3. PRELIMINARIES

We denote N = {1,2,...,} and Ny = {0} UN. We write A <, Band A ~,, B to imply
the existence of a constant C = C(a,b) > 0 such that A < CB and A = CB, respectively.

)
We write A < B to indicate that this inequality is due to an equation (-). For any R?-valued
maps f and g, we denote a tensor product by f ® g while its trace-free part by

1,0 _ 1y, 1,2
fégé(f fzgzlf 8 fzng_g%f,g)- (3)

We write for p € [1, oo]

WAl = 1A Nerzs Wlley = W fllzzcy = Z 1D fllz=s Iflley, = Z 10/ D" fll=. (9)

0<|al<N 0<n+|a|l<N

We also define L2 = {f € [*:V - f = 0}, reserve P £ Id — VA~!V- as the Leray projection
operator, and P<, to be a Fourier operator with a Fourier symbol of 14<.(£). For any
Polish space H, we write B(H) to represent the o-algebra of Borel sets in H. We denote
a mathematical expectation with respect to (w.r.t.) any probability measure P by EF. We
represent an L2(T?)-inner product, a cross variation of A and B, and a quadratic variation
of A respectively by (A, B), ((A, B)), and ((A)) = ((A, A)). We define P(Q) as the set of
all probability measure on (Qg, B) where Qg = C([0, o0); H3(T) N Ly ([0, 00); L(ZT) and
B is the Borel o-field of Q from the topology of locally uniform convergence on (. We
define the canonical process &: Qo = H™3(T?) by &(w) 2 w(f). Similarly, for t > 0 we
define Q; £ C([t, 0); H(T?)) N L ([t, 00); L%) and the following Borel o--algebras for
t>0: B 2 o({&(s):s > 1)); BY 2 o({€(s): s < 1}); B; 2 N, BY. For any Hilbert space U
we denote by L,(U, L2) the space of all Hilbert-Schmidt operators from U to L2 with the
norm |||,y 2. We require F: L(ZT — L (U, L(ZT) to be 8(LL27)/8(L2(U, L(ZT))-measurable and

that it satisfies for any ¢ € C*(T?) N L2
IF @@z < €A +lIgliz) and - imIF(6,)"¢ — F(O) ¢lly = 0 (10)

for some constant C > 0 if lim,,—,[|0, — 6l|;2 = 0.
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The following notations will be useful in the case of a linear multiplicative noise. We
assume the existence of another Hilbert space U, such that the embedding U — U, is
Hilbert-Schmidt. We define Q = C([0, 00); H3(T?) x Uy) N LY ([0, 00); L2 x Uy) and
P(Q) as the set of all probability measures on (Q, B), where B is the Borel o-algebra
on Q. Analogously we define the canonical process on Q as (£,60):Q +— H3(T?) x U,
by (&(w), 0 (w)) £ w(?). We extend the previous definitions of B',8? and B, to B' =
a({(£ 0)(s):s = 1)), BY 2 o({(&,0)(s): s < 1)), and B, 2 N, BY for t > 0, respectively.

Next, we describe some notations and results concerning the 2-d intermittent stationary
flows introduced in [14] (e.g., [14, Lemma 4]) and extended in [42]. We let

1 1 1 1
At £ {5(361 + 462), 5(461 + 362)} and A™ £ {g(—3e1 + 462), g(—4e1 + 362)}, (11)

ie. AT =-A",and A £ AT U A", where ¢; for j € {1,2} is a standard basis of RZ. 1t
follows immediately that A ¢ S' N Q?, 5SA c Z?, and

12)

ol

min [+ >
44’6/\:#—4’4 ¢

(cf. [I8, pg. 110], [43 Equation (9)]). For all { € A and any frequency parameter A € 5N,
we define b, and its potential ¥, as

, 1 .
b(x) £ b a(x) 2™, p(x) £ Ypax) £ Ee”“ (13)
(cf. [14} Equation (14)]). It follows that for all N € Ny,
be(x) = Vig(x), Vbr(x) =0, V5 by(x) = Ag(x) = =A% (x), (14a)

. o a N a N-1
be(x) = b-g(x), Yr(x) = (0, bflley < (N+ DAY, Weliey < (N+ DA (14b)

Lemma 3.1. (Geometric lemma from [42, Lemma 4.1]; cf. [25] Lemma 3.2], [14, Lemma
6]) Denote by M the linear space of 2 X 2 symmetric trace-free matrices. Then there exists
a set of positive smooth functions {y; € C*(M):{ € A} such that for each Re M,

Y-e®) =y B, R= (R)(&0, and y(R) < (1+IRD*. (15)
JeA

For convenience we set
Ca £ 2V12(47% + 1)7|A| and M £ C, Sup(”'}’{”C(B%(O)) + ||V7§||C(B%(O)))~ (16)
leA
Similarly to [8| pg. 111] we consider a 2-d Dirichlet kernel for » € N

Dy (x) =

5 Zel‘k'x where Q, 2 [k = (kl kZ)T:kf eZN[-rr]fori=1,2}, (17)
r+1 P

"

where T denotes a transpose, that satisfies

DIy < r'77, and D2 =27 ¥ p e (1, 00]. (18)
The role of r is to parametrize the number of frequencies along edges of the cube Q,.
We introduce o such that Ao € 5N to parametrize the spacing between frequencies, or
equivalently such that the resulting rescaled kernel is (T/Ac")*-periodic. In particular, this
will be needed in application of Lemma [6.2] in (89). Lastly, 4 measures the amount of
temporal oscillation in the building blocks. In sum, the parameters we introduced are
required to satisfy

l<r<pu<o '« reN, and A, 10 €5N. (19)
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Now we define the directed-rescaled Dirichlet kernel by

. . DrQAo (& - x4+ ut), Aol - x)  if L e AT,
M, 3) 2 ) = CXTHATE D HEERT o)
77*{,/1,0’,",}1(1‘7 X) lf§ eAN,
so that
1 +
paﬂu(h x)=2({-Vngt, )V { € A7, (21a)
J(: n?(t, x)dx =1, and |nllp=pr < Py p € (1,00] (21b)
v 1 Fx
(cf. [8, Equations (3.8)-(3.10)]). Finally, we define the intermittent 2-d stationary flow as
W{(t, )C) £ W{,/l,(r,r,p(t, )C) £ n{,A,U,r,y(t’ -x)b_(,/l(-x) (22)

(cf. [8l Equation (3.11)]). Similarly to the 3-d case in [8§]] it follows that for all ,{” € A
(see [42, Equations (4.16)-(4.19)])

PP, i W, =Wy, (23a)
PeaaPys (W EW,) = WEW, ifL+{ #0, (23b)
Pzg(wgéwg') = Poo(W, W), (23c)
Prong =Py ;. (23d)

Lemma 3.2. ([42, Lemma 4.2]; cf. [8 Proposition 3.4]) Define W, by @2)). Then for any
{azlzen C Csuch thata_; = a,, a function 3} reA A is R-valued and for all R € M,

Z()’g(f?))z Ji i W,QW_sdx = -R. (24)

leA

Lemma 3.3. ([42, Lemma 4.3]; cf. [8 Proposition 3.5]) Define 7, and W, respectively by
20) and (22), and assume (19). Then for any p € (1, 0], k, N € {0, 1,2, 3},

_2
IVYOEWllporr Snaep AN (Aor)r' =7, (252)
_2
VY8 nellorr Ship (Ao (Aar)r' ™. (25b)
4. Proors oF THEOREMS [2. 1H2.2]

4.1. Proof of Theorem 2.2 assuming Theorem 2.1l We first present general results for
F defined through (I0); thereafter, we apply them in case F = 1 and B is a GG*-Wiener
process to prove Theorems We fix € € (0, 1) for the following definitions, which
are in the spirit of previous works such as [29} 30} 154].

Definition 4.1. Let s > 0 and é™ € L2. Then P € P(Qy) is a martingale solution to (3)
with initial condition ™ at initial time s if
(M1) PAé@) = €n Y t€[0,5]) = L and for alln € N

P(¢ € Qp; fo UFEDIZ, 0 dr < o) = 1, (26)
(M2) for every g; € C*(T*) N L% andt > s
M; £ (&) — E(s), 0i) + f (div(&(r) ® £(r) + (A)"&(r), gi)dr (27)

is a continuous, square-integrable (B;):»s-martingale under P such that ((Mf’x)) =

[IFEr) il ar,
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(M3) for any q € N there exists a functiont — C,, € R, forall t > s such that

EP[sup]||f(r>||j;j+ f I dr] < Cug(1+ 1”19 (28)

rel0,¢

The set of all such martingale solutions with the same constants C, 4 in 28) for every g € N
and t > s will be denoted by C(s, §i”, (Crggen,=s)-

In the case of an additive noise, if {g;};>, is a complete orthonormal system consisting
of eigenvectors of GG*, then M, = .2, M;',Sgi becomes a GG*-Wiener process w.r.t. the
filtration (8B;),»>s under P. Given any stopping time 7: Qg +— [0, co] we define the space of
trajectories stopped at 7 by

Qo 2 H{w(- A T(w)): w € Q) (29)
and denote the o-field associated to 7 by B;.

Definition 4.2. Let s > 0, ¢" € 12, and T > s be a stopping time of (B;)>s. Then
P € P(Q ;) is a martingale solution to @) on [s, 7] with initial condition &M at initial time
s if

(M1) PAE@) = £V t€[0,5]) = L and for alln € N

P(€ € Qo fo IFEDIZ, 0 dr < coh) =1, (30)

(M2) for every g; € C*(T*) N L% andt > s

M, 2 EEAT) — " qi) + f (div(E(r) ® E(r)) + (=AY"E(r), ap)dr (31)

is a continuous, square-integrable (B,),>s-martingale under P such that ((M;Am))

= [ IFEr) gl dr,
(M3) for any q € N there exists a functiont — C; 4 € R, for all t > s such that

INT
EP[ sup (I + f IEPIZedr] < Cog(1 + €719, (32)

re[0,1AT] g s z
Proposition 4.1. For any (s,&™) € [0, 00) X L2, there exits P € P(Qo) which is a martin-
gale solution to @) with initial condition &™ at initial time s according to Definition d.1]
Additionally, if there exists a family {(s,, &y)}nen C [0, 00) X ler such that lim,,_,||(s,, &) —
(s, f”‘)HRxLE = 0 and P, € C(sy, s {Crglgen,izs, ), then there exists a subsequence { P, }ren
that converges weakly to some P € C(s, &™, {Crglgenizs)-

Proof of Proposition[4.1l We omit the proof of the existence of a martingale solution be-
cause it has become very standard by now; we refer to [29, Theorem 4.1] for 3-d NS
equations, [30, Theorem 6.2] for a more general case of spatial dimension, as well as [61}
Theorem 4.2.4] for the case of a diffusive term in the form of a fractional Laplacian with
an arbitrary small exponent (see also [57, Theorem 3.1]). The stability result can also be
proven following the proof of [33, Theorem 3.1] (also [58, Proposition 4.1]); because the
estimates can differ slightly due to the arbitrary weak diffusion in the current case, we
leave a sketch of proof elaborating on treatments of diffusive terms in the Appendix for
completeness. O

Proposition[.T]leads to the following results; the proofs of analogous results in [33]] did
not depend on spatial dimension or specific form of diffusive terms and thus directly apply
to our case.
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Lemma 4.2. ([33] Proposition 3.2]) Let 7 be a bounded stopping time of (8B;);»9. Then for
every w € Q there exists Q,, € P(Qp) such that

0.({w' € Qo: &(t, ON)=w@®VYtel0,(w)]) =1, (33a)
0u(A) = Ruw) éc(wym)(A) ¥ A € BT, (33b)

where R () é(r(w).w) € P(Qo) is a martingale solution to (@) with initial condition &(1(w), w)
at initial time 7(w). Furthermore, for every B € 8 the map w — Q,(B) is B;-measurable.

Let us mention that in the proof of Lemmal4.2] Q,, is derived as the unique probability
measure
Ouw = 64 Or(w) Re(w) é(r(w)w) € P(Qo), (34)
where J,, is the Dirac mass, such that (33a)-(33b) hold.

Lemma 4.3. ([33, Proposition 3.4]) Let &™ € L2 and P be a martingale solution to (3)
on [0, 7] with initial condition &™ at initial time 0 according to Definition[£.2] Assume the
hypothesis of Lemma[.2land additionally that there exists a Borel set N' C Qg such that
P(N) =0 and Q,, from Lemma.2lsatisfies for every w € Qo \ N

Qu(fw’ € Qo:1(w) = T(w)}) = 1. (33)
Then a probability measure P ®; R € P(€) defined by
P& R(-) = L Qu()P(dw) (36)

satisfies P @T Rlo,, = Pla,, and it is a martingale solution to @) on [0, o) with initial
condition ™ at initial time 0.

Now we split (3) to
dz+ (—=A)"zdt + Vr'dt =dB, V-z=0fort>0, z0,x)=0, (37a)
ov+ (-A"v+div(v+2) ® (v +2)) + Va2 =0,V-v=0fors>0, v(0, x) = ui“(x) (37b)

so that u = v+z solves (3) with 7 = n! + 72 starting from u™" at # = 0. We fix a GG*-Wiener
process B on (Q, 7, P) with ()0 as the canonical filtration of B augmented by all the
P-negligible sets and apply Definitions . TH4.2] Proposition[4.1] and Lemmas with
F =1 and such B.

Proposition 4.4. Suppose that m € (0,1) and that Tr((-A)> "™ GG*) < oo for some
o > 0. Then forall 6 € (0, %) andT > 0,

BV sse + Izl 4oy 2401 < o0 (38)
CrH, C; H;

Proof of Proposition[4.4] Similarly to [33] Proposition 3.6] and [58], Proposition 4.4], this
follows from a straight-forward modification of the proof of [21, Proposition 34] and an
application of Kolmogorov’s test [20, Theorem 3.3]. Because our diffusion is significantly

weaker than the cases in [33| 158]], we require a stronger hypothesis on G. In short, one can
define

i S 3
Y(s) £ @ f e V"G5 — ) PdB(r) where a € (o,ﬁ), (39)
0

show that EP[H(—A)% Y% )1 <e Lforallk e N using Tr((-A)?"™2GG*) < oo from

212
hypothesis, use the identities of

! !
) = f e "N"PdB(r) and f (t—s5)""(s—rds =
0 r

T

Sin(an) for any @ € (0, 1)
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respectively from (37a) and [20, pg. 131] to write
!
f (1= )" eV (5)ds = 2(0),
0

and conclude the first bound. This immediately gives for any § < l

B[ sup [(=A)F (2t + h) = 2] Sompir P (40)

t,t+hel0,T]
(wereferto [21, Equation (55)] and [19} Proposition A.1.1]) so that applying Kolmogorov’s
test deduces the second bound. We refer to [21, Proposition 3.4] for complete details. O

Next, for every w € Q we define

M) = w(t) — w(0) + f Pdiv(w(r) @ w(r)) + (—A)"w(r)dr, (41a)
0

!
Zo(t) = MY - f P(=A)"e™ N MY dr. (41b)
0

If P is a martingale solution to (3)), then M is a GG*-Wiener process under P and it follows

from (@1a)-(@1D) that we can write
!
Z(1) = f Pe N dM, . (42)

5 240
We can deduce from Proposition @4 that P-a.s. Z € CrH, # N C2 H > . Forn € N and
6 € (0, 12) we define

1 W 1 1
7} (w) £inf{r > 0: Cs||Z (t)”HMT” > (L - ;)4}

1
A inffz > 0: CsIIZ“JII 4oy >(L- Z) }A (43a)
T, £ lim 77, (43b)

n—oo

where Cs > 0 is the Sobolev constant such that ||f]|z> < C5||f|| e for all f € HS S (T2),

so that (7] )y is non-decreasing in n. By [33] Lemma 3.5] it follows that 77 is a stopping
time of (B,),»o for all n € N and hence so is 7;.

Next, we shall assume Theorem[2.T]on a probability space (2, F, (F,)r»0, P) and denote
by P the law of the solution u constructed from Theorem 2.1l

Proposition 4.5. Let 11 be defined by {@3b). Then P, the law of u, is a martingale solution
of @) on [0, 7] according to Definitiond.2]

Proof of Proposition.3] For Cs > 0 from @3a), L > 1, and § € (0, 5), we define
Ty 2 inf{t > 0:Csllz(0)ll e > L3} Ainf{r = 0: Csllzll 10 20 > L2} AL (44)
H? Cc?UH T

Due to Proposition[d.4] we see that P-a.s. T, > 0 and Ty ,/* +oo as L * +oo. The stopping
time t in the statement of Theorem[2.1lis actually T for L > 0 sufficiently large. The rest of
the proof of Proposition[d.3] follows that of [33] Proposition 3.7] (see also [38, Proposition
4.5]). O

Proposition 4.6. Let 7, be defined by (@3b) and P denote the law of u constructed from
Theorem[2.1) Then the probability measure P ®,, R in 36) is a martingale solution to (3)
on [0, ) according to Definition 4.1l
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Proof of Proposition 4.6l Because 77 is a stopping time of (8B;),»o that is bounded by L due
to (3a), and P is a martingale solution to () on [0, 7] due to Proposition[4.3] Lemma.3|
gives us the desired result once we verify (33). The rest of the proof follows that of [33]
Proposition 3.8] (see also [58| Proposition 4.6]). ]

Taking Theorem 2.1l for granted we are ready to prove Theorem 2.2l

Proof of Theorem[22lassuming Theorem[2.1l This follows from the proof of [33, Theo-
rem 1.2] (see also the proof of [[58, Theorem 2.2]). In short, we can fix T > 0 arbitrarily,
any k € (0,1) and K > 1 such that kkK? > 1, rely on Theorem 2.T] and Proposition to
deduce the existence of L > 1 and a measure P ®,, R that is a martingale solution to (3)
on [0, o) and coincides with P, the law of the solution constructed in Theorem [2.1] over a
random interval [0, 7.]. Therefore, P ®,, R starts with a deterministic initial condition gin
from the proof of Theorem[2.1] It follows that

P®; R({r, 2T} = 0o € Qut(w) 2 THP(dw) =P(TL, > TH) >« (45)

Q
where the last inequality is due to Theorem[2.1l Consequently,

GHEs) : | .
E™0RIEDIL] > dKIEMN 2 + K(TTHGG)? | = kK> (€M7, + TTr(GG")).  (46)

On the other hand, it is well known that a Galerkin approximation can give us another mar-
tingale solution @ (e.g., [29]) which starts from the same initial condition £&™ and satisfies
EOIEDIE,) < IEME, + TTHGGY).

Because kK? > 1, this implies P®;, R # © and hence a lack uniqueness in law for 3). O

4.2. Proof of Theorem 2.1 assuming Propositiond8l Considering (37B), for g € Ny we
will construct a solution (v, R,) to

Ovg + (=A™, +div((vy +2) ® (v, + 2)) + Vi, =divR,, V-v, =0, >0, (47)

where 1°€q is assumed to be a trace-free symmetric matrix. For any a € 10N,b € N,
B€(0,1),and L > 1, to be selected more precisely in Sub-Subsection[d.3.1] we define

Agza”, 5,2 7P, M) £ Lte, (48)

from which we see that 1,1 € 10N C 5N, as required in (I9). The reason why we take
a € 10N rather than a € 5N will be e.g. explained after (I128). Due to Sobolev embedding
in T? we see from (@4) that for any 6 € (0, 15) and ¢ € [0, T ]

lk(Olls < L5, 2@l < L3, Nl o < L2 (49)
1
Let us observe that if @ > 3 and b > 2, then 3,67 < 3 for any g € N. We set the
convention that }};,<9 = 0, denote by cg > 0 a universal small constant to be described
subsequently throughout the proof of Proposition[4.8](e.g., (84)), and assume the following
bounds over ¢ € [0, 7] inductively:

1
Vglle,zz < Mo(®)? (1+ > 87) < 2Mo(1)?, (50a)
1<i<q
IVglle:, < Mo(1)> A5, (50b)
IR I, < Mo(£)crgq1- (50¢)

We denote an anti-divergence operator by R in the following proposition (see Lemmal6.1J).
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Proposition 4.7. Let
2,2Lt

vo(t, x) & (sin®) 0)". (51)
Then together with
o L 203 0 —cos(x?) m . . .
Ro(t,x) = o (_ cos(x?) 0 ) + (R(=A)"vo + vo®z + z®vg + z82)(t, x), (52)
it satisfies (&1) at level g = 0. Moreover, (30) are satisfied at level g = 0 provided
(50097% < 50%a*" < gL < cg(a*n — 1) (53)

where the inequality 9 < a*# is assumed only for the justification of the second inequality

in 50a). Furthermore, vo(0, x) and R(0, x) are both deterministic.

Proof of Propositiond7) Using the facts that the divergence of a matrix (A7) j<> is a
2-d vector, of which k-th component is Z?=1 0 jAkf and that div(vp ® vo) = 0, one can
immediately verify that vy and Ry from (GI)-(32) satisfy (@7) at level ¢ = 0 if we choose
mo=—(vo-z+ %|z|2). We also point out that vy is divergence-free while 1%0 is trace-free and
symmetric due to Lemmal6.1] as required. Next, we can compute

Mo(1)? 2241+ 1) 63

< My(0)?, wlle = —=——="< My(0*a,  (54)
1x 71—

[voll2 =

and thus (30a)-(G0b) at level ¢ = 0 hold. Next, we can compute

5 3 oL 1l 21
IRoOlly < 16L%e* + 27||R(=A)"voll2 + 20mMo(£)2 L7 + 5Q2m)*L2.  (55)

Using the facts that vy is mean-zero, divergence-free, and satisfies Avy = —vy we can rely
on (193) and interpolation to deduce

IR(=A)"voll2 < 2(lIvollzz + lAvollz2) = 4lIvoll 2. (56)

Therefore, due to the second inequality of (33), continuing from (33)) we obtain

o @REHEE 1 1 11 2.1 (%)
IRo(Dll 16LMo ()} +87Mo(1)F +207Mo(H)} L +5021%LF ‘< My(f)crdy. (57)
This verifies (30d) at level ¢ = 0. Finally, it is clear that vo(0, x) is deterministic, and
consequently Ry(0, x) is also deterministic because z(0, x) = 0 from (37a). O

Proposition 4.8. Let L > (50)97r261;1 and suppose that (vq,ﬁq) is an (F1)=0-adapted pro-
cess that solves 1) and satisfies G0). Then there exists a choice of parameters a, b, and
B such that 33) is fulfilled and an (F;)»0-adapted process (qu,IcéqH) that satisfies 1),
@®Q) at level g + 1, and

1
Vg1 (1) = vg(@)lz2 < Mo()?67,,. (58)
Moreover, if v4(0, x) and Iféq(O, x) are deterministic, then so are v441(0, x) and I%qH(O, X).

Taking Proposition[4.8] granted we can now prove Theorem 2.1

Proof of Theorem[2 1l assuming Proposition[ 4.8 The proof is similar to that of [33] Theo-
rem 1.1] (see also the proof of |58, Theorem 2.1]); we sketch it for completeness. Given
T >0,K > 1,and « € (0, 1), starting from (v, 1%0) in Proposition[4.7] Proposition[4.8]gives
us (v, R,) for g > 1 that satisfies (50) and (58). Then, for all & € (0, 4%3) and t € [0, Ty],
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by Gagliardo-Nirenberg’s inequality, and the fact that b%*! > b(g + 1) for all ¢ > 0 and
b > 2, we can deduce

e L 1 e 1
D gt (1) = vyl < Y Mo(0)'= 6,3, (Mo(0)? 12, )° < Mo(0)?. (59)
q>0 q>0
Therefore, we can deduce the existence of limy_.o vy 2 v € C([0, T,]; H?(T?)) for which
there exists a deterministic constant C; > 0 such that
sup [v(®llg: < Cr. (60)
1€[0.T;]
As each v, is (F;)=0-adapted, it follows that v is also (%;);»0-adapted. Furthermore, for all
te€[0,Ty], ”I%q”CILl‘ — 0 as g — +oo due to (30d). Therefore, v is a weak solution to (37H)
over [0, T ]; consequently, we see from (37a) that u = v+z solves (3). Now for cg > 0 to be
determined from the proof of Proposition[£.8] we can choose L = L(T, K, cg, Tt(GG*)) >
(50)97r261;1 larger if necessary to satisfy

3 1 1 1 .

3t < (% - E)eLT and L3271 + K(TTH(GG?))? < (e — K|z + Le"™ (61)
where ™ (x) = v(0, x) as z(0, x) = 0 from B70). Because lim; . T = +o0 P-a.s. due to
Proposition[£4] for the fixed T > 0 and « > 0, increasing L larger if necessary allows us to
obtain P({T; > T}) > . Now because z(f) from (37a) is (F;)s0-adapted, we see that u is
(F1)=0-adapted. Moreover, (60) and @9) imply ). Next, we compute

&3 a+ 1
b0 = vo0llz = Mot Y @ < Mot Y e 2 Mo@)*(5)  (62)
420 q=0
for all 7 € [0, T1]. We also see by utilizing (61)) that
B 3 . 11 L
(Ol + Lyet” == GMoO)F + Det™ < (= HMUT) =< I(Dllz. (63)

Therefore, on {T; > T}

LT CREIED i )y
lu(Dllz > AvOlz + De™ = (Dl 2 = Kllu™llz + K(TTH(GGY))?,  (64)

which implies (@). At last, because vo(0, x) is deterministic from Proposition£.7] Proposi-
tion 4.8 implies that u™(x) = v(0, x) remains deterministic. O

4.3. Proof of Proposition[4.8l

4.3.1. Choice of parameters. Let us define

L [2m-1 ifmedn,
m" = ] | (65)
0 iftme (0,5];
it follows that m* € [0, 1). Furthermore, we fix
1-m* 1-m*
N
neQ.N( 6 3 ] (66)
from which we see that 77 € (0, g]. We also fix L > (50)97%c;' and
1-m
2 67
= 7200 (©7)
We set
re M g2, and o2 2T (68)
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from which we immediately observe that 1 < r < u <« o" < g1 from (I9) is satisfied.
Moreover, for the @ > 0 fixed we can choose b € {t € N:¢ > } suchthatr € Nand A0 €
10N so that the conditions of r € N and 4,410 € SN from (DE[) are satisfied. Indeed, because
n € Qy N, 8] we can write 1 — 61 = ”: and 2n = - 2 for some ny,ny,d,d,» € N, and

then take b € N to be a multiple of dd; it follows that r = /l;j” = q"""'(1=6D ¢ N and

Agr10 = /lzzl = "2 € 10N as a € 10N. For the « from (67) and such b > 0 fixed, we
take 8 > O sufficiently small so that

a > 164b. (69)

‘We also choose
121 /1’ . (70)

q+177q

Together with the condition that b > =2 by taking a € 10N sufficiently large we obtain

My < ¢, and I"' <% (71)

q+1°

Remark 4.1. We will have numerous requirements that @ € (0, Cn) for various constants
C > 0; e.g., the second inequality of (89) will require that we bound

| u D63
<

1
-3 ) s 2 2 “MNiH1la
/lq+lo- ! /lq+1/lq+l /qurl

by a constant that does not depend on relevant parameters and therefore we need a < %
Thus, to be able to fix the value of a explicitly as we did in 1), we decided to restrict i to
have the lower bound of in (66), dlﬁerently from [42], Equation (2.3)]. It follows that
« defined in (67) indeed sansﬁes a <AL T as

1—m1—m* 1-17
=200 U6 Y S 1

and we will see that our choice of a in (67) will satisfy all other instances when it needs to
be sufficiently smaller w.r.t. 1.

Concerning (53), taking ¢ € 10N sufficiently large gives cgL < cg(a*r — 1) while
B > 0 sufficiently small allows (50)97% < 507°a*" < czL. Because we chose L such that
L > (50)97r2c1;1, this is possible. Thus, we shall hereafter consider such m*,n, @, b, and [
fixed, preserving our freedom to take a € 10N larger and 8 > 0 smaller as necessary.

Remark 4.2. Let us remark on some differences in our choice of parameters and those of
other works. First, the work of [42] did not have a parameter that is equivalent to our a
(The “a” in (42, Equation (2.3)] is actually our 1 defined in (66)). Our « in (€7) plays the

role of defining | = q+1 A, 2 in Q). Instead, the choice of | = /1;20 is taken in [42, Equation
(3.1)], which has appeared in others’ previous works (e.g., [8, Equation (4.16)]). As we
described already in Remark 1) parts of our proof such as ®9) required « to be taken
small w.r.t. 7 and because 1 in (66) depends on m* defined in (63) which in turn depends

on m, we chose | = /1;57: /15;2 where a depends on m via (€1) following [33], Equation (4.17)]
and [58| Equation (69)].

On the other had, the works of [18,133]] did not have a parameter that is equivalent to our
n in (66) because [8,33] were concerned with the Navier-Stokes equations and hence there
was no parameter m. For further references we note that after this work was completed, a
parameter that is analogous to n in (66) continued to see utility in others’ works (e.g., [10]

Equations (2.3)] and [S9, Equation (92)]).
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4.3.2. Mollification. We let {@}es0 and {@c}es0, specifically @.(-) = Elch(é) and @.() =
%tp(é), respectively be families of standard mollifiers on R? and R with mass one where
the latter is compactly supported on R... Then we mollify v,, 1°€q, and z to obtain

viE g @) %o Ri2 Ryxe @) s 22 (25 d) % (72)
It follows from (@7) that v; satisfies
O+ (A" +div(v; + ) @ (v + 1)) + Vm; = div(f?z + Reomt) (73)
if
71 2(g i B1) %P1 = %(Iw + 2’ = (vg + 2 % d0) 0 1), (742)
Reomt ZRcommutator1 = (Vi + 2)&; + 21) = (Vg + 2)8(vg + 2)) *x G1) *; 1. (74b)

We can estimate for all # € [0, T,] and N > 1, by using the fact that 8 < a from (69) and
taking a € 10N sufficiently large

IR B
vy =viles = M@ < M0, (75a)
1 1
Willez < Walliz < Mo@*(L+ Y 67), (75b)
1<i<q
(@0
Willey s IV Mo < VMDA (75¢)

4.3.3. Perturbation. We let y be a smooth function such that

L)1 ifze]0,1],
X = {z if z € [2, ), (76)

and z < 2y(z) < 4z for z € (1,2). We define fort € [0,T;] and w € Q

p(w, 1, X) £ dcgd g Mo(Ox ((crSge1 Mo(®) ™' [Ri(w, 1, X)) (77
Then it follows that
Ri(w, 1, %), _ IRi(w, 1, x)| i < 1' (78)
P, 1,X) " Acpdge Mo(Dx (RS ge1 Mo(D)) R ((w, 1, X))~ 2

We can estimate for any p € [1,00] and ¢ € [0, T ]

g
llo()llc,rr < sup 4crSygr1 Mo(SIIT + 3(crOg+1 Mo($))™ [Ri(w, s, X)|l| .2
]

s€(0,7

< 12((47)7 RSyt Mo(t) + IR(llc.2). (79

Next, for any N > 0 and ¢ € [0, 7], due to the embedding of W3!(T?) — L*(T?),

o @ 3o I
Riley, < > 10D (=A) Rillyeyy s 7V Mo(Dcrdgn. (80)

0<n+|a|l<N
Forany N > 0, k € {0, 1,2}, and ¢ € [0, 7] we can deduce by taking a € 10N sufficiently
large
lollc,cy < crOgri Mo and lpllcr xS crdges Mo+ D). (81)
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Indeed, the first inequality can be computed using (79)-@80) when N = 0, while (Z&)-(T7)
and [6, Equation (129)] in case N > 1; the second inequality can be computed by directly
applying 9, and V and then relying on (8Q). Next, we define the amplitude function by

. . 1 Riw,1,%)
ar(w,t,x) = azg1(w, 1, x) = p(w, 1, x)z)’{(m)- (82)
Remark 4.3. We note that analogous definitions of a; in previous works had “Id — -” in
their arguments; e.g.,
R (w, t, x) _3
« . . 1/2 \w, 1, »
A (W, 1, X): = ag ga1(w, 1, X): = p(w, 1, x) "y, (Id— m)@ﬂ) 4

in [33, Equation (4.26)] (see also [8, Equation (4.12)]). The geometric lemma in the 3-d
case that was used in [8,33l], specifically (8 Proposition 3.2] and 33, Lemma B.1], had a
ball around an identity matrix in the space of 3 X 3 symmetric matrices as the domain of
Y¢. On the other hand, the available geometric lemma in the 2-d case, specifically Lemma

3.1l from (42, Lemma 4.1, requires that the argument of y; be not only symmetric but also

trace-free. Because Id — Rp—l((ww”:;) 1;’((;“;;)

Furthermore, our choice of the argument of a; also differs from that of [42, Equation
(5.1)] because theirs includes not only 1031 but also R.omi. We chose to refrain from including
Rcom1 within the argument of 'y, because in contrast to 42, Equation (3.6)], our R.om; in
(Z4D) includes z and requires separate delicate treatments (see (133)).

would not be trace-free, we chose

as the argument.

Next, we have the following identity:

> adw, 1, x)ag(w,1,x) JC W, EW, (1, )dx = —Ri(w, 1, ). (83)
Len B

Indeed, the fact that by (x)&b_;(x) O —(®¢ leads to
D 7 Rys®) fz W,&W, (1, x)dx
T

{LeN
which in turn gives (83) by using (§2).

DmEBE

Remark 4.4. Let us note that this identity (83) differs slightly from the analogous ones
previous works, e.g.,

3 B »
“(2rm)2 Z Cl(zf) J[} W(._g) ® W(g)dx =pld - R,
£eA T

in (33 Equation (4.27)] (c¢f- also [8| Equation (4.14)], [9, Equation (7.30)], [42, Equation
(5.3)]). The identity @3) will be necessary in deriving (I02) and ultimately (1134)-(I13D).

Concerning a; we can estimate for all # € [0, 7] with C and M from (16

1 1
BOHD : | M @Em Mo,
lagllcz = [12(47°crOge1 Mo(D) + IR()llc )2 — <= ————— (84)
¥ 7 Ca 2|A|
1
by requiring C14e < A—14 We also have forall r € [0,T.], N € Ny, and k € {0, 1,2},
11 11
laglle,cx < c,g(s;HMo(t)%z—%—zw and lagllcicx < c,g(s;HMo(t)%l—(k“)“. (85)

Indeed, the first inequality in case N = 0 follows from (I6), (Z8), (8I)-(82), while the
first inequality in case N € N follows from (Z8)), (81)-(82), an application of [6, Equations
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(129)-(130)], and the fact that p(f) > 2cgdy+1Mo(t) due to ({Z6)-(T7). Finally, the second
inequality can be verified by applying d, and V, and relying on (Z8), (81)-(82).

Next, we recall Y, n;, W, and u respectively from (I3), (20), 22), and (68)), and define
the perturbation

Woel = w;’jr)l + wﬁ;zl + ngrl and vy = v+ Wgei (86)
where
WO 2N Wy, wi 2 3 Vi amwe, wil 2T (Y = Y PPa(@Panid). (87)
LeA LeN LeNt  leA
We have the identity of
(5 e
W+ w0 TEZ VY agt, omet, (). (88)
LeAN

It follows that wy.; is divergence-free and mean-zero. Now by (13) and (20) we see that
W, in @2) is (T/A4+10)*-periodic. Thus, we can apply Lemmal[6.2]to deduce

CRMo(t) 6q+1
|A]

CDED D
») < > F A o eio, Mo

W, llcz s Mo(1)*, (89)

q+1
LeAN

1
where the last inequality used the fact that 11— < 0 due to (©3)-(€7); preserving c; here
will be needed in deriving (92). Next, for all p € (1, 00) and ¢ € [0, T] we can estimate

&) O3 ED 2
ez < sup S llaclis W)z S 02 Mo()* 17377, (90a)
s€(0,1] reh
®&D @Em- 1 1.1 _2
Wl s sup Y IV @)l < 62, Moo, (90b)
s€(0,1] ZeA
& _ -dEb _ 302
W les = 17 D Nl el oo s K Sqn Mo(OI (90¢)
leA

The estimates (90b)-([@0d) allow us to deduce for all p € (1,00) and ¢ € [0, T7]

t
Wi e,z + 1030 e,z

<Iﬂb

< Mo 3r2“[/15“*2" ‘+A;"11‘5;+1M0(t) 1< 6,0 Mo)I73F 2713’1]1 1)

where the second inequality used that 5a + 2 < 45 — 8 due to (66), ©Z), and (69). We
deduce from the estimate (]ﬂ[) by taking a € 10N sufficiently large that for all # € [0, T ]

E@EED | | -
Wgetllez < Mo(t)2 + 011 Mo(D)I” r/l
-m L o2 ! : o
< qu1Mo(t) [ +CMo(L)2 A, 7] < ZéqHMo(t) 92)

where the second inequality is by taking cg < 1 and the third inequality used that 6a—27n <
0 due to (66)-(67). We are now ready to verify (30a) at level g + 1 and (38) as follows:

THED , !
Wgaillez < Wil +wgnllez < Mo@:>(1+ >\ 87, (93a)
I1<i<g+1

©

TDED Ll
Vge1(D) = vg@llrz < [wga1 Oz + Vi) =vg@llz < Mo(D)326,,,. (93b)
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Next, we estimate norms of higher order. First, for all ¢ € [0, T} ]

®&D
WP e S > Nagllen WAz + ladle = Welr
LeA
C5aEITD 1-6 2-8 3-14n,-3
Ul 8a n n;—3
< 0L, Mo AL+ 2 < 62, Mo P AR, (94a)
1w, e Zn(Vlam +aV )l (94b)
JeA
dEEb

o(t)zr[l 2 lqﬂ +I2 our+ 1~ Z/quO' 22 < 5q+1M0(t)%,12:8’7[*%,

where the last 1nequa11ty in (94a) used the fact that 8¢ < 2 — 8y which can be verified
by (@3)-(@7). Next, due to PP,y not being bounded in C},, we go down to L? space for
p € (1, 00) in the expense of /1” .1 and estimate for all ¢ € [0, T, ]

-1
e D > laglic.elacller e nel e, + lladl e e lndicie, — (©95)
leA

2 2
+llaglle,e,laglle,cillneli2, . + llacl, e lmellcc. melle,ci]
mgm@

4'] 1
/l /lq+l

where the last inequality used the fact that 8« < 2 — 85 due to (63)-(@7). Therefore, by
taking a € 10N sufficiently large we conclude that (30B) at level ¢ + 1 holds as follows:

Sqar Mo (A 1ASE, + A2 < 40116 Mo()1

BEEDHE)
vgriller, < MG U +C/13+}4”r' +CA M o] < Mo(n2 A,
(96)
where the second inequality is due to
@ 1
rlay <Ay, < Z/l‘q‘w (97a)
pEms s @ 514y 3 @)1 4
ca < e ’uqﬂ < e (97b)
_ L@ , EDEED |
CA T Mo < CA ™ My(L)? < 3 ey (97¢c)
Finally, we estimate for all p € (1,0) and ¢ € [0, T} ]
2+ 0 i B 19 agnaw ol s (98a)
JeA
EDHEHED 1 Lg-2 19 | 3 54 _3 1 1q-2,3
S (5q+1M0(t)2r r[l2 /qurl +1 20°r /141+1 +1/ zﬂq+1] < (5q+1M0(t)2r vl 2/11]+1,
& _
0 lewir < 17" Y Nacll.e,lacllecalimel, 20 + lacl, e, Imclle, 2o nellc, 2 (98b)
leA
TEHESD

2 m _ 3 3.2
S W0 MoIT T 4 Agor] S T S Mo P Agun0
4.3.4. Reynolds stress. We can compute from (7)), (73), and (86) that
divR 11 — Ve (99)

= (=A)"wger + B+ W) + divi(v + 20) @ Wit + Wy ® (v +2)

div(Ryin)+V7in
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t t (2] (12
+ d1v((w(c) + w;il) ® Wyi1 + qu ® (W;?l ()1)) + dlv(wq‘i1 ® qu+1 +R)+ (%qurl
div(Reor)+Vreor div(Rose )+ Vo

+div(Vgs1 ®Z = Vgr1 ® U+ 2@ Vyr1 =4 ® Vst +2® 2 — 2 ® 7)) +divReom1 — Vi

div(Reom2)+Vcom2

within which we specify
Rlin éRlinear
LR(=NY"Wyi1 + REWD, + WD) + (v + 2)&Wgst + wen®vi+2),  (100a)

q+1 q+1
Tlin ZMinear = (Vi +21) - Wgs1, (100b)
Reor =Rcorrector = (Wi;)—l + Wq+1)®wq+l + W(p) ®(W§;21 Z‘)"l) (100c)
A A 1
Tlcor =Tcorrector — E[(W;C:l + thJrl) cWael T Wéljr)l : (W;CJEI ZJ)rl)] (IOOd)

RcomZ éRcommulallorZ = Vq+lé)(z - Zl) + (Z - Zl)é)qurl + (Z - Zl)®Z + Zlé)(Z - Zl)a (1006)

R R 1 1
Teom2 =Mcommutator2 = Vg+1 * (z—z)+ §|Z|2 - §|ZZ|2- (1001)

Concerning R, that is arguably the most technical, first we can write

divw?), @ W) = divw? éw’) + V> |w§11’+)1|2, (101)
while
EDED .
W &w? + Ry > acapPu(W&W) =y 4P e (WeEWe)  (102)
ST I

because the minimal separation between active frequencies of W, ® W, and the zero fre-

quency is given by A0 for ¢’ = —Z and by % > 2,10 for ¢’ # —¢ due to (23B)-(230)
(cf. [8, Equation (5.12)]). This leads to

) ) am
divow®, &w? + R) T2 P Z V(azar) B ir (W,&W,) (103)
{.0'en
+ a{a{/V . PZ#(W{éW(» = Z 8{( 1+ = Z 8({ 2,
{f eA f {'eA
where
8_{3&1 2 IP’;&O(V(a{a;/) . P>ﬂ (W{éw_(/ + W{/éW{)), (1043)
273
8_{3{/2 < P#)(Cl_(cl_(rv . (W{QW_(, + Wé‘réw_()), (104b)

in which we used symmetry, and also dropped the unnecessary frequency projection P_ ..
= 2

in & ». Now forany £,{’ € A C S', we can compute

12 ¢12 201l 212 (#2\2 11 _ #lo12N2
el + eI+ = (_5( b L g e ) aos

(LN Y -+ PP+ (D - 1]) PP ,
- ({2[((/2)2 + {15/1 _ 1] + 5/2[(§2)2 + {1(/1 _ 1] = (( g 1)Id(§ + { )
It follows that
V- (b_(éb_(/ + b_(/é)b{)(x) =V. (b{ ® b_(/ + b_(/ ® b_{ - b_{ . b(/Id)(x)
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ISR i ’)-x /
DI 1 @O ) B9, w0, (106)

Consequently,
i)
V- (WWy + Wp@W,) = (b®by + bp®by) - V(nmg/)+(n(774/)V(/13+1l//{{//{/). (107)

After splitting 3 2erenSrra = E(Z{,_{’EA: 020t Xeren: c+o=0)6¢.0 2, this allows us to
write
1

S D & (108)
L EN: L+ #0
4
I 1 . s @ 1
TR D PalacagV Py (WAW, + WeEW)) = 2 > > Eroa
= 10
L eN: L+ #0 L eN k=1
where
84,4/,2,1 = P¢0(a4a§/P>aq_gl [(bé’éb{/ + b{/ébé’) . V(U{U{/)]I{Jr{/io, (1093)
=1
Erpran 2 VPu(acapP_ s e A, o ) vz, (109b)
= 10
Ereran % Peo(V(azap)P iy Oy g Wethe D ss 0, (109¢)
Erpna = —ProlagapP gt (V(Um_(')/lgﬂ¢{¢§'))1g+§'¢0 (109d)
=1

(cf. [8, pg. 131]). On the other hand, in case { + " = 0 we have V(/lgﬂt,b{w_;) © 0, while
we can multiply (21a) by 27, to deduce u~'8,[n;* = (£ - V)In,|* for all £ € A*. Hence,

l(lI
V- (W{@W_{ +W_ (®W{) [b(@b -7 +b_ (®b(]V(7](T] ()

= 2{l®{an{ = [1d -2, ® 1V} = Vi; = 20 - VIpd = Vi # 2 @mp)¢. (110)
This allows us to write

1 I |
- Z Erpn E ZP#)(%V (WEW_, + W_&W,)) (111)
L eN L+ =0 geA
a1

5 2 V@ 1o i) = Puo(VaZP 1o )

geA -2

~i' (Y = D OPa(@Pa(50) = Pao(OiaZ? iy (1)

JeEAY e~

where we also used that 7, is (’]F//lqﬂo-)z-periodic and hence P> ,lqﬂ(,q? = IP’#);]?. At last,
>l
we obtain by using the definition of P = Id — VA~!'V-

1
= Z 8_{3{/2 + (9,w;21
LLeN L+E=0
1
€20 ZV(aZIP’ ) = Pao(VaZP, 0 1)
[eA z
~H Q= D IOP(@Ba(0) = Pao(@aP e (1))
JeAt [eA™
+7 () = > )d - VATV, Pao(@ZPani) = ZAk (112)

JeNt  leA™
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where
AL~ Z V(P o ), (113a)
geA
Ay 2 —= ZPiO(Va P Aqu) (113b)
(eA
A2 ()= ) P (@aP e (100, (113c)
JeEAY  eA™
Ag2 VAV i) - Z)Pioaf(aﬁmonzo. (113d)
JeAT  (eA~
Therefore,
le(W(p) ® w(p) +R)+ (9,wq+1
Do 1 ® L
= E Z 8{34@1 + E Z 8{3{/!2 + (9,wqr+1 + V§|Wq[_:_1|2
{J'eA L eN
I 1 1
l E Z 8_(!&1 + E Z Z 8(3{/!2!k+A2 + Az
NI (g’eAkfl 34
1
+ VWP + Z Poo(@ar Py Ol gy ctie)
§:eA

T Zafp e = AV TN = ) Pl @B (114)

ZeA JeAT  (eA~

which finally leads us to define

. 1
Rosc :Roscillation = R(_ Z 8{ o1t E Z Z 8{,{’,2,1( + As + A3z), (115a)
[(’EA (e k=134

A A 1
Tose EToscilaion 5|wf;fl|2+ 5 Do Peoacar® e (ene Ay e Nesso - (115b)
[N

1
5 D AGE et = AV (Y = S Paodh(aPron).

LeA JeEAY e~
Considering (@9) we define
Tg+1 £ 1 = Min = Meor = Mose — Meom2 and Rq+1 £ Riin + Reor + Rose + Reom2 + Reom1- (116)

Now we choose

“a 16(1 - 6n)
N , 117
P = 3000 + 16(1 = 7) (17

which can be readily verified to be an element in (1,2) using (63)-(6Z). For Ry, we first
estimate by Gagliardo-Nirenberg’s inequality for all ¢ € [0, T ]
IR=A)" Wgsill . sllwq+1lllc ;",, (||V(wfff1 WDl + VWl )™
1
S 5 .

HMo(t)%rl_%(l‘% +52 Mo(t)zl— M4n 1)1 m

1 "
X (173 Age1 +y‘16;+1M0(t)71_ PAgao)™. (118)
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Second, for all ¢ € [0, TL]

(»)
IRA, W + WDl < §||3r(a{Tl§)W{||CILf*
JeN

mm- 1

S q+1

Mo r 732178 (119)

Mo} T AL + o] <5 el

g+1
Finally, we can estimate for all 7 € [0, T ]

(v + z)®wg1 + wq+1®(w + e S Uvgllce, + ellc,elwgealle,

‘
. . 0()214[5q+1M0(t)%r%r * Sy Mo AL (120)

Due to m-m we obtain for all 7 € [0, T ]

WRinllg = "Phr A" warll -+ IRGWL + WDl e

+ v + 2)®Wyi1 + w1 ®(v + Wl
IIRHIIHID 1
< 5 Mot r =7 (I z+52 Mo a1
X (73 Aoy + ,u_l(S;HMo(t)? Pr o)™

+6° M(t)%r i
q+1 0 q+1

+ Mo(1)? 42 (60 Moo 137 + 8g Mo(OI 7 A4

g+1 q+1

<Mo(0)ir' 7 AN+ Mo r' 7 ru‘ B Moy TR 2D

Now within the right hand side of (I21), first we can estimate using 28b < § from (69)
and taking a € 10N sufficiently large

Mo rmriam

g+1
_2 (v 1-6m(1- .
Mo P < Mo(z)(sqmjfz/lw” ” 130 ifme (0,1),
- 1oz 3 o, @D 2w L0 6'7)(1 .
Mo(0)3r' ™7 P22 S Mo(D84:000,4, v /1311/1;;"11 ifme[L D),

@ ,2(%) MO(t)CR5q+2
~ 15
Second within (I2I) we estimate using 28b < § from (69) and taking a € 10N sufficiently

large

_ 25
Mo(t)5g2,,} < (2m) (122)

1123 1oy @ § omyi-F pa 4180
Mo()2r 71 z/qurl S Mo(1)64+24 +1(/lq+l ) /lq+l g+1

)_2(1’p_;1) MO(I)CR6q+2 .

15
Third within (IZI) we estimate also using 28b < § from (69) and taking a € 10N suffi-
ciently large

_ 25
@Mo(t)éqﬂ/lwf < (n (123)

23 4, D da _2
Mo(r 7 I EY M Mo(t)5q+2/18+1 (/l(lﬁ?’)l "

GIZI) ®e -1y Mo(t)cgo,
Mo(t)6q+2/l < (27‘[) z(pp_*l)%.

By applying (122)-(124) to (I21)), we obtain

ot MO(t)CR6q+2
IRinll, e < )7 ———=.

(124)

(125)
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Next, for all # € [0, 7] we estimate by Holder’s inequality, utilizing 28b < ¢ due to
(69), and taking a € 10N sufficiently large,

;
IReorlle, 1 = ( Wil 2o+ I N 2o AW e 2o+ WSl o+ I8 D )

dﬂbm _
UM P2+ Mo 2 )
x [Mo(t)frl*p—*rf(A;f’jﬂjilMo(t)% +1)]

,2(%) MO(t)CR5q+2
3 .

Next, we estimate Rogcillaion from (I13a). First, we rely on Lemmal6.3] use that 286 < §
due to (69), and take a € 10N sufficiently large to deduce for all # € [0, T;]

dJIZb
< q+zMo(t)/1 3 My < 2) (126)

q+1

1 (042 10 _
IRG D Ecoley = ("+ )7 IV@an)lle, W W + Wo&W,l,
{LeN LN
G5 @3 _15 22 (OTID (2 CrOg+2Mo(?)
S LMy T TS 8,aMoA,,) < 2m) T a2
q+10'

Here the hypothesis of Lemma [6.3| requires that € N which is satisfied because
Ag+10 € 10N by our choice; we also clearly see that Ag+10 € SN would not have been
sufficient for this purpose. Similarly to (I2Z7)), relying on Lemma[6.3] we can estimate for
allt € [0, 7]

nua 1
||R(— D Eceadley < DL (5T 4y 9(aga, Mecallnene o reolle,r (128)
{

LN LN
@EHCHED —142 _p2=ty CROg+2 Mo (1)
S AL Mo < 8,aMoA, T < 2y “T
Here the hypothesis of Lemma requires lf(*]‘ € N and thus 444 € 10N instead of

Ag+1 € 5N was needed. Next, for all ¢ € [0, 7] we estimate also relying on Lemmal6.3]
using that 28b < § due to (69), and taking a € 10N sufficiently large,

1 mm 1
||R(§ Z Eco 2l Z( i ) Nagaglle,c2 (b &by + by ®by) - Ve,

[E4N LLeN 0
_ _2 dIEb _o(°=ty CROG+2 Mo (1)
S Mo A S S Moo, < @SSR (129)

Next, relying also on Lemmal[6.3] we can estimate for all ¢ € [0, T7] similarly to (129)

mnm 1
IR(— > Eonller Z( g ) Mlazaglic, IV ene) 4 el e (130)
((’GA [T
EBEHED ay ooz @D o RS Mo(t
TR Mor A S e 2<’p*‘>%50().

Next, we estimate for all 7 € [0, 7] by applying Lemmal6.3] using that 28b < § due to
(69), and taking a € 10N sufficiently large

/lq+1 -1
IRA2 + Al = C D NIVl + 1 10 ezl (131)
LeA
) @ R Mo(t
saf’l’[Mo(t)l—“u‘“’ Mo F1T S Mo(08421 ¥ < ()2 ') CROgr2Mo()

25



NON-UNIQUENESS OF 2-D NAVIER-STOKES EQUATIONS 25

Therefore, we conclude from (I127)-(I31) applied to (I13a) that

vy CROg+2Mo (1)
—

Next, for all 7 € [0, T] we estimate using that § € (0, %), 2pb < § from (69), ab > 16
due to our choice of b, and taking a € 10N sufficiently large

IRoscllg, 7 < (2m) ™ (132)

(210 | o
5=20
IReomille.r = vlley, + Ielle,e)vlle 2 + ell,) + B2y (vgllcas + Ik,
i,

@9 ab MO(t)CR5q+2
5

m ab 0
< EPMyDAg 5 642Mo()a” ™% TSR < 6, Mo(a”1 ) <

. (133)

Lastly, for all # € [0, T;] we can estimate by using that [ %‘2‘5/13 < ‘RbT“” in (I33), (504)
at level g + 1 that we already verified, and taking a € 10N sufficiently large

(L00e)

1-2¢
IReomzlle,z < sup (gt (Ol + 2Ol 12702l 1+ ll2ll 1)
1Ly X X 2 2
’ 5€[0,1] ’ G 3 C:C;
@) Moy()crOg42

< Mo(D)> ™% < (134)

5
Therefore, we can now conclude from (123), (126), (I32)-(134) that

222y
< CmT [”Rh“”C,Lf* + ”Rcor”CILﬁ* + ”ROSC”C,LﬁT*]
+ ZMO(t)CR(SquZ
5

due to Holder’s inequality. This verifies (30d) at level ¢ + 1.

At last, similarly to the argument in [33] we can conclude by commenting on how
(Vg+1, I%qJ, 1)is (F1)iz0-adapted and that (vg41, Rq+ 1)(0, x) are both deterministic if (v, I%q)(O, X)
are deterministic. First, we recall that z in (3Za) is (¥;)s0-adapted. Due to the compact
support of ¢; in R, it follows that z; from ([72) is (F;)s0-adapted. Similarly, because
(vq,ieq) are both (7;);>0-adapted by hypothesis, it follows that (vl,I%I) from (72)) are both
(F)s0-adapted. Because My(¢) from (@8) is deterministic, it follows that p from (Z7) is
also (F)rs0-adapted. Due to p and I°€, being (¥/)»0-adapted, a, from ®2) is also (F,)r=0-
adapted. Because W, n,, and y, respectively from (22)), (20), and (13) are all determinis-
tic, it follows that all of wf{f’fl, W:: 1 and wgll from ([§7) are (¥;);»0-adapted. Consequently,
wy+1 from @B6) is (F)z0-adapted, which in turn implies that v,.; from (86) is (F;)r0-
adapted. Moreover, it is also clear from the compact support of ¢; in R, that if v,(0, x) and
I%q(o, x) are deterministic, then so are v;(0, x), 1021(0, x), and 6,1081(0, x). Because z(0,x) = 0
by (3Za), Reom1(0, x) from (74B) is also deterministic. Because My(¢) is deterministic, we
see that p(0, x) and 9,0(0, x) from (77) are also deterministic; this implies that a,(0, x)
and 0;a,(0, x) from (82) are also deterministic. As W, 1., and i, respectively from @2,

@0), and (13) are all deterministic, we see that all of w;f'r)l (0, x), 6,w;€'r)1(0, x), wf;zl(O, x),

IRg+1llc,z:

< Mo(t)crdgr2  (135)

arwfjjl(o, x), and wZJ)r 10, x) from (&7) are deterministic and consequently wy.1(0, x) from
(86) is deterministic. Because v;(0, x) is deterministic, it follows that vg+1(0, x) from ) is
deterministic. Moreover, we see that all of Rji, (0, x), Reor(0, x), and Reom2(0, x) from (I00)
are deterministic. Finally, coen e ali=o, D TN 2k=134S0.0 2kli=0, and Ay + A3l re-
spectively from (I04d), (I09), and (I13) are all deterministic and hence R (0, x) from

(I133) is deterministic, and consequently, so is R, (0, x) from (TT6).
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5. Proors oF THEoREMS 2. 31[2.4]

5.1. Proof of Theorem[2.2]assuming Theorem[2.1l Let us recall the definitions of Uy, Q,
and B, from Section[3l We first present general results for F defined through (I0) and 6;
thereafter, we apply them in case F'(«) = u and B is an R-valued Wiener process to prove
Theorems23l2.4] We fix any & € (0, 1) for the purpose of the following definitions.

Definition 5.1. Let s > 0, £&" € L2, and 6" € U,. A probability measure P € P(Q) is a
probabilistically weak solution to (3) with initial condition (€™, 0™) at initial time s if

(MI) PAED) = €m,0() = 6" ¥ t € [0, 51}) = 1 and for alln € N
P(((£,60) € O fo IFEIE, 4y dr < o) =1, (136)

(M2) under P, @ is a cylindrical (B,)»s-Wiener process on U starting from initial
condition 6" at initial time s and for every g; € C*(T*) N L2 and t > s,

(é"(t)—é"(S),gi)+f<diV(§(r)®§(r))+(—A)’”§(V),9i>dr=f(gi,F(é"(r))dH(V)), (137)

(M3) for any q € N there exists a functiont — C; 4 € Ry for all t > s such that
!
EP[ sup llEI2Y + f IEZedr] < Cog(1+ 167179, (138)
re[0,1] * s *
The set of all such probabilistically weak solutions with the same constant Cy 4 in (I38) for
every q € N andt > s is denoted by ‘W(s, &", 6™, {Crgtgen,=s)-

For any stopping time 7 we set
Q. 2 {w(- A T(w)):w e Q) (139)
and denote the o-field associated to 7 by B;.
Definition 5.2. Let s > 0, & € L7, and 6" € U,. Let T > s be a stopping time of (B)iss.
A probability measure P € P(Q;) is a probabilistically weak solution to Q) on [s, ] with
initial condition (¢™,0™) at initial time s if

(M1) P({&(t) = E™,0() = 0" Y t € [0, 5]}) = 1 and for alln € N

nAT
P(((£,6) € O: fo IFEEIR g2 dr < o) = 1, (140)

(M2) under P, (6(- A 1), 1)y, where {l;}ien is an orthonormal basis of U, is a
continuous, square-integrable (@,),Zs-martingale with initial condition (6™, 1;) at
initial time s with its quadratic variation process given by (t A T — s)||l[||%] and for
every g; € C(THN L2 andt > s

INT AT
(€(AT)=&(s), ai)+ f (div(&(N@E(r)+(=A)"&(r), gi)dr = f (8i, F(£(r)do(r)), (141)

(M3) for any q € N there exists a functiont — C,, € R, forall t > s such that

INT
EPL sup (IS + f IEWIEedr] < Crg(1 + 17112, (142)
re[0,tAT] * s *
The joint uniqueness in law for (@) is equivalent to the uniqueness of probabilistically
weak solution in Definition which holds if probabilistically weak solutions starting
from the same initial distributions are unique.
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Proposition 5.1. For every (s,&™,6™) € [0, 00) X L2 x Uy, there exists a probabilistically
weak solution P € P(Q) to @) with initial condition (&1, 6™) at initial time s according
to Definition 5.1 Moreover, if there exists a family (sp, &, 6,) C [0,00) X L2 X Uy such
that 1imy, eo[|($n, €y 00) = (5,6, 0"Nlpwr2wy, = 0 and Py € W(sp,&nr On. (Crglgeriizs,)r
then there exists a subsequence {Py, }ren that converges weakly to some P € ‘W(s, gn gn,
{Ct,q}qEN,r2s)~

Proof of Proposition The existence of the probabilistically weak solution according to
Definition[3.T]follows from Proposition.J]and an application of martingale representation
theorem (e.g., [20, Theorem 8.2]) while the proof of stability result can follow that of
[33, Theorem 5.1] with appropriate modifications concerning the differences in spatial
dimension and fractional Laplacian, similarly to the proof of Proposition[d.T] (see also [58]
Proposition 5.1]). O

Next, we have the following results as a consequence of Proposition[3.1} the proofs of
analogous results from [33] did not rely on the specific form of the diffusive term or the
spatial dimension and thus apply to our case.

Lemma 5.%. ({133} Proposition 5.2_]) Let 7 be a bounded stopping time of (B))1>0. Then for
every w € Q there exists Q,, € P(Q) such that

Ou({w' € Q: (£,0)(1,0') = (£ 0)(t,w) Y 1 € [0, T(w)]}) = 1, (143a)
00(A) = Rew) (@) 0wy (A) ¥ A € BT, (143b)

where Riu) girw)w) b € P(Q) is a probabilistically weak solution to (3) with initial
condition (¢(1(w), w), (t(w), w)) at initial time 7(w). Moreover, for every A € B the map
w — Q,(A) is B,-measurable.

Lemma 5.3. ([33] Proposition 5.3]) Let £ € L2 and P be a probabilistically weak solution
to @) on [0, 7] with initial condition (£, 0) at initial time O according to Definition
In addition to the hypothesis of Lemma[5.2] suppose that there exists a Borel set N' C Q.
such that P(N) = 0 and Q,, from Lemmal[5. 2 satisfies for every w € Q; \ N

O, € Q:1(w') = T(w)}) = 1. (144)
Then the probability measure P ®; R € P(Q) defined by
P& R() = f Qu()P(dw) (145)
Q

satisfies P ®; Rl = Plg_and it is a probabilistically weak solution to @) on [0, o) with
initial condition (¢, 0) at initial time 0.

Now we fix an R-valued Wiener process B on (Q, ¥, P) and apply Definitions [5.1H5.2
Proposition[3.]] and Lemmas 3.2H3.3] with F(#) = u and such B. Forn € N,L > 1, and
6 € (0, 35) we define similarly to (#32)-(@3b)

1 1

7 (w) 2 inf{t > 0:0(t, )| > (L — =)*} A inf{t > O: 16t 2s > (L~ ) AL, (146a)
n y n

7 2 lim 7. (146b)

n—oo

It follows from [33, Lemma 3.5] that 7} is a stopping time of (B0 and thus so is 7. For
the fixed (Q, ¥, P) we assume Theorem[2.3]and denote by u the solution constructed from
Theorem[2.3|on [0, t] where t = T, for L sufficiently large and

1
T, £ inf{t > 0:|B(1)| = L3} A inf{t > 0: 1BI 4 > L?} A Lwith 6 € (0, ) 14D
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We observe that Ty, +co P-a.s. as L /" +o0. Let us also denote the law of (u, B) by P.

Proposition 5.4. Let 1; be defined by (146b). Then P, the law of (u, B), is a probabilisti-
cally weak solution to @) on [0, 7.] according to Definition[5.2]

Proof of Proposition[3.4] The proof is similar to that of Proposition[4.3] making use of the
fact that

o(t,(u, B)) = B(¢) ¥ t € [0, T ] P-almost surely (148)
(see also the proofs of [33| Propositions 3.7 and 5.4] and [58| Proposition 4.5]). ]

Next, we extend P on [0, 7.] to [0, c0).

Proposition 5.5. Let 11 be defined by (146B) and P denote the law of (u, B) constructed
from Theorem Then the probability measure P ®;, R in (143) is a probabilistically
weak solution to (B) on [0, o) according to Definition[3.1]

Proof of Proposition[3.3] Because 7, is a stopping time of (8;)5¢ that is bounded by L due
to (I464), the hypothesis of Lemmal[5.2]is verified. By Proposition[3.4] P is a probabilis-
tically weak solution to (@) on [0, 7.]. Therefore, Lemma[3.3] gives us the desired result
once we verify the existence of a Borel set N' C Q. such that P(N) = 0 and (144} holds
for every w € Q. \ N, and that can be achieved similarly to the proof of Proposition
(see also the proofs of [33 Propositions 3.8 and 5.5] and [58, Proposition 4.6]). O

Taking Theorem 23] for granted, we are now able to prove Theorem 2.4l

Proof of Theorem 2.4 assuming Theorem[2.3]. The proof is similar to that of Theorem[2.2]
assuming Theorem [2.1] in Subsection E.1} we sketch it for completeness. We fix T > 0
arbitrarily, any « € (0, 1), and K > 1 such that kK> > 1. The probability measure P ®, R
from Proposition[5.5] satisfies

P&, R > T) 2 P((eru. B) > T) PP pr, > 7)) > 4,

where the last inequality is due to Theorem 23l This leads us to E” ®TLR[||§(T)||2 ] >

kK?e T||.§-““||22, where & is the deterministic initial condition constructed through Theo-

rem[2.3] On the other hand, via a classical Galerkin approximation scheme (e.g., [29]) one
can readily construct a probabilistically weak solution ® to (3) starting also from £™ such
that E®[ ||§(T)|| ,] < eT||§m||2 Because kK> > 1, this implies the lack of uniqueness of

probablhstlcally weak solutlon to (3) and equivalently the lack of joint uniqueness in law
for (), and consequently the non-uniqueness in law for (3) by [33} Theorem C.1], which
is an infinite-dimensional version of [11, Theorem 3.1] due to Cherny. O

5.2. Proof of Theorem 2.3 assuming Proposition We define T(f) 2 ¢® and v 2
Y~'u for t > 0. It follows from Ito’s product formula (e.g., [1, Theorem 4.4.13]) on (3) that

1
o+ Ev + (=A™ + Ydiv(v ® v) + Y 'Vr=0, V-v=0, ¢>0. (149)
Considering (I49), for every ¢ € Ny we will construct (v,, Rq) that solves
1 o
Ouvy + 5vq + (ZA)"Vy + Ydiv(v, @ vg) + Vp, = divR,, Vv =0, 1>0,  (150)

when Ic?q is assumed to be a trace-free symmetric matrix. Similarly to (48) in the additive
case, we continue to define A, = a, 04 = ﬂ;zﬁ fora € 10N, b € N, and 8 € (0, 1) so that
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the requirement of 1,,; € 5N of (I9) is satisfied, while differently from (@8) we define

RS

Mo(r) 2 2L and my 2 V3Liert* (151)
Due to (I&7) we obtain for all L > 1,6 € (0, 1—12), andt € [0,T;]
IB()| < L* and IBI -2 < L (152)
which immediately implies

1 1
IITIIC%% +ITO)+ 107 D) < 2 L7+ 26H < (153)

For induction we assume that (v, Rq) satisfy the following bounds on [0, T.]:

1
Vglle,z2 < mMo()2(1+ > 62) < 2mMo(1)>, (154a)
1<i<q
IVgller, < myMo(r)* A5, (154b)
IRqllc,z; < Mo()crdgei, (154c)

where cg > 0 is again a universal constant to be determined subsequently and we assumed
1
again @® > 3, as formally stated in (I57), in order to deduce ¥, 67 < 3.

Proposition 5.6. Let L > 1 and define

2Lt+L

vo(t,0) 2 T (sin®) 0)' . (155)
2n
Then together with
. . mp (2L + etk 0 — cos(x?) m
Ro(t,x) = B — (_ cos(x?) 0 ) + R(=AN)"vy(t, x), (156)
it satisfies (I30) at level g = 0. Moreover, (134) is satisfied at level g = O provided
cReL‘%L%
72V3<8V3a# < — &~ L<d'n-1, (157)

T LiQL+ i+

where the inequality 9 < a*#" is assumed for the sake of second inequality in (I544).
Furthermore, vy(0, x) and Ry(0, x) are both deterministic.

Proof of Proposition[3.6] The proof is similar to that of Proposition 4.7} Let us observe
that vy is divergence-free, while Ry is trace-free and symmetric. It may be immediately
verified that (vo, Ro) solves (I30) with py = 0 by using the fact that (vo - V)vy = 0 and
Lemmal6.1l Next, for all ¢ € [0, T;] we can compute similarly to (34)

my Mo(t)? ' my(1 + L)My(t): @D '
Vo2 = % <mMo@)?, volley, = =< mMo(1) 45, (158)

Finally, using [[R(=A)"voll;2 < 4llvoll;2 due to Avy = —vo and (36) we can compute

. 1 . D)
IRolzr < my (2L + E)Mo(l)28 + Co4lvo@llz < Mo(r)cgor. (159)

O
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We point out that
1
L3

1
7243 < L
Li2L+ % +m)

is not sufficient but necessary to satisfy (I37).

(160)

Proposition 5.7. Let L > 1 satisfy (160Q) and suppose that (vq,f?q) is an (F7)s0-adapted
solution to (13Q) that satisfies (I34). Then there exists a choice of parameters a, b, and B
such that (IS is fulfilled and an (F7)s0-adapted process (vg1, Rys1) that satisfies (I30),
(134 at level g + 1, and

1

[Vg+1 (1) = vg@Dll 2 < mLMO(t)%(;;H Vitel0,TL]. (1e1)

Furthermore, ifv4(0, x) and Iféq(O, x) are deterministic, then so are v441(0, x) and IcéqH(O, X).
Taking Proposition[3.7] for granted, we can now prove Theorem 2.3

Proof of Theorem 2.3 assuming Proposition[3.70 This proof is similar to the proof of The-
orem 2.1] assuming Proposition [4.8] in Subsection we sketch it in the Appendix for
completeness. O

5.3. Proof of Proposition[3.71

5.3.1. Choice of parameters. We fix L sufficiently large so that it satisfies (160). We take
the same choices of m*, 75, @, r,u, and o in ©3) - @8), and b € {t € N > %} such that
r € Nand 4,10 € 10N so that both requirements of r € N and 1,40 € 5N from (19)

are satisfied. Then we define 8 > 0 sufficiently small to satisfy (&9) and / by (Z0) so that

1
(Z1) remains valid. We take a € 10N larger if necessary so that a*® > V3Liel"; because
ab > 16 and cg < 1 we see that this implies

D s ,, T (TRIJIG)

mp < artt < Mandmy, < cret < Mo(D)2. (162)

Lastly, taking a € 10N even larger can guarantee L < a*r — 1 in (I57) while taking 8 > 0
even smaller if necessary allows the other inequalities in (I37) to be satisfied, namely

B

L—

1
723 <8\3a¥h < —RE ©
LiQ2L+  + )

L

Thus, hereafter we consider such m*,n, @, b, and [ fixed, preserving our freedom to take
a € 10N larger and 8 > 0 smaller as needed.

5.3.2. Mollification. We mollify v,, R,, and Y(t) = ¢2® by ¢, and ¢, again so that
viE (v re @) 5 Ri2 Ryxe @) %@, and Y12 T s @ (163)
By (130) we see that v;, 1031, and T satisfy
Ay + %vl + (=A)Y"v; + Cidiv(v, ® vi) + Vp; = div(R; + Reomi) (164)
where
PLE(Pg *x B1) 1 = %mw = ((CPvgP) #c B1) # 00, (1652)
Reoml ZRcommutator1 = =((Y(vg®Vy)) %x ¢1) #; @1 + T1(vi&vy). (165b)
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Next, making use of the fact that b > 16 and taking a € 10N sufficiently large we obtain
forallz € [0,T ]and N > 1

fatisen )
g=villez % mM@A < SEMo0koy,, (166a)
ke . i .
Ville,z < meMo(0)>(1 + Z 53) < 2m Mo(n)?, (166b)
1<i<q
Wlley = PV m Mo 28 < VMo A7, (166¢)

5.3.3. Perturbation. We proceed with the same definition of y in (Z6) and p in (Z7) iden-
tically except that Mo(?) is now defined by (131} instead of (@8). Although our definition
of Ry in (I36) differs from that of (32), the estimates of (78) and (79) remain valid as their
proofs depend only on the definitions of p and y, not My(¢) or R;. We define a modified
amplitude function to be

1

1
Zl{(‘“? t’ x) = Zlé’,qi»l(a)? t’ x) = T :

ar(w,t, x), (167)

where a;(w, 1, x) is identical to that defined in (82). For convenience let us observe a simple
estimate of

DI
I e < me (168)
Using this estimate, for all # € [0, T, ] by taking cg <« M~* we can obtain
_ B CRmLMo(t) 5
lacle,z < my V12[4n gy Mo(0) + IRi(w)ll 1117 (—) T (169)
Because (30d) and (I54d) are identical except the definitions of My(¢), tracing the proof of

(80) we see that we still have (80Q) which leads us to (8] as well as 83)). For all ¢ € [0, T;],
N > 0and k € {0, 1,2}, along with (I68) this allows us to deduce the estimates of

] Gy, ©E@ iy
llaglle,cy < mLCR q+1M0(f)21 s Nagller ex < mLCR qulMo(f)zl , (170)

where we took cg << 1 to eliminate implicit constants in the second inequality.
Now we define w , and w(‘) as in (87) with a; replaced by a; from (I67) and My(r)

from (I31)) within the deﬁnltlon of p(w, t, x), and finally w 1dentlcally as in (&7) with a;
from (82), only with My(¢) from (I31). Then we define the perturbation identically as in

86):

Worl = wé’fl + wgzl + w(') and vgi1 = v+ Wger. (171)
We see that as a consequence of (@)
) YOI (T
Wy W, ), x) T, 2OV (Z ay(t, X)n(t, O (x)). (172)
JeA

Consequently, we see that w, is both divergence-free and mean-zero. Next, the following
estimates for all ¢ € [0, T1] and p € (1, o) are essentially immediate consequences of (89),

(904, (90B), and (168):

(1) 14 1
WPz < me ) llaWells s micgol, Mo®)?, (173a)
LeA

@D 1 1,3 1.2
ey < e sup Y Mgl We(o)ly 5 medt, Mo} 3r=5, (173b)
s€[0. tl[eA
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. i) 1 L1 o2
||W(qL:1||Cfo < mLval(am{)”qw||¢{||L;o < mL(S;HMO(t)zl Torr. (173c¢)

LeN

Finally, the estimate of ||w +1llc,zz in (O0c) remains valid. Therefore, for all 7 € [0, 7] we
can estimate from (I71)) by taking cg < 1 and a € 10N sufficiently large

Cod (B3

11 1
grillez S micgol, Mo(d)? +mpdZ Mo(t)2 1% o7 4 i 64 Mo
an 3 . -
< myMo(t)? 5q+1[ et Ca g+ CMO(L)%AZHZ"]
3my Mo(0) 6°
s%, (174)

where the last inequality used the facts that 11 — 45 < 0 and 6 — 25 < 0, both of which
may be readily verified by (63)-(€7). It follows from similar computations to (93) that
(I344) at level g + 1 and (I&1) can now be verified as follows:
@D ficoine , :
Vgrillez < illez + wgailleze < meMo@)2(1 + Z 0;)s
I1<i<g+1

(I66a) (7T my, 1 4 D 14
Vg1 (D) = vg@Dllz < ||Wq+1||c,L§,+TMo(l)25q+1 < mMo(0)26,,,

Next, we estimate for all 7 € [0, T ]

W ey, < > Maelley Wl (175a)
LeA
(70 113 2 1.5 2
< (mL(SqHMo(t)zl 2)/1q+10,ur <SmpMo(D)2172 Agour”,
, EBEHI 1
W e, < IV @mweller, 5 Mk, Mo AL (175b)

LeA

x 37 +1—7,11 8"+1—m*‘“’ 2% SR BS NmL(SZ Mo(0): /13 R

where we used 1 , to eliminate implicit constant in (I73a). On the other hand, the estimate
of ||w e, from (]E[) remains applicable for us. We may now verify (134B) at level g + 1
as follows For any r € [0, T ]

Gesddmm o © 0)
getller, = Mo A%, + WP ller, + 1, e, + w2l (176)

< m Mo 17478, + M ex, gy cr, A M) 1] < mMo(0? AL,

where the last inequality used (@7) and that 13+ 3 — 145 < 4 which can be readily verified
by (63)-(67). Next, as a consequence of (88)) we have the identity of

® w0 B OV actt omete, (). (177)

LeA
This allows us to estimate for all z € [0, 7] and p € (1, ), by utilizing (O8a) and (168)

w

1=z 3
2, + Wl < I 16V Y anetelleygrr S musy, Mo r' 03000, (178)
LeA

On the other hand, the estimate of |[w from (98b)) remains applicable for us.

q+l||C wir
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5.3.4. Reynolds stress. We can choose the same p* from (IT7) and compute from (I30),
(164), and (I71)

divR41 = Vpgsi (179)
1 m ® 4O
= quﬂ + (A" Wy + ST(WqJrl 1) + Tpdiv(v; ® Wys1 + Wys1 ® V7)
div(Riin)+V piin
H (c) (») (c) (t)
+'Y'1d1v((wqul qul)®wq+1 +wq+1®(wqul qul))
div(Reor)+V peor

+ div(T; W‘P) ‘P) +R)+ 6,w(t) + (T = Y)div(vgsr ® vger) +div(Reomt) — Vi

div(Rose)+V Pose div(Reom2)+V peom2
where
A
Riin :Rlinear

(»)

A‘R( 7 War1 + (=A)"Wgs1 + Oi(w qu1)) + TV ®Wyat + wgn®vp),  (180a)

q+1
Plin =Plinear = Y1(v1 - W) (180b)
Reor Reomrector 2 T ((wﬁjﬁl Wi D@Wgrt + Wl SO+l ), (180¢)
Pcor épcorrector ((W(q?l ZJ)rl) Wq+l + W;TI : (W;CJEI (qtil)) (ISOd)
Rcom2 éRcommutatorZ = (T - Tl)(vq+l®vq+l)a (1806)
T -7,
Peom2 =Pcommutator2 = T|Vq+1|2- (180f)
Concerning Rys. and posc we have
div(rw?’ @ wil + Ry + ol (181)
(I5i)
=iV aW) @ (Y agWe) + Ry + dwl,
JeA J'eN
m! !
= E Z 8_(!&1 + E Z Z 8{{/!2!]( + Ay + Az
LN {eN k=134
1 1
+ V[§|Z a; Wl + 3 Z Prolazap® 1, g (meng q+1¢(¢( ?))
LeA LN
1 _ _
43 DB et = ATV T (Y = B0 @Ol
LeA JeAt  (eA~
Therefore, we can define similarly to m - (I13D)
Rosc _ROSCIHdtIOH R(_ Z 8{( 1+ E Z Z 8({ 2kt AZ + A3) (1823)
[(’EA LOEA k=134
Posc époscilleﬂion = |Z azwdz + E Z PiO(a{aZ’IP; ﬂq+l (Ug’]://lqﬁlﬁd//(’))lﬁ(f;to
(eA TN

1 -1 -1 2 2
5 D OB tyeip = AV (Y = Y Paod(@Paomd)  (182b)

leA JeAt  (eA™
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and claim the same bound as in (I32)) for Rus.. Thus, let us define formally

A

pq+1 —Plin — Pcor — Posc — Pcom?2 + DI and Ioeq+l 2 Rlin + Rcor + Rosc + RcomZ + Rcoml . (183)
Now we compute for all ¢ € [0, T;] from (1804)
Rinlle,prr Swgerlle, o+ IRCAY" Wl

+ RO WL + Wi Ml + IC0@Wger + Wi @v)ll - (184)

First, by the estimate of m;, < Mo(f)? from (I62) we can compute from (I7I) for all
te [07 TL]

©0d IT3BH {73 13 1u g2
”WLIHHC,L{:* < mL6q+1M0(t)21 Il +mL6q+1M0(t)21 TorT v (185)
302 BEEDTD 1 2 3
+u 6q+1M0(t)l & < ; Mo(t)Zr Tmpl?

By Gagliardo-Nirenberg’s inequality this also leads us to

(1)

1-
IR(=AY"Wgsill, 1 SI6 qHMo(t)zV T m I W ) gy [

q+1 q+l”C whe”
ST .
S S Mo T Em A (186)
Second, for all ¢ € [0, T;] we can make use of (I19) and (168) and estimate

IRA (WL, + Wi Dl 1 (187)

q+1 q+1

+ ||w

ZIIT 2 N6e e laglic,c, el e IWelle, + 11, 2||C,||6t(a(77{)‘/’(”C1Cr
leA

DEHE ;5 -
< my = Ylc, qHMo(t)zl i T A

3 1go2 3 1o 53 3.1 1 -2 1-8
+mpo;  Mo(t)2r il z/qu" S mpl26,, Mo()2r 7 /qu”.
Third, we can estimate for all ¢ € [0, T ]

11 vi@wgs1 + w1 ®Dllc e STl vglley [wgelle,
(T33)(T52bH(T83)

1
s miMyXr TS I (188)
Hence, applying (183)-(188) to (I84) and taking a € 10N sufficiently large give us
@I 1-6n

)1——mL/13a/ ﬂm

2
IRinlle e S Mo(D0g42[ 25,2 o

1-67y1-2 11-8 28 4 1-611y1-2 13a
+ a7 YU il(/lq+ln) ’lq+17] + /lqﬁz L/l;+l(/lq+ln) A54]
@ITD —273a-8+647 ool Moy(t)crd
S Mol A+ AT ] < oy >M (189)

q+1

g+1

where we used the facts that 28b < § due to (69) and —273a -8 + 64 < =273 —8m* < 0

due to (66).
Next, for all 7 € [0, 7] we estimate from (I80c)) by taking a € 10N sufficiently large

”Rcor”C Lﬁ* (190)
t
Il (), N, 2 +||w;11||CL2p YA e 2+ I8 ez + Il 2
CHTDHIED _3la_3 -G
n-34a 7 T] n-34a n
< mLMo(z‘)[mL/lqul /qu ][mL/lqul /qu +my, /l 5N
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~34q- 8 _34q- 125 _p2zty Mo(H)crdgi2
“ Mo(t)6q+2mL T <o) T >%.
8

Next, for all ¢ € [0, T,] we estimate using (I68), /141“2" < 64424, from (I33), and
taking a € 10N sufficiently large

2B
gMO(t)64+2/lq+2mL/lq+l ¢+l

8 crMo()64+2

(e I53NTSH 14 (33 _
Reomllesr 5 miMo@I2 05 7S Mo(dgamid,” < ——3 (191)

m _8
Finally, using |(,() - T(1)| < [27% m?, and /141 272 < 54404, from (I33) again, and
taking a € 10N sufficiently large we obtaln for all t € [0,Tz]

Gﬂb 1 M()(l)CR(S 2
”RCOmZHCIL'{, < ||Tl T”C,”vq‘FIHCLz lz 20 4M (t) < 7‘1"’ (192)

Therefore, considering (I89), (190), (132)), (I91)), and (192), we are able to conclude that
||I€éq+1llcf 11 < Mo(f)crégqr identically as we did in (I33). This verifies (I54d) at level ¢ + 1.

Finally, essentially identical arguments in the proof of Proposition4.8 shows that (v,, I%q)
being (7;):=0-adapted leads to (vg41, §q+1) being (¥;):=0-adapted, and that (v, Rq)(O, X) be-
ing deterministic implies (vg+1, I%q+1)(0, x) being deterministic.

6. APPENDIX

6.1. Past results. We collect results from previous works which were used in the proofs

of Theorems2.112.4
Lemma 6.1. ([[14, Definition 9, Lemma 10], also [42, Definition 7.1, Lemmas 7.2 and
7.3]) For f € C(T?), set

Rf £ Vg +(Vg) = (V- 9, (193)
where Ag = f — §,, fdx and f, gdx = 0. Then for any f € C(T?) such that f, fdx =

0, Rf(x) is a trace-free symmetric matrix for all x € T?. Moreover, V - Rf = f and
fﬂ.z Rf(x)dx = 0. When f is not mean-zero, we overload the notation and denote by

Rf £ R(f - ﬁ_z fdx). Finally, for all p € (1, 00), ||7€||L§HW:.,; S LIRlc,~c, S 1, and
IR Fllzz < =AY £l
Lemma 6.2. ([42, Lemma 6.2]) Let f,g € C*(T?) where g is also (’]F/K)Z-periodic for

some k € N. Then there exists a constant C > 0 such that

Ifellz < 1z llglze + Cx 2 1Al gz (194)

Lemma 6.3. ([42) Lemma 7.4]) For any given p € (1,0),1 € N,a € C*(T?), and f €
LP(T?),
1
I(=A)" 2 Pso(aPsaf)lly < A Nallcall 1l - (195)

6.2. Continuation of the proof of Propositiond.1l First, the proof of the following result
from [33] in case x € T> goes through verbatim in case x € T?.

Lemma 6.4. ([33] Lemma A.1]) Let {(s,, &)}lnen C [0, 00) X LLZT be a family such that
limy, 0 ||(85, En) — (5, fin)”Rfo = 0 and {P,},en be a family of probability measures on Qg
satisfying for all n € N, P,({£&(t) = &€, V t € [0, s,]}) = 1 and for some y,«x > 0 and any
T >0,

€@ — &l

P
supE "Welleqorzzy +  sup  ——————— +él> ] < oo (196)
(10.T1:L3) rael0.T s vt It — rfx L2([5,,T1:HY)

Then {P,},en is tight in M £ Ci. ([0, o0); H3(T)n LIOC([O, 00); L(ZT).
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Now we fix {P,} C C($u, én, {Crglqen,izs,) and will show that it is tight in M by relying on
Lemmal6.4l We define J(£) £ —Pdiv(£®€)—(—A)"£. By definition of C(sy, &x, {Crglgerviss,)
and (M2) of Definition 4.1l we know that for all n € N and ¢ € [s,, )

D) =& + f JEr)dr+ M;,  P,-as., (197)

where the map ¢ Mf;n L (Mf’xﬂ, gy for € € Qo and g; € C*(T?) N L2 is a continuous,
square-integrable martingale w.r.t. ($B;),, such that ((Mﬁ’;ﬂ)) = fé IIIG(f(r))*g,-II%]dr. We
can compute for any p € (1, o),

If Japary?,

T
EM[ sup —] < EP"[I (Il ® &llg=2 + 1€l pzzn—s)7ell]

rt€ls,,T]: r#t |t - r|p71
by Holder’s inequality where [|§®¢€l|52 < ||.§-‘||iE and ||§||H3m4 < 1+||§||i% because m € (0, 1).
Therefore,
1
If; JEDly, s )

E™[ [SUTE; W] < p TCrp(l + ||fn||if)- (198)
rt€ls,, T r#t - *

On the other hand, making use of (I0), (M2) and (M3) of Definition[4.Iland Kolmogorov’s
test (e.g., [20, Theorem 3.3]) gives us for any « € (0, %)
IM;,, = Myl
EP[ sup ——n R L
€[0T ]: ret [t —r|®
Making use of (I97)-(T99) leads to for all « € (0, %),
1E@) = &l
Sup EP'[ &(1) — &)l <o

neN r€[0.T]: r#t |t = rf*

15p Cop(1 + G- (199)

(200)

Hence, (M1), 28) with ¢ = 1, and 200) together allow us to deduce that {P,} is tight
in M by Lemma By Prokhorov’s theorem (e.g., [20, Theorem 2.3]) we deduce that
P, converges weakly to some P € P(£) and by Skorokhod’s representation theorem
(e.g., [20, Theorem 2.4]) there exists a probability space (Q, F, P) and M-valued random
variables {£,} v and € such that

&, hasthelaw P, V n € N, &, — £in M P-a.s. and & has the law P. (201)
Making use of (201) and (M1) for P, immediately leads to

PUgn =€" V10,51 = lim PG =&, V1€ (0.5 =1, (202)
which implies (M1) for P. Next, it follows immediately that for every g; € C *(T?), P-a.s.
(&0, ai) = &), 8, f (JEu(r)), ai)dr — f (JE&r)), apydr. (203)

In particular, to prove the second convergence we can write

B | (JE (. a)dr f (JEr), apydr]
=E"[ | (-Pdiv(, ® &,) — (~A)"&,, ;)dr

Sn

+ f (-Pdiv(¢, ® &) + PAiv(E ® &), g;)dr + f (~(=8)"(&, = &), apydr],
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among which we only point out that

E’[ ( (=A)"&s, 8;)dr] <Ep[f 1€l 2 (=A)"gill 2dr] — 0,

di f (~D)"(E, - &), a:)dr] < BP[ f 1, = 2N (=A)"gill2dr] — 0
as n — oo by (Z01). Next, we can compute for every ¢ € [s,00) and p € (1, o),

(M3)TTD
supEP[05 27 V80 1 and  1im EPqIME — vy RO

neN n—oo

' 0. (204)

Next, we let t > r > s and g be any R-valued, B,-measurable and continuous function on
M. Then we can compute

B IMEL - MEDg@) B tim BPOME — ME)@) = 0. (205)
This implies that the map ¢ — M;,s is a (8B;);>s-martingale under P. Next, we can deduce
lim B - iR B o, (206)
This leads us to
EPL(MED? — (MED)? - f IGED) il dngE] T2 . (207)

Therefore, (M"’: L)z f IIG(f(l))*g,II2 dlis a (8B,),»s-martingale under P which implies ((M‘f L)) =

L t||G(.§-‘(l))*gi||%,dl under P; it follows that M"; is square-integrable. Therefore, (M2) for P
was shown. Finally, to prove (M3) it suffices to define

R(t,5,6) = Supllf(r)ll fllf(r)llfqﬁdr, (208)

re[0,7]

and observe that the map € — R(t, s, £) is lower semicontinuous on M so that EP[R(, s, &) <
Crg(1+ ||§-‘i“||i‘2"). Therefore, (M3) holds for P so that P € C(s, &0, {C1 4 }gen,rzs)-

6.3. Continuation of the proof of Theorem assuming Proposition[3.7, We fix any
T >0,K > 1and « € (0, 1), and take L sufficiently large that satisfies (160), as well as

(7 - 2) AT 5 \j_ ;)ez“ and L > [In(Ke?)]?. (209)
We start from (v, Ro) in Proposition[5.6] and via Proposition[5.7linductively obtain (v, Icéq)
that satisfies (130D, (134), and (I6I). Identically to (39) we can show that for any & €
(, 4%[;) and any 1 € [0,TL], Xgollvg+1(®) — vy@Dllus < myMo(t)? by (IGI) and (I54B).
This allows us to deduce the limiting solution lim, . v, £ v € C([0, T ]; H?(T?)) that is
(F)is0-adapted because 1imqﬁoo||I°€q||CTLL}v = 0 due to (I534d). Because u = ¥y where

1
leBO] < e!* for all ¢ € [0, T;] due to (I52), we are able to deduce (G) by choosing t = T}
for L sufficiently large. Moreover, we can show identically to (62)) that for all ¢ € [0, T],

Iv(®) = vo(®ll2 < mMo(t)% by (137) and (161)) which in turn implies

2“||v<0>||Lz<e2“<||v<0)—vo<0)||Lz+||vo<0)||Lz> 2L7<;+%)mLMo<0)%. (210)



38 KAZUO YAMAZAKI

These lead us to, on a set {T;, > T}

mMo(T)? eI
> —_—

V(D)2 =T =vo(Dllz > eZL%uv(omi;. (211)

V2

Moreover, for the fixed T > 0, k € (0, 1), one can take L even larger to deduce P({T; >

T)) > k. We also see that #"(x) = T(0)v(0, x) = v(0, x) which is deterministic because

v4(0, x) is deterministic for all g € Ny by Propositions and 377l Clearly from (T49),

u = Yvis a (F;)=0-adapted solution to (3). Furthermore, it follows from (132), 209), and
1

@I that [lu(T)ll2 = " [lu™||2 > Kegllui“IIL;r on the set {t > T'} which implies (7).
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