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CONVERGENCE OF LARGE POPULATION GAMES TO MEAN FIELD GAMES WITH

INTERACTION THROUGH THE CONTROLS

MATHIEU LAURIÈRE & LUDOVIC TANGPI

Abstract. This work considers stochastic differential games with a large number of players, whose costs and
dynamics interact through the empirical distribution of both their states and their controls. We develop a new
framework to prove convergence of finite-player games to the asymptotic mean field game. Our approach is
based on the concept of propagation of chaos for forward and backward weakly interacting particles which we

investigate by stochastic analysis methods, and which appear to be of independent interest. These propagation of
chaos arguments allow to derive moment and concentration bounds for the convergence of Nash equilibria.
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1. Introduction

The motivation behind this paper is to present a systematic method to investigate the asymptotic behavior
of a class of symmetric N -player stochastic differential games in continuous time as the number of players N
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2 MATHIEU LAURIÈRE & LUDOVIC TANGPI

becomes large. To be more precise, let us briefly describe such a game in the non-cooperative case. We consider
a game in which each player (or agent) i ∈ {1, . . . , N} controls a diffusion process X i,N whose evolution is given
by

dX i,N
t = b

(
t,X i,N

t , αi,N
t ,

1

N

N∑

j=1

δ(Xj,N
t ,αj,N

t )

)
dt+ σ dW i

t

for some independent Brownian motions W 1, . . . ,WN where αi,N is a control process chosen by player i and δx
is the Dirac delta mass at x. The measurability of αi,N will be precised below. Agent i tries to minimize an
individual cost

(1) J(αi;α−i) := E
[ ∫ T

0

f
(
t,X i,N

t , αi,N
t ,

1

N

N∑

j=1

δ(Xj,N
t ,αj,N

t )

)
dt+ g

(
X i,N

T ,
1

N

N∑

j=1

δXj,N

T

)]

where we denote α−i := (α1, . . . , αi−1, αi+1, . . . , αN ). In this context, it is natural to investigate the concept of
Nash equilibrium (α̂1,N , . . . , α̂N,N). See § 2.1 for definitions and a more precise description of the model. Unfor-
tunately, as the number of players becomes large, the N -Nash equilibrium becomes analytically and (especially)
numerically intractable. The groundbreaking idea of Lasry & Lions [38] and Huang et al. [32] is to argue that,
heuristically, for such a symmetric game, when N goes to infinity, α̂i,N should converge to a so-called mean field
equilibrium α̂i, which is defined as follows. For a fixed (measurable) measure flow (ξt)t≥0 with second marginals

(µt)t≥0 let (α̂ξ
t )t≥0 be a solution of the stochastic control problem




inf
α
E
[ ∫ T

0

f(t,Xα
t , αt, ξt) dt+ g(Xα

T , µT )
]

dXα
t = b(t,Xα

t , αt, ξt) dt+ σ dW i
t .

A flow of measures ξ̂ is an equilibrium flow if it satisfies the following consistency condition: the law of (X α̂ξ̂

t , α̂ξ̂
t )

equals ξ̂t for every t ∈ [0, T ]; the associated control α̂i is an equilibrium control. The question at the heart of
the present paper is to know how far α̂i is from α̂i,N . In other terms, we are interested in an estimation of the
“error” |α̂i,N − α̂i|.

It is only after more than a decade of intensive research on mean field games that the intriguing heuristics
mentioned above have been put into rigorous mathematical ground and in satisfactory generality. Notably, the
works of Lacker [35] and Fischer [22] proved convergence results on the N -Nash equilibria to the mean field
equilibrium as N goes to infinity for open-loop controls. Using a PDE on the Wasserstein space called the master
equation, Cardaliaguet et al. [12] proved convergence for closed-loop controls, even in the presence of common
noise. We also refer to works by Lacker [36], Delarue et al. [19, 18], Cardaliaguet [10] for more recent progress on
this convergence question. Anticipating our brief discussion of these papers in the soon-to-come literature review
(see § 1.2), let us mention at this point that with the exception of [19], none of the above cited papers investigates
non-asymptotic results, nor do their settings cover games with interactions through the distribution of controls
(or “control interactions” for short).

Games with control interactions, sometimes called “extended”, occur when the dynamics or the cost function
of player i may explicitly depend on the empirical distribution of the controls of the other players, and not just
on their respective states. Such games were first introduced by Gomes et. al. [27] and their investigation quickly
picked-up momentum due to their relevance in various problems e.g. in economics and finance. References are
provided below (see § 1.2). One important aspect of our analysis will be to include the treatment of such games.

1.1. Main results: informal statements and method. The main result of this paper is to show that (even)
for games with interactions through the controls, under sufficient regularity and convexity assumptions on the

coefficients of the game one obtains a non-asymptotic estimate of the “error” term E[|α̂i,N
t −α̂i

t|2] and consequently
convergence of α̂i,N to α̂i. This moment estimate is bolstered by concentration inequalities (some of which
dimension-free) notably bounding the probability that the Wasserstein distance between the empirical measure of
the N -Nash equilibrium and the law of the mean-field equilibrium exceeds a given threshold. The price to pay for
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these non-asymptotic bounds is to require either small enough time horizon or additional monotonicity conditions
on the coefficients. The contribution of this article is also methodological. In fact, we design a three-step approach
to bound the error:

(i) Characterize the solution of the N -player game by a system of forward-backward stochastic differential
equations (FBSDE).

(ii) Investigate asymptotic properties of the system of equations, showing in particular that it converges to a
McKean-Vlasov FBSDE (see definition below).

(iii) Show that the limiting McKean-Vlasov FBSDE characterizes the mean field equilibrium.

To achieve step (ii), we further develop the theory of backward propagation of chaos initiated by the authors in
[39]. The idea here is that, roughly speaking, the FBSDEs characterizing the N -player game can be interpreted
(themselves) as a system of weakly interacting particles evolving forward and backward in time. A substantial
part of the article is devoted to the investigation of non-asymptotic, strong propagation of chaos type results
for such particle systems. At the purely probabilistic level, these results extend the original ideas of Sznitman
[45] introduced for interacting (forward) particles to fully coupled systems of interacting forward and backward
particles. Due to the independent relevance of these convergence results, this part of the paper is presented in a
self-contained manner and so that it can be read separately. In fact, in this article, aside from the (non-cooperative)
large population games discussed so far, we illustrate applications of this “forward-backward propagation of chaos”
by proving convergence of a system of second order parabolic partial differential equations written on an Euclidean
space to a so-called master equation, a second order PDE written on the Wasserstein space. This allows for
convergence results to PDEs on infinite dimensional spaces similar to the ones derived by Cardaliaguet et al. [12],
with different types of nonlinearities.

1.2. Literature review. The investigation of the limit theory in large population games started with the works
of Lasry & Lions [37; 38] further extended by Feleqi [21], Bardi & Priuli [2] and Gomes et al. [24]. These papers
share the limitations of treating either problems with linear coefficients or assuming that agents have controls
which are not allowed to depend on other players’ states. In the breakthrough works of Lacker [35] and Fischer
[22], the authors prove rather general convergence results for the empirical measure of the states of the agents
at equilibrium using probabilistic techniques. We also refer to Lacker [36] for interesting further developments,
notably for the case of closed-loop controls. The analyses of these authors use the notion of relaxed controls and
study associated controlled martingale problems. This technique seems hard to extend to games with control
interactions considered here, and it provides compactness results rather than convergence rates. However, one
central advantage of this approach is that it does not assume uniqueness of the mean field equilibrium, which we
do (at least in our main theorem). This shortcoming is shared with the PDE-based approaches of Delarue et al.
[19, 18] and Cardaliaguet et al. [9] (but some of these works additionally need existence and bounds on the first
and second order derivatives of the solution of the associated master equation). In fact, our approach is related to
these methods in that they both rely on optimality conditions characterizing the equilibrium. However, instead
of using optimality conditions phrased in terms of PDEs, we use FBSDEs characterizations. As a result, the
technique developed here is a purely probabilistic one and we do not restrict ourselves to Markovian controls as
in the PDE approaches.

Beyond its methodological aspects, our paper contributes to the large population game and the mean field game
literature by its analysis of games with control interactions. Mean field games with such interactions are sometimes
referred to as “extended MFG” or “MFG of controls” and have been introduced by Gomes et al. [27]; Gomes and
Voskanyan [26]. Interaction through the controls’ distribution is particularly relevant in economics and finance,
see e.g. [16; 29; 11] and [25, Section 3.3.1] (see also [13, Sections 1.3.2 and 4.7.1]). Some aspects of the PDE
approach and the probabilistic approach to such games have been treated respectively in [6; 7; 33] and in [15].
Note also that this paper focuses on open–loop equilibria. The convergence problem for closed–loop equilibria
is considered by [36; 9] using very different methods. Furthermore, let us finally point out that the method
developed in this paper also apply to non-cooperative games and the results have natural PDE interpretation.
These connections are presented in details in the ArXiv version of the paper [40].
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1.3. Organization of the paper. In the next section we present the probabilistic setting and formally state
our main results pertaining to the convergence of the N -Nash equilibrium to the mean field equilibrium. The
emphasis is put on non-asymptotic results and concentration estimates. Section 3 is dedicated to the discussion
of versions of Pontryagin’s maximum principle for games with interaction through the controls. The investigation
of propagation of chaos for forward-backward interacting particles is carried out in Section 4. These elements are
put together in Section 5 to prove the main results stated in Section 2.

2. Main results: formal statements

Let T > 0 and d ∈ N be fixed, and denote by (Ω,F , P ) a probabilitty space carrying a sequence of independent
R

d-valued Brownian motions (W i)i∈N. For every positive integer N , let W 1, . . . ,WN be N independent copies of
W and F0 be an initial σ-field independent of W 1, . . . ,WN . We equip Ω with the filtration FN := (FN

t )t∈[0,T ],

which is the completion of the filtration generated by W 1, . . . ,WN and F0, and we further denote by Fi :=
(F i

t )t∈[0,T ], which is the completion of the filtration generated by W i and F0. Without further mention, we will
always use the identifications

W ≡W 1 and F ≡ F1.

Given a vector x := (x1, . . . , xN ) ∈ (Rn)N , for any n ∈ N, denote by

LN(x) :=
1

N

N∑

j=1

δxj

the empirical measures associated to x. It is clear that LN(x) belongs to Pp(R
n), the set of probability measures

on Rn with finite p-moments. Given a random variable X , we denote by

L(X) the law of X with respect to P .

Throughout the paper, C denotes a generic strictly positive constant. In the computations, the constant C can
change from line to line, but this will not always be mentioned. However, C will never depend on N .

Let us now formally state the main results of this work.

2.1. The N-player game. We consider an N -agent game where player i chooses an admissible strategy αi to
control her state process, which has dynamics

(2) dX
i,α
t = b(t,X

i,α
t , αi

t, L
N(X

α
t , αt))dt+ σdW i

t , X
i,α
0 ∼ µ(0),

for some function b, a matrix σ and a distribution µ(0) ∈ P2(R
ℓ), where the state depends on an average of the

states and controls of all the players through the empirical measure LN(X
α
t , αt). The initial states X

i,α
0 are

assumed to be i.i.d. Let m ∈ N and let A ⊆ Rm be a closed convex set. The set of admissible strategies is defined
as1

A :=

{
α : [0, T ]× Ω → A F

N–progressive such that E
[ ∫ T

0

|αt|2 dt
]
< +∞

}
.

Given two functions f and g, the cost that agent i seeks to minimize, when the strategy profile is α = (α1, . . . , αN ),
is J(αi;α−i) given in (1). Note that under our assumptions (specified below) the cost J is well defined for all
admissible strategy profiles. As usual, one is interested in constructing a Nash equilibrium α̂ := (α̂i, . . . , α̂n), that
is, admissible strategies (α̂1, . . . , α̂N ) such that for every i = 1, . . . , N and α ∈ A it holds that

J i(α̂) ≤ J(αi; α̂−i).

When such a Nash equilibrium exists for every N , our aim is to investigate its asymptotic properties as N → ∞.
In particular, we give (regularity) conditions on the coefficients of the diffusions and the cost under which the Nash
equilibrium of the N -player game converges to the mean-field equilibrium which we define below. We denote by

1Unless otherwise stated, we denote by | · | the Euclidean norm and by ab := a · b the inner product, regardless of the dimension
of the Euclidean space.
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W2(ξ, ξ
′) the second order Wasserstein distance between two probability measures ξ, ξ′ and by ∂ξh, ∂µh and ∂νh

the so-called L-derivatives of a function h in the variable of the probability measure ξ ∈ P2(R
ℓ×Rm), µ ∈ P2(R

ℓ)
and ν ∈ P2(R

m), respectively. See e.g. [1; 41] or [13, Chapter 5] for definition and further details.
We will use the following assumptions, on which we comment after stating our main results, see Remark 5.

(A1) The function b : [0, T ] × Rℓ × Rm × P2(R
ℓ × Rm) → Rℓ is continuously differentiable in its last three

arguments and satisfies the Lipschitz continuity and linear growth conditions



|b(t, x, a, ξ)− b(t, x′, a′, ξ′)| ≤ Lf

(
|x− x′|+ |a− a′|+W2(ξ, ξ

′)
)

|b(t, x, a, ξ)| ≤ C

(
1 + |x|+ |a|+

( ∫
Rℓ+m |v|2 ξ(dv)

)1/2
)

for some C,Lf > 0 and all x, x′ ∈ R
ℓ, a, a′ ∈ R

m, t ∈ [0, T ] and ξ, ξ′ ∈ P2(R
ℓ × R

m).
The functions f : [0, T ] × Rℓ × Rm × P(Rℓ × Rm) → R and g : Rℓ × P(Rℓ) → R are continuously

differentiable (f in its last three arguments) and of quadratic growth:



|f(t, x, a, ξ)| ≤ C

(
1 + |x|2 + |a|2 +

∫
Rℓ+m |v|2 ξ(dv)

)

|g(x, µ)| ≤ C
(
1 + |x|2 +

∫
Rℓ |v|2 µ(dv)

)

for some C > 0 and all x ∈ Rℓ, a ∈ Rm, t ∈ [0, T ] and ξ ∈ P2(R
ℓ × Rm).

(A2) The functions b and f can be decomposed as

(3)

{
b(t, x, a, ξ) := b1(t, x, a, µ) + b2(t, x, ξ)

f(t, x, a, ξ) = f1(t, x, a, µ) + f2(t, x, ξ)

for some functions b1, b2, f1 and f2, where µ is the first marginal of ξ.

(A3) Considering the function

(4) H(t, x, y, a, ξ) = f(t, x, a, ξ) + b(t, x, a, ξ)y,

there is γ > 0 such that

(5) H(t, x, y, a, ξ)−H(t, x, y, a′, ξ)− (a− a′)∂aH(t, x, y, a, ξ) ≥ γ|a− a′|2

for all a, a′ ∈ A, x ∈ R
ℓ, a ∈ R

m, t ∈ [0, T ] and ξ ∈ P2(R
ℓ × R

m); and the functions x 7→ g(x, µ) and
(x, a) 7→ H(t, x, y, a, ξ) are convex, where µ is the first marginal of ξ. In addition, the functions

∂aH(t, ·, ·, ·, ·), ∂xH(t, ·, ·, ·, ·) and ∂xg(·, ·) are Lf -Lipschitz–continuous

and of linear growth:




|∂xH(t, x, a, y, ξ)| ≤ C
(
1 + |x|+ |y|+

( ∫
Rℓ |v|2µ(dv)

)1/2)

|∂aH(t, x, a, y, ξ)| ≤ C
(
1 + |x|+ |a|+ |y|+

( ∫
Rℓ+q |v|2ξ(dv)

)1/2)

|∂xg(x, µ) ≤ C
(
1 + |x|+ (

∫
Rℓ |v|2ξ(dv))1/2

)

for some C > 0 and all x ∈ Rℓ, a ∈ Rm, t ∈ [0, T ] and ξ ∈ P2(R
ℓ ×Rm) where µ is the first marginal of ξ.

(A4) For every (t, x, a, ξ) ∈ [0, T ]× Rℓ × A× P2(R
ℓ×m) and (u, v) ∈ Rℓ × Rm we have





|∂µb(t, x, a, µ)(u)| ≤ C

|∂ξf(t, x, a, ξ)(u, v)| ≤ C
(
1 + |u|+ |x|+

( ∫
Rℓ |v|2µ(dv)

)1/2)

|∂µg(x, µ)(u)| ≤ C
(
1 + |u|+ |x|+

( ∫
Rℓ |v|2µ(dv)

)1/2)

for some C > 0 and all x ∈ Rℓ, a ∈ Rm, t ∈ [0, T ] and ξ ∈ P2(R
ℓ ×Rm) where µ is the first marginal of ξ.
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(A5) The matrix σ is uniformly elliptic. That is, there is a constant c > 0 such that 〈σσ′x, x〉 ≥ c|x|2 for every
x ∈ Rℓ.

2.2. The Mean field game. The mean field game that corresponds to the above N -player game is described as
follows: Given a flow of distributions (ξt)t∈[0,T ] with ξt ∈ P2(R

ℓ × Rm) with first marginal µt ∈ P2(R
ℓ), the cost

of an infinitesimal agent is

Jξ(α) = E

[∫ T

0

f(t,Xα
t , αt, ξt)dt+ g(Xα

T , µT )

]

with the dynamics

dXα
t = b(t,Xα

t , αt, ξt)dt+ σdW i
t , Xα

0 ∼ µ(0).

The admissibility set on which the cost function Jξ is minimized is

A :=

{
α : [0, T ]× Ω → A F

i–progressive such that E
[ ∫ T

0

|αt|2 dt
]
< +∞

}
.

The goal for the agent is to find α̂ξ ∈ A minimizing Jξ and satisfying the fixed point (or consistency) condition

ξt = L(X α̂ξ

t , α̂ξ
t ) for all t.

The first main result of this paper is the following link between the N -player game and the (asymptotic) MFG
in small time horizon:

Theorem 1. Let conditions (A1)-(A5) be satisfied and assume that there is k > 2 such that µ(0) admits moments

of order k. Assume that the N -player game admits a Nash equilibrium α̂N ∈ AN . Then, there is δ > 0 such that
if T ≤ δ, for each i the sequence (α̂i,N )N converges to a mean field equilibrium α̂i ∈ A in the sense that it holds

E
[
|α̂i,N

t − α̂i
t|2

]
≤ C(rN,m+ℓ,k + rN,ℓ,k)

for all t ∈ [0, T ] and N ∈ N and some constant C > 0 where, for any M,N, k we put rN,M,k := rN,M,k,2 and

(6) rN,M,k,p :=





N−1/2 +N−(k−p)/k, if p > M/2 and k 6= 2p

N−1/2 log(1 +N) +N−(k−p)/k, if p =M/2 and k 6= 2p

N−2/M +N−(k−p)/k, if M > 2p and k 6=M/(M − p).

In the case of linear quadratic games the convergence rate can be simplified to the optimal rate O(1/N). The
proof of this statement can be found in the ArXiv version of the paper, see [40, Theorem 11]. The small time
assumption of Theorem 1 can be replaced by a monotonicity property on the drift.

(M) The Hamiltonian admits a minimizer

Λ(t, x, y, µ) ∈ argmin
a∈A

H(t, x, a, y, ξ)

where µ is the first marginal of ξ. The drift b satisfies the monotonicity condition

(7) (x− x′) ·
(
b(t, x,Λ(t, x, y, µ), ξ)− b(t, x′,Λ(t, x′, y, µ), ξ)

)
≤ −Kb|x− x′|2

for all x, x′ ∈ Rℓ, (t, ξ) ∈ [0, T ]× P(Rℓ × Rm) → Rℓ and some constant Kb > 0. Moreover, it holds

(8)





(y − y′) ·
(
b(t, x,Λ(t, x, y, µ), ξ)− b(t, x,Λ(t, x, y′, µ), ξ)

)
≤ −K|y − y′|2

(x− x′) ·
(
∂xH(t, x′,Λ(t, x′, y, µ), ξ)− ∂xH(t, x,Λ(t, x, y, µ), ξ)

)
≤ −K|x− x′|2

(x− x′) ·
(
∂xg(x, µ)− ∂xg(x

′, µ)
)
≥ K|x− x′|2

for all t ∈ [0, T ], x, x′, y, y′ ∈ R
ℓ and ξ ∈ P2(R

ℓ×m), and for some constant K > 0.

In the statement and proof of the next result it will be judicious to distinguish the Lipschitz constant of b in each
of its arguments, so that the Lipschitz–continuity condition in (A1) now reads
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(A1’) The function b satisfies
{
|b(t, x, a, ξ)− b(t, x′, a′, ξ′)| ≤ Lb,x|x− x′|+ Lb,a|a− a′|+ Lb,ξW2(ξ, ξ

′)

|b(t, x, a, ξ)| ≤ C(1 + |x|+ |a|+
∫
Rℓ |x|2ξ(dx))

for some constants C > 0, Lb,x, Lb,a, Lb,ξ > 0 and all x, x′ ∈ Rℓ, a, a′ ∈ Rm, t ∈ [0, T ] and ξ, ξ′ ∈
P2(R

ℓ × R
m) where µ is the first marginal of ξ.

Recall that Lf is the Lipschitz–constant of ∂xH and ∂xg as stated in (A3). With these notation, put




K1 := 2
(

3
2γLb,aLf + Lb,ξ

)(
8Te7LfTLf + 1

2

)
+ Lb,ξ +

Lb,aLf

2γ

K2 := 16TL2
f(Lf + T )

(
Lb,ξ +

3LfLb,a

2γ

)2

e2Lf (6+Lf ) + Lb,ξ +
Lb,aLf

2γ

K3,k := 4(k − 1)
Lb,ξ+LfLb,a

2kγ(LF+LG) exp(kTLF (2+
2LF

k(k−1) ))
.

Theorem 2. Let conditions (A1’),(A2)-(A5) and (M) be satisfied and assume that there is k > 2 such that

µ(0) admits moments of order k. Suppose that the N -player game admits a Nash equilibrium α̂N ∈ AN . If the
constant Kb satisfies

Kb > max(K1,K2,K3,k),

then for each i the sequence (α̂i,N )N converges to a mean field equilibrium α̂i ∈ A in the sense that it holds

E
[
|α̂i,N

t − α̂i
t|2

]
≤ C(rN,m+ℓ,k + rN,ℓ,k)

for all t ∈ [0, T ] and N ∈ N and some constant C > 0.

Remark 3. In Assumption (M), the fact that Λ depends only upon the first marginal of ξ is due to (A2). This
will be proved below. Moreover, The reader will observe in the proof that the essential condition needed to derive
the convergence is (7). The conditions (8) are needed to guarantee existence (for T arbitrary) of the McKean–
Vlasov FBSDE (58) characterizing the game. The conditions (8) can be dropped when this equation admits a
unique solution.

We now complement Theorems 1 and 2 with concentration estimates for the N -Nash equilibrium.

Theorem 4. Under the conditions of Theorem 1, it holds that2

E
[
W2(L

N(α̂N
t ),L(α̂t))

]
≤ C

(
rN,2ℓ,k + rN,ℓ,k

)

for all (t, N) ∈ [0, T ]× N.
If in addition µ(0) is a Dirac mass then there is a constant c(Lf ) depending only on the Lipschitz constants of

b, f, g and ∂xH such that if T ≤ c(Lf ), then for every N ≥ 1 and ε > 0 it holds that

(9) P (h(α̂N
t )− E[h(α̂N

t )] ≥ ε) ≤ C

Nε2
+ e−Kε2

for two given constants K,C which do not depend on N and for every 1-Lipschitz function h : RmN → R. In
particular, for N large enough it holds that

(10) P
(
W2

(
LN(α̂N

t ),L(α̂t)
)
≥ ε

)
≤ C

ε2N2
+ e−KNε2 .

If the functions b, f and g satisfy (M) and are such that

(11)

{
|∂aH(t, x, a, ξ)|+ |∂xH(t, x, a, ξ)| ≤ C

(
1 + |a|+ (

∫
Rm |v|2 ν(dv)1/2

)

|∂xg(x, µ)| ≤ C

2We recall that α̂N := (α̂1, . . . , α̂N ), where α̂i is a mean field equilibrium of the mean field game with Brownian motion W i.
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where ν is the second marginal of ξ, then for every T > 0 and for N large enough it holds

(12) P
(∫ T

0

h(α̂N
t )− E[h(α̂N

t )] dt ≥ ε
)
≤ C

Nε2
+ e−Kε2

for two given constants K,C which do not depend on N and for every 1-Lipschitz function h : RmN → R.

Before going any further, let us make a few remarks concerning our assumptions.

Remark 5. Let us now briefly comment on the assumptions made in Theorems 1 and 4. In a nutshell, both
theorems tell us that under sufficient regularity and integrability of the coefficients of the game, we have convergence
with explicit convergence rates. Condition (A1), (A3) and (A4) speak to these regularity and integrability
conditions. These conditions, along with the convexity property (5) are typically assumed in the literature, even
to guarantee solvability see e.g. [30; 4].

The conditions in (A2) are structural conditions on the coefficients. These conditions are probably not essential
from a mathematical standpoint. They are due to our method, which consists in finding an explicit representation
of the equilibrium in terms of processes whose convergence can be derived, see (55). Thus, the conditions in (A2)
can be replaced by any other conditions ensuring such representations of the equilibria. Importantly (3) is not
needed when we do not have mean-field interaction through the controls, but only through the states. The Lipschitz
assumptions on ∂xH and ∂aH in (A3) are not necessary when ∂xg is bounded and ∂xf and ∂xb are bounded in
x. In fact, in this case, BSDE estimates show that the function ∂xH can be restricted to bounded y’s, so that
these Lipschitz continuity conditions are automatically satisfied if ∂xb is Lipschitz.

3. Pontryagin’s maximum principle

As explained in the introduction, two elements of our three-step approach to derive the limit consist in applying
Pontryagin’s maximum principles for N -agent games and for mean field games. This section is dedicated to the
presentation of these results. In the case of N -agent games we give the “necessary part” of the maximum principle.
Since the case of mean field games is less involved, we present both the “necessary” and the “sufficient” parts.

3.1. Pontryagin’s maximum principle for N-agent games. The goal of this section is to discuss Pontryagin’s
maximum principle of the N -agent game and derive characterization properties for the Nash equilibria. Hereafter,
for each p ≥ 1 and k ∈ N we denote

Sp(Rk) :=

{
Y ∈ H0(Rk)

∣∣∣E
[

sup
0≤t≤T

|Yt|p
]
< +∞

}

Hp(Rk) :=

{
Z ∈ H0(Rk)

∣∣∣E
[( ∫ T

0

|Zt|2dt
)p/2]

< +∞
}
,

with H0(Rk) being the space of all Rk-valued progressively measurable processes.

Proposition 6. Let the conditions (A1), (A4) and (A5) be satisfied. If α̂ is a Nash equilibrium of the N -player
game, then for any admissible control β = (β1, . . . , βN ) it holds

(13) ∂αiHN,i(t,X
α̂
t , α̂t, Y

i,·
t )(βi

t − α̂i
t) ≥ 0 P ⊗ dt-a.s., for all i,

where HN,i is the i-player’s Hamiltonian given by

HN,i(t, x, α, y) := f
(
t, xi, αi, LN (x, α)

)
+

N∑

j=1

b
(
t, xj , αj , LN (x, α)

)
yi,j

and putting gN,i(x) := g(xi, LN (x)) and Y i,· = (Y i,1, . . . , Y i,N ), (Y i,j , Zi,j,k)i,j,k solves the adjoint equation

(14) dY i,j
t = −∂xjHN,i(t,X

α̂
t , α̂t, Y

i,·
t )dt+

N∑

k=1

Zi,j,k
t dW k

t , Y i,j
T = ∂xjgN,i(X

α̂
T ).
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Note that (Y i,j , Zi,j,k)i,j,k implicitly depend upon α̂ but we omit to write this dependence to alleviate the
notation.

Proof. If α̂ is a Nash equilibrium, then player i solves the stochastic control problem supα∈A J(α, α̂
−i). That is,

it holds

J(α̂i, α̂−i) = sup
α∈A

J(α, α̂−i).

Therefore, the result follows by application of the (standard) stochastic maximum principle, see e.g. [14, Theorem
2.15]. �

For later reference and for convenience of the reader, we spell-out the adjoint equations (14) in terms of the
functions f, b, g appearing in the game. From [14, Proposition 5.35], we have

∂xjgN,i(x, α) = δi,j∂xg
(
xi, LN(x)

)
+

1

N
∂µg

(
xi, LN(x)

)
(xj),

where δi,j = 1 if and only if i = j and 0 otherwise. Similar relations hold for f and b, and for the partial
derivatives with respect to the control variables. We deduce that

(15) Y i,j
T = δi,j∂xg

(
X

i,α̂
T , LN(X

α̂
T )

)
+

1

N
∂µg

(
X

i,α̂
T , LN (X

α̂
T )

)
(X

j,α̂
T ),

and

dY i,j
t = −∂xjHN,i(t,X

α̂
t , α̂t, Y

i,·
t )dt+

N∑

k=1

Zi,j,k
t dW k

t

= −
(
δi,j∂xf

(
t,X

i,α̂
t , α̂i

t, L
N(X

α̂
t , α̂t)

)
+

1

N
∂µf

(
t,X

i,α̂
t , α̂i

t, L
N(X

α̂
t , α̂t)

)
(X

j,α̂
t , α̂j

t )
)
dt

−
(
∂xb

(
t,X

j,α̂
t , α̂j

t , L
N(X

α̂
t , α̂t)

)
Y i,j
t dt

+ E
(X̃,α̃,Ỹ )∼ζ

N,i

t

[
∂µb

(
t, X̃t, α̃t, L

N(X
α̂
t , α̂t)

)
(X

j,α̂
t , α̂j

t )Ỹt

]
dt+

N∑

k=1

Zi,j,k
t dW k

t(16)

where we used the notation ζ
N,i

t := 1
N

∑N
j=1 δ(Xj,α̂

t ,α̂j
t ,Y

i,j
t )

for the empirical distribution of the triple (X
j,α̂
t , α̂j

t , Y
i,j
t )j .

3.2. Pontryagin’s maximum principle for mean field games of controls. Let us recall that the Hamil-
tonian H is defined by (4), i.e.

H(t, x, α, y, ξ) = f(t, x, α, ξ) + b(t, x, α, ξ)y.

Recall the following optimality conditions for mean field games:

Proposition 7. If α̂ is a mean field equilibrium such that the mapping t 7→ ξα̂t := L(X α̂
t , α̂t) is bounded and

Borel measurable, then it holds that

(17) H(t,X α̂
t , α̂t, Y

α̂
t , ξ

α̂
t ) = inf

a∈A

H(t,X α̂
t , a, Y

α̂
t , ξ

α̂
t ) P ⊗ dt-a.s.

with (X α̂
t , Y

α̂
t , Z

α̂
t , α̂t) solving the FBSDE system

(18)

{
dX α̂

t = b(t,X α̂
t , α̂t, ξ

α̂
t )dt+ σdWt, X α̂

0 ∼ µ(0),

dY α̂
t = −∂xH(t,X α̂

t , α̂t, Y
α̂
t , ξ

α̂
t )dt+ Zα̂

t dWt, Y α̂
T = ∂xg(X

α̂
T ,L(X α̂

T )).

Reciprocally, let α̂ be an admissible control with associated controlled process X α̂ and adjoint processes (Y α̂, Zα̂)
as given by (18). Assume t 7→ ξα̂t = L(X α̂

t , α̂t) is Borel–measurable and bounded (i.e. the second moment is
bounded uniformly in t). Assume that for each ξ ∈ P(Rℓ × Rm) with first marginal µ the functions x 7→ g(x, µ)
and (x, a) 7→ H(t, x, a, y, ξ) are dt-a.s. convex and that α̂ satisfies (17). Then α̂ is a mean field equilibrium.
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This result is standard, it follows for instance by application of [13, Theorems 2.15 and 2.16] to the (standard)
control problem parameterized by a given flow of measures, then use the consistency condition.

4. Quantitative propagation of chaos for coupled FBSDE systems

This section studies abstract propagation of chaos type results for forward-backward systems of SDEs. These
results will be central for the proofs of the main theorems, but seem to be of independent interest. Therefore, we
present the section so that it can be read independently.

The main idea is that we consider a system of “particles” evolving forward and backward in time and with
interactions through their empirical distributions. We show that under mild regularity conditions on the coef-
ficients of the equations describing the dynamics of the equations, the whole system converges to a system of
McKean-Vlasov FBSDEs. Moreover, we derive explicit convergence rates and concentration inequality results.
Propagation of chaos-type results for backward SDEs (not coupled to forward systems) have been previously
derived in [8; 31; 39].

Let d, ℓ, q ∈ N, we fix three functions

B : [0, T ]× R
ℓ × R

q × P2(R
ℓ × R

q) → R
ℓ,

F : [0, T ]× R
ℓ × R

q × R
q×d × P2(R

ℓ × R
q) → R

q, G : Rℓ × P2(R
ℓ) → R

q

and an ℓ× d matrix σ for some ℓ, d, q ∈ N. Consider the coupled systems of FBSDEs

(19)





X i,N
t = xi0 +

∫ t

0

Bu(X
i,N
u , Y i,N

u , LN (Xu, Y u)) du+ σW i
t

Y i,N
t = G(X i,N

T , LN(XT )) +

∫ T

t

Fu(X
i,N
u , Y i,N

u , Zi,i,N
u , LN (Xu, Y u)) du

−∑N
k=1

∫ T

t Zi,k,N
u dW k

u ,

with i = 1, . . . , N , and for given i.i.d., F0-measurable random variables x10, . . . , x
N
0 with values in Rℓ, and where

as above, we used the notation Y := (Y 1, . . . , Y N ) and X := (X1, . . . , XN). We recall that W 1, . . . ,WN are
independent d-dimensional Brownian motions. We will use the following conditions:

(B1) The functions B, F and G are Lipschitz continuous, that is there are positive constants LB, LF , LG > 0
such that




|Ft(x, y, z, ξ)− Ft(x
′, y′, z′, ξ′)| ≤ LF (|x− x′|+ |y − y′|+ |z − z′|+W2(ξ, ξ

′))

|Bt(x, y, ξ)− Bt(x
′, y′, ξ′)| ≤ LB (|x− x′|+ |y − y′|+W2(ξ, ξ

′))

|G(x, µ) −G(x′, µ′)| ≤ LG (|x− x′|+W2(µ, µ
′))

(20)

for every t ∈ [0, T ], x, x′ ∈ Rℓ, y, y′ ∈ Rq, z, z′ ∈ Rq×d ξ, ξ′ ∈ P2(R
ℓ × Rq) and µ, µ′ ∈ P2(R

ℓ) .

(B2) The functions B,F and G satisfy the linear growth conditions




|Bt(x, y, ξ)| ≤ LB

(
1 + |x|+ |y|+

( ∫
|v|2 ξ(dv)

)1/2)

|Ft(x, y, z, ξ)| ≤ LF

(
1 + |x|+ |y|+ |z|+

( ∫
|v|2 dξ(v)

)1/2)

|G(x, µ)| ≤ LG

(
1 + |x|+

( ∫
|v|2 dµ(v)

)1/2)
.

(B2’) The functions B,F and G satisfy the linear growth conditions




|Bt(x, y, ξ)| ≤ LB

(
1 + |y|+

( ∫
|v|2 dν(v)

)1/2)

|Ft(x, y, z, ξ)| ≤ LF

(
1 + |y|+

( ∫
|v|2 dν(v)

)1/2)

|G(x, µ)| ≤ LG

where ν is the second marginal of ξ.



CONVERGENCE OF LARGE POPULATION GAMES TO MFGS WITH INTERACTION THROUGH THE CONTROLS 11

Remark 8. Under the conditions (B1)-(B2) and (A5), it can be checked (see e.g. [39, Remark 2.1]) that the
functions 




(x, y) 7→ (Bt(x
1, y1, LN (x, y)), . . . , Bt(x

N , yN , LN(x, y)))

(x, y, z) 7→ (Ft(x
1, y1, z1LN (x, y)), . . . , Ft(x

N , yN , zN , LN (x, y)))

x 7→ (G(x1, LN (x)), . . . , G(xN , LN(x)))

are Lipschitz continuous and of linear growth (with Lipschitz constant independent of N). Thus, the unique
solvability of the system (19) when the time horizon T is small enough is guaranteed e.g. by [13, Theorem
4.2]. Existence of a unique solution on arbitrary large time intervals typically requires additional conditions, for
instance, if one additionally assumes (B2’), see [42, Theorem 4.1] (when the coefficients are also smooth) or
under monotonicity-type conditions on the drift and the generator for instance as assumed in (B3) below, see
[17, Theorem 2.6] or [44].

The first main result of this section is the following:

Theorem 9. Assume that the conditions (B1)-(B2), (A5) are satisfied and that there is k > 2 such that
E[|x10|k] < ∞. Denote by (X,Y , Z) ∈ S2(RℓN ) × S2(RqN ) × H2((Rq×d)N×N ) the solution of the FBSDE (19).
There is δ > 0 such that if T ≤ δ and the McKean-Vlasov FBSDE

(21)





Xt = x10 +

∫ t

0

Bu(Xu, Yu,L(Xu, Yu)) du+ σWt

Yt = G(XT ,L(XT )) +

∫ T

t

Fu(Xu, Yu, Zu,L(Xu, Yu)) du−
∫ T

t

Zu dWu

admits a unique solution (X,Y, Z) ∈ S2(Rℓ)× S2(Rq)×H2(Rq×d), then it holds

(22) sup
t∈[0,T ]

E
[
W2

2

(
LN (Xt, Y t),L(Xt, Yt)

)]
≤ C (rN,q+ℓ,k + rN,ℓ,k)

for all (t, N) ∈ [0, T ]× N, where rN,q+ℓ,k := rN,q+ℓ,k,2 is given by (6), and for some constants C depending on
LB, LF , LG, k, σ, E[|x10|k] and T . In addition for all N ∈ N we also have

E

[
sup

s∈[0,T ]

|X1,N
s −X1

s |2
]
+ E

[
|Y 1,N

t − Y 1
t |2

]
+ E

[ ∫ T

0

|Z1,1,N
s − Z1

s |2 ds
]

≤ C
(
rN,q+ℓ,k + rN,ℓ,k

)
.(23)

4.1. Proof of Theorem 9. The arguments of the proof of Theorem 9 are broken up into intermediate results
that we present in this subsection. Given a progressive d-dimensional process γ, we use the shorthand notation
Es,t(γ ·W ) for the stochastic exponential of γ. That is, we put

Es,t(γ ·W ) := exp
(∫ t

s

γu dWu − 1

2

∫ t

s

|γu|2 du
)
.

In this whole subsection, we assume that (21) admits a unique solution denoted by (X,Y, Z). We start by proving
useful moment bounds for solutions of McKean-Vlasov FBSDEs. For simplicity in this subsection, we will put
Lf := max(LB, LF , LG).

Lemma 10. Assume that the condition (B2) is satisfied and that (21) admits a unique solution (X,Y, Z) ∈
S2(Rℓ) × S2(Rq) × H(Rq×d). Further assume that there is k ≥ 2 such that E[|x10|k] < ∞. If either T is small
enough or (B3) is satisfied for KB therein such that

(24) KB ≥ 4(k − 1)
LB,y,ξ

2k(LF + LG) exp(kTLF (2 +
2LF

k(k−1) ))
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where LB,y,ξ is the Lipschitz constant of B in (y, ξ), then it holds that

(25) E
[

sup
t∈[0,T ]

|Xt|k
]
+ sup

t∈[0,T ]

E
[
|Yt|k

]
<∞.

Proof. When T is small enough, the proof follows standard FBSDE estimations. It is therefore omitted.
Let us assume the the monotonicity condition (B3) is satisfied. Applying Itô’s formula to |X |k, using (B3)

and (B2) yields

|Xt|k ≤ |x10|k + k

∫ t

0

−KB|Xu|k + LB,y,ξ|Xu|k−1(1 + |Yu|+ E[|Xu|2]1/2 + E[|Yu|2]1/2) du

+ k

∫ t

0

Xk−1
u σ dWu

≤ |x10|k + k

∫ t

0

(
4(k − 1)

LB,y,ξ

ε
−KB

)
|Xu|k + εLB,y,ξ

{
1 + |Yu|k + E[|Xu|2]k/2 + E[|Yu|2]k/2

}
du

+ k

∫ t

0

Xk−1
u σ dWu

where LB,y,ξ denotes the Lipschitz contant of B in y and ξ, and where we used the inequality xy ≤ xp/pε+ εyq/q
with p, q Hölder conjugates. Thus, taking expectation (up to localization) and applying Gronwall’s inequality

E[|Xt|k] ≤ εkLB,y,ξe
(
4(k−1)LB,y,ξ

ε
−KB)TE

[ ∫ T

0

|Yu|k du
]
+ C.(26)

Similarly, applying Itô’s formula to Y k and then Young’s inequality for some η > 0 yields

|Yt|k ≤ E

[
|G(XT ,L(XT ))|k + LFk

∫ T

t

|Yu|k−1(|Xu|+ |Yu|+ |Zu|+ E[|Xu|2]1/2 + E[|Yu|2]1/2)

− k(k − 1)

2

∫ T

t

Y k−2
u |Zu|2 du | Ft

]

≤ E

[
2kLG(|XT |k + E[|XT |2]k/2 + 1) + kLF (1 +

k − 1

k
+

1

η
)

∫ T

t

|Yu|k du

+ LF

∫ T

t

|Xu|k + E[|Xu|2]k/2 + E[|Yu|2]k/2 + k(ηLF − k(k − 1)

2
)

∫ T

t

|Yu|k−2|Zu|2 du | Ft

]
(27)

where the second inequality uses (26). Choosing η such that ηLf − k(k−1)
2 = 0, taking expectation of both sides

and applying Gronwall’s inequality yields

E[|Yt|k] ≤ C1E

[
|XT |k +

∫ T

0

|Xu|k du
]
+ C2

≤ C1εe
(
4(k−1)LB,y,ξ

ε
−KB)TTE

[∫ T

0

|Yu|k du
]
+ C2

with C1 := 2k(LF + LG) exp(kTLF (2 + 2LF

k(k−1) )). First choosing ε > 0 small enough that ε < [2k(LF +

LG) exp(kTLF (2+
2LF

k(k−1) ))]
−1 and thenKB ≥ 4(k−1)LB,y,ξ/ε, and integrating on both sides yieldsE[

∫ T

0 |Yu|k du] <
∞. In view of (26) and (27) this yields the result. �

The proof of Theorem 9 is based on the coupling technique used in [39]. To this end, we fix N i.i.d. copies

(X̃1, Ỹ 1, Z̃1), . . . , (X̃N , Ỹ N , Z̃N ) of (X,Y, Z) such that for each i, (X̃ i, Ỹ i, Z̃i) solves Equation (21) with driving
Brownian motion W i and initial condition xi0. This can be done when the McKean-Vlasov FBSDE (21) has a
unique solution, and thus the associated law L(Xu, Yu) is unique at each time u ∈ [0, T ]. By [13, Theorem 4.24],
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the FBSDE (21) is uniquely solvable for T small. The following lemma is a central element of our argument.

Recall the notation X̃ := (X̃1, . . . , X̃N) and Ỹ := (Ỹ 1, . . . , Ỹ N ).

Lemma 11. If (B1)-(B2) are satisfied, then there are positive constants C and c(Lf ) depending only on Lf

such that if T ≤ c(Lf ), then for every 0 ≤ t ≤ T it holds that

E
[
W2

2 (L(Xt, Yt), L
N(Xt, Y t))

]

≤ CE
[
W2

2 (L(Xt, Yt), L
N (X̃t, Ỹ t)) +W2

2 (L(XT ), L
N (X̃T ))

]
.(28)

Proof. Applying Itô’s formula to the process eβt|Ỹ i
t − Y i,N

t |2 for some β ≥ 0 to be determined later, we have

eβt|Ỹ i
t − Y i,N

t |2

= eβT |G(X̃ i
T ,L(XT ))−G(X i,N

T , LN(XT ))|2 − 2

N∑

k=1

∫ T

t

eβu(Ỹ i
u − Y i,N

u )(δk,iZ̃
i
u − Zi,k,N

u )dW k
u

+ 2

∫ T

t

eβu(Ỹ i
u − Y i,N

u )
[
Fu(X̃

i
u, Ỹ

i
u, Z̃

i
u,L(Xu, Yu))− Fu(X

i,N
u , Y i,N

u , Zi,i,N
u , LN(Xu, Y u))

]
du

−
N∑

j=1

∫ T

t

eβu|Zi,j,N
u − δijZ

i
u|2 du −

∫ T

t

βeβu|Ỹ i
u − Y i,N

u |2du.

By Lipschitz continuity of F and G, then applying Young’s inequality with a strictly positive constant a to be
set below we get

eβt|Ỹ i
t − Y i,N

t |2 ≤ 2eβTLf |X̃ i
T −X i,N

T |2 + 2eβTLfW2
2 (L(XT ), L

N (XT ))

− 2

N∑

k=1

∫ T

t

eβu(Ỹ i
u − Y i,N

u )(δk,iZ̃
i
u − Zi,k,N

u )dW k
u +

∫ T

t

eβuLf |X̃ i
u −X i,N

u |2du

+

∫ T

t

eβu (Lfa+ 4Lf − β) |Ỹ i
u − Y i,N

u |2du −
N∑

j=1

∫ T

t

|Zi,j,N
u − δijZ̃

i
u|2 du

+ Lf

∫ T

t

eβuW2
2 (L

N (Xu, Y u),L(Xu, Yu)) du +
Lf

a

∫ T

t

eβu|Z̃i
u − Zi,i,N

u |2du.

Letting a > Lf and β = Lfa+4Lf , and taking conditional expectation on both sides above, we have the estimate

|Ỹ i
t − Y i,N

t |2 ≤ 2eβTLfE
[
|X̃ i

T −X i,N
T |2 +W2

2 (L
N (XT ),L(XT ))

+

∫ T

t

(
|X̃ i

u −X i,N
u |2 +W2

2 (L
N(Xu, Y u),L(Xu, Yu))

)
du | FN

t

]
.(29)

On the other hand, for every 0 ≤ s ≤ t ≤ T , by Lipschitz continuity of B, the forward equation yields the estimate

|X̃ i
t −X i,N

t | ≤ Lf

∫ t

0

(
|X̃ i

u −X i,N
u |+ |Ỹ i

u − Y i,N
u |+W2(L

N(Xu, Y u),L(Xu, Yu))
)
du.(30)

Adding up the squared power of the above with (29) yields

|X̃ i
t −X i,N

t |2 + |Ỹ i
t − Y i,N

t |2 ≤ CLf ,TE
[
W2

2 (L
N (XT ),L(XT ))

+

∫ T

0

(
|X̃ i

u −X i,N
u |2 + |Ỹ i

u − Y i,N
u |2 +W2

2 (L
N (Xu, Y u),L(Xu, Yu))

)
du | FN

t

]
.
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If T < 1 ∧ 1
CLf ,T

, we then have

E
[
|X̃ i

t −X i,N
t |2 + |Ỹ i

t − Y i,N
t |2

]

≤ CLf ,T,1E
[
W2

2 (L
N(XT ),L(XT )) +

∫ T

0

W2
2 (L

N (Xu, Y u),L(Xu, Yu)) du
]

for a constant CLf ,T,1 which depends only on Lf , T . Coming back to the forward equation, it follows by the
definition of the 2-Wasserstein distance, by (30) and by Gronwall’s inequality that

W2
2 (L

N(X̃T ), L
N (XT )) ≤

1

N

N∑

i=1

|X̃ i
T −X i,N

T |2

≤ e2LfT

∫ T

0

( 1

N

N∑

i=1

|Ỹ i
u − Y i,N

u |2 +W2
2 (L

N(Xu, Y u),L(Xu, Yu))
)
du.

Therefore, we can continue the estimation of |X̃ i
t −X i,N

t |2 + |Ỹ i
t − Y i,N

t |2 by

E
[
|X̃ i

t −X i,N
t |2 + |Ỹ i

t − Y i,N
t |2

]

≤ CLf ,T,1E

[
W2

2 (L
N (X̃T ),L(XT )) +W2

2 (L
N (X̃T ), L

N (XT ))

+

∫ T

0

W2
2 (L

N (Xu, Y u),L(Xu, Yu)) du

]

≤ CLf ,T,1 ∨ 2e2LfTE

[
W2

2 (L(XT ), L
N (X̃T )) +

∫ T

0

( 1

N

N∑

i=1

{
|Ỹ i

u − Y i,N
u |2

+ |X̃ i
u −X i,N

u |2
}
+W2

2 (L
N(Xu, Y u),L(Xu, Yu))

)
du

]
.(31)

Thus, further assuming T ≤ 1

CLf ,T,1∨eLfT yields

E
[
W2

2 (L
N(Xt, Y t), L

N (X̃t, Ỹ t))
]
≤ E

[ 1

N

N∑

i=1

(|X̃ i
t −X i,N

t |2 + |Ỹ i
t − Y i,N

t |2)
]

≤ CLf ,T,2E
[
W2

2 (L(XT ), L
N (X̃T )) +

∫ T

0

W2
2 (L

N (Xu, Y u),L(Xu, Yu)) du
]
.

By the triangle inequality we can therefore deduce that

E
[
W2

2 (L
N(Xt, Y t),L(Xt, Yt))

]

≤ E
[
W2

2 (L
N (X̃t, Ỹ t),L(Xt, Yt))

]
+ E

[
W2

2 (L
N (X̃t, Ỹ t), L

N(Xt, Y t))
]

≤ E
[
W2

2 (L
N (X̃t, Ỹ t),L(Xt, Yt))

]

+ CLf ,T,2E
[
W2

2 (L(XT ), L
N(X̃T )) +

∫ T

0

W2
2 (L

N (Xu, Y u),L(Xu, Yu)) du
]

from which we derive (28), assuming T < 1/CLf ,T,2. �
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Proof. (of Theorem 9) The bound (22) follows by Lemmas 11 and 10. In fact, from Lemma 11 if T is small
enough that T < 1/CLf ,T,2, then for every t ∈ [0, T ] it holds that

E
[
W2

2 (L
N (Xt, Y t),L(Xt, Yt))

]

≤ CE
[
W2

2 (L
N (X̃t, Ỹ t),L(Xt, Yt))

]
+ CE

[
W2

2 (L
N (X̃T ),L(XT ))

]

≤ C(rN,m+ℓ,k + rN,ℓ,k)

where the second inequality follows by [23, Theorem 1] which can be applied thanks to Lemma 10. To prove (23),
first observe that by assumption (B1) and Gronwall’s inequality we readily have

(32) |X1,N
t −X1

t | ≤ eLfT

∫ t

0

(
|Y 1,N

u − Y 1
u |+W2(L

N (Xu, Y u),L(Xu, Yu))
)
du

for all 0 ≤ t ≤ T . On the other hand, by Itô’s formula applied to the process |Y 1,N
t − Y 1

t |2 as in the proof of
Lemma 11, and then the inequality 2xy ≤ εx2 + y2/ε with the constant ε := 1/2, we have

|Y 1,N
t − Y 1

t |2 +
N∑

j

∫ T

t

|Z1,j,N
s − δ1jZ

1
s |2 ds

≤ Lf

(
|X1,N

T −X1
T |2 +W2

2 (L
N (XT ),L(XT ))

)
− 2

N∑

k=1

∫ T

t

(Y 1,N
s − Y 1

s )(Z
1,k,N
s − δk,1Z

1
s )dW

k
s

+

∫ T

t

(
1

2
|Z1,N

s − Z1
s |2 + |X1,N

s −X1
s |2

)
ds+

∫ T

t

(3L2
f + Lf)|Y 1,N

s − Y 1
s |2ds

+

∫ T

t

LfW2
2 (L

N (Xs, Y s),L(Xs, Ys)) ds.(33)

Thus, it follows by Gronwall’s inequality that

|Y 1,N
t − Y 1

t |2 + E

[∫ T

t

|Z1,1,N
u − Z̃1

u du | FN
t

]

≤ CLf ,TE

[
W2

2 (L
N (XT ),L(XT )) + sup

u∈[s,T ]

|X1,N
u −X1

u|2

+

∫ T

t

|Y 1,N
u − Y 1

u |2du+

∫ T

t

W2
2 (L

N(Xu, Y u),L(Xu, Yu)) du | FN
t

]

≤ CLf ,TE

[
W2

2 (L
N (XT ),L(XT ))

+

∫ T

0

W2
2 (L

N (Xu, Y u),L(Xu, Yu)) du +

∫ T

0

|Y 1,N
u − Y 1

u |2 du | FN
t

]
,(34)

where the second inequality follows by (32) and CLf ,T > 0 is a constant depending only on Lf and T . If T is
small enough, then we have

sup
t∈[s,T ]

E[|Y 1,N
t − Y 1

t |2]

≤ CLf ,TE

[
W2

2 (L
N (XT ),L(XT )) +

∫ T

0

W2
2 (L

N (Xu, Y u),L(Xu, Yu)) du

]

≤ C(rN,q+ℓ,k + rN,ℓ,k)
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where the last inequality follows from (22), and where we also used that

(35) W2
2 (L

N (XT ),L(XT )) ≤ W2
2 (L

N (XT , Y T ),L(XT , YT )).

Thus, using (32) leads to

E
[

sup
t∈[s,T ]

|X1,N
t −X1

t |2
]
≤ C

(
rN,q+ℓ,k + rN,ℓ,k

)
.

Finally, coming back (34) yields the bound for ‖Z1,1,N − Z1‖H2(Rℓ×Rd). This concludes the proof. �

4.2. Propagation of chaos under monotonicity conditions. The next result shows that under additional
monotonicity conditions Theorem 9 can be extended to arbitrary time duration T > 0. These monotonicity
conditions are classical in the analysis of FBSDE, they are for instance used in [44; 17; 5]. Here, it is important
to distinguish the Lipschitz–constant of B in each of its arguments. Thus, in (B1), we write

|Bt(x, y, ξ)−Bt(x
′, y′, ξ′)| ≤ LB,x|x− x′|+ LB,y|y − y′|+ LB,ξW2(ξ, ξ

′)

for some LB,x, LB,y, LB,ξ > 0 and all x, x′ ∈ Rℓ, y, y′ ∈ Rq and ξ, ξ′ ∈ P2(Rℓ × Rq).

Theorem 12 (Monotonicity conditions). Assume that the conditions (B1)-(B2), (A5) are satisfied and that
there is k > 2 such that E[|x10|k] < ∞. Further assume that the McKean-Vlasov FBSDE (21) admits a unique
solution (X,Y, Z) ∈ S2(Rℓ)× S2(Rq)×H2(Rq×d) and:

(B3) there is a constant KB > 0 such that the following monotonicity property holds

(x− x′) ·
(
Bt(x, y, ξ)−Bt(x

′, y, ξ)
)
≤ −KB|x− x′|2

for all x, x′ ∈ Rℓ and (t, y, ξ) ∈ [0, T ]× Rq × P2(R
ℓ × Rℓ).

If the constant KB satisfies (24) and

KB > 8T (L2
G + LFT )(LB,ξ + LB,y)

2 exp
{
2LF

(
6 + LF

)}
+ 2LB,ξ,

then it holds

sup
t∈[0,T ]

E

[
W2

2

(
LN(Xt, Y t),L(Xt, Yt)

)]
≤ CrN,q+ℓ,k

and

sup
t∈[0,T ]

(
E
[
|X i,N

t −X i
t |2

]
+ E

[
|Y i,N

t − Y i
t |2

])
+ E

[∫ T

0

|Zi,i,N
t − Zi

t |2 dt
]
≤ CrN,q+ℓ,k

for all t ∈ [0, T ], N ∈ N and for a constant C > 0.

Proof. As in the proof of Theorem 9, let (X̃ i, Ỹ i, Z̃i)1≤i≤N be N i.i.d. copies of the solution (X,Y, Z) of the

Mckean–Vlasov equation (21). We will use the shorthand notation ∆X i
t := X i,N

t − X̃ i
t , ∆Y

i
t := Y i,N

t − Ỹ i
t and

∆Zi,j
t := Zi,j,N

t − δ{i=j}Z̃
i
t . Applying Itô’s formula, we have

|∆X i
t |2 = 2

∫ T

0

∆X i
u ·

(
Bu(X

i,N
u , Y i,N

u , LN (Xu, Y u))−Bu(X̃
i
u, Ỹ

i
u,L(Xu, Yu)

)
du

= 2

∫ t

0

∆X i
u ·

(
Bu(X

i,N
u , Y i,N

u , LN (Xu, Y u))−Bu(X̃
i
u, Y

i,N
u , LN (Xu, Y u))

)
du

+ 2

∫ t

0

∆X i
u ·

(
Bu(X̃

i
u, Y

i,N
u , LN(Xu, Y u))−Bu(X̃

i
u, Ỹ

i
u,L(Xu, Yu))

)
du

≤ 2

∫ t

0

−KB|∆X i
u|2 + LB,y|∆X i

u||∆Y i
u|+ LB,ξ|∆X i

u|
( 1

N

N∑

j=1

|∆Xj
u|2 + |∆Y j

u |2
)1/2

+ LB,ξ|∆X i
u|W2(L

N (X̃u, Ỹ u),L(Xu, Yu)) du
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where the latter inequality follows by the monotonicity property and Lipschitz–continuity of B and triangular
inequality applied on the Wasserstein distance. Now, applying Young’s inequality with some ε > 0, we obtain

|∆X i
t |2 ≤ 2

∫ t

0

(LB,y + LB,ξ

2ε
+ LB,ξ −KB

)
|∆X i

u|2 +
LB,ξ

2

1

N

N∑

j=1

|∆Xj
u|2 du

+

∫ t

0

εLB,y|∆Y i
u|2 + εLB,ξ

1

N

N∑

j=1

|∆Y j
u |2 + LB,ξW2

2 (L
N (X̃u, Ỹ u),L(Xu, Yu)) du.(36)

Thus, taking the average on both sides gives

1

N

N∑

j=1

|∆Xj
t |2 ≤ 2

∫ t

0

(LB,y + LB,ξ

2ε
+ 2LB,ξ −KB

) 1

N

N∑

j=1

|∆Xj
u|2 du

+

∫ t

0

ε(LB,ξ + LB,y)
1

N

N∑

j=1

|∆Y j
u |2 + LB,ξW2

2 (L
N(X̃u, Ỹ u),L(Xu, Yu)) du.

Next, we apply Gronwall’s inequality to arrive at the bound

1

N

N∑

j=1

|∆Xj
t |2

≤ e2δ(ε)T
∫ t

0

ε(LB,ξ + LB,y)
1

N

N∑

j=1

|∆Y j
u |2 + LB,ξW2

2 (L
N (X̃u, Ỹ u),L(Xu, Yu)) du(37)

where we introduced the constant

δ(ε) :=
LB,y + LB,ξ

2ε
+ 2LB,ξ −KB.

Let us now turn to the backward process. Here again, we apply Itô’s formula to get

|∆Y i
t |2 = |G(X i,N

T , LN(XT ))−G(X̃T ,L(XT ))|2

+ 2

∫ T

t

∆Y i
u ·

(
Fu(X

i,N
u , Y i,N

u , Zi,i,N
u , LN (Xu, Y u)− Fu(X̃

i
u, Ỹ

i
u, Z̃

i
u,L(Xu, Yu)))

)
du

−
N∑

j=1

∫ T

t

|∆Zi,j
u |2 du−

N∑

j=1

∫ T

t

2∆Y i
u∆Z

i,j
u dW j

u

≤ 2L2
G

(
|∆X i

T |2 +
1

N

N∑

j=1

|∆Xj
T |2 +W2

2 (L
N (X̃T ),L(XT ))

)
+ 2LF

∫ T

t

|∆Y i
u |
{
|∆X i

u|+ |∆Y i
u|+ |∆Zi,i

u |

+
( 1

N

N∑

j=1

|∆Xj
u|2 + |∆Y j

u |2
)1/2

+W2(L
N (X̃u, Ỹ u),L(Xu, Yu))

}
du

−
N∑

j=1

∫ T

t

|∆Zi,j
u |2 du−

N∑

j=1

∫ T

t

2∆Y i
u∆Z

i,j
u dW j

u

where we used Lipschitz–continuity of F and G. Now, we apply Young’s inequality with some constant η > 0
and then take conditional expectation on both sides (the martingale property follows from integrability properties
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proved above) to arrive at

|∆Y i
t |2 + (1 − ηLF )E

[ N∑

j=1

∫ T

t

|∆Zi,j
u |2 du | FN

t

]
≤ 2L2

GE
[
|∆X i

T |2 +
1

N

N∑

j=1

|∆Xj
T |2 | FN

t

]

+ 2LFE

[∫ T

t

(
5 +

1

η

)
|∆Y i

u|2 +
1

N

N∑

j=1

|∆Y j
u |2 + |∆X i

u|2 +
1

N

N∑

j=1

|∆Xj
u|2

+W2
2 (L

N(X̃u, Ỹ u),L(Xu, Yu)) du | FN
t

]
+ 2L2

GE
[
W2

2 (L
N (X̃T ),L(XT )) | FN

t

]
.(38)

Averaging on both sides and choosing η small enough that 1− ηF > 0 yields

1

N

N∑

j=1

|∆Y j
t |2 + (1 − ηLF )

1

N

N∑

j=1

E
[ ∫ T

t

|∆Zj,j
u |2 du | FN

t

]
≤ 4L2

GE
[ 1

N

N∑

j=1

|∆Xj
T |2 | FN

t

]

+ 2LFE

[∫ T

t

(
6 +

1

η

) 1

N

N∑

j=1

|∆Y j
u |2 + 2

1

N

N∑

j=1

|∆Xj
u|2

+W2
2 (L

N (X̃u, Ỹ u),L(Xu, Yu)) du | FN
t

]
+ 2L2

GE
[
W2

2 (L
N (X̃T ),L(XT )) | FN

t

]
.

We will subsequently apply Gronwall’s inequality, take expectation on both sides and then integrate in time.
Thus, due to Fubini’s theorem we have

E

[
1

N

N∑

j=1

∫ T

0

|∆Y j
t |2 dt

]
≤ 4L2

GTe
δ̄(η)TE

[
1

N

N∑

j=1

|∆Xj
T |2

]
+ 2TL2

Ge
δ̄(η)TE

[
W2

2 (L
N (X̃T ),L(XT ))

]

+ 2LFTe
δ̄(η)TE

[∫ T

0

2
1

N

N∑

j=1

|∆Xj
u|2 +W2

2 (L
N (X̃u, Ỹ u),L(Xu, Yu)) du

]

where we introduced the constant

δ̄(η) := 2LF

(
6 +

1

η

)
.

Using (37), we further bound the above as

E

[
1

N

N∑

j=1

∫ T

0

|∆Y j
t |2 dt

]
≤ Γε,T,G,B,FE

[
1

N

N∑

j=1

∫ T

0

|∆Y j
t |2 dt

]
+ 2TL2

GE
[
W2

2 (L
N(X̃T ),L(XT ))

]

+ 4T (L2
GLB,ξ + LFT )(LB,ξ + 1)eδ̄(η)T e2δ(ε)TE

[ ∫ T

0

W2
2 (L

N (X̃u, Ỹ u),L(Xu, Yu)) du

]

with

Γε,T,G,B,F := 4εT (L2
G + LFT )e

δ̄(η)T e2δ(ε)T (LB,ξ + LB,y).

First choose ε small enough that

4εT (L2
G + LFT )e

δ̄(η)T (LB,ξ + LB,y) < 1.

This ε does not depend on KB. With such an ε at hand, choose KB large enough that δ(ε) ≤ 0. Thus, we need

KB ≥ T (L2
G + LFT )e

δ̄(η)T (LB,ξ + LB,y)
2 + LB,ξ.
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This implies that Γε,T,G,B,F < 1. Hence, we have

E

[
1

N

N∑

j=1

∫ T

0

|∆Y j
t |2 dt

]
≤ 4T (L2

GLB,ξ + 2LFT )(LB,ξ + 1)eδ̄(η)T

1− Γε,T,G,B,F
E

[ ∫ T

0

W2
2 (L

N (X̃u, Ỹ u),L(Xu, Yu)) du

]

+
2TL2

G

1− Γε,T,G,B,F
E
[
W2

2 (L
N(X̃T ),L(XT ))

]
.

This also implies, due to (37), that

E

[
1

N

N∑

j=1

∫ T

0

|∆Xj
t |2 dt

]
≤ CE

[ ∫ T

0

W2
2 (L

N (X̃u, Ỹ u),L(Xu, Yu))) du

]

+ CE
[
W2

2 (L
N (X̃T ),L(XT ))

]

for some constant C > 0.
We will now use these inequalities to show the claimed convergence results. Going back to (36) and (recalling

the choice of ε), we have

E[|∆X i
t |2] ≤ E

[
2

∫ t

0

LB,ξ

2

1

N

N∑

j=1

|∆Xj
u|2 du

+

∫ t

0

εLB,y|∆Y i
u |2 + εLB,ξ

1

N

N∑

j=1

|∆Y j
u |2 + LB,ξW2

2 (L
N (X̃u, Ỹ u),L(Xu, Yu)) du

]

≤ CE

[ ∫ T

0

W2
2 (L

N(X̃u, Ỹ u),L(Xu, Yu)) du

]
+ CE

[
W2

2 (L
N (X̃T ),L(XT ))

]
+ εLB,ξE

[ ∫ t

0

|∆Y i
u|2 du

]
.(39)

Plugging this bound in (38), gives

E[|∆Y i
t |2] ≤ 2L2

Ge
δ̄(η)E

[
|∆X i

T |2 +
1

N

N∑

j=1

|∆Xj
T |2

]
+ 2L2

Ge
δ̄(η)E

[
W2

2 (L
N (X̃T ),L(XT ))

]

+ 2LF e
δ̄(η)E

[ ∫ T

t

1

N

N∑

j=1

|∆Y j
u |2 + |∆X i

u|2 +
1

N

N∑

j=1

|∆Xj
u|2 +W2

2 (L
N (X̃u, Ỹ u),L(Xu, Yu)) du

]

≤ CE

[ ∫ T

0

W2
2 (L

N (X̃u, Ỹ u),L(Xu, Yu)) du

]
+ CE

[
W2

2 (L
N (X̃T ),L(XT ))

]

+ 2εLB,ξTe
δ̄(η)T (LF + LG)E

[ ∫ T

0

|∆Y i
u|2 du

]
.(40)

We now integrate in time on both sides, we use Fubini’s theorem and further choose ε small enough that

2εLB,ξTe
δ̄(η)T (LF + LG) < 1. This allows to obtain the bound

E

[ ∫ T

0

|∆Y i
u |2 du

]
≤ CE

[ ∫ T

0

W2
2 (L

N (X̃u, Ỹ u),L(Xu, Yu))) du

]
+ CE

[
W2

2 (L
N(X̃T ),L(XT ))

]
.

Thus, due to (39), we have

E
[
|∆X i

t |2
]
≤ CE

[ ∫ T

0

W2
2 (L

N(X̃u, Ỹ u),L(Xu, Yu))) du

]
+ CE

[
W2

2 (L
N (X̃T ),L(XT ))

]
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for all t ∈ [0, T ]. Going back once again to (38) (after taking expectation and using Gronwall’s inequality) allows
to obtain the bound

E

[
|∆Y i

t |2 +
∫ T

0

|∆Zi
u| du

]
≤ CE

[ ∫ T

0

W2
2 (L

N (X̃u, Ỹ u),L(Xu, Yu))) du

]

+ CE
[
W2

2 (L
N (X̃T ),L(XT ))

]
.

Finally observe that by triangular inequality we have

E

[
W2

2 (L
N(Xt, Y t),L(Xt, Yt)))

]

≤ 2
1

N

N∑

j=1

E

[
|∆Xj

t |2 + |∆Y j
t |2

]
+ 2E

[
W2

2 (L
N (X̃t, Ỹ t),L(Xt, Yt)))

]
.

This concludes the proof since the bound

E

[
W2

2 (L
N (X̃t, Ỹ t),L(Xt, Yt))

]
+ E

[
W2

2 (L
N(X̃T ),L(XT ))

]
≤ CrN,q+ℓ,k.

follows by [23, Theorem 1] and Lemma 10. �

4.3. Concentration estimates. We conclude this section with some deviation and dimension-free concentration
estimates to strengthen the above convergence results.

Theorem 13. Assume that the conditions (B1)-(B2) and (A5) are satisfied and that the McKean-Vlasov
FBSDE (21) admits a unique solution (X,Y, Z) ∈ S2(Rℓ) × S2(Rq) × H2(Rq×d). Then we have the following
concentration estimations:

(1) If there is k > 4 such that E[|x10|k] <∞, then for every ε ∈ (0,∞), N ≥ 1 it holds that

sup
t∈[0,T ]

P
(
W2

2 (L
N (Xt, Y t),L(Xt, Yt)) ≥ ε

)
(41)

≤ C
(
aN, ε2

1{ε<2} + bN,k, ε2
+

2

ε
(rN,q+ℓ,k + rN,ℓ,k)

)

for some constant C > 0 which does not depend on N, ε, with bN,k,ε := N(Nε)−(k−ε)/2 and

aN,ε :=





exp(−cNε2) if q + ℓ < 4

exp(−cN(ε/ log(2 + 1/ε))2) if q + ℓ = 4

exp(−cNε(q+ℓ)/2) if q + ℓ > 4

for two positive constants C and c depending only on Lf , T , σ, k and E[|x10|k].
(2) There is a constant c(Lf ) > 0 such that if T < c(Lf ), then denoting by µN the N -fold product of the law

L(X,Y ) of (X,Y ), it holds that

(42) µN
(
H −

∫
H dµN ≥ ε

)
≤ e−Kε2

for every 1–Lipschitz continuous function H ∈ C([0, T ],Rℓ+q)N for some constant K depending on Lf , T
and σ, but not on (N, ℓ, q, d). If (B2) is replaced by (B2’), then (42) holds for all T > 0.

Let us start by the following lemma which gives a Talagrand T2 inequality for the law of the solution of a
foward-backward SDE. Note that this result is not covered by [3] since here, the system is fully coupled.

Lemma 14. Let m1,m2 ∈ N and let f : [0, T ]×Rm1 ×Rm2 ×Rm2×d → Rm2 , b : [0, T ]×Rm1 ×Rm2 → Rm1 and
g : Rm1 → Rm2 be such that f(t, ·, ·, ·), b(t, ·, ·) and g are three Lf–Lipschitz continuous function uniformly in t,
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and σ ∈ Rm1×d is a matrix satisfying (A5). Then there is a constant c(Lf ) > 0 depending only on Lf such that
if T ≤ c(Lf ), then the FBSDE

(43)





Xt = x+

∫ t

0

bu(Xu, Yu) du + σWt

Yt = g(XT ) +

∫ T

t

fu(Xu, Yu, Zu) du−
∫ T

t

Zu dWu

admits a unique square integrable solution (X,Y, Z), such that X and Y have almost surely continuous paths and

(44) the law L(X,Y ) of (X,Y ) satisfies T2(Cx,y)

for some constant Cx,y (explicitly given in the proof) depending only on Lf , T and σ, but which does not depend
on m1,m2 and d. That is,

W2(L(X,Y ), Q) ≤
√
Cx,yH(Q|L(X,Y )) for all Q ∈ P2(C([0, T ],Rm1+m2))

where H is the Kullback-Leibler divergence defined3, for any two probability measures Q1 and Q2 as

H(Q2|Q1) :=

{
EQ2 [log(

dQ2

dQ1
)] if Q2 ≪ Q1

+∞ else.

If one additionally assumes

(B2”) |g(x)| ≤ Lf , |ft(x, y, z)| ≤ Lf(1 + |y|+ |z|) and |bt(x, y)| ≤ Lf(1 + |y|) for all t, x, y, z,

then (44) holds for every T > 0.

Proof. This lemma follows from a combination of results in [20]. First notice that the continuity of the paths
of (X,Y ) is clear. In addition, there is a deterministic Lv–Lipschitz continuous, v : [0, T ] × Rm1 → Rm2 such
that Y s,x

t = v(t,Xs,x
t ) P -a.s., where (Xs,x, Y s,x, Zs,x) is the solution of (43) with Xs,x

s = x. We justify below
that v is Lv–Lipschitz continuous and the constant Lv does not depend on (m1,m2, d). But see already that as
a consequence, the process X satisfies the SDE

Xs,x
t = x+

∫ t

s

b̃(u,Xs,x
u ) du+ σ(Wt −Ws)

where the drift b̃(t, x) := b(t, x, v(t, x)) is Lf(1 + Lv)–Lipschitz continuous with respect to the second variable.
Thus it follows by [43, Theorem 5] (which extends the original work [20]) that the law L(X) of X satisfies T2(C1)

with constant C1 = 4|σ|2Te4T (L2
fL

2
vT+1). Therefore, by [20, Lemma 2.1], we can now deduce that the law L(X,Y )

satisfies T2(Cx,y) with

(45) Cx,y := C1(1 + Lv)
2.

In particular, Cx,y does not depend on m1,m2 and d.
To conclude the proof, it remains to justify that Lv does not depend on the dimension. If T ≤ c(Lf ) is

sufficiently small, then this follows by [17, Corollary 1.4]. If T is arbitrary and the condition (B2”) is satisfied,
then this follows from [13, Theorem 4.12] or (the proof of) [34, Theorem 2.5]. In the latter reference, it is actually

shown that Lv ≡ K5 :=
√
2L2

f + LfTe
LfT . �

Proof. (of Theorem 13) By triangular inequality, we have

P
(
W2

2 (L(Xt, Yt), L
N (Xt, Y t)) ≥ ε

)
≤ P

(
W2

2 (L(Xt, Yt), L
N (X̃t, Ỹ t)) ≥ ε/2

)

+ P
( 1

N

N∑

i=1

|X̃ i
t −X i,N

t |2 + |Ỹ i
t − Y i,N

t |2 ≥ ε/2
)
.(46)

3We use the convention E[X] := +∞ whenever E[X+] = +∞.
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The first term on the right hand side is estimated as

P
(
W2

2 (L(Xt, Yt), L
N (X̃t, Ỹ t)) ≥ ε/2

)
≤ C(aN, ε

2
1{ε<2} + bN,k, ε

2
).

This follows by [23, Theorem 2] since, by Lemma 10, the processes Y and X have moments of order k > 4. On
the other hand, by Markov’s inequality, we have

P
( 1

N

N∑

i=1

|X̃ i
t −X i,N

t |2 + |Ỹ i
t − Y i,N

t |2 ≥ ε/2
)

≤ 2

ε

1

N

N∑

i=1

E|X̃ i
t −X i,N

t |2 + E|Ỹ i
t − Y i,N

t |2 ≤ C

ε

(
rN,q+ℓ,k + rN,ℓ,k

)
,

where the second inequality follows by Theorem 9. Combine this with (46) to get (41).

Let us now turn to the proof of the concentration estimate (42). Recall that the i.i.d. copies (X̃1, Ỹ 1, Z̃1), . . . ,

(X̃N , Ỹ N , Z̃N ), of (X,Y, Z) solve the FBSDE (21) with W replaced by W i. Thus, they satisfy the equation (43)
with W replaced by W i with the Lf–Lipschitz-continuous functions bt, ft and g being defined respectively as
g(x) := G(x,L(XT )), ft(x, y, z) := Ft(x, y, z,L(Xt, Yt)) and bt(x, y) := Bt(x, y,L(Xt, Yt)). Therefore, it follows
by Lemma 14 that the law L(X i, Y i) = L(X,Y ) satisfies T2(C). Thus, by [28, Theorem 1.3] we obtain (42). �

5. Approximation of the mean field game

This section of the paper is dedicated to the proofs of Theorems 1 and 4 stated in Section 2. We start by the
proof of the convergence of Nash equilibria.

5.1. Proofs of Theorem 1 and Theorem 2. In this section we provide the proof of the convergence of the
Nash-equilibrium of the N -player game with interaction through state and control to the extended mean-field
game. The proof relies on the Pontryagin maximum principles derived in Section 3, along with the propagation
of chaos type results of the previous section.

Recall notation of Sections 2 and 3 and the solution (Y i,j , Zi,j,k)i,j,k=1,...,N of the adjoint equation of the game
given in Equation (14). We will consider the off-diagonal processes Y i,j , i 6= j and then the diagonal terms Y i,i.
The next two auxiliary results show that the off-diagonal elements of Y i,j converge to zero.

Lemma 15. Assume that the conditions (A1)-(A5) are satisfied. If either T is small enough for (M) holds with
Kb large enough, then the solution (Y i,j , Zi,j,k)i,j,k=1,...,N of the adjoint equation (14) along with the processes
X i,α̂ satisfy

E

[
1

N

N∑

i=1

|X i,α̂
t |2

]
≤ Ct and E

[
|Y i,i

t |2 + sup
t∈[0,T ]

|X i,α̂
t |2 +

N∑

k=1

∫ T

0

|Zi,i,k
t |2 dt

]
≤ C

for two constants Ct, C > 0 which do not depend on i, j, N .

Proof. This follows from the fact that the functions b, ∂xf and ∂ξf are of linear growth, and the functions ∂xb
and ∂µb, are bounded (see conditions (A1) and (A4)). In fact, recalling that the adjoint equation is given by
(15)-(16), these properties imply

E
[

sup
t∈[0,T ]

|X i,α̂
t |2

]
≤ CE

[
|xi0|2 +

∫ T

0

(
1 + |X i,α̂

u |2 + |Y i,i
u |2 + 1

N

N∑

k=1

|Xk,α̂
u |2 + |Y k,k

u |2
)
du

]

+ E
[
|σ|2 sup

t∈[0,T ]

|W i
t |2

]
,(47)
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notice that we also used the representation of α̂i,N as α̂i,N
t = Λ(t,X

i,α̂
t , Y i,i

t , LN(X
α̂
t ), ζ

i,N
t ) given in (55), and

the estimation (62) of ζi,N . Subsequently taking the average over i above, the expectation, and then applying
Gronwall’s inequality leads to

E

[
1

N

N∑

k=1

|Xk,α̂
t |2

]
≤ C

(
1 + E[|xi0|2] + E

[
1

N

N∑

k=1

∫ T

0

|Y i,i
u | du

]
+ |σ|2E[|W i

T |2]
)
.(48)

Let us now turn to the bound of Y i,j and Zi,j,k. By Itô’s formula applied to |Y i,i|2, linear growth of ∂xf and
∂µf and boundedness of ∂xb and ∂µb we have

E

[
|Y i,i

t |2 +
N∑

k=1

∫ T

t

|Zi,i,k
u |2 du

]
≤ C

(
1 + E

[
|X i,α̂

T |2
]
+

1

N

N∑

k=1

E
[
|Xk,α̂

T |2
])

(49)

+ CE

[ ∫ T

t

|X i,α̂
u |2 + 1

N

N∑

k=1

|Xk,α̂
u |2 du

]

+ CE

[ ∫ T

t

3|Y i,i
u |2 + 1

N

N∑

k=1

|Y k,k
u |2 du

]
.

Averaging out and using (48), it follows that when T is small enough we have 1
N

∑N
j=1 E[

∫ T

0
|Y j,j

t |2] dt] < ∞.

Therefore, plugging this back in (49) and (47) yields the result. We thus arrive at the claimed bound for Y i,j and
Zi,j,k.

The case where (M) is satisfied for Kb large enough follows exactly as in the proof of Lemma 10. We omit the
proof to avoid repetitions. �

Lemma 16. If the conditions (A1)-(A5) are satisfied, then for every i, j such that i 6= j, and every t ∈ [0, T ],
we have

E
[
|Y i,j

t |2
]
≤ CN−1 for every N ≥ 1 and some C > 0.

Proof. Let i be fixed. For every j such that i 6= j, the process Y i,j satisfies the equation

dY i,j
t = −

(
1

N
∂µf

(
t,X

i,α̂
t , α̂i

t, L
N(X

α̂
t , α̂t)

)
(X

j,α̂
t )

)
dt

−
(
∂xb

(
t,X

j,α̂
t , α̂j

t , L
N(X

α̂
t , α̂t)

)
Y i,j
t

+

N∑

k=1

1

N
∂µb

(
t,X

k,α̂
t , α̂k

t , L
N(X

α̂
t , α̂t)

)
(X

j,α̂
t )Y i,k

t

)
dt+

N∑

k=1

Zi,j,k
t dW k

t

with

(50) Y i,j
T =

1

N
∂µg

(
X

i,α̂
T , LN (X

α̂
T )

)
(X

j,α̂
T ).

We assume for simplicity that i = 1, and in an effort to write the equations in a more compact form, we define
the vectors

Y −1 := (Y 1,2, . . . , Y 1,N ), At :=
(
∂µf

(
t,X

1,α̂
t , α̂1

t , L
N (X

α̂
t , α̂t)

)
(X

j,α̂
t )

)
j=2,...,N

,

as well as

Bt :=
(
∂µb

(
t,X

1,α̂
t , α̂1

t , L
N(X

α̂
t , α̂t)

)
(X

j,α̂
t )

)
j=2,...,N

,

and the matrices

Ct :=
(
∂µb

(
t,X

m,α̂
t , α̂m

t , L
N(X

α̂
t , α̂t)

)
(X

j,α̂
t )

)
m,j=2,...,N
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and

Dt := diag
(
∂xb

(
t,X

j,α̂
t , α̂j

t , L
N(X

α̂
t , α̂t)

))
j=2,...,N

.

With this new set of notation, the vector Y −1 satisfies the multidimensional BSDE

dY −1
t = −

(
1

N
(At +BtY

1,1
t ) +

1

N
CtY

−1
t +DtY

−1
t

)
dt+

N∑

k=1

Z1,−1,k
t dW k

t

with terminal condition (50) and with Z1,−1,k := (Z1,2,k, . . . , Z1,N,k). Thus, by square integrability of Z1,−1,k, it
follows that

Y −1
t = E

[
Y −1
T +

∫ T

t

(
1

N
(As +BsY

1,1
s ) +

1

N
CsY

−1
s +DsY

−1
s

)
ds | FN

t

]
.

Denoting by | · |2 the Euclidean norm on (Rℓ)N−1, we obtain

|Y −1
t |22 ≤ 2(T + 1)E

[
|Y −1

T |22 +
∫ T

t

1

N2

(
|As|22 + |Bs|22|Y 1,1

s |2
)

+
1

N2
|Y −1

s |22|Cs|22 + L2
f |Y −1

s |22 ds | FN
t

]
,

where we used definition of D and the fact that ∂xb is bounded by Lf . Therefore, it follows by Gronwall’s
inequality that

|Y −1
t |22 ≤ CE

[
|Y −1

T |22 +
∫ T

t

1

N2

(
|As|22 + |Bs|22|Y 1,1

s |2
)
ds | FN

t

]
(51)

for a constant C depending only on T and the bound Lf of ∂xb and ∂µb, but not on N . In fact, since ∂µb is
bounded by Lf , it follows that |Ct|22 ≤ NL2

f . Moreover, since ∂µf is of linear growth (see assumption (A4)), and

α̂1 is bounded in H2(Rm), it follows by Lemma 15 that the process (At) is bounded in H2(R) uniformly in N .

That is, it satisfies supN E
[ ∫ T

0 |At|2 dt
]
< ∞. Since ∂µb is bounded by Lf and by Lemma 15 Y 1,1

t is bounded

in L2, it follows by Fubini’s theorem that E[
∫ T

0
|Bs|22|Y 1,1

s |2 ds] ≤ NC for some constant C > 0. In addition, it
follows again by Lemma 15 that

E
[
|Y −1

T |22
]
≤ 1

N2
E
[ N∑

j=2

|∂µg(X1,α̂
T , LN (X

α̂
T ))(X

j,α̂
T )|2

]

≤ C
N − 1

N2
E
[
|X1,α̂

T |2 + 1

N

N∑

k=1

|Xk,α̂
T |2 + 1

]
+

C

N2
E
[ N∑

j=2

|Xj,α̂
T |2

]
≤ C

N

where the last inequality follows by Lemma 15. Combine this with (51), to obtain

E
[
|Y −1

t |22
]
≤ C/N

for some constant C depending only on T , the bounds of A,B and the second moment of Y 1,1
s (which is bounded

uniformly in N). Therefore, we have

E
[
|Y 1,j

t |2
]
≤ E

[
|Y −1

t |22
]
≤ C

1

N

for some constant C > 0 and for all j = 2, . . . , N . �

Let us give a representation of the minimizer of the Hamiltonian.
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Lemma 17. Assume that condition (A2) holds. Let Λ : [0, T ]× Rℓ × Rm × P2(R
ℓ)× Rm → Rm be such that

(52) ∂af1
(
t, x,Λ(t, x, y, µ, χ), µ

)
+ ∂ab1

(
t, x,Λ(t, x, y, µ, χ), µ

)
y = χ.

Then Λ minimizes the Hamiltonian H, is Lipschitz–continuous in (x, y, µ, χ) with Lipschitz constant LΛ =
Lf

2γ

and satisfies the linear growth property

(53) |Λ(t, x, y, µ, χ)| ≤ C
(
1 + |x|+ |y|+ |χ|+

( ∫

Rℓ

|v|2µ(dv)
)1/2)

.

Proof. This lemma is probably well known but since we could not find a suitable reference, we provide the
proof here for the sake of completeness. By convexity and differentiability of the Hamiltonian (see (A3)), a vector

α = Λ(t, x, y, µ, χ) ∈ R
m satisfying (52) minimizes the function H̃1(t, x, a, µ, y) := f1(t, x, a, µ)+b1(t, x, a, µ)y−χa

in a.
Let us show that Λ is Lipschitz continuous. Let (x, y, µ, χ), (x′, y′, µ′, χ′) be fixed put α′ := Λ(t, x′, y′, µ′, χ′)

and assume without loss of generality that α 6= α′. By the condition (A3), (letting µ, µ′ be the first marginals of
ξ and ξ′ respectively) we have

γ|α− α′|2 ≤ H(t, x, y, α, ξ)−H(t, x, y, α′, ξ)− (α− α′)∂aH(t, x, y, α, ξ)

= H̃1(t, x, y, α, µ)− H̃1(t, x, y, α
′, µ)− (α− α′)∂aH̃1(t, x, y, α, µ)

and

γ|α− α′|2 ≤ H̃1(t, x
′, y′, α′, µ′)− H̃1(t, x

′, y′, α, µ′)− (α′ − α)∂aH̃1(t, x
′, y′, α′, µ′).

Summing up these two inequalities yields

2γ|α− α′|2 ≤
∫ 1

0

∂aH̃1(t, x, y, uα+ (1− u)α′, µ) du(α− α′)

+

∫ 1

0

∂aH̃1(t, x
′, y′, uα+ (1 − u)α′, µ′) du(α− α′)

− (α− α′)
(
∂aH̃1(t, x, y, α, µ)− ∂aH̃1(t, x

′, y′, α′, µ′)
)

≤ Lf |α− α′|
(
|x− x′|+ |y − y′|+W2(µ, µ

′)
)

for some constant C > 0 where we used Lipschitz continuity of ∂aH̃1 = ∂aH assumed in (A3). Therefore, we get

|α− α′| ≤ C
(
|x− x′|+ |y − y′|+ |χ− χ′|+W2(µ, µ

′)
)
,

which shows that Λ is Lipschitz continuous, therefore measurable.
It remains to show the growth property. Assume without loss of generality that α 6= 0. Using again (A3), we

have

γ|α|2 ≤ H(t, x, y, 0, ξ)−H(t, x, y, α, ξ) + α∂aH(t, x, y, 0, ξ)

≤ Lf |α|+ C|α|
(
1 + |x|+ |y|+

( ∫
|v|2µ(dv)

)1/2)

≤ C|α|
(
1 + |x|+ |y|+

( ∫
|v|2µ(dv)

)1/2)

for some constant C where we used the linear growth condition on ∂aH . Therefore, we have (53). �

We now come to the proof of the main result of the paper:
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Proof. (of Theorem 1) Let α̂ be a Nash equilibrium for the N -player game. By Theorem 6, the process α̂ satisfies

∂αiHN,i(t,Xt, α̂t, Y
i,·
t ) = 0 for every i = 1, . . . , N . Unpacking this condition gives

∂αf1

(
t,X

i,α̂
t , α̂i

t, L
N (X

α̂
t )
)
+ ∂αb1(t,X

i,α̂
t , α̂i

t, L
N(X

α̂
t ))Y

i,i
t

1

N
∂νf2(t,X

i,α̂
t , LN(X

α̂
t , α̂t))(α̂

i
t) +

1

N

N∑

k=1

∂νb2(t,X
i,α̂
t , LN(X

α̂
t , α̂t))(α̂

k
t )Y

i,k
t = 0.(54)

This is due to the decompositions b = b1 + b2 and f = f1 + f2 and the fact that the functions b2 and f2 do not
depend on α̂i. By Lemma 17, there is a Lipschitz continuous function Λ such that

(55) α̂i
t = Λ

(
t,X

i,α̂
t , Y i,i

t , LN(X
α̂
t ), ζ

N
t

)

whereby

ζi,Nt := − 1

N
∂νf2(t,X

i,α̂
t , LN (X

α̂
t , α̂t))(α̂

i
t)−

1

N

N∑

k=1

∂νb2(t,X
i,α̂
t , LN(X

α̂
t , α̂t))(α̂

k
t )Y

i,k
t

and Λ not depending on N and i, j but only depending on ∂αf1 and ∂αb1. This shows that when α̂ is a Nash
equilibrium, then the optimal state X i ≡ X i,α̂ along with the processes (Y i,j , Zi,j,k) satisfy the fully coupled
system of FBSDEs (recall (14))





dX
i,α̂
t = b(t,X

i,α̂
t , α̂i

t, L
N (X

α̂
t , α̂t)) dt+ σ dW i

t

dY i,i
t = −

{
∂xf(t,X

i,α̂
t , α̂i

t, L
N (X

α̂
t , α̂t)) + ∂xb(t,X

i,α̂
t , α̂i

t, L
N(X

α̂
t , α̂t))Y

i,i
t + ǫNt

}
dt

+
∑N

k=1 Z
i,j,k
t dW k

t

X
i,α̂
0 ∼ µ(0), α̂i

t = Λ
(
t,X

i,α̂
t , Y i,i

t , LN (X
α̂
t ), ζ

N
t

)
, Y i,i

T = ∂xg(X
i,α̂
T , LN (X

α̂
T )) + γN

with

εi,Nt :=
1

N
∂µf(t,X

i,α̂
t , α̂i

t, L
N (X

α̂
t , α̂t))(X

i,α̂
t )

+
1

N

N∑

j=1

∂µb(t,X
j,α̂
t , α̂j

t , L
N(X

α̂
t , α̂t))(X

i,α̂
t )Y i,j

t

and

γi,N :=
1

N
∂µg(X

i,α̂
T , LN(X

α̂
T ))(X

i,α̂
T ).

Unfortunately, we cannot directly apply the propagation of chaos results for FBSDE developed in the previous
section to the above equation. For this reason, we introduce the following auxiliary equation:

(56)





dX̃ i,N
t = b

(
t, X̃ i,N

t , α̃i,N
t , LN (X̃t, α̃t)

)
dt+ σ dW i

t

dỸ i,N
t = −

{
∂xf

(
t, X̃ i,N

t , α̃i,N
t , LN (X̃t)

)
+ ∂xb

(
t, X̃ i,N

t , α̃i,N
t , LN(X̃t)

)
Ỹ i
t

}
dt

+
∑N

k=1 Z̃
i,k,N
t dW k

t ,

X̃ i,N
0 ∼ µ(0), Ỹ i,N

T = ∂xig(X̃ i,N
T , LN(X̃T )), α̃

i,N
t = Λ

(
t, X̃ i,N

t , Ỹ i,N
t , LN (X̃t), 0

)

and further define the function ϕ : [0, T ]× P2(R
ℓ × R

ℓ) → P2(R
ℓ × R

m) given by

ϕ(t, ξ) := ξ ◦
(
idℓ,Λ(t, ·, ·, µ, 0)

)−1
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where idℓ is the projection on Rℓ and µ is the first marginal of the probability measure ξ, so that (idℓ,Λ(t, ·, ·, µ, 0))
maps Rℓ × Rℓ to Rℓ × Rm. Then, equation (56) can be re-written as

(57)





dX̃ i,N
t = B

(
t, X̃ i,N

t , Ỹ i,N
t , LN(X̃t, Ỹ t)

)
dt+ σ dW i

t

dỸ i,N
t = −F

(
t, X̃ i,N

t , Ỹ i,N
t , LN (X̃t, Ỹ t)

)
dt+

∑N
k=1 Z̃

i,k,N
t dW k

t

X̃ i,N
0 ∼ µ(0), Ỹ i,N

T = G(X̃ i,N
T , LN(X̃T ))

with

B(t, x, y, ξ) := b
(
t, x,Λ(t, x, y, µ, 0), ϕ(t, ξ)

)

F (t, x, y, ξ) := ∂xf
(
t, x,Λ(t, x, y, µ, 0), ϕ(t, ξ)

)
+ ∂xb

(
t, x,Λ(t, x, y, µ, 0), ϕ(t, ξ)

)
y

where µ is the first marginal of ξ and

G(x, µ) = ∂xg(x, µ).

Let us now justify that the functions B, F and G satisfy the conditions of Theorem 9. By assumptions (A1),
(A3) and Lipschitz–continuity of Λ, in order to prove Lipschitz–continuity of B,F,G it suffices to show that for
every ξ, ξ′ ∈ P2(R

ℓ × Rℓ) it holds

W2

(
ϕ(t, ξ), ϕ(t, ξ′)

)
≤ C

(
W2(ξ, ξ

′) +W2(µ, µ
′)
)

where µ, µ′ are the first marginals of ξ and ξ′, respectively. In fact, using Kantorovich duality theorem, see [46,
Theorem 5.10] that

W2
2

(
ϕ(t, ξ), ϕ(t, ξ′)

)

= sup
(∫

Rℓ×Rm

h1(x, y)ϕ(t, ξ)(dx, dy) −
∫

Rℓ×Rm

h2(x
′, y′)ϕ(t, ξ′)(dx′, dy′)

)

= sup
(∫

Rℓ×Rℓ

h1(x,Λ(t, x, y, µ))ξ(dx, dy) −
∫

Rℓ×Rℓ

h2(x
′,Λ(t, x′, y′, µ′))ξ′(dx′, dy′)

)

with the supremum over the set of bounded continuous functions h1, h2 : Rℓ × Rm → R such that h1(x, y) −
h2(x

′, y′) ≤ |x−x′|2+ |y−y′|2 for every (x, y), (x′, y′) ∈ Rℓ×Rm, which, by Lipschitz–continuity of Λ implies that
we have the following bound: h1(x,Λ(t, x, y, µ))−h2(x′,Λ(t, x′, y′, µ′)) ≤ |x−x′|2+|Λ(t, x, y, µ)−Λ(t, x′, y′, µ′)|2 ≤
C
(
|x− x′|2 + |y − y′|2 +W2

2 (µ, µ
′)
)
. This shows that

W2
2

(
ϕ(t, ξ), ϕ(t, ξ′)

)
≤ sup

( ∫

Rl×Rl

h̃1(x, y)ξ(dx, dy) −
∫

Rl×Rl

h̃2(x
′, y′)ξ′(dx′, dy′)

)

with the supremum over functions h̃1, h̃2 such that h̃1(x, y) − h̃2(x
′, y′) ≤ C

(
|x − x′|2 + |y − y′|2 + W2

2 (µ, µ
′)
)
.

Hence, applying Kantorovich duality once again yields

W2
2

(
ϕ(t, ξ), ϕ(t, ξ′)

)
≤ C inf

∫∫
|x− x′|2 + |y − y′|2 +W2(µ, µ

′) dπ

with the infimum over probability measures π with first and second marginals π1 = ξ and π2 = ξ′. This yields
the result by definition of W2(ξ, ξ

′). Therefore, B,F and G are Lipschitz continuous.
That B,F and G are of linear growth follows by (A3) and Lemma 17. Therefore, the functions B,F and

G satisfy (B1)-(B2) with a constant Lf which does not depend on N . As a consequence, it follows from [13,
Theorem 4.2] that the equation (57) admits a unique solution if T is small enough.

Similarly, by [13, Theorem 4.24] the following McKean-Vlasov FBSDE admits a unique solution (X,Y, Z) ∈
S2(Rℓ)× S2(Rℓ)×H2(Rℓ×d) when T is small enough:

(58)





dXt = B(t,Xt, Yt,L(Xt, Yt)) dt+ σ dW i
t

dYt = −F (t,Xt, Yt,L(Xt, Yt)) dt+ Zt dW
i
t

X0 ∼ µ0, YT = ∂xg(XT , µXT
).
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Thus, it follows from Theorem 9 that there is a constant δ > 0 such that if T ≤ δ, then for all N ∈ N we have

E

[
sup

t∈[0,T ]

|Xt − X̃ i,N
t |2

]
+ E

[
|Yt − Ỹ i,N

t |2
]
≤ C(rN,m+ℓ,k + rN,ℓ,k)

for some constant C > 0 which does not depend on N , and where rN,ℓ,k is defined in (6). On the other hand,
using Lipschitz continuity (and definitions) of B,F and G, it can be checked using standard FBSDE estimates
that if T is small enough, we have

(59) E

[
sup

t∈[0,T ]

|X i,α̂
t − X̃ i,N

t |2
]
+ E

[
|Y i,i

t − Ỹ i,N
t |2

]
≤ CE[KN ]

with

(60) Ki,N := |γi,N |2 +
∫ T

0

|εi,Nt |2 + |ζi,Nt |2 dt

for a constant C that does not depend on N . Therefore, we obtain by triangular inequality that

E

[
sup

t∈[0,T ]

|X i,α̂
t −Xt|2

]
+ E

[
|Y i,i

t − Yt|2
]
≤ C

(
E[KN ] + rN,m+ℓ,k + rN,ℓ,k

)
.(61)

Let us check that KN converges to zero in expectation at the rate N−1. By definition of εN , linear growth of
∂µf and boundedness of ∂µb, we have

E

[ ∫ T

0

|εNt |2 dt
]

≤ CE

[ ∫ T

0

1

N2

(
1 + |X i,α̂

u |2 + |X i,α̂
u |2 + 1

N

N∑

j=1

|Xj,α̂
u |2

)
+

1

N

N∑

j=1

|Y i,j
u |2 du

]
.

Thus, by Lemma 15 and Proposition 16 it holds that

E

[ ∫ T

0

|εNt |2 dt
]
≤ C

N
.

Similarly, using linear growth of ∂νf and boundedness of ∂νb we also obtain

E

[∫ T

0

|ζNt |2 dt
]
≤ C

N2
E

[ ∫ T

0

1 + |X i,α̂
t |+ 1

N

N∑

j=1

|Xj,α̂
t |2 dt

]

+
1

N

N∑

i=1

E

[ ∫ T

0

|Y i,j
t |2 dt

]

≤ C/N.(62)

Since ∂µg is of linear growth, see assumption (A4) we have

E
[
|γN |2

]
≤ 1

N2
E
[
|∂µg(X i,α̂

T , LN (X
α
T ))(X

j
T )|2

]

≤ C

N2
E
[
1 + |X i,α

T |2 + |Xj,α
T |2 + 1

N

∑

k=1

|Xk,α̂
T |2

]
≤ C/N2,

where the last inequality follows from Lemma 15. These estimates allow to conclude that

(63) E[Ki,N ] ≤ CN−1.

Now, put α̂t := Λ(t,Xt, Yt,L(Xt), 0). For ease of notation, we will omit the zero in the last component and
simply write

(64) α̂t := Λ(t,Xt, Yt,L(Xt)).
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By Lipschitz continuity of Λ, it follows that

E[|α̂i
t − α̂t|2] = E

[∣∣∣Λ(t,X i,α̂
t , Y i

t , L
N(X

α̂
t ), ζ

N
t )− Λ(t,Xt, Yt,L(Xt))

∣∣∣
2]

≤ CE
[
|X i,α̂

t −Xt|2 + |Y i,i
t − Yt|2 +W2(L

N (X
α̂
t ),L(Xt)) + |ζNt |2

]

≤ C
(
rN,m+ℓ,k + rN,ℓ,k + E[KN ]

)
.(65)

Therefore, since E[KN ] ≤ CN−1, we have

E[|α̂i
t − α̂t|2] ≤ C(rN,m+ℓ,k + rN,ℓ,k).

It remains to justify that α̂ is indeed the mean field equilibrium. We apply again Proposition 7 to justify
that α̂ is the mean field equilibrium, thus we first show that the mapping t 7→ L(Xt, α̂t) is bounded and Borel
measurable. The Borel measurability follows by Lipschitz continuity of Λ since by definition of the Wasserstein
distance it holds that

W2
2

(
L(Xt, α̂t),L(Xs, α̂s)

)
≤ E

[
|Xt −Xs|2 + |α̂t − α̂s|2

]

≤ CE
[
|Xt −Xs|2 + |Yt − Ys|2

]

for all s, t ∈ [0, T ]. The boundedness of the second moment follows by Lemma 17 and square integrability of
solutions of the McKean-Vlasov equation (recall Lemma 10). In fact, we have

sup
t∈[0,T ]

E[|Xt|2 + |α̂t|2] ≤ C
(
1 + sup

t∈[0,T ]

E[|Xt|2 + |Yt|2]
)
≤ C,

which proves the claim. Now, notice that, written in terms of b, f and g, the McKean-Vlasov system (58) reads

(66)





dXt = b
(
t,Xt, α̂t,L(Xt, α̂t)

)
+ σ dW i

t

dYt = −
{
∂xf

(
t,Xt, α̂t,L(Xt, α̂t)

)
+ ∂xb(t,Xt, α̂t,L(Xt, α̂t))Yt

}
dt+ Zt dW

i
t

X0 ∼ µ0, YT = ∂xg(XT ,L(XT )), α̂t = Λ(t,Xt, Yt,L(Xt)).

This is the adjoint equation (18) associated to the mean field game. Since the functions x 7→ g(x, µ) and
(x, a) 7→ H(t,Xt, a,L(Xt, α̂t), Yt) := f(t, x, a,L(Xt, α̂t)) + b(t, x, a,L(Xt, α̂t))y are P ⊗ dt-a.s. convex, and by
Lemma 17 the process α̂t satisfies

H(t,Xt, α̂t, Yt,L(Xt, α̂t)) = inf
a∈A

H(t,Xt, a, Yt,L(Xt, α̂t)).

Thus, it follows from Pontryagin’s stochastic maximum principle, see Proposition 7 that α̂ is a mean field equi-
librium. This concludes the proof. �

We conclude this subsection with the proof of the convergence to mean field equilibria in the case where
monotonicity properties are assumed.

Proof. (of Theorem 2) The proof of Theorem 2 is similar to that of Theorem 1, except for two points.
First, to get well-posedness of the equations (57) and (58), we use [44] and [5], respectively. (This is where the

condition (8) in (M) is needed.)
Next, in the present case we rely on the abstract propagation of chaos result Theorem 12 rather than Theorem

9. Notice however that, in the arguments of the proof of Theorem 1, in addition to the application of Theorem 9,
having a short enough time horizon T was also needed to get the estimate (59). Thus, if we prove an analogous
estimate, the rest of the proof remains the same, with Theorem 12 applied instead of Theorem 9.

Here, we will show that

(67) E

[ ∫ T

0

|X i,α̂
t − X̃ i,N

t |2 + |Y i,i
t − Ỹ i,N

t |2 dt
]
≤ C/N.
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This is the analogue of (59) in the previous proof. The proof of this inequality follows the strategy of the proof of
Theorem 12. To avoid repetitions we give only the main steps of the argument. Recall the notation Lb,x, Lb,a, Lb,ξ

of the Lipschitz constant of b in its arguments x, a and ξ, respectively. Since Λ is LΛ–Lipschitz with LΛ = Lf/2γ,
a quick inspection shows that

|b(t, x,Λ(t, x, y, µ, ζ), ξ)− b(t, x′,Λ(t, x′, y′, µ′, ζ′), ξ′)| ≤ LB,x|x− x′|+ LB,ξW2(ξ, ξ
′)

+ LB,y(|y − y′|+ |ζ − ζ′|)

with LB,x := Lb,x + Lb,aLΛ; LB,ξ := Lb,ξ + Lb,aLΛ and LB,y := 2Lb,aLΛ.

We will use the shorthand notation ∆X i := X i,α − X̃ i,N , ∆Y i := Y i,i − Ỹ i,N and ∆Zi,j := Zi,i,j − Z̃i,i,N .
Applying Itô’s formula to |∆X i|2, it follows by the monotonicity property (7) and Lipschitz–continuity of b and
Λ that for every ε > 0,

|∆X i
t |2 ≤ 2

∫ t

0

(LB,y + LB,ξ

2ε
+

2LB,ξ + LB,y

2
−Kb

)
|∆X i

u|2 + LB,ξ
1

N

N∑

j=1

|∆Xj
u|2 du

+

∫ t

0

εLB,y|∆Y i
u|2 + εLB,ξ

1

N

N∑

j=1

|∆Y j
u |2 + LB,y|ζi,Nu |2 + LB,ξ

1

N

N∑

j=1

|ζj,Nu |2 du.(68)

Thus, this implies

1

N

N∑

j=1

|∆Xj
t |2 ≤ 2eδ(ε)T

∫ t

0

ε(LB,y + LB,ξ)
1

N

N∑

j=1

(|∆Y j
u |2 + |ζj,Nu |2) du(69)

with

δ(ε) :=
LB,y + LB,ξ

2ε
+

2LB,ξ + LB,y

2
+ LB,ξ −Kb.

On the other hand, for the backward processes we have

|∆Y i
t |2 + E

[ N∑

j=1

∫ T

t

|∆Zi,j,N
u |2 du | FN

t

]

≤ E
[
2L2

f

(
|∆X i

T |2 +
1

N

N∑

j=1

|∆Xj
T |2

)
+ |γi,N |2 | FN

t

]

+ LfE

[ ∫ T

t

6|∆Y i
u|2 + |∆X i

u|2 + |ζi,Nu |2 + |εi,Nu |2

+
1

N

N∑

j=1

(|∆Y j
u |2 + |∆Xj

u|2 + |ζj,Nu |2 + |εj,Nu |2) du | FN
t

]
.(70)

This implies that

1

N

N∑

j=1

|∆Y j
t |2 ≤ e7LfTE

[
4L2

f

1

N

N∑

j=1

|∆Xj
T |2 + |γi,N |2 | FN

t

]

+ 2e7LfTLfE

[∫ T

t

1

N

N∑

j=1

(|∆Xj
u|2 + |ζj,Nu |2 + |εj,Nu |2) du | FN

t

]
.
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Therefore, integrating on both sides and using (69) yields

1

N

N∑

j=1

E

[ ∫ T

0

|∆Y j
t |2 dt

]
≤ Γε,T

1

N

N∑

j=1

E

[ ∫ T

0

|∆Y j
t |2 dt

]
+

(
Γε,T + e7LfTT (1 + 2Lf)

)
E

[
1

N

N∑

j=1

|γj,N |2 +
∫ T

0

1

N

N∑

j=1

(|ζj,Nu |2 + |εj,Nu |2) du
]

with

Γε,T := 16Tεe7LfTL2
fe

δ(ε)T .

Choosing ε small enough and then Kb large enough, that is, such that

KB ≥ LB,y + LB,ξ

2ε
+

2LB,ξ + LB,y

2
+ LB,ξ

with ε < (16Te7LfTL2
f)

−1. We thus have

1

N

N∑

j=1

E

[ ∫ T

0

|∆Y j
t |2 dt

]
≤ CE

[
1

N

N∑

j=1

|γj,N |2 +
∫ T

0

1

N

N∑

j=1

|ζj,Nu |2 + |εj,Nu |2 du
]

≤ 1

N

N∑

j=1

E[Kj,N ] ≤ C/N

for a constant C > 0, and where the latter inequality follows by (63). With this bound at hand, we proceed as in
the proof of Theorem 12 to show (67). In particular, we plug this back into (68) and (70). �

5.2. Proof of Theorem 4. The proof is based on the representation (55) and the concentration inequalities
proved in Section 4.3.

To show the moment bound, we consider the solution of the auxiliary forward backward SDE (57) introduced

in the proof of Theorem 1 and denote as usual (X̃, Ỹ , Z̃) = (X̃ i,N , Ỹ i,N , Z̃i,i,N)i=1,...,N . Put

α̃i,N
t := Λ

(
t, X̃ i,N

t , Ỹ i,N
t , LN (X̃t)

)
.

Then by the representation (64) of the mean field equilibrium, we have L(αt) = ψ(t,L(Xt, Yt)), where ψ is the
function given by

ψ(t, ξ) = ξ ◦ Λ(t, ·, ·, ξ1)−1

for all ξ ∈ P2(R
ℓ ×Rℓ) with ξ1 the first marginal of ξ. Similarly, we have LN(α̃t) = ψ(t, LN (X̃t, Ỹ t)). As argued

in the proof of Theorem 1, the function ψ is Lipschitz continuous for the 2-Wasserstein metric, as a consequence
of Lipschitz continuity of Λ. Therefore, we have

E
[
W2

(
LN (α̂t),L(α̂t)

)]
≤ E

[
W2

(
LN(α̂t), L

N (α̃t)
)]

+ E
[
W2

(
LN (α̃t),L(α̂t)

)]

≤ E

[( 1

N

N∑

i=1

|X i,α̂
t − X̃ i,N

t |2 + |Y i,i,N
t − Ỹ i,N

t |2 + |ζNt |2
)1/2

]

+ E
[
W2

(
ψ(t, LN(X̃t, Ỹ t)), ψ(t,L(Xt, Yt))

)]

≤ CE[KN + |ζNt |2]1/2 + CE
[
W2

(
LN(X̃t, Ỹ t),L(Xt, Yt)

)]
.

It was showed in the proof of Theorem 1 that E[KN + |ζi,Nt |2] ≤ CN−1, and since the coefficients B,F and G

of the FBSDE (57) are Lipschitz–continuous, it follows from Theorem 9 that E
[
W2

(
LN(X̃t, Ỹ t),L(Xt, Yt)

)]
≤

C (rN,2ℓ,k + rN,ℓ,k) for all (t, N) ∈ [0, T ]× N. Therefore, we get

(71) E
[
W2(L

N (α̂t),L(α̂t))
]
≤ C(N−1 + rN,2ℓ,k + rN,ℓ,k),
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which yields the claimed moment bound.
We now turn to the proof of the deviation inequality. Let h : RmN → R be a 1-Lipschitz function and put

h̃(x, y) := h
(
Λ(xi, yi,i, LN(x), 0)i=1,...,N

)
.

Consider again the solution (X̃, Ỹ , Z̃) = (X̃ i,N , Ỹ i,N , Z̃i,i,N)i=1,...,N of the auxiliary FBSDE (57) introduced in
the proof of Theorem 1. Then, we have by (55), Lipschitz–continuity of Λ and Chebyshev’s inequality that

P
(
h(α̂t)− E[h(α̂t)] ≥ a

)
≤ P

(
h(α̂t)− h̃(X̃t, Ỹ t) ≥ a/3

)
+ P

(
E[h̃(X̃t, Ỹ t)− h(α̂t)] ≥ a/3

)

+ P
(
h̃(X̃t, Ŷ t)− E[h̃(X̃t, Ỹ t)] ≥ a/3

)

≤ C

a2

N∑

i=1

E
[
|X i,α̂

t − X̃ i,N
t |2 + |Y i,i,α̂

t − Ỹ i,N
t |2 + |ζi,Nt |2

]

+ P
(
h̃(X̃t, Ỹ t)− E[h̃(X̃t, Ỹ t)] ≥ a/3

)

≤ C

a2
NE

[
KN + |ζi,Nt |2

]
+ P

(
h̃(X̃t, Ỹ t)− E[h̃(X̃t, Ỹ t)] ≥ a/3

)
.

We showed in the proof of Theorem 1 that E[KN + |ζNt |2] ≤ CN−1. It now remains to estimate the last term on
the right hand side above. This is done using arguments similar to those put forth in the proof of [39, Theorem
7]. In fact, on the probability space (ΩN ,FN , PN ), consider the following compact form of the FBSDE (57):

{
X̃t = x+

∫ t

0
B(u, X̃u, Ỹ u) du+ΣW t

Ỹ t = G(X̃T ) +
∫ T

t
F (u, X̃u, Ỹ u) du−

∫ T

t
Z̃u dWu

where we put

B(t, x, y) := (B(t, xi, yi, LN(x, y)))i=1,...,N

and similarly define F and G, and we put Σ := diag(σ) and Z := diag(Zi,·, . . . , ZN,·). Then, by Lemma 14, if
T is small enough, then the law L(X,Y ) of (X,Y ) satisfies Talagrand’s T2(Cx,y) inequality with constant Cx,y

depending on Lf , T and |σ| given in the proof of Lemma 14, see Equation (45). Note in passing that the Lipschitz
constant Lf of B,F ,G does not depend on N . Therefore, it follows from [28, Theorem 1.3] that there is a constant

K depending on Cx,y and the Lipschitz constant of h̃ such that

P
(
h̃(X̃t, Ỹ t)− E[H(X̃t, Ỹ t)] ≥ a/3

)
≤ e−Ka2

.

The bound P
(
|α̂i,N

t | −E[|α̂i,N |] ≥ a
)
≤ 2e−Ka2

follows by taking h to be the absolute value of the projection on

the i-th component and N ≥ 1
ae

Ka2

.

To get (10), first notice that the function x 7→
√
NW2(L

N (x),L(α̂t)) is 1-Lipschitz for the norm ‖x‖2,N :=

(
∑N

i=1 |xi|2)1/2. Thus, we have

P
(
W2(L

N(α̂t),L(α̂t))
)

≤ P
(√
NW2(L

N (α̂t),L(α̂t))−
√
NE

[
W2(L

N (α̂t),L(α̂t))
]
≥

√
Na/2

)

+ P
(
E
[
W2(L

N (α̂t),L(α̂t))
]
≥ a/2

)

≤ C

a2N2
+ e−KNa2

+ P
(
E
[
W2(L

N (α̂t),L(α̂t))
]
≥ a/2

)
.

By (71), choosing N large enough the last term on the right hand side vanishes. This concludes the proof for T
small enough.
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Under the additional condition (11), the functions B,F and G satisfy (B2”), thus the proof of the case T
arbitrary is the same, in view of the second part of Lemma 14 and (67). Note that one needs to observe that if

h is Lipschitz–continuous, then so is the function ω 7→
∫ T

0
h(ω(t)) dt. �
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[15] René Carmona and Daniel Lacker. A probabilistic weak formulation of mean field games and applications.
Ann. Appl. Probab., 25(3):1189–1231, 2015.

[16] Patrick Chan and Ronnie Sircar. Bertrand and Cournot mean field games. Appl. Math. Optim., 71(3):
533–569, 2015.

[17] F. Delarue. On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stoch. Proc.
Appl., 99:209–286, 2002.

[18] François Delarue, Daniel Lacker, and Kavita Ramanan. From the master equation to mean field game limit
theory: a central limit theorem. Electr. J. Probab., 24(51):1–54, 2019.

[19] François Delarue, Daniel Lacker, and Kavita Ramanan. From the master equation to mean field game limit
theory: Large deviations and concentration of measure. Ann. Probab., 48(1):211–263, 2020.

[20] H. Djellout, A. Guillin, and L. Wu. Transportation cost-information inequalities and applications to random
dynamical systems and diffusions. Ann. Probab., 32(3B):2702–2732, 2004.
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