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Abstract

We develop a model for investigating the impact of rainstorm variability on the formation of banded
vegetation patterns in dryland ecosystems. Water input, during rare rainstorms, is modeled as an
instantaneous kick to the soil water. The redistribution, from surface water to soil moisture, accounts
for the impact of vegetation on infiltration rate and downslope overland flow speed. These two positive
feedbacks between water and biomass distributions act on the fast timescales of rain storms. During
dry periods, a classic reaction-diffusion framework is used for the slow processes associated with soil
water and biomass. This pulsed precipitation model predicts that the preferred spacing of the vegetation
bands is determined by the characteristic distance that a storm pulse of water travels overland before
infiltrating into the soil. In this way, the vegetation pattern is determined by the fast ecohydrological
processes and may be attuned with its dryland precipitation pattern. We demonstrate how this modeling
framework, suited for stochastic rain inputs, can be used to investigate possible collapse of a dryland
pattern-forming ecosystem under different precipitation patterns with identical low annual mean. Model
simulations suggest, for instance, that shorter rainy seasons and greater variability in storm depth may
both hasten ecosystem collapse.

1 Introduction

The availability of aerial photography in the 1940’s first enabled the study of landscape-scale spatial patterns
of vegetation growth in the Horn of Africa [1, 2]. On gentle slopes, . 2% grade, the patterns typically consist
of bands of dense vegetation that are tens of meters wide and separated by bare soil (Figure 1). They exhibit
regular spacing, with wavelength on the order of a hundred meters, and are oriented approximately perpen-
dicular to the elevation grade. More recent studies incorporating modern satellite images have reported little
change, relative to initial aerial photographs, at least in absence of increased human pressure [3]; the most
remarkable change is a slow uphill migration of the pattern, on order of meters per decade [4]. It is now
known that spontaneous formation of periodic vegetation patterns occurs in drylands around the globe [5].
Mathematical models suggest that the phenomenon may be a strategy to exploit positive feedbacks that
concentrate, in the vegetated zones, the limiting water resource [6, 7, 8].

The striking regularity of the dryland vegetation patterns has led to proposals that they may possess
remotely-sensed characteristics that are indicative of the ecosystem health and its risk of collapse [9, 10].
If true, monitoring changes in the patterns over time could provide information about the resilience of the
ecosystems that support them, including their vulnerability under climate change. Many of the mathematical
modeling studies have focused on pattern transitions, using mean annual precipitation level as a bifurcation
parameter [11, 12, 9, 13, 14]. Indeed there is some observational evidence of significant changes in pattern
morphology along an aridity gradient from South Sudan into Sudan [15]. Here we aim to expand the
use of mathematical models to investigate changes in patterns, including possible collapse, under other
characteristics of dryland precipitation, such as variability in storm frequency, storm depth, and length of
rainy seasons.
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Figure 1: (a) Aerial photograph of banded vegetation patterns in the Sool region of Somalia, taken in March
1945 [2, 3]. (b) Satellite image of the same vegetation pattern taken in October 2020 from the Copernicus
Sentinel 2 mission [16]. (c) Normalized difference vegetation index (NDVI) along green line shown in panel
(b). The location of the pattern (9◦20’38”N 48◦46’22”E) is indicated on the map in panel (d).

Much of the currently available spatial remote sensing data provides information about the biomass dis-
tribution which, while fluctuating on a seasonal timescale, evolves on a decade timescale or longer. However,
feedbacks between water and vegetation that are thought to be responsible for pattern formation involve
a much faster rainstorm timescale. Detailed mechanistic models that attempt to bridge these disparate
timescales can require significant computational resources to make useful predictions on the timescale of
pattern evolution [17, 18]. Our approach to this challenge builds on a fast-slow switching framework [19]
developed specifically to capture the processes involved, at a conceptual level, using the range of timescales
on which they occur. We make some further simplifying assumptions about the fast processes that lead to a
computationally tractable model for carrying out the large number of trials required to explore the impact
of rainfall variability.

In contrast to the fast-slow switching model developed in [19], we do not attempt to resolve the short intra-
rainstorm time in this current work, and instead treat each rain event as a Dirac-delta function impulse that
deposits a uniform layer of water on the surface. We convert this surface water layer directly into an increase
in the soil water distribution, taking into account the key feedbacks between the biomass distribution and
(1) overland flow speed, (2) infiltration rate. In analogy with “flow-kick” systems considered in the context
of ecological resilience [20], the rain events become instantaneous “kicks” to the soil water in the reaction-
diffusion model that governs the “flow”, or time-evolution, of the ecosystem via water-biomass interactions.
We use the resulting impulsive reaction-diffusion system [21] with nonlocal, spatially heterogeneous impulses
to investigate vegetation bands on a one-dimensional hillslope with stochastic rainfall.

Many of the earliest conceptual PDE modeling efforts handle the multiple scales associated with vegeta-
tion pattern formation by formulating a model on an annually averaged timescale in which the fast processes
are phenomenologically “upscaled” [22, 23, 12]. Mathematical analysis of such models that highlighted
the mechanisms that set the spacing between vegetation bands or patches formulated this in terms of the
wavenumber of Turing patterns in the context of reaction-diffusion models, or the analogous Turing-Hopf
patterns when advection is also present [24, 25, 26]. A key feature of these models is that the wavenumber,
and thus the predicted band or patch spacing, is controlled by the relative strengths of the transport terms,
e.g. the phenomenological diffusion and advection constants incorporated into surface water, soil water and
biomass equations. Our analysis of the proposed pulsed-precipitation model has the characteristic band
spacing set instead by the typical storm depth, which controls the distance that deposited surface water
travels before it infiltrates into the soil. Moreover, the associated wavenumber is largely independent of the
phenomenological diffusion constants incorporated into the soil water and biomass equations. In this way our
results deviate from those of earlier conceptual models, and suggest interesting directions for future studies
of more mechanistically detailed models and for field studies of the overland flow and infiltration that takes
place after a storm, e.g. of the type reported in [27]. An interesting point of comparison can already be
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made between our wavenumber selection results and those presented in a recent paper by Crompton and
Thompson [28]. Their study uses a different approach to determining the soil moisture distribution following
a storm event. It is based on using machine learning to build an emulator for the Saint Venant shallow water
equations for overland flow, coupled to the Richards equation for infiltration. They also find that greater
storm depth, with identical annual mean, leads to increased spacing of the bands.

The impact of rainfall seasonality and variability on vegetation pattern dynamics is a major motivation
for our study, and has been explored in other works [29, 30, 31, 32, 33]. Here, we incorporate into the
pulsed-precipitation model a stochastic rainfall that assumes a Poisson point process for storm arrivals and
draws each storm depth from an exponential distribution [34]. We demonstrate how this model can be used
to investigate the likelihood of noise-induced transitions between patterned states and barren desert state
in a low annual-mean-rainfall, bistable regime. Specifically, we find that the vegetation can spontaneously
collapse in a finite time as a result of fluctuations in rainfall and that both precipitation characteristics,
such as the mean storm depth, and pattern characteristics, such as the band spacing, impact how long the
vegetation survives on average. We find, for example, that greater variability in storm depth increases the
likelihood of collapse. The model also predicts that the same stochastic rainfall pattern, spread out over a
longer rainy season, leads to longer-lived vegetation.

Our paper is organized as follows. In Section 2, we summarize the fast-slow switching framework [19]
that serves as a foundation for the pulsed-precipitation model used in this study, highlighting the key sim-
plifications that make our stochastic rainfall simulations possible. In Section 3, we leverage these simplifying
assumptions to derive a pulsed-precipitation model in which rainstorms act as kicks to the soil moisture,
which then evolves slowly, with the biomass, during the long dry periods between storms. In Section 4, we
investigate pattern-forming instabilities of spatially uniform states of the pulsed-precipitation model for an
idealized periodic sequence of rain pulses. This linear stability analysis reveals a spatial resonance tongue
structure that suggests the distance that surface water travels before infiltrating into the soil plays a key role
in wavelength selection. In Section 5, we numerically explore important qualitative differences in the dynam-
ics of the model under stochastic rainfall versus periodic rainfall, while also showing that the wavelength,
as in the linear problem, is tuned to mean overland flow distance of surface water following a storm. We
then demonstrate how the model can be used to probe possible ecosystem collapse that results from rainfall
variability in the bistable regime. Finally, in Section 6, we discuss the results of our study in the context of
other related work, and suggest potential directions to pursue with the pulsed-precipitation model.

2 Fast-Slow Switching Framework

This section introduces a model for the formation of banded vegetation patterns based on the fast-slow
switching framework developed in [19]. The switching framework evolves, on appropriate timescales, three
fields: surface water height H(X,T ) [cm], soil water column height W (X,T ) [cm], and biomass density
B(X,T ) [kg/m2]. While H(X,T ) only evolves on the short time scale of rain events and B(X,T ) only
evolves on the long time scales between them, W (X,T ) responds to processes that act on the fast timescale
and other ones that occur on the slow timescale.

The output of the fast part of the switching model, after surface water has infiltrated the soil under an
assumption of fixed biomass distribution B(X), is a soil moisture distribution W(X). This is the initial
condition for the slow system that applies during the ensuing dry period between rain storms. The slow
system evolves both biomass and soil moisture. It takes into account evapo-transpiration of soil moisture,
biomass growth and death, as well as seed dispersal, modeled as biomass diffusion, which leads to up-slope
colonization of the vegetation. The explicit formulation of the fast and slow parts of the switching model
are given in Sections 2.1 and 2.2, respectively. We highlight the differences between the original formulation
in [19] and the version used in this paper.

The modifications we introduce here allow for a closed form solution for the spatial distribution of soil
waterW once all of the surface water from a rainstorm has infiltrated into the soil. In Section 3, we leverage
this result to formulate a pulsed-precipitation model in which the biomass B(X,T ) and soil water W (X,T )
evolve on the slow timescale and rainstorms are treated as instantaneous impulses to W (X,T ), determined
by the closed form solution of the fast system, for a given storm depth and the current biomass profile.

Both the switching model and the pulsed-precipitation model are formulated on a one-dimensional spatial
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Fast-Slow [19] Pulsed-Precipitation

Infiltration Rate KI

(B(X) + fQ

B(X) +Q

)( H

H +A

)(
1− W

Ws

)βI

KI

(B(X) + fQ

B(X) +Q

)
Θ(H)

Surface Flow Speed
( KV

√
ζ

1 +NB(X)

)
HβV

KV

√
ζ

1 +NB(X)

Table 1: Comparison of infiltration rate I and overland water flow speed V used with fast-slow switching
model in [19] and our modified pulsed-precipitation model. For the pulsed-precipitation model, we set
KI = 200 cm/day, whereas for the fast-slow model, we used KI = 500 cm/day with A = 1 cm, Ws =

27 cm, and βI = 4 for the additional factors that can reduce infiltration. Both βV = 2/3 (with KV

√
ζ =

1.4m/day/cm2/3) and the computationally-faster βV = 0 (with KV

√
ζ = 1.4m/day) were used in [19]. All

other parameters match values for the pulsed-precipitation model given in Table 2.
Here Θ(H) denotes a Heaviside step function in H.

domain with periodic boundary conditions; the perspective is that it is capturing some representative middle
portion of a long swath of gently sloped terrain, oriented with uphill in the +X direction. We conclude this
section in 2.3 by presenting the rainfall models used in this study, inspired by a typical climatology in the
Horn of Africa.

2.1 Fast Subsytem of the Switching Model

The fast portion of the switching model is

∂H

∂T
= P (T )︸ ︷︷ ︸
Precip.

−I
(
H,W ;B(X)

)
︸ ︷︷ ︸

Infiltration

+
∂

∂X

(
V(H;B(X)) H

)
︸ ︷︷ ︸

Advection

(1a)

∂W

∂T
= I

(
H,W ;B(X)

)
︸ ︷︷ ︸

Infiltration

, (1b)

where the infiltration rate, I [cm/day], and overland surface flow speed, V [m/day], are given in Table 1 for
both the original fast slow model and the approximation that leads to the pulsed-precipitation model.

In the pulsed model, the H and W dependent factors in I are replaced by a Heaviside step function in H;
infiltration occurs whenever there is water on the surface at a rate that depends only on B at that location.
With the default value of f = 0.1, the bare soil infiltration rate (B = 0 kg/m2) is a factor of 10 slower than
its maximum rate for B � Q. This sigmoidal transition from low to high infiltration rate with increasing
biomass B is an essential positive feedback, and suggests an advantage for B to exceed the threshold Q in
its patterned state.

We assume a constant 0.5% elevation grade (ζ = 0.005) and, as is common in conceptual models for
vegetation pattern formation, we omit the dependence on H in the speed of overland flow V for the pulsed-
precipitation model. We note that exactly what dependence is most appropriate in this setting is still
an open question, and the impact on qualitative predictions may potentially be minimized by appropriately
calibrating the model [35]. The overland flow speed is decreased, by a factor 1+NB(X), if there is vegetation
at a location X. This longer residence time, of surface water on vegetated soil compared to bare soil, is
another positive feedback between water resource and biomass that acts on the fast timescale.
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2.2 Slow Subsystem of the Switching Model

The slow portion of the switching model evolves the soil water W (X,T ), initialized by its post-storm distri-
bution W(X), and the biomass density B(X,T ). Specifically,

∂W

∂T
= −

(
L+ ΓB

)
W︸ ︷︷ ︸

Evapotranspiration

+DW
∂2W

∂X2︸ ︷︷ ︸
Diffusion

(2a)

∂B

∂T
= C

(
1− B

KB

)
ΓBW︸ ︷︷ ︸

Growth

− MB︸︷︷︸
Death

+DB
∂2B

∂X2︸ ︷︷ ︸
Dispersal

. (2b)

Here the evaporation rate is given by L and the transpiration rate is given by ΓB. Transpiration dictates the
biomass growth rate with an efficiency set by the parameter C, and with a logistic term that limits growth
if B approaches a carrying capacity KB . The death rate M is constant and seed dispersal is modeled by
linear diffusion. As is done in [19], we typically neglect the soil water diffusion, i.e. DW = 0. Our simulation
results with DW > 0 indicate that soil water diffusion plays a negligible role in the model. See Appendix A
for numerical exploration of the impact of diffusion rates DB and DW on pattern formation within the
pulsed-precipitation model.

2.3 Precipitation Model

We use rainfall patterns in the Horn of Africa as inspiration for our rainfall models. Figure 2(a-d) shows
rainfall statistics, based on reanalysis data of rainfall rates [36] at the site shown in Figure 1, between 2015
and 2020, along with associated cumulative rainfall.

Rainfall statistics in Figure 2(a-c), which are based on rainfall rates shown in Figure 2(d), indicate two
rain seasons per year, each lasting approximately 1-2 months with annual precipitation fluctuating between
11 and 25 cm/year over the 5 year period. We emphasize that the data presented in Figure 2, while
corrected using available rain gauge data, is reanalysis data based on models and not directly measured. We
can therefore reliably report rainfall rate statistics, but not rainstorm depth statistics, which would be most
relevant for informing the pulsed precipitation model.

Investigations in [19], with the fast-slow switching model, collapsed the rainfall of each rainy season into
a single hours-long storm of constant intensity, as illustrated in Figure 2(e). The pulsed-precipitation model,
introduced in Section 3, assumes each rainstorm instantaneously deposits water on the surface. We note that
this is an assumption of convenience, and other studies have explored the role that storm duration can play
in vegetation patterns [28]. In Appendix B, we show how we might capture the effects of storm duration in
the pulsed-precipitation model by interpreting the storm depth as an effective surface water height during a
storm.

In order to carry out linear stability analysis in Section 4, we consider a periodic array of identical,
evenly spaced rain pulses within each rainy season, as illustrated in Figure 2(f). In Section 5 we explore
the dynamics under a stochastic rainfall model [34] that treats rainstorm arrivals as a Poisson point process,
during each fixed duration rainy season, with storm depths drawn from an exponential distribution, as
illustrated in Figure 2(g).

3 Pulsed-Precipitation Model

This section develops the model we use in this paper for stochastic precipitation simulations. While we
retain the same reaction-diffusion model (2) for the slow subsystem, we make two significant changes to the
fast subsystem (1), which allow us to determine its output soil moisture distributionW(X) in a closed form,
by quadrature. The model changes are:

1. The precipitation P (T ) in (1a) is replaced by rain events that instantaneously deposit a column of
water, of height H0, uniformly on the domain. The timing and strength of these “precipitation pulses”
are the random variables in our stochastic simulations.
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(a)

(e) (g)(f)

(d)

(b) (c)

Figure 2: (a) Annual totals, (b) Average monthly totals and (c) rainfall rate distribution for (d) five years of
half-hourly reanalysis rainfall data [36] at the location from Figure 1(d). Also shown is time series generated
by (e) periodic rainfall model used in [19], consisting of a six-hour storm with storm depth of 8 cm, repeating
every six months, (f) periodic rainfall model with eight instantaneous pulses with storm depth of 1 cm, evenly
spaced in each one-month biannual rainy season, and (g) stochastic rainfall model with two one-month rainy
seasons per year, mean storm depth of 1 cm, and mean annual precipitation of 16 cm. Note that rainfall
in the pulsed precipitation model is characterized by storm depth in cm (blue), whereas the rainfall in the
fast-slow model is given in terms of a rainfall rate cm/hr over a given interval of time (black).
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2. The infiltration rate used in [19], given in Table 1, is replaced by

I(H;B(X)) ≡ KI

(B(X) + fQ

B(X) +Q

)
Θ(H). (3)

The infiltration is independent of how saturated the soil might be, and has a simple on-off switch
with presence-absence of surface water. We model this with the Heaviside unit step function Θ(H),
assuming the convention that Θ(0) = 0.

With these modifications we are able to reformulate the fast-slow model into a pulsed-precipitation frame-
work, with rain input modeled by instantaneous kicks to the soil water followed by evolution of the slow
system during the intervening dry-surface time intervals. We compare results from the two models in Ap-
pendix B.

The non-dimensionalization in Section 3.1 reveals key characteristic scales associated with the modified
fast and slow subsystems (1)-(2). In Section 3.2, we solve the fast system to obtain the spatial distribution
of water that has infiltrated the soil following a Dirac-delta rain impulse. Algebraic manipulation of the
integral expression for the soil water kick provides a geometric interpretation of the infiltration process that
redistributes water from the surface into the soil.

3.1 Dimensionless Parameters

In this subsection we present the dimensionless version of the pulsed precipitation model used in our in-
vestigations. For this, we introduce two different (dimensionless) timescales, t and τ for the fast and slow
subsystems, respectively, and a dimensionless distance x. Specifically, we let

t =
KI

H0
T, τ = MT, x =

KI/H0

KV

√
ζ
X. (4)

Here H0 is a characteristic rain pulse height and H0/KI is an associated infiltration timescale. This time,
together with a characteristic overland flow speed (KV

√
ζ), determines a characteristic overland travel dis-

tance (H0/KI)/(KV

√
ζ) that is used to non-dimensionalize X. We set the (slow) biomass timescale by its

mortality rate, M . Finally, we define the dimensionless fields:

h =
H

H0
, w =

(CΓ

M

)
W, b =

B

Q
. (5)

The fast subsystem of the pulsed-precipitation model, in dimensionless variables, is

∂h

∂t
= −ι(x)Θ(h) +

∂

∂x
(ν(x)h) (6a)

∂w

∂t
= αι(x)Θ(h), (6b)

where

ι(x) =
b̂(x) + f

b̂(x) + 1
, ν(x) =

1

1 + ηb̂(x)
. (7)

Because the rainstorm is assumed to deposit water on the surface instantaneously, we take h = h0 as the
initial condition for Equation (6a), and there is no longer an explicit precipitation term. The dimensionless

biomass distribution b̂(x) ≡ B(X)/Q is taken from the slow subsystem at the arrival time of the precipitation
pulse. The non-dimensionalized slow subsystem is

∂w

∂τ
= δw

∂2w

∂x2
− (σ + γb)w (8a)

∂b

∂τ
= δb

∂2b

∂x2
+ wb

(
1− b

κ

)
− b. (8b)

Definitions of the dimensionless parameters, and typical values used in simulations for all dimensioned
parameters of the model, are given in Table 2; see [19] for details of these parameter estimates. Note that
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parameter units default value description/definition

H0 cm 1 characteristic precipitation pulse

KI cm/day 200 infiltration rate coefficient

f – 0.1 bare/vegetated infiltration contrast

Q kg/m2 0.1 biomass level for infiltration enhancement

KV

√
ζ m/day 1.4× 104 surface water speed (bare soil)

N m2/kg 20 surface roughness coefficient

L day−1 0.0075 evaporation rate

Γ (kg/m2)−1day−1 0.025 transpiration coefficient

KB kg/m2 4 biomass carrying capacity

C (kg/m2)/cm 0.1 water use efficiency coefficient

M day−1 0.01 biomass mortality rate

DB m2/day 0.01 biomass diffusion

DW m2/day 0 soil water diffusion

η – 2 η ≡ NQ

α – 0.25 α ≡ H0CΓ/M

σ – 0.75 σ ≡ L/M

γ – 0.25 γ ≡ ΓQ/M

κ – 40 κ ≡ KB/Q

δw – 0 δw ≡ DWK
2
I /(MH2

0K
2
V ζ)

δb – 0.0002 δb ≡ DBK
2
I /(MH2

0K
2
V ζ)

Table 2: Summary of parameters used in numerical simulations. Values are given for the dimensioned fast-
slow model (1)-(2) and the non-dimensionalized pulsed precipitation model (6)-(8). We neglect soil water
diffusion so δw = 0.
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uphill

Figure 3: Illustration of the surface water transport and infiltration process modeled by the fast system (6).
The initial surface water, shaded blue and red in the left panel, is redistributed by the dynamics of the fast
system to a soil water distribution indicated by the corresponding shaded regions in the right panel. The
spatial biomass profile is indicated with high/low levels in green/yellow in the upper portions of both panels.
The direction field associated with the characteristic equation (9) is indicated in black in the left panel, with
two example curves in red. The red region between the two example curves, constrained to be below the
initial height h0, determines the soil water in red in the right panel. As indicated by the arrow in the right
panel, x increases in the uphill direction.

for the default parameters, the fast infiltration time-scale in (4) is less than 10 minutes, while the slow
time-scale associated with the biomass is 100 days. The characteristic distance for overland water flow is
∼ 70 m. This contrasts with the short biomass diffusion scale of 2

√
365DB ≈ 2.4m, which is based on

a year timespan. The disparity of these two length-scales is reflected in the non-dimensionalized model
through small diffusion parameter δb � 1. Finally, we note that the characteristic soil water depth in (5) is
W0 = M/CΓ = 4cm = 4H0.

3.2 Solving the fast subsystem of the pulsed precipitation model

The goal of this subsection is to obtain a closed form expression for ŵ(x), which is the amount of soil water

at each location x, after the rain event. This distribution, together with b̂(x) is then the initial condition
for the slow subsystem (8) that applies during the ensuing dry spell. Before going into the details of the
calculation, we present a schematic summary of the result in Figure 3. In particular, this figure illustrates
the redistribution and infiltration processes that determine the amount of water from the rain event that
infiltrates into a given location. The biomass level is indicated with high (low) levels shaded in green (yellow)
in the upper part of both panels. The left panel illustrates the initial surface water input by the blue (and
red) shaded region below some initial surface water height h0 in the positive (x, h) quadrant. This initial
amount of water is redistributed by downhill surface transport and infiltration, resulting in the soil water
distribution indicated by the blue (and red) shaded region in the right panel. Specifically, the amount of the
initial block of surface water between the two red curves in the left panel, filled in red, infiltrates the soil
at the locations where those curves reach h = 0. This contribution to soil moisture is summarized by the
corresponding red block in the right panel. Note that the added soil water distribution ∆w, shown in the
right panel, is concentrated where the biomass is located, reflecting the positive feedbacks of the system.

In this section, we describe how we obtain the red curves that define the redistribution process as the
solution of system (6) by a standard application of the method of characteristics (see, e.g. [37]). In particular,
the solutions to the h equation (6a) along so-called characteristic curves, defined below by (10), partition
the initial water by where it ends up in the soil as illustrated in Figure 3. Figure 4 provides further details
behind our approach for the biomass profile, B(X) ≡ Qb̂(x), shown in panel (c). It fills in the steps to our
geometric interpretation (Figure 3) for the way water, initialized on the surface, gets redistributed into the
soil. While the following discussion of our method assumes an infinite domain to make the presentation of
the underlying ideas more clear, our simulations incorporate periodic boundary conditions on a domain of
length L.

We employ the method of characteristics to solve the fast subsystem (6), given a biomass distribution

b̂(x), which determines the infiltration rate ι(x) and overland flow speed ν(x) via (7). We assume that the
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initial surface water height is h(x, 0) = h0, which is set by the precipitation pulse, and that the initial soil
water distribution is w(x, 0) = w0(x). We begin with the h equation (6a), which is decoupled from the w
equation (6b) thanks to our simplifying assumptions related to the infiltration function I. We parameterize
time t(x; y) by spatial position x along a characteristic that starts at x = y at time t = 0. This results

in the following set of ODEs, one for each ĥ(x; y) ≡ h(x, t(x; y)), the height of the surface water along the
characteristic starting at y:

d

dx

(
ν(x)ĥ(x; y)

)
= ι(x)Θ

(
ĥ(x; y)

)
, ĥ(y; y) = h0, (9)

where the time to reach the position x ≤ y along the characteristic starting at y is given by

t(x; y) =

∫ y

x

1

ν(s)
ds. (10)

Based on the functional forms, we can assume ν(x) and ι(x) are continuous and strictly positive. Therefore,

by equation (9), the product q(x; y) = ν(x)ĥ(x; y), which is initially positive at x = y, decreases monoton-

ically as x decreases, i.e. in the downhill direction. It can reach zero only when ĥ(x; y) = 0, and for x

values below this point, ĥ(x; y) remains zero, a consequence of the Heaviside function in equation (9). For
the characteristic starting at y, we denote that point where the surface water reaches zero by xz(y). We can
then integrate equation (9) from the start of the characteristic y to some point x to get

ĥ(x; y) ≡ h(x, t(x, y)) =

{
1

ν(x)

(
ν(y)h0 −

∫ y
x
ι(s)ds

)
if xz(y) < x ≤ y

0, if x ≤ xz(y)
, (11)

Figure 4(a) illustrates a number of characteristics t(x; y) satisfying (9). (Note that due to the periodic
boundary conditions the characteristics wrap around the domain.) We indicate the point on the characteristic

where ĥ(x; y) first reaches zero, (xz(y), t(xz(y); y)), by a black circle and change to a dotted line where

ĥ(x; y) = 0.
With a solution for h in hand, we now turn to the soil water equation (6b). We can write a formal

solution for ŵ(x) in terms of h(x, t) as

ŵ(x) = w0(x) + αι(x)

∫ ∞
0

Θ(h(x, t))dt︸ ︷︷ ︸
≡Ω(x), added soil water

. (12)

Here the integral over the Heaviside function determines the total length of time surface water is infiltrating
the soil after a rain pulse, on the fast timescale. Figure 4(d) indicates, with thick red vertical line segments,
two intervals that comprise this time for the given point x = x∗. In order to compute the integral in
equation (12) given our solution ĥ(x; y) in equation (11), we make the change of variables from time t to
the starting position y of the characteristic that reaches x at time t(x; y) via equation (10). The added soil
water is given by

Ω(x) = αι(x)

∫ ∞
x

Θ
(
ĥ(x; y)

)
ν(y)

dy. (13)

The positive contributions to the integral in equation (13) occur for values of y where the surface water
height h is nonzero at x along the characteristic starting at y. There are two such intervals in y associated
with x = x∗ for the example in Figure 4(d), which are indicated with thick dotted red lines along the spatial
axis. The characteristics highlighted in red in Figure 4(d), have surface water height that just reaches 0 at
x = x∗ and mark the boundaries of the contributing intervals for both equations (12) and (13). Figure 4(f)
shows the resulting soil water distribution Ω(x) added by the impulse of rain. The contribution at x = x∗
highlighted by a thick solid red line is proportional to the time during which infiltration occurs.

In order to develop a geometric interpretation of equation (13), we return to our set of ODEs for ĥ(x; y),
with each labeled by y and given in equation (9). Notice that it is possible for multiple characteristics to
first reach zero surface water height at the same location, that is xz(y1) = xz(y2) for y1 6= y2. Because we
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Figure 4: (a) The space time characteristic, defined by equation (10), with initial condition h(y, 0) = h0 is
highlighted in bold. Surface water h reaches zero at xz(y) along the characteristic, which is indicated by a
transition from solid to dotted line. (b) The corresponding picture in the (x, h) plane shows how h evolves
along the characteristic, labeled by the location y of the initial height h0. (c) The biomass profile is included
to highlight it’s role of slowing water flow and increasing infiltration. (d) The space time characteristics for
which h reaches zero at x = x∗ are highlighted in red. The (vertical) time intervals (0, t1) and (t2, t`) at
x = x∗ capture the times for which h > 0 at x = x∗ and infiltration occurs. (e) The corresponding picture
in the (y, h) plane indicates that the contributions to the soil water at x = x∗ come from locations with
h < h0 along the characteristic labeled by y = y`(x∗) which, by definition (14), reaches h = 0 at x∗. (f) The
contribution from the rainstorm to the soil water at x = x∗, determined by equation (15), is highlighted in
red.

11



assume the surface water is initially uniformly distributed across the entire domain, there is at least one
characteristic that first reaches zero at any point x on the domain. We define y`(x) to be the largest y such
that xz(y) = x. Now, integrating equation (9), along this y`(x) characteristic, from x where the surface
water reaches zero up to some point y < y`(x) gives

ĥ(y; y`(x)) =
1

ν(y)

∫ y

x

ι(s)ds. (14)

The integral in equation (14) represents the height of the surface water at a point y along a characteristic
defined by equations (9) and (10) that starts at x with h = 0 and follows it backward in time. We use

the same notation ĥ as in equation (11) here because the result of the integral in (14) is equivalent to the
surface water height at the point y along the same characteristic curve, but starting at y`(x) with h = h0

and integrating forwards in time.
Noting that a positive multiplicative factor ν(x)/ν(y) can be inserted in the argument of the Heaviside

step function of equation (9), we can make use of equation (11) together with equation (14) to re-express
the added soil water Ω(x) as

Ω(x) = αι(x)

∫ y`(x)

x

Θ
(
h0 − ĥ(y; y`(x))

)
ν(y)

dy, (15)

We can truncate the upper bound of the integral in going from equation (13) to (15) because we have defined

y`(x) such that ĥ(y; y`(x)) > h0 for all y > y`(x).
Equation (15) affords a geometric picture for the water going from the surface into the soil. We imagine

beginning with a “block” of water on the surface as a result of the rainstorm, which is represented by the
region between the thick solid black line and the y-axis in the (y, h)-plane in Figure 4(e). The fast system
acts to redistribute this initial block of water into the soil via surface transport and infiltration. We can
think of the characteristics defined by equation (14) that start at h = 0 and move backward in time as a
partitioning of this block in the (y, h)-plane. The amount of the initial block of water that appears along a
characteristic, starting at a location x with h = 0, is how much water infiltrates into that location. Notice
that the contribution to Ω(x) along a characteristic is limited by the Heaviside function to intervals where
h < h0, e.g. within the initial block of water. Typical characteristics are indicated in Figure 4(e) by blue
lines, with the intervals above h0 dotted. The characteristic that starts at x = x∗ and determines the
amount of added soil water at that location is highlighted in red. Notice that there are two intervals of
this characteristic below h0. The endpoints of these segments correspond exactly to the endpoints of the
intervals of integration (x∗, y1) and

(
y2, y`(x∗)

)
shown in Figure 4(d). Indeed, all the characteristics that

start with h = h0 at t = 0 and reach zero at x = x∗ in the (x, t)-plane of Figure 4(d) map onto segments of
the characteristic that starts with h = 0 at x = x∗ in the (y, h)-plane of Figure 4(e).

The numerical simulations reported on in Sections 4 and 5 are carried out using Matlab’s ODE suite [38].
The contribution to the soil water from each rain pulse is computed by numerical integration of equa-
tions (14)-(15) via the trapezoidal rule. A centered finite-difference scheme is used to evolve the slow
system (8) in between the rain pulses.

4 Periodic Rainfall

We begin exploration of the pulsed-precipitation model by first considering an evenly-spaced sequence of
identical rain events within each rainy season, which is the periodic case shown in Figure 2(f). We find that
the regularity of this artificial rainfall pattern leads to a spatial resonance phenomenon that controls the
preferred spacing of the vegetation bands. Specifically, the spacing is determined by the distance surface
water can travel in the time it takes for the precipitation pulse to fully infiltrate into the soil. We show
this explicitly in Section 4.1, through a linear stability analysis of the uniform vegetation state to spatially
periodic perturbations proportional to eikx. This analysis reveals a sequence of resonance tongues in a
(MAP, k)-parameter plane, where MAP denotes mean annual precipitation. We then use this insight to
understand the preferred spacing and travel direction of the fully nonlinear bands, which is obtained through
numerical simulations of the model in Section 4.2.
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Throughout this section we use a precipitation model consisting of Ns = 2 identical rainy seasons,
six months apart, so the periodicity is Tp = (365/2) days. Each rainy season lasts for a time Tr =
(365/12) days ≡ 1 month, and it consists of Np equally spaced rain pulses that deliver, instantaneously,
a column of water of height H0. The mean annual precipitation is then MAP = NsNpH0. We denote
dimensionless time units by τ , with the six month period of the seasonal forcing given by τp = 1.825, and
the month-long rainy season lasting a time τr = τp/6. The precipitation pulses, in dimensionless units, are
denoted by h0.

4.1 Linear stability of spatially uniform, temporally-periodic solutions

In this subsection, we describe results of linear stability computations for uniform vegetation to heterogeneous
perturbations, proportional to eikx. The uniform state has the same half-year periodicity as the rainfall
pattern and is determined as a fixed point of an appropriate stroboscopic map. Its linear stability properties
are determined by a computation of Floquet multipliers as a function of k.

Loss of Stability of Bare Soil Solution We find that the uniform vegetation state arises from a trans-
critical bifurcation of the zero-biomass desert state at MAP =MAPc ≡ LM/CΓ. In particular, as shown
in Appendix C, this threshold is independent of the details of the rainfall model. In fact, if we were to replace
our fast-slow system for the uniform solutions by a pair of ordinary differential equations for slow variables
(W (T ), B(T )), with a constant precipitation rate P0, then we would obtain the same instability boundary.
Specifically, we find that there is a transcritical bifurcation, which produces the uniform vegetation solution,
when P0 = Pc = LM/CΓ =MAPc for

Ẇ = P0 − (L+ ΓB)W

Ḃ = C
(

1− B

KB

)
ΓBW −MB.

This transcritical bifurcation marks the stability boundary for the zero-biomass desert state; it’s unstable
for MAP >MAPc. Numerical simulations using parameters given in Table 2 indicate that patterns may
stably co-exist with desert well below MAPc ≈ 11 cm. Our numerical investigations of pattern collapse
reported in Section 5.3 are carried out in such a stable co-existence regime, using a stochastic rainfall model
with an average MAP of 8 cm.

Pattern-Forming Instability of the Uniform Vegetation Solution In contrast to the desert state,
we find that the stability region for the uniform vegetation state, to heterogeneous perturbations, depends
on details of the rainfall model. Here we describe our linear stability calculations and summarize some of
the key findings related to pattern-forming instabilities of the uniform vegetation state.

Let (w0, b0) denote soil water and biomass levels of the τp-periodic uniform vegetation state at the start
of the rainy season. This state exists, with b0 > 0, for MAP > MAPc. We evolve it, together with a
small spatially periodic perturbation (∆wk,0,∆bk,0)eikx, over one cycle of the periodic rainfall model. The
(linearized) Poincaré return map,

Pτp,k(w0, b0,∆wk,0,∆bk,0) = (w0, b0,∆wk,1,∆bk,1), (16)

has fixed point (w0, b0, 0, 0). This map also determines the linear evolution of the perturbation (∆wk,0,∆bk,0),
over the period τp, to its updated value (∆wk,1,∆bk,1). We quantify this change by a pair of Floquet
multipliers, which are the eigenvalues of the linearized Poincaré return map restricted to the perturbations.
We denote this two-dimensional linear map by Lk, i.e.(

∆wk,1
∆bk,1

)
= Lk

(
∆wk,0
∆bk,0

)
. (17)

The return map, Pτp,k, is a composition of maps associated with the fast and slow subsystems. The fast
subsystem distributes the water in the soil after a rain pulse of strength h0. The associated map, denoted
ψh0,k, takes the form

ψh0,k(w, b,∆wk,∆bk) = (w + αh0, b,∆wk + ∆Ωh0,k,∆bk). (18)
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Note that the initial biomass b+∆bke
ikx is frozen for the fast system and hence is unchanged. The soil mois-

ture gains a uniform contribution αh0 and, for the linearized problem, a nonuniform contribution ∆Ωh0,k e
ikx.

We determine the latter by linearizing (15) about ∆bk = 0, and setting y`(x) = x+ `0 + δ`k(x), where

`0 =
ν(b)

ι(b)
h0 (19)

is the distance surface water of height h0 travels, over uniform biomass at level b, before completely infiltrating
into the soil. The change in this travel distance due to the biomass perturbation ∆bke

ikx, denoted δ`k(x),
is determined below. First, to linear order in ∆bk and δ`k(x), we find

Ω(x) = αι(b+ ∆bke
ikx)

∫ y`(x)

x

Θ(h0 − ĥ(y; y`(x)))

ν(b+ ∆bkeiky)
dy

= α
(
ι(b) +

dι

db
∆bke

ikx
)∫ x+`0+δ`k(x)

x

( 1

ν(b)
− 1

ν(b)2

dν

db
∆bke

iky
)
dy + · · ·

= αh0 + αh0

[δ`k(x)

`0
+
( 1

ι(b)

dι

db
+
i(eik`0 − 1)

ν(b)k`0

dν

db

)
∆bke

ikx
]

︸ ︷︷ ︸
=∆Ωh0,k eikx

+ · · · , (20)

where the ellipsis refers to higher order terms in ∆bk and δ`k. To find the slight adjustment, δ`k(x), to
the total travel distance to complete infiltration at location x, which is specifically due to the biomass
perturbation ∆bke

ikx, we solve ĥ(y`(x); y`(x)) = h0 using (14). We find, to linear order in ∆bk,

δ`k(x)

`0
=
[ 1

ν(b)

dν

db
eik`0 +

i

ι(b)k`0

dι

db

(
eik`0 − 1

)]
∆bke

ikx. (21)

Combining (20)-(21), we obtain, for k 6= 0,

∆Ωh0,k = αh0

[
1

ι(b)

dι

db
+

1

ν(b)

dν

db
eik`0 +

i

k`0

(
1

ι(b)

dι

db
+

1

ν(b)

dν

db

)(
eik`0 − 1

)]
∆bk. (22)

Here `0 is given by (19), and

1

ι(b)

dι

db
=

(1− f)

(b+ f)(b+ 1)
,

1

ν(b)

dν

db
= −

( η

1 + ηb

)
follow from (7). (Note that for k = 0, it can be shown that Ωh0,0 = 0.)

The flow map that applies between pulses is derived from the slow system (8). It consists of the non-
linear equations satisfied by the uniform vegetation state (w, b), together with the linear equations in the
perturbations (∆wk,∆bk). We denote this map, which flows from an initial condition (w0, b0,∆wk,0,∆bk,0)
for a time τ , by

ϕτ,k(w0, b0,∆wk,0,∆bk,0) = (w(τ), b(τ),∆wk(τ),∆bk(τ)). (23)

Here w(τ), b(τ),∆wk(τ),∆bk(τ) satisfy

dw

dτ
= −(σ + γb)w (24a)

db

dτ
=

(
1− b

κ

)
wb− b. (24b)

d∆wk
dτ

= −(δwk
2 + σ + γb)∆wk − γw∆bk (24c)

d∆bk
dτ

=

(
1− b

κ

)
b∆wk +

(
−δbk2 + w − 2b

κ
w − 1

)
∆bk. (24d)

We can now construct the Poincaré return map (16) as

Pτp,k = ϕτd,k ◦ (ϕ∆τ,k ◦ ψh0,k) ◦ . . . ◦ (ϕ∆τ,k ◦ ψh0,k)︸ ︷︷ ︸
Np times

. (25)
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(c)

(b)(a)

Figure 5: (a) Magnitude of leading eigenvalue of Lk, defined by equation (17), as a function of mean annual
precipitation (MAP) and perturbation wavenumber k. Solid black lines are linear stability boundaries and
solid white lines indicate predicted resonances between the pattern wavelength and characteristic surface flow
distance. (b) The magnitude and phase of the two eigenvalues λk along the dotted black line atMAP = 16
cm in panel (a). The solid lines correspond to the larger magnitude eigenvalue and the dashed correspond to
the smaller one. Shaded regions yield downhill migration of perturbations, inferred from the sign of φk (c)
The phase of the biomass perturbation relative to the soil water perturbation associated with the eigenvectors
for eigenvalues shown in (b). The wavenumber corresponding to a wavelength of 200m is marked by black
vertical dotted lines in right panels; compare to nonlinear pattern with same wavenumber in Figure 6.

Here ∆τ = τr/Np, which is the time between rain pulses during the rainy season, while τd = τp − τr is the
length of the dry season. Restricting the map to the two perturbation components determines Lk in (17).
The eigenvalues, λk, of Lk are the (complex) Floquet multipliers. (Note that it follows from (22) that the
map itself has complex entries.) If the modulus of either eigenvalue λk exceeds one, then the uniform state
is unstable to pattern-forming perturbations of wavenumber k.

Figure 5 presents, in dimensioned quantities, an example of typical linear stability results for the param-
eters of Table 2. To obtain these results, we first numerically compute the uniform vegetation fixed point
(w0, b0, 0, 0) of the Poincaré return map (16), and then numerically compute its linear stability via the eigen-
values λk of the pertubation map (17). Figure 5(a) shows a heat map of the largest |λk| as a function of both
mean annual precipitationMAP and perturbing wavenumber k in the case of a fixed number of rainstorms
per season Np = 8. (For Np = 8, storm strengths range between H0 ≈ 0.68 cm and H0 ≈ 2.7 cm for Fig-
ure 5(a).) We find that asMAP decreases from a high value ofMAP = 45 cm, by continuously decreasing
H0, the uniform state loses stability at MAP ≈ 42.8 cm to perturbations of wavenumber k ≈ 0.141m−1

(wavelength L ≈ 45m). This figure, which shows the instability boundary associated with |λk| = 1 as a
black curve, captures a structure in the form of “resonance tongues”. Specifically, we find that the instability
regions straddle predictions based on overland water flow distances Ln = 2`0/(n + 1), n = 0, 1, 2, . . . (solid
white lines), where `0 is given by (19). (For this we evaluate ν(b) and ι(b) in `0 using the fixed point value
b0 associated with the return map (16), i.e. its level at the start of the rainy season.) We find that the most
unstable perturbation has a wavelength L0 that is well-approximated by twice the distance water flows on the
surface before getting infiltrated, i.e. to the perturbation wavenumber k = π/`0. Thus, at the linear level,

15



the “preferred” pattern wavelength is one for which the newly-forming vegetation band harvests water from
the location of the newly-forming bare soil region. This instability appears as part of a series of increasingly
weaker and narrower instability regions, which correspond to the surface water from a newly-forming bare
soil region traveling n wavelengths before reaching a newly-forming vegetation band. Figure 5(b) shows a
plot of |λk| for MAP = 16 cm, indicated by a black dotted line in panel (a), which slices through four of
the instability tongues of Figure 5(a).

In order to determine linear predictions for vegetation band migration speed, we extract the phases
φk of the eigenvalues λk = |λk|eiφk of Lk. The second panel of Figure 5(b) shows a plot of φk, for both
eigenvalues λk for MAP = 16 cm, and indicates that, for all four instability intervals, the phase switches
sign near each successive peak of |λk|, and that the phase is confined to an interval around φk = 0, here
approximately [−π/3, π/3]. If the phase is negative for the unstable Floquet multiplier, then that indicates
a phase advance of the pattern during each seasonal cycle, and thus corresponds to uphill migration of the
vegetation bands. The opposite holds for a positive phase, shaded gray in panels (b) and (c), which indicates
a downhill migration of the vegetation bands. Figure 5(c) shows the phase shift between the components
∆wk and ∆bk of the eigenvectors of Lk, e.g. the eigenvector can be written (∆wk,∆bk) = (1,Reiφbw), where
R > 0 is real. We see that the sign of the phases φk in Figure 5(b) are (typically) opposite to the phase
denoted φbw in Figure 5(c). This observation lends itself to a simple interpretation. Specifically, if φbw > 0,
then the water peak is uphill from the biomass peak and we might expect uphill migration of the bands, i.e.
φk < 0. Similarly, we expect φk > 0 (downhill migration) if φbw < 0, in which case the water peak is shifted
downhill from the biomass one.

We note that the prediction, of the linearized problem, that patterns might travel downhill is not consis-
tent with observational studies, which report only upslope colonization. Moreover, the observed migration
speeds for the bands are slow; for instance, order of magnitude, a band might take a century to migrate
uphill by one wavelength [4, 3], which would correspond to a (negative) phase shift of ∼ π/100 every seasonal
cycle. In the subsequent sections we explore how well these linear findings hold up for the nonlinear problem
under periodic and stochastic rain inputs.

4.2 Nonlinear Patterns

Numerical simulations indicate that, while the linear theory captures the behavior of small amplitude patterns
near onset of the lowest order resonance tongue shown in Figure 5, the nonlinear patterns selected at lower
MAP values exhibit very different dynamics from the linear predictions. Even still, the importance of the
characteristic distance surface water travels before infiltrating into the soil seems to carry over into the
nonlinear regime, as we now demonstrate.

For Figure 6, we consider periodic rainfall with MAP = 16 cm and storm depth of H0 = 1 cm on a
1 km domain. Simulations initialized with the 0.1% random noise on top of the uniform vegetation state
typically settle into a “traveling-wave” state with five bands on the domain. Here we use “traveling wave”
(in quotes) to indicate that the state undergoes a spatial translation under the nonlinear map associated
with evolving the system by one rainy and subsequent dry season. The five-band state (wavelength of 200m,
wavenumber of ∼ 0.0314m−1) has an uphill migration speed of approximately 69 cm/year, corresponding
to translation by one wavelength every ∼ 290 years; this wavenumber is also indicated by a vertical line in
the linear results of Figure 5(b). Panel (a) provides timeseries data of spatially averaged quantities over the
last two years of the 100-year simulation, panel (b) shows spatial profiles derived from the last year of the
simulation and panel (c) shows annually-averaged spacetime plots. We note that ∆Y`(X) in panel (b) is
the farthest (dimensioned) distance traveled by water on the surface during a rainstorm before infiltrating
at a point X. The dimensionless version of this quantity is ∆y`(x) ≡ y`(x) − x, where y` is defined in
Section 3.2 and sets the upper bound of integration for computing the soil water kick Ω in Equation (15).
The linear stability analysis of spatially uniform states in Section 4.1 indicates that ∆y`(x) = `0, a constant
value in this case, plays a key role in controlling the wavelength of the patterns. For the fully nonlinear
patterns shown in Figure 6, we see a “sawtooth” structure in the plot of the average ∆Y`(x). Gray horizontal
arrows indicate the farthest average distance traveled by water that infiltrates into locations between the
peak value of ∆Y`(X) = 180m at X = 321m and the minimum value of ∆Y`(X) = 36m at X = 478m.
Water initialized at X = 514m, within the trailing edge of a vegetation band, travels through nearly the
entire vegetation band downhill before fully infiltrating. This indicates that nearly the entire 86 m width of
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Figure 6: (a) Time series showing, from top to bottom, storm depth H of rain pulses, domain-averaged soil
water W and biomass B during last two years of a 100 year simulation under periodic rainfall. Solid lines
indicate spatially averaged fields while dashed lines indicate instantaneous min/max. (b) Spatial distribution,
from top to bottom, of dimensioned maximum distance ∆Y`(X) traveled by water before infiltrating, soil
water W and biomass B during the last year of the simulation. Solid lines indicate averages over rainstorms
for ∆Y`(X) and annual averages for W and B. Pointwise min/max values are shown by dashed lines.
Horizontal gray arrows have length equal to ∆Y`(X), and indicate farthest distance traveled by surface water
infiltrating into locations at the arrow tips. (c) From left to right, time series of annual rainfall totals in blue
with 1 cm contribution from each rainstorm highlighted in orange, spacetime plots of annually averaged soil
water in units of cm and biomass in units of kg/m2. Parameters: Periodic rainfall with MAP = 16 cm,
storm depth H0 = 1 cm and rainy season duration Tr = 1month on a L = 1000m domain and initialized
with 1% random noise on top of the spatially uniform solution.
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Figure 7: Spatial distribution of maximum distance ∆Y`(X) traveled by water before infiltrating and biomass
profile associated with each of the eight rainstorms during one season with (a) L = 200m with average uphill
migration speed of 69 cm/year and (b) L ≈ 167m with average downhill migration 179 cm/year. The
location of the peak of ∆Y`(X) averaged over the eight storms is marked by a vertical dotted line, while the
domain size is marked by a horizontal dashed line. Parameters: Periodic rainfall withMAP = 16 cm, storm
depth H0 = 1 cm and rainy season duration Tr = 1month.

the vegetation bands are harvesting water from bare soil regions uphill of them, and that none of the water
travels across a band into the bare soil region downhill of it.

Using the same parameters, we also observe a state with 6 bands that migrate downhill at an average
rate of about 179 cm/year, or one L ≈ 167m wavelength every 93 years. Figure 7 zooms in on a single
band of these 5-band and 6-band periodic patterns. It shows, from bottom to top, the spatial profiles of
the biomass B and the maximum distance ∆Y` water travels before infiltrating into the soil, for each of the
eight one-centimeter rainstorms of a rainy season. The profiles are aligned so that X = 0 corresponds to
the farthest downhill that water initialized within the vegetation band reaches during any of the rainstorms.
With this choice, if there is a bare soil region uphill of the vegetation band, then we know that it did not
collect water from a vegetated region during the rainy season.

The uphill-migrating case with L = 200m in panel (a) is more “optimal” in the sense that the water
from the bare region uphill of the band is deposited completely within the band, as evidenced by the peak
value of ∆Y` being less than the domain length. Moreover, the peak is located within the vegetation band.
By contrast, the profile of ∆Y` in the downhill migrating case with L ≈ 167m, shown in panel (b), indicates
that water is traveling all the way across the band, and continuing into the downhill bare soil region. The
peak values for ∆Y` in this case, which is about 174m, slightly exceeds the domain length.

5 Stochastic Rainfall

In this section, we explore some of the striking differences in behavior of the pulsed precipitation model
under stochastic rainfall, compared to the idealized periodic rainfall results of Section 4. Numerical simula-
tions indicate that banded patterns still form under stochastic rainfall, with characteristics consistent with
observational data for band spacing and migration speed. Moreover, some of the more complex, and perhaps
worrisome, spatiotemporal behaviors produced by the model with idealized periodic rainfall vanish once
stochasticity in rainfall is introduced. We also find that the variability in rainfall can lead to noise-induced
transitions from a patterned state to the bare soil state when the mean annual precipitation level puts the
system in a bistable regime, below the transcritical bifurcation point found in Section 4.1. We show that
both the rainfall and vegetation band characteristics can impact statistics of these collapse events.

We assume Ns = 2 equal rainy seasons per year, each lasting Tr days. The intervening dry seasons last
for a time Td = Ty/Ns − Tr, where Ty = 365 days. During each rainy season we model the rainstorms
as a Poisson point process with a mean arrival rate of λr = MAP/H0/Ns/Tr where MAP is the mean
annual precipitation and H0 is the mean rainfall per storm. The actual amount of rainfall Hi, in the ith
storm, is drawn from an exponential distribution with mean H0, where we typically consider 0.5 ≤ H0 ≤ 2,
measured in cm. While Tr = 1 month is our default value, we let Tr → 0 to speed up computations for the
ecosystem collapse simulations of Section 5.3, after first exploring some of the effects of changing the rainy
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Figure 8: (a) Time series showing, from top to bottom, storm depth H of rain pulses, domain-averaged soil
water W and biomass B during last two years of a 100 year simulation under periodic rainfall. Solid lines
indicate spatially averaged fields while dashed lines indicate instantaneous min/max. (b) Spatial distribution,
from top to bottom, of dimensioned maximum distance ∆Y`(X) traveled by water before infiltrating, soil
water W and biomass B during last year. Solid lines indicate averages over rainstorms for ∆Y`(x) and
annual averages for W and B. Pointwise min/max values are shown by dashed lines. (c) From left to
right, time series of annual rainfall totals in blue with contribution from largest rainstorm highlighted in
orange, spacetime plots of annually averaged soil water and biomass. Parameters: Stochatic rainfall with
MAP = 16 cm, mean storm depth of H0 = 1 cm and Tr = 1month on a L = 1000m domain and initialized
with 1% random noise on top of the spatially uniform solution.

season duration in Section 5.2.
Figure 8 shows an example of results from a simulation on a 1 km domain initialized with 0.1% random

noise on top of the uniform vegetation state, MAP = 16 cm and mean storm depth H0 = 1 cm. The
simulation settles into a “stochastic traveling wave” solution which fluctuates from season to season, due to
rainfall variability, but can be characterized by a mean vegetation band width, spacing, and migration speed.
In this case the pattern consists of 6 bands on the domain and travels uphill on average, which is in contrast
to the 6-band pattern obtained with periodic rainfall in Section 4.2, which traveled downhill. We also note
the annual mean ∆Y` in the last year, shown in Figure 8(b) has an average of 94m, which is approximately
half the wavelength of the pattern, which is ∼ 167m. This ratio, at ∼ 0.56, is remarkably in line with the
resonance tongue phenomenon explored in Section 4.1.

5.1 Comparison to periodic rainfall

In repeated trials of the stochastic simulation, with parameters as in Figure 8, we typically observe between
5 and 12 bands on the 1000m domain at 200 years. This is in contrast to the skewed-lower and narrower
range of 4 to 6 bands observed under periodic rainfall as described in Section 4.2. We also see occasional, in-
termittent collapse of the vegetation to the bare soil state and explore this phenomenon further in Section 5.3
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at lower precipitation levels where the vegetation cannot recover.
Comparing Figures 6 and 8 shows that while fluctuations in the size and number of rainstorms per season

drive fluctuations in the soil water-biomass dynamics, there are qualitative similarities between the mean
pattern characteristics in the stochastic rainfall case and the periodic rainfall one. However, Figure 9, which
further compares the pattern characteristics of periodic and stochastic rainfall, shows that this is not always
the case. To generate those results, we fixed the rain model parameters to have MAP = 16 cm and (mean)
storm depth H0 = 1 cm, and enforced different band spacings by changing the size of the periodic domain
L and initializing with a perturbation of wavenumber k = 2π/L. We restricted to L ≤ 250m since for
domains with L > 250m (k < 0.0252m−1), the initial perturbation would split and the pattern eventually
settled into a multi-band state on the domain. At L = 250m, we obtained a single-band “traveling wave”
state for the periodic rainfall case, while the stochastic rainfall case still split into two bands. For cases
with 100 < L < 167 m and L < 59m, we did not observe “traveling wave” states with periodic rainfall but
did observe a “stochastic traveling wave” state with stochastic rainfall. The intervals in L for which one or
both rainfall models did not reach a “(stochastic) traveling wave state” are shaded gray in Figure 9(a-c).
We observed relatively consistent values of average biomass on the domain, but with a gradual increase
in fraction of the domain covered as a function of k. Figure 9(c) shows migration frequency for these
simulations. We compute the migration speed by tracking the motion of the uphill edge of the vegetation
band, whenever there is a clearly defined band. We take the edge as the location where the biomass first
goes above a threshold value of εB = Q/5 = 0.02 kg/m2. While we see significant downhill migration with
periodic rainfall, the stochastic simulation bands tend to travel slowly uphill (on average) except in a few
cases with very short domain sizes.

5.2 Dependence on rainy season duration

In this subsection we investigate the impact of changing the duration of the rainy season on pattern char-
acteristics, as well as on mean time to ecosystem collapse at low mean annual rainfall. This investigation
is motivated in part by an additional computational speed-up that is possible if we take Tr → 0 so that all
rainstorms in a given rainy season occur simultaneously. In this limit we can use the same biomass profile for
all the storms, thereby admitting an efficient parallel computation of the associated soil water contributions
Ω by Equation (15). Exploring the impacts of rainy season duration is also of possible interest in light of
observed changes in the rainfall seasonality of Eastern Africa [39].

Simulations at MAP = 16 cm indicate very little dependence of pattern characteristics on the duration
of rainy season for 0 < Tr . 3months, aside from an approximate 10 − 30% increase in migration speed
for each month of added rainy season duration. At a lower MAP value of 8 cm, where the bare soil state
stably co-exists with patterns, simulations initialized with a banded vegetation state may transition to the
stable bare soil state and not recover on a centuries-long simulation timescale. In practice, we identify these
collapse events by tracking the domain-averaged biomass; we use a threshold of εB = Q/5 = 0.02 kg/m2,
and require the biomass level to stay below that for at least one decade. Figures 10(a-c) illustrate a collapse
event for a sample simulation at MAP = 8 cm, H0 = 1 cm, and 1-month rainy season on a L = 200m
domain. Time intervals for which the average biomass, shown in Figure 10(c), falls below the threshold are
shaded in gray, while the first interval that lasts 10 years is shaded red. Survival times for 200 trials with
the same parameters, shown in Figure 10(d), are well-approximated by an exponential distribution. We use
the same 200 rain sequences and rescale the relative wait times by a constant factor to obtain a range of
rainy season durations between simultaneous rainstorms (Tr → 0) and year-round rainfall (Tr = 6months).
A plot of the survival times as a function of duration of the rainy season, shown in Figure 10(e), indicates
that the mean survival time from the exponential fit approximately doubles with each additional month of
increase in rainy season duration.

5.3 Collapse at low precipitation values

We now explore the dependence of collapse on rainstorm intensity and band spacing. We assume that all
the rainstorms in each season occur simultaneously so that we may take advantage of the computational
speed up noted in Section 5.2 for Tr → 0. Since this may bias the collapse events towards shorter times,
as suggested by results in Figure 10(e), we keep the focus on the trends associated with varying certain
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Figure 9: Comparison of pattern characteristics under periodic and stochastic rainfall. (a) Minimum, max-
imum and mean of annually averaged biomass profile, (b) fraction of domain covered by biomass and (c)
mean migration speed, as a function of pattern wavenumber k = 2π/L for one band on a periodic domain of
length L. Results from simulations under periodic rainfall are marked with red circles, and stochastic rainfall
with blue x’s. Either “traveling waves” or “stochastic traveling waves” were not obtained from simulations
with domain sizes appearing within the gray shaded regions. Thumbnails of annual rainfall, soil water and
biomass from example simulations are shown in panel (d) at the domain sizes indicated in the panels above
for both (left) periodic rainfall and (right) stochastic rainfall. The vertical time axis covers 100 years and
the horizontal rainfall axis goes to 40 cm in all of the cases, while each row has a different scale on the
horizontal spatial axis for soil water and biomass in order to show the entire periodic domain. Color scales
are the same as in Figures 6 and 8.
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Figure 10: (a) Annual rainfall and (b) biomass distribution starting at T = 40 years for a stochastic rainfall
simulation with MAP = 8 cm, H0 = 1 cm and Tr = 1month on a L = 200m domain that collapses
at T ≈ 61 years. (c) Collapse is defined when the mean biomass on the domain, indicated by the solid
green line, falls below εB = 0.02 kg/m2 for 10 consecutive years (shaded red). All (shorter) intervals with
Bavg < εB are shaded gray. The dashed green line indicates the peak biomass value on the domain as
a function of time. (d) A histogram of collapse times from 200 trials with the parameters from (a)-(c),
and indicated by a dotted vertical line in (e), has a mean survival time of Tc = 64 years. The solid black
line represents an exponential distribution with this mean, and the dashed lines represent a 95% confidence
interval for a maximum-likelihood fit of the histogram to an exponential distribution. (e) The mean survival
time approximately follows an exponential trend as a function of the duration of the rainy season Tr. Each
gray circle represents a single simulation, while the solid black circles indicate the mean over 200 trials at
each value of Tr, and the vertical bars indicate 95% confidence interval for the fit of the trails Tr to an
exponential distribution. The data fits well the solid black line, Tc = 30.5× 2.2Tr , with Tr given in months
and Tc given in years.
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Figure 11: Rainfall statistics near collapse. (a) A time series of domain-averaged biomass is shown for a 20
year interval centered around a collapse event, marked by a vertical red line, is shown in the top panel. The
middle panel shows the seasonal rainfall, with the contribution from each individual storm marked by dots.
The bottom panel shows a histogram of rainstorm depths within the 2-year window highlighted in gray and
centered at ∆Tc = −5 years relative to the time of collapse. (b) From top to bottom, average biomass on
the domain, mean annual precipitation, and mean storm depth within a two-year window centered about
the time relative to collapse, ∆Tc. The solid black line indicates averages over 200 trials, the shaded cyan
region indicates the interquartile range, and the dotted lines indicate the minimum and maximum values.
The red dashed line indicates the collapse threshold level for biomass, and the expected mean values for the
rainfall parameters.

parameters.
We conduct trials with stochastic rainfall atMAP = 8 cm, where stable “traveling wave” patterns exist

under periodic rainfall. With stochastic rainfall, there is inevitably a collapse to the (bi-stable) bare soil in
simulations initialized with a single vegetation band on a domain of 50 ≤ L ≤ 1000 m and mean rainstorm
depth 0.4 ≤ H0 ≤ 2 cm. Here, as illustrated in Figure 10(a-c), we define collapse to be when the domain-
averaged biomass level first falls below εB = Q/5 = 0.02 kg/m2 and remains so for a period of 10 years, at
which point we terminate the simulation. We generate the initial condition for the stochastic simulations
via a periodic rainfall simulation with an identical sequence of rainstorm depths in each season, run to its
steady state. For this, rather than choosing each storm in the sequence to have the same strength, we take
the expected number of storms (rounded to nearest integer) that we will use for the stochastic model, and
select the storm depths to match expected values for storm intervals of equal probability for the exponential
distribution. We find that selecting the initial condition in this way avoids premature collapse due to the
initial condition not being appropriately “tuned” to the rainfall pattern.

We begin with an exploration of rainfall statistics near collapse. Figure 11(a) shows time series of the
domain-averaged biomass and seasonal rainfall in the 20 year window surrounding collapse in a stochastic
rainfall simulation with MAP = 8 cm and H0 = 1 cm initialized with a single vegetation band on a 200 m
domain. The bottom panel of Figure 11(a) shows a histogram of rainfall events within the shaded 2 year
window centered at time ∆Tc = −5 years, which is measured relative to the collapse time ∆Tc = 0. We use
this sliding 2-year window for computing rain statistics for the 200 trials. Figure 11(b) then summarizes,
from top to bottom, the mean biomass B, the mean annual precipitation MAP, and the mean rainstorm
depth H0 for ∆Tc ∈ [−10, 10] years. The average over all trials is given in solid black, interquartile ranges
are shaded cyan, and the minimum/maximum values are indicated by dotted lines. The red dashed lines
indicate the biomass threshold εB = 0.02 kg/m2 for collapse, and the expected values ofMAP and H0 based
on the parameters of the rainfall model. There is a noticeable drop in all three quantities in the vicinity of
collapse, with biomass, by definition of collapse, failing to recover. These results suggest that the drop in
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Figure 12: Survival times for simulations under stochastic rainfall with MAP = 8 cm and a single band
initialized on the domain as a function of (a) domain length L with mean storm depth H0 = 1 cm and (b)
mean storm depth H0 with domain length L = 200m. Each gray circle represents a single simulation, while
the red/blue circles indicate the mean of a maximum-likelihood fit of the 200 trials at each parameter value
to an exponential distribution, and the vertical bars indicate a 95% confidence interval for each fit. A linear
interpolation of the mean values highlights the trend that survival times (a) increase as a function of domain
size and (b) decrease as a function of mean storm depth.

MAP may be critical to driving collapse; its minimum mean value falls from the expected 8 cm to 3.2 cm;
it does so approximately 5 months after our defined “collapse time”. The mean storm depth H0 also drops
from its expected 1 cm value to 0.66 cm. However, this does not account for the full deficit in MAP since
we’d expect about 5.3 cm if the mean storm frequency remained at 8 storms per year. The average MAP,
over the trials, falls to a lower value because there is a similar drop (not shown) in the mean number of
storms per year, from 8 to approximately 5.

Figure 12(a) shows the survival times, i.e. the length of time before collapse, of stochastic simulations
with MAP = 8 cm and mean rainstorm depth H0 = 1 cm as a function of domain length L. The mean
survival times from exponential fits of 200 trials at each value of L are marked by solid red circles. An
increase in the (periodic) domain size, corresponding to an increase in the spacing between bands in a
periodic pattern, leads to longer mean survival time over this range. However, the trend (on the logarithmic
scale) appears to saturate for longer domain sizes. Results analogous to those of Figure 12(a), described
above, are shown with blue in Figure 12(b) as a function of the mean storm depth H0 for a fixed domain
size of L = 200m. We see longer survival times on average with smaller H0, with the trend leveling off
somewhere above H0 ≈ 1 cm. SinceMAP is fixed, smaller storm depths correlate with more storms in each
season and also less variability in annual precipitation from year to year.

We find that the mean survival time depends more strongly on H0 for larger domain sizes when initialized
with a single band on the domain. Figure 13(a) shows the average survival times from a maximum-likelihood
fit of 200 trials to an exponential distribution at each H0 for L = 100, 200, and 300m domains. We also
observe that increasing the domain size but fixing the band spacing has little effect on trends in mean survival
time. Figure 13(b) shows results analogous to those of Figure 13(a) described above, except that the initial
condition is chosen for each domain size to fix the band spacing at 100m. Some of the longer-lived trials
initialized with multiple vegetation bands do occasionally prolong survival by first loosing one or two bands.
However, these partial collapse events are infrequent and have little impact on the overall statistics; the
majority of simulations collapse by losing all vegetation bands at once.

6 Discussion

We have developed a pulsed-precipitation model for banded vegetation patterns in dryland ecosystems and
used it to investigate the impacts of changing rainfall patterns. The model is built upon the fast-slow
modeling framework [19], and leverages additional simplifying assumptions about overland surface water
flow and infiltration into the soil to obtain a closed-form expression for the soil water contribution from a
rain storm. Biomass and soil water evolve on the slow timescale associated with plant growth, with rain
storms modeled as instantaneous kicks to the soil water, which are spatially dependent as they follow the
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Figure 13: How band spacing affects the dependence of survival times on mean storm depth H0 for stochastic
simulations with MAP = 8 cm. (a) A single band is initialized on a L = 100, 200 and 300m domain. (b)
One, two and three bands are initialized with 100m spacing. The red, blue and black circles indicate the mean
of a maximum-likelihood fit of the 200 trials to an exponential distribution at each parameter value, and the
vertical bars indicate a 95% confidence interval associated with each fit. A linear interpolation of the mean
values highlights the trends for these simulations. The mean survival times for simulations (a) initialized
with a single vegetation band increase with domain size for mean storm depths below approximately 1 cm,
yet (b) do not depend strongly on domain size when the band spacing of the initial condition is fixed.

biomass profile. These soil water kicks capture the positive biomass-water resource feedbacks via enhanced
infiltration and reduced surface flow speeds in vegetated zones.

Our pulsed-precipitation model paves the way for exploration of stochastic rainfall patterns by allowing
significant computational speed-up over the original fast-slow model, thus making large numbers of trials
feasible. We note that computational speed has also been addressed by applying machine learning techniques
to predict the soil water distribution following rain in a more detailed hydrological model [28]. Although
stochasticity and seasonality of rainfall were not considered in that paper, they did include storm duration,
along with storm depth, as training parameters, and observed similar qualitative trends of increased band
spacing with increased storm depth. An advantage of our approach is that simplifying the model keeps
analysis, and the insights gained from it, within reach. Nonetheless, it will be important to characterize the
impacts of our simplifications on predictions in future work through comparison to more detailed models.

Linear stability analysis of the model under periodic rainfall reveals that the distance `0 that water flows
on the surface before infiltrating into the soil plays a key role in determining pattern characteristics such
as band spacing, a result that has also been suggested in the context of so-called “flat-terrain” vegetation
patterns [40]. With periodic rainfall, the pattern formation in the pulsed-precipitation model is organized
around a series of “spatial resonances” in which water from the newly-forming bare soil region travels
some integer number of wavelengths of the pattern before infiltrating into the newly-forming vegetation
band. Simulations indicate that while the nonlinear patterns that form are significantly different from those
predicted by the linear stability analysis, insights about the key role of the distance surface water flows
still apply, even under stochastic rainfall. Nonetheless, some of the predictions obtained under periodic
rainfall, such as significant downhill migration of vegetation bands, run contrary to observation. This aspect
of the underlying resonance structure, present with the idealized periodic rainfall, is however washed out
when we introduce variability to the rainfall model; stochastic rainfall simulations produce banded patterns
with characteristics that are reasonably consistent with observation. The impact of stochasticity on the
existence and stability of nonlinear traveling wave patterns is itself an intriguing mathematical question. For
example, how does the so-called Busse balloon, which was investigated in the context of vegetation patterns
for a modified Klausmeier model [25, 26], change when rainfall is less predictable? Our investigation of a
stochastic and impulsively forced pattern forming system suggests new directions for fundamental pattern
formation research.

Motivated by the potential for identifying precursors to ecosystem collapse in a changing climate, a main
focus of this study is the transition from spatially-patterned vegetation to the desert state. Indeed, at low
enough mean annual precipitation values, stable vegetation patterns exist alongside a stable bare soil state,
and fluctuations in rainfall can trigger ecosystem collapse. We see that both the pattern characteristics,
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Figure 14: Transitions in band spacing as a function of slowly varying mean storm depth H0. (a) Spacetime
plots of annually averaged biomass distribution from 1200-year simulations with stochastic rainfall with
MAP = 16 cm and rainy season length Tr → 0. The mean storm depth is linearly increased from H0 = 0.1
cm to 2.5 cm at a rate of 2 cm/millennium in the left panel and decreased at the same rate starting from
H0 = 2.5 cm in the right panel. The blue and red arrows indicate the direction of time for increasing and
decreasing storm depth. (b) The average number of bands from 200 trials of increasing and decreasing H0

are depicting with the think blue and red lines marked by up and down triangles. The shaded cyan and
magenta regions indicate the interquartile range from the 200 trails at each value of H0 for increasing and
decreasing H0. The dotted lines indicate the maximum and minimum number of bands from the trials for
each corresponding color.

such as band spacing, and the rainfall characteristics, such as rainy season duration and mean storm depth,
have an impact on the mean time to collapse. Increased band spacing, corresponding to a larger area for
harvesting water, leads to longer survival times. Both longer rainy seasons, corresponding to shorter dry
intervals in which the biomass must survive without rainfall, and less intense storms, corresponding to a
decrease in variability of rainfall from season to season, also increases the mean survival time. We note that
we have also observed collapse of patterns at higher precipitation levels but, if the bare soil state is unstable,
the ecosystem is expected to recover.

Studies that use mathematical models to investigate the possible impact of a changing climate on vegeta-
tion patterns typically do so by varying the mean annual precipitation [41, 42, 43], with all other parameters
held fixed. The pulsed-precipitation model allows for exploration of other rainfall characteristics, such as
mean storm intensity, seasonality and other forms of variability. We illustrate the potential here by present-
ing results from 200 trials with stochastic rainfall at MAP = 16 cm and Tr → 0 in which the mean storm
depth starts at H0 = 0.2 cm, and is then slowly increased to H0 = 2.5 cm (at a rate of 2mm/century).
We also carry out another 200 trials with the mean storm depth slowly decreasing from H0 = 2.5 cm, at
the same slow rate. (Each of these 400 trials is initialized with uniform vegetation with 1% random noise.)
Figure 14(a) shows example spacetime distributions of the annually-averaged biomass, where the blue and
red arrows indicate the direction of time for the simulations with increasing and decreasing storm intensity.
As expected, based on the role of storm depth in pattern selection for the model, the simulations exhibit
increased band spacing, on average, at higher H0. Figure 14(b) summarizes the number of bands on the
domain as a function of H0 from all of the trials for increasing H0 (blue) and decreasing H0 (red). We note
that band merging and band splitting events were also observed in a study of the extended Klausmeier model
when the annual mean precipitation was slowly ramped down and back up [41]. Those typically occurred
as spatial period-doubling or period-halving in this simpler deterministic model setting. In the stochastic
pulsed-precipitation model results shown in Figure 14 there is more variability in the band loss and gain
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events, which here occur without any changes in the mean annual precipitation.
We have made a number of simplifying assumptions in this work, particularly in the overland flow model,

with the goal of allowing for analytic insight and computational efficiency. The form of the infiltration model
neglects soil saturation effects, which may become important when considering very intense rainstorms. The
choice of periodic boundary conditions does not allow for exploration of the impact of surface water run off.
Both effects have been considered in [32, 28] using very different approaches to model surface hydrology.
We note that the work of Crompton and Thompson [28] indicates that storm duration plays an equally
important role as storm depth in pattern formation, as both can affect rainfall intensity. Our assumption of
instantaneous rain pulses does not allow us to explicitly explore the impact of storm duration, separate from
storm depth, on pattern formation. The possibility that we might reinterpret our storm depth parameter,
which determined pattern wavelength in our pulsed model, as capturing an effective surface water height
during storms will be the subject of future work, in which storm duration is included in our model.

Our focus in this work has been on capturing the influence of hydrological processes across timescales,
and the biomass model used here is based directly on previous conceptual models [23, 12]. Other works
have explored the impacts of incorporating additional vegetation characteristics and processes [44, 45, 33,
46, 30, 29, 47]. Fortunately, as indicated in Appendix A, we did not find a strong dependence of simulation
results on the biomass diffusion rate, which is a phenomenological parameter that is not well-constrained by
observation.

Generalizing the pulsed precipitation framework to capture the influence of heterogeneous terrain and
moving to two spatial dimensions would open the door to a number of possible future directions. For example,
an investigation of the Klausmeier model [22] with topographically modified water transport suggested that
the placement of patterns relative to local valleys and ridges may provide an indicator for resilience of the
ecosystem to drought [48]. It would be interesting to explore what additional insights could be gained by
a two-dimensional pulsed-precipitation model that captures the influence of various rainfall characteristics,
not just the mean precipitation value that controls drought. Capturing hydrology on the fast timescale could
also allow for the exploration of the impact of roads, noted for example in [3], or other disruptions to surface
water flow on the vegetation patterns. It is also likely to be important when coupling to landscape evolution
through erosion and sediment transport.

Theoretical studies have suggested that spatial patterns can increase ecosystem resilience, and protect it
against collapse under a decrease in total rainfall [49, 50]. However, climate change will impact not only the
yearly mean rainfall. It is already seen to disrupt seasonality in rainfall patterns, and increase variability
in storm characteristics. A framework like the pulsed-precipitation model, which can capture the influence
of changing rainfall patterns, may therefore be useful since it can assess resilience in those contexts. It
also brings into sharp focus the driving role of the fast hydrological processes on the dynamics of dryland
vegetation patterns, which then evolve on their own years-to-decades timescales. This highlights the potential
for time-resolved data from field-based hydrology monitoring, across vegetation bands, as a welcome and
timely feedback to mathematical modeling efforts.
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A Dependence of pattern formation on soil water and biomass
diffusion rates

The soil water and biomass diffusion rates DW and DB are typically not well-constrained by observation
in reaction-diffusion models of vegetation pattern formation (See, e.g. [8]). This appendix explores the
dependence of pattern formation on these constants in the pulsed-precipitation model with stochastic rain
input. We take MAP = 16 cm, mean storm depth H0 = 1 cm and Tr → 0 as is done in Section 5.3.
Five-hundred year simulations with the same initial condition and rainfall sequence but different diffusion
rates are carried out on a 1000-m domain. The thumbnails of spacetime plots of biomass shown in Figure 15
illustrate the qualitative influence of DB on the uphill migration rate of the pattern. We see relatively
minor impact from changing DW across three orders of magnitude. Importantly, selection of the pattern
wavelength is insensitive to the values of both diffusion constants.

B Comparison of pulsed-precipitation model to fast-slow model

This appendix provides a comparison of simulation results from the fast-slow model [19], described in Sec-
tion 2, to corresponding results from the pulsed precipitation model, presented in Section 3. Some care
must be taken to make the comparison as the fast-slow model incorporates both storm depth and duration,
whereas the pulsed precipitation model assumes instantaneous rain impulses (with no duration). We can,
however, account for this by interpreting the storm depth associated with an impulsive rain storm from
the pulsed-precipitation model as an effective surface water height that is achieved during a storm of finite
duration in the fast-slow model.

Figure 16 shows results from simulations of the fast-slow model using the same parameters as [19], which
are also reported in Section 2. A mean annual rainfall of MAP = 16 cm is used, and each of two identical
rainy seasons per year is modeled by a single storm with constant rainfall rate P0 of duration Tdur = 45min,
90min, 3hrs, 6hrs, 12hrs and 24hrs. Simulations with each of these six rain storm durations are initialized
with 1% random noise on top of a uniform vegetation state and run for 200 years. We take the peak surface
water height achieved at each point on the 500 m domain during the final cycle of the fast system (i.e.
the time period over which water from the last rainstorm of the simulation remains on the surface), and
plot the spatial average of this profile (denoted by H) as a function of the rainfall rate during the storm in
Figure 16(a).
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Figure 15: Dependence of pattern characteristics on biomass and soil water diffusion rates. Thumbnail plots
of annually averaged biomass in units of kg/m2 as a function of space (horizontal axis) and time (vertical
axis) are shown for different biomass and soil water diffusion rates DW , DB = 0, 0.001, 0.01 and 0.1 kg/m2.
The color scale is the same as in Figures 6 and 8. Each simulation has the same stochastic rainfall sequence
for a total of 500 years, with MAP = 16 cm, mean storm depth H0 = 1 cm and rainy season duration
Tr → 0 on a L = 1000m domain, and initialized with the same 1% random noise on top of the spatially
uniform solution.
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Figure 16: A comparison of the pulsed-precipitation model to the fast-slow model [19]. Simulations of the
fast-slow model use a fixed mean annual precipitation MAP = 16 cm over two equally spaced storms per
year with durations Tdur = 45min up to 24hrs, and are initialized with 1% noise on top of a uniform state
and a domain of L = 500 m. The results of 200-year simulations are compared to analogous results from
150 trials of the pulsed precipitation model with different stochastic rainfall with mean storm depths from
H = 0.2 cm up to 6 cm. (a) The domain-averaged, temporal-maximum surface water height from simulations
of the fast-slow model during the storm is shown as a function of rainfall rate, and the points are labeled
by the storm duration. (b) The domain-averaged soil water, biomass, infiltration rate and number of bands
from the final year of the fast-slow simulations, indicated by black circles are compared to analogous results
from the stochastic pulsed-precipitation model. In each case the mean value of the quantity as a function
of the mean storm depth H is plotted with a thick solid line. The interquartile range is shaded, and the
minimum/maximum vlaues are indicated by dotted lines.
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Figure 17: Summary of rainfall model and other quantities introduced for the linear stability analysis.

This domain-averaged peak surface water height H, captured by Figure 16(a), provides a path to compare
the fast-slow model to the pulsed-precipitation model. In particular, we interpret the mean storm depth
parameter H0 of the pulsed-precipitation model as an effective peak surface water height, analogous to the
quantity H from the fast-slow model described above. Instead of taking H0 as the total mean rainfall during
storms, we can then think of it as characterizing an effective peak surface water height during storms that
takes into account both the influence of storm depth and duration. We run 150 total trials of the stochastic
pulsed-precipitation model, also with MAP = 16 cm and two rainy seasons per year on a 500 m domain
initialized with 1% noise added to a uniform vegetation state. We do five trails at each mean storm depth
value 0.2 cm ≤ H0 ≤ 6 cm at 0.2 cm increments. For the last twenty years of each 200-year trial, we compute
the mean storm depth during that year, the number of bands in the pattern, as well as the domain-averaged
peak biomass and soil water during the year, and the domain averaged infiltration rate during the storm
pulse. These are compared to the analogous quantities obtained with the fast-slow model in Figure 16(b).

In each of the four panels shown in Figure 16(b) the mean value of the quantity, as a function of
mean storm depth from the stochastic pulsed-precipitation simulations, is plotted with a solid line. The
interquartile range is shaded and the minimum and maximum values obtained from the trials is also indicated
by dotted lines. The black circles indicate values from the final year of the fast-slow simulation. We see
agreement in the biomass and soil water levels between the two models. The number of bands is also
consistent between the two models for larger H. At small H, the difference in the infiltration rate functions
between the two models may explain the differences in the predicted band spacing. Indeed, we see improved
agreement in both lower panels of Figure 16(b) in simulations (not shown) where we decrease the parameter
A in the infiltration function of the fast-slow model below it’s default value A = 1 cm. Specifically, we refer
to the the factor H/(H + A) in the fast-slow infiltration function given in Table 1; decreasing A makes
the fast-slower infiltration closer to the step-function used in the pulsed-precipitation model. We note that
Thompson et al. [40] have explored the dependence of the infiltration rate on surface water height in the
context of so-called “flat-terrain” vegetation patterns.

Lastly, we emphasize that the computational savings of the pulsed-precipitation model over the fast-slow
model are significant. We see a factor of 200 or more speed up in simulation time by going from the fast-slow
model to the analogous pulsed-precipitation simulation in the comparisons presented here.

C Linear stability of bare soil state to uniform perturbations

In this appendix we consider the linear stability of the zero biomass desert state to spatially uniform per-
turbations. (We need not consider heterogeneous perturbations, proportional to eikx, for the zero biomass
state since we require b ≥ 0.) We show that the MAP threshold for loss of stability, denoted MAPc,
is independent of details of the rainfall model. We consider N pulses of rain per year, with strengths hk,
k = 1, . . . , N , which repeat annually and sum toMAP. The temporal spacing between pulses is denoted ∆τk,
k = 1, . . . , N , and these time intervals sum to τP = 3.65, i.e. one year in dimensionless units. The periodic
rainfall model, and the parameters needed for the linear stability analysis is summarized by Figure 17.
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The base state for the linear stability analysis has b = 0 and a soil moisture level that repeats with the
annual period. Let w0 be the initial condition for this periodic base state, and denote the soil moisture at
time τk, prior to the kth pulse of strength hk, by wk. From (18), we have that a pulse of strength h adds αh
to w, and, from (24a), that a dry period of duration ∆τ leads to its evaporative decay by a factor e−σ∆t. It
follows that

wk+1 = (wk + αh1)e−σ∆tk , k = 0, . . . , N − 1. (26)

Moreover, we require wN = w0 for the periodic state, which determines w0.
We perturb this (w, b) = (w(τ), 0) base state by (∆w0,∆b0), at time τ = 0. This perturbation advances

to a value (∆w1,∆b1) at time ∆τ1, and so on. We obtain, for example, (∆w1,∆b1) by evolving the following
linearized slow system equations for time ∆τ1

d

dτ

(
∆w
∆b

)
=

(
−σ γw(τ)
0 w(τ)− 1

)(
∆w
∆b

)
,

where here w(τ) = (w0 + αh1)e−στ , for τ ∈ (0,∆τ1). From this we obtain the following map(
∆w1

∆b1

)
=

(
e−σ∆τ1 ∗

0 eχ1

)(
∆w0

∆b0

)
,

where the off-diagonal term ∗ is not needed for determining stability, and

χ1 =

∫ ∆τ1

0

(w(τ)− 1) dτ =
(w0 + αh1

σ

)(
1− e−σ∆τ1

)
−∆τ1 =

(w0 + αh1 − w1

σ

)
−∆τ.

Here the final equality follows from (26). Repeating this for the N rain pulses, we find(
∆wN
∆bN

)
=

(
e−στP ∗

0 eχ1+χ2+···+χN

)(
∆w0

∆b0

)
,

where

χk =

∫ τk

τk−1

(w(τ)− 1) dτ =
(wk−1 + αhk − wk

σ

)
−∆τk.

The stability boundary, denoted MAPc is determined by the condition χ1 + · · · + χN = 0. Using the fact
that w0 = wN and that ∆τ1 + · · ·+ ∆τN = τP , it follows that

MAPc = h1 + · · ·+ hN =
στP
α
,

which, in dimensioned quantities, is (LM/CΓ)365 = 10.95 cm/yr for the parameters of Table 2.
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