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INVERSE SOURCE PROBLEMS FOR THE STOCHASTIC WAVE EQUATIONS:

FAR-FIELD PATTERNS

JIANLIANG LI, PEIJUN LI, AND XU WANG

Abstract. This paper addresses the direct and inverse source problems for the stochastic acoustic,
biharmonic, electromagnetic, and elastic wave equations in a unified framework. The driven source is
assumed to be a centered generalized microlocally isotropic Gaussian random field, whose covariance
and relation operators are classical pseudo-differential operators. Given the random source, the direct
problems are shown to be well-posed in the sense of distributions and the regularity of the solutions
are given. For the inverse problems, we demonstrate by ergodicity that the principal symbols of the
covariance and relation operators can be uniquely determined by a single realization of the far-field
pattern averaged over the frequency band with probability one.

1. Introduction

Inverse scattering problems are to determine the nature of scatterers from a knowledge of the wave
field. They have played an essential role in many scientific areas such as radar and sonar, geophysical
exploration, medical imaging, and nondestructive testing. These problems are challenging due to
the ill-posedness and nonlinearity [8]. In many situations, it is desirable to describe the scatterer
as a random field in order to handle uncertainties of the surrounding environment. Compared
with deterministic counterparts, stochastic scattering problems have substantially more difficulties
because of two additional obstacles: the scatterer is sometimes too rough to exist point-wisely and
should be understood in the sense of distributions instead; the randomness makes it meaningless
and impossible to characterize the scatterer by a particular realization. As a result, the statistics,
such as mean and variance, of the random scatterer are used to quantify the uncertainties of the
scatterer and are of more interest in stochastic inverse scattering problems. Recently, stochastic
inverse scattering problems have attracted great attention, and many new results are available for
various problems, such as random medium problems [22], random potential problems [6, 13,17–19],
random impedance problems [11], and random surface problems [4, 9, 12].

As an important research subject in inverse scattering theory, the inverse random source problem
has been extensively studied. When the source is modeled by an additive white noise, the mean
and standard deviation of the source can be reconstructed from the statistics of the wave field
[1, 2, 5, 10, 16]. In these approaches, the near-field scattering data needs to be measured for a fairly
large number of realizations of the random source. Motivated by [13], a new model is developed for
the random source, which is assumed to be a real-valued generalized microlocally isotropic Gaussian
(GMIG) random field with its covariance operator being a classical pseudo-differential operator. It
is shown that the principal symbol of the covariance operator can be uniquely determined by the
amplitude of the near-field scattering data averaged over the frequency band, generated by a single
realization of the random source, see [14, 20] for acoustic waves, [14, 15] for elastic waves, and [23]
for biharmonic waves. The inverse random source problem for electromagnetic waves is considered
in [21], where the source is modeled by a complex-valued centered GMIG random field whose real and
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imaginary parts are assumed to be independent and identically distributed, leading to the relation
operator being zero. The uniqueness result states that the high frequency limit of the variation of
the electric field can uniquely determine the principal symbol matrix of the covariance operator for
the random source. Moreover, by means of ergodicity in the frequency domain, the amplitude of the
electric field averaged over the frequency band, obtained from a single path of the random source,
can uniquely determine the diagonal entries of the principal symbol matrix.

In this work, we intend to examine the direct and inverse source problems for the stochastic
acoustic, biharmonic, electromagnetic, and elastic wave equations in a unified framework by using
the far-field patterns. There are two main contributions:

(1) the well-posedness of the direct problems are established for more general random sources;
(2) the uniqueness of the inverse problems are obtained for both the covariance and relation

operators.

Specifically, we consider the four commonly encountered wave equations, i.e., the Helmholtz equa-
tion, the biharmonic wave equation, Maxwell’s equations, and the Navier equation. The driven source
is assumed to be a complex-valued centered GMIG random field whose covariance operator and re-
lation operator are classical pseudo-differential operators, which removes the limitation that the real
and imaginary parts are independent and identically distributed. As is shown in the context, this
type of sources is too rough to exist pointwisely and should be understood as distributions. Given
such rough sources, the direct problems are shown to be well-posed and regularity of the solutions
is also obtained. For the inverse problems, we demonstrate that the principal symbol matrices of
the covariance and relation operators can be uniquely determined by the high frequency limit of the
correlation of the far-field pattern. Moreover, with the aid of ergodicity of the far-field pattern in the
frequency domain, the uniqueness is established for the principal symbol matrices of the covariance
and relation operators with respect to the far-field pattern obtained from a single realization of the
random source almost surely.

The paper is organized as follows. In Section 2, some preliminaries are given for the high di-
mensional complex-valued GMIG random fields and the fundamental solutions to the Helmholtz
equation, the biharmonic wave equation, and the Navier equation. Sections 3–6 are devoted to the
direct and inverse random source problems for acoustic waves, biharmonic waves, electromagnetic
waves, and elastic waves, respectively. The direct problems are examined and the uniqueness of the
inverse problems is addressed. The paper concludes with some general remarks and discussions on
the future work in Section 7.

2. Preliminaries

In this section, we introduce the C
n-valued (n ∈ N) GMIG random fields and the fundamental

solutions to the Helmholtz, biharmonic wave, and Navier equations.

2.1. C
n-valued GMIG random fields. Let O ⊂ R

d be an open domain. Denote by C∞
0 (O;F)

the set of F-valued smooth functions with compact supports contained in O, where F stands for the
real-valued space R, the complex-valued space C, or the n-dimensional complex-valued space C

n.
Define the space of test functions by D(O;F), which is C∞

0 (O;F) equipped with a locally convex
topology. The dual space D′(O;F) of D(O;F) is the space of distributions on O with a weak-star
topology.

Denote by W γ,q(O;F) the F-valued classical Sobolev spaces with γ ∈ R and q ∈ (1,∞), and by
W γ,q

0 (O;F) the closure of C∞
0 (O;F) in W γ,q(O;F) with γ > 0. For simplicity, the domain F will

be omitted if F = C or C
n, i.e., W γ,q(O) = W γ,q(O;C) if F = C and W γ,q(O) = W γ,q(O;Cn) if

F = C
n.

Let (Ω,F ,P) be a complete probability space, where Ω is a sample space, F is a σ-algebra on Ω,
and P is a probability measure on (Ω,F).
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First we consider scalar fields when n = 1. A scalar field f is said to be a C-valued generalized
Gaussian random field if f : Ω → D′(O) is a distribution satisfying that, for each ω ∈ Ω, the path
f [·](ω) is a linear functional on D(O) and for any test function ψ ∈ D(O), f [ψ] = 〈f, ψ〉 : Ω → C is
a C-valued Gaussian random variable.

Let O = R
d. The C-valued generalized Gaussian random field f defined on R

d is uniquely
determined by its expectation Ef ∈ D′(Rd), covariance operator Cf : D(Rd) → D′(Rd), and relation

(pseudo-covariance) operator Rf : D(Rd) → D′(Rd), which are defined by

〈Ef, ψ〉 : = E〈f, ψ〉,
〈Cfϕ,ψ〉 : = E

[
〈f − Ef, ϕ〉〈f − Ef, ψ〉

]
=

〈
E
[
(f − Ef)⊗ (f − Ef)

]
, ψ ⊗ ϕ

〉
,

〈Rfϕ,ψ〉 : = E [〈f − Ef, ϕ〉〈f − Ef, ψ〉] =
〈
E
[
(f − Ef)⊗ (f − Ef)

]
, ψ ⊗ ϕ

〉

for any ϕ,ψ ∈ D(Rd). It is easy to note that Cf = Rf if f is R-valued.

Introduce the space of symbols of order −m:

S−m(Rd × R
d) :=

{
σ ∈ C∞(Rd × R

d) : |∂γ1ξ ∂γ2x σ(x, ξ)| ≤ Cγ1,γ2(1 + |ξ|)−m−|γ1|
}
,

where Cγ1,γ2 is a positive constant depending on γ1 and γ2.

Definition 1. A C-valued generalized Gaussian random field f on R
d is said to be microlocally

isotropic of order −m in D if its covariance and relation operators Cf and Rf are classical pseudo-

differential operators of order −m, whose symbols σc, σr ∈ S−m(Rd ×R
d) satisfy

ση(x, ξ) = aη(x)|ξ|−m + bη(x, ξ),

where bη ∈ S−m−1(Rd × R
d) and aη, bη(·, ξ) ∈ C∞

0 (D) for η ∈ {c, r}.

Using the definition of pseudo-differential operators, we get

Cfϕ(x) =
1

(2π)d

∫

Rd

eix·ξσc(x, ξ)ϕ̂(ξ)dξ, (2.1)

Rfϕ(x) =
1

(2π)d

∫

Rd

eix·ξσr(x, ξ)ϕ̂(ξ)dξ, (2.2)

where

ϕ̂(ξ) = (Fϕ)(ξ) :=

∫

Rd

e−ix·ξϕ(x)dx

denotes the Fourier transform of ϕ. By the Schwartz kernel theorem, there exist unique kernels
Kc

f ,K
r
f ∈ D′(Rd × R

d) such that

〈Cfϕ,ψ〉 = 〈Kc
f , ψ ⊗ ϕ〉, 〈Rfϕ,ψ〉 = 〈Kr

f , ψ ⊗ ϕ〉,
which imply that

Kc
f (x, y) = E

[
(f(x)− Ef(x))(f(y)− Ef(y))

]
,

Kr
f (x, y) = E

[
(f(x)− Ef(x))(f(y)− Ef(y))

]

are distributions in D′(Rd × R
d). Using (2.1)–(2.2), we obtain the following bijection between the

kernel Kη
f with η ∈ {c, r} and the symbol ση :

Kη
f (x, y) =

1

(2π)d

∫

Rd

ei(x−y)·ξση(x, ξ)dξ = F
−1(ση(x, ·))(x − y). (2.3)

Taking the Fourier transform on the both sides of (2.3) with respect to x− y gives
∫

Rd

(∫

Rd

Kη
f (x, y)e

−i(x−y)·ξdy

)
ϕ(x)dx =

∫

Rd

ση(x, ξ)ϕ(x)dx
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=

∫

Rd

aη(x)|ξ|−mϕ(x)dx +

∫

Rd

bη(x, ξ)ϕ(x)dx. (2.4)

The regularity of random fields given in Definition 1 depends on the order −m. It has been studied
in [20] and is stated in the following lemma.

Lemma 2.1. Let f be a C-valued GMIG random field of order −m in D.

(i) If m ∈ (d, d+ 2), then f ∈ C0,α(D) almost surely for all α ∈
(
0, m−d

2

)
.

(ii) If m ≤ d, then f ∈W
m−d

2
−ǫ,p(D) almost surely for any ǫ > 0 and p ∈ (1,∞).

Now let us consider vector fields for n > 1. A vector field f = (f1, ..., fn)
⊤ is said to be a Cn-valued

GMIG random field of order −m in D if each component fj, j = 1, ..., n, is a C-valued GMIG random
field of the same order −m in D. Similarly, the C

n-valued generalized Gaussian random field f is
uniquely determined by its expectation Ef ∈ D

′(Rd), covariance operator Cf : D(Rd) 7→ D
′(Rd),

and relation operator Rf : D(Rd) 7→ D
′(Rd). The kernels Kc

f ,K
r
f ∈ D′(Rd × R

d;Cn×n) can be
formally expressed as the following distributions:

Kc
f (x, y) = E

[
(f(x)− Ef(x))(f(y)− Ef(y))⊤

]
,

Kr
f (x, y) = E

[
(f(x)− Ef(x))(f(y)− Ef(y))⊤

]
.

If f is microlocally isotropic of order −m, then there exist symbols Σr,Σc ∈ S−m(Rd×R
d;Cn×n)

of the form

Ση(x, ξ) = Aη(x)|ξ|−m +Bη(x, ξ)

with Bη ∈ S−m−1(Rd × R
d;Cn×n) and Aη, Bη(·, ξ) ∈ C∞

0 (D;Cn×n) such that

Cfϕ(x) =
1

(2π)d

∫

Rd

eix·ξΣc(x, ξ)ϕ̂(ξ)dξ, Rfϕ(x) =
1

(2π)d

∫

Rd

eix·ξΣr(x, ξ)ϕ̂(ξ)dξ

for any ϕ ∈ D(Rd), and

Kη
f (x, y) =

1

(2π)d

∫

Rd

ei(x−y)·ξΣη(x, ξ)dξ = F
−1(Ση(x, ·))(x − y),

where η ∈ {c, r}. It can also be verified that the kernel Kη
f satisfies

∫

Rd

(∫

Rd

Kη
f (x, y)e

−i(x−y)·ξdy

)
ϕ(x)dx =

∫

Rd

Ση(x, ξ)ϕ(x)dx

=

∫

Rd

Aη(x)|ξ|−mϕ(x)dx+

∫

Rd

Bη(x, ξ)ϕ(x)dx. (2.5)

2.2. The fundamental solutions. In this subsection, we introduce the fundamental solutions and
their asymptotic behaviors of large arguments for the wave equations considered in this work. They
play an important role in the analysis.

The fundamental solution of the Helmholtz equation in R
d is given by

Φd(x, y, κ) =





i

4
H

(1)
0 (κ|x− y|), d = 2,

eiκ|x−y|

4π|x− y| , d = 3,

where κ > 0 is the wave number and H
(1)
0 is the Hankel function of the first kind with order zero.

Let x̂ := x/|x| ∈ S
d−1. Noting (cf. [8, Theorem 2.6])

|x− y| =
√

|x|2 − 2|x|x̂ · y + |y|2 = |x| − x̂ · y +O
(
|x|−1

)
, |x| → ∞
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and (cf. [8, (3.105)])

H
(1)
0 (z) = e−iπ

4

√
2

πz
eiz

(
1 +O(|z|−1)

)
, |z| → ∞,

we have
eiκ|x−y|

|x− y| =
eiκ|x|

|x|
(
e−iκx̂·y +O

(
|x|−1

))
, |x| → ∞

and

H
(1)
0 (κ|x− y|) = (−i)ei

π
4

√
2

πκ|x|e
iκ|x|

(
e−iκx̂·y +O

(
|x|−1

))
, |x| → ∞,

which imply

Φd(x, y, κ) =
eiκ|x|

|x| d−1
2

(
Cdκ

d−3
2 e−iκx̂·y +O

(
|x|−1

))
, |x| → ∞, (2.6)

where

Cd =





ei
π
4√
8π
, d = 2,

1

4π
, d = 3.

(2.7)

The fundamental solution of the biharmonic wave equation is (cf. [23, 26,27])

Fd(x, y, κ) =
1

2κ2
[Φd(x, y, κ) − Φd(x, y, iκ)] .

It follows from (2.6) that we have

Fd(x, y, κ) =
eiκ|x|

|x| d−1
2

(
Cd

2
κ

d−7
2 e−iκx̂·y +O

(
|x|−1

))
, |x| → ∞. (2.8)

For the elastic wave equation, it is strongly elliptic if the Lamé parameters λ and µ satisfy µ > 0
and λ+ 2µ > 0 (cf. [24, Section 10.4]). Its Green tensor is given by

Gd(x, y, ω) =
1

µ
Φd(x, y, κs)I +

1

ω2
∇x∇⊤

x

[
Φd(x, y, κs)− Φd(x, y, κp)

]
,

where ω > 0 is the angular frequency, κp := cpω and κs := csω with cp = (λ+ 2µ)−
1
2 and cs = µ−

1
2

denote the compressional and shear wave numbers, respectively, and I is the d×d identity matrix. It
is shown in [25, (27)− (28)] for d = 2 and in [7, (2.2)] for d = 3 that Gd has the following asymptotic
behavior:

Gd(x, y, ω) =
eiκp|x|

|x| d−1
2

Cdc
d+1
2

p ω
d−3
2 x̂x̂⊤e−iκpx̂·y

+
eiκs|x|

|x| d−1
2

Cdc
d+1
2

s ω
d−3
2 (I − x̂x̂⊤)e−iκsx̂·y +O(|x|− d+1

2 ), |x| → ∞, (2.9)

where the constant Cd is given in (2.7).

3. Acoustic waves

In this section, we investigate the direct and inverse random source problems for the Helmholtz
equation.
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3.1. The direct problem. Consider the stochastic Helmholtz equation

∆u+ κ2u = f in R
d. (3.1)

The wave field u is required to satisfy the Sommerfeld radiation condition

lim
|x|→∞

|x| d−1
2

(
∂|x|u− iκu

)
= 0. (3.2)

The random source f satisfies the following assumption.

Assumption 1. The source f is assumed to be a C-valued centered GMIG random field of order
−m in a bounded domain D ⊂ R

d. The principal symbols of its covariance and relation operators
have the forms ac(x)|ξ|−m and ar(x)|ξ|−m, respectively, where ac, ar ∈ C∞

0 (D).

The problem (3.1)–(3.2) was studied in [14, 22], where f was assumed to be a R-valued centered
GMIG random field of order −m with m ∈ (d − 1, d]. When f is C-valued with its covariance
and relation operators being of the same order −m, its regularity is the same as the R-valued case.
The well-posedness of (3.1)–(3.2) may be obtained directly based on the results in [14, 22], but the
parameters are not optimal. The following result presents the well-posedness of (3.1)–(3.2), the
parameters are different from the existing results and allow more general and rougher sources.

Theorem 3.1. Let f satisfy Assumption 1 with m ∈ (d−4, d]. The problem (3.1)–(3.2) is well-posed
in the sense of distributions with a unique solution given by

u(x, κ) = −
∫

Rd

Φd(x, y, κ)f(y)dy, x ∈ R
d, (3.3)

where u ∈W γ,q
loc (R

d) almost surely for any q > 1 and

0 < γ < min

{
4− d+m

2
,
4− d+m

2
+

(
1

q
− 1

2

)
d

}
.

Proof. By Assumption 1, we have f ∈ W
m−d

2
−ǫ,p(D) for any ǫ > 0 and p > 1 according to Lemma

2.1. It follows from the Kondrachov embedding theorem that

W
m−d

2
−ǫ,p(D) →֒ H−s1(D)

is continuous for any p ≥ 2 and s1 ∈ (d−m
2 , 2).

Let G ⊂ R
d be a bounded domain with a locally Lipschitz boundary. Define the volume potential

operator Hκ by

(Hκf)(x) := −
∫

Rd

Φd(x, y, κ)f(y)dy.

Following the same procedure used in [22, Lemma 3.1] yields that Hκ : H−s1(D) → Hs2(G) is
bounded for any s1, s2 > 0 satisfying s := s1 + s2 ∈ (0, 2]. More precisely, we consider spaces
C0,α(D) and C2,α(G) with α ∈ (0, 1) equipped with scalar products

(f1, f2)C0,α(D) := (f̃1, f̃2)Hs2−2(Rd) ∀ f1, f2 ∈ C0,α(D)

and

(g1, g2)C2,α(G) := (g̃1, g̃2)Hs2 (Rd) ∀ g1, g2 ∈ C2,α(G),

respectively. Here, f̃i and g̃i, i = 1, 2, denote the zero extensions of fi and gi outside D and G,
respectively. We then obtain

‖Hκf‖Hs2 (G) = ‖Hκf‖C2,α(G) . ‖f‖C0,α(D) = ‖f‖Hs2−2(D) ≤ ‖f‖H−s1 (D).
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Since s1 ∈ (d−m
2 , 2), it holds 0 < s2 ≤ 2 − s1 <

4−d+m
2 . Choose s2 = 4−d+m

2 − ǫ. Then for γ and
q satisfying the assumptions in the theorem, there must exist some ǫ > 0 such that γ < s2 and
1
q
> 1

2 − s2−γ
d

, and hence the embedding

Hs2(G) →֒W γ,q(G)

is continuous, which completes the proof. �

3.2. The inverse problem. The inverse source problem aims to recover the principal symbols ac

and ar of the covariance and relation operators, respectively, from the far-field pattern of the wave
field. Combining (2.6) and (3.3) gives

u(x, κ) =
eiκ|x|

|x| d−1
2

(
u∞(x̂, κ) +O(|x|−1)

)
, |x| → ∞,

where u∞ is known as the far-field pattern and is given by

u∞(x̂, κ) = −Cdκ
d−3
2

∫

Rd

e−iκx̂·yf(y)dy. (3.4)

First, we show that the Fourier modes of ac and ar can be determined by the expectation of the
high frequency limit of the far-field pattern, which is stated in the following lemma.

Lemma 3.2. Let f satisfy Assumption 1 with m ∈ (d− 4, d]. For any τ ≥ 0, it holds

lim
κ→∞

κm+3−d
E

[
u∞(x̂, κ+ τ)u∞(x̂, κ)

]
= |Cd|2âc(τ x̂), (3.5)

lim
κ→∞

κm+3−d
E [u∞(x̂, κ+ τ)u∞(−x̂, κ)] = C2

d â
r(τ x̂). (3.6)

Proof. It follows from (3.4) that

E

[
u∞(x̂, κ+ τ)u∞(x̂, κ)

]

= |Cd|2(κ+ τ)
d−3

2 κ
d−3

2

∫

Rd

∫

Rd

e−i(κ+τ)x̂·yeiκx̂·zE
[
f(y)f(z)

]
dydz

= |Cd|2(κ+ τ)
d−3
2 κ

d−3
2

∫

Rd

[∫

Rd

Kc
f (y, z)e

−iκx̂·(y−z)dz

]
e−iτ x̂·ydy

= |Cd|2(κ+ τ)
d−3

2 κ
d−3

2

[∫

Rd

ac(y)e−iτ x̂·ydy|κx̂|−m +

∫

Rd

bc(y, κx̂)e−iτ x̂·ydy

]

= |Cd|2
(

κ

κ+ τ

)3−d
2

κd−3−mâc(τ x̂) +O(κd−4−m), (3.7)

where we used the relationship between the kernel Kc
f and the symbol ac given in (2.4), and the facts

that the residual bc ∈ S−m−1(Rd ×R
d) satisfies |bc(y, κx̂)| . κ−m−1 as κ→ ∞ and bc(·, ξ) ∈ C∞

0 (D)
for any ξ ∈ R

d. Multiplying both sides of (3.7) by κm+3−d and taking the limit as κ→ ∞, we obtain

lim
κ→∞

κm+3−d
E

[
u∞(x̂, κ+ τ)u∞(x̂, κ)

]
dκ = |Cd|2âc(τ x̂) lim

κ→∞

(
κ

κ+ τ

) 3−d
2

= |Cd|2âc(τ x̂),
which completes the proof of (3.5).

Similarly, we may show (3.6) by taking the high frequency limit of the data

E [u∞(x̂, κ+ τ)u∞(−x̂, κ)]

= C2
d(κ+ τ)

d−3
2 κ

d−3
2

∫

Rd

∫

Rd

e−i(κ+τ)x̂·yeiκx̂·zE [f(y)f(z)] dydz



8 JIANLIANG LI, PEIJUN LI, AND XU WANG

= C2
d(κ+ τ)

d−3
2 κ

d−3
2

∫

Rd

[∫

Rd

Kr
f (y, z)e

−iκx̂·(y−z)dz

]
e−iτ x̂·ydy

= C2
d(κ+ τ)

d−3
2 κ

d−3
2

[∫

Rd

ar(y)e−iτ x̂·ydy|κx̂|−m +

∫

Rd

br(y, κx̂)e−iτ x̂·ydy

]

= C2
d

(
κ

κ+ τ

) 3−d
2

κd−3−mâr(τ x̂) +O(κd−4−m),

where the residual br(·, ξ) ∈ C∞
0 (D) is uniformly bounded by |ξ|−m−1 as |ξ| → ∞. �

The results in Lemma 3.2 imply that ac and ar can be uniquely determined by the expectation
of high frequency limit of the far-field pattern. This kind of data requires the measurements at all
sample paths of the random source. Next we show that ac and ar can also be uniquely determined
by the far-field pattern averaged over the frequency band at a single sample path almost surely.

The following results present some a priori estimates of the far-field pattern, which are used to
show the analogue of ergodicity in the frequency domain.

Lemma 3.3. Let f satisfy Assumption 1 with m ∈ (d− 4, d]. For any x̂ ∈ S
d−1, κ1, κ2 ≥ 1 and any

fixed N ∈ N, the following estimates hold:
∣∣∣E

[
u∞(x̂, κ1)u∞(x̂, κ2)

]∣∣∣ . κ
d−3
2

1 κ
d−3
2

−m

2 (1 + |κ1 − κ2|)−N , (3.8)

|E [u∞(x̂, κ1)u
∞(−x̂, κ2)]| . κ

d−3
2

1 κ
d−3
2

−m

2 (1 + |κ1 − κ2|)−N , (3.9)
∣∣∣E

[
u∞(x̂, κ1)u∞(−x̂, κ2)

]∣∣∣ . κ
d−3
2

1 κ
d−3
2

−m

2 (1 + κ1 + κ2)
−N , (3.10)

|E [u∞(x̂, κ1)u
∞(x̂, κ2)]| . κ

d−3
2

1 κ
d−3
2

−m

2 (1 + κ1 + κ2)
−N . (3.11)

Proof. It follows from (2.4) and (3.4) that

E

[
u∞(x̂, κ1)u∞(x̂, κ2)

]

= |Cd|2(κ1κ2)
d−3
2

∫

Rd

∫

Rd

e−iκ1x̂·yeiκ2x̂·zE

[
f(y)f(z)

]
dydz

= |Cd|2(κ1κ2)
d−3
2

∫

Rd

[∫

Rd

e−iκ2x̂·(y−z)Kc
f (y, z)dz

]
ei(κ2−κ1)x̂·ydy

= |Cd|2(κ1κ2)
d−3
2

∫

D

σc(y, κ2x̂)e
i(κ2−κ1)x̂·ydy, (3.12)

where the symbol σc ∈ S−m(Rd × R
d) satisfies

∣∣∂αy σc(y, κ2x̂)
∣∣ . (1 + κ2)

−m (3.13)

for any multiple index α, and we used the fact that σc(·, κ2x̂) is compactly supported in D.

If |κ1 − κ2| < 1, we have from (3.12)–(3.13) that
∣∣∣E

[
u∞(x̂, κ1)u∞(x̂, κ2)

]∣∣∣ . (κ1κ2)
d−3
2

∫

D

|σc(y, κ2x̂)|dy

. (κ1κ2)
d−3
2 (1 + κ2)

−m

. (κ1κ2)
d−3

2

(
2

1 + |κ1 − κ2|

)N

(1 + κ2)
−m

. 2Nκ
d−3
2

1 κ
d−3
2

−m

2 (1 + |κ1 − κ2|)−N .



INVERSE RANDOM SOURCE PROBLEMS 9

If |κ1 − κ2| ≥ 1, applying the integration by parts to (3.12) with respect to y1 gives

E

[
u∞(x̂, κ1)u∞(x̂, κ2)

]

= |Cd|2(κ1κ2)
d−3
2

−1

i(κ2 − κ1)x̂1

∫

D

∂y1σ
c(y, κ2x̂)e

i(κ2−κ1)x̂·ydy

= |Cd|2(κ1κ2)
d−3
2

( −1

i(κ2 − κ1)x̂1

)N ∫

D

∂Ny1cf (y, κ2x̂)e
i(κ2−κ1)x̂·ydy.

Hence
∣∣∣E

[
u∞(x̂, κ1)u∞(x̂, κ2)

]∣∣∣ . (κ1κ2)
d−3
2

1

|κ1 − κ2|N
(1 + κ2)

−m

. κ
d−3
2

1 κ
d−3
2

−m

2

(
1 +

1

|κ1 − κ2|

)N

(1 + |κ1 − κ2|)−N

. 2Nκ
d−3
2

1 κ
d−3
2

−m

2 (1 + |κ1 − κ2|)−N ,

which concludes (3.8).

The estimate (3.9) can be obtained similarly by noting

E [u∞(x̂, κ1)u
∞(−x̂, κ2)]

= C2
d(κ1κ2)

d−3
2

∫

Rd

∫

Rd

e−iκ1x̂·yeiκ2x̂·zE [f(y)f(z)] dydz

= C2
d(κ1κ2)

d−3
2

∫

Rd

[∫

Rd

e−iκ2x̂·(y−z)Kr
f (y, z)dz

]
ei(κ2−κ1)x̂·ydy

= C2
d(κ1κ2)

d−3
2

∫

Rd

σr(y, κ2x̂)e
i(κ2−κ1)x̂·ydy, (3.14)

where the estimate is similar to (3.12) with σc being replaced by σr.

For (3.10) and (3.11), we rewrite the correlations as follows

E

[
u∞(x̂, κ1)u∞(−x̂, κ2)

]
= |Cd|2(κ1κ2)

d−3
2

∫

Rd

∫

Rd

e−iκ1x̂·ye−iκ2x̂·zE

[
f(y)f(z)

]
dydz,

E [u∞(x̂, κ1)u
∞(x̂, κ2)] = C2

d(κ1κ2)
d−3
2

∫

Rd

∫

Rd

e−iκ1x̂·ye−iκ2x̂·zE [f(y)f(z)] dydz.

Comparing the above formulas with (3.12) and (3.14), it is easily seen that they can be estimated
similarly to (3.8) and (3.9) by replacing κ2 by −κ2, respectively, which completes the proofs of (3.10)
and (3.11). �

Theorem 3.4. Let f satisfy Assumption 1 with m ∈ (d− 4, d]. Then for all x̂ ∈ S
d−1 and τ ≥ 0, it

holds almost surely that

lim
Q→∞

1

Q

∫ 2Q

Q

κm+3−du∞(x̂, κ+ τ)u∞(x̂, κ)dκ = |Cd|2âc(τ x̂), (3.15)

lim
Q→∞

1

Q

∫ 2Q

Q

κm+3−du∞(x̂, κ+ τ)u∞(−x̂, κ)dκ = C2
d â

r(τ x̂). (3.16)

Moreover, ac and ar can be uniquely determined by (3.15) and (3.16), respectively, with (τ, x̂) ∈ Θ
and Θ ⊂ R+ × S

d−1 being any open domain.

Proof. We only give the proof of (3.15) since the proof of (3.16) can be obtained similarly by using
(3.6) in Lemma 3.2.
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Based on the proof of Lemma 3.2, we multiply both sides of (3.7) by κm+3−d, take integral with
respect to κ, and get

1

Q

∫ 2Q

Q

κm+3−d
E

[
u∞(x̂, κ+ τ)u∞(x̂, κ)

]
dκ

= |Cd|2âc(τ x̂)
[
1

Q

∫ 2Q

Q

(
κ

κ+ τ

) 3−d
2

dκ

]
+O

(
Q−1

)
.

Noting

1

Q

∫ 2Q

Q

(
κ

κ+ τ

) 3−d
2

dκ ≤ 1

and

lim
Q→∞

1

Q

∫ 2Q

Q

(
κ

κ+ τ

)3−d
2

dκ ≥ lim
Q→∞

1

Q

∫ 2Q

Q

(
Q

Q+ τ

)3−d
2

dκ = 1

leads to

lim
Q→∞

1

Q

∫ 2Q

Q

κm+3−d
E

[
u∞(x̂, κ+ τ)u∞(x̂, κ)

]
dκ = |Cd|2âc(τ x̂). (3.17)

To characterize the error between (3.15) and (3.17), we define an auxiliary process

Y (x̂, κ) := κm+3−d
(
u∞(x̂, κ+ τ)u∞(x̂, κ)− E

[
u∞(x̂, κ+ τ)u∞(x̂, κ)

])
.

For convenience, we denote by

U(x̂, κ) :=
1

2

[
u∞(x̂, κ) + u∞(x̂, κ)

]
, V (x̂, κ) :=

1

2i

[
u∞(x̂, κ) − u∞(x̂, κ)

]

the real and imaginary parts of u∞(x̂, κ), respectively. Then u∞(x̂, κ+ τ)u∞(x̂, κ) can be rewritten
as

u∞(x̂, κ+ τ)u∞(x̂, κ) = [U(x̂, κ+ τ) + iV (x̂, κ+ τ)] [U(x̂, κ) − iV (x̂, κ)]

=
1 + i

2

[
U2(x̂, κ) + U2(x̂, κ+ τ) + V 2(x̂, κ) + V 2(x̂, κ+ τ)

]

−1

2
(U(x̂, κ) − U(x̂, κ+ τ))2 − 1

2
(V (x̂, κ) − V (x̂, κ+ τ))2

− i

2
(U(x̂, κ+ τ) + V (x̂, κ))2 − i

2
(V (x̂, κ+ τ)− U(x̂, κ))2 .

Define Γ = Γ1 ∪ Γ2, where

Γ1 := {U(x̂, κ), V (x̂, κ), U(x̂, κ+ τ), V (x̂, κ+ τ)},
Γ2 := {U(x̂, κ)− U(x̂, κ+ τ), V (x̂, κ) − V (x̂, κ+ τ),

U(x̂, κ+ τ) + V (x̂, κ), V (x̂, κ+ τ)− U(x̂, κ)},
and let Wκ be any random field in Γ. Based on these notations, we have

Y (x̂, κ) =
∑

Wκ∈Γ

C(Wκ)κ
m+3−d(W 2

κ − EW 2
κ ),

where C(Wκ) ∈ {1+i
2 ,−1

2 ,− i
2} is a constant depending on Wκ.

Now it suffices to show for all Wκ ∈ Γ that

lim
Q→∞

1

Q

∫ 2Q

Q

κm+3−d(W 2
κ − EW 2

κ)dκ = 0. (3.18)



INVERSE RANDOM SOURCE PROBLEMS 11

Hence

lim
Q→∞

1

Q

∫ 2Q

Q

Y (x̂, κ)dκ = 0,

which, together with (3.17), yields (3.15).

To prove (3.18), by denoting the R-valued centered random field

Xκ := κm+3−d(W 2
κ − EW 2

κ )

according to [6, Theorem 4.1] and [19, Lemma 6], one only need to show that there exist some
constants η ≥ 0, β > 0 and Cτ > 0 independent of κ and t such that

|E[XκXκ+t]| ≤ Cτ (1 + |t− η|)−β ∀ κ, t > 0.

More precisely, it suffices to show∣∣∣E
[
κm+3−d(W 2

κ − EW 2
κ)(κ + t)m+3−d(W 2

κ+t − EW 2
κ+t)

]∣∣∣

= 2
(
E

[
κ

m+3−d
2 (κ+ t)

m+3−d
2 WκWκ+t

])2

≤ Cτ (1 + |t− η|)−β (3.19)

for all Wκ ∈ Γ, where in the first step we used [6, Lemma 4.2] and the fact that Wκ is Gaussian.

For any Wκ ∈ Γ1, based on the identities

U(x̂, κ1)U(x̂, κ2) =
1

4

[
u∞(x̂, κ1) + u∞(x̂, κ1)

] [
u∞(x̂, κ2) + u∞(x̂, κ2)

]
,

V (x̂, κ1)V (x̂, κ2) = −1

4

[
u∞(x̂, κ1)− u∞(x̂, κ1)

] [
u∞(x̂, κ2)− u∞(x̂, κ2)

]

and Lemma 3.3, we get

|E [U(x̂, κ1)U(x̂, κ2)]| . κ
d−3
2

1 κ
d−3
2

−m

2 (1 + |κ1 − κ2|)−N ,

|E [V (x̂, κ1)V (x̂, κ2)]| . κ
d−3

2

1 κ
d−3

2
−m

2 (1 + |κ1 − κ2|)−N .

As a result, it holds ∣∣∣E
[
κ

m+3−d
2 (κ+ t)

m+3−d
2 WκWκ+t

]∣∣∣

. κ
m+3−d

2 (κ+ t)
m+3−d

2 κ
d−3
2 (κ+ t)

d−3
2

−m(1 + t)−N

.

(
κ

κ+ t

)m
2

(1 + t)−N

. (1 + t)−(N+m
2
∧0), (3.20)

where we used the facts that (
κ

κ+ t

)m
2

≤ 1

for m ≥ 0 and (
κ

κ+ t

)m
2

=

(
1 +

t

κ

)−m
2

≤ (1 + t)−
m
2

for m < 0. Then (3.20) implies that (3.19) holds for Wκ ∈ Γ1 by choosing N > −m
2 .

For any Wκ ∈ Γ2, we take Wκ = U(x̂, κ) − U(x̂, κ + τ) for instance. The other cases can be
estimated similarly. Note that

|E [WκWκ+t]| = |E [(U(x̂, κ)− U(x̂, κ+ τ))(U(x̂, κ+ t)− U(x̂, κ+ τ + t))]|
≤ |E [U(x̂, κ)U(x̂, κ+ t)]|+ |E [U(x̂, κ)U(x̂, κ+ τ + t)]|
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+ |E [U(x̂, κ+ τ)U(x̂, κ+ t)]|+ |E [U(x̂, κ+ τ)U(x̂, κ+ τ + t)]|
. κ

d−3
2 (κ+ t)

d−3
2

−m(1 + t)−N + κ
d−3
2 (κ+ τ + t)

d−3
2

−m(1 + t+ τ)−N

+(κ+ τ)
d−3
2 (κ+ t)

d−3
2

−m(1 + |t− τ |)−N

+(κ+ τ)
d−3

2 (κ+ τ + t)
d−3

2
−m(1 + t)−N

. κ
d−3
2 (κ+ t)

d−3
2

−m(1 + t)−N + (κ+ τ)
d−3
2 (κ+ t)

d−3
2

−m(1 + |t− τ |)−N

+(κ+ τ)
d−3
2 (κ+ τ + t)

d−3
2

−m(1 + t)−N .

It then leads to ∣∣∣E
[
κ

m+3−d
2 (κ+ t)

m+3−d
2 WκWκ+t

]∣∣∣

. κ
m
2 (κ+ t)−

m
2 (1 + t)−N + κ

m
2

(
κ

κ+ τ

) 3−d
2

(κ+ t)−
m
2 (1 + |t− τ |)−N

+

(
κ

κ+ τ

) 3−d
2

(
κ

κ+ t+ τ

)m
2
(

κ+ t

κ+ t+ τ

)m+3−d
2

(1 + t)−N

. (1 + t)−(N+m∧0) + (1 + |t− τ |)−N , (3.21)

where we used the estimates in (3.20) and the facts that
(

κ

κ+ t+ τ

)m
2
(

κ+ t

κ+ t+ τ

)m+3−d
2

≤
(

κ

κ+ t+ τ

)m
2
(

κ+ t

κ+ t+ τ

)m
2

≤ 1

for m ≥ 0 and
(

κ

κ+ t+ τ

)m
2
(

κ+ t

κ+ t+ τ

)m+3−d
2

≤
(

κ

κ+ t+ τ

)m

. (1 + t+ τ)−m

. (1 + τ)−m(1 + t)−m

for m < 0. It then completes the proof of (3.19) for Wκ ∈ Γ2.

Combining (3.20) and (3.21) yields (3.19) for all Wκ ∈ Γ and deduces (3.15).

Since ac and ar are analytic, they can be uniquely determined by {âc(τ x̂)} and {âr(τ x̂)}, where
(τ, x̂) ∈ Θ with Θ being any open subdomain of R+ × S

1. �

4. Biharmonic waves

In this section, we study the direct and inverse source problems for the stochastic biharmonic
wave equation

∆2u− κ4u = f in R
d, (4.1)

where f is assumed to be a C-valued GMIG random field satisfying Assumption 1 withm ∈ (d−6, d].
In addition, the wave field u and its Laplacian ∆u are required to satisfy the Sommerfeld radiation
condition

lim
|x|→∞

|x| d−1
2 (∂|x|u− iκu) = 0, lim

|x|→∞
|x| d−1

2 (∂|x|∆u− iκ∆u) = 0. (4.2)

Given f , the well-posedness of the problem (4.1)–(4.2) was studied in [23, Theorem 3.2] and is
given below.

Theorem 4.1. Let f satisfy Assumption 1 with m ∈ (d−6, d]. Then the problem (4.1)–(4.2) admits
a unique solution

u(x, κ) = −
∫

Rd

Fd(x, y, κ)f(y)dy (4.3)
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in the sense of distributions such that u ∈ W γ,q
loc (R

d) almost surely for any q > 1 and 0 < γ <

min
{

6−d+m
2 , 6−d+m

2 +
(
1
q
− 1

2

)
d
}
.

Next we address the inverse problem for biharmonic waves. Combining (2.8) and (4.3) leads to

u(x, κ) =
eiκ|x|

|x| d−1
2

(
u∞(x̂, κ) +O(|x|−1)

)
,

where the far-field pattern is given by

u∞(x̂, κ) = −Cd

2
κ

d−7
2

∫

Rd

e−iκx̂·yf(y)dy. (4.4)

It is easy to note from (3.4) and (4.4) that the procedure used in Section 3 for acoustic waves is
applicable for biharmonic waves. The following is the main result for the inverse source problem of
the biharmonic wave equation.

Theorem 4.2. Let f satisfy Assumption 1 with m ∈ (d− 6, d]. Then for all x̂ ∈ S
d−1 and τ ≥ 0, it

holds almost surely that

lim
Q→∞

1

Q

∫ 2Q

Q

κm+7−du∞(x̂, κ+ τ)u∞(x̂, κ)dκ =
1

4
|Cd|2âc(τ x̂), (4.5)

lim
Q→∞

1

Q

∫ 2Q

Q

κm+7−du∞(x̂, κ+ τ)u∞(−x̂, κ)dκ =
1

4
C2
d â

r(τ x̂). (4.6)

Moreover, ac and ar can be uniquely determined by (4.5) and (4.6), respectively, with (τ, x̂) ∈ Θ and
Θ ⊂ R+ × S

d−1 being any open domain.

Proof. A simple calculation yields

E

[
u∞(x̂, κ+ τ)u∞(x̂, κ)

]

=
1

4
|Cd|2(κ+ τ)

d−7
2 κ

d−7
2

∫

Rd

∫

Rd

e−i(κ+τ)x̂·yeiκx̂·zE
[
f(y)f(z)

]
dydz

=
1

4
|Cd|2(κ+ τ)

d−7
2 κ

d−7
2

∫

Rd

[∫

Rd

Kc
f (y, z)e

−iκx̂·(y−z)dz

]
e−iτ x̂·ydy

=
1

4
|Cd|2(κ+ τ)

d−7
2 κ

d−7
2

[∫

Rd

ac(y)e−iτ x̂·ydy|κx̂|−m +

∫

Rd

bc(y, κx̂)e−iτ x̂·ydy

]

=
1

4
|Cd|2

(
κ

κ+ τ

) 7−d
2

κd−7−mâc(τ x̂) +O(κd−8−m),

which gives

lim
κ→∞

κm+7−d
E

[
u∞(x̂, κ+ τ)u∞(x̂, κ)

]
=

1

4
|Cd|2âc(τ x̂).

Using

1 ≥ lim
Q→∞

1

Q

∫ 2Q

Q

(
κ

κ+ τ

) 7−d
2

dκ ≥ lim
Q→∞

1

Q

∫ 2Q

Q

(
Q

Q+ τ

) 7−d
2

dκ = 1

and the estimates of the correlations of the far-field pattern u∞ at different frequencies, which can
be obtained by following the same procedure as the one used in Lemma 3.3, we may replace the high
frequency limit in the above result by the limit of the averaged data over the frequency band at a
single sample path with probability one, i.e.,

lim
Q→∞

1

Q

∫ 2Q

Q

κm+7−du∞(x̂, κ+ τ)u∞(x̂, κ)dκ =
1

4
|Cd|2âc(τ x̂).
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The recovery formula (4.6) can be obtained similarly and the details are omitted for brevity. �

5. Electromagnetic waves

This section is concerned with the direct and inverse source problems for electromagnetic waves.
The inverse random source problem for Maxwell’s equations was considered in [21], where the source
was assumed to be a centered GMIG random vector field whose real and imaginary parts were
independent and identically distributed. Under this assumption, the relation operator of the random
source vanishes, and the random source is only determined by its covariance operator. The strength
matrix of the covariance operator was proved to be uniquely determined by the phased near-field
data of the electric field.

In this work, we remove the assumption that the real and imaginary parts of the random source
are independent and identically distributed, and investigate the recovery of the strengths of both
the covariance and relation operators for the random source from the far-field pattern of the electric
field.

Consider the stochastic Maxwell’s equations

∇×E − iκH = 0, ∇×H + iκE = f in R
3, (5.1)

whereE andH are the electric and magnetic fields, respectively, and the random source f represents
the electric current density satisfying the following assumption with d = 3.

Assumption 2. The electric current density f is assumed to be a C
d-valued centered GMIG random

field of order −m in a bounded domain D ⊂ R
d. The principal symbols of its covariance operator Cf

and relation operator Rf have the forms Ac(x)|ξ|−m and Ar(x)|ξ|−m, respectively, where Ac, Ar ∈
C∞
0 (D;Cd×d).

As usual, an appropriate radiation condition is required for (5.1). Note that f ∈ D
′(R3;C3) is a

distribution, and hence (5.1) is interpreted in the sense of distributions. In [21], the following weak
Silver–Müller radiation condition was proposed to the electromagnetic fields:

lim
r→∞

∫

|x|=r

(H × x̂−E) · φds = 0 ∀ φ ∈ D(R3). (5.2)

In addition to Assumption 2 with m ∈ (2, 3], f is required to be a distribution belonging to the
space

X :=

{
U ∈ D

′(R3) :

∫

R3

U · (∇(∇ · φ)) dx = 0 ∀ φ ∈ D(R3)

}
.

Apparently, the space X is non-empty: if f is smooth enough and divergence-free, then f ∈ X. In
fact, X can be regarded as the space of all distributions which are divergence-free in the sense of
distributions. The weak divergence-free condition ensures that Maxwell’s equations (5.1) can be
reduced to the Helmholtz equation and the electric field has an integral representation in terms of
the source, where the integral kernel is exactly the fundamental solution to the Helmholtz equation.
The details can be found in [21].

The following result concerns the well-posedness of (5.1)–(5.2) with a relaxed assumption on the
order m of the random source.

Theorem 5.1. Let f ∈ X satisfy Assumption 2 with m ∈ (−1, 3]. The problem (5.1)–(5.2) admits
a unique solution (E,H) with E ∈ X ∩W

γ,q
loc (R

3) and H ∈ (W−γ,p(curl))′ almost surely for q > 1,

0 < γ < min
{

1+m
2 , m2 + 3

q
− 1

}
and p satisfying 1

p
+ 1

q
= 1. Moreover, the electric field has the form

E(x, κ) = iκ

∫

R3

Φ3(x, y, κ)f(y)dy.
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The proof can be obtained directly from the well-posedness of the Helmholtz equation given in
Theorem 3.1 and [21, Corollary 2.3]. The details are omitted here.

To recover Ac and Ar of the covariance and relation operators for the random source, respectively,
we consider the far-field pattern of the electric field

E∞(x̂, κ) = iκC3

∫

R3

e−iκx̂·yf(y)dy,

which is obtained from the asymptotic behavior of the fundamental solution Φ3 given in (2.6). By
similar arguments as those for the Helmholtz equation in Theorem 3.4, we can establish the following
uniqueness theorem.

Theorem 5.2. Let f ∈ X satisfy Assumption 2 with m ∈ (−1, 3]. Then for all x̂ ∈ S
2 and τ ≥ 0,

it holds almost surely that

lim
Q→∞

1

Q

∫ 2Q

Q

κm−2E∞(x̂, κ+ τ)E∞(x̂, κ)
⊤
dκ =

1

16π2
Âc(τ x̂), (5.3)

lim
Q→∞

1

Q

∫ 2Q

Q

κm−2E∞(x̂, κ+ τ)E∞(−x̂, κ)⊤dκ = − 1

16π2
Âr(τ x̂), (5.4)

where the Fourier transform of a matrix A = [ajl]j,l=1,··· ,d is defined by Â = [âjl]j,l=1,2,3 .

Moreover, the strength matrices Ac and Ar are uniquely determined by (5.3) and (5.4), respec-
tively, with (τ, x̂) ∈ Θ and Θ ⊂ R+ × S

2 being any open domain.

6. Elastic waves

This section is devoted to the direct and inverse random source problems for elastic waves. Con-
sider the stochastic Navier equation in a homogeneous medium

µ∆u+ (λ+ µ)∇∇ · u+ ω2u = f in R
d, (6.1)

where ω > 0 is the angular frequency, u ∈ C
d is the displacement, λ and µ denote the Lamé

parameters satisfying µ > 0 and λ+ 2µ > 0 such that the second order partial differential operator
∆∗ := µ∆+(λ+µ)∇∇· is strongly elliptic (cf. [24, section 10.4]), and the source f is assumed to be
a C

d-valued GMIG random field satisfying Assumption 2 with some restrictions on m to be given
later.

By the Helmholtz decomposition [3, Appendix B], the displacement u outside the support D of
the random source can be decomposed as u = up +us, where the compressional and shear parts up

and us are defined by

up := − 1

κ2p
∇∇ · u, us :=

1

κ2s
∇× (∇× u) in R

d \D,

where, for d = 3, ‘∇×’ denotes the classical curl operator; for d = 2, ‘∇× (∇× ·)’ is defined by

∇× (∇× u) :=
(
∂x1

∂x2
u2 − ∂2x2

u1, ∂x1
∂x2

u1 − ∂2x1
u2

)⊤

for u = (u1, u2)
⊤. The Kupradze–Sommerfeld radiation condition requires that up and us satisfy

the Sommerfeld radiation condition

lim
|x|→∞

|x| d−1
2

(
∂|x|up − iκpup

)
= 0, lim

|x|→∞
|x| d−1

2

(
∂|x|us − iκsus

)
= 0. (6.2)

The well-posedness of the problem (6.1)–(6.2) was investigated in [22], where the random source
f was assumed to be R

d-valued satisfying Assumption 2 with m ∈ (d − 1, d]. The following result
gives the well-posedness of the problem (6.1)–(6.2) with a C

d-valued random source and a relaxed
condition on the order m.
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Theorem 6.1. Let f satisfy Assumption 2 with m ∈ (d − 4, d]. The problem (6.1)–(6.2) admits a
unique solution u ∈ W

γ,q
loc (R

d) almost surely given by

u(x, ω) = −
∫

Rd

Gd(x, y, ω)f(y)dy (6.3)

for any q > 1 and 0 < γ < min
{

4−d+m
2 , 4−d+m

2 +
(
1
q
− 1

2

)
d
}
.

Similar to the operator Hκ defined in Theorem 3.1, the operator

(Hωf)(x) := −
∫

Rd

Gd(x, y, ω)f(y)dy

generated by the Green tensor Gd is also bounded from H−s1(D) to Hs2(G) with s1, s2 ≥ 0 and
s1 + s2 ∈ (0, 2], since the Green tensor Gd has the same singularity as the fundamental solution Φd

to the Helmholtz equation. Hence, the proof of the above theorem can be obtained following the
same procedure as the one used in Theorem 3.1, and is omitted here.

Based on the asymptotic behavior of the Green tensor Gd given in (2.9), we can rewrite u in (6.3)
as the following asymptotic expansion

u(x, ω) =
eiκp|x|

|x| d−1
2

u∞
p (x̂, ω) +

eiκs|x|

|x| d−1
2

u∞
s (x̂, ω) +O

(
|x|− d+1

2

)
, |x| → ∞,

where

u∞
p (x̂, ω) = −Cdc

d+1
2

p ω
d−3
2 x̂x̂⊤

∫

Rd

e−iκpx̂·yf(y)dy, (6.4)

u∞
s (x̂, ω) = −Cdc

d+1
2

s ω
d−3
2

(
I − x̂x̂⊤

)∫

Rd

e−iκsx̂·yf(y)dy (6.5)

are known as the compressional and shear far-field patterns of the scattered field u, respectively.
Due to the presence of matrices x̂x̂⊤ and I − x̂x̂⊤ in (6.4)–(6.5), each component of u∞

p (x̂, ω) and
u∞
s (x̂, ω) consists of combinations of all components of the random source f , which makes it more

complicated than the cases for acoustic waves, biharmonic waves, and electromagnetic waves.

Define vectors

vp,j := x̂j x̂, vs,j := ej − vp,j, j = 1, · · · , d,
where x̂ = (x̂1, · · · , x̂d)⊤ and ej is the unit vector in R

d with its jth entry being one. For any matrix

A = [ajl]j,l=1,··· ,d, define a reshape operator R : Rd×d → R
d2 by

R(A) := (a11, · · · , a1d, · · · , ad1, · · · , add)⊤,
which rearranges the entries of matrix A in rows into a vector. Let u∞

p = (u∞p,1, · · · , u∞p,d)⊤ and u∞
s =

(u∞s,1, · · · , u∞s,d)⊤. Then, according to (6.4)–(6.5), we get the following expressions for components of
u∞
p and u∞

s :

u∞p,j(x̂, ω) = −Cdc
d+1
2

p ω
d−3
2

∫

Rd

e−icpωx̂·yvp,j · f(y)dy, (6.6)

u∞s,j(x̂, ω) = −Cdc
d+1
2

s ω
d−3
2

∫

Rd

e−icsωx̂·yvs,j · f(y)dy. (6.7)

Based on the relationship between the kernel and the symbol of the covariance operator given in
(2.5) as well as (6.6), we obtain

E

[
u∞p,j

(
x̂, csc

−1
p (ω + τ)

)
u∞p,l

(
x̂, csc

−1
p ω

)]

= |Cd|2c4pcd−3
s (ω + τ)

d−3
2 ω

d−3
2

∫

Rd

∫

Rd

e−ics(ω+τ)x̂·yeicsωx̂·zE
[
vp,j · f(y)vp,l · f(z)

]
dydz
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= |Cd|2c4pcd−3
s (ω + τ)

d−3
2 ω

d−3
2

∫

Rd

∫

Rd

e−ics(ω+τ)x̂·yeicsωx̂·zE
[
R(vp,jv

⊤
p,l) · R(f(y)f(z)

⊤
)
]
dydz

= |Cd|2c4pcd−3
s (ω + τ)

d−3
2 ω

d−3
2

∫

Rd

[ ∫

Rd

e−icsωx̂·(y−z)
R(vp,jv

⊤
p,l) · RKc

f (y, z)dz

]
e−icsτ x̂·ydy

= |Cd|2c4pcd−3
s (ω + τ)

d−3
2 ω

d−3
2

[ ∫

Rd

R(vp,jv
⊤
p,l) · RAc(y)e−icsτ x̂·ydy|csωx̂|−m +O(ω−m−1)

]

= |Cd|2c4pcd−3−m
s

(
ω

ω + τ

) 3−d
2

R(vp,jv
⊤
p,l) · RÂc(csτ x̂)ω

d−3−m +O(ωd−4−m),

which leads to

lim
Q→∞

1

Q

∫ 2Q

Q

ωm+3−dcm+3−d
s c−4

p E

[
u∞p,j

(
x̂, csc

−1
p (ω + τ)

)
u∞p,l

(
x̂, csc

−1
p ω

)]
dω

= |Cd|2R(vp,jv
⊤
p,l) · RÂc(csτ x̂). (6.8)

Similarly, by noting that

E

[
u∞p,j

(
x̂, csc

−1
p (ω + τ)

)
u∞s,l (x̂, ω)

]

= |Cd|2c2pcd−1
s (ω + τ)

d−3

2 ω
d−3

2

∫

Rd

∫

Rd

e−ics(ω+τ)x̂·yeicsωx̂·zE
[
vp,j · f(y)vs,l · f(z)

]
dydz

= |Cd|2c2pcd−1
s (ω + τ)

d−3
2 ω

d−3
2

[ ∫

Rd

R(vp,jv
⊤
s,l) · RAc(y)e−icsτ x̂·ydy|csωx̂|−m +O(ω−m−1)

]

= |Cd|2c2pcd−1−m
s

(
ω

ω + τ

)3−d
2

R(vp,jv
⊤
s,l) · RÂc(csτ x̂)ω

d−3−m +O(ωd−4−m),

we have

lim
Q→∞

1

Q

∫ 2Q

Q

ωm+3−dcm+1−d
s c−2

p E

[
u∞p,j

(
x̂, csc

−1
p (ω + τ)

)
u∞s,l (x̂, ω)

]
dω

= |Cd|2R(vp,jv
⊤
s,l) · RÂc(csτ x̂). (6.9)

Following the same procedure as above, we may get the limit of the following correlations:

lim
Q→∞

1

Q

∫ 2Q

Q

ωm+3−dcm+1−d
s c−2

p E

[
u∞s,j (x̂, ω + τ)u∞p,l

(
x̂, csc

−1
p ω

)]
dω

= |Cd|2R(vs,jv
⊤
p,l) · RÂc(csτ x̂), (6.10)

lim
Q→∞

1

Q

∫ 2Q

Q

ωm+3−dcm−1−d
s E

[
u∞s,j (x̂, ω + τ) u∞s,l (x̂, ω)

]
dω

= |Cd|2R(vs,jv
⊤
s,l) · RÂc(csτ x̂). (6.11)

Note that the coefficients in (6.8)–(6.11) satisfy

R

(
vp,jv

⊤
p,l + vp,jv

⊤
s,l + vs,jv

⊤
p,l + vs,jv

⊤
s,l

)

= R

(
vp,jv

⊤
p,l + vp,jv

⊤
s,l + (ej − vp,j)v

⊤
p,l + (ej − vp,j)v

⊤
s,l

)

= R

(
ejv

⊤
p,l + ej(el − vp,l)

⊤
)

= R(eje
⊤
l ),
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which yields

R(vp,jv
⊤
p,l + vs,jv

⊤
p,l + vs,jv

⊤
s,l + vp,jv

⊤
s,l) · RÂc(csτ x̂) = âcjl(csτ x̂).

Adding (6.8)–(6.11), we derive that

lim
Q→∞

1

Q

∫ 2Q

Q

ωm+3−dcm+3−d
s

{
c−4
p E

[
u∞p,j

(
x̂, csc

−1
p (ω + τ)

)
u∞p,l

(
x̂, csc

−1
p ω

)]

+ c−2
s c−2

p E

[
u∞p,j

(
x̂, csc

−1
p (ω + τ)

)
u∞s,l(x̂, ω)

]

+ c−2
s c−2

p E

[
u∞s,j (x̂, ω + τ)u∞p,l

(
x̂, csc

−1
p ω

)]

+ c−4
s E

[
u∞s,j (x̂, ω + τ) u∞s,l (x̂, ω)

]}
dω = |Cd|2âcjl(csτ x̂)

for j, l = 1, · · · , d, which can be rewritten into a compact form

lim
Q→∞

1

Q

∫ 2Q

Q

ωm+3−dcm+3−d
s

{
c−4
p E

[
u∞
p

(
x̂, csc

−1
p (ω + τ)

)
u∞
p

(
x̂, csc

−1
p ω

)⊤]

+ c−2
s c−2

p E

[
u∞
p

(
x̂, csc

−1
p (ω + τ)

)
u∞
s (x̂, ω)

⊤
]

+ c−2
s c−2

p E

[
u∞
s (x̂, ω + τ)u∞

p

(
x̂, csc

−1
p ω

)⊤]

+ c−4
s E

[
u∞
s (x̂, ω + τ)u∞

s (x̂, ω)
⊤
]}

dω = |Cd|2Âc(csτ x̂). (6.12)

A similar result for the strength Ar of the the relation operator can be obtained based on the
same procedure:

lim
Q→∞

1

Q

∫ 2Q

Q

ωm+3−dcm+3−d
s

{
c−4
p E

[
u∞
p

(
x̂, csc

−1
p (ω + τ)

)
u∞
p

(
−x̂, csc−1

p ω
)⊤]

+ c−2
s c−2

p E

[
u∞
p

(
x̂, csc

−1
p (ω + τ)

)
u∞
s (−x̂, ω)⊤

]

+ c−2
s c−2

p E

[
u∞
s (x̂, ω + τ)u∞

p

(
−x̂, csc−1

p ω
)⊤]

+ c−4
s E

[
u∞
s (x̂, ω + τ)u∞

s (−x̂, ω)⊤
]}

dω = C2
dÂ

r(csτ x̂). (6.13)

The above recovery formulas (6.12) and (6.13), where the expectation of the correlations between
u∞
p and u∞

s is involved, can be improved by removing the expectation. In fact, according to (6.6)–
(6.7), one can easily find that components u∞p,j and u∞s,j are both linear combinations of far-field

patterns for acoustic waves given in (3.4) perturbed by random sources fi, i = 1, · · · , d, which are
components of the source f . Thus, the estimates of the far-field pattern for acoustic waves given in
Lemma 3.3 also hold for u∞

p and u∞
s . Then following the same procedure used in Theorem 3.4, we

can get that the strengths Ac and Ar can be uniquely recovered from the compressional and shear
far-field patterns at a single realization of the random source almost surely, which is stated in the
following theorem.

Theorem 6.2. Let f satisfy Assumption 2 with m ∈ (d− 4, d]. Then for all x̂ ∈ S
d−1 and τ ≥ 0, it

holds almost surely that

lim
Q→∞

1

Q

∫ 2Q

Q

cm+3−d
s ωm+3−d

[
c−4
p u∞

p

(
x̂, csc

−1
p (ω + τ)

)
u∞
p

(
x̂, csc

−1
p ω

)⊤

+ c−2
s c−2

p u∞
p

(
x̂, csc

−1
p (ω + τ)

)
u∞
s (x̂, ω)

⊤
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+ c−2
s c−2

p u∞
s (x̂, ω + τ)u∞

p

(
x̂, csc

−1
p ω

)⊤

+ c−4
s u∞

s (x̂, ω + τ)u∞
s (x̂, ω)

⊤
]
dω = |Cd|2Âc(csτ x̂), (6.14)

lim
Q→∞

1

Q

∫ 2Q

Q

cm+3−d
s ωm+3−d

[
c−4
p u∞

p

(
x̂, csc

−1
p (ω + τ)

)
u∞
p

(
−x̂, csc−1

p ω
)⊤

+ c−2
s c−2

p u∞
p

(
x̂, csc

−1
p (ω + τ)

)
u∞
s (−x̂, ω)⊤

+ c−2
s c−2

p u∞
s (x̂, ω + τ)u∞

p

(
−x̂, csc−1

p ω
)⊤

+ c−4
s u∞

s (x̂, ω + τ)u∞
s (−x̂, ω)⊤

]
dω = C2

dÂ
r(csτ x̂). (6.15)

Moreover, the strengths Ac and Ar can be uniquely determined by (6.14) and (6.15), respectively,
with (τ, x̂) ∈ Θ and Θ ⊂ R+ × S

d−1 being any open domain.

7. Conclusion

In this paper, we have discussed the direct and inverse random source problems for acoustic
waves, biharmonic waves, electromagnetic waves, and elastic waves. The source is assumed to be a
centered GMIG random field whose covariance and relation operators are classical pseudo-differential
operators. For such a rough source, the unique solvability is achieved for a larger class of distributions
compared with the existing results. The inverse problem is to recover the principal symbols of the
covariance and relation operators. A relationship is established in the high frequency limit which
connects the principal symbols of the covariance and relation operators and the far-field pattern
averaged over the frequency band generated from a single realization of the random source. Based
on the relationship, the uniqueness of the inverse problem is obtained.

A possible continuation of this work is to study the stochastic wave equations with a random
potential, where both the source and the potential are complex-valued GMIG random fields. These
problems are more challenging due to the nonlinearity and coupling of the random source and
potential. We hope to be able to report the progress on these problems elsewhere in the future.

References

[1] G. Bao, C. Chen, and P. Li, Inverse random source scattering problems in several dimensions, SIAM/ASA J.
Uncertainty Quantification, 4 (2016), 1263–1287.

[2] G. Bao, C. Chen, and P. Li, Inverse random source scattering for elastic waves, SIAM J. Numer. Anal., 55
(2017), 2616–2643.

[3] G. Bao, P. Li, and Y. Zhao, Stability for the inverse source problems in elastic and electromagnetic waves, J.
Math. Pures Appl., 134 (2020), 122–178.

[4] G. Bao, Y. Lin, and X. Xu, Inverse scattering by a random periodic structure, SIAM J. Numer. Anal., 58
(2020), 2934–2952.

[5] G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials,
Inverse Problems, 29 (2013), 015006.

[6] P. Caro, T. Helin, and M. Lassas, Inverse scattering for a random potential, Anal. Appl., 17 (2019), 513–567.
[7] D. P. Challa and M. Sini, The Foldy-Lax approximation of the scattered waves by many small bodies for the
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