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ADAPTING THE DIRECTED GRID THEOREM INTO AN FPT
ALGORITHM∗

VICTOR CAMPOS† , RAUL LOPES†‡ , ANA KAROLINNA MAIA† , AND IGNASI SAU‡

Abstract. The Grid Theorem of Robertson and Seymour [JCTB, 1986] is one of the most
important tools in the field of structural graph theory, finding numerous applications in the design
of algorithms for undirected graphs. An analogous version of the Grid Theorem in digraphs was
conjectured by Johnson et al. [JCTB, 2001], and proved by Kawarabayashi and Kreutzer [STOC,
2015]. Namely, they showed that there is a function f(k) such that every digraph of directed tree-
width at least f(k) contains a cylindrical grid of order k as a butterfly minor, and stated that their
proof can be turned into an XP algorithm, with parameter k, that either constructs a decomposition
of the appropriate width, or finds the claimed large cylindrical grid as a butterfly minor. In this
paper, we adapt some of the steps of the proof of Kawarabayashi and Kreutzer to improve this
XP algorithm into an FPT algorithm. Towards this, our main technical contributions are two FPT
algorithms with parameter k. The first one either produces an arboreal decomposition of width
3k − 2 or finds a haven of order k in a digraph D, improving on the original result for arboreal
decompositions by Johnson et al. [JCTB, 2001]. The second algorithm finds a well-linked set of
order k in a digraph D of large directed tree-width. As tools to prove these results, we show how to
solve a generalized version of the problem of finding balanced separators for a given set of vertices T
in FPT time with parameter |T |, a result that we consider to be of its own interest.

Key words. Digraph, directed tree-width, grid theorem, FPT algorithm.
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1. Introduction. Width parameters can be seen as an estimation of how close
a given graph is to a typical structure. For example, the tree-width of a graph, a
parameter of particular interest in the literature, measures how tightly a graph can
be approximated by a tree. Namely, a tree decomposition of a graph G with bounded
tree-width shows how one can place the vertices of the original graph into “bags”
of bounded size which, in turn, can be arranged as the vertices of a tree T such
that the intersection between adjacent bags in T are separators in G. Thus, a tree
decomposition exposes a form of global connectivity measure for graphs: as only a
bounded number of vertices can be placed in each bag, many small separators can be
identified through the decomposition. The tree-width of graphs was first introduced
by Bertele and Brioschi [6], then again by Halin [33], and finally reintroduced by
Robertson and Seymour [49]. For a survey on the subject, we refer the reader to [8].

A number of hard problems can be efficiently solved in graphs of bounded tree-
width, either by making use of classical algorithmic techniques like dynamic program-
ming, or by making use of Courcelle’s Theorem [18]. Applications of algorithms based
on tree decompositions range from frequency allocation problems to the Traveling
Salesman problem [17,40].

Given the enormous success achieved by applications based on width parameters
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in undirected graphs, it is no surprise that there is interest in finding similar definitions
for digraphs. Johnson et al. [35] proposed an analogous measure for tree-width in the
directed case. The directed tree-width of a digraph measures its distance to being
a directed acyclic graph (DAG for short), and an arboreal decomposition exposes a
(strong) connectivity measure of a digraph. Reed [48] provided an intuitive exposition
of the similarities between the undirected and directed cases.

Similarly to the undirected case, some hard problems become tractable when
restricted to digraphs of bounded directed tree-width. For example, Johnson et al. [35]
showed that the Directed k-Disjoint Paths problem, which Fortune et al. [29]
showed to be NP-hard even for k = 2 in general digraphs, is solvable in polynomial
(more precisely, in XP) time in digraphs of directed tree-width bounded by a constant.
A similar approach given in [35] can be applied to the Hamilton Path and Hamilton
Cycle problems, Hamilton Path with Prescribed Ends, and others. It is worth
mentioning that Slivkins [54] proved that the Directed k-Disjoint Paths problem
is W[1]-hard even when restricted to DAGs. As DAGs have directed tree-width zero,
there is little hope for the existence of a fixed-parameter tractable (FPT for short)
algorithm for the Directed k-Disjoint Paths problem in digraphs of bounded
directed tree-width. As another example of application, a Courcelle-like theorem for
directed tree-width was proved by de Oliveira Oliveira [21], but running in XP time.

It is natural to ask what can be said of a graph with large tree-width. One of
the most relevant results in structural graph theory states that undirected graphs
with large tree-width contain large grid minors. More precisely, the Grid Theorem
by Robertson and Seymour [49] states that there is a function f : N → N such that
every graph of tree-width at least f(k) contains a (k × k)-grid as a minor. Recently,
Chekuri and Chuzhoy [13] gave a polynomial bound on the function f(k), which was
further improved by Chuzhoy and Tan [16].

Sometimes, large tree-width (and therefore, the existence of a large grid minor)
implies that we are actually working with a positive instance of a particular problem.
In this direction, Demaine et al. [22] presented a framework that generates FPT algo-
rithms for many such problems, known as bidimensional problems. This list includes
Vertex Cover, Feedback Vertex Set, Longest Path, Minimum Maximal
Matching, Dominating Set, Edge Dominating Set, and many others. This
seminal work is currently known as Bidimensionality [28].

Another application of the Grid Theorem is in the irrelevant vertex technique, in-
troduced by Robertson and Seymour [50–52] to solve the k-Disjoint Paths problem.
The goal is to show that every instance whose input graph violates a set of conditions
contains a vertex that is “irrelevant”, that is, a vertex whose removal generates an
equivalent instance of the problem. This leads to an iterative algorithm, reducing the
problem to a smaller instance, until it satisfies sufficient conditions for its tractability.
This technique was used to solve the k-Disjoint Paths problem in FPT time with
parameter k, and a number of other problems (cf. for instance [32, 39]). For the
directed case, Cygan et al. [20] used a similar technique to provide an FPT algorithm
for the Directed k-Disjoint Paths problem in planar digraphs.

A result analogous to the Grid Theorem for digraphs was conjectured by Johnson
et al. [35] and Reed [48], and recently proved by Kawarabayashi and Kreutzer [38]1,
after having proved it for digraphs with forbidden minors [37]2. Namely, it is shown

1The full version of [38] is available at https://arxiv.org/abs/1411.5681v2.
2In an unpublished manuscript from 2001 [36], Johnson, Robertson, Seymour and Thomas gave

a proof of this result for planar digraphs.

https://arxiv.org/abs/1411.5681v2
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in [38] that there is a function f : N → N such that every digraph of directed tree-
width at least f(k) contains a cylindrical grid (see Fig. 1) of order k as a butterfly
minor ; all the definitions are given formally in Section 2. Recently, Hatzel et al. [34]
proved that the function f(k) can be made polynomial in planar digraphs.

Fig. 1: A cylindrical grid of order k = 4.

The Directed Grid Theorem has found many applications. For instance, Amiri
et al. [1] proved that a strongly connected digraph H has the Erdős-Pósa property if
and only if H is a butterfly minor of some cylindrical grid of sufficiently large order.
Additionally, the authors showed that for every fixed strongly connected digraph
H satisfying those conditions and every fixed integer k, there is a polynomial-time
algorithm that either finds k disjoint (butterfly or topological) models of H in a
digraph D or a set X ⊆ V (D) of size bounded by a function of k such that D \ X
does not contain a model of H.

Edwards et al. [25] applied some results used in the proof of the Directed Grid
Theorem [38] to provide an XP algorithm with parameter k for a relaxed version of
the Directed Disjoint Paths problem, in which every vertex of the input digraph
is allowed to occur in at most two paths of a solution, when restricted to (36k3 + 2k)-
strongly connected digraphs. Kawarabayashi and Kreutzer [38] mentioned that the
Directed Grid Theorem can be used to provide, for fixed k, an algorithm running in
polynomial time that, given a digraph D and k terminal pairs (s1, t1), . . . , (sk, tk),
either finds a collection of paths P1, . . . , Pk such that Pi is a path from si to ti in
D and every vertex of D occurs in at most four paths of the collection, or concludes
that D does not contain a collection of pairwise disjoint paths P1, . . . , Pk such that
Pi is a path from si to ti in D, for i ∈ [k]. Although Chekuri et al. [14] could not
use the Directed Grid Theorem since the bound on f(k) (mentioned above) is larger
than required, they build on the ideas used in [36] to produce their own version of the
Directed Grid Theorem for planar digraphs.

The proof of the Directed Grid Theorem by Kawarabayashi and Kreutzer [38] is
constructive. Namely, the authors start with an algorithm by Johnson et al. [35, 3.3]
that, given a digraph D and an integer parameter k, outputs, in XP time, either
an arboreal decomposition of D of width at most 3k − 2 or a haven of order k (see
Definition 2.9). Thus, if D has directed tree-width at least 3k−1, they obtain a haven
of order k. From this haven, they obtain a bramble B of order k and size |V (D)|O(k).
Finally, from B they find a path P containing a well-linked set A (see Definition 2.8)
of size roughly

√
k in XP time with parameter k.

We remark that the bound on the running time of those algorithms depends on
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the size of B since, in general, one must test whether X ∩ V (B) 6= ∅ for each B ∈ B
to check whether a given set X ⊆ V (D) is a hitting set of B. The remainder of the
proof of the Directed Grid Theorem [38] runs in FPT time, with parameter k.

Our approach, results, and techniques. By making local changes to the proofs
by Johnson et al. [35] and Kawarabayashi and Kreutzer [38], we show that there is an
FPT algorithm that, given a digraph D and an integer k, either constructs an arboreal
decomposition of D of width at most 3k−2, or finds a path P in D containing a well-
linked set A of size roughly

√
2k. Our results and the remainder of the proof of the

Directed Grid Theorem [38] yield an FPT algorithm that either constructs an arboreal
decomposition of width at most f(k) or a cylindrical grid of order k as a butterfly
minor of D. For completeness, we provide in Section 2.5 an overview of how, starting
from the path P and the well-linked set A found by our FPT algorithm, the proof of
Kawarabayashi and Kreutzer [38] yields an algorithm to find the desired cylindrical
grid in FPT time. We would like to insist on the fact that the proof of our main result
is based on performing local changes to the proof of Kawarabayashi and Kreutzer
given in the available full version of [38]. In what follows we detail our results and
techniques, along with the organization of the article.

In Section 2 we give all the necessary definitions and preliminaries, and we for-
mally state the two main contributions of this paper, namely Theorem 2.19 and
Theorem 2.23. As discussed above, in Section 2.5 we sketch how these two results,
combined with the remainder of the original proof in [38], yield the FPT algorithm
stated in Corollary 2.24.

Similarly to the undirected case (see, for example, [27, Chapter 11]), the result
by Johnson et al. [35, 3.3] shows that the size of a special kind of vertex separator of
some set T ⊆ V (D) is intrinsically connected to the directed tree-width of D. Their
algorithm runs a subroutine that, given a set of vertices T with |T | ≤ 2k−1, searches
for a set Z ⊆ V (D) with |Z| ≤ k − 1 such that every strong component of D \ Z
intersects at most half of the vertices of T , or decides that none exists. Such a set Z is
known as a T -balanced separator [3]. If every such search is successful, the algorithm
produces an arboreal decomposition of width at most 3k − 2. If the search fails for
some set T , then we say that T is (k− 1)-linked [3] and use it to construct a haven of
order k (we show how to do this construction in Lemma 2.18). In Section 3, we give an
FPT algorithm (Theorem 2.17) that, given a digraph D and a parameter k, outputs
either an arboreal decomposition of D of width at most 3k− 2 or a (k− 1)-linked set
T with |T | = 2k − 1, thus improving the result by Johnson et al. [35], since we can
easily extract a haven of order k from T (Lemma 2.18), and proving our first main
contribution (Theorem 2.19).

We acknowledge that a sketch of a proof of a similar result, with approximation
factor of 5k+10, is given in [3, Theorem 9.4.4]. In their proof, the authors mention how
to compute a weaker version of T -balanced separators in FPT time with parameter |T |,
and the increase on the approximation factor they guarantee is a consequence of this
relaxation. For our approximation algorithm for directed tree-width, we introduce
generalized versions of balanced separators and k-linked sets that are also used in
Section 4. Namely, we say that a set Z is a (T, r)-balanced separator if every strong
component of D \ Z intersects at most r vertices of T and that T is (k, r)-linked if
every (T, r)-balanced separator has size at least k + 1 (see Definition 2.16).

In Theorem 3.5 we show that the problem of finding a (T, r)-balanced separator
of size s or deciding that T is (s, r)-linked is FPT with relation to the parameter
|T |. We refer to this problem as Balanced Separator and, to solve it, we make
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use of an algorithm by Erbacher et al. [26] for a variation of the Multicut problem
for digraphs, named as Multicut With Linearly Ordered Terminals by the
authors.

Next, we prove our second main contribution (Theorem 2.23). For this, we need
to find a bramble B when the second output of the algorithm for approximate arboreal
decompositions (the set T ) is obtained, and use it to find a path P containing a well-
linked set A ⊆ V (P ) of size roughly

√
2k. In order to prove Theorem 2.23, we proceed

as follows.
In Section 4.1 we show how to construct, from a (k − 1)-linked set T with |T | =

2k − 1, a bramble BT that is easier to work with than the general case in a number
of ways. We characterize hitting sets of BT by T -balanced separators (Lemma 4.2)
and thus applying our algorithm for Balanced Separator, we conclude that we
can decide if the order of BT is at most s in FPT time. In fact, we prove a slightly
stronger result stating that the same can be done for some particular choices of subsets
(“sub-brambles”) of BT . This is a considerable improvement on the running time of
the naive approach to find hitting sets of brambles, which involves going through
every element of the bramble. In particular, our characterization of hitting sets of BT
allows us to test if given a set X ⊆ V (D) is a hitting set of BT in polynomial time by
enumerating the strong components of D \X. This is an easy observation that also
holds for the bramble used in the proof of the Directed Grid Theorem [38].

In Section 4.2 we show how to find P and A. To find P , we iteratively grow a
path until it is a hitting set of BT , at each time adding one vertex and testing if the
current set of vertices of the growing path is a hitting set of BT (Lemma 4.7). To
find A, we produce an ordered sequence of subpaths of P each being a hitting set of
a “sub-bramble” of BT of adequate order, and pick the vertices of A from the vertices
between those subpaths (Lemma 4.9). The key ingredient of the first procedure is the
fact that we can decide if a given set of vertices X is a hitting set of BT in polynomial
time, as a consequence of the characterization given by Lemma 4.2. For the second
procedure, we iteratively use our algorithm for Balanced Separator (Theorem 3.5)
to test if a bramble that is formed by a particular subset of BT has adequate order.
Thus, in contrast with what is done in [38]3, our version of the first procedure runs in
polynomial time and our version of the second procedure runs in FPT time, assuming
that BT and T are given in both cases. In order to prove Theorem 2.23, we introduce
the notion of “(i)-split” (see Definition 4.8), and we prove several lemmas about (i)-
splits, namely Lemma 4.9 and Lemma 4.10.

A roadmap of the aforementioned algorithm is given in Fig. 2. We mark by a
dashed arc the steps of [38] which are already FPT and do not need to be adapted.
All others arcs represent steps that we adapt in this paper.

We conclude the article in Section 5 with some remarks and potential algorithmic
applications of our results.

2. Formal definitions and preliminaries. In this section we give the defini-
tions relevant to this paper, mention some known results, and present a more detailed
discussion of our main contributions.

2.1. Graphs and digraphs. We refer the reader to [10] for basic background
on graph theory, and recall here only some basic definitions. For a graph G = (V,E),
directed or not, and a set X ⊆ V (G), we write G \X for the graph resulting from the
deletion of X from G. If e is an edge of a directed or undirected graph with endpoints

3Specifically, in Lemmas 4.3 and 4.4 of the full version.
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(D, k)
Haven of
order k

Bramble
of order k

Well-linked set
and path P

Arboreal decomposition
of width ≤ 3k − 2

Theorem
2.19

[38]
Section 4

Theorem
2.23

Fig. 2: Sketch of the algorithm used in the proof of the Directed Grid Theorem [38].

u and v, we may refer to e as (u, v) and say that e is incident to u and v. If e is an
edge from u to v of a directed graph, we say that e has tail u, head v, and is oriented
from u to v. We also allow for loops and multiple edges.

The in-degree (resp. out-degree) of a vertex v in a digraph D is the number of
edges with head (resp. tail) v. The in-neighborhood N−D (v) of v is the set {u ∈
V (D) | (u, v) ∈ E(G)}, and the out-neighborhood N+

D (v) is the set {u ∈ V (D) |
(v, u) ∈ E(G)}. We say that u is an in-neighbor of v if u ∈ N−D (v) and that u is an
out-neighbor of v if u ∈ N+

D (v).
A walk in a digraph D is an alternating sequence W of vertices and edges that

starts and ends with a vertex, and such that for every edge (u, v) in the walk, vertex
u (resp. vertex v) is the element right before (resp. right after) edge (u, v) in W .
If the first vertex in a walk is u and the last one is v, then we say this is a walk
from u to v. A path is a digraph containing exactly a walk that contains all of its
vertices and edges without repetition. If P is a path with V (P ) = {v1, . . . , vk} and
E(P ) = {(vi, vi+1) | i ∈ [k− 1]}, we say that v1 is the first vertex of P , that vk is the
last vertex of P , and for i ∈ [k − 1] we say that vi+1 is the sucessor in P of vi. All
paths mentioned henceforth, unless stated otherwise, are considered to be directed.

An orientation of an undirected graph G is a digraph D obtained from G by
choosing an orientation for each edge e ∈ E(G). The undirected graph G formed by
ignoring the orientation of the edges of a digraph D is the underlying graph of D.

A digraph D is strongly connected if, for every pair of vertices u, v ∈ V (D), there
is a walk from u to v and a walk from v to u in D. We say that D is weakly connected
if the underlying graph of D is connected. A separator of D is a set S ( V (D) such
that D\S is not strongly connected. If |V (D)| ≥ k+1 and k is the minimum size of a
separator of D, we say that D is k-strongly connected. A strong component of D is a
maximal induced subdigraph of D that is strongly connected, and a weak component
of D is a maximal induced subdigraph of D that is weakly connected.

For a positive integer k, we denote by [k] the set containing every integer i such
that 1 ≤ i ≤ k.

2.2. Parameterized complexity. We refer the reader to [19,24] for basic back-
ground on parameterized complexity, and we recall here only the definitions used in
this article. A parameterized problem is a language L ⊆ Σ∗ × N. For an instance
I = (x, k) ∈ Σ∗ × N, k is called the parameter.

A parameterized problem L is fixed-parameter tractable (FPT) if there exists an
algorithm A, a computable function f , and a constant c such that given an instance
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I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in time
bounded by f(k) · |I|c. For instance, the Vertex Cover problem parameterized by
the size of the solution is FPT.

A parameterized problem L is in XP if there exists an algorithm A and two
computable functions f and g such that given an instance I = (x, k), A (called an
XP algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|g(k). For
instance, the Clique problem parameterized by the size of the solution is in XP.

Within parameterized problems, the class W[1] may be seen as the parameterized
equivalent to the class NP of classical decision problems. Without entering into details
(see [19,24] for the formal definitions), a parameterized problem being W[1]-hard can
be seen as a strong evidence that this problem is not FPT. The canonical example of
W[1]-hard problem is Clique parameterized by the size of the solution.

2.3. Arboreal decompositions and obstructions. By an arborescence R
with root r0, we mean an orientation of a tree such that R contains a path from
r0 to every other vertex of the tree. If a vertex v of R has out-degree zero, we say
that v is a leaf of R. We now define guarded sets and arboreal decompositions of
digraphs. From here on, we refer to oriented edges only, unless stated otherwise. D
will always stand for a digraph, and G for an undirected graph. Unless stated oth-
erwise, we define n = |V (D)| and m = |E(D)| when D is the input digraph of some
algorithm.

For X,Y ⊆ V (D), an (X,Y )-separator is a set of vertices S such that there are
no paths in D \ S from any vertex in X to any vertex in Y . We make use Menger’s
Theorem [46] for digraphs.

Theorem 2.1 (Menger’s Theorem [46]). Let D be a digraph and X,Y ⊆ V (D).
Then the minimum size of an (X,Y )-separator in D equals the maximum number of
pairwise internally vertex-disjoint paths from X to Y in D.

Definition 2.2 (Z-guarded sets). Let D be a digraph, Z ⊆ V (D), and S ⊆
V (D) \Z. We say that S is Z-guarded if there is no directed walk in D \Z with first
and last vertices in S that uses a vertex of D \ (Z ∪ S).

That is, informally speaking, a set S is Z-guarded if whenever a walk starting in S
leaves S, it is impossible to come back to S without visiting a vertex in Z. See Fig. 3
for an illustration of a Z-guarded set. If a set S is Z-guarded, we may also say that Z

V (D) \ (Z ∪ S)

S

Z

u v

Fig. 3: A Z-guarded set S. The dashed line indicates that there is no path from u to
v in V (D) \ (Z ∪ S).
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is a guard for S. We remark that in [35], the authors use the terminology of Z-normal
sets instead of Z-guarded sets.

Let R be an arborescence, r ∈ V (R), e ∈ E(R), and r′ be the head of e. We say
that r > e if there is a path from r′ to r in R. We also say that e ∼ r if r is the head
or the tail of e. To define the tree-width of directed graphs, we first need to introduce
arboreal decompositions.

Definition 2.3 (Arboreal decomposition). An arboreal decomposition β of a
digraph D is a triple (R,X ,W) where R is an arborescence, X = {Xe : e ∈ E(R)},
W = {Wr : r ∈ V (R)}, and X ,W are collections of sets of vertices of D (called bags)
such that

(i) W is a partition of V (D) into non-empty sets, and
(ii) if e ∈ E(R), then

⋃
{Wr : r ∈ V (R) and r > e} is Xe-guarded.

We also say that r is a leaf of (R,X ,W) if r has out-degree zero in R.

The left hand side of Fig. 4 contains an example of a digraph D, while the right
hand side shows an arboreal decomposition for it. In the illustration of the arboreal
decomposition, squares are guardsXe and circles are bags of verticesWr. For example,
consider the edge e ∈ E(R) with Xe = {b, c} from the bag W1 to the bag W2. Then⋃
{Wr : r ∈ V (R) and r > e} = V (D) \ {a} and, by item (ii) described above, this

set must be {b, c}-guarded since Xe = {b, c}. In other words, there cannot be a walk
in D \ {b, c} starting and ending in V (D) \ {a} using a vertex of {a}. This is true in
D since every path reaching {a} from the remaining of the graph must do so through
vertices b or c. The reader is encouraged to verify the same properties for the other
guards in the decomposition.

a

a

b

b
c

c

d
d

e
e

f

f
g
g

aW1

b,c

W2
d,e

W3

f,g

W4

b, c

b c

Fig. 4: A digraph D and an arboreal decomposition of D of width two. A bidirectional
edge is used to represent a pair of edges in both directions.

Definition 2.4 (Nice arboreal decompositions). We say that an arboreal de-
composition (R,X ,W) of a digraph D is nice if

(iii) for every e ∈ E(R),
⋃
{Wr : r ∈ V (R), r > e} induces a strong component of

D \Xe, and
(iv) if r ∈ V (R) and r1, . . . , r` are the out-neighbors of r in R, then ⋃

1≤i≤`

Wri

 ∩(⋃
e∼r

Xe

)
= ∅.

Definition 2.5 (Directed tree-width). Let (R,X ,W) be an arboreal decomposi-
tion of a digraph D. For a vertex r ∈ V (R), we denote by width(r) the size of the
set Wr ∪ (

⋃
e∼rXe). The width of (R,X ,W) is the least integer k such that, for all
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r ∈ V (R), width(r) ≤ k+ 1. The directed tree-width of D, denoted by dtw(D), is the
least integer k such that D has an arboreal decomposition of width k.

We remark that DAGs have directed tree-width zero.
If G is an undirected graph and D the digraph obtained from G by replacing every

edge of G with two directed edges in opposite directions then, as shown by Johnson et
al. [35], the tree-width of G is equal to the directed tree-width of D. Thus, deciding if
a digraph D has directed tree-width at most k, for a given integer k, is NP-complete
since deciding if the tree-width of an undirected graph is at most k is an NP-complete
problem [2].

We now formally define cylindrical grids, butterfly contractions, butterfly minors,
and some blocking structures for large directed tree-width.

Definition 2.6 (Cylindrical grid). A cylindrical grid of order k is a digraph
formed by the union of k disjoint cycles C1, . . . , Ck and 2k disjoint paths P1, P2,
. . ., P2k where

1. for i ∈ [k], V (Ci) = {vi,1, vi,2, . . . , vi,2k} and E(Ci) = {(vi,j , vi,j+1 | j ∈
[2k − 1])} ∪ {(vi,2k, vi,1)},

2. for i ∈ {1, 3, . . . , 2k − 1}, E(Pi) = {(v1,i, v2,i), (v2,i, v3,i), . . . , (vk−1,i, vk,i)},
and

3. for i ∈ {2, 4, . . . , 2k}, E(Pi) = {(vk,i, vk−1,i), (vk−1,i, vk−2,i), . . . , (v2,i, v1,i)}.
In other words, path Pi is oriented from the first circle to the last one if i is odd,
and the other way around if i is even. Furthermore, every vertex of a cylindrical
grid occurs in the intersection of a path and a cycle. See Fig. 1 for an example of a
cylindrical grid of order k = 4.

Definition 2.7 (Butterfly contraction and butterfly minors). Let D be a digraph.
An edge e from u to v of D is butterfly contractible if e is the only outgoing edge of u
or the only incoming edge of v. By butterfly contracting e in D, we obtain a digraph
D′ with vertex set V (D′) = V (D) \ {u, v} ∪ {xu,v}, where xu,v is a new vertex, and
E(D′) = E(D) \ {e}. Every incidence of an edge f ∈ E(D′) to u or v in D becomes
an incidence to xu,v in D′. If D′ is generated from a subgraph of D by a series a
butterfly contractions, we say that D′ is a butterfly minor of D.

Notice that, in the above definition, the newly introduced vertex xu,v has in D′ the
same neighbors of u and v in D. It is not hard to see that butterfly contractions
cannot generate any new paths, and that there is no such guarantee if no restrictions
are imposed on which edges of a digraph can be contracted. See Fig. 5 for an example
of this.

e1

e2

=⇒
e1

e2

=⇒

Fig. 5: Butterfly contractions preserve separations. In each example the dashed edge is
contracted to generate the digraph on the right. Edge e1 is not butterfly contractible.

Definition 2.8 (Well-linked sets). Let D be a digraph and A ⊆ V (D). We say
that A is well-linked in D if, for all disjoint X,Y ⊆ A with |X| = |Y |, there are |X|
vertex-disjoint paths from X to Y in D. The order of a well-linked set A is |A|. We



10 V. CAMPOS, A. K. MAIA, R. LOPES, AND I. SAU

denote by wlink(D) the size of a largest well-linked set in D.

Definition 2.9 (Havens in digraphs). Let D be a digraph. A haven of order k in
D is a function β assigning to every set Z ⊆ V (D), with |Z| ≤ k−1, the vertex set of
a strong component of D \Z in such way that if Z ′ ⊆ Z ⊆ V (D) then β(Z) ⊆ β(Z ′).
The haven number of a digraph D, denoted by hn(D), is the maximum k such that D
admits a haven of order k.

A k-strongly connected digraph, for example, admits a haven of order k: it suffices to
choose β(Z) = V (D) \ Z for any Z ⊆ V (D) with |Z| ≤ k − 1. Fig. 6 illustrates the
defining property of havens.

Z

Z ′

β(Z ′)

β(Z)

Fig. 6: Illustration of the haven property.

Definition 2.10 (Brambles in digraphs). A bramble B = {B1, . . . , B`} in a di-
graph D is a family of strongly connected subgraphs of D such that if {B,B′} ⊆ B
then V (B)∩V (B′) 6= ∅ or there are edges in D from V (B) to V (B′) and from V (B′)
to V (B). A hitting set of a bramble B is a set C ⊆ V (D) such that C ∩ V (B) 6= ∅
for all B ∈ B. The order of a bramble B, denoted by ord(B), is the minimum size of
a hitting set of B. The bramble number of a digraph D, denoted by bn(D), is the the
maximum k such that D admits a bramble of order k.

There is a direct relation between the haven number and the tree-width of undi-
rected graphs. A haven in an undirected graph is defined similarly: the function β
retains all its properties, but mapping sets of at most k− 1 vertices to components of
the graph resulting from the deletion of those vertices.

Proposition 2.11 (Seymour and Thomas [53]). Let G be an undirected graph
and k ≥ 1 be an integer. Then G has a haven of order k if and only if its tree-width
is at least k − 1.

For digraphs, only one implication of the previous result is known to be true.

Proposition 2.12 (Johnson et al. [35]). Let D be a digraph and k be a non-
negative integer. If D has a haven of order k, then dtw(D) ≥ k − 1.

For the reverse direction of Proposition 2.12, only an approximate version is known.

Proposition 2.13 (Johnson et al. [35]). Let D be a digraph and k be a positive
integer. If dtw(D) ≥ 3k − 1 then D admits a haven of order k.

Finally, the following two lemmas show that brambles of large order and large well-
linked sets are obstructions to small directed tree-width. The proof of the first lemma
can be done by converting brambles into havens and back. For the second lemma, it is
sufficient to show that any minimum hitting set of a bramble of order k is well-linked
and to extract a bramble of order k from a well-linked set of order 4k+ 1. The proofs
are simple and can be found, for example, in [45, Chapter 6].
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T1

Z
v1

v1

v2v2 v3 v3

T2

Fig. 7: Examples of balanced separators. On the left, Z is a (T1, 3)-balanced separator,
and T1 is (3, 3)-linked. On the right, each vertex vi with i ∈ [3] constitutes a (T2, 1)-
balanced separator.

Lemma 2.14. Let D be a digraph. Then bn(D) ≤ hn(D) ≤ 2bn(D).

Lemma 2.15. Let D be a digraph. Then bn(D) ≤ wlink(D) ≤ 4bn(D).

The proof of Proposition 2.13 given in [35] yields an XP algorithm that correctly states
that D has a haven of order k or produces an arboreal decomposition of D of width
at most 3k − 2. Furthermore, although not explicitly mentioned in the paper, this
algorithm actually produces a nice (as in Definition 2.4) arboreal decomposition for D,
and can be used as a procedure that, given a digraph D′ such that dtw(D′) ≤ k − 2,
generates a nice arboreal decomposition for D′ of width at most 3k − 2. At each
iteration, the algorithm tests whether the strong components intersecting a given set
T ⊆ V (D) with |T | ≤ 2k − 1 can be separated into parts containing at most a small
portion of T . Namely, the algorithm tests whether there is a set Z ⊆ V (D) with
|Z| ≤ k−1 such that every strong component of D \Z contains at most k−1 vertices
of T \ Z. Such a set Z is known as a balanced separator. In this paper we consider a
generalization of such sets where we can choose how many vertices of T each strong
component of D \ Z can have.

Definition 2.16 ((T, r)-balanced separators and (k, r)-linked sets). Let D be a
digraph, T ⊆ V (D), and r be a positive integer. A (T, r)-balanced separator is a set
of vertices Z ⊆ V (D) such that every strong component of D \ Z contains at most r
vertices of T . If the minimum size of a (T, r)-balanced separator is at least k + 1, we
say that T is (k, r)-linked.

If r = b|T |/2c, (T, r)-balanced separators are exactly T -balanced separators in the
classical sense as defined, for instance, in [3, Chapter 9]. If D admits a (T, r)-balanced
separator Z, we know that we can split T \Z into small strongly connected parts which
are guarded by Z. See Fig. 7 for two examples of (T, r)-balanced separators. A DAG,
for instance, admits a (T, 1)-balanced separator (the empty set) for any T ⊆ V (D)
since every strong component of a DAG is formed by a single vertex.

Deciding whether a digraph D admits a (T, k − 1)-balanced separator is a key
ingredient for the algorithm given by Johnson et al. [35]. Moreover, the cost of this
procedure has the largest impact on the running time of their algorithm: it is the only
step which is (originally) done in XP time, while the remaining parts of the algorithm
can be done in polynomial time. In Section 3.2, we use of a variation of the Multicut
problem introduced in [26] to show how to find (T, r)-balanced separators in FPT time
with parameter |T |, if any exists with size bounded from above by an integer s with
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s ≤ |T | − 1. In our first main contribution, we use this result to improve on the
algorithm for arboreal decompositions given in [35]. Namely, we prove the following.

Theorem 2.17. Let D be a digraph and k be a non-negative integer. There is
an algorithm running in time 2O(k log k) · nO(1) that either produces a nice arboreal
decomposition of D of width at most 3k − 2 or outputs a (k − 1, k − 1)-linked set T
with T = 2k − 1.

It is also not hard to see how to use (k, r)-linked sets to construct havens. The
following lemma is a generalization of a result shown as part of the proof of [35, 3.3].

Lemma 2.18. Let D be a graph, T ⊆ V (D) with |T | = s, and r ≥ bs/2c. If T is
(k, r)-linked then D admits a haven of order k + 1.

Proof. By hypothesis, it holds that, for every set Z ⊆ V (D) with |Z| ≤ k, there
is a strong component C of D \ Z such that |V (C) ∩ T | ≥ r + 1. Let β(Z) = V (C).
We claim that β is a haven of order k + 1 in D. It suffices to show that if Z ′ ⊆ Z,
then β(Z) ⊆ β(Z ′). Notice that β(Z) induces a strongly connected subgraph of D
and is disjoint from Z ′, since it is disjoint from Z, and thus all paths in the graph
induced by β(Z) are in D \ Z ′. Furthermore, since |T | = s and r ≥ bs/2c, we have
β(Z) ∩ β(Z ′) 6= ∅ and the result follows as β(Z ′) is a strong component of D \ Z ′,
which is a supergraph of D \ Z, and thus it must contain completely the strongly
connected subgraph induced by β(Z).

Applying this lemma on a (k − 1, k − 1)-linked set T with |T | = 2k − 1 we obtain
a haven of order k and therefore we can write Theorem 2.17 with havens instead of
(k, r)-linked sets, as done by Johnson et al. [35, 3.3], with the guarantee that the
procedure runs in FPT time.

Theorem 2.19 (First main contribution). Let D be a digraph and k be a non-
negative integer. There is an algorithm running in time 2O(k log k) ·nO(1) that correctly
states that D admits a haven of order k or produces an arboreal decomposition of D
of width at most 3k − 2.

Next, we discuss some of the steps in the proof of the Directed Grid Theorem.

2.4. Brambles and the Directed Grid Theorem. The Directed Grid Theo-
rem is as stated below.

Theorem 2.20 (Kawarabayashi and Kreutzer [38]). There is a function f : N→
N such that given any directed graph and any fixed constant k, in polynomial time,
we can obtain either

1. an arboreal decomposition of D of width at most f(k), or
2. a cylindrical grid of order k as a butterfly minor of D.

The proof of the Directed Grid Theorem [38] starts by asking if a digraph D satisfies
dtw(D) ≤ f(k), for some integer k. By Theorem 2.19, an approximate answer to this
question can be computed in FPT time with parameter k ≥ 0. If a haven is obtained,
the next step uses it to construct a bramble of large order. In order to justify our
following results, we now discuss how to construct brambles from havens.

Finding a hitting set of minimum size of a bramble B is not an easy task. In
general, in order to check whether a given set X is a hitting set of B, the naive
approach would be to go through all the elements of B and verify that X intersects
each of them. Since a bramble B may contain Ω(2n) elements, independently of its
order, this procedure is not efficient. For instance, consider the digraph D shown in
Fig. 8, which has vertex set {v0, v1, . . . , vn} and edge set {(v0, vi) ∪ (vi, v0) | i ∈ [n]}.
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The set B = {D[X] | X ⊆ V (D) and v0 ∈ X} is easily seen to be a bramble in
D of order one and size 2|V (D)|−1 since there is an edge in D from every vertex
in V (D) \ {v0} to v0 and vice-versa. However, when B is the bramble obtained by a

v0

v1 v2 v3 v4 vn· · ·

Fig. 8: Example of a digraph D having a bramble of order one and size 2|V (D)|−1.
Here a bidirectional edge is used to represent a pair of edges in both directions.

construction used in a proof of Lemma 2.14, which we present below, then |B| = nO(k)

and thus in this case we can find hitting sets of B of size k in XP time, and decide
whether a given set X ⊆ V (D) is a hitting set of B in XP time.

Lemma 2.14 implies that if D is a digraph admitting a haven of order k+1, then D
contains a bramble of order at least d(k+1)/2e = bk/2c+1. In fact, given such a haven,
it is easy to construct the claimed bramble, as we proceed to explain. Namely, given
a haven β of order k+ 1 in D, we define B = {D[β(Z)] | Z ⊆ V (D) and |Z| ≤ bk/2c}.
Note that, since β is a haven, the elements of B are strongly connected subgraphs of
D. We claim that any two elements of B intersect. Indeed, let B,B′ ∈ B and let
Z,Z ′ ⊆ V (D) such that β(Z) = V (B) and β(Z ′) = V (B′). Since |Z| ≤ bk/2c and
|Z ′| ≤ bk/2c, we have that |Z ∪ Z ′| ≤ k, and since β is a haven of order k + 1, it
follows that β(Z ∪ Z ′) ⊆ β(Z) ∩ β(Z ′) = V (B) ∩ V (B′) and therefore, in particular,
V (B) ∩ V (B′) 6= ∅. Finally, let us argue about the order of B. Consider an arbitrary
vertex setX ⊆ V (D) with |X| ≤ bk/2c. Since β is a haven or order k+1 ≥ bk/2c, there
is a bramble element β(X) ∈ B with V (β(X))∩X = ∅, and thus ord(B) ≥ bk/2c+ 1,
as we wanted to prove. Moreover, since there is one element in B for each Z ⊆ V (D)
with |Z| ≤ bk/2c, we conclude that |B| = nO(k).

In [38], the authors show how to obtain, from a bramble B of order k(k + 2), a
path P that is a hitting set of B containing a well-linked set A of size k.

Proposition 2.21 (Kawarabayashi and Kreutzer [38, Lemma 4.3 of the full ver-
sion]). Let D be a digraph and B be a bramble in D. Then there is a path P
intersecting every B ∈ B.

Proposition 2.22 (Kawarabayashi and Kreutzer [38, Lemma 4.4 of the full ver-
sion]). Let D be a digraph, B be a bramble of order k(k + 2) in D, and P = P (B)
be a path intersecting every B ∈ B. Then there is a set A ⊆ V (P ) of size k which is
well-linked.

Although the statements of the previous two propositions in [38] are not algo-
rithmic, algorithms for both results can be extracted from their constructive proofs.
However, the naive approach to decide if a set X ⊆ V (D) is a hitting set of a bram-
ble B is to check if V (B) ∩ X 6= ∅ for each B ∈ B. Thus the running time of the
algorithms yielded by the proofs of Propositions 2.21 and 2.22 is influenced by the
size of the bramble given as input. Although in general this is not efficient since,
as discussed above, a bramble can have size Ω(2n) even if it has small order, in the
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particular case where B is the bramble constructed from havens as presented above,
those constructions yield XP algorithms with parameter k since |B| = nO(k).

In Section 4 we show that, when considering a particular choice of a bramble B
which is constructed from (k, r)-linked sets, for appropriate choices of k and r, we can
decide if a given set X is a hitting set of B in polynomial time and compute hitting sets
of B in FPT time when parameterized by ord(B). Then, we show how to obtain a path
P intersecting all elements of B in polynomial time, improving Proposition 2.21. We
use this latter result to give an FPT algorithm with parameter ord(B) that produces,
from a path P intersecting all elements of a bramble of large order, a well-linked set
A of size k which is contained in V (P ).

Theorem 2.23 (Second main contribution). Let g(k) = (k+ 1)(bk/2c+ 1)− 1,
D be a digraph and T be a (g(k) − 1, g(k) − 1)-linked set in D with |T | = 2g(k) − 1.

There is an algorithm running in time 2O(k2 log k) · nO(1) that finds in D a bramble B
of order g(k), a path P that is a hitting set of B, and a well-linked set A of order k
such that A ⊆ V (P ).

The request that we make on ord(B) is also an improvement when compared to
Proposition 2.22. In the next section we give an overview of how a cylindrical grid
is found in [38] from the output of Theorem 2.23. We discuss why the algorithms
used in the remaining constructive steps of their proof are naturally FPT to obtain
the following corollary, which is an improvement of Theorem 2.20.

Corollary 2.24. Let k be a non-negative integer and D be a digraph. There is
a function f : N→ N and an FPT algorithm, with parameter k, that either

1. produces an arboreal decomposition of D of width at most f(k), or
2. finds a cylindrical grid of order k as a butterfly minor of D.

2.5. Finding a cylindrical grid. On a very high level, the proof of the Directed
Grid Theorem [38] can be summarized into the following three steps. Using the
terminology adopted in this paper, for a function f as in the statement of Theorem 2.20
and given a digraph D, we

(1) pipeline Theorem 2.17 and Theorem 2.23 to either produce an arboreal de-
composition of D of width at most f(k) or construct B, P , and A as in the
statement of the latter;

(2) use P and A to construct a well-linked path system that is formed by a
collection of paths; and

(3) iteratively refine the paths in the path system into new structures until a
(butterfly) model of a cylindrical grid is obtained.

See Fig. 9 for an illustration of those steps. As previously mentioned, we only improve
on the procedures related to step (1) and, in this section, we justify why this is
sufficient to obtain Corollary 2.24. The main observations are that the algorithm
runs maintaining and refining a collection of paths, where the size of the collection
depends only on k, and that each of those refinements can be realized by iteratively
testing how a given path intersects some subset of the collection. The number of
tests depends only on k and each test is done in polynomial time. We discuss here
how to construct a path system from P and A, as mentioned in step (2) above. For
our examples, it is convenient to adopt the following definitions from the full version
of [38].

Definition 2.25 (Linkages). Let D be a digraph and A,B ⊆ V (D) with A 6= B.
A linkage from A to B in D, or an (A,B)-linkage, is a set of of pairwise vertex-disjoint
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D, f(k) (f(k)− 1, f(k)− 1)-
linked set T

Path P ,
well-linked set A ⊆ V (P )

Path system
Arboreal decomposition

of width ≤ f(k)

Theorem 2.17
(1)

Refinement (3)

Theorem 2.23
(2)

Fig. 9: Illustration of steps (1)-(2)-(3).

paths from A to B.

Definition 2.26 (Path system). Let D be a digraph and `, p be two positive in-
tegers. An `-linked path system of order p is a sequence S with S = (P,L,A) where

• P is a sequence P1, . . . , Pp of pairwise vertex-disjoint paths such that, for all
i ∈ [p], V (Pi) ⊇ Ain

i ∪ Aout
i and every vertex in Ain

i appears in Pi before any
vertex of Aout

i ;
• L is a collection {Li,j | i, j ∈ [p] with i 6= j} of linkages where each Li,j is a

linkage of size ` from Aout
i to Ain

j ; and

• A = {Ain
i , A

out
i | i ∈ [p]} where each Ain

i and each Aout
i is a well-linked set of

order `;

Although the definition of path systems is quite loaded, it is not hard to visualize; see
Fig. 10 for an illustration. Notice that, knowing that the sets Ai

in, A
i
out are well-linked,

Ain
1

Aout
1 Ain

3

Aout
3

Ain
2 Aout

2

Fig. 10: An `-linked path system of order p = 3. A thick edge denotes a linkage of
size ` from a set Aout

i to a set Ain
j , with i 6= j.

a path system is entirely formed by paths behaving in a particular way: the collection
P of size p, and the collection of paths appearing in the linkages Li,j . Since each of
those linkages has size `, an `-linked path system of order p is formed by p + 2

(
p
2

)
`

paths. With this observation, the task of constructing a path system from the output
of Theorem 2.23 becomes an easy one, as we proceed to explain.

Assume that we are given a path P and a well-linked set A with |A| = 2` · p
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and A ⊆ V (P ). Let σ = a1, a2, . . . , a2`·p be an ordering of the vertices of A as they
appear in P , from the first to the last vertex of the path. To construct an `-linked
path system of order p, we follow P in this order and, for i ∈ [p], we define the path
Pi to be the subpath of P from a(i−1)2`+1 to ai·2`. See Fig. 11 for an illustration of
this procedure. Since we know that A is well-linked, and clearly every subset of a
well-linked set is also well-linked, we define Ain

i to be the set containing the first `
vertices of V (Pi) ∩A and Aout

i to be last ` vertices of V (Pi) ∩A with respect to σ.

a1 a2`+1 a4`+1 a6`+1 · · ·

P1 P2 P3

Fig. 11: Finding the paths Pi from P and A, for i ∈ [p].

Next, for i, j ∈ [p] with i 6= j, we choose Li,j to be a linkage from Aout
i to Ain

j . At

least one choice for Li,j is guaranteed to exist because Ain
i ∪ Aout

j ⊆ A and A is well-
linked. Moreover, we can find each linkage in polynomial time by applying Menger’s
Theorem (cf. Theorem 2.1) and solving a flow problem. Hence, given P and A of
adequate size, we can find an `-linked path system of order p in polynomial time.

As in Fig. 12, it is easy to find a cylindrical grid in a sufficiently large path
system if it is “well-behaved”, that is, when the paths in L are pairwise internally
vertex-disjoint. In fact, in such cases every Pi models one vertex of a biclique that
is a butterfly minor of D. A biclique is a digraph H having a pair of edges in both
directions between any two vertices of H. Clearly, a biclique with 2k2 vertices contains
a cylindrical grid of order k.

1′ 2′

in out
3′ 4′

in out

2 3
in out

4 1
in out

1

2

3

4
1′

2′

3′

4′

Fig. 12: An example of cylindrical grid of order two in a “well-behaved” path system,
where we assume that the paths in L are pairwise internally vertex-disjoint.

Unfortunately, in general we cannot expect every path system to behave in
this way. Hence, the proof of the Directed Grid Theorem by Kawarabayashi and
Kreutzer [38] follows a sequence of refinements, as mentioned in item (3) above, each
constructing a new structure from the previous one until a cylindrical grid is obtained.
This part is represented by the dashed edges in Fig. 2 and Fig. 9 and, although it is
not hard to see that the algorithms realizing those constructions are naturally FPT,
the constructive proofs are in fact the largest and most involved part of their paper.
Namely, they show how to find a web4 or a cylindrical grid from a path system that

4The definitions of webs and fences can be found in the full version of [38].
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is sufficiently large. If a web is obtained, then the next step is to find a fence4 in it.
Lastly, they prove that we are guaranteed to find a cylindrical grid of order k in any
sufficiently large fence.

Fortunately, and as it is the case with path systems, webs and fences are defined
around collections of paths satisfying some properties that can be easily verified in
polynomial time. Since the number of paths in a `-linked path system of order p
depends only on ` and p, we can search for a web in a path system by testing the
defining properties of webs for every subset of the set of paths in the path system.
Thus, in FPT time with parameters ` and p we can find a web in a path system. A
similar approach is viable to find fences in webs and cylindrical grids in fences and
thus Corollary 2.24 follows from Theorem 2.23.

3. Balanced separators and arboreal decompositions. The algorithm for
arboreal decompositions given in [35] starts with a trivial decomposition ({r}, ∅, {Wr})
whose underlying arborescence contains only one vertex r. Thus, Wr = V (G). Each
iteration splits the vertices contained in an excessively large leaf of the current decom-
position, if one exists, into a set of new leaves, while guaranteeing that the width of
the non-leaf vertices remains bounded from above by a function of k. Although this
problem is not explicitly named by the authors, on each of those split operations the
algorithm has to decide whether the input digraph admits a (T, r)-balanced separator
for a given set T . Formally, on each iteration the need to solve a particular case of
the following problem.

Balanced Separator

Input: A digraph D, a set T ⊆ V (D) of size k, and two non-negative integers
r and s.

Output: A (T, r)-balanced separator Z with |Z| ≤ s, if it exists.

The Balanced Separator problem can be naively solved by checking all
(
n
s

)
sets Z of size s in V (D) and enumerating the strong components of D\Z. Therefore it
is in XP with parameter s. Furthermore, the process of finding balanced separators is
the only step of the algorithm given in [35] that is done in XP time. In the next section,
we show how to compute (T, r)-balanced separators in FPT time with parameter k.
In particular, we show that a set Z is a (T, r)-balanced separator if and only if Z is
a solution to a separation problem introduced in [26] that is a particular case of the
Multicut problem in digraphs. Then, we use this result to improve the algorithm
by Johnson et al. [35] for approximate arboreal decompositions (cf. Proposition 2.13),
showing that it can be done in FPT time. Notice that we can assume that r ≤ k − 1
and s ≤ k−r−1: if r ≥ k, the empty set is a (T, r)-balanced separator and, if s ≥ k−r,
any choice of s vertices from T form a (T, r)-balanced separator. To avoid repetition,
we make these considerations here and refrain from repeating them in the remainder
of this article. We refer to instances of Balanced Separator as (D,T, k, r, s).

3.1. Computing (T, r)-balanced separators in FPT time. Given a graph or
digraph D and a set of pairs of terminal vertices {(s1, t1), (s2, t2), . . . , (sk, tk)}, the
Multicut problem asks to minimize the size of a set Z ⊆ V (D) such that there is no
path from si to ti in D\Z, for i ∈ [k]. When parameterized by the size of the solution,
the problem is FPT in undirected graphs [11, 44]. On the directed case, this problem
is FPT in DAGs when parameterized by the size of the solution and the number of
pairs of terminals [41], but W[1]-hard in the general case even for fixed k = 4 [47].
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A variation of Multicut is considered in [26]. Namely, in the Linear Edge Cut
problem, we are given a digraph D and a collection of sets of vertices {S1, . . . , Sk},
and we want to find a minimum set of edges Z such that there is no path from Si to
Sj in D \Z whenever j > i. We remark that the authors in [26] refer to this problem
as Linear Cut only. This problem is FPT when parameterized by the size of the
solution:

Proposition 3.1 (Erbacher et al. [26]). The Linear Edge Cut problem can
be solved in time O(4s · s · n4), where s is the size of the solution.

We remark that the authors of [26] mention that this result can also be achieved by
using a reduction to the Skew Separator algorithm given in [15].

In this section, we show how to use the algorithm for the Linear Edge Cut
problem to solve the vertex version, and then show how this version can be used
to compute (T, r)-balanced separators in FPT time. We formally define the vertex
version below.

Linear Vertex Cut

Input: A digraph D, a collection of terminal sets T , with T =
{T1, T2, . . . , Tk}, where Ti ⊆ V (D) for i ∈ [k], and an integer s ≥ 0.

Question: Is there a set of vertices Z ⊆ V (D) with |Z| ≤ s such that there are
no paths in D \ Z from Ti to Tj , for 1 ≤ i < j ≤ k?

From an instance (D, T , s) of Linear Vertex Cut, we construct an equivalent
instance of (D′, T ′, s) of Linear Edge Cut as follows. First, notice that any vertex
v occurring in the intersection of two distinct sets in T must be part of any solution
for the instance. Thus we can assume that every vertex of D occurs in at most one
set in T . Now, for each vertex v ∈ V (D), add to D′ two vertices vin and vout and an
edge ev from vin to vout. For each edge e ∈ E(D) with tail u and head v, add to D′

a set of s+ 1 parallel edges from uout to vin. Finally, for each v ∈ Ti, for i ∈ [k], add
a new vertex v′ to D′ together with s + 1 edges from v′ to vin and s + 1 edges from
vout to v′. Let T ′i = {v′ | v ∈ Ti} and T ′ = {T ′1, . . . , T ′k}. We have the following easy
lemma.

Lemma 3.2. An instance (D, T , s) of Linear Vertex Cut is positive if and
only if the associated instance (D′, T ′, s) of Linear Edge Cut is positive.

Proof. Let Z ⊆ V (D) be a solution for (D, T , s) and Z ′ = {ev | v ∈ Z} ⊆ E(D′).
By contradiction, assume that there is a path P ′ in D′ \ Z ′ from a vertex u′ to a
vertex v′, for u′ ∈ T ′i , v

′ ∈ T ′j , and j > i. Then there is a path P from u to v in
D \Z with vertex set {v | ev ∈ E(P ′)}. This contradicts our choice of Z and thus the
necessity holds.

For the sufficiency, let Z ′ be a minimal solution for (D′, T ′, s). Notice that all
edges in Z ′ are from a vertex vin to its respective vout, as the budget s for the size of
Z ′ does not allow any other choice. Let Z = {v | ev ∈ Z ′} and, by contradiction, let
P be a path in D \ Z from a vertex u to a vertex v, with u ∈ Ti, v ∈ Tj , and j > i.
For each edge e ∈ E(P ) with e = (x, y) there is an edge e′ with e′ = (xout, yin) in
D′ \ Z ′. Let F ′ be the set of such edges of D′. Now, there is a path P ′ from uin to
vout in D′ with edge set {ev | v ∈ V (P )} ∪ F ′. Appending to P ′ the edges from u′ to
uin and from vout to v′ we construct a path from u′ to v′ in D \ Z ′, contradicting our
choice of Z ′. Therefore, the sufficiency also holds and the lemma follows.

Combining Proposition 3.1 and Lemma 3.2 we get the following.
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Corollary 3.3. There is an FPT algorithm for the Linear Vertex Cut prob-
lem parameterized by the size s of the solution and running in time O(4s · s · n4).

We now show how to solve Balanced Separator using Linear Vertex Cut.
Namely, we show that a digraph D admits a (T, r)-balanced separator Z if and only if
Z is a solution to some instance (D, T , s) of Linear Vertex Cut where T depends
of T .

Lemma 3.4. Let (D,T, k, r, s) be an instance of Balanced Separator. A set
Z ⊆ V (D) with |Z| ≤ s is a (T, r)-balanced separator if and only if there is a partition
T of T into sets T1, T2, . . . , T` such that

1. |Ti| ≤ r, for i ∈ [`], and
2. Z is a solution for the instance (D, T , s) of Linear Vertex Cut.

Proof. For the necessity, let Z be a (T, r)-balanced separator with |Z| ≤ s. Let C
be the set of strong components of D \ Z and consider an ordering C1, . . . , C` of its
elements such that there is no path from Ci to Cj in D \ Z whenever j > i. Notice
that this is the reverse of a topological ordering for the elements of C. Let v1, . . . , vq
be the vertices in T ∩ Z, if any exist. For i ∈ [`], choose Ti = V (Ci) ∩ T and define
T = {T1, T2, . . . , T`} if T ∩ Z 6= ∅ or T = {T1, T2, . . . , T`, {v1}, . . . , {vq}} otherwise.
Notice that it is possible for a set Ti to be empty.

Since Z is a (T, r)-balanced separator, we know that |Ti| ≤ r holds for all i ∈ [`].
Since the vertices in a non-empty set Ti are contained in exactly one strong component
of D \ Z, any path between different sets in T must contain a path between distinct
strong components of D \Z. Thus we conclude that there are no paths from a set Ti
to another set Tj with j > i, since otherwise we would have a contradiction to our
choice for the order of the elements of C, and therefore Z is a solution for the instance
(D, T , s) of Linear Vertex Cut.

For the sufficiency, let T be as in the statement of the lemma and Z be a solution
for the instance (D, T , s) of Linear Vertex Cut. First, notice that no strong
component of D \ Z can intersect two distinct sets T, T ′ ∈ T . Indeed, if this were
the case, then there would be a path in D \ Z from a vertex in T to a vertex in
T ′ and vice-versa, contradicting the fact that Z is a solution for (D, T , s). Thus, if
|V (C)∩T | ≥ r+1 for some strong component C of D\Z, we have a contradiction as C
would intersect at least two distinct sets in T . We conclude that Z is a (T, r)-balanced
separator and the lemma follows.

The FPT algorithm for Balanced Separator follows from Lemma 3.4 and
Corollary 3.3. The running time is heavily tied to the number of partitions T that
can be generated from a given set T of an instance (D,T, k, r, s) of Balanced Sep-
arator. This value is bounded by the k-th ordered Bell number [12]. The Bell
number [4] counts the number of partitions of a set, and its ordered variant also
considers the number of possible orderings for each partition. The k-th ordered Bell
number is of the form 2O(k log k). From the previous discussion we get the following
theorem.

Theorem 3.5. There is an algorithm running in time 2O(k log k) · nO(1) for the
Balanced Separator problem.

Proof. Let (D,T, k, r, s) be an instance of Balanced Separator and T ∗ be the
set of all ordered partitions {T1, . . . , T`} of T with |Ti| ≤ r, for i ∈ [`].

By Corollary 3.3, we can solve instances of Linear Vertex Cut problem in
time O(4s · s · n4) for s being the size of the solution. By Lemma 3.4, Z is a (T, r)-
balanced separator if and only if there is a T ∈ T ∗ such that the instance (D, T , s)
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of Linear Vertex Cut is positive. Finally, since |T ∗| is at most the k-th ordered
Bell number, we can solve Balanced Separator by testing 2O(k log k) instances of
Linear Vertex Cut. As s ≤ k − r (since otherwise the instance of Balanced
Separator is trivially positive), the bound on the running time follows.

3.2. An FPT algorithm for approximate arboreal decompositions. We
are now ready to prove Theorem 2.19. We remark that the proof below follows [35,
3.3] except that we replace the XP procedure of the proof by our FPT algorithm for
Balanced Separator. In the following proof, we need to test whether a given set
T ⊆ V (D) admits a (T, k−1)-balanced separator of size at most k−1. Thus we remind
the reader of the discussion made in the beginning of Section 3: if |T | ≤ 2k − 2, then
the answer is positive since we can pick any k − 1 vertices of T to form a solution.

Theorem 2.17. Let D be a digraph and k be a non-negative integer. There is
an algorithm running in time 2O(k log k) · nO(1) that either produces a nice arboreal
decomposition of D of width at most 3k − 2 or outputs a (k − 1, k − 1)-linked set T
with T = 2k − 1.

Proof. We begin with a nice arboreal decomposition (R0,X0,W0) of D where
X0 = ∅, V (R0) = {r}, and W0 = {V (D)}. We maintain an arboreal decomposition
(R,X ,W) of D for which the following two properties hold:

(P1) |Wr ∪ (
⋃

e∼rXe)| ≤ 3k− 1 for every r ∈ V (R) of out-degree at least one, and
(P2) |Xe| ≤ 2k − 1 for every e ∈ E(R).

Notice that both (P1) and (P2) hold for (R0,X0,W0).
If (P1) holds for all r ∈ V (R), then we have constructed an arboreal decomposition

with the desired width. Otherwise, we can assume that (R,X ,W) contains at least
one leaf that is too large. That is, the width of a vertex r0 of out-degree zero of R is
at least 3k. If there is an edge e0 ∈ E(R) with head r0, let T = Xe0 . Otherwise, let
T = ∅. Either way, |T | ≤ 2k − 1 and |Wr0 | ≥ 3k − |T | ≥ k + 1.

Now, we test whether D contains a (T, k − 1)-balanced separator of size at most
k−1 and, by Theorem 3.5, this test can be done in time 2O(k log k)·nO(1). If |T | ≤ 2k−2
then the answer is positive since we can pick any set of k − 1 vertices of T to form a
solution. Thus, if the answer is negative, we have |T | = 2k − 1 and we terminate the
algorithm outputting T . We may now assume that D contains a (T, k − 1)-balanced
separator Z ′ with |Z ′| ≤ k − 1.

From the bound on the sizes of the sets, there are at least two vertices in Wr0 \Z ′.
Choose v to be any of those two vertices, and let Z = Z ′ ∪ {v}. Now |Z| ≤ k,
Z ∩Wr0 6= ∅, and |V (C) ∩ T | ≤ k − 1 holds for every strong component C of D \ Z.

Let C1, . . . , C` be the strong components of D \Z. If B is a strong component of
Ci \ T , for i ∈ [`], then either V (B) ⊆Wr0 or V (B)∩Wr0 = ∅, for Wr0 is T -guarded.
Let B1, . . . , Bd be all such strong components for which V (Bj) ⊆ Wr0 for all j ∈ [d].
Furthermore, let f : N → N be a function assigning an index j to an index i if and
only if Bi ⊆ Cj \ T . Thus, f can be used to tell which set Cj contains a given Bi.
Now, Z ∩Wr0 , V (B1), . . . , V (Bd) is a partition of Wr0 into non-empty sets. We show
that this partition yields another arboreal decomposition of D.

Let R′ be the arborescence obtained from R by adding a vertex ri and an edge
ei from r0 to ri, for i ∈ [d]. Furthermore, let X ′e = Xe for all e ∈ E(R) and
W ′r = Wr for all r ∈ V (R) \ {r0}. Also, let W ′r0 = Wr0 ∩ Z and, for i ∈ [d], let
X ′ei = Z ∪ (V (Cf(i)) ∩ T ) and W ′ri = V (Bi). Finally, define X ′ = {X ′e | e ∈ E(R′)}
andW ′ = {W ′r | r ∈ V (R′)}. As the vertices of Wr0 have been spread into non-empty
sets, we only need to verify that (R′,X ′,W ′) is an arboreal decomposition of D for
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which (P1) and (P2) hold; see Fig. 13 for an illustration.

Z ∩Wr0

V (Bd)

V (Bi)

V (B1)
X′e1

X ′ed

Z ∪ (Cf(i) ∩ T )

X ′eiT

Fig. 13: Spreading the vertices in Wr0 .

W ′ is indeed a partition of V (D) into non-empty sets, as Wr0 is partitioned
into non-empty sets. For i ∈ [d], W ′ri = V (Bi) and Bi is a strong component of
Cf(i) \ T . Thus, each new leaf ri added to R is such that W ′ri is X ′ei-guarded and,
for all e ∈ E(R′),

⋃
{W ′r : r ∈ V (R′), r > e} is X ′e-guarded as the property remains

unchanged for all e ∈ E(R).
For r ∈ V (R), the validity of (P1) remains unchanged. The width of r0 is bounded

from above by |T | + |Z| ≤ 2k − 1 + k = 3k − 1, as desired, for W ′r0 ⊆ Z and⋃
e∼r0

X ′e ⊆ T ∪Z. (P2) remains true in (R′,X ′,W ′) for all e ∈ E(R). For ei, i ∈ [d],
|Xei | ≤ |Z|+ |V (Cf(i)) ∩ T |. By the assumption that (D,T, 2k − 1, k − 1, k − 1) is a
positive instance of Balanced Separator, |Z|+ |V (Cf(i)∩T | ≤ k+k−1 = 2k−1.

Observe that, since each Bi is disjoint from T ∪Z, (R′,X ′,W ′) is actually a nice
arboreal decomposition.

Now, if no leaf of (R′,X ′,W ′) is too large, we end the algorithm returning this
arboreal decomposition of D. Otherwise, we repeat the aforementioned procedure
with new choices for T and Wr0 .

Finally, the running time holds by Theorem 3.5, since W partitions V (D) into
non-empty sets and each iteration decreases the number of vertices in leaves that have
width at least 3k.

The proof of Theorem 2.19 easily follows from Lemma 2.18 and Theorem 2.17.

Theorem 2.19 (First main contribution). Let D be a digraph and k be a non-
negative integer. There is an algorithm running in time 2O(k log k) ·nO(1) that correctly
states that D admits a haven of order k or produces an arboreal decomposition of D
of width at most 3k − 2.

Proof. Applying Theorem 2.17 with input D, we either produce an arboreal de-
composition of D of width at most 3k − 2 or find a set T ⊆ V (D) with |T | = 2k − 1
such that there is no (T, k−1)-balanced separator in D. Now, by Lemma 2.18 applied
with inputs D, T , r = k − 1, and s = k − 1, we conclude that D admits a haven of
order k and the result follows.

Next, we show to use Theorem 2.17 to construct a bramble in digraphs of large di-
rected tree-width that is easier to work with than the usual construction that depends
on havens (see, for instance, [45, Chapter 6]).
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4. Brambles and well-linked systems of paths. Let T be the set constructed
by Theorem 2.17 applied to a digraph D with n vertices and dtw(D) ≥ 3k−1, and let
H be the haven obtained by applying Lemma 2.18 with input D and T . We remark
that from H it is possible to construct a bramble B of order bk/2c and size |V (D)|O(k)

(see the discussion in Section 2.4). In this particular case the naive approach yields
an XP algorithm to find a hitting set of B of size k in XP time with parameter k, by
checking all

(
n
k

)
subsets X of V (D) with size k and testing whether X ∩V (B) 6= ∅ for

each B ∈ B, and thus XP algorithms can be extracted from the constructive proofs of
Propositions 2.21 and 2.22 assuming that these properties hold for the input brambles.
In Section 4.1, we show how to construct from T a bramble BT of order k in digraphs
with directed tree-width at least 3k− 1 that skips havens and is more efficient in the
following two ways.

First, this construction allows us to verify whether an induced subgraph D′ of
D contains an element of BT by looking only at the strong components of D′. This
allows us to test if a given set X ⊆ V (D) is a hitting set of BT in polynomial time.
Second, we show that a set Y ⊆ V (D) is a minimum hitting set of BT if and only
if Y is a solution for an appropriately defined instance of Balanced Separator.
Since we showed that this problem is FPT with parameter |T | (Theorem 3.5), we can
compute hitting sets of BT in FPT time with parameter ord(BT ). Then, in Section 4.2
we use those results to prove stronger versions of Propositions 2.21 and 2.22.

4.1. Brambles in digraphs of large directed tree-width. We now define
T -brambles and some of its properties when T is the set obtained by applying Theo-
rem 2.17 to a digraph D with dtw(D) ≥ 3k − 1.

Definition 4.1. Let D be a digraph and T ⊆ V (D) with |T | = 2k − 1. The
T -bramble BT of D is defined as

BT = {B ⊆ D | B is induced, strongly connected, and |V (B) ∩ T | ≥ k}.

Notice that BT is a bramble since, as |T | = 2k − 1, any two of its element intersect.
We remark that, in general, it is possible that ord(BT ) is very small: it is in fact zero
if, for example, no two vertices of T lay in the same strong component of D. Note also
that BT may be empty if, for instance, any strong component of D has size strictly
smaller than k.

Lemma 4.2. Let D be a digraph and T be a (k− 1, k− 1)-linked set of size 2k− 1
in D. Then the T -bramble BT is a bramble of order k and a set X ⊆ V (D) is a hitting
set of BT if and only if X is a (T, k − 1)-balanced separator.

Proof. Let D, T and BT be as in the statement of the lemma. Since |T | = 2k−1,
any set containing k vertices of T is a hitting set of B. Thus ord(BT ) ≤ k. Let
Z ⊆ V (D) with |Z| ≤ k − 1. By definition of (k − 1, k − 1)-linked sets, D does not
contain any (T, k − 1)-balanced separator of size k − 1, and hence there is a strong
component B of D \ Z such that |V (B) ∩ T | ≥ k. Since V (B) ∩ Z = ∅ and B ∈ BT ,
we conclude that Z is not a hitting set of BT and therefore ord(BT ) = k.

For the second part of the lemma, let X be a hitting set of BT . Then |V (C)∩T | ≤
k−1 holds for every strong component C of D\X and, by definition, X is a (T, k−1)-
balanced separator. Similarly, ifX is a (T, k−1)-balanced separator then, by definition
of BT , X is a hitting set of BT and the result follows.

Note that we can check whether a given set X ⊆ V (D) is a hitting set of BT
by enumerating the strong components of D \X and, for each such a component C,
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checking whether |V (C) ∩ T | ≥ k. This can be done in time O(n + m). For the
remainder of this section, and unless stated otherwise, let T be a (k− 1, k− 1)-linked
set with |T | = 2k − 1. In what follows, we use T -brambles to adapt Proposition 2.22
into an FPT algorithm.

To prove our version of Proposition 2.22, we start with a T -bramble BT of order
g(k) (the value of g(k) is specified later) in a digraph D with dtw(D) ≥ 3g(k)−1, and
then we show how to find in polynomial time a path P (BT ) that is a hitting set of BT ,
adapting the proof of Proposition 2.21 shown in [38, Lemma 4.3 of the full version].
Next, we need to show how to split BT into brambles of order at least dk/2e whose
elements are intersected by subpaths of P (BT ). We do this by growing a subpath
of P ′ of P (BT ) iteratively while checking, on each iteration, whether the set B′T of
elements of BT intersecting V (P ′) is a bramble of adequate order.

We now show how our choice of BT allows us to estimate the order of B′T by
computing the order of its “complement bramble” BT \ B′T , and we show how to do
this procedure in FPT time with parameter ord(BT ). These ideas are formalized by
the following definitions and results.

Definition 4.3. Let X ⊆ V (D) and B be a bramble in D. The restricted bramble
B(X) contains the elements of B intersecting X and its complement bramble B(X)
contains the elements of B disjoint from X. Formally,

B(X) = {B ∈ B | V (B) ∩X 6= ∅},

B(X) = {B ∈ B | V (B) ∩X = ∅}.
Notice that both B(X) and B(X) are brambles, as both are subsets of a bramble B.
Additionally, B(X) is disjoint from B(X) and the union of a hitting set of the former
with a hitting set of the latter is a hitting set of B. From this remark, we have that

(4.1) ord(B(X)) + ord(B(X)) ≥ ord(B),

and although in general the order of B(X) is hard to compute, we can estimate it by
knowing the order of its complement bramble B(X) and ord(B).

Consider now the brambles BT , BT (X), and BT (X) for some X ⊆ V (D). The
following results show that hitting sets of BT (X) are exactly (T \X, k − 1)-balanced
separators in D \X.

Lemma 4.4. Let X,Z ⊆ V (D) and B be a strongly connected subgraph of D.
Then B ∈ BT (X) and V (B)∩Z = ∅ if and only if B is a strongly connected subgraph
of D \ (Z ∪X) with |V (B) ∩ T | ≥ k.

Proof. For the necessity, assume that B ∈ BT and V (B) ∩ Z = ∅. Then by the
definition of BT (X), B is a strongly connected subgraph of D \ (Z ∪X) intersecting
T in at least k vertices.

For the sufficiency, assume that B is a strongly connected subgraph of D\(Z∪X)
containing at least k vertices of T . Then B ∈ BT (X) by the definition of BT (X) and
the lemma follows since it is disjoint from Z ∪X.

The contrapositive of Lemma 4.4 characterizes hitting sets of BT (X).

Corollary 4.5. Let X,Z ⊆ V (D). Z is a hitting set of BT (X) if and only if Z
is a (T \X, k − 1)-balanced separator in D \X.

Therefore, we can decide whether ord(BT (X)) ≤ s by testing whether D admits a
(T \X, k−1)-balanced separator of size s. The following result is a direct consequence
of Theorem 3.5 and Corollary 4.5.
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Corollary 4.6. For any X ⊆ V (D), there is an algorithm running in time
2O(k log k) · nO(1) that decides whether ord(BT (X)) ≤ s.

Next, we show how to find such a path P (BT ) as described above and a well-linked
set A of size roughly

√
2k that is contained in V (P (BT )).

4.2. Finding P (BT ) and A. The proof of the next lemma is an adaptation of
the proof of [38, Lemma 4.3 of the full version] to our scenario. We exploit the fact
that we can check whether a given set of vertices is a hitting set of BT in polynomial
time: by Lemma 4.2, a set X ⊆ V (D) is a hitting set of BT if and only if X is a
(T, k−1)-balanced separator, and we can check if a given set X is a (T, k−1)-balanced
separator by enumerating the strong components of the input digraph.

Lemma 4.7. Let D be a digraph, let T be a (k− 1, k− 1)-linked set of size 2k− 1,
and consider the T -bramble BT . There is an algorithm running in time O(n(n+m))
that produces a path P that is a hitting set of BT .

Proof. If ord(BT ) ≥ 1, then there is an element B ∈ BT and a strong component C
of D such that V (B) ⊆ V (C) and, by the definition of BT , we know that D[V (C)] ∈
BT . Define B1 = D[V (C)], let v1 be any vertex of B1, and define P1 as the path
containing only the vertex v1 and V (P0) = ∅. We proceed to grow a path by iterating
from P1 to Pk′ where they all start from v1, each Pi with i ≥ 2 contains Pi−1, and Pk′

is a hitting set of BT . Throughout our process, we maintain a collection of elements
Bi ∈ BT such that V (Pi) intersects V (Bi) only in the last vertex vi of Pi. Since
|V (P1)| = 1 and v1 ∈ T ⊆ V (B1), this condition trivially holds for P1. Assume now
that i paths have been chosen this way, with i ≥ 1.

Consider the last vertex vi of the path Pi and the element Bi of BT with V (Pi)∩
V (Bi) = {vi}. By Lemma 4.2, V (Pi) is a hitting set of BT if and only if V (Pi) is a
(T, k−1)-balanced separator, and this can be tested in time O(n+m) by enumerating
all strong components of D \V (Pi). If V (Pi) is a hitting set of BT , then we terminate
the algorithm returning Pi. Otherwise, V (Pi) is not a (T, k − 1)-balanced separator
and thus there is a strong component F of D \V (Pi) with |V (F )∩T | ≥ k. Therefore,
D[V (F )] is an element of BT whose vertices are disjoint from V (Pi) and we choose
Bi+1 = D[V (F )].

Since BT is a bramble, we can find a path P ′ from vi ∈ V (Pi)∩V (Bi) to a vertex
vi+1 ∈ Bi+1 in D[V (Bi) ∪ V (Bi+1)] such that V (P ′) ∩ V (Bi+1) = {vi+1}. Moreover,
vi is the only vertex of Pi in Bi and thus the path P ′ does not contain any vertex
in V (Pi) \ {vi}. Now, let Pi+1 be the path obtained from Pi by appending P ′. By
our choice of P ′, we know that only the last vertex vi+1 of Pi+1 is in V (Bi+1), as
desired, and V (Pi+1) hits strictly more elements of BT than V (Pi). We repeat the
aforementioned procedure now considering the vertex vi+1, the path Pi+1, and the
element Bi+1 of BT .

Since we can enumerate the strong components of a subgraph of D in time O(n+
m) (see, for instance, [10, Chapter 6]), at the i-th iteration we can find Bi+1, the
path Pi+1, and the vertex vi+1 in time O(n + m). Finally, the procedure eventually
terminates as |V (P )| ≤ n and thus the bound on the running time follows.

For the remainder of this section, we assume that g(k) = (k + 1)(bk/2c+ 1)− 1,
that D is a digraph containing a (g(k) − 1, g(k) − 1)-linked set T of size 2g(k) − 1,
consider the T -bramble BT , and fix P to be the path received by applying Lemma 4.7
with inputs D, T , and BT . To prove Theorem 2.23, we use the following definition.

Definition 4.8 ((i)-split). An (i)-split S of P is a collection formed by a set



AN FPT ALGORITHM FOR THE DIRECTED GRID THEOREM 25

{Qj | j ∈ [i]} of subpaths of P , a subpath Pi of P , a set of brambles {Bj | j ∈ [i]}, a
set of vertices {aj | j ∈ [i]}, and a set of vertices Xi such that

1. for j ∈ [i], vertex aj is the successor in P of the last vertex of Qj, and, if
j ≤ i− 1, the first vertex of Qj+1 is the successor in P of vertex aj,

2. for j ∈ [i], ord(Bj) ≥ bk/2c,
3. for j ∈ [i], Bj ⊆ BT and V (Qj) is a hitting set of Bj,
4. Pi is the subpath of P from the successor in P of the last vertex of Qi to the

last vertex of P , and
5. Xi =

⋃
j∈[i](V (Pj) ∪ {aj}), and

6. the order of BT (Xi) satisfies

ord(BT (Xi)) ≥ g(k)− i
(⌊

k

2

⌋
+ 1

)
.

See Fig. 14 for an example of a (2)-split. We remark that a (0)-split for P consists
only of the path P0 with P0 = P and the empty set X0.

a2a1
Q1 Q2

X2 V (P2) = V (P ) \X2

BT (X2)

Fig. 14: Illustration of a (2)-split of P . A circle represents an element of the bramble
B(X2).

Now, the proof of Theorem 2.23 follows three steps. First, Lemma 4.9 states that
the set of vertices {a1, . . . , ai} of an (i)-split of P is well-linked when i ≤ k. Thus our
goal is to construct a (k)-split of P . Then, Lemma 4.10 states that, for i ≥ 0, we can
construct an (i+1)-split of P from an (i)-split of P in FPT time if ord(B(Xi)) is large
enough. Finally, the proof of Theorem 2.23 starts from a (0)-split of P and iterates
Lemma 4.10 until a (k)-split is constructed.

Lemma 4.9. Let Si be an (i)-split of P with i ∈ [k]. Then the set A with A =
{a1, . . . , ai} is well-linked in D.

Proof. Let X and Y be disjoint subsets of A such that |X| = |Y | = r for some
r ∈ [i]. Suppose, by contradiction, that there is no set of r pairwise internally disjoint
paths from X to Y in D. Then, by Menger’s Theorem, there is an (X,Y )-separator
S ⊆ V (D) such that |S| ≤ r − 1.

Let Qi+1 = Pi and Bi+1 = B(Xi). By the definition of (i)-splits and our choice of
Qi+1, we know that for every aj ∈ A with j ∈ [i], Qj is a path ending on the vertex
occurring in P before aj , and Qj+1 is a path starting on the first vertex occurring in
P after aj (see Figure 14 for an example when i = 2). Moreover, we have

ord(Bi+1) ≥ g(k)− i
(⌊

k

2

⌋
+ 1

)
which implies that ord(Bi+1) ≥ bk/2c since i ≤ k.

As |S| ≤ r − 1 ≤ bk/2c − 1 there is a j ∈ [i − 1] such that aj ∈ X \ S and
S ∩ V (Qj+1) = ∅. Furthermore, since S is not large enough to be a hitting set of
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Bj+1, there must be B ∈ Bj+1 such that S∩V (B) = ∅. Similarly, there are a` ∈ Y \S
and B′ ∈ B` such that S ∩ V (Q`) = ∅ and S ∩ V (B′) = ∅.

By choice, clearly V (Qj+1) is a hitting set of Bj+1. Since S is disjoint from
V (Qj+1)∪V (B) and V (B) induces a strongly connected subgraph of D, we conclude
that there is in D \S a path from aj to any vertex in V (B). Similarly, there is a path
from any vertex in V (B′) to a` in D \ S. Finally, since every pair of elements in BT
intersect, we conclude that there is a path in D \S from aj to a` using the path Qj+1,
the vertices in V (B)∪ V (B)′, and the path Q`. This contradicts our choice of S, and
thus we conclude that every (X,Y )-separator in D must have size at least r, and the
result follows by Menger’s Theorem.

Lemma 4.10. Let Si be an (i)-split of P with i ≤ k−1. Then in time 2O(k2 log k) ·
nO(1) we can construct an (i+ 1)-split of P .

Proof. For a digraph F , for the sake of notational simplicity, we abbreviate –recall
Definition 4.3– B(V (F )) and B(V (F )) as B(F ) and B(F ), respectively, and write B(v)
and B(v) (omitting the braces) for v ∈ V (F ). Let B′ = B(Xi).

The goal is to construct a subpath Qi+1 of P starting on the first vertex of P
appearing after the vertex ai (or simply the first vertex of P if i = 0) such that

ord(B′(Qi+1)) ≥
⌊
k

2

⌋
.

That is, the order of the bramble containing the elements of B which are disjoint from
Xi while intersecting V (Qi+1) is at least bk/2c. We start with V (Qi+1) = ∅. By
Inequality 4.1, we have that

ord(B′(Qi+1)) ≥ ord(B′)− ord(B′(Qi+1))

at any point of the procedure. Now, we iteratively grow Qi+1, adding one vertex at
a time while testing, at each newly added vertex, whether

ord(B′(Qi+1)) ≤ g(k)− i
(⌊

k

2

⌋
+ 1

)
− 1−

⌊
k

2

⌋
.

Observe that, when V (Qi+1) = ∅, we have B′(Qi+1) = B′ and thus

ord(B′(Qi+1)) ≥ g(k)− i
(⌊

k

2

⌋
+ 1

)
> g(k)− i

(⌊
k

2

⌋
+ 1

)
−
⌊
k

2

⌋
.

As B′ = B(Xi), we have B′(Qi+1) = B(Xi ∪V (Qi+1)) and thus, by Corollary 4.6,

we can test whether ord(B′(Qi+1)) ≤ s in time 2O(k2 log k) · nO(1) for any s ∈ [g(k)]
since g(k) = O(k2).

On a negative answer, we add to Qi+1 the first vertex of P not contained in
V (Qi+1) ∪ Xi and repeat the test. On the first time we obtain a positive answer
to this test, we set Bi+1 = B′(Qi+1), define ai+1 to be the first vertex appearing in
P after the last vertex of Qi+1, and stop the procedure. In this case, we have that
ord(Bi+1) ≥ bk/2c and since ord

(
B′(Qi+1)

)
can decrease by at most one each time we

increase by one the size of V (Qi+1), this procedure actually ends with ord(B′(Qi+1)) =
g(k)− i(bk/2c+ 1)− bk/2c.

Now, we define Xi+1 = Xi ∪ V (Qi+1) ∪ {ai+1} and Pi+1 to be the subpath of P
with V (Pi+1) = V (P ) \Xi+1. Finally, let B∗ = B′(Qi+1). Then by Inequality 4.1,

ord(B∗(Pi+1)) ≥ ord(B∗)− ord(B∗(Pi+1))
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and observing that B∗(Pi+1) = B(Xi+1), we conclude that

ord(B(Xi+1)) ≥ g(k)− i
(⌊

k

2

⌋
+ 1

)
−
⌊
k

2

⌋
− 1 = g(k)− (i+ 1)

(⌊
k

2

⌋
+ 1

)
,

as required, since B∗(Pi+1) = B∗(ai+1) and thus ord(B∗(Pi+1)) ≤ 1. Then, we output
the (i + 1)-split Si+1 of Pi formed by the sequence of paths Q1, . . . , Qi+1, the path
Pi+1, the sequence of brambles B1, . . . ,Bi+1, the set of vertices {a1, . . . , ai+1}, and
the set of vertices Xi+1.

We remark that the bramble B′(Qi+1) is used only in the proof of Lemma 4.9
and thus we do not need to maintain it during the algorithm. However, if we want to
store this information, it suffices to maintain the set T , the set Xi, and the path Qi+1

since the bramble B′(Qi+1) is equal to the bramble B(Qi+1) in the digraph D \ Xi.
We are now ready to prove Theorem 2.23.

Theorem 2.23 (Second main contribution). Let g(k) = (k + 1)(bk/2c+ 1)− 1,
D be a digraph and T be a (g(k) − 1, g(k) − 1)-linked set in D with |T | = 2g(k) − 1.

There is an algorithm running in time 2O(k2 log k) · nO(1) that finds in D a bramble B
of order g(k), a path P that is a hitting set of B, and a well-linked set A of order k
such that A ⊆ V (P ).

Proof. By Lemma 4.2, the T -bramble BT has order g(k) and, by Lemma 4.7, we
can find a path P that is a hitting set of BT in polynomial time. We start with a
trivial (0)-split S0 of P where P0 = P and X0 = ∅.

For i ∈ {0, . . . , k−1}, we apply Lemma 4.10 with input Si to obtain an (i+1)-split

Si+1 of P in time 2O(k2 log k) · nO(1). After the last iteration, we obtained a (k)-split
Sk of P and, by Lemma 4.9, the set of vertices {a1, . . . , ak} of Sk is well-linked in D
and all such vertices are in V (P ), as desired.

By following the remainder of the proof of the Directed Grid Theorem [38], which
yields FPT algorithms for all the remaining steps (see Section 2.5), we can validate
Corollary 2.24.

5. Concluding remarks. The main consequence of our results is an FPT algo-
rithm with parameter k that either produces an arboreal decomposition of width at
most f(k) for a digraph D or constructs a cylindrical grid of order k as a butterfly
minor of D, for some computable function f(k). This is achieved by adapting some
of the steps used in the proof of the Directed Grid Theorem from Kawarabayashi and
Kreutzer [38].

For the first possible output of this algorithm, we improve on a result from [35]
by providing an FPT algorithm with parameter k that either produces an arboreal
decomposition of a digraph D with width at most 3k − 2, or concludes that D has a
haven of order k. As a tool to prove this result, we consider a generalization of the
problem of finding balanced separators in digraphs (we remind the reader that our
definition of balanced separators extends the classical definition that can be found,
for example, in [45]) and show how to solve it in FPT time with parameter |T |. Since
in the undirected case balanced separators are strongly related to the tree-width of
undirected graphs, and the only result for balanced separators in the directed case
considered only a relaxed version of the problem (see [45, Chapter 6]), we consider
this result to be of its own interest.

Although it is possible to construct a bramble B of order bk/2c from a haven
of order k, this construction is not efficient in general, in the sense that we must
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go through all elements of B to verify whether a given set X is a hitting set of B.
Motivated by this, we consider a definition of brambles, which we call T -brambles,
which naturally occur in digraphs of large directed tree-width that are better to work
with in a number of ways. For instance, by reducing to the problem of computing
(T, r)-balanced separators for T , we show how to compute hitting sets of T -brambles
in FPT time when parameterized by |T |.

We use our results for T -brambles in digraphs of large tree-width to show how to
find, in FPT time with parameter k, a path that is a hitting set of a T -bramble BT of
order (k + 1)(bk/2c+ 1) and a well-linked set of size k that is contained in this path.
This is the second step that we change in the proof of the Directed Grid Theorem [38].
From this point forward, the remaining steps in the proof yield FPT algorithms.

Kreutzer and Ordyniak [42] and Ganian et al. [30] showed that many important
problems in digraphs remain hard when restricted to digraphs of bounded directed
tree-width. In particular, Kreutzer and Ordyniak [42] showed that the Directed
Feedback Vertex Set (DFVS) problem is NP-complete even when restricted to
digraphs of directed tree-width at most five. However, some open problems in digraphs
may benefit from an approach resembling Bidimensionality using our FPT algorithm
for the Directed Grid Theorem. For example, Bezáková et al. [7] asked whether the
Longest Detour problem in digraphs could be solved by using the Directed Grid
Theorem. To provide more potential applicability of our results, we briefly discuss
the parameterized tractability of the DFVS problem.

Chen et al. [15] provided an algorithm running in time 2O(k log k) · nO(1) for the
DFVS problem, where k is the size of the solution. Bonamy et al. [9] showed that,
when parameterized by the tree-width t of the underlying graph, DFVS is solvable
in time 2O(t log t) · nO(1) in general digraphs and the dependency on the parameter is
improved to 2O(t) when restricted to planar digraphs. When parameterized by the
feedback vertex set number of the underlying graph, Bergougnoux et al. [5] showed
that DFVS admits a polynomial kernel in general digraphs, and a linear kernel in
digraphs that are embeddable on surfaces of bounded genus.

On the one hand, DFVS remains hard even when restricted to digraphs of di-
rected tree-width at most five [42], but on the other hand both of the aforementioned
parameters related to the underlying graph are individually stronger than the directed
tree-width of the input digraph and, by the Directed Grid Theorem [38], every posi-
tive instance of DFVS parameterized by the size k of the solution occurs in a digraph
of bounded directed tree-width: since a cylindrical grid of order r contains a set of r
vertex-disjoint cycles and butterfly contractions do not generate new paths, the min-
imum size of a feedback vertex set of a digraph D is at least the order of the largest
cylindrical grid that is as a butterfly minor of D. Now, by Corollary 2.24, in FPT
time with parameter k we can either find a certificate that the considered instance of
DFVS is negative (a cylindrical grid of order k + 1 that is a butterfly minor of the
input digraph), or produce an arboreal decomposition of the input digraph of width
at most f(k), for some computable function f : N→ N.

Thus, it is sensible to ask whether similar or improved results for DFVS (when
parameterized by the tree-width or the feedback vertex set number of the underlying
graph, as previously mentioned) can be proved if we consider that the input digraph
has bounded directed tree-width, since by the above discussion we can restrict in-
stances of DFVS to this class of digraphs.

One could also consider the tractability of hard problems in digraphs of bounded
directed tree-width under stronger parameterizations. For example, Lopes and Sau
[43] recently showed that a relaxation for the Directed Disjoint Paths problem,
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a notoriously hard problem in digraphs, admits a kernelization algorithm for some
choices of parameters. In this spirit, it seems plausible that combining directed tree-
width with other parameters may lead to FPT algorithms for hard problems, and in
this context the FPT algorithm presented in this paper may become handy.

It is worth mentioning that Giannopoulou et al. [31] recently provided an anal-
ogous version of the Flat Wall Theorem [50] for directed graphs, which may have
interesting algorithmic applications when combined with our results.

Finally, the attempts to obtain a Bidimensionality theory for directed graphs, such
as the one presented by Dorn et al. [23], are so far less satisfying that the undirected
version, from the point of view of generality and efficiency of the obtained algorithms.
We hope that our FPT version of the Directed Grid Theorem will have a relevant role
in an eventual Bidimensionality theory for directed graphs.
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