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We establish improved uniform error bounds on time-splitting methods for the long-
time dynamics of the Dirac equation with small electromagnetic potentials characterized
by a dimensionless parameter ε ∈ (0, 1] representing the amplitude of the potentials.
We begin with a semi-discritization of the Dirac equation in time by a time-splitting
method, and then followed by a full-discretization in space by the Fourier pseudospectral
method. Employing the unitary flow property of the second-order time-splitting method
for the Dirac equation, we prove uniform error bounds at C(t)τ2 and C(t)(hm + τ2)
for the semi-discretization and full-discretization, respectively, for any time t ∈ [0, Tε]
with Tε = T/ε for T > 0, which are uniformly for ε ∈ (0, 1], where τ is the time
step, h is the mesh size, m ≥ 2 depends on the regularity of the solution, and C(t) =
C0 + C1εt ≤ C0 + C1T grows at most linearly with respect to t with C0 ≥ 0 and
C1 > 0 two constants independent of t, h, τ and ε. Then by adopting the regularity

compensation oscillation (RCO) technique which controls the high frequency modes by
the regularity of the solution and low frequency modes by phase cancellation and energy
method, we establish improved uniform error bounds at O(ετ2) and O(hm+ετ2) for the
semi-discretization and full-discretization, respectively, up to the long-time Tε. Numerical
results are reported to confirm our error bounds and to demonstrate that they are sharp.
Comparisons on the accuracy of different time discretizations for the Dirac equation are
also provided.
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1. Introduction

In this paper, we consider the Dirac equation in one or two dimensions (1D or

2D), which can be represented in the two-component form with wave function Φ :=

Φ(t,x) = (φ1(t,x), φ2(t,x))
T ∈ C2 as13,14,33

i∂tΦ =


−i

d∑

j=1

σj∂j + σ3


Φ + ε


V (x)I2 −

d∑

j=1

Aj(x)σj


Φ, x ∈ Ω, (1.1)

where Ω ⊂ Rd (d = 1, 2) is a bounded domain equipped with periodic boundary

condition. Here, i =
√
−1, t ≥ 0 is time, x = (x1, . . . , xd)

T ∈ Rd, ∂j = ∂
∂xj

(j =

1, . . . , d), ε ∈ (0, 1] is a dimensionless parameter, V (x) and Aj(x) are the given

real-valued time-independent electric and magnetic potentials, respectively. I2 is

the 2× 2 identity matrix, and σ1, σ2, σ3 are the Pauli matrices defined as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.2)

In order to study the dynamics of the Dirac equation (1.1), the initial condition is

taken as

Φ(t = 0,x) = Φ0(x), x ∈ Ω. (1.3)

For the Dirac equation (1.1) with ε = 1, i.e., the classical regime, there are

comprehensive analytical and numerical results in the literatures. Along the an-

alytical front, for the existence and multiplicity of bound states and/or standing

wave solutions, we refer to Refs. 17, 22, 24 and references therein. In the numer-

ical aspect, different numerical methods have been proposed and analyzed, such

as the finite difference time domain (FDTD) methods4,28, exponential wave in-

tegrator Fourier pseudospectral (EWI-FP) method4,5, and time-splitting Fourier

pseudospectral (TSFP) method7,8, etc. For more details related to the numerical

schemes, we refer to Refs. 10, 20, 23, 25, 30 and references therein.

However, to our knowledge, much less research has been done for the long-time

dynamics when ε ∈ (0, 1]. With a small ε, we can study the long-time dynamics

of the Dirac equation (1.1) for t ∈ [0, Tε] with Tε := T/ε for T > 0, while either

ε or T can be fixed (or changed) in the analysis. When ε ∈ (0, 1] is fixed, e.g.

ε = 1, we would like to investigate how the errors of different numerical schemes

perform for t ∈ [0, Tε] with increasing T . On the other hand, when T is fixed, we

are interested in analyzing the dependency of errors for different numerical methods

on the parameter ε for t ∈ [0, Tε]. In our recent works, we examined the long-time

error bounds for finite difference time domain (FDTD) methods and finite difference

Fourier pseudospectral (FDFP) methods, where the finite difference was applied to

discretize the Dirac equation (1.1) in time and different discretizations were taken

in space. We rigorously proved that the FDTD methods share an error bound at

O(h
2

ε + τ2

ε ) up to the long-time Tε with h the spatial mesh size and τ the temporal

step size, while the FDFP methods exhibit an error bound at O(hm + τ2

ε ) up to
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the long-time18. The uniform spatial error bound with respect to ε for the FDFP

methods indicate that these methods have better spatial resolution than the FDTD

methods to solve the Dirac equation with small potentials in the long-time regime.

Nevertheless, both types of methods face severe numerical burdens when ε → 0+ due

to the ε-dependence of the temporal error. To deal with this problem, we adopted

the exponential wave integrator (EWI) method for time discretization, and obtained

a uniform error bound at O(hm + τ2) up to the long-time19.

To further improve the temporal error for ε ∈ (0, 1], we consider the time-

splitting methods, which have been widely used to numerically solve disper-

sive partial differential equations (PDEs)1,21,26,29. It has been proved that the

temporal error bounds grow linearly when the time-splitting methods are ap-

plied to the Maxwell’s equations11,12. In addition, the unitary flow property

of the time-splitting methods contributes to the time-dependent uniform error

bounds for the Schrödinger equation and the improved uniform error bounds for

the Schrödinger/nonlinear Schrödinger equation with the help of the regularity

compensation oscillation (RCO) technique2,3. This improves the analysis in

the previous studies and obtains surprising error estimates for the time-splitting

methods2,3. The aim of this paper is to establish the improved uniform error bounds

on time-splitting methods for the long-time dynamics of the Dirac equation with

small potentials. First, we prove a uniform error bound where the error constant

grows linearly with respect to the time t. Based on the error bound, for a given ac-

curacy δ0 and time step τ , the second order time-splitting (Strang splitting) could

be applied to simulate the dynamics of the Dirac equation up to O(δ0/τ
2) when

ε = 1, i.e., the smaller the time step τ , the longer the dynamics that can be cal-

culated. Then by employing the RCO technique2,3, we establish improved uniform

error bounds at O(ετ2 + τm0 ) and O(hm + ετ2+ τm0 ) for the semi-discretization and

full-discretization, respectively, for the Dirac equation with O(ε)-potentials up to

the long-time at O(1/ε). In the error bounds, m ≥ 2 depends on the regularity of

the exact solution and τ0 ∈ (0, 1) is a fixed chosen parameter. When the solution

is smooth, i.e. m → ∞, then the error bounds collapse to O(ετ2) and O(hm + ετ2)

for the semi-discretization and full-discretization, respectively.

The rest of this paper is organized as follows. In Section 2, the second-order

time-splitting methods including the semi-discretization and full-discretization for

the long-time dynamics of the Dirac equation with small potentials are presented.

In Section 3, uniform error bounds for the time-splitting methods are established up

to the long-time at O(1/ε) and the errors are shown to grow linearly with respect to

the time t. In Section 4, we prove the improved uniform error bounds rigorously by

adopting the RCO technique. Extensive numerical results are reported in Section 5.

Finally, some conclusions are drawn in Section 6. Throughout this paper, we adopt

the notation A . B to represent that there exists a generic constant C > 0, which

is independent of the mesh size h and time step τ as well as the parameter ε such

that |A| ≤ CB.



December 8, 2021 1:39 Dirac

4 W. Bao, Y. Feng and J. Yin

2. The time-splitting methods

For simplicity, in the following sections, we focus on the Dirac equation (1.1) in

1D, i.e., d = 1 in (1.1), for the numerical methods and corresponding analysis. The

methods and results can be easily generalized to (1.1) in 2D, i.e., d = 2, and to the

four-component Dirac equation given in Refs. 4 and 5.

The Dirac equation (1.1) in 1D on the bounded computational domain Ω = (a, b)

with periodic boundary condition collapses to

i∂tΦ = (−iσ1∂x + σ3)Φ + ε(V (x)I2 −A1(x)σ1)Φ, x ∈ Ω, t > 0, (2.1)

Φ(t, a) = Φ(t, b), t ≥ 0; Φ(0, x) = Φ0(x), x ∈ Ω, (2.2)

where Φ := Φ(t, x) and Φ0(a) = Φ0(b).

2.1. The semi-discretization

Define the operators

T := −σ1∂x − iσ3, V := −i(V (x)I2 −A1(x)σ1), (2.3)

then (2.1) can be expressed by

∂tΦ(t, x) = (T + εV)Φ(t, x), x ∈ Ω, t > 0. (2.4)

Take a time step size τ > 0 and denote the time grids as tn = nτ for n = 0, 1, . . ..

As both T and V are time-independent, the solution to (2.4) with (2.2) can be

propagated through

Φ(tn+1, x) = eτ(T+εV)Φ(tn, x), n = 0, 1, . . . . (2.5)

To approximate the operator eτ(T+εV), we apply the second-order time-splitting

(Strang splitting)32, which gives

eτ(T+εV) ≈ e
τ
2
TeετVe

τ
2
T. (2.6)

Therefore, the semi-discretization of the Dirac equation (2.1) via Strang splitting

can be expressed as

Φ[n+1](x) = Sτ (Φ
[n](x)) := e

τ
2
TeετVe

τ
2
TΦ[n](x), n = 0, 1, . . . , (2.7)

where we take the initial condition Φ[0](x) := Φ0(x) for x ∈ Ω. Here, Φ[n](x) is the

approximation of Φ(tn, x).

2.2. The full-discretization

By noticing the definition of V in (2.3), it is easy to derive that

eετVΦ(t, x) = e−iετ(V (x)I2−A1(x)σ1)Φ(t, x), x ∈ Ω, t > 0. (2.8)

On the other hand, to get eτTΦ(t, x), we can discretize (2.4) in space by the Fourier

spectral method, and then it is possible to integrate the operator analytically in the
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phase space. We take M +1 uniformly sampled grid points in Ω with M a positive

even integer

xj = a+ jh, h =
b− a

M
, j = 0, 1, . . . ,M, (2.9)

and we denote the sets XM , YM , ZM as

XM =
{
U = (U0, U1, . . . , UM )T | Uj ∈ C2, j = 0, 1, . . . ,M, U0 = UM

}
,

YM = ZM × ZM , ZM = span{φl(x) = eiµl(x−a), l ∈ TM},
where the index set TM = {l | l = −M/2,−M/2 + 1, . . . ,M/2 − 1}, and µl =

2πl/(b− a) for l ∈ TM . The projection operator PM :
(
L2(Ω)

)2 → YM is defined as

(PMU) (x) :=
∑

l∈TM

Ûle
iµl(x−a), U(x) ∈

(
L2(Ω)

)2
,

where

Ûl =
1

b− a

∫ b

a

U(x)e−iµl(x−a)dx, l ∈ TM ; (2.10)

and by taking
(
Cper(Ω)

)2
=
{
U ∈

(
C(Ω)

)2 | U(a) = U(b)
}
, the interpolation op-

erator IM :
(
Cper(Ω)

)2 → YM or IM : XM → YM is defined as

(IMU) (x) :=
∑

l∈TM

Ũle
iµl(x−a), U(x) ∈

(
Cper(Ω)

)2
or U ∈ XM ,

where

Ũl =
1

M

M−1∑

j=0

Uje
−2ijlπ/M , l ∈ TM . (2.11)

Here we take Uj = U(xj) if U is a function.

Let Φn
j be the numerical approximation of Φ(tn, xj) and denote Φn =

(Φn
0 ,Φ

n
1 , . . . ,Φ

n
M )

T ∈ XM as the solution vector at t = tn. Take the initial value

Φ0
j = Φ0(xj) for j = 0, . . . ,M , then the time-splitting Fourier pseudospectral

(TSFP) method for discretizating the Dirac equation (2.1) is given as

Φ
(1)
j =

∑

l∈TM

e−i
τΓl
2 (̃Φn)l e

iµl(xj−a) =
∑

l∈TM

Ql e
−i

τDl
2 (Ql)

T (̃Φn)l e
2ijlπ
M ,

Φ
(2)
j = e−iετG(xj)Φ

(1)
j = Pe−iεΛjPTΦ

(1)
j ,

Φn+1
j =

∑

l∈TM

e−i
τΓl
2 (̃Φ(2))l e

iµl(xj−a) =
∑

l∈TM

Ql e
−i

τDl
2 (Ql)

T (̃Φ(2))l e
2ijlπ

M ,

(2.12)

for n = 0, 1, . . ., where Γl = µlσ1 + σ3 = QlDl(Ql)
T with δl =

√
1 + µ2

l , (Ql)
T is

the transpose of Ql and

Γl =

(
1 µl

µl −1

)
, Ql =




1+δl√
2δl(1+δl)

− µl√
2δl(1+δl)

µl√
2δl(1+δl)

1+δl√
2δl(1+δl)


 , Dl =

(
δl 0

0 −δl

)
, (2.13)
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and G(xj) = V (xj)I2 −A1(xj)σ1 = PΛjP
T with Λj = diag(Λj,+,Λj,−) and Λj,± =

V (xj)±A1(xj), P = I2 if A1(xj) = 0 and otherwise

P =

(
1√
2

1√
2

− 1√
2

1√
2

)
.

Remark 2.1. If the electromagnetic potential V and/or A1 are time-dependent,

the time-ordering technique35 should be applied when we implement (2.7), as the

operator T+ εV is no longer commutable for different time coordinates t1 6= t2.

3. Uniform error bounds

In this section, we prove the uniform error bounds for the second-order time-splitting

method in propagating the Dirac equation with small potentials in the long-time

regime up to Tε = T/ε for any given T > 0. We will start with the results for the

semi-discretized scheme, and then extend it to the full-discretization.

3.1. For semi-discretization

Suppose there exists a positive integer m ≥ 2, such that for the potentials, we have

(A) V (x) ∈ Wm,∞
per (Ω), A1(x) ∈ Wm,∞

per (Ω),

where Wm,∞
per (Ω) := {u|u ∈ Wm,∞(Ω), ∂l

xu(a) = ∂l
xu(b), l = 0, . . . , m − 1}. In

addition, we assume that the exact solution Φ := Φ(t, x) of the Dirac equation (2.1)

up to the long-time Tε = T/ε satisfies

(B) ‖Φ‖L∞([0,Tε];(Hm
per(Ω))2) . 1,

where similarly, Hm
per(Ω) := {u|u ∈ Hm(Ω), ∂l

xu(a) = ∂l
xu(b), l = 0, . . . , m − 1},

with the equivalent Hm-norm on Hm
per(Ω) given as

‖φ‖Hm =

(
∑

l∈Z

(1 + µ2
l )

m|φ̂l|2
)1/2

. (3.1)

Taking into account the assumptions (A) and (B), we can easily derive

‖∂tΦ‖L∞([0,Tε];(H
m−1
per (Ω))2) . 1, (3.2)

from the Dirac equation (1.1). By taking the semi-discretized second-order time-

splitting given by (2.7) for the Dirac equation (2.4) with the operators T and V

defined in (2.3), we have the following error estimate.

Theorem 3.1. Let Φ[n](x) be the numerical approximation obtained from the semi-

discretized second-order time-splitting (2.7) for the Dirac equation (2.4), then under

the assumptions (A) and (B), for any 0 < ε ≤ 1, we have the uniform error estimate

‖Φ(tn, x)− Φ[n](x)‖L2 ≤ C1εtnτ
2 ≤ C1Tτ

2, 0 ≤ n ≤ T/ε

τ
, (3.3)
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where C1 is a positive constant independent of h, τ, n and ε.

Proof. We notice that T generates a unitary group in (Hk
per(Ω))

2 (k ≥ 0). Denote

the exact solution flow Φ(tn) → Φ(tn+1) as

Φ(tn+1) = Se,τ (Φ(tn)), 0 ≤ n ≤ T/ε

τ
, (3.4)

where we take Φ(tn) := Φ(tn, x) for simplicity.

In order to prove the convergence, we adopt the approach via formal Lie calculus

introduced in Ref. 27 and split the proof into the following two steps.

Step 1 (Bounds for local truncation error). We begin with the local truncation

error, i.e., to estimate the error generated by one time step computed via (2.7). By

using Taylor expansion for eετV, we have

Sτ (Φ0) = eτTΦ0 + ετe
τT

2 Ve
τT

2 Φ0 + ε2τ2
∫ 1

0

(1− θ)e
τT

2 eεθτVV2e
τT

2 Φ0dθ.

By Duhamel’s principle, we can write

Se,τ (Φ0) = eτTΦ0 + ε

∫ τ

0

e(τ−s)TVesTΦ0ds

+ ε2
∫ τ

0

∫ s

0

e(τ−s)TVe(s−w)TVΦ(w)dwds.

Denote

Y (s) = e(τ−s)TVesTΦ0, B(s, w) = e(τ−s)TVe(s−w)TVewTΦ0, (3.5)

then the local truncation error can be written as

Sτ (Φ0)− Se,τ (Φ0) = ετY
(τ
2

)
− ε

∫ τ

0

Y (s)ds+
ε2τ2

2
B
(τ
2
,
τ

2

)

− ε2
∫ τ

0

∫ s

0

B(s, w)dsdw + ε2R1 + ε2R2,

with

R1 = τ2
∫ 1

0

(1− θ)e
τT

2 eεθτVV2e
τT

2 Φ0dθ −
τ2

2
B
(τ
2
,
τ

2

)
,

R2 = −
∫ τ

0

∫ s

0

e(τ−s)TVe(s−w)TVΦ(w) −B(s, w)dwds.

It is easy to check that

‖R1‖L2 . τ2 max
θ∈(0,1)

{‖∂θθ((1− θ)e
τT

2 eεθτVV2e
τT

2 Φ0)‖L2}

. ετ3
(
‖V3Φ0‖L2 + ετ‖V4Φ0‖L2

)
. ετ3.

In view of the properties of T and B(s, w), the quadrature rule implies

‖R2‖L2 . τ3 max
s,w∈(0,τ)

{‖e(τ−s)TVe(s−w)TV∂wΦ(w)‖L2}

. τ3‖∂sΦ(·)‖L∞([0,τ ];(L2)2) . τ3,
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and
∥∥∥∥
τ2

2
B
(τ
2
,
τ

2

)
−
∫ τ

0

∫ s

0

B(s, w)dwds

∥∥∥∥
L2

. τ3 max
0≤w≤s≤τ

(‖∂sB‖L2 + ‖∂wB‖L2) . τ3.

Finally, we estimate the last term, which contains the major part of the local error

F(Φ0) := ετY (
τ

2
)− ε

∫ τ

0

Y (s)ds = ετ3
∫ 1

0

ker(θ)Y ′′(θτ)dθ, (3.6)

where ker(θ) is the Peano kernel for midpoint rule. In addition, we have

Y ′′(s) = e(τ−s)T[T, [T,V]]esTΦ0.

For the double commutator [T, [T,V]], we have

‖[T, [T,V]]Ψ‖L2 . (‖V (·)‖W 2,∞ + ‖A1(·)‖W 2,∞) ‖Ψ‖H1 .

Combining all the results above, we find the one step local error as

Sτ (Φ0)− Se,τ (Φ0) = F(Φ0) +R0, (3.7)

where ‖R0‖L2 . ε2τ3 and

F(Φ0) = ετ3
∫ 1

0

ker(θ)eτ(1−θ)T[T, [T,V]]eτθTΦ0dθ. (3.8)

Define the local truncation error at tn for 0 ≤ n ≤ T/ε
τ − 1 as

En(x) = Sτ (Φ(tn, x))− Se,τ (Φ(tn, x)), a ≤ x ≤ b, (3.9)

then from the above computation, we can get

En(x) = F(Φ(tn)) +Rn, a ≤ x ≤ b, 0 ≤ n ≤ T/ε

τ
− 1, (3.10)

where for 0 ≤ n ≤ T/ε
τ − 1,

‖F(Φ(tn))‖L2 . ετ3‖Φ(tn)‖H1 , ‖Rn‖L2 . ε2τ3. (3.11)

Step 2 (Bounds for the global error). We are going to prove the error bound (3.3).

Denote e[n](x) = Φ[n] − Φ(tn), then ‖e[0](x)‖L2 = 0 by definition. For 0 ≤ n ≤
T/ε
τ − 1, we have

e[n+1] = Sτ (Φ
[n])− Sτ (Φ(tn)) + Sτ (Φ(tn))− Se,τ (Φ(tn)). (3.12)

By the error bound (3.11) for the local truncation error, we obtain for 0 ≤ n ≤
T/ε
τ − 1,

∥∥∥e[n+1]
∥∥∥
L2

≤
∥∥∥e[n]

∥∥∥
L2

+ C1ετ
3, (3.13)

where C1 > 0 is a constant and independent of h, n, τ and ε. Then it is straightfor-

ward to derive
∥∥∥e[n+1]

∥∥∥
L2

≤
∥∥∥e[0]

∥∥∥
L2

+ C1(n+ 1)ετ3 ≤ C1εtn+1τ
2, (3.14)
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which completes the proof of Theorem 3.1.

Remark 3.1. According to Theorem 3.1, the uniform error bound on the time-

splitting method for the Dirac equation grows linearly with respect to t. In fact,

given an accuracy bound δ0 > 0, the time (for simplicity, assume ε = 1 here)

for the second-order splitting method to violate the accuracy requirement δ0 is

O(δ0/τ
2). The results can be extended to other time-splitting methods. For the first-

order Lie-Trotter splitting and fourth-order compact splitting or partitioned Runge-

Kutta splitting (PRK4)9,34, the times are at O(δ0/τ) and O(δ0/τ
4), respectively. In

other words, higher order splitting method performs much better in the long-time

simulation not only regarding the higher accuracy but also longer simulation time to

produce accurate solutions. In addition, extensions to 2D/3D are straightforward.

3.2. For full-discretization

For the full-discretization given in (2.12) by the second-order time-splitting method

for the Dirac equation (2.4), we could further derive the following uniform error

estimate.

Theorem 3.2. Let Φn be the approximation obtained from the TSFP (2.12) for

the Dirac equation (2.4). Under the assumptions (A) and (B), for any 0 < ε ≤ 1,

we have

‖Φ(tn, x)− IMΦn‖L2 ≤ C(tn)
(
hm + τ2

)
, 0 ≤ n ≤ T/ε

τ
, (3.15)

where C(t) = C0 + C1εt ≤ C0 + C1T with C0 and C1 two positive constants inde-

pendent of h, τ, n and ε.

Proof. Noticing that

IMΦn − Φ(tn) = IMΦn − PMΦ(tn) + PMΦ(tn)− Φ(tn), (3.16)

under the assumption (B), we get from the standard Fourier projection properties31

‖IMΦn − Φ(tn)‖L2 ≤ ‖IMΦn − PMΦ(tn)‖L2 + C2h
m, 0 ≤ n ≤ T/ε

τ
. (3.17)

Thus, it suffices to consider the error function en ∈ YM at tn as

en := en(x) = IMΦn − PMΦ(tn), 0 ≤ n ≤ T/ε

τ
. (3.18)

Since Φ0
j = Φ0(xj), it is obvious from (B) that ‖e0‖L2 ≤ C3h

m. From the local

truncation error (3.9), we have the error equation for en (0 ≤ n ≤ T/ε
τ − 1),

en+1 = IMΦn+1 − PMSτ (Φ(tn)) + PM (En). (3.19)

Recall the semi-discretization (2.7) and the full-discretization (2.12), we have

IMΦn+1 = e
τT

2 (IMΦ(2)), IMΦ(2) = IM

(
eετVΦ(1)

)
, IMΦ(1) = e

τT

2 (IMΦn),

PM (Sτ (Φ(tn))) = e
τT

2 (PMΦ〈2〉), Φ〈2〉 := eετVΦ〈1〉, Φ〈1〉 := e
τT

2 Φ(tn).
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In view of the facts that IM and PM are identical on YM and eτT/2 preserves the

Hk-norm (k ≥ 0), using the Taylor expansion eετV = 1 + ετV
∫ 1

0
eετθVdθ and

assumptions (A) and (B), we have

∥∥IMΦn+1 − PM (Sτ (Φ(tn)))
∥∥
L2 =

∥∥∥IMΦ(2) − PMΦ〈2〉
∥∥∥
L2

, (3.20)
∥∥∥PMΦ〈2〉 − IMΦ〈2〉

∥∥∥
L2

≤ C4ετh
m. (3.21)

In addition, noticing V = −i(V (x)I2 − A1(x)σ1), by direct computation and Par-

seval’s identity, we have

∥∥∥IMΦ(2) − IMΦ〈2〉
∥∥∥
L2

=

√√√√h
M−1∑

j=0

∣∣∣Φ(2)
j − Φ〈2〉(xj)

∣∣∣
2

=

√√√√h
M−1∑

j=0

∣∣∣Φ(1)
j − Φ〈1〉(xj)

∣∣∣
2

=
∥∥∥IMΦ(1) − IMΦ〈1〉

∥∥∥
L2

= ‖IMΦn − PMΦ(tn)‖L2

= ‖en‖L2 . (3.22)

From (3.10), (3.11) and the assumption (B), it is clear that there exists C5 > 0 such

that ‖En‖L2 ≤ C5ετ
3 for 0 ≤ n ≤ T/ε

τ − 1. Taking the L2-norm on both sides of

(3.19) and combining the above estimates, we obtain for 0 ≤ n ≤ T/ε
τ − 1,

∥∥en+1
∥∥
L2 ≤

∥∥∥IMΦ(2) − PMΦ〈2〉
∥∥∥
L2

+ ‖En‖L2

≤
∥∥∥IMΦ(2) − IMΦ〈2〉

∥∥∥
L2

+
∥∥∥PMΦ〈2〉 − IMΦ〈2〉

∥∥∥
L2

+ ‖En‖L2

≤ ‖en‖L2 + C6

(
ετhm + ετ3

)
, (3.23)

where C6 = max{C4, C5}. Thus, we arrive at

∥∥en+1
∥∥
L2 ≤ C6εtn+1

(
hm + τ2

)
+ C3h

m, 0 ≤ n ≤ T/ε

τ
− 1, (3.24)

which completes the proof of Theorem 3.2 by taking C0 = C2 +C3 and C1 = C6. �

4. Improved uniform error bounds

In this section, we establish the improved uniform error bounds for the time-splitting

methods applied to the Dirac equation (2.1) up to the long-time Tε under the

assumptions (A) and (B).

4.1. For semi-discretization

Theorem 4.1. Let Φ[n](x) be the numerical approximation obtained from the semi-

discretized second-order time-splitting (2.7) for the Dirac equation (2.4). Under the

assumptions (A) and (B), for 0 < τ0 < 1 sufficiently small and independent of ε,
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when 0 < τ < α π(b−a)τ0√
τ2
0 (b−a)2+4π2(1+τ0)2

for a fixed constant α ∈ (0, 1), we have the

following improved uniform error bound for any ε ∈ (0, 1]

‖Φ(tn, x)− Φ[n]‖L2 . ετ2 + τm0 , 0 ≤ n ≤ T/ε

τ
. (4.1)

In particular, if the exact solution is smooth, e.g., Φ(t, x) ∈ L∞([0, Tε]; (H
∞
per(Ω))

2),

the last term τm0 decays exponentially fast and could be ignored practically for small

enough τ0, where the improved uniform error bound for sufficiently small τ will be

‖Φ(tn, x)− Φ[n]‖L2 . ετ2, 0 ≤ n ≤ T/ε

τ
. (4.2)

Proof. From the local truncation error (3.9) and the error equation (3.12), we have

e[n+1] = Sτ (Φ
[n])− Sτ (Φ(tn)) + En = eτTe[n] +Wn + En, n ≥ 0, (4.3)

where Wn := Wn(x) (n = 0, 1, . . .) is given by

Wn(x) = ετe
τT

2 V

∫ 1

0

eετθVdθ e
τT

2 e[n]. (4.4)

Under the assumption (A), we have the following estimate

‖Wn(x)‖L2 . ετ
∥∥∥e[n]

∥∥∥
L2

. (4.5)

Based on (4.3), we arrive at

e[n+1] = e(n+1)τTe[0] +

n∑

k=0

e(n−k)τT
(
W k + Ek

)
, 0 ≤ n ≤ T/ε

τ
− 1. (4.6)

Combining (3.10), (3.11) and (4.5), noticing e[0] = 0, we have the estimates for

0 ≤ n ≤ T/ε
τ − 1,

∥∥∥e[n+1]
∥∥∥
L2

. ετ2 + ετ

n∑

k=0

∥∥∥e[k]
∥∥∥
L2

+

∥∥∥∥∥

n∑

k=0

e(n−k)τTF(Φ(tk))

∥∥∥∥∥
L2

. (4.7)

In order to obtain the improved uniform error bounds, we shall employ the regu-

larity compensation oscillation (RCO) technique2,3 to deal with the last term

in the RHS of the inequality (4.7).

The key idea is a summation-by-parts procedure combined with spectrum cut-off

and phase cancellation. First, we employ the spectral projection on Φ(tk) such that

only finite Fourier modes of Φ(tk) need to be considered and the projection error

could be controlled by the regularity of Φ(tk). Then, we apply the summation-by

parts formula to the low Fourier modes such that the phase could be cancelled for

small τ (the terms of the type
∑n

k=0 e
(n−k)τT) and an extra order of ε could be

gained from the terms like F(Φ(tk))−F(Φ(tk+1)).
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From the Dirac equation (2.4) and the assumption (A), we notice that ∂tΦ(t, x)−
TΦ(t, x) = O(ε). In order to gain an extra order of ε, it is natural to introduce the

‘twisted variable’ as

Ψ(t, x) = e−tTΦ(t, x), t ≥ 0, (4.8)

which satisfies the equation

∂tΨ(t, x) = εe−tT
(
VetTΨ(t, x)

)
, t ≥ 0. (4.9)

Noticing T = −σ1∂x − iσ3, under the assumptions (A) and (B), we can prove that

‖Ψ‖L∞([0,Tε];(Hm
per(Ω))2) . 1, ‖∂tΨ‖L∞([0,Tε];(Hm

per(Ω))2) . ε (4.10)

and

‖Ψ(tn+1)−Ψ(tn)‖Hm . ετ, 0 ≤ n ≤ T/ε

τ
− 1. (4.11)

The RCO technique will be used to force ∂tΨ to appear with the gain of order ε for

the summation-by-parts procedure in the last term
∑n

k=0 e
(n−k)τTF(Φ(tk)), where

the small τ is required to control the accumulation of the frequency of the type

e(n−k)τT.

Step 1. As introduced in Ref. 2, we choose the cut-off parameter τ0 ∈ (0, 1) and

M0 = 2⌈1/τ0⌉ ∈ Z+ (⌈·⌉ is the ceiling function) with 1/τ0 ≤ M0/2 < 1 + 1/τ0.

Under the assumptions (A) and (B), we have the following estimate

‖PM0
F(PM0

Φ(tn))−F(Φ(tn))‖L2 . εττm0 . (4.12)

Based on the above estimates, (4.7) would imply for 0 ≤ n ≤ Tε/τ − 1,

∥∥∥e[n+1]
∥∥∥
L2

. τm0 + ετ2 + ετ
n∑

k=0

∥∥∥e[k]
∥∥∥
L2

+ ‖Ln‖L2 , (4.13)

where

Ln =

n∑

k=0

e−(k+1)τTPM0
F
(
etkT(PM0

Ψ(tk))
)
. (4.14)

Step 2. Now, we concentrate on Ln, which represents the summation of low Fourier

modes. For l ∈ TM0
, define the index set IM0

l associated to l as

IM0

l = {(l1, l2) | l1 + l2 = l, l1 ∈ Z, l2 ∈ TM0
} . (4.15)

Following the notations in (2.13), we denote

Π+
l = Ql diag(1, 0)(Ql)

T , Π−
l = Ql diag(0, 1)(Ql)

T , (4.16)

where Π±
l are the projectors onto the eigenspaces of Γl corresponding to the

eigenvalues ±δl, respectively. Moreover, we have (Π±
l )

T = Π±
l , Π

+
l + Π−

l = I2,

(Π±
l )

2 = Π±
l , Π

±
l Π

∓
l = 0. By direct computation, we have

etTPM0
Ψ(tk) =

∑

l∈TM0

(
e−itδlΠ+

l + eitδlΠ−
l

)
Ψ̂l(tk)e

iµl(x−a). (4.17)
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According to the definition of F in (3.6), the expansion below follows

e−(k+1)τTPM0

(
e(τ−s)TVe(tk+s)TPM0

Ψ(tk))
)

=
∑

l∈TM0

∑

(l1,l2)∈IM0
l

∑

νj=±,j=1,2

Gν1,ν2
k,l,l1,l2

(s)eiµl(x−a), (4.18)

where Gν1,ν2
k,l,l1,l2

(s) is a function of s defined as

Gν1,ν2
k,l,l1,l2

(s) = e
i(tk+s)δ

ν1,ν2
l,l2 Πν1

l V̂l1Π
ν2
l2
Ψ̂l2(tk), (4.19)

with δν1,ν2l,l2
= ν1δl − ν2δl2 . Then, the remainder term Ln in (4.13) reads

Ln = ε

n∑

k=0

∑

l∈TM0

∑

(l1,l2)∈IM0
l

∑

νj=±,j=1,2

λν1,ν2
k,l,l1,l2

eiµl(x−a), (4.20)

where the coefficients λν1,ν2
k,l,l1,l2

given by

λν1,ν2
k,l,l1,l2

= τGν1,ν2
k,l,l1,l2

(τ/2)−
∫ τ

0

Gν1,ν2
k,l,l1,l2

(s) ds

= rν1,ν2l,l2
e
itkδ

ν1,ν2
l,l2 cν1,ν2k,l,l1,l2

, (4.21)

and

cν1,ν2k,l,l1,l2
= Πν1

l V̂l1Π
ν2
l2
Ψ̂l2(tk), (4.22)

rν1,ν2l,l2
= τeiτδ

ν1,ν2
l,l2

/2 −
∫ τ

0

eisδ
ν1,ν2
l,l2 ds = O(τ3(δν1,ν2l,l2

)2). (4.23)

We only need to consider the case δν1,ν2l,l2
6= 0 as rν1,ν2l,l2

= 0 if δν1,ν2l,l2
= 0. For l ∈ TM0

and (l1, l2) ∈ IM0

l , we have

|δν1,ν2l,l2
| ≤ 2δM0/2 = 2

√
1 + µ2

M0/2
< 2

√
1 +

4π2(1 + τ0)2

τ20 (b− a)2
, (4.24)

which implies for 0 < τ ≤ α π(b−a)τ0√
τ2
0 (b−a)2+4π2(1+τ0)2

with 0 < α, τ0 < 1, there

holds τ
2 |δ

ν1,ν2
l,l2

| ≤ απ. Denoting Sν1,ν2
n,l,l2

=
n∑

k=0

eitkδ
ν1,ν2
l,l2 (n ≥ 0), for 0 < τ ≤

α π(b−a)τ0√
τ2
0 (b−a)2+4π2(1+τ0)2

, we obtain

|Sν1,ν2
n,l,l2

| ≤ 1

| sin(τδν1,ν2l,l2
/2)| ≤

C

τ |δν1,ν2l,l2
| , C =

2απ

sin(απ)
, ∀n ≥ 0. (4.25)

Using the summation-by-parts, we find that

n∑

k=0

λν1,ν2
k,l,l1,l2

= rν1,ν2l,l2

[
n−1∑

k=0

Sν1,ν2
k,l,l2

(cν1,ν2k,l,l1,l2
− cν1,ν2k+1,l,l1,l2

) + Sν1,ν2
n,l,l2

cν1,ν2n,l,l1,l2

]
, (4.26)

with

cν1,ν2k,l,l1,l2
− cν1,ν2k+1,l,l1,l2

= Πν1
l V̂l1Π

ν2
l2

(
Ψ̂l2(tk)− Ψ̂l2(tk+1)

)
. (4.27)



December 8, 2021 1:39 Dirac

14 W. Bao, Y. Feng and J. Yin

Combining (4.23), (4.25), (4.26), and (4.27), we have
∣∣∣∣∣

n∑

k=0

λν1,ν2
k,l,l1,l2

∣∣∣∣∣ . τ2|δν1,ν2l,l2
|
∣∣∣V̂l1

∣∣∣
[
n−1∑

k=0

∣∣∣Ψ̂l2(tk)− Ψ̂l2(tk+1)
∣∣∣+
∣∣∣Ψ̂l2(tn)

∣∣∣
]
. (4.28)

Step 3. Now, we are ready to give the improved estimates. For l ∈ TM0
and

(l1, l2) ∈ IM0

l , simple calculations show (l = l1 + l2)

|δν1,ν2l,l2
| .

2∏

j=1

(1 + µ2
lj )

1/2. (4.29)

Based on (4.20), (4.28) and (4.29), using Cauchy inequality, we have

‖Ln‖2L2 (4.30)

= ε2
∑

l∈TN0

∣∣ ∑

(l1,l2)∈IN0
l

∑

νj=±,j=1,2

n∑

k=0

λν1,ν2
k,l,l1,l2

∣∣2

. ε2τ4
{ ∑

l∈TM0

( ∑

(l1,l2)∈IN0
l

∣∣∣V̂l1

∣∣∣
∣∣∣Ψ̂l2(tn)

∣∣∣
2∏

j=1

(1 + µ2
lj )

1/2

)2

+ n
n−1∑

k=0

[ ∑

l∈TM0

( ∑

(l1,l2)∈IN0
l

∣∣∣V̂l1

∣∣∣
∣∣∣Ψ̂l2(tk)− Ψ̂l2(tk+1)

∣∣∣
2∏

j=1

(1 + µ2
lj )

1/2

)2]}
.

In order to estimate each term in the above inequality, we use the auxiliary function

Θ(x) =
∑

l∈Z
(1 + µ2

l )
1/2
∣∣∣Ψ̂l(tn)

∣∣∣ eiµl(x−a), where Θ(x) ∈
(
Hm−1

per (Ω)
)2

which can

be verified from the assumption (B) and we can prove ‖Θ(x)‖Hs . ‖Ψ(tn)‖Hs+1

(s ≤ m−1). Similarly, introduce the function U(x) =
∑

l∈Z
(1+µ2

l )
1/2
∣∣∣V̂l

∣∣∣ eiµl(x−a),

where U(x) ∈ Wm−1,∞
per (Ω) as can be derived from the assumption (A). We can

prove directly that ‖U(x)‖W 0,∞ . ‖V(x)‖W 2,∞ . Expanding

U(x)Θ(x) =
∑

l∈Z

∑

l1+l2=l

2∏

j=1

(1 + µ2
lj )

1/2
∣∣∣V̂l1

∣∣∣
∣∣∣Ψ̂l2(tn)

∣∣∣ eiµl(x−a),

we can obtain

∑

l∈TM0

( ∑

(l1,l2)∈IM0
l

∣∣∣V̂l1

∣∣∣
∣∣∣Ψ̂l2(tn)

∣∣∣
2∏

j=1

(1 + µ2
lj )

1/2

)2

≤ ‖U(x)Θ(x)‖2L2 . ‖V(x)‖2W 2,∞‖Ψ(tn)‖2H1 , (4.31)

which together with the assumption (A), (4.10) and (4.11) gives

‖Ln‖2L2 . ε2τ4‖V(x)‖2W 2,∞

(
‖Ψ(tn)‖2H1 + n

n−1∑

k=0

‖Ψ(tk)−Ψ(tk+1)‖2H1

)

. ε2τ4 + n2ε4τ6 . ε2τ4. (4.32)
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for 0 ≤ n ≤ T/ε
τ − 1, where the same trick is applied to the rest terms. Combining

(4.13) and (4.32), we have

‖en+1‖L2 . τm0 + ετ2 + ετ

n∑

k=0

‖ek‖L2 , 0 ≤ n ≤ T/ε

τ
− 1. (4.33)

Discrete Gronwall’s inequality would yield ‖en+1‖L2 . ετ2 + τm0 (0 ≤ n ≤ T/ε
τ −

1), and the proof for the improved uniform error bound (4.1) in Theorem 4.1 is

completed.

Remark 4.1. τ0 ∈ (0, 1) is a parameter introduced in analysis and the requirement

on τ (essentially τ . τ0) enables the improved estimates on the low Fourier modes

|l| ≤ 1/τ0, where the error constant depends on α. τ0 can be arbitrary as long as the

assumed relation between τ and τ0 holds, i.e. τ0 could be either fixed, or dependent

on τ , e.g. τ0 =

√
16π2+(b−a)2

α(b−a)π τ .

Remark 4.2. The improved uniform error bounds are established for the second-

order Strang splitting method. Under appropriate assumptions of the exact solution,

the improved uniform error bounds can be extended to the first-order Lie-Trotter

splitting and the fourth-order PRK splitting method with improved uniform error

bounds at ετ and ετ4, respectively.

4.2. For full-discretization

For the TSFP method (2.12), we could establish the following improved uniform

error bounds.

Theorem 4.2. Let Φn be the approximation obtained from the TSFP (2.12) for

the Dirac equation (2.4). Under the assumptions (A) and (B), for 0 < τ0 < 1

sufficiently small and independent of ε, when 0 < τ ≤ α π(b−a)τ0√
τ2
0 (b−a)2+4π2(1+τ0)2

for a

fixed constant α ∈ (0, 1), we have

‖Φ(tn, x)− IMΦn‖L2 . hm + ετ2 + τm0 , 0 ≤ n ≤ T/ε

τ
(4.34)

for any 0 < ε ≤ 1. In particular, if the exact solution is smooth, e.g., Φ(t, x) ∈
L∞([0, Tε]; (H

∞
per(Ω))

2), the improved uniform error bounds for sufficiently small τ

will be

‖Φ(tn, x)− IMΦn‖H1 . hm + ετ2, 0 ≤ n ≤ T/ε

τ
. (4.35)

Proof. From the error estimates in previous sections, we have for 0 ≤ n ≤ T/ε
τ ,

∥∥∥Φ(tn, x)− Φ[n]
∥∥∥
L2

. ετ2 + τm0 ,
∥∥∥Φ[n] − PMΦ[n]

∥∥∥
L2

. hm. (4.36)
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Since Φ(tn, x) − IMΦn = Φ(tn, x) − Φ[n] + Φ[n] − PMΦ[n] + PMΦ[n] − IMΦn, we

derive

‖Φ(tn, x)− IMΦn‖L2 ≤
∥∥∥PMΦ[n] − IMΦn

∥∥∥
L2

+ C1

(
hm + ετ2 + τm0

)
, (4.37)

where C1 is a constant independent of h, τ , n, ε and τ0. As a result, it remains to

establish the estimates on the error function ẽn := ẽn(x) ∈ YM given as

ẽn(x) := PMΦ[n] − IMΦn, 0 ≤ n ≤ T/ε

τ
.

From (2.12) and (2.7), we get

IMΦn+1 = e
τT

2

(
IM

(
eετVe

τT

2 (IMΦn)
))

,

PMΦ[n+1] = e
τT

2

(
PM

(
eετVe

τT

2 (PMΦ[n])
))

,

which lead to

ẽn+1 = eτTẽn +Wn(x), (4.38)

where

Wn(x) = e
τT

2

[
PM

(
(eετV − 1)e

τT

2 (PMΦ[n])
)
− IM

(
(eετV − 1)e

τT

2 (IMΦn)
)]

.

Similar to the error estimates in Ref. 5, we have the following error bounds

‖Wn(x)‖L2 . ετ (hm + ‖ẽn‖L2) , (4.39)

Thus, we could obtain

∥∥ẽn+1
∥∥
L2 ≤ ‖ẽn‖L2 + C2ετ (h

m + ‖ẽn‖L2) , 0 ≤ n ≤ T/ε

τ
− 1, (4.40)

where C2 is a constant independent of h, τ , n and ε. Since ẽ0 = PMΦ0 − IMΦ0, we

have
∥∥ẽ0
∥∥
L2 . hm and discrete Gronwall’s inequality implies

∥∥ẽn+1
∥∥
L2 . hm for

0 ≤ n ≤ T/ε
τ − 1. Combining the above estimates with (4.37), we derive

‖Φ(tn, x)− IMΦn‖L2 . hm + ετ2 + τm0 , 0 ≤ n ≤ T/ε

τ
,

which shows the improved uniform error bound (4.34) and the proof for Theorem

4.2 is completed.

5. Numerical results

In this section, we present numerical results of the TSFP method for the long-time

dynamics of the Dirac equation with O(ε)-potentials up to the long-time Tε = T/ε.
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5.1. For ε = 1 with T ≫ 1 regime

First, we show an example to confirm that the uniform error bound grows linearly

with respect to the time t. We take Ω = (0, 1), the electromagnetic potentials

V (x) = x2(x− 1)2 + 1, A1(x) = x2(x− 1)2 + 1, x ∈ Ω. (5.1)

and the (H2
per(Ω))

2 initial data

φ1(x) = φ2(x) =
1

2
x2(1− x)2 + 3, x ∈ Ω. (5.2)

The regularity is enough to ensure the uniform and improved error bounds. The

‘exact’ solution Φ(t, x) is obtained numerically by the TSFP (2.12) with a very

fine mesh size he = 1/128 and time step size τe = 10−4. To quantify the error, we

introduce the following error functions:

e(tn) = ‖Φ(tn, x)− INΦn‖L2 , emax(tn) = max
0≤q≤n

e(tq).

In the rest of the paper, the spatial mesh size is always chosen sufficiently small

and thus spatial errors can be ignored when considering the long-time error growth

and/or the temporal errors.

0 40 80 120 160 200
0

0.01

0.02

0.03

Fig. 1. Long-time temporal errors of the TSFP (2.12) for the Dirac equation (2.1) with ε = 1 and
different time step τ .

Fig. 1 depicts the long-time temporal errors of the TSFP method for the Dirac

equation (2.1) with ε = 1 and different time step τ , which shows that the uniform

errors grows linearly with respect to the time. In addition, for a given accuracy

bound, the time to exceed the error bar is quadruple when the time step is half,

which also confirms the linear growth. For comparisons, Fig. 2 plots the long-time

errors of the PRK4 method, which indicates that higher order time-splitting meth-

ods could get better accuracy with the same time step size as well as longer time

simulations within a given accuracy bound.
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0 30 60 90 120 150 180 210 240 270
0

0.2

0.4

0.6

0.8

1

1.2
10-5

Fig. 2. Long-time temporal errors of the PRK4 method for the Dirac equation (2.1) with ε = 1
and different time step τ .

5.2. For ε → 0 with fixed T regime

Next, we report the convergence test for the TSFP method (2.12) for the Dirac

equation (2.1) with the electromagnetic potentials (5.1) and the initial data (5.2).

0 30 60 90
0

0.02

0.04

0.06

Fig. 3. Long-time temporal errors of the TSFP (2.12) for the Dirac equation (2.1) with τ = 0.1
and different ε.

Fig. 3 plots the long-time errors of the TSFP method for the Dirac equation (2.1)

with the fixed time step τ and different ε, which confirms the improved uniform error

bound at O(ετ2) up to the long-time at O(1/ε). Figs. 4 & 5 exhibit the temporal

and spatial errors of the TSFP (2.12) for the Dirac equation (2.1) at t = 1/ε. Fig.

4(a) shows the second-order convergence of the TSFP method in time. Each line in

Fig. 4(b) gives the global errors with a fixed time step τ and verifies that the global
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10-4

10-2
(a)

10-2 10-1 100

10-4

10-2

(b)

Fig. 4. Temporal convergence rates of the TSFP (2.12) for the Dirac equation (2.1) over long-time
dynamics at t = 1/ε: convergence rates in τ (a), and convergence rates in ε (b).

10-1 100
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(a)

10-2 10-1 100
10-10

10-5

(b)

Fig. 5. Spatial convergence rates of the TSFP (2.12) for the Dirac equation (2.1) over long-time
dynamics at t = 1/ε: convergence rates in τ (a), and convergence rates in ε (b).

error performs like O(ετ2) up to the long-time at O(1/ε). Each line in Fig. 5(a)

shows the spectral accuracy of the TSFP method in space and Fig. 5(b) verifies the

spatial errors are independent of the small parameter ε in the long-time regime.

5.3. Comparisons of different temporal discretizaitons

In this subsection, we compare the long-time temporal errors of the time-splitting

methods with the finite difference method (FDM) and the exponential wave inte-

grator (EWI) method18,19. In order to compare the temporal errors, we adopt the

Fourier pseudospectral method in space combined with each temporal discretization

and choose a fine mesh size such that the spatial errors are neglected.
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Fig. 6. Temporal convergence rates of different temporal discretizations for the Dirac equation
(2.1) over long-time dynamics at t = 1/ε: convergence rates in τ (a), and convergence rates in ε
(b).

Fig. 6(a) displays the temporal errors for the fixed ε = 1 with different time

step τ . For the three second-order schemes, the second-order (Strang) time-splitting

method obtains smaller temporal errors than the other two methods with the same

time step. The fourth-order time-splitting method (PRK4) not only has higher order

convergent rate but also gives much smaller errors than the other three methods

with the same time step. Fig. 6(b) shows the long-time temporal errors of these

methods for different ε with with a fixed time step τ . The splitting methods have

improved uniform error bounds like O(ετ2) up to the long-time at O(1/ε). The EWI

method has uniform error bounds, while the long-time temporal errors of the finite

difference method depend on the parameter ε and behave like O(1/ε). As a result,

time-splitting methods perform much better than FDM and EWI in the long-time

simulations.

6. Conclusions

Improved uniform error bounds for the time-splitting methods for the long-time dy-

namics of the Dirac equation with small electromagnetic potentials were rigorously

established. With the help of the unitary property of the solution flow in L2(Ω), the

linear growth of the uniform error bound for the time-splitting methods was strictly

proven. By employing the regularity compensation oscillation (RCO) technique, the

improved uniform error bounds were proved to be O(ετ2) and O(hm+ετ2) up to the

long-time at O(1/ε) for the semi-discretization and full-discretization, respectively.

Numerical results were shown to validate our error bounds and to demonstrate that

they are sharp. Finally, comparisons of different time discretizations were presented

to illustrate the superior property of the time-splitting methods for the numerical

simulation of the long-time dynamics of the Dirac equation.
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