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ABSTRACT. In this paper, the numerical approximation of isometric deformations of thin elastic shells is dis-
cussed. To this end, for a thin shell represented by a parametrized surface, it is shown how to transform the
stored elastic energy for an isometric deformation such that the highest order term is quadratic. For this re-
formulated model, existence of optimal isometric deformations is shown. A finite element approximation is
obtained using the Discrete Kirchhoff Triangle (DKT) approach and the convergence of discrete minimizers
to a continuous minimizer is demonstrated. In that respect, this paper generalizes the results by Bartels for
the approximation of bending isometries of plates. A Newton scheme is derived to numerically simulate large
bending isometries of shells. The proven convergence properties are experimentally verified and characteristics
of isometric deformations are discussed.

1. INTRODUCTION

We investigate deformations of thin elastic objects and their numerical approximation. These objects are
frequently characterized by a small thickness δ ą 0 and a regular and orientable two-dimensional midsurface
MA. Given an external force fA : MA Ñ R

3 acting on the thin object, equilibrium deformations have been
extensively studied in the literature. In particular, considering the limit of vanishing thickness, Γ-convergence
allows to express the 3D deformation of the thin object by a 2D deformation of its midsurface. In [15, 16], Le
Dret and Raoult obtained a membrane theory describing tangential distortion on the surface. In this paper, we
focus on a bending theory taking into account isometric deformations. For such bending isometries, a first
Γ-convergence result was provided by Friesecke et al. in [11] by rigorously deriving Kirchhoff’s plate theory
from nonlinear three dimensional elasticity. In this special case of the two-dimensional midsurface being
a flat objectMA “ ω ˆ t0u for some suitable ω Ă R2, smooth isometric deformations are characterized
by the global property that they are developable surfaces. This has been shown for smooth isometries by
Hartman and Nirenberg in [12]. Moreover, Hornung [13] has proven that this result holds true for H2

isometries. In [10], Friesecke et al. extended the Γ-convergence result to case of thin elastic shells, where
the corresponding midsurfaceMA is in general allowed to be curved. More precisely, it was shown that the
bending energy depends on the so-called relative shape operator, which we will detail in the following.

Throughout this paper, we will restrict to parametrized surfaces, i.e. MA “ ψApωq for a bounded and
connected Lipschitz domain ω Ă R2 and an injective parametrization ψA P H3pω;R3q. An external force
fA P L2pMA;R3q acting on the midsurface is given via some f P L2pω;R3q on the parameter domain with
f “ fA ˝ ψA. The deformed midsurfaceMB “ ψBpωq is described by a parametrization ψB P H2pω;R3q.
The resulting actual deformation φ : ψApωq Ñ R3 of the thin shell midsurface ψApωq is then given by
φ “ ψB ˝ ψ

´1
A (cf. Figure 1). Note that the unit normal ofMB is defined for every x P ω as

nBpxq “ nrψBspxq “
B1ψBpxq ˆ B2ψBpxq
|B1ψBpxq ˆ B2ψBpxq|
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MB

MA

ω Ă R2

ψA ψB

φ “ ψB ˝ ψ
´1
A

FIGURE 1. A deformation φ of a parametrized surfaceMA onto an image surfaceMB with
clamped boundary is described by parametrizations ψA, ψB over the chart domain ω.

and the corresponding first fundamental form gB and second fundamental form IIB at x P ω are given by

gBpxq “ p∇ψBpxqqJ∇ψBpxq ,

IIBpxq “ ∇nBpxq ¨ ∇ψBpxq “ ´D2ψBpxq ¨ nBpxq .

Furthermore, the matrix representation of the shape operator SB of MB at x P ω is given by SBpxq “
gBpxq´1IIBpxq. Normal, metric, second fundamental form and shape operator are analogously defined for
MA and the given parametrization ψA. To compare the shape operator SA of the undeformed configuration
with the shape operator SB of the deformed configuration, one considers the matrix representation of the
relative shape operator

Srel
ψB
B g´1

A pIIA ´ IIBq “ g´1
A

`

D2ψB ¨ nB ´D2ψA ¨ nA
˘

.(1)

Following Friesecke et al. [10], the bending energy Ebend : H2pω;R3q Ñ r0,8s of the deformed object is
given by

EbendrψBs B

#

α
2

ş

ω

a

det gA tr
´

Srel
ψB

Srel
ψB

¯

dx if gB “ gA ,

8 otherwise .
(2)

Note that tr
´

Srel
ψB

Srel
ψB

¯

“

ˇ

ˇ

ˇ

ˇ

g´
1
2

A pIIB ´ IIAqg
´ 1

2
A

ˇ

ˇ

ˇ

ˇ

2

, as it was derived for a prestrained plate model in [5]. A

bending energy on prestrained plates involving the same integrand was also applied in [6]. Here, α ą 0
denotes an elastic constant and the condition gB “ gA encodes the metric constraint on the map φ “

ψB ˝ ψ
´1
A , i.e.

(3) p∇ψBpxqqJ∇ψBpxq “ gBpxq “ gApxq “ p∇ψApxqqJ∇ψApxq for a. e. x P ω .

Moreover, we define the potential energy by

EpotrψBs B ´

ż

ω

b

det gA f ¨ ψB dx

and consider clamped boundary conditions on ΓD Ă Bω withH1pΓDq ą 0, i.e.

ψB “ ψA , ∇ψB “ ∇ψA on ΓD.(4)
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Finally, we ask for a minimizer ψB of the total free energy

Erψs B Ebendrψs ` Epotrψs “
α
2

ż

ω

b

det gA tr
´

Srel
ψ Srel

ψ

¯

dx´
ż

ω

b

det gA f ¨ ψdx(5)

over all ψ P H2pω;R3q satisfying the metric constraint (3) and the clamped boundary conditions (4). In a
more general setting, other Dirichlet boundary conditions could be considered, such as ψB “ ϕ, ∇ψB “ Φ
on ΓD. In general it is not clear if such a deformation ψB satisfying the metric constraint (3) exists, even if
ΦJΦ “ ∇ψJA∇ψA on ΓD is satisfied. However, with the assumption that admissible deformations exist, the
analysis presented in this paper could be extended to more general Dirichlet boundary conditions, as in [1].

In this paper, we are primarily interested in a numerical approximation scheme for the above variational
problem. First, note that a conforming finite element approximation of the bending energy (2) would require
globally C1-elements, which are computationally demanding. As an alternative, Bonito et al. [7] proposed
a discontinuous Galerkin approach for isometric deformations of thin elastic plates and in [6] Bonito et al.
established a Γ-convergence theory of a local discontinuous Galerkin approach for prestrained plates. Here,
we follow Bartels [1], who made use of the discrete Kirchhoff Triangle (DKT) element to approximate
bending isometries in the case of deformations of thin elastic plates. This approach has also been applied in
[3] to approximate deformations of plates for a Föppl–von Kármán model, which has been used to verify a
break of symmetry for deformations of smooth, circular cones. The key ingredient of the DKT element is a
non-conforming second derivative with suitable approximation properties. Nodal-wise degrees of freedom
for the Jacobian of the deformation enable to restrict the isometry constraint to nodes of the underlying
triangular mesh. Furthermore, Bartels considered a linearization of the isometry constraint and a discrete
gradient flow approach to minimize the energy. In [14], Hornung et al. applied the DKT element for a
material optimization problem on thin elastic plates, where the isometry constraint was strictly enforced in a
second order scheme.

Our goal is to extend the approximation result of Bartels to the case of curved surfaces MA under the
assumption that MA is a parametrized surface as described above. For isometric deformations in the flat
case, the relative shape operator is symmetric and the Frobenius norm of the relative shape operator is equal
to the Frobenius norm of the second derivative of the deformation, i.e.

tr
´

Srel
ψB

Srel
ψB

¯

“ tr
´

pSrel
ψB
qJSrel

ψB

¯

“ |Srel
ψB
|2 “ |D2ψB|

2 ,(6)

which drastically simplifies the computational effort, since the second variation of the corresponding bending
energy becomes independent of ψB. In that respect, the central insight is a simplification of the relative shape
operator similar to (6).

The outline of this paper is as follows. In Section 2, we will rewrite the total elastic energy via a simpli-
fication of the relative shape operator and prove existence of a minimizing deformation. In Section 3, the
non-conforming finite element approximation via the Discrete Kirchhoff Triangle will be revisited and used
to discretize the total elastic energy. Instead of a linearization, we incorporate an exact metric constraint at
nodal positions. To solve the resulting constraint optimization problem numerically, we take into account a
Newton method for an associated Lagrangian in Section 4. Finally, in Section 5, we discuss several selected
examples and study the convergence behaviour experimentally.

2. REFORMULATION OF THE BENDING ENERGY

In this section, we will show an identity for the Frobenius norm of the relative shape operator Srel
ψB

under
the metric constraint. This reformulation will ensure that the dependence of the elastic energy on second
order derivatives of the parametrization ψB is quadratic and the remaining nonlinearity is a quadratic term
involving the normal nB in the deformed configuration.
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Proposition 2.1 (transformed bending energy density). LetψB “ pψm
B qm“1,2,3 P H2pω;R3qwith p∇ψBq

J
∇ψB “

p∇ψAq
J
∇ψA almost everywhere in ω. Then, we have the identity tr

´

Srel
ψB

Srel
ψB

¯

“ |g´
1
2

A pIIB ´ IIAqg
´ 1

2
A |2 “

B rψBs, where

B rψBs B
3
ÿ

m“1

|g´
1
2

A D2ψm
B g´

1
2

A |2 ´ 2IIB : pg´1
A IIAg´1

A q ` CA(7)

where the constant CA depends only on derivatives of ψA.

Proof. Differentiation of BiψB ¨BiψB “ BiψA ¨BiψA for i P t1, 2u in direction j P t1, 2u yields B jBiψB ¨BiψB “

B jBiψA ¨ BiψA. Similarly, differentiation of BiψB ¨ B jψB “ BiψA ¨ B jψA in direction i P t1, 2u gives

B2
i ψB ¨ B jψB ` B jBiψB ¨ BiψB “ B

2
i ψA ¨ B jψA ` B jBiψA ¨ BiψA

and taking into account the first identity we obtain B2
i ψB ¨ B jψB “ B

2
i ψA ¨ B jψA. Altogether, using that the

parameter domain is two dimensional, we obtain

(8) BiB jψB ¨ BkψB “ BiB jψA ¨ BkψA @i, j, k P t1, 2u.

Next, we consider the Gram-Schmidt orthonormalization of the columns of the Jacobian ∇ψB

y1
B B

1
|B1ψB|

B1ψB , y2
B B

1
|ŷ2

B|
ŷ2

B with ŷ2
B B B2ψB ´ pB2ψB ¨ y1

Bqy
1
B

and define y1
A, y

2
A, ŷ

2
A analogously for the parametrization ψA.

Then, both ty1
B, y

2
B,nBu and ty1

A, y
2
A,nAu form an orthonormal basis of R3. In particular, we get the orthog-

onal decomposition

(9) BkB jψB “ pBkB jψB ¨ nBqnB ` pBkB jψB ¨ y1
Bqy

1
B ` pBkB jψB ¨ y2

Bqy
2
B .

By the metric constraint |B1ψA| “ |B1ψB| and B2ψA ¨ B1ψA “ B2ψB ¨ B1ψB and consequently

y1
B “

1
|B1ψA|

B1ψB , ŷ2
B “ B2ψB ´ pB2ψA ¨ y1

Aq
1

|B1ψA|
B1ψB.

Furthermore, we obtain

|ŷ2
B|

2 “|B2ψB|
2 ´ 2pB2ψA ¨ y1

Aq
1

|B1ψA|
B1ψB ¨ B2ψB `

ˇ

ˇ

ˇ

ˇ

pB2ψA ¨ y1
Aq

1
|B1ψA|

ˇ

ˇ

ˇ

ˇ

2

|B1ψB|
2

“|B2ψA|
2 ´ 2pB2ψA ¨ y1

Aq
1

|B1ψA|
B1ψA ¨ B2ψA `

ˇ

ˇ

ˇ

ˇ

pB2ψA ¨ y1
Aq

1
|B1ψA|

ˇ

ˇ

ˇ

ˇ

2

|B1ψA|
2

“|ŷ2
A|

2.

Taking into account (8), it follows that

BkB jψB ¨ y1
B “

1
|B1ψA|

BkB jψB ¨ B1ψB “
1

|B1ψA|
BkB jψA ¨ B1ψA “ BkB jψA ¨ y1

A ,

BkB jψB ¨ y2
B “

1
|ŷ2

B|
BkB jψB ¨ ŷ2

B “
1
|ŷ2

A|
BkB jψB ¨ pB2ψB ´ pB2ψB ¨ y1

Bqy
1
Bq

“
1
|ŷ2

A|
BkB jψA ¨ pB2ψA ´ pB2ψA ¨ y1

Aqy
1
Aq “ BkB jψA ¨ y2

A .

Thus, we obtain

BkB jψB “ pBkB jψB ¨ nBqnB ` pBkB jψA ¨ y1
Aqy

1
B ` pBkB jψA ¨ y2

Aqy
2
B.
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Next, we consider the integrand of the bending energy. Similar to the calculations in [4] in the context of
prestrained plates, we can write

ˇ

ˇ

ˇ

ˇ

g´
1
2

A pIIB ´ IIAqg
´ 1

2
A

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

g´
1
2

A IIBg´
1
2

A

ˇ

ˇ

ˇ

ˇ

2

´ 2pg´
1
2

A IIBg´
1
2

A q : pg´
1
2

A IIAg´
1
2

A q `

ˇ

ˇ

ˇ

ˇ

g´
1
2

A IIAg´
1
2

A

ˇ

ˇ

ˇ

ˇ

2

.

The last term only depends on the initial configurationψA and can hence be neglected. Let g´
1
2

A “

ˆ

g´
1
2

A,i j

˙

i, j“1,2
.

Using |nB|
2 “ 1 and the decomposition (9),

ˇ

ˇ

ˇ

ˇ

g´
1
2

A IIBg´
1
2

A

ˇ

ˇ

ˇ

ˇ

2

can be written as

2
ÿ

i, j“1

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

k,l“1

g´
1
2

A,ikg´
1
2

A,l j pBkBlψB ¨ nBq

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

2
ÿ

i, j“1

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

k,l“1

g´
1
2

A,ikg´
1
2

A,l j pBkBlψB ¨ nBqnB

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

2
ÿ

i, j“1

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

k,l“1

g´
1
2

A,ikg´
1
2

A,l j

`

BkBlψB ´
“`

BkBlψA ¨ y1
A

˘

y1
B `

`

BkBlψA ¨ y2
A

˘

y2
B

‰˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

2
ÿ

i, j“1

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

k,l“1

g´
1
2

A,ikg´
1
2

A,l jBkBlψB

ˇ

ˇ

ˇ

ˇ

ˇ

2

`

2
ÿ

i, j“1

ˇ

ˇ

ˇ

ˇ

ˇ

2
ÿ

k,l“1

g´
1
2

A,ikg´
1
2

A,l j

“`

BkBlψA ¨ y1
A

˘

y1
B `

`

BkBlψA ¨ y2
A

˘

y2
B

‰

ˇ

ˇ

ˇ

ˇ

ˇ

2

´ 2
2
ÿ

i, j“1

˜

2
ÿ

k,l“1

g´
1
2

A,ikg´
1
2

A,l jBkBlψB

¸

¨

˜

2
ÿ

k,l“1

g´
1
2

A,ikg´
1
2

A,l j

“`

BkBlψA ¨ y1
A

˘

y1
B`

`

BkBlψA ¨ y2
A

˘

y2
B

‰

¸

.

Since |y1
B|

2 “ |y2
B|

2 “ 1 and y1
B ¨ y2

B “ 0, the second term on the right hand side is only depending on ψA
and can hence be regarded as constant. The same applies for the third term, considering the metric constraint

and the calculations made above. Furthermore we can rewrite, using the symmetry of g´
1
2

A

pg´
1
2

A IIBg´
1
2

A q : pg´
1
2

A IIAg´
1
2

A q “

2
ÿ

i, j“1

˜

2
ÿ

k,l“1

g´
1
2

A,ikIIkl
B g´

1
2

A,l j

¸˜

2
ÿ

m,n“1

g´
1
2

A,imIImn
A g´

1
2

A,nj

¸

“

2
ÿ

k,l“1

IIkl
B

¨

˝

2
ÿ

m,n“1

˜

2
ÿ

i“1

g´
1
2

A,kig
´ 1

2
A,im

¸

IImn
A

¨

˝

2
ÿ

j“1

g´
1
2

A,l jg
´ 1

2
A, jn

˛

‚

˛

‚“ IIB : pg´1
A IIAg´1

A q

which proves the claim. �

As an immediate consequence, we obtain the following transformed total free energy.

Corollary 2.2 (transformation of the total free energy). LetψB P H2pω;R3qwith p∇ψBq
J
∇ψB “ p∇ψAq

J
∇ψA

almost everywhere in ω. Then, the total free energy (5) can up to a constant be rewritten as

ErψBs “
α
2

ż

ω

b

det gA

˜

3
ÿ

m“1

|g´
1
2

A D2ψm
B g´

1
2

A |2 ´ 2IIB : pg´1
A IIAg´1

A q

¸

dx(10)

´

ż

ω

b

det gA f ¨ ψB dx

Using this reformulation, we obtain the following existence result.

Theorem 2.3 (existence). For the set

A “ tψ P H2pω;R3q | p∇ψqJ∇ψ “ p∇ψAq
J
∇ψA a.e. in ω; ψ “ ψA,∇ψ “ ∇ψA on ΓDu
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of admissible parametrizations subject to the metric constraint and clamped boundary conditions and for
f P L2pω,R3q there exists a parametrization ψB P A which minimizes the total free energy Erψs given in
(10) over all ψ P A .

Proof. We begin remarking thatA is nonempty, because ψA P A. To apply the direct method in the calculus
of variations we at first show the uniform boundedness of a minimizing sequence in H2pω,R3q. To this end,
we first estimate for ψ P A

Erψs ě
α
2

ż

ω

b

det gA

3
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

g´
1
2

A D2ψmg´
1
2

A

ˇ

ˇ

ˇ

ˇ

2

dx

´ α

ż

ω

b

det gA
ˇ

ˇD2ψ ¨ nrψs
ˇ

ˇ

ˇ

ˇ

ˇg´1
A IIAg´1

A

ˇ

ˇ

ˇ dx´
ż

ω

b

det gA | f ||ψ|dx .

using Cauchy-Schwartz’ inequality. Note that
ˇ

ˇD2ψ ¨ nrψs
ˇ

ˇ ď
ˇ

ˇD2ψ
ˇ

ˇ again by Cauchy-Schwartz with

|nrψs| “ 1. Thus, since gA and g´
1
2

A are uniformly bounded, we obtain

Erψs ě c
∥∥∥D2ψ

∥∥∥2
L2pωq

´ C
ˆ
ż

ω

ˇ

ˇD2ψ
ˇ

ˇ

ˇ

ˇ

ˇg´1
A IIAg´1

A

ˇ

ˇ

ˇdx`
ż

ω
| f ||ψ|dx

˙

for generic constants c, C ą 0 depending only on ψA and α. Making use of Poincare’s inequality and

Young’s inequality, we obtain Erψs ě c
∥∥∥D2ψ

∥∥∥2
L2pωq

´ C. Next, let pψlql Ă A be a minimizing sequence

with infψPA Erψs “ limlÑ8 Erψls. Then, the last estimate ensures that
∥∥∥ψl

∥∥∥
H2pω,R3q

ď C. By the reflexivity

of H2, there exists a subsequence and a function ψB P H2pω,R3q s.t. after a reindexing ψl converges
weakly to some ψB in H2pω,R3q. By the Rellich–Kondrachov compactness theorem, we can extract another
subsequence ensuring that ∇ψlpxq Ñ ∇ψBpxq point-wise almost everywhere. Thus the limit ψB also fulfills
the metric constraint and by the trace theorem the clamped boundary conditions. Hence, ψB P A.

Furthermore, the sequence of normal fields nrψls is uniformly bounded in L8pω,R3q and nrψls converges
point-wise almost everywhere to nrψBs. Altogether, D2ψl ¨nrψls converges weakly in L2pω,R2ˆ2q to D2ψB ¨

nrψBs “ IIB. Finally, the convexity of | ¨ |2 implies that the total free energy Er¨s is weakly lower semi-
continuous and thereby

ErψBs ď lim inf
lÑ8

Erψls “ inf
ψPA

Erψs .

�

3. DISCRETIZATION BASED ON THE DISCRETE KIRCHHOFF TRIANGLE

In this section, we will derive a non-conforming finite element discretization of the total free energy
and the corresponding discrete metric constraint. This derivation follows the general approach proposed by
Bartels for discrete deformations of plates in [1]. In addition, we refer to the monograph [2]. At first, let us
review the non-conforming finite element approximation based on the Discrete Kirchhoff Triangle (DKT).
For simplicity, we directly assume that ω is a polygonal parameter domain. Let Th be a regular triangulation
of ω with maximal triangle diameter h ą 0. We denote byNh the set of vertices and by Eh the set of edges.
For k P N, we denote by Pk the set of polynomials of degree at most k. For vertices z1, z2, z3 P Nh of a
triangle T we define zT “ pz1 ` z2 ` z3q{3 as the center of mass of T and introduce the reduced space of
cubic polynomials

P3,redpTq B

#

p P P3pTq
ˇ

ˇ

ˇ 6ppzTq “
ÿ

i“1,2,3

p2ppziq ´ ∇ppziq ¨ pzi ´ zTqq

+
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which still has P2 as a subspace and the finite element spaces

Wh B twh P Cpsωq | wh|T P P3,redpTq for all T P Th and ∇wh is continuous atNhu ,

Θh B
 

θh P Cpsω;R2q | θh|T P P2pTq2 and θh ¨ nE|E is affine for all E P Eh
(

.

For a function w P H3pωq, the interpolation wh “ I
DKTw P Wh is defined on every triangle T P Th by

whpzq “ wpzq and ∇whpzq “ ∇wpzq for all vertices z P NhXT, which is well-defined due to the continuous
embedding of H3pωq into C1psωq. The discrete gradient operator θh : Wh Ñ Θh is defined via

θhrwhspzq “ ∇whpzq , θhrwhspzEq ¨ tE “ ∇whpzEq ¨ tE

for all vertices z P Nh, all edges E P Eh with tE denoting a unit tangent vector on E, and zE the midpoint of E.
We use superscripts pθ j

hrwhsq j“1,2 to indicate the components of θhrwhs corresponding to an approximation
of B jwh. The operator θh can analogously be defined on H3pωq. This operator has the following properties
(cf . Bartels [1] and the textbook by Braess [8] for the proofs):

There exists constants c0, c1, c2, c3 ą 0 such that for T P Th with hT “ diampTq, w P H3pTq and
wh P Wh

}w´ IDKTw}HmpTq ď c0h3´m
T }w}H3pTq for m “ 0, 1, 2, 3 ,(11)

c´1
1

∥∥∥Dk`1wh

∥∥∥
L2pTq ď

∥∥∥Dkθhrwhs
∥∥∥

L2pTq ď c1

∥∥∥Dk`1wh

∥∥∥
L2pTq for k “ 0, 1 ,(12) ∥∥∥θhrwhs ´ ∇wh

∥∥∥
L2pTq ď c2hT

∥∥∥D2wh

∥∥∥
L2pTq ,(13) ∥∥∥θhrws ´ ∇w

∥∥∥
L2pTq ` hT

∥∥∥∇θhrws ´D2w
∥∥∥

L2pTq ď c3h2
T ‖w‖H3pTq .(14)

Furthermore, we have the following norm property: The mapping wh ÞÑ
∥∥∥∇θhrwhs

∥∥∥
L2pωq

defines a norm on
twh P Wh | whpzq “ 0, ∇whpzq “ 0 for all z P Nh X ΓDu.

Based on the DKT element we are now able to discretize the total free energy (10). More precisely, we
consider ψh P W3

h to approximate a parametrization ψ P H2pω;R3q. Then, a discrete unit normal field
nrψhs is defined as nrψhs B

1
|B1ψhˆB2ψh|

B1ψh ˆB2ψh, and we apply ∇θhrψhs as a discrete (non-conforming)

approximation of the Hessian D2ψh in L2pω;R3,2,2q. Furthermore, for the given fixed parametrization ψA P

H3pω;R3q define ψA,h “ I
DKTψA P W3

h. Then, we define gh “ p∇ψA,hq
J
∇ψA,h, IIh “ ∇θhrψA,hs ¨nrψA,hs.

Let us assume that ψA P H3pω;R3q and fh P L2pω;R3q. In particular, the above coefficients depending on
ψA are well approximated by their discrete counterparts obtained by the interpolation in W3

h taking into
account the estimates on the discrete gradient operator. Note that instead of a DKT interpolation ψA,h, we
could directly consider ψA evaluated at quadrature points. However, if one applies the presented approach to
shape optimzation (cf. [9]) one usually wants to optimize ψA. Then, a DKT discretization ψA,h would enable
to actually perform such an optimization. Now, the discrete transformed bending energy density is given by

Bh rψhs B
3
ÿ

m“1

|g´
1
2

h ∇θhrψ
m
h sg

´ 1
2

h |2 ´ 2p∇θhrψhs ¨ nrψhsq : pg´1
h IIhg´1

h q(15)

Correspondingly, the discrete total free energy is defined as

Ehrψhs “
α
2

ż

ω

b

det ghBh rψhs dx´
ż

ω

b

det gh fh ¨ ψh dx .(16)

We aim at minimizing this discrete energy over the following constraint set of discrete deformations

Ah “

!

ψh P W3
h

ˇ

ˇ

ˇ p∇ψhpzqqJ∇ψhpzq “ p∇ψApzqqJ∇ψApzq @z P Nh;

ψpzq “ ψApzq,∇ψpzq “ ∇ψApzq @z P Nh X ΓD

)

.
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Since ψA,h P Ah, this set is not empty. In explicit, we require the metric constraint only on the nodes of the
triangulation and the clamped boundary condition is applied solely on boundary nodes.

Now, we are in the position to formulate our main theorem on the approximation of large-scale isomet-
ric deformations of parametrized surfaces minimizing the total free energy in case of clamped boundary
conditions.

Theorem 3.1 (convergence of discrete solutions). Let pThqh be a sequence of uniformly regular triangula-
tions of ω with maximal triangle diameter h ą 0. Furthermore, let ψA P H3pω;R3q and f P L2pω;R3q

and p fhqh be a sequence of force fields in L2pω,R3q weakly converging to f in L2pω,R3q. Assume that
there exists a minimizer ψB of the continuous total free energy Er¨s (10) onA which can be approximated in
H2pω;R3q by functions ψε P H3pω;R3q XA. Then, for every h ď h̄, for h̄ sufficiently small, there exists a
minimizer ψh P W3

h of the discrete total free energy Ehr¨s (16) onAh. Furthermore, for pEhr¨sqh with h Ñ 0,
let pψhqh be a sequence of minimizers. Then∥∥∥θhrψhs

∥∥∥
H1pω;R3ˆ2q

`
∥∥∥ψh

∥∥∥
H1pω;R3q

ď C

and there exists a subsequence which converges strongly in H1pω;R3q to some
ψ˚ P H2pω;R3q XA. Furthermore, ψ˚ is a minimizer of the energy Er¨s defined in (10) onA.

Finally, let us remark that in the flat case gA “ I2 with ψB P H2pω;R3q and gB “ I2 the mapping ψB
can be approximated in the strong H2-topology by smooth isometries as shown by Hornung in [13]. We also
refer to the monograph by Bartels [2] for further properties of isometries in the flat case. In the curved case,
to the best of our knowledge, such a density result is unclear, since the proof in the flat case is based on the
developability by Hartman and Nirenberg in [12].

Proof. The general procedure of this proof follows the basic procedure of the convergence proof given in
[1] for the case of plates and in [4] for the case of bilayer plates and in [6] for prestrained plates and uses Γ-
convergence arguments. With a slight misuse of notation we do not perform a reindexing when subsequences
are selected. Let Ihr¨s be the nodal interpolation operator mapping into the space of piece-wise affine,
globally continuous functions in Th.

At first, using similar arguments as in the proof of Theorem 2.3 we can bound the discrete energy Ehrψhs

for ψh P W3
h from below

Ehrψhs ě c
∥∥∥∇θhrψhs

∥∥∥2
L2pωq

´ C
´∥∥∥∇θhrψhs

∥∥∥
L2pωq

∥∥∥nrψhs
∥∥∥

L2pωq
`
∥∥∥ f
∥∥∥

L2pωq

∥∥∥ψh

∥∥∥
L2pωq

¯

,(17)

where
∥∥∥nrψhs

∥∥∥2
L2pωq

equals the area of ω. Based on the nodal metric constraint, which implies |∇ψhpzq|2 “

|∇ψApzq|2 for all z P Nh, and applying an inverse inequality, see [8], we obtain for all T P Th:∥∥∥|∇ψh|
2 ´ Ihr|∇ψA|

2s
∥∥∥

L1pTq ď Ch2
T

∥∥∥D2p|∇ψh|
2q
∥∥∥

L1pTq(18)

ď Ch2
T

´∥∥∥D3ψh

∥∥∥
L2pTq

∥∥∥∇ψh

∥∥∥
L2pTq `

∥∥∥D2ψh

∥∥∥2
L2pTq

¯

ď ChT
∥∥∥D2ψh

∥∥∥
L2pTq

∥∥∥∇ψh

∥∥∥
L2pTq .

Now, using the triangle inequality, Young’s inequality, the nodal metric constraint, and the norm equivalence
estimates (12) we obtain∥∥∥∇ψh

∥∥∥2
L2pTq ď ChT

´∥∥∥∇θhrψhs
∥∥∥2

L2pTq `
∥∥∥θhrψhs

∥∥∥2
L2pTq

¯

`
∥∥∥Ihr|∇ψA|

2s
∥∥∥

L1pTq ,

and with summation over all T P Th we get∥∥∥∇ψh

∥∥∥2
L2pωq

ď Ch
´∥∥∥∇θhrψhs

∥∥∥2
L2pωq

`
∥∥∥θhrψhs

∥∥∥2
L2pωq

¯

`
∥∥∥Ihr|∇ψA|

2s
∥∥∥

L1pωq
.
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Taking into account the clamped boundary conditions and applying Poincaré’s inequality for θhrψhs we

achieve
∥∥∥∇ψh

∥∥∥2
L2pωq

ď Ch
∥∥∥∇θhrψhs

∥∥∥2
L2pωq

` C . Now, applying Poincaré’s inequality for ψh and Young’s

inequality, we obtain
∥∥∥ψh

∥∥∥
L2pωq

ď Cp1`h
∥∥∥∇θhrψhs

∥∥∥
L2pωq

q. Thus, using that
∥∥∥ fh
∥∥∥

L2pωq
is uniformly bounded,

and using again Young’s inequality for the term C
∥∥∥∇θhrψhs

∥∥∥
L2pωq

∥∥∥nrψhs
∥∥∥

L2pωq
we obtain

(19) Ehrψhs ě c
∥∥∥∇θhrψhs

∥∥∥2
L2pωq

´ C

for h small enough. From this, the continuity of Ehr¨s on W3
h, and the norm property ofψh ÞÑ

∥∥∥∇θhrψhs
∥∥∥

L2pωq

the existence of a minimizer ψh of Ehr¨s follows for h sufficiently small and
∥∥∥∇θhrψhs

∥∥∥
L2pωq

ď C. Then,

Poincaré’s inequality yields
∥∥∥θhrψhs

∥∥∥
L2pωq

ď C. Applying once more the norm equivalence estimates (12)

we obtain
∥∥∥∇ψh

∥∥∥
L2pωq

ď C .

Now, we consider the lim inf inequality. By reflexivity of H1, there exist functions ψ˚ P H1pω;R3q and
θ˚ P H1pω;R3ˆ2q, such that (up to subsequences) ψh converges weakly to ψ˚ in H1pω;R3q and θhrψhs

converges weakly to θ˚ in H1pω;R3ˆ2q . Furthermore, one observes by (13)∥∥∥∇ψh ´ θhrψhs
∥∥∥

L2pωq
ď ch

∥∥∥∇θhrψhs
∥∥∥

L2pωq
ď Ch .

By the Rellich–Kondrachov theorem, θhrψhs converges strongly to θ˚ in L2pω;R3q for another subsequence.
Thus, the strong convergence ∇ψh to θ˚ and the weak convergence of ∇ψh to ∇ψ˚ yields ∇ψ˚ “ θ˚

and in particular ψ˚ P H2pω;R3q. The continuity of the trace operator H2pω;R3q Ñ H1pΓD;R3q and
interpolations estimates imply that ψ˚ fulfills the clamped boundary conditions. To verify that ψ˚ fulfills the
metric constraint we estimate∥∥∥p∇ψhq

J
∇ψh ´ p∇ψAq

J
∇ψA
∥∥∥

L1pTq

ď
∥∥∥p∇ψhq

J
∇ψh ´ Ihrp∇ψAq

J
∇ψAs

∥∥∥
L1pTq`

∥∥∥Ihrp∇ψAq
J
∇ψAs ´ p∇ψAq

J
∇ψA
∥∥∥

L1pTq

ď ChT
∥∥∥D2ψh

∥∥∥
L2pTq

∥∥∥∇ψh

∥∥∥
L2pTq ` Ch2

T

´∥∥∥D3ψA
∥∥∥

L2pTq

∥∥∥∇ψA
∥∥∥

L2pTq `
∥∥∥D2ψA

∥∥∥2
L2pTq

¯

.

Here, we applied similar interpolation error estimates as in (18). Summation over T P Th and the fact that
∇ψh Ñ ∇ψ

˚ strongly in L2 finally imply that p∇ψ˚qJ∇ψ˚ “ p∇ψAq
J
∇ψA a.e. in ω . Since pnrψhsqh is a

bounded sequence in L2pω,R3q and ∇ψh converges point-wise to ∇ψ˚ a.e. nrψhs Ñ nrψ˚s in L8pω,R3q.

Furthermore, due to interpolation estimates, g´
1
2

h , g´1
h and IIh converge strongly to g´

1
2

A , g´1
A and IIA, re-

spectively. Altogether, recalling the definitions (7) and (15), we finally achieve the lim inf-inequality

Erψ˚s ď lim inf
hÑ0

Ehrψhs.

With respect to the definition of a recovery sequence, we consider a function ψ P H3pω;R3qXA. For h ą 0,
let ψh “ I

DKTψ P W3
h be the interpolation of ψ defined on every triangle T P Th by ψhpzq “ ψpzq and

∇ψhpzq “ ∇ψpzq for all vertices z P Nh X T. Taking into account (11), (12), and (14) we have for every
T P Th ∥∥∥θhrψhs ´ ∇ψ

∥∥∥
L2pTq ` hT

∥∥∥∇θhrψhs ´D2ψ
∥∥∥

L2pTq

ď
∥∥∥θhrψh ´ ψs

∥∥∥
L2pTq `

∥∥∥θhrψs ´ ∇ψ
∥∥∥

L2pTq

` hT

´∥∥∥∇θhrψh ´ ψs
∥∥∥

L2pTq `
∥∥∥∇θhrψs ´D2ψ

∥∥∥
L2pTq

¯

ď c3h2
T

∥∥∥ψ∥∥∥H3pTq .(20)
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Using the estimate
ˇ

ˇ

ˇ

ˇ

a
|a|
´

b
|b|

ˇ

ˇ

ˇ

ˇ

2

“ 2
ˆ

1´
|b|
|a|
`
pb´ aq ¨ b
|a| |b|

˙

ď 2
ˆ

|a| ´ |b|
|a|

`
|b´ a|
|a|

˙

ď 4
|b´ a|
|a|

for a “ B1ψˆB2ψ, b “ B1ψhˆB2ψh, and the identity |B1ψˆB2ψ| “
b

detpp∇ψqJ∇ψq “
a

det gA which
follows from the metric constraint, we get

ż

ω

b

det gA |nrψs ´ nrψhs|
2 dx ď 4

ż

ω
|pB1ψh ˆ B2ψhq ´ pB1ψˆ B2ψq|dx.

Furthermore, by the interpolation estimate (11) we obtain∥∥∥B1ψmB2ψl ´ B1ψh,mB2ψh,l

∥∥∥
L1pωq

ď
∥∥∥B1ψm ´ B1ψh,m

∥∥∥
L2pωq

∥∥∥B2ψl

∥∥∥
L2pωq

`
∥∥∥B1ψh,m

∥∥∥
L2pωq

∥∥∥B2ψl ´ B2ψh,l

∥∥∥
L2pωq

ď Ch2
∥∥∥ψ∥∥∥2H3pωq

and hence
ˆ
ż

ω

b

det gA
ˇ

ˇnrψs ´ nrψhs
ˇ

ˇ

2 dx
˙

1
2

ď Ch
∥∥∥ψ∥∥∥H3pωq

.

Now, let ψB P A be a minimizing isometry for Er¨s. In Theorem 2.3, it is shown that such a minimizer
exists. By our assumption, we have

@ε ą 0 Dψε P H3pω;R3q XA :
∥∥∥ψB ´ ψε

∥∥∥
H2pω;R3q

ă ε .

Applying the above estimates to ψε and its interpolation ψε,h “ IDKTψε in W3
h and using the estimates (11),

(14) and (20) we achieve
ż

ω

b

det gh Bh
“

ψε,h
‰

dx ď
ż

ω

b

det gA B rψεsdx` Ch
∥∥∥ψε∥∥∥H3(21)

ď

ż

ω

b

det gA B rψBsdx` C
´

ε` h
∥∥∥ψε∥∥∥H3

¯

Now, we choose h “ hpεq small enough such that

hpεq
∥∥∥ψε∥∥∥H3pωq

ă ε .(22)

and use for the estimation of the potential energy that ψε,hpεq converges strongly to ψB in L2 to obtain

lim sup
εÑ0

Ehpεqrψε,hpεqs ď ErψBs.

Finally, we get

Erψ˚s ď lim inf
εÑ0

Ehpεqrψhpεqs ď lim sup
εÑ0

Ehpεqrψε,hpεqs ď ErψBs “ min
ψ̃PA

Erψ̃s ď Erψ˚s.

Hence, ψ˚ is a minimizer of Er¨s. �

In fact, the coupling of h and the H3-norm of the approximations determines the rate of convergence. This
rate cannot be predicted under the assumption of this theorem.
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4. IMPLEMENTATION VIA NEWTON’S METHOD

Now, we will describe the numerical implementation to minimize the discrete total energy Eh as de-
fined in (16) over all discrete isometries φh P Ah. First, we observe that a function ψh P Ah “ tφh P

W3
h | φhpzq “ ψApzq,∇φhpzq “ ∇ψApzq on ΓDu is determined by its values at the nodes and the values

of the gradient at the nodes. So, for the discrete constraint minimization problem, there are 9 ˆ |NhzΓD|

degrees of freedom. To implement the nodal-wise metric constraint, we define the Lagrangian

Lhrψh, phs B Ehrψhs ´ Ghrψhspphq .

Here, Ehrψhs is the discrete total free energy and

Ghrψhspphq B

ż

ω
Ih

´”

p∇ψhpzqq
J
∇ψhpzq ´ p∇ψApzqq

J
∇ψApzq

ı

: ph

¯

dx

with Lagrange multiplier ph P S2,2
h , where S2,2

h denotes the space of continuous piece-wise affine, symmetric
matrices inR2,2. In particular, Ghrψhspphq “ 0 for all ph P S2,2

h is equivalent to an enforcement of the metric
constraint on all nodes of the triangulation. The saddle point conditions are

BψhLhrψh, phspvhq “ 0 , BphLhrψh, phspqhq “ 0

for all vh P tφh P W3
h | φhpzq “ 0,∇φhpzq “ 0 on ΓDu and for all qh P S2,2

h . To compute a saddle point,
we use the IPOPT software library presented in [17]. More precisely, we apply a Newton scheme for the
Lagrangian which requires the computation of the first and second variations of the discrete energy Ehr¨s and
of Ghr¨sp¨q, respectively. In IPOPT this corresponds to setting “hessian approximation” to “exact”. Here, we
take into account the default backtracking strategy by setting “line search method” to “filter”. As stopping
criterion we set “tol” to 10´12. For the required integral evaluations, we implemented a Gauss quadrature of
degree 6 with 12 quadrature points. For the ease of presentation, we consider the continuous Lagrangian

Lrψ, ps “ Erψs ´ Grψsppq

with Grψsppq “
ş

ω

`

p∇ψqJ∇ψ´ p∇ψAq
J
∇ψA

˘

: p dx and provide first and second variations of Er¨s and
of Gr¨sp¨q, respectively. Here, X : Y denotes the canonical scalar product for tensors X and Y. The transfer
to the discrete counterparts is straightforward. The energy is given by Erψs “ α

2

ş

ω

a

det gAB rψsdx ´
ş

ω

a

det gA f ¨ ψdx, where we can write B rψs “
ř3

m“1

´

g´1
A D2ψmg´1

A

¯

: D2ψm ´ 2
`

D2ψ ¨ nrψs
˘

:
´

g´1
A IIAg´1

A

¯

. For the first and second variation we obtain

BψErψspvq “
α
2

ż

ω

b

det gABψB rψs pvqdx´
ż

ω

b

det gA f ¨ v dx ,

B2
ψErψspv,wq “

α
2

ż

ω

b

det gAB
2
ψB rψs pv,wqdx
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where

BψB rψs pvq “2
3
ÿ

m“1

´

g´1
A D2ψmg´1

A

¯

: D2vm

´ 2
`

D2v ¨ nrψs `D2ψ ¨ Bψnrψspvq
˘

:
´

g´1
A IIAg´1

A

¯

,

B2
ψB rψs pv,wq “2

3
ÿ

m“1

´

g´1
A D2wmg´1

A

¯

: D2vm

´ 2
`

D2v ¨ Bψnrψspwq `D2w ¨ Bψnrψspvq
˘

:
´

g´1
A IIAg´1

A

¯

´ 2
´

D2ψ ¨ B2
ψnrψspv,wq

¯

:
´

g´1
A IIAg´1

A

¯

.

To compute the first and second variation of the normal field nrψs, we recall the definition of the metric
grψs “ p∇ψqJ∇ψ in the deformed configuration and observe that |nrψs|2 “ 1 implies 0 “ Bψp|nrψs|2qpvq “
2nrψs ¨ Bψnrψspvq. Hence, there exist α1, α2 P R s.t. Bψnrψspvq “ α1B1ψ ` α2B2ψ and therefore
Bψnrψspvq¨Bkψ “ α1grψsk1`α2grψsk2. Furthermore, 0 “ Bψpnrψs¨Bkψqpvq “ Bψnrψspvq¨Bkψ`nrψs¨Bkv
implies grψspα1, α2q

J “ ∇ψJBψnrψspvq “ ´∇vJnrψs and thus pα1, α2q
J “ ´grψs´1

∇vJnrψs . Finally,
for the first variation of nrφs, we obtain

Bψnrψspvq “ ´∇ψgrψs´1
∇vJnrψs.

For the second variation we obtain

B2
ψnrψspv,wq “ ´ ∇wgrψs´1

∇vJnrψs ´ ∇ψBψ
`

grψs´1˘ pwq∇vJnrψs

´ ∇ψgrψs´1
∇vJBψnrψspwq.

where Bψ
`

grψs´1
˘

pwq can be evaluated taking into account

0 “ Bψ
`

grψs´1grψs
˘

pwq “ Bψ
`

grψs´1˘ pwqgrψs ` grψs´1Bψ pgrψsq pwq

and Bψ pgrψsq pwq “ p∇wqJ∇ψ` p∇ψqJ∇w, which implies

Bψ
`

grψs´1˘ pwq “ ´ grψs´1Bψ pgrψsq pwqgrψs´1

“´ grψs´1 `
∇wJ∇ψ` ∇ψJ∇w

˘

grψs´1 .

Based on this, we straightforwardly obtain

BψGrψsppqpvq “
ż

ω

`

p∇vqJ∇ψ` p∇ψqJ∇v
˘

: p dx ,

B2
ψGrψsppqpv,wq “

ż

ω

`

p∇vqJ∇w` p∇wqJ∇v
˘

: p dx .

We remark that a proof of convergence of the second order method would require invertibility of the
Hessian D2L, which we have always obtained in our numerical computations. However, note that the Hessian
D2E is in general not invertible.

Finally, note that an algorithmic generalization on multiple charts would be straightforward. E.g. for two
DKT charts ψ1

B, ψ
2
B of the deformed configuration corresponding to given DKT charts φ1

A, φ
1
A, which share

degrees of freedom on the common boundaryS “ BM1
AXBM

2
A, we require consistency of the DKT degrees

of freedom, i.e. ψ1
Bpzq “ ψ

2
Bpzq and ∇ψ1

Bpzq “ ∇ψ
2
Bpzq for all z P Sh.
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5. NUMERICAL RESULTS

In this section, the presented method is applied for specific choices of ψA, f and ω and for α “ 1
12 . In all

our examples, we consider a sequence of triangulations on ω, generated by uniform, regular (so called red)
refinement starting from a coarse rectangular mesh with each rectangular cell subdivided into two triangles.
We use ψA as initialization for ψB on the coarsest mesh. On a refined mesh, we use a prolongation of
the result on the previous coarser mesh as an initialization. In the first three examples, the surfaces are
parametrized over the unit square ω “ p0, 1q ˆ p0, 1q and the part of the boundary for the clamped boundary
condition is set to ΓD “ t0u ˆ r0, 1s. Furthermore, we will also consider an L-shaped parameter domain.
Finally, an example with modified boundary conditions is shown.

(1) Square-shaped plate. In the first experiment, the undeformed surface is a flat unit square in R3 with
ψApx1, x2q “ px1, x2, 0qJ and f px1, x2q “ p0, 0,´0.1qJ. Thus, akj

i “ 0 for all i P t0, 1, 2u and k, j P t1, 2u.
Note that this flat case is already covered by Bartels [1]. However, as mentioned above, our numerical
method differs by the enforcing of a nodal-wise metric constraint as in [14] instead of the linearization
of the contraint in a gradient descent. In 1, for decreasing grid size h, the minimal discrete energy, the
isometry error in L1, the L1-norm of the discrete Gauss-curvature Khrψhs “ detpgrψhs

´1
∇θhrψhs ¨ nrψhsq

with ∇θhrψhs ¨ nrψhs “

´

ř3
l“1 nlrψhsBkθ

j
hrψ

l
hs

¯

k, j“1,2
and the L2 approximate error in the Hessian of the

energy are shown. Since we do not know the minimizer of this problem explicitly, we compare the discrete
Hessian of the discrete minimizer for grid size h to the discrete Hessian of the finest solution with grid size
h˚ “ 0.0014. For a numerical quadrature, we prolongate functions on to the finest mesh. We obtain an
approximate linear convergence rate for ∇θrψhs. This rate coincides with the rate for the DKT interpolation
on H3pω,R3q as stated in Section 3. Note that this is the same convergence rates as obtained for the linearized
gradient flow scheme in [1]. Furthermore, the convergence of the isometry error is of second order, whereas
theoretically we can only guarantee a linear convergence rate. Compare here the results in Table 4. By Gauss’
theorema egregium, a smooth surface isometric to the plate has a vanishing Gaussian curvature. Here, we
observe that Kh indeed approaches zero, with approximately linear order of convergence.

h Ehrψhs
∥∥∥grψhs ´ gA

∥∥∥
L1

∥∥∥Khrψhs
∥∥∥

L1

∥∥∥∇θhrψhs ´ ∇θh˚rψh˚s
∥∥∥

L2

0.0442 0.00595312 5.332e-05 0.0009403 0.00899
0.0221 0.00595271 1.329e-05 0.0002892 0.003455
0.0111 0.00595210 3.324e-06 0.000140 0.001711
0.0055 0.00595195 8.310e-07 6.928e-05 0.000847
0.0028 0.00595191 2.078e-07 3.438e-05 0.0004139
0.0014 0.00595190 5.194e-08 1.712e-05 -

TABLE 1. Experimental convergence evaluation for example (1): grid size, discrete energy,
isometry error in L1, L1 norm of the discrete Gaussian curvature, and approximate L2 error
for the hessian.

(2) Half Cylinder. In the second experiment we consider

ψA : r0, 1s2 Ñ R3; ψApx1, x2q “
`

π´1 sinpπx1q, x2, π
´1 cospπx1q

˘J
,

which isometrically parametrizes a half-cylinder as the undeformed configuration and apply the loads

f1px1, x2q “ p0, 1, 0qJ , f2px1, x2q “

#

p´8, 1, 0qJ if px1, x2q
J P r0, 1

2 s ˆ r
1
2 , 1s ,

p0, 1, 0qJ else .
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In 2, we list the same quantities as for example (1), now for both loads f1 and f2. Since the half cylinder is
isometric to the plate, an isometric deformation of it should also have vanishing Gaussian curvature. Here,
we observe a less than linear experimental rate of convergence of the discrete Gaussian curvature, whereas
the convergence of the discrete Hessian again appears to be linear. In Figure 2, the undeformed cylinder
parametrized by ψA, and the different discrete deformations of the half cylinder due to the two different
loads are displayed from different perspectives for the numerical results on the finest grid size. Here, the
elongated box attached to the surfaces illustrates the clamped boundary condition.

1.1e´ 06

2.0e´ 08

6.7e´ 10

9.1e´ 06

1.0e´ 07

2.8e´ 09

FIGURE 2. Left: Undeformed configuration for example (2). Middle: Deformed con-
figuration for load f1 and color-coded corresponding to an element-wise evaluation of∥∥∥∇θhrψhs ´ ∇θh˚rψh˚s

∥∥∥
L2pTq for h “ 0.0028, h˚ “ 0.0014 with associated deformation

ψh˚ using logarithmic scaling. Right: the same for load f2.

h Ehrψhs
∥∥∥Khrψhs

∥∥∥
L1

∥∥∥∇θhrψhs ´ ∇θh˚rψh˚s
∥∥∥

L2

f1 f2 f1 f2 f1 f2
0.0442 0.0416 1.0628 0.1164 0.4478 0.2927 0.7181
0.0221 0.0386 1.0427 0.0703 0.2545 0.1497 0.3590
0.0111 0.0377 1.0367 0.0413 0.1537 0.0854 0.2064
0.0055 0.0376 1.0346 0.0249 0.0906 0.0489 0.1205
0.0028 0.0373 1.0338 0.0150 0.0523 0.0255 0.0625
0.0014 0.0372 1.0335 0.0093 0.0309 - -

TABLE 2. Experimental convergence evaluation for example (2): grid size, discrete energy,
L1 norm of the discrete Gaussian curvature and approximate L2 error in the hessian for loads
f1 and f2.

(3) Saddle-shaped surface. We consider a saddle-shaped surface as reference configuration parametrized
via

ψApx1, x2q “
`

x1, x2, 1
2

`

px1 ´
1
2q

2 ´ px2 ´
1
2q

2˘˘J .(23)

over the unit square. Obviously, ψA is no isometric deformation of ω. Figure Figure 3 shows the unde-
formed saddle and two different deformed configurations for f1px1, x2q “ p0, 0,´1qJ and f2px1, x2q “

p0, 0,´2.5qJ, respectively. In 3, the discrete energies, and the experimental convergence of the discrete
Gaussian curvature and the discrete Hessian for decreasing grid size h are shown for both forces. As approx-
imate ground truth, we consider again the evaluation on the finest grid. Different to the first two examples,
where the reference configurations are isometric to a planar domain (the plate and the half cylinder), we
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observe a less than linear experimental order of convergence, both for the Gaussian curvature, and for the
discrete Hessian. Here, let us recall that 3.1 only applies for functions which can be approximated by smooth
isometries. In fact, we can only guarantee H2 regularity for a minimizer ψB due to the lower bound for the
continuous energy. However, for the estimate (21), we require an approximation of ψB in H3 which is iso-
metric to ψA. This approximation result was proven by Hornung [13] in the flat case, where he essentially
made use of the property that smooth isometries are developable. On this background a generalization of
Hornung’s result remains unclear in the general case of curved surfaces. Here, we actually need the smooth
approximation property as an additional assumption. Furthermore, the dependence of h on ε and the H3

norm of the approximation in (22) impacts the resulting convergence rate.

4.1e´ 04

5.0e´ 06

3.0e´ 08

2.4e´ 04

8.0e´ 07

2.2e´ 09

FIGURE 3. Left: Undeformed configuration for example (3). Middle: Deformed con-
figuration for load f1 and colorcoded corresponding to an element-wise evaluation of∥∥∥∇θhrψhs ´ ∇θh˚rψh˚s

∥∥∥
L2pTq for h “ 0.0028, h˚ “ 0.0014 using logarithmic scaling.

Right: the same for load f2.

h Ehrψhs
∥∥∥Khrψhs ´ Kh˚rψh˚s

∥∥∥
L1pωq

∥∥∥∇θhrψhs ´ ∇θh˚rψh˚s
∥∥∥

L2pωq

f1 f2 f1 f2 f1 f2
0.0442 0.3236 1.2792 0.4212 0.9486 1.5903 3.5378
0.0221 0.2442 1.1052 0.2666 0.9135 1.0699 2.5771
0.0111 0.2136 1.0062 0.1989 0.7499 0.8182 2.3427
0.0055 0.1975 0.9190 0.1212 0.5657 0.6336 2.0894
0.0028 0.1843 0.8203 0.0520 0.3510 0.4046 1.5613
0.0014 0.1745 0.7077 - - - -

TABLE 3. Experimental convergence evaluation for example (3): grid size, discrete energy,
isometry error in L1, approximate L1 error of the discrete Gaussian curvature and approxi-
mate L2 error in the hessian for loads f1 and f2.

(4) L-shaped saddle-shaped surface. In this example, the parameter domain is given by an L-shape ω “
p0, 1

2qˆ p0,
1
2qY p0, 1qˆ p

1
2 , 1q. We consider the initial configuration parametrized by ψA as defined in (23).

The clamped boundary conditions are enforced on ΓD “ t1u ˆ r 1
2 , 1s and two different loads

f1px1, x2q “ p0, 0,´1qJ , f2px1, x2q “

#

p´5, 0,´2qJ if px1, x2q P r0, 1
2 s ˆ r0,

1
2 s ,

p0, 0,´2qJ else .

are applied. In Figure 4, the undeformed and the deformed configurations are shown.
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4.9e´ 04

3.0e´ 07

1.1e´ 10

2.6e´ 03

1.0e´ 05

2.0e´ 08

FIGURE 4. Left: Undeformed configuration for example (4). Middle: Deformed con-
figuration for load f1 and color-coded corresponding to an element-wise evaluation of∥∥∥∇θhrψhs ´ ∇θh˚rψh˚s

∥∥∥
L2pTq for h “ 0.0028, h˚ “ 0.0014 using logarithmic scaling.

Right: the same for load f2.

(5) Saddle-shaped surface with different boundary conditions. In this last example, we consider as in (23)
an initial configuration parametrized by ψA over the unit square ω “ p0, 1q2. Instead of applying a force,
we now enforce a deformation by imposing a modified clamped boundary conditions, namely ψBpxq “
ψApxq ` 3

16 for x P t0u ˆ r0, 1s, ψBpxq “ ψApxq ´ 3
16 for x P t1u ˆ r0, 1s and ∇ψBpxq “ ∇ψApxq

on t0u ˆ r0, 1s Y t1u ˆ r0, 1s. In Figure 5, the undeformed and the resulting deformed configuration is
shown. In 4, for decreasing grid size h, we depict the isometry error in L1, the L1-norm of the discrete
Gauss-curvature and the L2 approximate error in the Hessian of the energy. As proven in Theorem 3.1, we
obtain linear convergence rate of the isometry error in L1. Note that in this case an approximation result
of the admissible deformations by H3 functions is unknown. In accordance, we only obtain a sublinear
convergence rate for the approximative second derivative.

1.3e´ 03

1.0e´ 05

1.7e´ 07

FIGURE 5. Left: undeformed configuration for example (5). Right: different views of
the deformed configuration with prescribed boundary conditions, one image color-coded
corresponding to an element-wise evaluation of

∥∥∥∇θhrψhs ´ ∇θh˚rψh˚s
∥∥∥

L2pTq for h “

0.0028, h˚ “ 0.0014 using logarithmic scaling.
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