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NON-UNIQUENESS IN LAW FOR TWO-DIMENSIONAL NAVIER-STOKES

EQUATIONS WITH DIFFUSION WEAKER THAN A FULL LAPLACIAN

KAZUO YAMAZAKI

Abstract. We study the two-dimensional Navier-Stokes equations forced by random noise

with a diffusive term generalized via a fractional Laplacian that has a positive exponent

strictly less than one. Because intermittent jets are inherently three-dimensional, we in-

stead adapt the theory of intermittent form of the two-dimensional stationary flows to

the stochastic approach presented by Hofmanová, Zhu & Zhu (2019, arXiv:1912.11841

[math.PR]) and prove its non-uniqueness in law.

Keywords: convex integration; fractional Laplacian; Navier-Stokes equations;

non-uniqueness; random noise.
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1. Introduction

1.1. Motivation from physics. The study of turbulence was pioneered by Novikov [47]

more than half a century ago. Motivations to investigate the two-dimensional (2-d) tur-

bulence include applications in meteorology and atmospheric sciences, and its attraction

from researchers that led to remarkable progress can be accredited to many reasons: the

2-d flows are easier to simulate than the counterpart in the three-dimensional (3-d) case;

vorticity, in addition to kinetic energy, becomes a bounded quantity allowing more flex-

ibility in directions to explore. Indeed, the 2-d turbulence has been extensively studied

theoretically (e.g., [37]), numerically (e.g., [3]), as well as experimentally (e.g., [49]).

Various forms of dissipation have been introduced in the physics literature: frictional

dissipation in [50]; fractional Laplacian (−∆)m as a Fourier operator with its Fourier symbol

of |ξ|2m so that ̂(−∆)m f (ξ) = |ξ|2m f̂ (ξ) in the study of surface quasi-geostrophic equations

(e.g., [16, Equation (1)]). In fact, the study of the Navier-Stokes (NS) equations with

diffusive term in the latter form, to which we shall hereafter refer as the generalized NS

(GNS) equations (1), can be traced back as far as [40, Equation (8.7) on pg. 263] in 1959

by Lions. The purpose of this manuscript is to prove a certain non-uniqueness for the 2-d

GNS equations forced by random noise which we introduce next.

1.2. Previous results. Throughout this manuscript we define Tn , [−π, π]n to be the prin-

cipal spatial domain for x = (x1, . . . , xn), denote ∂t ,
∂
∂t

, ∇ , (∂x1 , . . . , ∂xn), as well as

u , (u1, . . . , un), and π that map from R+ × Tn as the n-dimensional (n-d) velocity vector

and pressure scalar fields, respectively. We let ν ≥ 0 represent the viscosity coefficient so

that the GNS equations read

∂tu + ν(−∆)mu + div(u ⊗ u) + ∇π = 0, ∇ · u = 0, t > 0, (1)
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which recovers the classical NS equations when m = 1 and ν > 0, as well as the Euler

equations when ν = 0. We call u ∈ CtL
2
x a weak solution to (1) over [0, T ] if u(t, ·) is

weakly divergence-free, is mean-zero; i.e.,
∫

Tn u(t, x)dx = 0, and satisfies (1) distribution-

ally against a smooth and divergence-free function. A Leray-Hopf weak solution, only in

case ν > 0, due to [35, 39] requires an additional regularity of L2
t Ḣm

x and must satisfy an

energy inequality

1

2
‖u(t)‖2

L2
x
+ ν

∫ t

0

‖u(s)‖2
Ḣm

x
ds ≤ 1

2
‖u(0)‖2

L2
x

(2)

for all t ≥ 0 (see [9, Definitions 3.1, 3.5, and 3.6] for precise statements). Due to the

rescaling property of the GNS equations that (uλ, πλ)(t, x) , (λ2m−1u, λ4m−2π)(λ2mt, λx)

solves (1) if (u, π)(t, x) solves it, a standard classification states that (1) is sub-critical,

critical and super-critical with respect to L2(Tn)-norm if m > 1
2
+ n

4
,m = 1

2
+ n

4
, and

m < 1
2
+ n

4
, respectively.

Only a decade after [40], Lions (see [41, Remark 6.11 on pg. 96]) already claimed the

uniqueness of a Leray-Hopf weak solution when ν > 0 and m ≥ 1
2
+ n

4
. It has been more

than 50 years since then, and we still find this threshold to be sharp; specifically, except a

logarithmic improvement by Tao [55] (and also [2] for further logarithmic improvements),

it is not known whether (1) with ν > 0 and m < 1
2
+ n

4
for n ≥ 3 admits a unique solution

that emanates from a smooth initial data and preserves the initial regularity or not (e.g. see

[56, Theorem 4.1] for such a result under a smallness constraint on initial data). The case

n = 2 offers a strikingly different picture when initial data has high regularity. Indeed,

Yudovich [60] proved that if the vorticity ∇ × u belongs initially to L1(R2) ∩ L∞(R2), then

even the 2-d Euler equations admit a globally unique solution, essentially due to the fact

that the nonlinear term vanishes upon an Lp(R2)-estimate of the vorticity for any p ∈ [2,∞]

(e.g., [44, pg. 320]). That being said, starting from an arbitrary initial data in L2
x, the lack

of diffusion and therefore a lack of high regularity creates an obstacle in constructing a

weak solution via a classical argument relying on Aubin-Lions compactness lemma (e.g.

[41, 53]).

We now discuss the recent developments on Onsager’s conjecture which led to a better

understanding of equations of fluid and various new techniques. In 1949 a chemist and

a physicist Onsager [48] conjectured the following dichotomy in any spatial dimension

n ≥ 2:

• every weak solution to the n-d Euler equations with Hölder regularity in space of

exponent α > 1
3
, i.e., Cα

x , conserves kinetic energy 1
2
‖u(t)‖2

L2
x

;

• for any α ≤ 1
3

there exists a weak solution in Cα
x that dissipates kinetic energy

1
2
‖u(t)‖2

L2
x

.

The case α > 1
3

proved to be easier to demonstrate, settled partially by Eyink [26] and

then fully by Constantin, E, and Titi [17]. Towards Onsager’s conjecture in case α ≤ 1
3
,

Scheffer [51] and subsequently Shnirelman [52] proved the existence of a weak solution to

2-d Euler equations with compact support in space and time so that kinetic energy is both

created and destroyed; however, the solutions in [51, 52] were only in L2
T

L2
x and thus far

from the threshold of Cα
x , α ≤ 1

3
. The remarkable series of breakthroughs which unfolded

next were inspired by the work of Nash [46] who proved the C1 isometric embedding by

constructing a sequence of short isometric embeddings, each of which fails to be isometric

by a certain error that vanishes in the limit. Gromov considered the work of Nash, as

well as that of Kuiper [38], as part of h-principle ([31, pg. 3]) and initiated the theory of

convex integration [31, Part 2.4]; we refer to [24] for further discussions on the h-principle.
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After Müller and Šverák [45] extended the convex integration to Lipschitz maps, De Lellis

and Székelyhidi Jr. [22] reformulated the Euler equations as a differential inclusion and

improved the results of [51, 52] by constructing a weak solution in L∞
T

L∞x with compact

support in space and time in any spatial dimension n ≥ 2 (see also [23]). Subsequently, in

[25] they proved the existence of weak solutions to 3-d Euler equations in C([0, T ] × T3)

which dissipate the kinetic energy through a novel application of Beltrami flows. Together

with Buckmaster and Isett in [6], they improved the regularity of the solution up to Cα
t,x for

any α < 1
5
, where we write f ∈ Cα

t,x if there exists C ≥ 0 such that

| f (t + ∆t, x + ∆x) − f (t, x)| ≤ C(|∆t| + |∆x|)α uniformly in t, x,∆t, and ∆x

(see also (9)). At last, via a certain gluing approximation technique and Mikado flows, Isett

[36] proved that for any α < 1
3

there exists a non-zero weak solution to n-d Euler equations

for n ≥ 3 in Cα
t,x that fails to conserve kinetic energy ([36, Theorem 1] only states the claim

for n = 3, but [36, pg. 877] claims that it can be extended to any n ≥ 3). Integrating ideas

of intermittency from turbulence to Beltrami flows and constructing intermittent Beltrami

waves, Buckmaster and Vicol [8] proved the non-uniqueness of weak solutions to the 3-

d NS equations in the class CT H
β
x for some β > 0, which can be seen to be quite small

from its proof. Relying on the intermittent Beltrami waves, Luo and Titi [43] extended the

result of [8] up to Lions’ exponent m < 5
4

for (1) when n = 3. Mimicking the benefits of

Mikado flows, Buckmaster, Colombo, and Vicol [7] introduced intermittent jets to prove

non-uniqueness for a class of weak solutions to 3-d GNS equations with m < 5
4

which

have bounded kinetic energy, integrable vorticity, and are smooth outside a fractal set of

singular times with Hausdorff dimension strictly less than one.

As already mentioned in Subsection 1.1, the study of NS equations forced by random

noise, to which hereafter we refer as the stochastic NS (SNS) equations, has a long history

since [47] (see also [4]). Our focus will be on the following stochastic GNS (SGNS)

equations: for x ∈ Tn,

du + (−∆)mudt + div(u ⊗ u)dt + ∇πdt = F(u)dB, ∇ · u = 0, t > 0, (3)

where F(u)dB represents the random noise, to be specified subsequently. Via a proba-

bilistic Galerkin approximation and variations of Aubin-Lions compactness results afore-

mentioned, Flandoli and Gatarek [28] proved the existence of a weak solution to the n-d

SNS equations for n ≥ 2 under some assumptions on the noise; their solution has the

regularity of L∞t L2
x ∩ L2

t Ḣ1
x but does not necessarily satisfy the energy inequality (see [28,

Definition 3.1] and also [27, Definition 4.3]). Via the approach of martingale problem due

to Stroock and Varadhan [54], Flandoli and Romito constructed a Leray-Hopf weak solu-

tion to the 3-d SNS equations; i.e., the solutions constructed therein have the regularity of

L∞t L2
x ∩ L2

t Ḣ1
x and satisfy a stochastic analogue of the energy inequality (see [29, MP3 in

Definition 3.3]). Very recently, Hofmanová, Zhu, and Zhu [33] adapted the convex inte-

gration approach through intermittent jets from [9, Chapter 7] to the 3-d SNS equations

and proved the non-uniqueness in law within a class of weak solutions, which also implies

the lack of path-wise uniqueness by Yamada-Watanabe theorem (see also [5, 13, 34] for

probabilistic convex integration on stochastic Euler equations); we must emphasize that

their result does not extend to the Leray-Hopf weak solution from [29].

Remark 1.1. It is worth pointing out that the proof of non-uniqueness in the stochastic

case has a layer of complexity that is absent in the deterministic case in the following

manner. For example, Buckmaster and Vicol in [8, Theorem 1.2] specifically proved that

there exists β > 0 such that for any non-negative smooth function e(t): [0, T ] 7→ R+ ∪ {0},
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there exists u ∈ CT H
β
x that is a weak solution to the NS equations and satisfies ‖u(t)‖2

L2
x

=

e(t) for all t ∈ [0, T ]. One may take e.g. e(t) = et − 1 so that e(0) = 0. Because u ≡ 0 for

all (t, x) ∈ [0, T ] × T3 solves the NS equations and satisfies ‖u(0)‖2
L2

x

= 0, this immediately

deduces non-uniqueness. This approach clearly fails in the stochastic case because u ≡ 0

for all (t, x) ∈ [0, T ]× T3 does not solve the stochastic NS equations due to the presence of

the noise (see [27, Remark 4.16] for a similar discussion). More precisely, particularly in

the case of an additive noise, one may split (3) to a linear stochastic PDE solved by z and

the rest of the terms solved by v as in (37a)-(37b) in hope to adapt the proof of [8, Theorem

1.2] to the equation of v; unfortunately, v ≡ 0 does not solve (37b) as aforementioned.

Another major difficulty that arises in the stochastic case will be discussed in Remark 1.2.

Similarly to our discussion in Subsection 1.1, the 2-d SNS equations have received a

considerable amount of attention from researchers who have produced a wealth of results

many of which remain open in the 3-d case. Path-wise uniqueness, and consequently

uniqueness in law due to Yamada-Watanabe theorem, of the aforementioned weak solution

with regularity L∞t L2
x ∩ L2

t Ḣ1
x that does not necessarily satisfy the energy inequality which

was constructed in [28] are well-known. In the case of an additive noise, upon considering

the difference of two possible solutions, the noise cancels out and thus a deterministic

approach immediately implies uniqueness (see [27, Exercise 3.1 on p. 72]); in the case

of a multiplicative noise we refer to [15, Theorem 2.4]. Same uniqueness results for the

Leray-Hopf weak solutions to the 2-d SNS equations directly follow. We also refer to

[15, Theorem 3.2] and [32] concerning large deviation principle and ergodicity with hypo-

elliptic noise, respectively. The purpose of this manuscript is to prove the non-uniqueness

in law, and therefore a lack of path-wise uniqueness, for (3) when n = 2 and m ∈ (0, 1),

which has been studied by many authors previously (e.g., [18]).

Remark 1.2. As we remarked already, the theory of global well-posedness for (1) in the 2-

d case is significantly richer than that in the 3-d case. Vice versa, proving non-uniqueness

in the 2-d case should present considerable difficulty, not seen in the 3-d case. A natural

approach to prove the non-uniqueness in law for (3) with n = 2 and m ∈ (0, 1) will be to

try to follow the arguments in [33] on the 3-d SNS equations. Concerning the fractional

Laplacian, we can follow the arguments in [58] in which the analogous result was proven

for (3) when n = 3 and m ∈ ( 13
20
, 5

4
).

First major obstacle arises in the fact that intermittent jets, utilized in [33, 58] following

[9, Chapter 7], are inherently 3-d in space and thus inapplicable to (3) when n = 2; we

recall that the lack of a suitable replacement for Mikado flows in the 2-d case is precisely

the reason the case n = 2 was left out in the resolution of Onsager’s conjecture by Isett

(see [36, pg. 877]). Fortunately, a 2-d analogue of the 3-d Beltrami flows from [25] was

already established by Choffrut, De Lellis, and Székelyhidi Jr. [14], to which we refer as

2-d stationary flows. Moreover, its intermittent form, to which we refer as 2-d intermittent

stationary flows, was very recently introduced by Luo and Qu [42]. Thus, a good candidate

for strategy now is to somehow adapt the application of 2-d intermittent stationary flows

in [42] to the stochastic setting in [33].

Second major obstacle that arises in this endeavor is that the arguments in [42] follow

closely those of [8] and not [9, Chapter 7], quite naturally because the 2-d intermittent

stationary flows is an extension of the intermittent Beltrami waves in [8], not intermittent

jets in [9, Chapter 7]. It turns out that some of the crucial estimates achieved in [8, 42] seem

to be difficult in the stochastic setting. E.g., while [8, Equation (2.4)] and [42, Equation

(2.13)] claim certain bounds on the C1
t,x-norm of Reynolds stress, our Reynolds stress in
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(116) includes Rcom2 defined in (100e) that consists of z, and z is known to be only in

C
1
2
−2δ

t for δ > 0 from (49). Therefore, obtaining an analogous estimate to [8, Equation

(2.4)] and [42, Equation (2.13)] seems to be completely out of reach. Thus, our task is

not only to apply the theory of 2-d intermittent stationary flows from [42] but consider

an extension of the arguments in [42] to that of [9, Chapter 7] and then adjust that in

the stochastic setting of [33], while simultaneously considering the approach of [58] to

treat the fractional Laplacian. We will carefully define various parameters, all of which

depend on the value of m (e.g., (65)-(70), and (117)). Our proofs are inspired by those

of [8, 9, 33, 42] while on various occasions we need to make crucial modifications (e.g.,

Remarks 4.1-4.4).

2. Statement of main results

Only for simplicity of presentations, we assume ν = 1 hereafter. Following [33] we

consider two types of random noises within (3): additive; linear multiplicative.

2.1. The case of an additive noise. In the case of an additive noise, we consider (3) with

n = 2, F ≡ 1, and B to be a GG∗-Wiener process on a probability space (Ω,F ,P) where

G is a certain Hilbert-Schmidt operator to be described in more detail subsequently (see

(10)), and the asterisk denotes the adjoint operator. Finally, (Ft)t≥0 denotes the filtration

generated by B.

Theorem 2.1. Suppose that n = 2, F ≡ 1,m ∈ (0, 1), B is a GG∗-Wiener process, and

Tr((−∆)2−m+2σGG∗) < ∞ for some σ > 0. Then given T > 0,K > 1, and κ ∈ (0, 1), there

exists ε ∈ (0, 1) and a P-almost surely (a.s.) strictly positive stopping time t such that

P({t ≥ T }) > κ and the following is additionally satisfied. There exists an (Ft)t≥0-adapted

process u that is a weak solution to (3) starting from a deterministic initial condition uin,

satisfies

esssupω∈Ω sup
s∈[0,t]
‖u(s, ω)‖Hε

x
< ∞, (4)

and on the set {t ≥ T },

‖u(T )‖L2
x
> K‖uin‖L2

x
+ K(TTr(GG∗))

1
2 . (5)

Remark 2.1. For the 3-d SGNS equations (3) with m ∈ ( 13
20
, 5

4
), [58] required a hypoth-

esis of Tr((−∆)
5
2
−m+2σGG∗) < ∞ (see [58, Remark 2.1]). Here in the 2-d case, we need

Tr((−∆)2−m+2σGG∗) < ∞ for the purpose of Proposition 4.4.

Theorem 2.2. Suppose that n = 2, F ≡ 1,m ∈ (0, 1), B is a GG∗-Wiener process, and

Tr((−∆)2−m+2σGG∗) < ∞ for some σ > 0. Then non-uniqueness in law holds for (3) on

[0,∞). Moreover, for all T > 0 fixed, non-uniqueness in law holds for (3) on [0, T ].

2.2. The case of a linear multiplicative noise. In the case of a linear multiplicative noise,

we will consider F(u) = u and B to be an R-valued Wiener process on (Ω,F ,P).

Theorem 2.3. Suppose that n = 2, F(u) = u, m ∈ (0, 1), and B is an R-valued Wiener

process on (Ω,F ,P). Then given T > 0,K > 1, and κ ∈ (0, 1), there exists ε ∈ (0, 1)

and a P-a.s. strictly positive stopping time t such that P({t ≥ T }) > κ and the following is

additionally satisfied. There exists an (Ft)t≥0-adapted process u that is a weak solution to

(3) starting from a deterministic initial condition uin, satisfies

esssupω∈Ω sup
s∈[0,t]
‖u(s, ω)‖Hε

x
< ∞, (6)
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and on the set {t ≥ T },
‖u(T )‖L2

x
> Ke

T
2 ‖uin‖L2

x
. (7)

Theorem 2.4. Suppose that n = 2, F(u) = u, m ∈ (0, 1), and B is an R-valued Wiener

process on (Ω,F ,P). Then non-uniqueness in law holds for (3) on [0,∞). Moreover, for

any T > 0 fixed, non-uniqueness in law holds for (3) on [0, T ].

Remark 2.2. After this work was completed, Cheskidov and Luo [12] proved non-uniqueness

for the 2-d deterministic Navier-Stokes equations in the class of CtL
p
x for p ∈ [1, 2). We

point out that on one hand, they proved non-uniqueness with a full Laplacian while The-

orems 2.1-2.4 are concerned with the GNS equations diffused via (−∆)m,m ∈ (0, 1). On

the other hand, the spatial regularity of the solutions constructed in [12] are in L
p
x for

p ∈ [1, 2) while those in Theorems 2.1-2.4 are in Hǫ
x, although for ǫ ∈ (0, 1) very small, as

can be seen from their proofs.

The rest of this manuscript is organized as follows: Section 3 with a minimum amount

of notations, assumptions, and past results; Section 4 with proofs of Theorems 2.1 and 2.2;

Section 5 with proofs of Theorems 2.3 and 2.4; Appendix with additional past results and

details of some proofs.

3. Preliminaries

We denote N , {1, 2, . . . , } and N0 , {0} ∪ N. We write A .a,b B and A ≈a,b B to imply

the existence of a constant C = C(a, b) ≥ 0 such that A ≤ CB and A = CB, respectively.

We write A
(·)
. B to indicate that this inequality is due to an equation (·). For any R2-valued

maps f and g, we denote a tensor product by f ⊗ g while its trace-free part by

f ⊗̊g ,

(

f 1g1 − 1
2

f · g f 1g2

f 2g1 f 2g2 − 1
2

f · g

)

. (8)

We write for p ∈ [1,∞]

‖ f ‖Lp , ‖ f ‖L∞t L
p
x
, ‖ f ‖CN , ‖ f ‖L∞t CN

x
,

∑

0≤|α|≤N

‖Dα f ‖L∞ , ‖ f ‖CN
t,x
,

∑

0≤n+|α|≤N

‖∂n
t Dα f ‖L∞ . (9)

We also define L2
σ , { f ∈ L2

x:∇ · f = 0}, reserve P , Id − ∇∆−1∇· as the Leray projection

operator, and P≤r to be a Fourier operator with a Fourier symbol of 1|ξ|≤r(ξ). For any

Polish space H, we write B(H) to represent the σ-algebra of Borel sets in H. We denote

a mathematical expectation with respect to (w.r.t.) any probability measure P by EP. We

represent an L2(T2)-inner product, a cross variation of A and B, and a quadratic variation

of A respectively by 〈A, B〉, 〈〈A, B〉〉, and 〈〈A〉〉 , 〈〈A, A〉〉. We define P(Ω0) as the set of

all probability measure on (Ω0,B) where Ω0 , C([0,∞); H−3(T2)) ∩ L∞
loc

([0,∞); L2
σ) and

B is the Borel σ-field of Ω0 from the topology of locally uniform convergence on Ω0. We

define the canonical process ξ: Ω0 7→ H−3(T2) by ξt(ω) , ω(t). Similarly, for t ≥ 0 we

define Ωt , C([t,∞); H−3(T2)) ∩ L∞
loc

([t,∞); L2
σ) and the following Borel σ-algebras for

t ≥ 0: Bt , σ({ξ(s): s ≥ t}); B0
t , σ({ξ(s): s ≤ t}); Bt , ∩s>tB0

s . For any Hilbert space U

we denote by L2(U, L2
σ) the space of all Hilbert-Schmidt operators from U to L2

σ with the

norm ‖·‖L2(U,L2
σ ). We require F: L2

σ 7→ L2(U, L2
σ) to be B(L2

σ)/B(L2(U, L2
σ))-measurable and

that it satisfies for any φ ∈ C∞(T2) ∩ L2
σ

‖F(φ)‖L2(U,L2
σ ) ≤ C(1 + ‖φ‖L2

x
) and lim

n→∞
‖F(θn)∗φ − F(θ)∗φ‖U = 0 (10)

for some constant C ≥ 0 if limn→∞‖θn − θ‖L2
x
= 0.



NON-UNIQUENESS OF 2-D NAVIER-STOKES EQUATIONS 7

The following notations will be useful in the case of a linear multiplicative noise. We

assume the existence of another Hilbert space U1 such that the embedding U →֒ U1 is

Hilbert-Schmidt. We define Ω̄ , C([0,∞); H−3(T2) × U1) ∩ L∞
loc

([0,∞); L2
σ × U1) and

P(Ω̄) as the set of all probability measures on (Ω̄, B̄), where B̄ is the Borel σ-algebra

on Ω̄. Analogously we define the canonical process on Ω̄ as (ξ, θ): Ω̄ 7→ H−3(T2) × U1

by (ξt(ω), θt(ω)) , ω(t). We extend the previous definitions of Bt,B0
t and Bt to B̄t ,

σ({(ξ, θ)(s): s ≥ t}), B̄0
t , σ({(ξ, θ)(s): s ≤ t}), and B̄t , ∩s>tB̄0

s for t ≥ 0, respectively.

Next, we describe some notations and results concerning the 2-d intermittent stationary

flows introduced in [14] (e.g., [14, Lemma 4]) and extended in [42]. We let

Λ+ , {1
5

(3e1 ± 4e2),
1

5
(4e1 ± 3e2)} and Λ− , {1

5
(−3e1 ∓ 4e2),

1

5
(−4e1 ∓ 3e2)}, (11)

i.e. Λ− = −Λ+, and Λ , Λ+ ∪ Λ−, where e j for j ∈ {1, 2} is a standard basis of R2. It

follows immediately that Λ ⊂ S1 ∩ Q2, 5Λ ⊂ Z2, and

min
ζ,ζ′∈Λ: ζ,−ζ′

|ζ + ζ′| ≥
√

2

5
(12)

(cf. [8, pg. 110], [43, Equation (9)]). For all ζ ∈ Λ and any frequency parameter λ ∈ 5N,

we define bζ and its potential ψζ as

bζ(x) , bζ,λ(x) , iζ⊥eiλζ·x, ψζ (x) , ψζ,λ(x) ,
1

λ
eiλζ·x (13)

(cf. [14, Equation (14)]). It follows that for all N ∈ N0,

bζ(x) = ∇⊥ψζ(x), ∇ · bζ(x) = 0, ∇⊥ · bζ(x) = ∆ψζ (x) = −λ2ψζ(x), (14a)

bζ(x) = b−ζ(x), ψζ(x) = ψ−ζ(x), ‖bζ‖CN
x

(9)

≤ (N + 1)λN , ‖ψζ‖CN
x

(9)

≤ (N + 1)λN−1. (14b)

Lemma 3.1. (Geometric lemma from [42, Lemma 4.1]; cf. [25, Lemma 3.2], [14, Lemma

6]) Denote byM the linear space of 2× 2 symmetric trace-free matrices. Then there exists

a set of positive smooth functions {γζ ∈ C∞(M): ζ ∈ Λ} such that for each R̊ ∈ M,

γ−ζ(R̊) = γζ(R̊), R̊ =
∑

ζ∈Λ
(γζ(R̊))2(ζ⊗̊ζ), and γζ(R̊) . (1 + |R̊|) 1

2 . (15)

For convenience we set

CΛ , 2
√

12(4π2 + 1)
1
2 |Λ| and M , CΛ sup

ζ∈Λ
(‖γζ‖C(B 1

2
(0)) + ‖∇γζ‖C(B 1

2
(0))). (16)

Similarly to [8, pg. 111] we consider a 2-d Dirichlet kernel for r ∈ N

Dr(x) ,
1

2r + 1

∑

k∈Ωr

eik·x where Ωr , {k =
(

k1 k2
)T

: ki ∈ Z ∩ [−r, r] for i = 1, 2}, (17)

where T denotes a transpose, that satisfies

‖Dr‖Lp
x
. r1− 2

p , and ‖Dr‖L2
x
= 2π ∀ p ∈ (1,∞]. (18)

The role of r is to parametrize the number of frequencies along edges of the cube Ωr.

We introduce σ such that λσ ∈ 5N to parametrize the spacing between frequencies, or

equivalently such that the resulting rescaled kernel is (T/λσ)2-periodic. In particular, this

will be needed in application of Lemma 6.2 in (89). Lastly, µ measures the amount of

temporal oscillation in the building blocks. In sum, the parameters we introduced are

required to satisfy

1≪ r ≪ µ≪ σ−1 ≪ λ, r ∈ N, and λ, λσ ∈ 5N. (19)
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Now we define the directed-rescaled Dirichlet kernel by

ηζ(t, x) , ηζ,λ,σ,r,µ(t, x) ,






Dr(λσ(ζ · x + µt), λσζ⊥ · x) if ζ ∈ Λ+,
η−ζ,λ,σ,r,µ(t, x) if ζ ∈ Λ−,

(20)

so that

1

µ
∂tηζ(t, x) = ±(ζ · ∇)ηζ(t, x) ∀ ζ ∈ Λ±, (21a)

?

T2

η2
ζ (t, x)dx = 1, and ‖ηζ‖L∞t L

p
x
. r

1− 2
p ∀ p ∈ (1,∞] (21b)

(cf. [8, Equations (3.8)-(3.10)]). Finally, we define the intermittent 2-d stationary flow as

Wζ(t, x) ,Wζ,λ,σ,r,µ(t, x) , ηζ,λ,σ,r,µ(t, x)bζ,λ(x) (22)

(cf. [8, Equation (3.11)]). Similarly to the 3-d case in [8] it follows that for all ζ, ζ′ ∈ Λ
(see [42, Equations (4.16)-(4.19)])

P≤2λP≥ λ
2
Wζ =Wζ , (23a)

P≤4λP≥ λ
5
(Wζ ⊗̊Wζ′ ) =Wζ ⊗̊Wζ′ if ζ + ζ′ , 0, (23b)

P≥ λσ
2

(Wζ⊗̊Wζ′ ) = P,0(Wζ ⊗̊Wζ′ ), (23c)

P,0ηζ = P≥ λσ
2
ηζ . (23d)

Lemma 3.2. ([42, Lemma 4.2]; cf. [8, Proposition 3.4]) DefineWζ by (22). Then for any

{aζ}ζ∈Λ ⊂ C such that a−ζ = āζ , a function
∑

ζ∈Λ aζ is R-valued and for all R̊ ∈ M,

∑

ζ∈Λ
(γζ(R̊))2

?

T2

Wζ⊗̊W−ζdx = −R̊. (24)

Lemma 3.3. ([42, Lemma 4.3]; cf. [8, Proposition 3.5]) Define ηζ andWζ respectively by

(20) and (22), and assume (19). Then for any p ∈ (1,∞], k, N ∈ {0, 1, 2, 3},

‖∇N∂k
tWζ‖L∞t L

p
x
.N,k,p λ

N(λσrµ)kr
1− 2

p , (25a)

‖∇N∂k
t ηζ‖L∞t L

p
x
.N,k,p (λσr)N(λσrµ)kr

1− 2
p . (25b)

4. Proofs of Theorems 2.1-2.2

4.1. Proof of Theorem 2.2 assuming Theorem 2.1. We first present general results for

F defined through (10); thereafter, we apply them in case F ≡ 1 and B is a GG∗-Wiener

process to prove Theorems 2.1-2.2. We fix ε ∈ (0, 1) for the following definitions, which

are in the spirit of previous works such as [29, 30, 54].

Definition 4.1. Let s ≥ 0 and ξin ∈ L2
σ. Then P ∈ P(Ω0) is a martingale solution to (3)

with initial condition ξin at initial time s if

(M1) P({ξ(t) = ξin ∀ t ∈ [0, s]}) = 1 and for all n ∈ N

P({ξ ∈ Ω0:

∫ n

0

‖F(ξ(r))‖2
L2(U,L2

σ )
dr < ∞}) = 1, (26)

(M2) for every gi ∈ C∞(T2) ∩ L2
σ and t ≥ s

Mi
t,s , 〈ξ(t) − ξ(s), gi〉 +

∫ t

s

〈div(ξ(r) ⊗ ξ(r)) + (−∆)mξ(r), gi〉dr (27)

is a continuous, square-integrable (Bt)t≥s-martingale under P such that 〈〈Mi
t,s〉〉 =

∫ t

s
‖F(ξ(r))∗gi‖2Udr,
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(M3) for any q ∈ N there exists a function t 7→ Ct,q ∈ R+ for all t ≥ s such that

EP[ sup
r∈[0,t]
‖ξ(r)‖2q

L2
x

+

∫ t

s

‖ξ(r)‖2Hε
x
dr] ≤ Ct,q(1 + ‖ξin‖2q

L2
x

). (28)

The set of all such martingale solutions with the same constants Ct,q in (28) for every q ∈ N
and t ≥ s will be denoted by C(s, ξin, {Ct,q}q∈N,t≥s).

In the case of an additive noise, if {gi}∞i=1
is a complete orthonormal system consisting

of eigenvectors of GG∗, then Mt,s ,
∑∞

i=1 Mi
t,sgi becomes a GG∗-Wiener process w.r.t. the

filtration (Bt)t≥s under P. Given any stopping time τ:Ω0 7→ [0,∞] we define the space of

trajectories stopped at τ by

Ω0,τ , {ω(· ∧ τ(ω)): ω ∈ Ω0} (29)

and denote the σ-field associated to τ by Bτ.

Definition 4.2. Let s ≥ 0, ξin ∈ L2
σ, and τ ≥ s be a stopping time of (Bt)t≥s. Then

P ∈ P(Ω0,τ) is a martingale solution to (3) on [s, τ] with initial condition ξin at initial time

s if

(M1) P({ξ(t) = ξin ∀ t ∈ [0, s]}) = 1 and for all n ∈ N

P({ξ ∈ Ω0:

∫ n∧τ

0

‖F(ξ(r))‖2
L2(U,L2

σ )
dr < ∞}) = 1, (30)

(M2) for every gi ∈ C∞(T2) ∩ L2
σ and t ≥ s

Mi
t∧τ,s , 〈ξ(t ∧ τ) − ξin, gi〉 +

∫ t∧τ

s

〈div(ξ(r) ⊗ ξ(r)) + (−∆)mξ(r), gi〉dr (31)

is a continuous, square-integrable (Bt)t≥s-martingale under P such that 〈〈Mi
t∧τ,s〉〉

=
∫ t∧τ

s
‖F(ξ(r))∗gi‖2Udr,

(M3) for any q ∈ N there exists a function t 7→ Ct,q ∈ R+ for all t ≥ s such that

EP[ sup
r∈[0,t∧τ]

‖ξ(r)‖2q

L2
x

+

∫ t∧τ

s

‖ξ(r)‖2Hε
x
dr] ≤ Ct,q(1 + ‖ξin‖2q

L2
x

). (32)

Proposition 4.1. For any (s, ξin) ∈ [0,∞) × L2
σ, there exits P ∈ P(Ω0) which is a martin-

gale solution to (3) with initial condition ξin at initial time s according to Definition 4.1.

Additionally, if there exists a family {(sn, ξn)}n∈N ⊂ [0,∞) × L2
σ such that limn→∞‖(sn, ξn) −

(s, ξin)‖R×L2
x
= 0 and Pn ∈ C(sn, ξn, {Ct,q}q∈N,t≥sn

), then there exists a subsequence {Pnk
}k∈N

that converges weakly to some P ∈ C(s, ξin, {Ct,q}q∈N,t≥s).

Proof of Proposition 4.1. We omit the proof of the existence of a martingale solution be-

cause it has become very standard by now; we refer to [29, Theorem 4.1] for 3-d NS

equations, [30, Theorem 6.2] for a more general case of spatial dimension, as well as [61,

Theorem 4.2.4] for the case of a diffusive term in the form of a fractional Laplacian with

an arbitrary small exponent (see also [57, Theorem 3.1]). The stability result can also be

proven following the proof of [33, Theorem 3.1] (also [58, Proposition 4.1]); because the

estimates can differ slightly due to the arbitrary weak diffusion in the current case, we

leave a sketch of proof elaborating on treatments of diffusive terms in the Appendix for

completeness. �

Proposition 4.1 leads to the following results; the proofs of analogous results in [33] did

not depend on spatial dimension or specific form of diffusive terms and thus directly apply

to our case.
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Lemma 4.2. ([33, Proposition 3.2]) Let τ be a bounded stopping time of (Bt)t≥0. Then for

every ω ∈ Ω0 there exists Qω ∈ P(Ω0) such that

Qω({ω′ ∈ Ω0: ξ(t, ω′) = ω(t) ∀ t ∈ [0, τ(ω)]}) = 1, (33a)

Qω(A) = Rτ(ω),ξ(τ(ω),ω)(A) ∀ A ∈ Bτ(ω), (33b)

where Rτ(ω),ξ(τ(ω),ω) ∈ P(Ω0) is a martingale solution to (3) with initial condition ξ(τ(ω), ω)

at initial time τ(ω). Furthermore, for every B ∈ B the map ω 7→ Qω(B) is Bτ-measurable.

Let us mention that in the proof of Lemma 4.2, Qω is derived as the unique probability

measure

Qω = δω ⊗τ(ω) Rτ(ω),ξ(τ(ω),ω) ∈ P(Ω0), (34)

where δω is the Dirac mass, such that (33a)-(33b) hold.

Lemma 4.3. ([33, Proposition 3.4]) Let ξin ∈ L2
σ and P be a martingale solution to (3)

on [0, τ] with initial condition ξin at initial time 0 according to Definition 4.2. Assume the

hypothesis of Lemma 4.2 and additionally that there exists a Borel set N ⊂ Ω0,τ such that

P(N) = 0 and Qω from Lemma 4.2 satisfies for every ω ∈ Ω0 \ N
Qω({ω′ ∈ Ω0: τ(ω′) = τ(ω)}) = 1. (35)

Then a probability measure P ⊗τ R ∈ P(Ω0) defined by

P ⊗τ R(·) ,
∫

Ω0

Qω(·)P(dω) (36)

satisfies P ⊗τ R|Ω0,τ
= P|Ω0,τ

and it is a martingale solution to (3) on [0,∞) with initial

condition ξin at initial time 0.

Now we split (3) to

dz + (−∆)mzdt + ∇π1dt = dB, ∇ · z = 0 for t > 0, z(0, x) ≡ 0, (37a)

∂tv + (−∆)mv + div((v + z) ⊗ (v + z)) + ∇π2 = 0,∇ · v = 0 for t > 0, v(0, x) = uin(x) (37b)

so that u = v+ z solves (3) with π = π1+π2 starting from uin at t = 0. We fix a GG∗-Wiener

process B on (Ω,F ,P) with (Ft)t≥0 as the canonical filtration of B augmented by all the

P-negligible sets and apply Definitions 4.1-4.2, Proposition 4.1, and Lemmas 4.2-4.3 with

F ≡ 1 and such B.

Proposition 4.4. Suppose that m ∈ (0, 1) and that Tr((−∆)2−m+2σGG∗) < ∞ for some

σ > 0. Then for all δ ∈ (0, 1
2
) and T > 0,

EP[‖z‖
CT H

4+σ
2

x

+ ‖z‖
C

1
2
−δ

T
H

2+σ
2

x

] < ∞. (38)

Proof of Proposition 4.4. Similarly to [33, Proposition 3.6] and [58, Proposition 4.4], this

follows from a straight-forward modification of the proof of [21, Proposition 34] and an

application of Kolmogorov’s test [20, Theorem 3.3]. Because our diffusion is significantly

weaker than the cases in [33, 58], we require a stronger hypothesis on G. In short, one can

define

Y(s) ,
sin(πα)

π

∫ s

0

e−(−∆)m(s−r)(s − r)−αPdB(r) where α ∈ (0,
3σ

4m
), (39)

show that EP[‖(−∆)
4+σ

4 Y‖2k

L2k
T

L2
x

] .k 1 for all k ∈ N using Tr((−∆)2−m+2σGG∗) < ∞ from

hypothesis, use the identities of

z(t) =

∫ t

0

e−(t−r)(−∆)m

PdB(r) and

∫ t

r

(t − s)α−1(s − r)−αds =
π

sin(απ)
for any α ∈ (0, 1)
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respectively from (37a) and [20, pg. 131] to write
∫ t

0

(t − s)α−1e−(−∆)m(t−s)Y(s)ds = z(t),

and conclude the first bound. This immediately gives for any β < 1
2

EP[ sup
t,t+h∈[0,T ]

‖(−∆)
2+σ

4 (z(t + h) − z(t))‖2k

L2
x
] .σ,m,β,k,T |h|2βk (40)

(we refer to [21, Equation (55)] and [19, Proposition A.1.1]) so that applying Kolmogorov’s

test deduces the second bound. We refer to [21, Proposition 3.4] for complete details. �

Next, for every ω ∈ Ω0 we define

Mω
t,0 , ω(t) − ω(0) +

∫ t

0

Pdiv(ω(r) ⊗ ω(r)) + (−∆)mω(r)dr, (41a)

Zω(t) , Mω
t,0 −

∫ t

0

P(−∆)me−(t−r)(−∆)m

Mω
r,0dr. (41b)

If P is a martingale solution to (3), then M is a GG∗-Wiener process under P and it follows

from (41a)-(41b) that we can write

Z(t) =

∫ t

0

Pe−(t−r)(−∆)m

dMr,0. (42)

We can deduce from Proposition 4.4 that P-a.s. Z ∈ CT H
4+σ

2
x ∩ C

1
2
−δ

T
H

2+σ
2

x . For n ∈ N and

δ ∈ (0, 1
12

) we define

τn
L(ω) , inf{t ≥ 0:CS ‖Zω(t)‖

H
4+σ

2
x

> (L − 1

n
)

1
4 }

∧ inf{t ≥ 0:CS ‖Zω‖
C

1
2
−2δ

t H
2+σ

2
x

> (L − 1

n
)

1
2 } ∧ L, (43a)

τL , lim
n→∞

τn
L, (43b)

where CS > 0 is the Sobolev constant such that ‖ f ‖L∞x ≤ CS ‖ f ‖
H

2+σ
2

x

for all f ∈ H
2+σ

2 (T2),

so that (τn
L
)n∈N is non-decreasing in n. By [33, Lemma 3.5] it follows that τn

L
is a stopping

time of (Bt)t≥0 for all n ∈ N and hence so is τL.

Next, we shall assume Theorem 2.1 on a probability space (Ω,F , (Ft)t≥0,P) and denote

by P the law of the solution u constructed from Theorem 2.1.

Proposition 4.5. Let τL be defined by (43b). Then P, the law of u, is a martingale solution

of (3) on [0, τL] according to Definition 4.2.

Proof of Proposition 4.5. For CS > 0 from (43a), L > 1, and δ ∈ (0, 1
12

), we define

TL , inf{t ≥ 0:CS ‖z(t)‖
H

4+σ
2

x

≥ L
1
4 } ∧ inf{t ≥ 0:CS ‖z‖

C
1
2
−2δ

t H
2+σ

2
x

≥ L
1
2 } ∧ L. (44)

Due to Proposition 4.4 we see that P-a.s. TL > 0 and TL ր +∞ as Lր +∞. The stopping

time t in the statement of Theorem 2.1 is actually TL for L > 0 sufficiently large. The rest of

the proof of Proposition 4.5 follows that of [33, Proposition 3.7] (see also [58, Proposition

4.5]). �

Proposition 4.6. Let τL be defined by (43b) and P denote the law of u constructed from

Theorem 2.1. Then the probability measure P ⊗τL
R in (36) is a martingale solution to (3)

on [0,∞) according to Definition 4.1.
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Proof of Proposition 4.6. Because τL is a stopping time of (Bt)t≥0 that is bounded by L due

to (43a), and P is a martingale solution to (3) on [0, τL] due to Proposition 4.5, Lemma 4.3

gives us the desired result once we verify (35). The rest of the proof follows that of [33,

Proposition 3.8] (see also [58, Proposition 4.6]). �

Taking Theorem 2.1 for granted we are ready to prove Theorem 2.2.

Proof of Theorem 2.2 assuming Theorem 2.1. This follows from the proof of [33, Theo-

rem 1.2] (see also the proof of [58, Theorem 2.2]). In short, we can fix T > 0 arbitrarily,

any κ ∈ (0, 1) and K > 1 such that κK2 ≥ 1, rely on Theorem 2.1 and Proposition 4.6 to

deduce the existence of L > 1 and a measure P ⊗τL
R that is a martingale solution to (3)

on [0,∞) and coincides with P, the law of the solution constructed in Theorem 2.1, over a

random interval [0, τL]. Therefore, P ⊗τL
R starts with a deterministic initial condition ξin

from the proof of Theorem 2.1. It follows that

P ⊗τL
R({τL ≥ T }) (36)

=

∫

Ω0

Qω({ω′ ∈ Ω0:τL(ω′) ≥ T })P(dω) = P({TL ≥ T }) > κ (45)

where the last inequality is due to Theorem 2.1. Consequently,

EP⊗τL
R[‖ξ(T )‖2

L2
x
]

(5)(45)
> κ[K‖ξin‖L2

x
+ K(TTr(GG∗))

1
2 ]2 ≥ κK2(‖ξin‖2

L2
x
+ TTr(GG∗)). (46)

On the other hand, it is well known that a Galerkin approximation can give us another mar-

tingale solution Θ (e.g., [29]) which starts from the same initial condition ξin and satisfies

EΘ[‖ξ(T )‖2
L2

x
] ≤ ‖ξin‖2

L2
x
+ TTr(GG∗).

Because κK2 ≥ 1, this implies P⊗τL
R , Θ and hence a lack uniqueness in law for (3). �

4.2. Proof of Theorem 2.1 assuming Proposition 4.8. Considering (37b), for q ∈ N0 we

will construct a solution (vq, R̊q) to

∂tvq + (−∆)mvq + div((vq + z) ⊗ (vq + z)) + ∇πq = divR̊q, ∇ · vq = 0, t > 0, (47)

where R̊q is assumed to be a trace-free symmetric matrix. For any a ∈ 10N, b ∈ N,

β ∈ (0, 1), and L ≥ 1, to be selected more precisely in Sub-Subsection 4.3.1, we define

λq , abq

, δq , λ
−2β
q , M0(t) , L4e4Lt, (48)

from which we see that λq+1 ∈ 10N ⊂ 5N, as required in (19). The reason why we take

a ∈ 10N rather than a ∈ 5N will be e.g. explained after (128). Due to Sobolev embedding

in T2 we see from (44) that for any δ ∈ (0, 1
12

) and t ∈ [0, TL]

‖z(t)‖L∞x ≤ L
1
4 , ‖∇z(t)‖L∞x ≤ L

1
4 , ‖z‖

C
1
2
−2δ

t L∞x
≤ L

1
2 . (49)

Let us observe that if aβb > 3 and b ≥ 2, then
∑

1≤ι≤q δ
1
2
ι < 1

2
for any q ∈ N. We set the

convention that
∑

1≤ι≤0 , 0, denote by cR > 0 a universal small constant to be described

subsequently throughout the proof of Proposition 4.8 (e.g., (84)), and assume the following

bounds over t ∈ [0, TL] inductively:

‖vq‖Ct L
2
x
≤ M0(t)

1
2 (1 +

∑

1≤ι≤q

δ
1
2
ι ) ≤ 2M0(t)

1
2 , (50a)

‖vq‖C1
t,x
≤ M0(t)

1
2 λ4

q, (50b)

‖R̊q‖Ct L
1
x
≤ M0(t)cRδq+1. (50c)

We denote an anti-divergence operator by R in the following proposition (see Lemma 6.1).
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Proposition 4.7. Let

v0(t, x) ,
L2e2Lt

2π

(

sin(x2) 0
)T
. (51)

Then together with

R̊0(t, x) ,
2L3e2Lt

2π

(

0 − cos(x2)

− cos(x2) 0

)

+ (R(−∆)mv0 + v0⊗̊z + z⊗̊v0 + z⊗̊z)(t, x), (52)

it satisfies (47) at level q = 0. Moreover, (50) are satisfied at level q = 0 provided

(50)9π2 < 50π2a2βb ≤ cRL ≤ cR(a4π − 1) (53)

where the inequality 9 < a2βb is assumed only for the justification of the second inequality

in (50a). Furthermore, v0(0, x) and R̊0(0, x) are both deterministic.

Proof of Proposition 4.7. Using the facts that the divergence of a matrix (Ai j)1≤i, j≤2 is a

2-d vector, of which k-th component is
∑2

j=1 ∂ jA
k j and that div(v0 ⊗ v0) = 0, one can

immediately verify that v0 and R̊0 from (51)-(52) satisfy (47) at level q = 0 if we choose

π0 = −(v0 · z+ 1
2
|z|2). We also point out that v0 is divergence-free while R̊0 is trace-free and

symmetric due to Lemma 6.1, as required. Next, we can compute

‖v0(t)‖L2
x
=

M0(t)
1
2

√
2
≤ M0(t)

1
2 , ‖v0‖C1

t,x
=

L2e2Lt(L + 1)

π

(53)

≤ M0(t)
1
2 λ4

0, (54)

and thus (50a)-(50b) at level q = 0 hold. Next, we can compute

‖R̊0(t)‖L1
x

(49)(54)
≤ 16L3e2Lt + 2π‖R(−∆)mv0‖L2

x
+ 20πM0(t)

1
2 L

1
4 + 5(2π)2L

1
2 . (55)

Using the facts that v0 is mean-zero, divergence-free, and satisfies ∆v0 = −v0 we can rely

on (193) and interpolation to deduce

‖R(−∆)mv0‖L2
x
≤ 2(‖v0‖L2

x
+ ‖∆v0‖L2

x
) = 4‖v0‖L2

x
. (56)

Therefore, due to the second inequality of (53), continuing from (55) we obtain

‖R̊0(t)‖L1
x

(48)(54)(56)

≤ 16LM0(t)
1
2 +8πM0(t)

1
2 +20πM0(t)

1
2 L

1
4 +5(2π)2L

1
2

(53)

≤ M0(t)cRδ1. (57)

This verifies (50c) at level q = 0. Finally, it is clear that v0(0, x) is deterministic, and

consequently R̊0(0, x) is also deterministic because z(0, x) ≡ 0 from (37a). �

Proposition 4.8. Let L > (50)9π2c−1
R

and suppose that (vq, R̊q) is an (Ft)t≥0-adapted pro-

cess that solves (47) and satisfies (50). Then there exists a choice of parameters a, b, and

β such that (53) is fulfilled and an (Ft)t≥0-adapted process (vq+1, R̊q+1) that satisfies (47),

(50) at level q + 1, and

‖vq+1(t) − vq(t)‖L2
x
≤ M0(t)

1
2 δ

1
2

q+1
. (58)

Moreover, if vq(0, x) and R̊q(0, x) are deterministic, then so are vq+1(0, x) and R̊q+1(0, x).

Taking Proposition 4.8 granted we can now prove Theorem 2.1.

Proof of Theorem 2.1 assuming Proposition 4.8. The proof is similar to that of [33, Theo-

rem 1.1] (see also the proof of [58, Theorem 2.1]); we sketch it for completeness. Given

T > 0,K > 1, and κ ∈ (0, 1), starting from (v0, R̊0) in Proposition 4.7, Proposition 4.8 gives

us (vq, R̊q) for q ≥ 1 that satisfies (50) and (58). Then, for all ε ∈ (0,
β

4+β
) and t ∈ [0, TL],
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by Gagliardo-Nirenberg’s inequality, and the fact that bq+1 ≥ b(q + 1) for all q ≥ 0 and

b ≥ 2, we can deduce
∑

q≥0

‖vq+1(t) − vq(t)‖Hε
x
.

∑

q≥0

M0(t)
1−ε

2 δ
1−ε

2

q+1
(M0(t)

1
2 λ4

q+1)ε . M0(t)
1
2 . (59)

Therefore, we can deduce the existence of limq→∞ vq , v ∈ C([0, TL]; Hε(T2)) for which

there exists a deterministic constant CL > 0 such that

sup
t∈[0,TL]

‖v(t)‖Hε
x
≤ CL. (60)

As each vq is (Ft)t≥0-adapted, it follows that v is also (Ft)t≥0-adapted. Furthermore, for all

t ∈ [0, TL], ‖R̊q‖Ct L
1
x
→ 0 as q→ +∞ due to (50c). Therefore, v is a weak solution to (37b)

over [0, TL]; consequently, we see from (37a) that u = v+z solves (3). Now for cR > 0 to be

determined from the proof of Proposition 4.8, we can choose L = L(T,K, cR,Tr(GG∗)) >
(50)9π2c−1

R
larger if necessary to satisfy

3

2
+

1

L
< (

1
√

2
− 1

2
)eLT and L

1
4 2π + K(TTr(GG∗))

1
2 ≤ (eLT − K)‖uin‖L2

x
+ LeLT (61)

where uin(x) = v(0, x) as z(0, x) ≡ 0 from (37b). Because limL→∞ TL = +∞ P-a.s. due to

Proposition 4.4, for the fixed T > 0 and κ > 0, increasing L larger if necessary allows us to

obtain P({TL ≥ T }) > κ. Now because z(t) from (37a) is (Ft)t≥0-adapted, we see that u is

(Ft)t≥0-adapted. Moreover, (60) and (49) imply (4). Next, we compute

‖v(t) − v0(t)‖L2
x

(58)

≤ M0(t)
1
2

∑

q≥0

a−bq+1β ≤ M0(t)
1
2

∑

q≥0

a−b(q+1)β
(53)
< M0(t)

1
2 (

1

2
) (62)

for all t ∈ [0, TL]. We also see by utilizing (61) that

(‖v(0)‖L2
x
+ L)eLT

(54)(62)
≤ (

3

2
M0(0)

1
2 + L)eLT

(61)
< (

1
√

2
− 1

2
)M0(T )

1
2

(54)(62)
< ‖v(T )‖L2

x
. (63)

Therefore, on {TL ≥ T }

‖u(T )‖L2
x

(63)
> (‖v(0)‖L2

x
+ L)eLT − ‖z(T )‖L∞x 2π

(37a)(49)(61)

≥ K‖uin‖L2
x
+ K(TTr(GG∗))

1
2 , (64)

which implies (5). At last, because v0(0, x) is deterministic from Proposition 4.7, Proposi-

tion 4.8 implies that uin(x) = v(0, x) remains deterministic. �

4.3. Proof of Proposition 4.8.

4.3.1. Choice of parameters. Let us define

m∗ ,






2m − 1 if m ∈ ( 1
2
, 1),

0 if m ∈ (0, 1
2
];

(65)

it follows that m∗ ∈ [0, 1). Furthermore, we fix

η ∈ Q+ ∩ (
1 − m∗

16
,

1 − m∗

8
] (66)

from which we see that η ∈ (0, 1
8
]. We also fix L > (50)9π2c−1

R
and

α ,
1 − m

400
. (67)

We set

r , λ
1−6η

q+1
, µ , λ

1−4η

q+1
, and σ , λ

2η−1

q+1
, (68)
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from which we immediately observe that 1≪ r ≪ µ≪ σ−1 ≪ λq+1 from (19) is satisfied.

Moreover, for the α > 0 fixed we can choose b ∈ {ι ∈ N: ι > 16
α
} such that r ∈ N and λq+1σ ∈

10N so that the conditions of r ∈ N and λq+1σ ∈ 5N from (19) are satisfied. Indeed, because

η ∈ Q+ ∩ (0, 1
8
], we can write 1 − 6η = n1

d1
and 2η = n2

d2
for some n1, n2, d1, d2 ∈ N, and

then take b ∈ N to be a multiple of d1d2; it follows that r = λ
1−6η

q+1
= abq+1(1−6η) ∈ N and

λq+1σ = λ
2η

q+1
= abq+12η ∈ 10N as a ∈ 10N. For the α from (67) and such b > 0 fixed, we

take β > 0 sufficiently small so that

α > 16βb. (69)

We also choose

l , λ
− 3α

2

q+1
λ−2

q . (70)

Together with the condition that b > 16
α

, by taking a ∈ 10N sufficiently large we obtain

lλ4
q ≤ λ−αq+1 and l−1 ≤ λ2α

q+1. (71)

Remark 4.1. We will have numerous requirements that α ∈ (0,Cη) for various constants

C > 0; e.g., the second inequality of (89) will require that we bound

λ
− 1

2

q+1
σ−

1
2 l−

11
2

(71)(68)
≤ λ

− 1
2

q+1
λ

1
2
−η

q+1
λ11α

q+1

by a constant that does not depend on relevant parameters and therefore we need α ≤ η

11
.

Thus, to be able to fix the value of α explicitly as we did in (67), we decided to restrict η to

have the lower bound of 1−m∗

16
in (66), differently from [42, Equation (2.3)]. It follows that

α defined in (67) indeed satisfies α ≤ η

11
as

α
(67)
=

1 − m

400

(65)

≤ (
1 − m∗

16
)(

1

11
)

(66)

≤ η

11
,

and we will see that our choice of α in (67) will satisfy all other instances when it needs to

be sufficiently smaller w.r.t. η.

Concerning (53), taking a ∈ 10N sufficiently large gives cRL ≤ cR(a4π − 1) while

β > 0 sufficiently small allows (50)9π2 < 50π2a2βb ≤ cRL. Because we chose L such that

L > (50)9π2c−1
R

, this is possible. Thus, we shall hereafter consider such m∗, η, α, b, and l

fixed, preserving our freedom to take a ∈ 10N larger and β > 0 smaller as necessary.

Remark 4.2. Let us remark on some differences in our choice of parameters and those of

other works. First, the work of [42] did not have a parameter that is equivalent to our α

(The “α” in [42, Equation (2.3)] is actually our η defined in (66)). Our α in (67) plays the

role of defining l = λ
− 3α

2

q+1
λ−2

q in (70). Instead, the choice of l = λ−20
q is taken in [42, Equation

(3.1)], which has appeared in others’ previous works (e.g., [8, Equation (4.16)]). As we

described already in Remark 4.1, parts of our proof such as (89) required α to be taken

small w.r.t. η and because η in (66) depends on m∗ defined in (65) which in turn depends

on m, we chose l = λ
− 3α

2

q+1
λ−2

q where α depends on m via (67) following [33, Equation (4.17)]

and [58, Equation (69)].

On the other had, the works of [8, 33] did not have a parameter that is equivalent to our

η in (66) because [8, 33] were concerned with the Navier-Stokes equations and hence there

was no parameter m. For further references we note that after this work was completed, a

parameter that is analogous to η in (66) continued to see utility in others’ works (e.g., [10,

Equations (2.3)] and [59, Equation (92)]).



16 KAZUO YAMAZAKI

4.3.2. Mollification. We let {φǫ}ǫ>0 and {ϕǫ }ǫ>0, specifically φǫ(·) , 1
ǫ2 φ( ·

ǫ
) and ϕǫ(·) ,

1
ǫ
ϕ( ·

ǫ
), respectively be families of standard mollifiers on R2 and R with mass one where

the latter is compactly supported on R+. Then we mollify vq, R̊q, and z to obtain

vl , (vq ∗x φl) ∗t ϕl, R̊l , (R̊q ∗x φl) ∗t ϕl, zl , (z ∗x φl) ∗t ϕl. (72)

It follows from (47) that vl satisfies

∂tvl + (−∆)mvl + div((vl + zl) ⊗ (vl + zl)) + ∇πl = div(R̊l + Rcom1) (73)

if

πl ,(πq ∗x φl) ∗t ϕl −
1

2
(|vl + zl|2 − (|vq + z|2 ∗x φl) ∗t ϕl), (74a)

Rcom1 ,Rcommutator1 , (vl + zl)⊗̊(vl + zl) − (((vq + z)⊗̊(vq + z)) ∗x φl) ∗t ϕl. (74b)

We can estimate for all t ∈ [0, TL] and N ≥ 1, by using the fact that β ≪ α from (69) and

taking a ∈ 10N sufficiently large

‖vq − vl‖Ct L
2
x

(50b)
. lM0(t)

1
2 λ4

q

(71)

≤ 1

4
M0(t)

1
2 δ

1
2

q+1
, (75a)

‖vl‖Ct L
2
x
≤ ‖vq‖Ct L

2
x

(50a)

≤ M0(t)
1
2 (1 +

∑

1≤ι≤q

δ
1
2
ι ), (75b)

‖vl‖CN
t,x

(50b)
. l−N+1 M0(t)

1
2 λ4

q

(67)(70)

≤ l−N M0(t)
1
2 λ−αq+1. (75c)

4.3.3. Perturbation. We let χ be a smooth function such that

χ(z) ,






1 if z ∈ [0, 1],

z if z ∈ [2,∞),
(76)

and z ≤ 2χ(z) ≤ 4z for z ∈ (1, 2). We define for t ∈ [0, TL] and ω ∈ Ω

ρ(ω, t, x) , 4cRδq+1M0(t)χ((cRδq+1M0(t))−1|R̊l(ω, t, x)|). (77)

Then it follows that

| R̊l(ω, t, x)

ρ(ω, t, x)
| = |R̊l(ω, t, x)|

4cRδq+1M0(t)χ((cRδq+1M0(t))−1|R̊l(ω, t, x)|)
≤ 1

2
. (78)

We can estimate for any p ∈ [1,∞] and t ∈ [0, TL]

‖ρ(ω)‖Ct L
p
x

(76)
≤ sup

s∈[0,t]
4cRδq+1M0(s)‖1 + 3(cRδq+1M0(s))−1|R̊l(ω, s, x)|‖Lp

x

≤ 12((4π2)
1
p cRδq+1M0(t) + ‖R̊l(ω)‖Ct L

p
x
). (79)

Next, for any N ≥ 0 and t ∈ [0, TL], due to the embedding of W3,1(T2) →֒ L∞(T2),

‖R̊l‖CN
t,x

(9)
.

∑

0≤n+|α|≤N

‖∂n
t Dα(−∆)

3
2 R̊l‖L∞t L1

x

(50c)
. l−N−3 M0(t)cRδq+1. (80)

For any N ≥ 0, k ∈ {0, 1, 2}, and t ∈ [0, TL] we can deduce by taking a ∈ 10N sufficiently

large

‖ρ‖CtC
N
x
. cRδq+1M0(t)l−3−N and ‖ρ‖C1

t Ck
x
. cRδq+1M0(t)l−4(k+1). (81)
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Indeed, the first inequality can be computed using (79)-(80) when N = 0, while (76)-(77)

and [6, Equation (129)] in case N ≥ 1; the second inequality can be computed by directly

applying ∂t and ∇ and then relying on (80). Next, we define the amplitude function by

aζ(ω, t, x) , aζ,q+1(ω, t, x) , ρ(ω, t, x)
1
2 γζ (

R̊l(ω, t, x)

ρ(ω, t, x)
). (82)

Remark 4.3. We note that analogous definitions of aζ in previous works had “Id − ·” in

their arguments; e.g.,

“a(ξ)(ω, t, x): = aξ,q+1(ω, t, x): = ρ(ω, t, x)1/2γξ

(

Id − R̊l(ω, t, x)

ρ(ω, t, x)

)

(2π)−
3
4 ”

in [33, Equation (4.26)] (see also [8, Equation (4.12)]). The geometric lemma in the 3-d

case that was used in [8, 33], specifically [8, Proposition 3.2] and [33, Lemma B.1], had a

ball around an identity matrix in the space of 3 × 3 symmetric matrices as the domain of

γζ . On the other hand, the available geometric lemma in the 2-d case, specifically Lemma

3.1 from [42, Lemma 4.1], requires that the argument of γζ be not only symmetric but also

trace-free. Because Id− R̊l(ω,t,x)
ρ(ω,t,x)

would not be trace-free, we chose
R̊l(ω,t,x)
ρ(ω,t,x)

as the argument.

Furthermore, our choice of the argument of aζ also differs from that of [42, Equation

(5.1)] because theirs includes not only R̊l but also Rcom1. We chose to refrain from including

Rcom1 within the argument of γζ because in contrast to [42, Equation (3.6)], our Rcom1 in

(74b) includes z and requires separate delicate treatments (see (133)).

Next, we have the following identity:
∑

ζ,ζ′∈Λ
aζ(ω, t, x)aζ′(ω, t, x)

?

T2

Wζ ⊗̊Wζ′ (t, x)dx = −R̊l(ω, t, x). (83)

Indeed, the fact that bζ(x)⊗̊b−ζ(x)
(13)
= −ζ⊗̊ζ leads to

∑

ζ,ζ′∈Λ
γζ(R̊)γζ′(R̊)

?

T2

Wζ⊗̊Wζ′ (t, x)dx
(15)(20)(21b)(22)

= −R̊

which in turn gives (83) by using (82).

Remark 4.4. Let us note that this identity (83) differs slightly from the analogous ones

previous works, e.g.,

“(2π)
3
2

∑

ξ∈Λ
a2

(ξ)

?

T3

W(ξ) ⊗W(ξ)dx = ρId − R̊l”

in [33, Equation (4.27)] (cf. also [8, Equation (4.14)], [9, Equation (7.30)], [42, Equation

(5.3)]). The identity (83) will be necessary in deriving (102) and ultimately (115a)-(115b).

Concerning aζ we can estimate for all t ∈ [0, TL] with CΛ and M from (16)

‖aζ‖Ct L
2
x

(16)(78)(79)

≤ [12(4π2cRδq+1M0(t) + ‖R̊l(ω)‖Ct L
1
x
)]

1
2

M

CΛ

(16)(50c)

≤
c

1
4

R
M0(t)

1
2 δ

1
2

q+1

2|Λ| (84)

by requiring c
1
4

R
≤ 1

M
. We also have for all t ∈ [0, TL], N ∈ N0, and k ∈ {0, 1, 2},

‖aζ‖CtC
N
x
≤ c

1
4

R
δ

1
2

q+1
M0(t)

1
2 l−

3
2
−4N and ‖aζ‖C1

t Ck
x
≤ c

1
4

R
δ

1
2

q+1
M0(t)

1
2 l−(k+1)4. (85)

Indeed, the first inequality in case N = 0 follows from (16), (78), (81)-(82), while the

first inequality in case N ∈ N follows from (78), (81)-(82), an application of [6, Equations
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(129)-(130)], and the fact that ρ(t) ≥ 2cRδq+1M0(t) due to (76)-(77). Finally, the second

inequality can be verified by applying ∂t and ∇, and relying on (78), (81)-(82).

Next, we recall ψζ , ηζ ,Wζ , and µ respectively from (13), (20), (22), and (68), and define

the perturbation

wq+1 , w
(p)

q+1
+ w

(c)
q+1
+ w

(t)
q+1

and vq+1 , vl + wq+1 (86)

where

w
(p)

q+1
,

∑

ζ∈Λ
aζWζ , w

(c)

q+1
,

∑

ζ∈Λ
∇⊥(aζηζ )ψζ , w

(t)

q+1
, µ−1(

∑

ζ∈Λ+
−

∑

ζ∈Λ−
)PP,0(a2

ζP,0η
2
ζζ). (87)

We have the identity of

(w
(p)

q+1
+ w

(c)

q+1
)(t, x)

(14a)(22)
= ∇⊥(

∑

ζ∈Λ
aζ(t, x)ηζ(t, x)ψζ(x)). (88)

It follows that wq+1 is divergence-free and mean-zero. Now by (13) and (20) we see that

Wζ in (22) is (T/λq+1σ)2-periodic. Thus, we can apply Lemma 6.2 to deduce

‖w(p)

q+1
‖Ct L

2
x

(25a)(84)
.

∑

ζ∈Λ

c
1
4

R
M0(t)

1
2 δ

1
2

q+1

|Λ| + λ
− 1

2

q+1
σ−

1
2 c

1
4

R
δ

1
2

q+1
M0(t)

1
2 l−

11
2

(71)
. c

1
4

R
δ

1
2

q+1
M0(t)

1
2 , (89)

where the last inequality used the fact that 11α−η ≤ 0 due to (65)-(67); preserving c
1
4

R
here

will be needed in deriving (92). Next, for all p ∈ (1,∞) and t ∈ [0, TL] we can estimate

‖w(p)

q+1
‖Ct L

p
x

(87)

≤ sup
s∈[0,t]

∑

ζ∈Λ
‖aζ(s)‖L∞x ‖Wζ (s)‖Lp

x

(25a)(85)
. δ

1
2

q+1
M0(t)

1
2 l−

3
2 r

1− 2
p , (90a)

‖w(c)

q+1
‖Ct L

p
x

(87)
. sup

s∈[0,t]

∑

ζ∈Λ
‖∇⊥(aζηζ)(s)‖Lp

x
‖ψζ‖L∞x

(14b)(25b)(85)
. δ

1
2

q+1
M0(t)

1
2 l−

11
2 σr2− 2

p , (90b)

‖w(t)
q+1
‖Ct L

p
x

(87)
. µ−1

∑

ζ∈Λ
‖aζ‖2Ct L

∞
x
‖ηζ‖2

Ct L
2p
x

(25b)(85)
. µ−1δq+1M0(t)l−3r

2− 2
p . (90c)

The estimates (90b)-(90c) allow us to deduce for all p ∈ (1,∞) and t ∈ [0, TL]

‖w(c)

q+1
‖Ct L

p
x
+ ‖w(t)

q+1
‖Ct L

p
x

(90b)(90c)(71)
. δ

1
2

q+1
M0(t)

1
2 l−3r

2− 2
p [λ

5α+2η−1

q+1
+ λ

4η−1

q+1
δ

1
2

q+1
M0(t)

1
2 ] . δq+1M0(t)l−3r

2− 2
p λ

4η−1

q+1
(91)

where the second inequality used that 5α + 2η < 4η − β due to (66), (67), and (69). We

deduce from the estimate (91) by taking a ∈ 10N sufficiently large that for all t ∈ [0, TL]

‖wq+1‖Ct L
2
x

(86)(89)(91)
. c

1
4

R
δ

1
2

q+1
M0(t)

1
2 + δq+1M0(t)l−3rλ

4η−1

q+1

(68)(71)

≤ δ
1
2

q+1
M0(t)

1
2 [

3

8
+CM0(L)

1
2 λ

6α−2η

q+1
] ≤ 3

4
δ

1
2

q+1
M0(t)

1
2 (92)

where the second inequality is by taking cR ≪ 1 and the third inequality used that 6α−2η <

0 due to (66)-(67). We are now ready to verify (50a) at level q + 1 and (58) as follows:

‖vq+1‖Ct L
2
x

(86)

≤ ‖vl‖Ct L
2
x
+ ‖wq+1‖Ct L

2
x

(75b)(92)

≤ M0(t)
1
2 (1 +

∑

1≤ι≤q+1

δ
1
2
ι ), (93a)

‖vq+1(t) − vq(t)‖L2
x

(86)

≤ ‖wq+1(t)‖L2
x
+ ‖vl(t) − vq(t)‖L2

x

(75a)(92)

≤ M0(t)
1
2 δ

1
2

q+1
. (93b)
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Next, we estimate norms of higher order. First, for all t ∈ [0, TL]

‖w(p)

q+1
‖C1

t,x

(87)
.

∑

ζ∈Λ
‖aζ‖C1

t,x
‖Wζ‖L∞t L∞x + ‖aζ‖L∞t L∞x ‖Wζ‖C1

t,x

(25a)(85)(71)
. δ

1
2

q+1
M0(t)

1
2 λ

1−6η

q+1
l−

3
2 [λ8α

q+1 + λ
2−8η

q+1
] . δ

1
2

q+1
M0(t)

1
2 λ

3−14η

q+1
l−

3
2 , (94a)

‖w(c)

q+1
‖C1

t,x

(87)

≤
∑

ζ∈Λ
‖(∇⊥aζηζ + aζ∇⊥ηζ)ψζ‖C1

t,x
(94b)

(14b)(25b)(85)
. δ

1
2

q+1
M0(t)

1
2 r[l−

19
2 λ−1

q+1 + l−
11
2 σµr + l−

3
2 λq+1σ

2r2µ] . δ
1
2

q+1
M0(t)

1
2 λ

3−18η

q+1
l−

3
2 ,

where the last inequality in (94a) used the fact that 8α < 2 − 8η which can be verified

by (65)-(67). Next, due to PP,0 not being bounded in C1
t,x, we go down to Lp space for

p ∈ (1,∞) in the expense of λα
q+1

and estimate for all t ∈ [0, TL]

‖w(t)

q+1
‖C1

t,x

(87)
. µ−1

∑

ζ∈Λ
λαq+1[‖aζ‖CtCx

‖aζ‖C1
t Cx
‖ηζ‖2CtCx

+ ‖aζ‖2CtCx
‖ηζ‖CtCx

‖ηζ‖C1
t Cx

(95)

+ ‖aζ‖CtCx
‖aζ‖CtC

1
x
‖ηζ‖2CtCx

+ ‖aζ‖2CtCx
‖ηζ‖CtCx

‖ηζ‖CtC
1
x
]

(25b)(71)(85)
. λ

4η−1

q+1
λαq+1δq+1M0(t)l−3(λ

1−6η

q+1
)2[λ8α

q+1 + λ
2−8η

q+1
] . λ

3−16η+α

q+1
δq+1M0(t)l−3

where the last inequality used the fact that 8α < 2 − 8η due to (65)-(67). Therefore, by

taking a ∈ 10N sufficiently large we conclude that (50b) at level q + 1 holds as follows:

‖vq+1‖C1
t,x

(75c)(94)(95)

≤ M0(t)
1
2 [l−1λ−αq+1 +Cλ

3−14η

q+1
l−

3
2 +Cλ

3−16η+α

q+1
M0(t)

1
2 l−3] ≤ M0(t)

1
2 λ4

q+1

(96)

where the second inequality is due to

l−1λ−αq+1

(71)

≤ λαq+1

(67)

≤ 1

4
λ4

q+1, (97a)

Cλ
3−14η

q+1
l−

3
2

(71)

≤ Cλ
3−14η

q+1
λ3α

q+1

(65)(66)(67)

≤ 1

4
λ4

q+1, (97b)

Cλ
3−16η+α

q+1
M0(t)

1
2 l−3

(71)

≤ Cλ
3−16η+7α

q+1
M0(L)

1
2

(65)(66)(67)

≤ 1

4
λ4

q+1. (97c)

Finally, we estimate for all p ∈ (1,∞) and t ∈ [0, TL]

‖w(p)

q+1
+ w

(c)

q+1
‖

Ct W
1,p
x

(88)
= ‖∇⊥(

∑

ζ∈Λ
aζηζψζ)‖CtW

1,p
x

(98a)

(14b)(25b)(85)
. δ

1
2

q+1
M0(t)

1
2 r

1− 2
p [l−

19
2 λ−1

q+1 + l−
3
2σ2r2λq+1 + l−

3
2 λq+1] . δ

1
2

q+1
M0(t)

1
2 r

1− 2
p l−

3
2 λq+1,

‖w(t)

q+1
‖

CtW
1,p
x

(87)
. µ−1

∑

ζ∈Λ
‖aζ‖CtCx

‖aζ‖CtC
1
x
‖ηζ‖2

Ct L
2p
x

+ ‖aζ‖2CtCx
‖ηζ‖Ct L

2p
x
‖ηζ‖Ct W

1,2p
x

(98b)

(25b)(85)
. µ−1δq+1M0(t)l−3r

2− 2
p [l−4 + λq+1σr]

(71)
. µ−1δq+1M0(t)l−3r

3− 2
p λq+1σ.

4.3.4. Reynolds stress. We can compute from (47), (73), and (86) that

divR̊q+1 − ∇πq+1 (99)

= (−∆)mwq+1 + ∂t(w
(p)

q+1
+ w

(c)

q+1
) + div((vl + zl) ⊗ wq+1 + wq+1 ⊗ (vl + zl))

︸                                                                                        ︷︷                                                                                        ︸

div(Rlin)+∇πlin
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+ div((w
(c)

q+1
+ w

(t)

q+1
) ⊗ wq+1 + w

(p)

q+1
⊗ (w

(c)

q+1
+ w

(t)

q+1
))

︸                                                            ︷︷                                                            ︸

div(Rcor)+∇πcor

+ div(w
(p)

q+1
⊗ w

(p)

q+1
+ R̊l) + ∂tw

(t)

q+1
︸                                  ︷︷                                  ︸

div(Rosc)+∇πosc

+ div(vq+1 ⊗ z − vq+1 ⊗ zl + z ⊗ vq+1 − zl ⊗ vq+1 + z ⊗ z − zl ⊗ zl)
︸                                                                            ︷︷                                                                            ︸

div(Rcom2)+∇πcom2

+divRcom1 − ∇πl

within which we specify

Rlin ,Rlinear

,R(−∆)mwq+1 + R∂t(w
(p)

q+1
+ w

(c)
q+1

) + (vl + zl)⊗̊wq+1 + wq+1⊗̊(vl + zl), (100a)

πlin ,πlinear , (vl + zl) · wq+1, (100b)

Rcor ,Rcorrector , (w
(c)

q+1
+ w

(t)

q+1
)⊗̊wq+1 + w

(p)

q+1
⊗̊(w

(c)

q+1
+ w

(t)

q+1
), (100c)

πcor ,πcorrector ,
1

2
[(w

(c)

q+1
+ w

(t)

q+1
) · wq+1 + w

(p)

q+1
· (w(c)

q+1
+ w

(t)

q+1
)], (100d)

Rcom2 ,Rcommutator2 , vq+1⊗̊(z − zl) + (z − zl)⊗̊vq+1 + (z − zl)⊗̊z + zl⊗̊(z − zl), (100e)

πcom2 ,πcommutator2 , vq+1 · (z − zl) +
1

2
|z|2 − 1

2
|zl|2. (100f)

Concerning Rosc that is arguably the most technical, first we can write

div(w
(p)

q+1
⊗ w

(p)

q+1
) = div(w

(p)

q+1
⊗̊w

(p)

q+1
) + ∇1

2
|w(p)

q+1
|2, (101)

while

w
(p)

q+1
⊗̊w

(p)

q+1
+ R̊l

(83)(87)
=

∑

ζ,ζ′∈Λ
aζaζ′P,0(Wζ⊗̊Wζ′ ) =

∑

ζ,ζ′∈Λ
aζaζ′P≥

λq+1σ

2

(Wζ⊗̊Wζ′ ) (102)

because the minimal separation between active frequencies ofWζ ⊗Wζ′ and the zero fre-

quency is given by λq+1σ for ζ′ = −ζ and by
λq+1

5
≥ λq+1σ for ζ′ , −ζ due to (23b)-(23c)

(cf. [8, Equation (5.12)]). This leads to

div(w
(p)

q+1
⊗̊w

(p)

q+1
+ R̊l)

(102)
= P,0(

∑

ζ,ζ′∈Λ
∇(aζaζ′) · P≥ λq+1σ

2

(Wζ⊗̊Wζ′ ) (103)

+ aζaζ′∇ · P≥ λq+1σ

2

(Wζ⊗̊Wζ′ )) =
1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,1 +

1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,2,

where

Eζ,ζ′,1 , P,0(∇(aζaζ′ ) · P≥ λq+1σ

2

(Wζ⊗̊Wζ′ +Wζ′ ⊗̊Wζ)), (104a)

Eζ,ζ′,2 , P,0(aζaζ′∇ · (Wζ⊗̊Wζ′ +Wζ′ ⊗̊Wζ )), (104b)

in which we used symmetry, and also dropped the unnecessary frequency projection P≥
λq+1σ

2

in Eζ,ζ′,2. Now for any ζ, ζ′ ∈ Λ ⊂ S1, we can compute

(ζ⊥ ⊗ ζ′⊥ + ζ′⊥ ⊗ ζ⊥)(ζ + ζ′) =

(

ζ1ζ2ζ′2 + ζ2ζ′1ζ′2 − (ζ2)2ζ′1 − ζ1(ζ′2)2

−(ζ1)2ζ′2 − ζ2(ζ′1)2 + ζ1ζ2ζ′1 + ζ1ζ′1ζ′2

)

(105)

=

(

ζ1[ζ2ζ′2 + (ζ′1)2 − 1] + ζ′1[ζ2ζ′2 + (ζ1)2 − 1]

ζ2[(ζ′2)2 + ζ1ζ′1 − 1] + ζ′2[(ζ2)2 + ζ1ζ′1 − 1]

)

= (ζ⊥ · ζ′⊥ − 1)Id(ζ + ζ′).

It follows that

∇ · (bζ⊗̊bζ′ + bζ′⊗̊bζ)(x) =∇ · (bζ ⊗ bζ′ + bζ′ ⊗ bζ − bζ · bζ′Id)(x)
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(13)(105)
= iλq+1eiλq+1(ζ+ζ′)·x(ζ + ζ′)

(13)
= ∇(λ2

q+1ψζψζ′ )(x). (106)

Consequently,

∇ · (Wζ⊗̊Wζ′ +Wζ′ ⊗̊Wζ)
(106)
= (bζ⊗̊bζ′ + bζ′⊗̊bζ) · ∇(ηζηζ′ ) + (ηζηζ′ )∇(λ2

q+1ψζψζ′ ). (107)

After splitting 1
2

∑

ζ,ζ′∈Λ Eζ,ζ′,2 = 1
2
(
∑

ζ,ζ′∈Λ: ζ+ζ′,0 +
∑

ζ,ζ′∈Λ: ζ+ζ′=0)Eζ,ζ′,2, this allows us to

write

1

2

∑

ζ,ζ′∈Λ: ζ+ζ′,0

Eζ,ζ′,2 (108)

(23b)(104b)
=

1

2

∑

ζ,ζ′∈Λ: ζ+ζ′,0

P,0(aζaζ′∇ · P≥ λq+1
10

(Wζ⊗̊Wζ′ +Wζ′ ⊗̊Wζ ))
(107)
=

1

2

∑

ζ,ζ′∈Λ

4∑

k=1

Eζ,ζ′,2,k

where

Eζ,ζ′,2,1 , P,0(aζaζ′P≥
λq+1

10

[(bζ⊗̊bζ′ + bζ′ ⊗̊bζ) · ∇(ηζηζ′ )]1ζ+ζ′,0, (109a)

Eζ,ζ′,2,2 , ∇P,0(aζaζ′P≥
λq+1

10

(ηζηζ′λ
2
q+1ψζψζ′ ))1ζ+ζ′,0, (109b)

Eζ,ζ′,2,3 , −P,0(∇(aζaζ′)P≥
λq+1

10

(ηζηζ′λ
2
q+1ψζψζ′ ))1ζ+ζ′,0, (109c)

Eζ,ζ′,2,4 , −P,0(aζaζ′P≥
λq+1

10

(∇(ηζηζ′ )λ
2
q+1ψζψζ′ ))1ζ+ζ′,0 (109d)

(cf. [8, pg. 131]). On the other hand, in case ζ + ζ′ = 0 we have ∇(λ2
q+1
ψζψ−ζ)

(13)
= 0, while

we can multiply (21a) by 2ηζ to deduce µ−1∂t|ηζ |2 = ±(ζ · ∇)|ηζ |2 for all ζ ∈ Λ±. Hence,

∇ · (Wζ⊗̊W−ζ +W−ζ⊗̊Wζ )
(22)(106)
= [bζ⊗̊b−ζ + b−ζ⊗̊bζ]∇(ηζη−ζ)

(13)
= 2ζ⊥⊗̊ζ⊥∇η2

ζ = [Id − 2ζ ⊗ ζ]∇η2
ζ = ∇η2

ζ − 2(ζ · ∇)η2
ζζ = ∇η2

ζ ∓ 2µ−1(∂tη
2
ζ )ζ. (110)

This allows us to write

1

2

∑

ζ,ζ′∈Λ: ζ+ζ′=0

Eζ,ζ′,2
(15)(104b)
=

1

2

∑

ζ∈Λ
P,0(a2

ζ∇ · (Wζ⊗̊W−ζ +W−ζ ⊗̊Wζ)) (111)

(110)
=

1

2

∑

ζ∈Λ
∇(a2

ζP≥
λq+1σ

2

η2
ζ ) − P,0(∇a2

ζP≥
λq+1σ

2

η2
ζ )

− µ−1(
∑

ζ∈Λ+
−

∑

ζ∈Λ−
)∂tP,0(a2

ζP,0(η2
ζζ)) − P,0(∂ta

2
ζP≥

λq+1σ

2

(η2
ζζ))

where we also used that ηζ is (T/λq+1σ)2-periodic and hence P≥
λq+1σ

2

η2
ζ = P,0η

2
ζ . At last,

we obtain by using the definition of P = Id − ∇∆−1∇·
1

2

∑

ζ,ζ′∈Λ: ζ+ζ′=0

Eζ,ζ′,2 + ∂tw
(t)

q+1

(87)(111)
=

1

2

∑

ζ∈Λ
∇(a2

ζP≥
λq+1σ

2

η2
ζ ) − P,0(∇a2

ζP≥
λq+1σ

2

η2
ζ )

− µ−1(
∑

ζ∈Λ+
−

∑

ζ∈Λ−
)∂tP,0(a2

ζP,0(η2
ζζ)) − P,0(∂ta

2
ζP≥

λq+1σ

2

(η2
ζζ))

+ µ−1(
∑

ζ∈Λ+
−

∑

ζ∈Λ−
)(Id − ∇∆−1∇·)∂tP,0(a2

ζP,0η
2
ζζ) =

4∑

k=1

Ak (112)
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where

A1 ,
1

2

∑

ζ∈Λ
∇(a2

ζP≥
λq+1σ

2

η2
ζ ), (113a)

A2 , −
1

2

∑

ζ∈Λ
P,0(∇a2

ζP≥
λq+1σ

2

η2
ζ ), (113b)

A3 , µ
−1(

∑

ζ∈Λ+
−

∑

ζ∈Λ−
)P,0(∂ta

2
ζP≥

λq+1σ

2

(η2
ζζ)), (113c)

A4 , −∇∆−1∇ · µ−1(
∑

ζ∈Λ+
−

∑

ζ∈Λ−
)P,0∂t(a

2
ζP,0η

2
ζζ). (113d)

Therefore,

div(w
(p)

q+1
⊗ w

(p)

q+1
+ R̊l) + ∂tw

(t)
q+1

(101)(103)
=

1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,1 +

1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,2 + ∂tw

(t)

q+1
+ ∇1

2
|w(p)

q+1
|2

(108)(112)
=

1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,1 +

1

2

∑

ζ,ζ′∈Λ

∑

k=1,3,4

Eζ,ζ′,2,k + A2 + A3

+ ∇[
1

2
|w(p)

q+1
|2 + 1

2

∑

ζ,ζ′∈Λ
P,0(aζaζ′P≥

λq+1

10

(ηζηζ′λ
2
q+1ψζψζ′ ))

+
1

2

∑

ζ∈Λ
a2
ζP≥

λq+1σ

2

η2
ζ − ∆−1∇ · µ−1(

∑

ζ∈Λ+
−

∑

ζ∈Λ−
)P,0∂t(a

2
ζP,0η

2
ζζ)], (114)

which finally leads us to define

Rosc ,Roscillation , R(
1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,1 +

1

2

∑

ζ,ζ′∈Λ

∑

k=1,3,4

Eζ,ζ′,2,k + A2 + A3), (115a)

πosc ,πoscillation ,
1

2
|w(p)

q+1
|2 + 1

2

∑

ζ,ζ′∈Λ
P,0(aζaζ′P≥

λq+1σ

2

(ηζηζ′λ
2
q+1ψζψζ′ ))1ζ+ζ′,0 (115b)

+
1

2

∑

ζ∈Λ
a2
ζP≥

λq+1σ

2

η2
ζ − ∆−1∇ · µ−1(

∑

ζ∈Λ+
−

∑

ζ∈Λ−
)P,0∂t(a

2
ζP,0η

2
ζζ).

Considering (99) we define

πq+1 , πl − πlin − πcor − πosc − πcom2 and R̊q+1 , Rlin + Rcor + Rosc + Rcom2 + Rcom1. (116)

Now we choose

p∗ ,
16(1 − 6η)

300α + 16(1 − 7η)
, (117)

which can be readily verified to be an element in (1, 2) using (65)-(67). For Rlin we first

estimate by Gagliardo-Nirenberg’s inequality for all t ∈ [0, TL]

‖R(−∆)mwq+1‖Ct L
p∗
x
.‖wq+1‖1−m∗

Ct L
p∗
x

(‖∇(w
(p)

q+1
+ w

(c)

q+1
)‖

Ct L
p∗
x
+ ‖∇w

(t)

q+1
‖

Ct L
p∗
x

)m∗

(86)(90a)(91)(98)
. δ

1
2

q+1
M0(t)

1
2 r

1− 2
p∗ (l−

3
2 + δ

1
2

q+1
M0(t)

1
2 l−3rλ

4η−1

q+1
)1−m∗

× (l−
3
2 λq+1 + µ

−1δ
1
2

q+1
M0(t)

1
2 l−3r2λq+1σ)m∗ . (118)
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Second, for all t ∈ [0, TL]

‖R∂t(w
(p)

q+1
+ w

(c)

q+1
)‖

Ct L
p∗
x

(88)
.

∑

ζ∈Λ
‖∂t(aζηζ)ψζ‖Ct L

p∗
x

(14b)(25b)(85)
. δ

1
2

q+1
M0(t)

1
2 r

1− 2
p∗ [l−4λ−1

q+1 + l−
3
2σµr] . δ

1
2

q+1
M0(t)

1
2 r

1− 2
p∗ l−

3
2 λ

1−8η

q+1
. (119)

Finally, we can estimate for all t ∈ [0, TL]

‖(vl + zl)⊗̊wq+1 + wq+1⊗̊(vl + zl)‖Ct L
p∗
x
. (‖vq‖CtCx

+ ‖z‖CtCx
)‖wq+1‖Ct L

p∗
x

(49)(50b)(90a)(91)
. M0(t)

1
2 λ4

q[δ
1
2

q+1
M0(t)

1
2 l−

3
2 r

1− 2
p∗ + δq+1M0(t)l−3r

2− 2
p∗ λ

4η−1

q+1
]. (120)

Due to (118)-(120) we obtain for all t ∈ [0, TL]

‖Rlin‖Ct L
p∗
x

(100a)
≤ ‖R(−∆)mwq+1‖Ct L

p∗
x
+ ‖R∂t(w

(p)

q+1
+ w

(c)

q+1
)‖

Ct L
p∗
x

+ ‖(vl + zl)⊗̊wq+1 + wq+1⊗̊(vl + zl)‖Ct L
p∗
x

(118)(119)(120)
. δ

1
2

q+1
M0(t)

1
2 r

1− 2
p∗ (l−

3
2 + δ

1
2

q+1
M0(t)

1
2 l−3rλ

4η−1

q+1
)1−m∗

× (l−
3
2 λq+1 + µ

−1δ
1
2

q+1
M0(t)

1
2 l−3r2λq+1σ)m∗

+ δ
1
2

q+1
M0(t)

1
2 r

1− 2
p∗ l−

3
2 λ

1−8η

q+1

+ M0(t)
1
2 λ4

q[δ
1
2

q+1
M0(t)

1
2 l−

3
2 r

1− 2
p∗ + δq+1M0(t)l−3r

2− 2
p∗ λ

4η−1

q+1
]

.M0(t)
1
2 r

1− 2
p∗ l−

3
2 λm∗

q+1 + M0(t)
1
2 r

1− 2
p∗ l−

3
2 λ

1−8η

q+1
+ M0(t)r1− 2

p∗ l−
3
2 λ4

q. (121)

Now within the right hand side of (121), first we can estimate using 2βb < α
8

from (69)

and taking a ∈ 10N sufficiently large

M0(t)
1
2 r

1− 2
p∗ l−

3
2 λm∗

q+1

=






M0(t)
1
2 r

1− 2
p∗ l−

3
2

(71)
. M0(t)δq+2λ

2β

q+2
λ

(1−6η)(1− 2
p∗ )

q+1
λ3α

q+1
if m ∈ (0, 1

2
),

M0(t)
1
2 r

1− 2
p∗ l−

3
2 λ2m−1

q+1

(71)
. M0(t)δq+2λ

2β

q+2
λ

(1−6η)(1− 2
p∗ )

q+1
λ3α

q+1
λ2m−1

q+1
if m ∈ [ 1

2
, 1),

(117)
. M0(t)δq+2λ

− 275α
8

q+1
≪ (2π)−2(

p∗−1

p∗ ) M0(t)cRδq+2

15
. (122)

Second within (121) we estimate using 2βb < α
8

from (69) and taking a ∈ 10N sufficiently

large

M0(t)
1
2 r

1− 2
p∗ l−

3
2 λ

1−8η

q+1

(71)
. M0(t)δq+2λ

α
8

q+1
(λ

1−6η

q+1
)1− 2

p∗ λ3α
q+1λ

1−8η

q+1

(117)≈ M0(t)δq+2λ
− 275α

8

q+1
≪ (2π)−2(

p∗−1

p∗ ) M0(t)cRδq+2

15
. (123)

Third within (121) we estimate also using 2βb < α
8

from (69) and taking a ∈ 10N suffi-

ciently large

M0(t)r1− 2
p∗ l−

3
2 λ4

q

(71)
. M0(t)δq+2λ

α
8
+4α

q+1
(λ

1−6η

q+1
)1− 2

p∗

(117)
. M0(t)δq+2λ

− 267α
8

q+1
≪ (2π)−2(

p∗−1

p∗ ) M0(t)cRδq+2

15
. (124)

By applying (122)-(124) to (121), we obtain

‖Rlin‖Ct L
p∗
x
≤ (2π)

−2(
p∗−1

p∗ ) M0(t)cRδq+2

5
. (125)
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Next, for all t ∈ [0, TL] we estimate by Hölder’s inequality, utilizing 2βb < α
8

due to

(69), and taking a ∈ 10N sufficiently large,

‖Rcor‖Ct L
p∗
x

(86)(100c)
. (‖w(c)

q+1
‖

Ct L
2p∗
x
+ ‖w(t)

q+1
‖

Ct L
2p∗
x

)(‖w(c)
q+1
‖

Ct L
2p∗
x
+ ‖w(t)

q+1
‖

Ct L
2p∗
x
+ ‖w(p)

q+1
‖

Ct L
2p∗
x

)

(71)(90)(91)
. [M0(t)

1
2 r

2− 1
p∗ l−3(λ5α

q+1λ
2η−1

q+1
+ M0(t)

1
2 λ

4η−1

q+1
)]

× [M0(t)
1
2 r

1− 1
p∗ l−

3
2 (λ
−2η

q+1
λ3α

q+1 M0(t)
1
2 + 1)]

(117)
. δq+2M0(t)λ

− 227α
8

q+1
M0(t)

1
2 ≤ (2π)−2(

p∗−1

p∗ ) M0(t)cRδq+2

5
. (126)

Next, we estimate Roscillation from (115a). First, we rely on Lemma 6.3, use that 2βb < α
8

due to (69), and take a ∈ 10N sufficiently large to deduce for all t ∈ [0, TL]

‖R(
1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,1)‖

Ct L
p∗
x

(104a)
. (

λq+1σ

2
)−1

∑

ζ,ζ′∈Λ
‖∇(aζaζ′)‖CtC

2
x
‖Wζ⊗̊Wζ′ +Wζ′ ⊗̊Wζ‖Ct L

p∗
x

(25a)(85)
. λ

−2η

q+1
δq+1M0(t)l−15r

2− 2
p∗

(71)(117)
. δq+2M0(t)λ

− 59α
8

q+1
≤ (2π)−2(

p∗−1

p∗ ) cRδq+2M0(t)

25
. (127)

Here the hypothesis of Lemma 6.3 requires that
λq+1σ

2
∈ N which is satisfied because

λq+1σ ∈ 10N by our choice; we also clearly see that λq+1σ ∈ 5N would not have been

sufficient for this purpose. Similarly to (127), relying on Lemma 6.3 we can estimate for

all t ∈ [0, TL]

‖R(
1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,2,3)‖

Ct L
p∗
x

(109c)
.

∑

ζ,ζ′∈Λ
(
λq+1

10
)−1‖∇(aζaζ′)‖CtC

2
x
‖ηζηζ′λ2

q+1ψζψζ′‖Ct L
p∗
x

(128)

(14b)(25b)(85)
. λ−1

q+1δq+1M0(t)l−15r
2− 2

p∗ . δq+2M0(t)λ
− 59α

8
−1+2η

q+1
≤ (2π)−2(

p∗−1

p∗ ) cRδq+2M0(t)

25
.

Here the hypothesis of Lemma 6.3 requires
λq+1

10
∈ N and thus λq+1 ∈ 10N instead of

λq+1 ∈ 5N was needed. Next, for all t ∈ [0, TL] we estimate also relying on Lemma 6.3,

using that 2βb < α
8

due to (69), and taking a ∈ 10N sufficiently large,

‖R(
1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,2,1)‖

Ct L
p∗
x

(109a)
.

∑

ζ,ζ′∈Λ
(
λq+1

10
)−1‖aζaζ′‖CtC

2
x
‖(bζ⊗̊bζ′ + bζ′ ⊗̊bζ) · ∇(ηζηζ′ )‖Ct L

p∗
x

(14b)(25b)(85)
. M0(t)l−11λ

−4η

q+1
r

2− 2
p∗

(71)
. δq+2M0(t)λ

− 123α
8
−2η

q+1
≤ (2π)−2(

p∗−1

p∗ ) cRδq+2M0(t)

25
. (129)

Next, relying also on Lemma 6.3 we can estimate for all t ∈ [0, TL] similarly to (129)

‖R(
1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,2,4)‖

Ct L
p∗
x

(109d)
.

∑

ζ,ζ′∈Λ
(
λq+1

10
)−1‖aζaζ′‖CtC

2
x
‖∇(ηζηζ′)λ

2
q+1ψζψζ′‖Ct L

p∗
x

(130)

(14b)(25b)(85)
. M0(t)l−11λ

−4η

q+1
r

2− 2
p∗

(71)
≤ (2π)−2(

p∗−1

p∗ ) cRδq+2M0(t)

25
.

Next, we estimate for all t ∈ [0, TL] by applying Lemma 6.3, using that 2βb < α
8

due to

(69), and taking a ∈ 10N sufficiently large

‖R(A2 + A3)‖
Ct L

p∗
x

(113)
. (

λq+1σ

2
)−1

∑

ζ∈Λ
‖∇a2

ζ‖CtC
2
x
‖η2

ζ‖Ct L
p∗
x
+ µ−1‖∂ta

2
ζ‖CtC

2
x
‖η2

ζ‖Ct L
p∗
x

(131)

(85)
. λ

−2η

q+1
[M0(t)l−15 + λ

4η−1

q+1
M0(t)l−

27
2 ]r2− 2

p∗
(71)
. M0(t)δq+2λ

− 59α
8

q+1
≤ (2π)−2(

p∗−1

p∗ ) cRδq+2M0(t)

25
.
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Therefore, we conclude from (127)-(131) applied to (115a) that

‖Rosc‖Ct L
p∗
x
≤ (2π)−2(

p∗−1
p∗ ) cRδq+2M0(t)

5
. (132)

Next, for all t ∈ [0, TL] we estimate using that δ ∈ (0, 1
12

), 2βb < α
8

from (69), αb > 16

due to our choice of b, and taking a ∈ 10N sufficiently large

‖Rcom1‖Ct L
1
x

(74b)
. l(‖vq‖C1

t,x
+ ‖z‖CtC

1
x
)(‖vq‖Ct L

2
x
+ ‖z‖Ct,x

) + l
1
2
−2δ‖z‖

C
1
2
−2δ

t Cx

(‖vq‖Ct L
2
x
+ ‖z‖Ct,x

)

(49)
. l

1
2
−2δM0(t)λ4

q

(70)
. δq+2M0(t)abq[− αb

2
+ 10

3
+ αb

8
] . δq+2M0(t)abq[− 8

3
] ≤

M0(t)cRδq+2

5
. (133)

Lastly, for all t ∈ [0, TL] we can estimate by using that l
1
2
−2δλ4

q ≪
cRδq+2

5
in (133), (50a)

at level q + 1 that we already verified, and taking a ∈ 10N sufficiently large

‖Rcom2‖Ct L
1
x

(100e)
. sup

s∈[0,t]
[‖vq+1(s)‖L1

x
+ ‖z(s)‖L1

x
]l

1
2
−2δ(‖z‖

C
1
2
−2δ

t L∞x
+ ‖z‖

CtC
1
2
−2δ

x

)

(49)
. M0(t)l

1
2
−2δ ≤

M0(t)cRδq+2

5
. (134)

Therefore, we can now conclude from (125), (126), (132)-(134) that

‖R̊q+1‖Ct L
1
x

(116)

≤ (2π)2(
p∗−1

p∗ )[‖Rlin‖Ct L
p∗
x
+ ‖Rcor‖Ct L

p∗
x
+ ‖Rosc‖Ct L

p∗
x

]

+
2M0(t)cRδq+2

5
≤ M0(t)cRδq+2 (135)

due to Hölder’s inequality. This verifies (50c) at level q + 1.

At last, similarly to the argument in [33] we can conclude by commenting on how

(vq+1, R̊q+1) is (Ft)t≥0-adapted and that (vq+1, R̊q+1)(0, x) are both deterministic if (vq, R̊q)(0, x)

are deterministic. First, we recall that z in (37a) is (Ft)t≥0-adapted. Due to the compact

support of ϕl in R+, it follows that zl from (72) is (Ft)t≥0-adapted. Similarly, because

(vq, R̊q) are both (Ft)t≥0-adapted by hypothesis, it follows that (vl, R̊l) from (72) are both

(Ft)t≥0-adapted. Because M0(t) from (48) is deterministic, it follows that ρ from (77) is

also (Ft)t≥0-adapted. Due to ρ and R̊l being (Ft)t≥0-adapted, aζ from (82) is also (Ft)t≥0-

adapted. BecauseWζ , ηζ , and ψζ respectively from (22), (20), and (13) are all determinis-

tic, it follows that all of w
(p)

q+1
,w

(c)

q+1
, and w

(t)

q+1
from (87) are (Ft)t≥0-adapted. Consequently,

wq+1 from (86) is (Ft)t≥0-adapted, which in turn implies that vq+1 from (86) is (Ft)t≥0-

adapted. Moreover, it is also clear from the compact support of ϕl in R+ that if vq(0, x) and

R̊q(0, x) are deterministic, then so are vl(0, x), R̊l(0, x), and ∂tR̊l(0, x). Because z(0, x) ≡ 0

by (37a), Rcom1(0, x) from (74b) is also deterministic. Because M0(t) is deterministic, we

see that ρ(0, x) and ∂tρ(0, x) from (77) are also deterministic; this implies that aζ(0, x)

and ∂taζ(0, x) from (82) are also deterministic. AsWζ , ηζ , and ψζ respectively from (22),

(20), and (13) are all deterministic, we see that all of w
(p)

q+1
(0, x), ∂tw

(p)

q+1
(0, x), w

(c)

q+1
(0, x),

∂tw
(c)
q+1

(0, x), and w
(t)
q+1

(0, x) from (87) are deterministic and consequently wq+1(0, x) from

(86) is deterministic. Because vl(0, x) is deterministic, it follows that vq+1(0, x) from (86) is

deterministic. Moreover, we see that all of Rlin(0, x), Rcor(0, x), and Rcom2(0, x) from (100)

are deterministic. Finally,
∑

ζ,ζ′∈Λ Eζ,ζ′,1|t=0,
∑

ζ,ζ′∈Λ
∑

k=1,3,4 Eζ,ζ′,2,k|t=0, and A2 + A3|t=0 re-

spectively from (104a), (109), and (113) are all deterministic and hence Rosc(0, x) from

(115a) is deterministic, and consequently, so is R̊q+1(0, x) from (116).
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5. Proofs of Theorems 2.3-2.4

5.1. Proof of Theorem 2.2 assuming Theorem 2.1. Let us recall the definitions of U1, Ω̄,

and B̄t from Section 3. We first present general results for F defined through (10) and θ;

thereafter, we apply them in case F(u) = u and B is an R-valued Wiener process to prove

Theorems 2.3-2.4. We fix any ε ∈ (0, 1) for the purpose of the following definitions.

Definition 5.1. Let s ≥ 0, ξin ∈ L2
σ, and θin ∈ U1. A probability measure P ∈ P(Ω̄) is a

probabilistically weak solution to (3) with initial condition (ξin, θin) at initial time s if

(M1) P({ξ(t) = ξin, θ(t) = θin ∀ t ∈ [0, s]}) = 1 and for all n ∈ N

P({(ξ, θ) ∈ Ω̄:

∫ n

0

‖F(ξ(r))‖2
L2(U,L2

σ )
dr < ∞}) = 1, (136)

(M2) under P, θ is a cylindrical (B̄t)t≥s-Wiener process on U starting from initial

condition θin at initial time s and for every gi ∈ C∞(T2) ∩ L2
σ and t ≥ s,

〈ξ(t) − ξ(s), gi〉 +
∫ t

s

〈div(ξ(r) ⊗ ξ(r)) + (−∆)mξ(r), gi〉dr =

∫ t

s

〈gi, F(ξ(r))dθ(r)〉, (137)

(M3) for any q ∈ N there exists a function t 7→ Ct,q ∈ R+ for all t ≥ s such that

EP[ sup
r∈[0,t]
‖ξ(r)‖2q

L2
x

+

∫ t

s

‖ξ(r)‖2Hε
x
dr] ≤ Ct,q(1 + ‖ξin‖2q

L2
x

). (138)

The set of all such probabilistically weak solutions with the same constant Ct,q in (138) for

every q ∈ N and t ≥ s is denoted byW(s, ξin, θin, {Ct,q}q∈N,t≥s).

For any stopping time τ we set

Ω̄τ , {ω(· ∧ τ(ω)):ω ∈ Ω̄} (139)

and denote the σ-field associated to τ by B̄τ.

Definition 5.2. Let s ≥ 0, ξin ∈ L2
σ, and θin ∈ U1. Let τ ≥ s be a stopping time of (B̄t)t≥s.

A probability measure P ∈ P(Ω̄τ) is a probabilistically weak solution to (3) on [s, τ] with

initial condition (ξin, θin) at initial time s if

(M1) P({ξ(t) = ξin, θ(t) = θin ∀ t ∈ [0, s]}) = 1 and for all n ∈ N

P({(ξ, θ) ∈ Ω̄:

∫ n∧τ

0

‖F(ξ(r))‖2
L2(U,L2

σ )
dr < ∞}) = 1, (140)

(M2) under P, 〈θ(· ∧ τ), li〉U , where {li}i∈N is an orthonormal basis of U, is a

continuous, square-integrable (B̄t)t≥s-martingale with initial condition 〈θin, li〉 at

initial time s with its quadratic variation process given by (t ∧ τ − s)‖li‖2U and for

every gi ∈ C∞(T2) ∩ L2
σ and t ≥ s

〈ξ(t∧τ)−ξ(s), gi〉+
∫ t∧τ

s

〈div(ξ(r)⊗ξ(r))+(−∆)mξ(r), gi〉dr =

∫ t∧τ

s

〈gi, F(ξ(r))dθ(r)〉, (141)

(M3) for any q ∈ N there exists a function t 7→ Ct,q ∈ R+ for all t ≥ s such that

EP[ sup
r∈[0,t∧τ]

‖ξ(r)‖2q

L2
x

+

∫ t∧τ

s

‖ξ(r)‖2Hε
x
dr] ≤ Ct,q(1 + ‖ξin‖2q

L2
x

). (142)

The joint uniqueness in law for (3) is equivalent to the uniqueness of probabilistically

weak solution in Definition 5.1, which holds if probabilistically weak solutions starting

from the same initial distributions are unique.
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Proposition 5.1. For every (s, ξin, θin) ∈ [0,∞) × L2
σ × U1, there exists a probabilistically

weak solution P ∈ P(Ω̄) to (3) with initial condition (ξin, θin) at initial time s according

to Definition 5.1. Moreover, if there exists a family (sn, ξn, θn) ⊂ [0,∞) × L2
σ × U1 such

that limn→∞‖(sn, ξn, θn) − (s, ξin, θin)‖R×L2
x×U1

= 0 and Pn ∈ W(sn, ξn, θn, {Ct,q}q∈N,t≥sn
),

then there exists a subsequence {Pnk
}k∈N that converges weakly to some P ∈ W(s, ξin, θin,

{Ct,q}q∈N,t≥s).

Proof of Proposition 5.1. The existence of the probabilistically weak solution according to

Definition 5.1 follows from Proposition 4.1 and an application of martingale representation

theorem (e.g., [20, Theorem 8.2]) while the proof of stability result can follow that of

[33, Theorem 5.1] with appropriate modifications concerning the differences in spatial

dimension and fractional Laplacian, similarly to the proof of Proposition 4.1 (see also [58,

Proposition 5.1]). �

Next, we have the following results as a consequence of Proposition 5.1; the proofs of

analogous results from [33] did not rely on the specific form of the diffusive term or the

spatial dimension and thus apply to our case.

Lemma 5.2. ([33, Proposition 5.2]) Let τ be a bounded stopping time of (B̄t)t≥0. Then for

every ω ∈ Ω̄ there exists Qω ∈ P(Ω̄) such that

Qω({ω′ ∈ Ω̄: (ξ, θ)(t, ω′) = (ξ, θ)(t, ω) ∀ t ∈ [0, τ(ω)]}) = 1, (143a)

Qω(A) = Rτ(ω),ξ(τ(ω),ω),θ(τ(ω),ω)(A) ∀ A ∈ B̄τ(ω), (143b)

where Rτ(ω),ξ(τ(ω),ω),θ(τ(ω),ω) ∈ P(Ω̄) is a probabilistically weak solution to (3) with initial

condition (ξ(τ(ω), ω), θ(τ(ω), ω)) at initial time τ(ω). Moreover, for every A ∈ B̄ the map

ω 7→ Qω(A) is B̄τ-measurable.

Lemma 5.3. ([33, Proposition 5.3]) Let ξin ∈ L2
σ and P be a probabilistically weak solution

to (3) on [0, τ] with initial condition (ξin, 0) at initial time 0 according to Definition 5.2.

In addition to the hypothesis of Lemma 5.2, suppose that there exists a Borel set N ⊂ Ω̄τ
such that P(N) = 0 and Qω from Lemma 5.2 satisfies for every ω ∈ Ω̄τ \ N

Qω({ω′ ∈ Ω̄: τ(ω′) = τ(ω)}) = 1. (144)

Then the probability measure P ⊗τ R ∈ P(Ω̄) defined by

P ⊗τ R(·) ,
∫

Ω̄

Qω(·)P(dω) (145)

satisfies P ⊗τ R|Ω̄τ = P|Ω̄τ and it is a probabilistically weak solution to (3) on [0,∞) with

initial condition (ξin, 0) at initial time 0.

Now we fix an R-valued Wiener process B on (Ω,F , P) and apply Definitions 5.1-5.2,

Proposition 5.1, and Lemmas 5.2-5.3 with F(u) = u and such B. For n ∈ N, L > 1, and

δ ∈ (0, 1
12

) we define similarly to (43a)-(43b)

τn
L(ω) , inf{t ≥ 0: |θ(t, ω)| > (L − 1

n
)

1
4 } ∧ inf{t > 0: ‖θ(ω)‖

C
1
2
−2δ

t

> (L − 1

n
)

1
2 } ∧ L, (146a)

τL , lim
n→∞

τn
L. (146b)

It follows from [33, Lemma 3.5] that τn
L

is a stopping time of (B̄t)t≥0 and thus so is τL. For

the fixed (Ω,F ,P) we assume Theorem 2.3 and denote by u the solution constructed from

Theorem 2.3 on [0, t] where t = TL for L sufficiently large and

TL , inf{t > 0: |B(t)| ≥ L
1
4 } ∧ inf{t > 0: ‖B‖

C
1
2
−2δ

t

≥ L
1
2 } ∧ L with δ ∈ (0,

1

12
). (147)
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We observe that TL ր +∞ P-a.s. as Lր +∞. Let us also denote the law of (u, B) by P.

Proposition 5.4. Let τL be defined by (146b). Then P, the law of (u, B), is a probabilisti-

cally weak solution to (3) on [0, τL] according to Definition 5.2.

Proof of Proposition 5.4. The proof is similar to that of Proposition 4.5 making use of the

fact that

θ(t, (u, B)) = B(t) ∀ t ∈ [0, TL] P-almost surely (148)

(see also the proofs of [33, Propositions 3.7 and 5.4] and [58, Proposition 4.5]). �

Next, we extend P on [0, τL] to [0,∞).

Proposition 5.5. Let τL be defined by (146b) and P denote the law of (u, B) constructed

from Theorem 2.3. Then the probability measure P ⊗τL
R in (145) is a probabilistically

weak solution to (3) on [0,∞) according to Definition 5.1.

Proof of Proposition 5.5. Because τL is a stopping time of (B̄t)t≥0 that is bounded by L due

to (146a), the hypothesis of Lemma 5.2 is verified. By Proposition 5.4, P is a probabilis-

tically weak solution to (3) on [0, τL]. Therefore, Lemma 5.3 gives us the desired result

once we verify the existence of a Borel set N ⊂ Ω̄τ such that P(N) = 0 and (144) holds

for every ω ∈ Ω̄τ \ N , and that can be achieved similarly to the proof of Proposition 4.6

(see also the proofs of [33, Propositions 3.8 and 5.5] and [58, Proposition 4.6]). �

Taking Theorem 2.3 for granted, we are now able to prove Theorem 2.4.

Proof of Theorem 2.4 assuming Theorem 2.3 . The proof is similar to that of Theorem 2.2

assuming Theorem 2.1 in Subsection 4.1; we sketch it for completeness. We fix T > 0

arbitrarily, any κ ∈ (0, 1), and K > 1 such that κK2 ≥ 1. The probability measure P ⊗τL
R

from Proposition 5.5 satisfies

P ⊗τL
R({τL ≥ T }) (145)

= P({τL(u, B)) ≥ T }) (146)(147)(148)
= P({TL ≥ T }) > κ,

where the last inequality is due to Theorem 2.3. This leads us to EP⊗τL
R[‖ξ(T )‖2

L2
x

] >

κK2eT ‖ξin‖2
L2

x

, where ξin is the deterministic initial condition constructed through Theo-

rem 2.3. On the other hand, via a classical Galerkin approximation scheme (e.g., [29]) one

can readily construct a probabilistically weak solution Θ to (3) starting also from ξin such

that EΘ[‖ξ(T )‖2
L2

x

] ≤ eT ‖ξin‖2
L2

x

. Because κK2 ≥ 1, this implies the lack of uniqueness of

probabilistically weak solution to (3) and equivalently the lack of joint uniqueness in law

for (3), and consequently the non-uniqueness in law for (3) by [33, Theorem C.1], which

is an infinite-dimensional version of [11, Theorem 3.1] due to Cherny. �

5.2. Proof of Theorem 2.3 assuming Proposition 5.7. We define Υ(t) , eB(t) and v ,

Υ−1u for t ≥ 0. It follows from Ito’s product formula (e.g., [1, Theorem 4.4.13]) on (3) that

∂tv +
1

2
v + (−∆)mv + Υdiv(v ⊗ v) + Υ−1∇π = 0, ∇ · v = 0, t > 0. (149)

Considering (149), for every q ∈ N0 we will construct (vq, R̊q) that solves

∂tvq +
1

2
vq + (−∆)mvq + Υdiv(vq ⊗ vq) + ∇pq = divR̊q, ∇ · vq = 0, t > 0, (150)

when R̊q is assumed to be a trace-free symmetric matrix. Similarly to (48) in the additive

case, we continue to define λq , abq

, δq , λ
−2β
q for a ∈ 10N, b ∈ N, and β ∈ (0, 1) so that
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the requirement of λq+1 ∈ 5N of (19) is satisfied, while differently from (48) we define

M0(t) , e4Lt+2L and mL ,
√

3L
1
4 e

1
2

L
1
4
. (151)

Due to (147) we obtain for all L > 1, δ ∈ (0, 1
12

), and t ∈ [0, TL]

|B(t)| ≤ L
1
4 and ‖B‖

C
1
2
−2δ

t

≤ L
1
2 (152)

which immediately implies

‖Υ‖
C

1
2
−2δ

t

+ |Υ(t)| + |Υ−1(t)| ≤ eL
1
4
L

1
2 + 2eL

1
4 ≤ m2

L. (153)

For induction we assume that (vq, R̊q) satisfy the following bounds on [0, TL]:

‖vq‖Ct L
2
x
≤ mLM0(t)

1
2 (1 +

∑

1≤ι≤q

δ
1
2
ι ) ≤ 2mLM0(t)

1
2 , (154a)

‖vq‖C1
t,x
≤ mLM0(t)

1
2 λ4

q, (154b)

‖R̊q‖Ct L
1
x
≤ M0(t)cRδq+1, (154c)

where cR > 0 is again a universal constant to be determined subsequently and we assumed

again aβb > 3, as formally stated in (157), in order to deduce
∑

1≤ι δ
1
2
ι <

1
2
.

Proposition 5.6. Let L > 1 and define

v0(t, x) ,
mLe2Lt+L

2π

(

sin(x2) 0
)T
. (155)

Then together with

R̊0(t, x) ,
mL(2L + 1

2
)e2Lt+L

2π

(

0 − cos(x2)

− cos(x2) 0

)

+ R(−∆)mv0(t, x), (156)

it satisfies (150) at level q = 0. Moreover, (154) is satisfied at level q = 0 provided

72
√

3 < 8
√

3a2βb ≤ cReL− 1
2

L
1
4

L
1
4 (2L + 1

2
+ π)

, L ≤ a4π − 1, (157)

where the inequality 9 < a2βb is assumed for the sake of second inequality in (154a).

Furthermore, v0(0, x) and R̊0(0, x) are both deterministic.

Proof of Proposition 5.6. The proof is similar to that of Proposition 4.7. Let us observe

that v0 is divergence-free, while R̊0 is trace-free and symmetric. It may be immediately

verified that (v0, R̊0) solves (150) with p0 ≡ 0 by using the fact that (v0 · ∇)v0 = 0 and

Lemma 6.1. Next, for all t ∈ [0, TL] we can compute similarly to (54)

‖v0(t)‖L2
x
=

mLM0(t)
1
2

√
2

≤ mLM0(t)
1
2 , ‖v0‖C1

t,x
=

mL(1 + L)M0(t)
1
2

π

(157)

≤ mLM0(t)
1
2 λ4

0. (158)

Finally, using ‖R(−∆)mv0‖L2
x
≤ 4‖v0‖L2

x
due to ∆v0 = −v0 and (56) we can compute

‖R̊0(t)‖L1
x
≤ mL(2L +

1

2
)M0(t)

1
2 8 + (2π)4‖v0(t)‖L2

x

(157)(158)

≤ M0(t)cRδ1. (159)

�
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We point out that

72
√

3 <
cReL− 1

2
L

1
4

L
1
4 (2L + 1

2
+ π)

(160)

is not sufficient but necessary to satisfy (157).

Proposition 5.7. Let L > 1 satisfy (160) and suppose that (vq, R̊q) is an (Ft)t≥0-adapted

solution to (150) that satisfies (154). Then there exists a choice of parameters a, b, and β

such that (157) is fulfilled and an (Ft)t≥0-adapted process (vq+1, R̊q+1) that satisfies (150),

(154) at level q + 1, and

‖vq+1(t) − vq(t)‖L2
x
≤ mLM0(t)

1
2 δ

1
2

q+1
∀ t ∈ [0, TL]. (161)

Furthermore, if vq(0, x) and R̊q(0, x) are deterministic, then so are vq+1(0, x) and R̊q+1(0, x).

Taking Proposition 5.7 for granted, we can now prove Theorem 2.3.

Proof of Theorem 2.3 assuming Proposition 5.7. This proof is similar to the proof of The-

orem 2.1 assuming Proposition 4.8 in Subsection 4.2; we sketch it in the Appendix for

completeness. �

5.3. Proof of Proposition 5.7.

5.3.1. Choice of parameters. We fix L sufficiently large so that it satisfies (160). We take

the same choices of m∗, η, α, r, µ, and σ in (65) - (68), and b ∈ {ι ∈ N:ι > 16
α
} such that

r ∈ N and λq+1σ ∈ 10N so that both requirements of r ∈ N and λq+1σ ∈ 5N from (19)

are satisfied. Then we define β > 0 sufficiently small to satisfy (69) and l by (70) so that

(71) remains valid. We take a ∈ 10N larger if necessary so that a26 ≥
√

3L
1
4 e

1
2

L
1
4 ; because

αb > 16 and cR ≪ 1 we see that this implies

mL

(151)

≤ a
3αb

2
+2

(70)

≤ l−1 and mL

(151)(160)

≤ cReL ≤ M0(t)
1
2 . (162)

Lastly, taking a ∈ 10N even larger can guarantee L ≤ a4π − 1 in (157) while taking β > 0

even smaller if necessary allows the other inequalities in (157) to be satisfied, namely

72
√

3 < 8
√

3a2βb ≤ cReL− 1
2

L
1
4

L
1
4 (2L + 1

2
+ π)

.

Thus, hereafter we consider such m∗, η, α, b, and l fixed, preserving our freedom to take

a ∈ 10N larger and β > 0 smaller as needed.

5.3.2. Mollification. We mollify vq, R̊q, and Υ(t) = eB(t) by φl and ϕl again so that

vl , (vq ∗x φl) ∗t ϕl, R̊l , (R̊q ∗x φl) ∗t ϕl, and Υl , Υ ∗t ϕl. (163)

By (150) we see that vl, R̊l, and Υl satisfy

∂tvl +
1

2
vl + (−∆)mvl + Υldiv(vl ⊗ vl) + ∇pl = div(R̊l + Rcom1) (164)

where

pl ,(pq ∗x φl) ∗t ϕl −
1

2
(Υl|vl|2 − ((Υ|vq|2) ∗x φl) ∗t ϕl), (165a)

Rcom1 ,Rcommutator1 , −((Υ(vq⊗̊vq)) ∗x φl) ∗t ϕl + Υl(vl⊗̊vl). (165b)



NON-UNIQUENESS OF 2-D NAVIER-STOKES EQUATIONS 31

Next, making use of the fact that αb > 16 and taking a ∈ 10N sufficiently large we obtain

for all t ∈ [0, TL] and N ≥ 1

‖vq − vl‖Ct L
2
x

(71)(154b)
. mLM0(t)

1
2 λ−αq+1 ≤

mL

4
M0(t)

1
2 δ

1
2

q+1
, (166a)

‖vl‖Ct L
2
x

(154a)

≤ mLM0(t)
1
2 (1 +

∑

1≤ι≤q

δ
1
2
ι )

(157)

≤ 2mLM0(t)
1
2 , (166b)

‖vl‖CN
t,x

(154b)
. l−N+1mLM0(t)

1
2 λ4

q

(70)
≤ l−NmLM0(t)

1
2 λ−αq+1. (166c)

5.3.3. Perturbation. We proceed with the same definition of χ in (76) and ρ in (77) iden-

tically except that M0(t) is now defined by (151) instead of (48). Although our definition

of R̊0 in (156) differs from that of (52), the estimates of (78) and (79) remain valid as their

proofs depend only on the definitions of ρ and χ, not M0(t) or R̊l. We define a modified

amplitude function to be

āζ(ω, t, x) , āζ,q+1(ω, t, x) , Υ
− 1

2

l
aζ(ω, t, x), (167)

where aζ(ω, t, x) is identical to that defined in (82). For convenience let us observe a simple

estimate of

‖Υ−
1
2

l
‖Ct

(151)(152)

≤ mL. (168)

Using this estimate, for all t ∈ [0, TL] by taking cR ≪ M−4 we can obtain

‖āζ‖Ct L
2
x

(78)(79)

≤ mL

√
12[4π2cRδq+1M0(t)+ ‖R̊l(ω)‖Ct L

1
x
]

1
2 (

M

CΛ
)

(16)

≤
c

1
4

R
mLM0(t)

1
2 δ

1
2

q+1

2|Λ| . (169)

Because (50c) and (154c) are identical except the definitions of M0(t), tracing the proof of

(80) we see that we still have (80) which leads us to (81) as well as (85). For all t ∈ [0, TL],

N ≥ 0 and k ∈ {0, 1, 2}, along with (168) this allows us to deduce the estimates of

‖āζ‖CtC
N
x

(85)

≤ mLc
1
4

R
δ

1
2

q+1
M0(t)

1
2 l−

3
2
−4N , ‖āζ‖C1

t Ck
x

(85)(153)(162)

≤ mLc
1
8

R
δ

1
2

q+1
M0(t)

1
2 l−

13
2
−4k, (170)

where we took cR ≪ 1 to eliminate implicit constants in the second inequality.

Now we define w
(p)

q+1
and w

(c)

q+1
as in (87) with aζ replaced by āζ from (167) and M0(t)

from (151) within the definition of ρ(ω, t, x), and finally w
(t)

q+1
identically as in (87) with aζ

from (82), only with M0(t) from (151). Then we define the perturbation identically as in

(86):

wq+1 , w
(p)

q+1
+ w

(c)

q+1
+ w

(t)

q+1
and vq+1 , vl + wq+1. (171)

We see that as a consequence of (88)

(w
(p)

q+1
+ w

(c)

q+1
)(t, x)

(88)(167)
= Υ

− 1
2

l
(t)∇⊥(

∑

ζ∈Λ
aζ(t, x)ηζ(t, x)ψζ(x)). (172)

Consequently, we see that wq+1 is both divergence-free and mean-zero. Next, the following

estimates for all t ∈ [0, TL] and p ∈ (1,∞) are essentially immediate consequences of (89),

(90a), (90b), and (168):

‖w(p)

q+1
‖Ct L

2
x

(167)

≤ mL

∑

ζ∈Λ
‖aζWζ‖Ct L

2
x

(89)
. mLc

1
4

R
δ

1
2

q+1
M0(t)

1
2 , (173a)

‖w(p)

q+1
‖Ct L

p
x

(167)
≤ mL sup

s∈[0,t]

∑

ζ∈Λ
‖aζ(s)‖L∞x ‖Wζ (s)‖Lp

x

(90a)
. mLδ

1
2

q+1
M0(t)

1
2 l−

3
2 r1− 2

p , (173b)
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‖w(c)

q+1
‖Ct L

p
x

(167)

≤ mL

∑

ζ∈Λ
‖∇⊥(aζηζ)‖Ct L

p
x
‖ψζ‖L∞x

(90b)
. mLδ

1
2

q+1
M0(t)

1
2 l−

11
2 σr

2− 2
p . (173c)

Finally, the estimate of ‖w(t)

q+1
‖Ct L

p
x

in (90c) remains valid. Therefore, for all t ∈ [0, TL] we

can estimate from (171) by taking cR ≪ 1 and a ∈ 10N sufficiently large

‖wq+1‖Ct L
2
x

(90c)(173a)(173c)
. mLc

1
4

R
δ

1
2

q+1
M0(t)

1
2 + mLδ

1
2

q+1
M0(t)

1
2 l−

11
2 σr + µ−1δq+1M0(t)l−3r

(71)

≤ mLM0(t)
1
2 δ

1
2

q+1
[
3

8
+Cλ

11α−4η

q+1
+CM0(L)

1
2 λ

6α−2η

q+1
]

≤
3mLM0(t)

1
2 δ

1
2

q+1

4
, (174)

where the last inequality used the facts that 11α − 4η < 0 and 6α − 2η < 0, both of which

may be readily verified by (65)-(67). It follows from similar computations to (93) that

(154a) at level q + 1 and (161) can now be verified as follows:

‖vq+1‖Ct L
2
x

(171)

≤ ‖vl‖Ct L
2
x
+ ‖wq+1‖Ct L

2
x

(166b)(174)

≤ mLM0(t)
1
2 (1 +

∑

1≤ι≤q+1

δ
1
2
ι ),

‖vq+1(t) − vq(t)‖L2
x

(166a)(171)

≤ ‖wq+1‖Ct L
2
x
+

mL

4
M0(t)

1
2 δ

1
2

q+1

(174)

≤ mLM0(t)
1
2 δ

1
2

q+1
.

Next, we estimate for all t ∈ [0, TL]

‖w(p)

q+1
‖C1

t,x
≤

∑

ζ∈Λ
‖āζ‖C1

t,x
‖Wζ‖C1

t,x
(175a)

(25a)(170)
. (mLδ

1
2

q+1
M0(t)

1
2 l−

13
2 )λq+1σµr2 ≤ mLM0(t)

1
2 l−

13
2 λq+1σµr2,

‖w(c)

q+1
‖C1

t,x
≤

∑

ζ∈Λ
‖∇⊥(āζηζ )ψζ‖C1

t,x

(14b)(25b)(170)
. mLδ

1
2

q+1
M0(t)

1
2 λ

1−6η

q+1
(175b)

× [l−
21
2 λ−1

q+1 + l−
11
2 λ

1−8η

q+1
+ l−

13
2 λ
−4η

q+1
+ l−

3
2 λ

2−12η

q+1
] . mLδ

1
2

q+1
M0(t)

1
2 λ

3−18η

q+1
l−

3
2 ,

where we used δ
1
2

q+1
to eliminate implicit constant in (175a). On the other hand, the estimate

of ‖w(t)

q+1
‖C1

t,x
from (95) remains applicable for us. We may now verify (154b) at level q + 1

as follows. For any t ∈ [0, TL]

‖vq+1‖C1
t,x

(166c)(171)

≤ l−1mLM0(t)
1
2 λ−αq+1 + ‖w

(p)

q+1
‖C1

t,x
+ ‖w(c)

q+1
‖C1

t,x
+ ‖w(t)

q+1
‖C1

t,x
(176)

≤ mLM0(t)
1
2 [l−1λ−αq+1 +Cλ

13α+3−14η

q+1
+ Cλ

3−18η

q+1
l−

3
2 + Cλ

3−16η+α

q+1
M0(t)

1
2 l−3] ≤ mLM0(t)

1
2 λ4

q+1

where the last inequality used (97) and that 13α+3−14η < 4 which can be readily verified

by (65)-(67). Next, as a consequence of (88) we have the identity of

(w
(p)

q+1
+ w

(c)

q+1
)(t, x)

(167)
= Υ

− 1
2

l
(t)∇⊥(

∑

ζ∈Λ
aζ(t, x)ηζ(t, x)ψζ(x)). (177)

This allows us to estimate for all t ∈ [0, TL] and p ∈ (1,∞), by utilizing (98a) and (168)

‖w(p)

q+1
+ w

(c)

q+1
‖

Ct W
1,p
x
≤ ‖Υ−

1
2

l
‖Ct
‖∇⊥

∑

ζ∈Λ
aζηζψζ‖CtW

1,p
x
. mLδ

1
2

q+1
M0(t)

1
2 r

1− 2
p l−

3
2 λq+1. (178)

On the other hand, the estimate of ‖w(t)

q+1
‖

CtW
1,p
x

from (98b) remains applicable for us.
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5.3.4. Reynolds stress. We can choose the same p∗ from (117) and compute from (150),

(164), and (171)

divR̊q+1 − ∇pq+1 (179)

=
1

2
wq+1 + (−∆)mwq+1 + ∂t(w

(p)

q+1
+ w

(c)

q+1
) + Υldiv(vl ⊗ wq+1 + wq+1 ⊗ vl)

︸                                                                                       ︷︷                                                                                       ︸

div(Rlin)+∇plin

+ Υldiv((w
(c)

q+1
+ w

(t)

q+1
) ⊗ wq+1 + w

(p)

q+1
⊗ (w

(c)

q+1
+ w

(t)

q+1
))

︸                                                                ︷︷                                                                ︸

div(Rcor)+∇pcor

+ div(Υlw
(p)

q+1
⊗ w

(p)

q+1
+ R̊l) + ∂tw

(t)

q+1
︸                                      ︷︷                                      ︸

div(Rosc)+∇posc

+ (Υ − Υl)div(vq+1 ⊗ vq+1)
︸                         ︷︷                         ︸

div(Rcom2)+∇pcom2

+div(Rcom1) − ∇pl

where

Rlin ,Rlinear

,R(
1

2
wq+1 + (−∆)mwq+1 + ∂t(w

(p)

q+1
+ w

(c)
q+1

)) + Υl(vl⊗̊wq+1 + wq+1⊗̊vl), (180a)

plin ,plinear , Υl(vl · wq+1), (180b)

Rcor ,Rcorrector , Υl((w
(c)

q+1
+ w

(t)

q+1
)⊗̊wq+1 + w

(p)

q+1
⊗̊(w

(c)

q+1
+ w

(t)

q+1
)), (180c)

pcor ,pcorrector ,
Υl

2
((w

(c)

q+1
+ w

(t)

q+1
) · wq+1 + w

(p)

q+1
· (w(c)

q+1
+ w

(t)

q+1
)), (180d)

Rcom2 ,Rcommutator2 , (Υ − Υl)(vq+1⊗̊vq+1), (180e)

pcom2 ,pcommutator2 ,
Υ − Υl

2
|vq+1|2. (180f)

Concerning Rosc and posc we have

div(Υlw
(p)

q+1
⊗ w

(p)

q+1
+ R̊l) + ∂tw

(t)

q+1
(181)

(167)
= div((

∑

ζ∈Λ
aζWζ ) ⊗ (

∑

ζ′∈Λ
aζ′Wζ′ ) + R̊l) + ∂tw

(t)

q+1

(114)
=

1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,1 +

1

2

∑

ζ,ζ′∈Λ

∑

k=1,3,4

Eζ,ζ′,2,k + A2 + A3

+ ∇[
1

2
|
∑

ζ∈Λ
aζWζ |2 +

1

2

∑

ζ,ζ′∈Λ
P,0(aζaζ′P≥

λq+1
10

(ηζηζ′λ
2
q+1ψζψζ′))

+
1

2

∑

ζ∈Λ
a2
ζP≥

λq+1σ

2

η2
ζ − ∆−1∇ · µ−1(

∑

ζ∈Λ+
−

∑

ζ∈Λ−
)P,0∂t(a

2
ζP,0η

2
ζζ)].

Therefore, we can define similarly to (115a) - (115b)

Rosc ,Roscillation , R(
1

2

∑

ζ,ζ′∈Λ
Eζ,ζ′,1 +

1

2

∑

ζ,ζ′∈Λ

∑

k=1,3,4

Eζ,ζ′,2,k + A2 + A3), (182a)

posc ,poscillation ,
1

2
|
∑

ζ∈Λ
aζWζ |2 +

1

2

∑

ζ,ζ′∈Λ
P,0(aζaζ′P≥

λq+1

10

(ηζηζ′λ
2
q+1ψζψζ′ ))1ζ+ζ′,0

+
1

2

∑

ζ∈Λ
a2
ζP≥

λq+1σ

2

η2
ζ − ∆−1∇ · µ−1(

∑

ζ∈Λ+
−

∑

ζ∈Λ−
)P,0∂t(a

2
ζP,0η

2
ζζ) (182b)
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and claim the same bound as in (132) for Rosc. Thus, let us define formally

pq+1 , −plin − pcor − posc − pcom2 + pl and R̊q+1 , Rlin +Rcor +Rosc +Rcom2 +Rcom1. (183)

Now we compute for all t ∈ [0, TL] from (180a)

‖Rlin‖Ct L
p∗
x
.‖wq+1‖Ct L

p∗
x
+ ‖R(−∆)mwq+1‖Ct L

p∗
x

+ ‖R∂t(w
(p)

q+1
+ w

(c)

q+1
)‖

Ct L
p∗
x
+ ‖Υl(vl⊗̊wq+1 + wq+1⊗̊vl)‖Ct L

p∗
x
. (184)

First, by the estimate of mL ≤ M0(t)
1
2 from (162) we can compute from (171) for all

t ∈ [0, TL]

‖wq+1‖Ct L
p∗
x

(90c)(173b)(173c)
. mLδ

1
2

q+1
M0(t)

1
2 l−

3
2 r

1− 2
p∗ + mLδ

1
2

q+1
M0(t)

1
2 l−

11
2 σr

2− 2
p∗ (185)

+ µ−1δq+1M0(t)l−3r
2− 2

p∗
(65)(66)(67)(71)

. δ
1
2

q+1
M0(t)

1
2 r

1− 2
p∗ mLl−

3
2 .

By Gagliardo-Nirenberg’s inequality this also leads us to

‖R(−∆)mwq+1‖Ct L
p∗
x
.[δ

1
2

q+1
M0(t)

1
2 r

1− 2
p∗ mLl−

3
2 ]1−m∗[‖w(p)

q+1
+ w

(c)

q+1
‖

CtW
1,p∗
x
+ ‖w(t)

q+1
‖

CtW
1,p∗
x

]m∗

(98b)(178)
. δ

1
2

q+1
M0(t)

1
2 r

1− 2
p∗ mLl−

3
2 λm∗

q+1. (186)

Second, for all t ∈ [0, TL] we can make use of (119) and (168) and estimate

‖R∂t(w
(p)

q+1
+ w

(c)

q+1
)‖

Ct L
p∗
x

(187)

(172)
.

∑

ζ∈Λ
‖Υ−

1
2

l
‖3Ct
‖∂tΥl‖Ct

‖aζ‖CtCx
‖ηζ‖Ct L

p∗
x
‖ψζ‖Cx

+ ‖Υ−
1
2

l
‖Ct
‖∂t(aζηζ)ψζ‖CtCx

(14a)(25b)(85)(119)
. m3

Ll−1‖Υ‖Ct
δ

1
2

q+1
M0(t)

1
2 l−

3
2 r

1− 2
p∗ λ−1

q+1

+ mLδ
1
2

q+1
M0(t)

1
2 r

1− 2
p∗ l−

3
2 λ

1−8η

q+1

(153)
. mLl−

3
2 δ

1
2

q+1
M0(t)

1
2 r

1− 2
p∗ λ

1−8η

q+1
.

Third, we can estimate for all t ∈ [0, TL]

‖Υl(vl⊗̊wq+1 + wq+1⊗̊vl)‖Ct L
p∗
x
.‖Υ‖Ct

‖vq‖C1
t,x
‖wq+1‖Ct L

p∗
x

(153)(154b)(185)
. m4

LM0(t)λ4
qr

1− 2
p∗ δ

1
2

q+1
l−

3
2 . (188)

Hence, applying (185)-(188) to (184) and taking a ∈ 10N sufficiently large give us

‖Rlin‖Ct L
p∗
x

(68)(71)
. M0(t)δq+2[λ

2β

q+2
(λ

1−6η

q+1
)1− 2

p∗ mLλ
3α
q+1λ

m∗

q+1

+ λ
2β

q+2
mLλ

3α
q+1(λ

1−6η

q+1
)1− 2

p∗ λ
1−8η

q+1
+ λ

2β

q+2
m4

Lλ
α
4

q+1
(λ

1−6η

q+1
)1− 2

p∗ λ3α
q+1]

(69)(117)
. M0(t)δq+2[mLλ

− 275α
8

q+1
+ m4

Lλ
−273α−8+64η

8

q+1
] ≤ (2π)

−2(
p∗−1

p∗ ) M0(t)cRδq+2

5
(189)

where we used the facts that 2βb < α
8

due to (69) and −273α−8+64η ≤ −273α−8m∗ < 0

due to (66).

Next, for all t ∈ [0, TL] we estimate from (180c) by taking a ∈ 10N sufficiently large

‖Rcor‖Ct L
p∗
x

(190)

.‖Υl‖Ct
(‖w(c)

q+1
‖

Ct L
2p∗
x
+ ‖w(t)

q+1
‖

Ct L
2p∗
x

)(‖w(c)

q+1
‖

Ct L
2p∗
x
+ ‖w(t)

q+1
‖

Ct L
2p∗
x
+ ‖w(p)

q+1
‖

Ct L
2p∗
x

)

(68)(71)(153)
. m2

LM0(t)[mLλ
− 31α

4
−3η

q+1
+ λ
−η−34α

q+1
][mLλ

− 31α
4
−3η

q+1
+ λ
−η−34α

q+1
+ mLλ

η− 63α
4

q+1
]
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.M0(t)δq+2λ
2β

q+2
m3

Lλ
−34α− 63α

4

q+1

(69)
. M0(t)δq+2m3

Lλ
−34α− 125α

8

q+1
≤ (2π)−2(

p∗−1

p∗ ) M0(t)cRδq+2

5
.

Next, for all t ∈ [0, TL] we estimate using (168), λ4
ql

1
2
−2δ . δq+2λ

− 8
3

q from (133), and

taking a ∈ 10N sufficiently large

‖Rcom1‖Ct L
1
x

(165b)(153)(154)
. m4

LM0(t)l
1
2
−2δλ4

q

(133)
. M0(t)δq+2m4

Lλ
− 8

3
q ≤

cRM0(t)δq+2

5
. (191)

Finally, using |Υl(t) − Υ(t)|
(153)
. l

1
2
−2δm2

L
, and λ4

ql
1
2
−2δ . δq+2λ

− 8
3

q from (133) again, and

taking a ∈ 10N sufficiently large we obtain for all t ∈ [0, TL]

‖Rcom2‖Ct L
1
x

(180e)
≤ ‖Υl − Υ‖Ct

‖vq+1‖2Ct L
2
x

(166b)(174)
. l

1
2
−2δm4

LM0(t) ≤
M0(t)cRδq+2

5
. (192)

Therefore, considering (189), (190), (132), (191), and (192), we are able to conclude that

‖R̊q+1‖Ct L
1
x
≤ M0(t)cRδq+2 identically as we did in (135). This verifies (154c) at level q + 1.

Finally, essentially identical arguments in the proof of Proposition 4.8 shows that (vq, R̊q)

being (Ft)t≥0-adapted leads to (vq+1, R̊q+1) being (Ft)t≥0-adapted, and that (vq, R̊q)(0, x) be-

ing deterministic implies (vq+1, R̊q+1)(0, x) being deterministic.

6. Appendix

6.1. Past results. We collect results from previous works which were used in the proofs

of Theorems 2.1-2.4.

Lemma 6.1. ([14, Definition 9, Lemma 10], also [42, Definition 7.1, Lemmas 7.2 and

7.3]) For f ∈ C(T2), set

R f , ∇g + (∇g)T − (∇ · g)Id, (193)

where ∆g = f −
>

T2 f dx and
>

T2 gdx = 0. Then for any f ∈ C(T2) such that
>

T2 f dx =

0, R f (x) is a trace-free symmetric matrix for all x ∈ T2. Moreover, ∇ · R f = f and
>

T2 R f (x)dx = 0. When f is not mean-zero, we overload the notation and denote by

R f , R( f −
∫

T2 f dx). Finally, for all p ∈ (1,∞), ‖R‖
L

p
x 7→W

1,p
x
. 1, ‖R‖Cx 7→Cx

. 1, and

‖R f ‖Lp
x
. ‖(−∆)−

1
2 f ‖Lp

x
.

Lemma 6.2. ([42, Lemma 6.2]) Let f , g ∈ C∞(T2) where g is also (T/κ)2-periodic for

some κ ∈ N. Then there exists a constant C ≥ 0 such that

‖ f g‖L2
x
≤ ‖ f ‖L2

x
‖g‖L2

x
+Cκ−

1
2 ‖ f ‖C1

x
‖g‖L2

x
. (194)

Lemma 6.3. ([42, Lemma 7.4]) For any given p ∈ (1,∞), λ ∈ N, a ∈ C2(T2), and f ∈
Lp(T2),

‖(−∆)−
1
2 P,0(aP≥λ f )‖Lp

x
. λ−1‖a‖C2

x
‖ f ‖Lp

x
. (195)

6.2. Continuation of the proof of Proposition 4.1. First, the proof of the following result

from [33] in case x ∈ T3 goes through verbatim in case x ∈ T2.

Lemma 6.4. ([33, Lemma A.1]) Let {(sn, ξn)}n∈N ⊂ [0,∞) × L2
σ be a family such that

limn→∞‖(sn, ξn) − (s, ξin)‖R×L2
x
= 0 and {Pn}n∈N be a family of probability measures on Ω0

satisfying for all n ∈ N, Pn({ξ(t) = ξn ∀ t ∈ [0, sn]}) = 1 and for some γ, κ > 0 and any

T > 0,

sup
n∈N
EPn[‖ξ‖C([0,T ];L2

x ) + sup
r,t∈[0,T ]: r,t

‖ξ(t) − ξ(r)‖H−3
x

|t − r|κ + ‖ξ‖2
L2 ([sn,T ];H

γ
x )

] < ∞. (196)

Then {Pn}n∈N is tight inM , Cloc([0,∞); H−3(T2)) ∩ L2
loc

([0,∞); L2
σ).
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Now we fix {Pn} ⊂ C(sn, ξn, {Ct,q}q∈N,t≥sn
) and will show that it is tight inM by relying on

Lemma 6.4. We define J(ξ) , −Pdiv(ξ⊗ξ)−(−∆)mξ. By definition of C(sn, ξn, {Ct,q}q∈N,t≥sn
)

and (M2) of Definition 4.1, we know that for all n ∈ N and t ∈ [sn,∞)

ξ(t) = ξn +

∫ t

sn

J(ξ(r))dr + M
ξ
t,sn

Pn-a.s., (197)

where the map t 7→ M
ξ,i
t,sn
, 〈Mξ

t,sn
, gi〉 for ξ ∈ Ω0 and gi ∈ C∞(T2) ∩ L2

σ is a continuous,

square-integrable martingale w.r.t. (Bt)t≥sn
such that 〈〈Mξ,i

t,sn
〉〉 =

∫ t

sn
‖G(ξ(r))∗gi‖2U dr. We

can compute for any p ∈ (1,∞),

EPn[ sup
r,t∈[sn,T ]: r,t

‖
∫ t

r
J(ξ(l))dl‖p

H−3
x

|t − r|p−1
] ≤ EPn [

∫ T

sn

(‖ξ ⊗ ξ‖H−2
x
+ ‖ξ‖H2m−3

x
)pdl]

by Hölder’s inequality where ‖ξ⊗ξ‖H−2
x
. ‖ξ‖2

L2
x

and ‖ξ‖H2m−3
x
. 1+‖ξ‖2

L2
x

because m ∈ (0, 1).

Therefore,

EPn[ sup
r,t∈[sn,T ]: r,t

‖
∫ t

r
J(ξ(l))dl‖p

H−3
x

|t − r|p−1
]

(M3)
. p TCT,p(1 + ‖ξn‖2p

L2
x

). (198)

On the other hand, making use of (10), (M2) and (M3) of Definition 4.1 and Kolmogorov’s

test (e.g., [20, Theorem 3.3]) gives us for any α ∈ (0,
p−1

2p
)

EPn [ sup
r,t∈[0,T ]: r,t

‖Mξ
t,sn
− M

ξ
r,sn
‖L2

x

|t − r|α ] .p Ct,p(1 + ‖ξn‖2p

L2
x

). (199)

Making use of (197)-(199) leads to for all κ ∈ (0, 1
2
),

sup
n∈N
EPn[ sup

r,t∈[0,T ]: r,t

‖ξ(t) − ξ(r)‖H−3
x

|t − r|κ ] < ∞. (200)

Hence, (M1), (28) with q = 1, and (200) together allow us to deduce that {Pn} is tight

in M by Lemma 6.4. By Prokhorov’s theorem (e.g., [20, Theorem 2.3]) we deduce that

Pn converges weakly to some P ∈ P(Ω0) and by Skorokhod’s representation theorem

(e.g., [20, Theorem 2.4]) there exists a probability space (Ω̃, F̃ , P̃) and M-valued random

variables {ξ̃n}n∈N and ξ̃ such that

ξ̃n has the law Pn ∀ n ∈ N, ξ̃n → ξ̃ inM P̃-a.s. and ξ̃ has the law P. (201)

Making use of (201) and (M1) for Pn immediately leads to

P({ξ(t) = ξin ∀ t ∈ [0, s]}) = lim
n→∞

P̃({ξ̃n(t) = ξn ∀ t ∈ [0, sn]}) = 1, (202)

which implies (M1) for P. Next, it follows immediately that for every gi ∈ C∞(T2), P̃-a.s.

〈ξ̃n(t), gi〉 → 〈ξ̃(t), gi〉,
∫ t

sn

〈J(ξ̃n(r)), gi〉dr →
∫ t

s

〈J(ξ̃(r)), gi〉dr. (203)

In particular, to prove the second convergence we can write

EP̃[

∫ t

sn

〈J(ξ̃n(r), gi〉dr −
∫ t

s

〈J(ξ̃(r)), gi〉dr]

=EP̃[

∫ s

sn

〈−Pdiv(ξ̃n ⊗ ξ̃n) − (−∆)mξ̃n, gi〉dr

+

∫ t

s

〈−Pdiv(ξ̃n ⊗ ξ̃n) + Pdiv(ξ̃ ⊗ ξ̃), gi〉dr +

∫ t

s

〈−(−∆)m(ξ̃n − ξ̃), gi〉dr],
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among which we only point out that

EP̃[

∫ s

sn

〈−(−∆)mξ̃n, gi〉dr] ≤ EP̃[

∫ s

sn

‖ξ̃n‖L2
x
‖(−∆)m

gi‖L2
x
dr]→ 0,

EP̃[

∫ t

s

〈(−∆)m(ξ̃n − ξ̃), gi〉dr] ≤ EP̃[

∫ t

s

‖ξ̃n − ξ̃‖L2
x
‖(−∆)m

gi‖L2
x
dr]→ 0

as n→ ∞ by (201). Next, we can compute for every t ∈ [s,∞) and p ∈ (1,∞),

sup
n∈N
EP̃[|Mξ̃n,i

t,sn
|2p]

(M3)(197)
.p 1 and lim

n→∞
EP̃[|Mξ̃n,i

t,sn
− M

ξ̃,i
t,s |]

(197)(203)
= 0. (204)

Next, we let t > r ≥ s and g be any R-valued, Br-measurable and continuous function on

M. Then we can compute

EP[(M
ξ,i
t,s − M

ξ,i
r,s)g(ξ)]

(204)
= lim

n→∞
EP̃[(M

ξ̃n,i
t,sn
− M

ξ̃n ,i
r,sn

)g(ξ̃n)] = 0. (205)

This implies that the map t 7→ Mi
t,s is a (Bt)t≥s-martingale under P. Next, we can deduce

lim
n→∞
EP̃[|Mξ̃n,i

t,sn
− M

ξ̃,i
t,s |2]

(204)
= 0. (206)

This leads us to

EP[((M
ξ,i
t,s)

2 − (M
ξ,i
r,s)

2 −
∫ t

r

‖G(ξ(l))∗gi‖2Udl)g(ξ)]
(201)(206)
= 0. (207)

Therefore, (M
ξ,i
t,s )2−

∫ t

s
‖G(ξ(l))∗gi‖2Udl is a (Bt)t≥s-martingale under P which implies 〈〈Mξ,i

t,s〉〉 =
∫ t

s
‖G(ξ(l))∗gi‖2Udl under P; it follows that M

ξ,i
t,s is square-integrable. Therefore, (M2) for P

was shown. Finally, to prove (M3) it suffices to define

R(t, s, ξ) , sup
r∈[0,t]
‖ξ(r)‖2q

L2
x

+

∫ t

s

‖ξ(r)‖2Hε
x
dr, (208)

and observe that the map ξ 7→ R(t, s, ξ) is lower semicontinuous onM so thatEP[R(t, s, ξ)] ≤
Ct,q(1 + ‖ξin‖2q

L2
x

). Therefore, (M3) holds for P so that P ∈ C(s, ξ0, {Ct,q}q∈N,t≥s).

6.3. Continuation of the proof of Theorem 2.3 assuming Proposition 5.7. We fix any

T > 0,K > 1 and κ ∈ (0, 1), and take L sufficiently large that satisfies (160), as well as

(
1
√

2
− 1

2
)e2LT > (

1
√

2
+

1

2
)e2L

1
2

and L > [ln(Ke
T
2 )]2. (209)

We start from (v0, R̊0) in Proposition 5.6, and via Proposition 5.7 inductively obtain (vq, R̊q)

that satisfies (150), (154), and (161). Identically to (59) we can show that for any ε ∈
(0,

β

4+β
) and any t ∈ [0, TL],

∑

q≥0‖vq+1(t) − vq(t)‖Hε
x
. mLM0(t)

1
2 by (161) and (154b).

This allows us to deduce the limiting solution limq→∞ vq , v ∈ C([0, TL]; Hε(T2)) that is

(Ft)t≥0-adapted because limq→∞‖R̊q‖CTL
L1

x
= 0 due to (154c). Because u = eB(t)v where

|eB(t)| ≤ eL
1
4 for all t ∈ [0, TL] due to (152), we are able to deduce (6) by choosing t = TL

for L sufficiently large. Moreover, we can show identically to (62) that for all t ∈ [0, TL],

‖v(t) − v0(t)‖L2
x
≤ mL

2
M0(t)

1
2 by (157) and (161) which in turn implies

e2L
1
2 ‖v(0)‖L2

x
≤ e2L

1
2
(‖v(0) − v0(0)‖L2

x
+ ‖v0(0)‖L2

x
)

(158)

≤ e2L
1
2
(
1

2
+

1
√

2
)mLM0(0)

1
2 . (210)
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These lead us to, on a set {TL ≥ T }

‖v(T )‖L2
x

(158)

≥ mLM0(T )
1
2

√
2

− ‖v(T ) − v0(T )‖L2
x

(209)(210)

≥ e2L
1
2 ‖v(0)‖2

L2
x
. (211)

Moreover, for the fixed T > 0, κ ∈ (0, 1), one can take L even larger to deduce P({TL ≥
T }) > κ. We also see that uin(x) = Υ(0)v(0, x) = v(0, x) which is deterministic because

vq(0, x) is deterministic for all q ∈ N0 by Propositions 5.6 and 5.7. Clearly from (149),

u = Υv is a (Ft)t≥0-adapted solution to (3). Furthermore, it follows from (152), (209), and

(211) that ‖u(T )‖L2
x
≥ eL

1
2 ‖uin‖L2

x
> Ke

T
2 ‖uin‖L2

x
on the set {t ≥ T } which implies (7).
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[5] D. Breit, E. Feireisl, and M. Hofmanová, On solvability and ill-posedness of the compressible Euler system

subject to stochastic forces, Anal. PDE, 13 (2020), 371–402.
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