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Bifurcations of a neural network model with symmetry

Ross Parker∗ and Andrea K. Barreiro†

Abstract. We analyze a family of clustered excitatory-inhibitory neural networks and the underlying bifurcation
structures that arise because of permutation symmetries in the network as the global coupling strength g is
varied. We primarily consider two network topologies: an all-to-all connected network which excludes self-
connections, and a network in which the excitatory cells are broken into clusters of equal size. Although
in both cases the bifurcation structure is determined by symmetries in the system, the behavior of the
two systems is qualitatively different. In the all-to-all connected network, the system undergoes Hopf
bifurcations leading to periodic orbit solutions; notably, for large g, there is a single, stable periodic orbit
solution and no stable fixed points. By contrast, in the clustered network, there are no Hopf bifurcations,
and there is a family of stable fixed points for large g.
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1. Introduction. Today experimental techniques allow an increasingly detailed view of the
physical architecture of biological neural networks. However, drawing a clear line from physical
connectivity to dynamic neural activity is still a challenge. The networks in question are massive
in scale and high dimensional (with billions of neurons and possibly trillions of synapse). Neural
networks also show great diversity in structure at every level, from the morphology and excitability
properties of a single cell to large scale connections between brain regions.

One common experimental finding is that neural dynamics are surprisingly low-dimensional
when compared to the overall dimensionality of the neural system [17, 8, 19, 42, 30] (see Fig. 1
of [21] for a summary of earlier studies). The low-dimensional manifold may even shift slowly
over time, as the underlying components of the network (cells and synapses) die and are replaced
[20]. Thus, a major challenge for modern mathematical neuroscience is to understand how low-
dimensional dynamics emerges from the observed connectivity of the brain.

Real neural networks are partially structured but also partially random. Intuitively, it’s clear
that not every connection in the brain must be tuned precisely (after all, every person reading
this sentence will respond to these black markings in the same way, despite significant differences
between our individual brains). This has motivated the use of analytical tools of random network
theory, in which one seeks to draw conclusions about an ensemble of networks. An early example is
the work by Sompolinsky et al. [40] which applies dynamic mean field theory to single-population
firing-rate networks in which connections are chosen from a mean-zero Gaussian distribution: in the
limit of large network size, the authors find that the network transitions from quiescence to chaos as
a global coupling parameter passes a bifurcation value. This value coincides with the point at which
the spectrum of the connectivity matrix exits the unit circle [23, 3] thus making the connection to
random matrix theory very concrete. Later authors have sought to extend these results to correlated
or block-structured matrices [31, 2], and many others have studied the spectral characteristics of
partially structured connection matrices [43, 1, 35] with neural networks as a primary motivation.

However, the results of spectral theory and nonlinear dynamics have not always neatly aligned.
One network setting that has caused persistent difficulty is excitatory-inhibitory networks with
strong average connections [36]. The predictions of random matrix theory suggest chaotic, asyn-
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chronous fluctuations, whereas large-scale coherent fluctuations have been observed instead. Why?
The answer may be found in the nature of the deterministic perturbation. Several authors have
examined how low-rank, asymmetric perturbations create an effectively feed-forward structure
that allows coherent dynamics to co-exist with random fluctuations in an orthogonal subspace
[14, 13, 33, 32]; the dimensionality of the dynamical subspace can be related to the dimension of
the low-rank perturbation in the connectivity matrix [39, 5].

In an earlier work, we found an alternative possibility [4]. In examining balanced E-I networks
without self-coupling, we persistently observed periodic solutions which could not be explained
by random matrix theory. Instead, they arose as a consequence of underlying symmetries in the
connection matrix and could be predicted through the machinery of equivariant bifurcation theory.
However, some pieces of our analysis remained uncompleted: we were unable at that time to give
a complete stability analysis. This is important because the stable solution is what one can expect
to observe in a perturbed (random) network.

Here, we complete this analysis for all-to-all excitatory-inhibitory networks. We then extend
this analysis to a biologically significant block-structured case, in which the excitatory cells are
clustered, but inhibition is global. We find that the dynamics are strikingly different: instead of
limit cycles, we predict fixed points. In both cases, the structures can be understood by considering
the symmetries of the deterministic connection matrix.

2. Mathematical model. We consider a network in which each node represents the firing rate
of a single neuron. The individual neurons are connected by sigmoidal activation functions through
a connectivity matrix, which specifies both the network of neuronal connections and the weight of
each connection, including whether a given neuron is excitatory (E) or inhibitory (I). With noise
in the connectivity matrix, this is an idealized model in neuroscience [22, 36, 31]. Here, we will
consider the system without noise, but where the connection weights have important symmetries.
Specifically, we study:

ẋ = F (x, g) := −x+
1√
N

H tanh(gx), (2.1)

for x ∈ R
N , where the global coupling strength, g, is used a bifurcation parameter. The network

comprises a total of N neurons, of which nE are excitatory and nI are inhibitory. H is the N ×N
connectivity matrix; the diagonal entries of H are all 0 to exclude self-interactions of neurons (see
[4, Sec. 2.1] for a discussion on why self-coupling of neurons is removed). We will use the parameter
f = nE/N to identify the fraction of neurons that are excitatory: for the remainder of this paper
we will use f = 0.8 for a 4-to-1 excitatory-to-inhibitory ratio, which is typical for cortical networks
[7]. We note that F is an odd function of x, i.e. F (−x) = −F (x). This implies that if x(t) is a
solution to (2.1), so is −x(t), and that x = 0 is a fixed point of (2.1) for all g.

We consider here networks in which the excitatory neurons are grouped into nC clusters, each
containing p neurons, and the inhibitory neurons are grouped into nCI

clusters, each containing pI
neurons. For simplicity, we only consider the case where the excitatory clusters are the same size,
and the inhibitory clusters are the same size. This restriction introduces additional symmetries into
the model, which are explained below. In addition, all connections of any given type (e.g. E → E
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or E → I) will have the same strength. The matrix H then takes the general form

H =



















µEEKp 0 . . . 0

µEI1nE×nI

0 µEEKp . . . 0
...

...
. . . 0

0 0 . . . µEEKp

µIE1nI×nE

µIIKpI 0 . . . 0
0 µIIKpI . . . 0
...

...
. . . 0

0 0 . . . µIIKpI



















, (2.2)

where 1m×n is the m × n matrix of ones, and Kn is the n × n matrix with all ones off the
diagonal, i.e. Kn = 1n×1 (1n×1)

T − In, with In the n× n identity matrix. The connection weights
µ are defined “matrix-style”, e.g. µEI will denote the connection from I to E, while µIE will denote
the connection from E to I. The weights are also signed, so that µEE, µIE > 0 and µEI , µII < 0: this
reflects the neurobiological heuristic of Dale’s Law, which states that each neuron makes excitatory
or inhibitory connections onto its postsynaptic targets.

The model (2.1), (2.2) is equivariant under the subgroup ΓH of SN , defined by

ΓH = Sp × · · · × Sp
︸ ︷︷ ︸

nC

× SpI × · · · × SpI
︸ ︷︷ ︸

nCI

,

where Sn is the group of permutations on n objects (see section 3 for the definition of equivariance).
Essentially, this says that labels of the neurons within each cluster can be freely permuted. Since
the clusters are of equal sizes, there are two additional symmetries in the model. The labels of
the excitatory clusters and the labels of the inhibitory clusters can be freely permuted, yielding
symmetry groups isomorphic to SnC

and SnCI
, respectively.

The linearization of (2.1) about x = 0 is the matrix

DF (0) =
g√
N

H − IN , (2.3)

where IN is the N×N identity matrix. The eigenvalues of DF (0) are then given by λ∗(g) = g√
N
λ−1

for all eigenvalues λ of H. As a consequence, the dynamics of the system can be understood in
terms of the eigenvalues of H. For an eigenvalue λ of H with negative real part, the corresponding
eigenvalue λ∗(g) of DF (0) will always have negative real part, irrespective of g. On the other hand,
for an eigenvalue λ of H with positive real part, the sign of the real part of the corresponding
eigenvalue λ∗(g) of DF (0) will depend on the bifurcation parameter g. Thus, the only bifurcations
of x = 0 involve the eigenvalues of H which have positive real part. Furthermore, the multiplicities
of the eigenvalues of H are determined by symmetries in the underlying model (2.1) and the matrix
H. These lead to symmetric bifurcations as g is varied; we address this in §3.

The dynamics near a nonzero fixed point x∗ = (x∗1, . . . , x
∗
N )T of (2.1) also depend on the matrix

H. The linearization of (2.1) about x∗ is the matrix

DF (x∗) =
g√
N

H(x∗)− IN , (2.4)

where
H(x∗) := Hdiag(sech2(gx∗)) (2.5)
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is obtained from the matrix H by multiplying column j of H by sech2(gx∗j ). We note that the
diagonal entries of H(x∗) are 0, thus Trace H(x∗) = 0. This implies that the eigenvalues of H(x∗)
sum to 0.

We first studied this system in [4], where we analyzed all-to-all connected, balanced excitatory-
inhibitory networks (nC = 1 and nCI

= 1). In this paper, we first flesh out some details about that
system: we derive leading order expressions for bifurcation points in the system, for the equilibria
near those bifurcation points, and for the Hopf bifurcations that spawn the clustered limit cycles
we observed in [4] (section 5). We then extend the analysis to networks in which the excitatory
population is split up into clusters (nC > 1 and nCI

= 1; section 6). We briefly compare with
networks in which the inhibitory neurons are clustered instead (nC = 1, nCI

> 1; section 7).

3. The role of symmetries and the Equivariant Bifurcation Lemma. In this section, we
outline the tools of equivariant bifurcation theory, and explain how they apply to the model in
question. Our main tool for analyzing the solutions to (2.1), (2.2) which arise at bifurcation points
when symmetries are present is the Equivariant Branching Lemma [24, 10, 25, 28]. Before stating
the result, we introduce some terminology.

Let Γ be a finite group acting on R
N ; then we say that a mapping F : R

N → R
N is Γ-

equivariant if F (γx) = γF (x), for all x ∈ R
N and γ ∈ Γ. A one-parameter family of mappings

F : RN ×R → R
N is Γ-equivariant, if it is Γ-equivariant for each value of its second argument. We

say that V , a subspace of RN , is Γ-invariant if γv ∈ V , for any v ∈ V and γ ∈ Γ. We furthermore
say that the action of Γ on V is irreducible if V has no proper invariant subspaces, i.e. the only
Γ-invariant subspaces of V are {0} and V itself.

For a group Γ and a vector space V , we define the fixed-point subspace for Γ, denoted FixV (Γ),
to be all points in V that are unchanged under any of the members of Γ, i.e. FixV (Γ) = {x ∈
V : γx = x,∀γ ∈ Γ}. The isotropy subgroup of x ∈ V , denoted Σx, is the set of all members of Γ
under which x is fixed, i.e. Σx = {γ ∈ Γ : γx = x}. We then say that a subgroup Σ is an isotropy
subgroup of Γ, if it is the isotropy subgroup, Σx, for some x ∈ V .

Suppose we have a one-parameter family of mappings, F (x, g), and we wish to solve F (x, g) = 0.
For any (x, g) ∈ R

n × R, let (DF )x,g denote the N ×N Jacobian matrix
[
∂Fj

∂xk
(x, g)

]

j,k=1...N

A bifurcation will occur when the Jacobian ceases to be invertible, i.e. when (DF )x,g has a nontrivial
kernel. For a Γ-equivariant mapping — i.e. F (x, g) is Γ-equivariant for any value of the parameter
g — we may have multiple eigenvalues go through zero at once, because of symmetries; however,
some of the structural changes that occur are qualitatively the same as those that occur in a non-
symmetric system in which a single eigenvalue crosses through zero. But there is a catch: we will
have multiple such solution branches, each corresponding to a subgroup of the original symmetries.
This is formalized in the following theorem:

Theorem 3.1 (Equivariant Branching Lemma: paraphrased from [25], Theorem 3.3 on p. 82, see
also pp. 67-69). Let F : RN × R → R

N be a one-parameter family of Γ-equivariant mappings with
F (x0, g0) = 0. Suppose that (x0, g0) is a bifurcation point and that, defining V = ker(DF )x0,g0, Γ
acts absolutely irreducibly on V . Let Σ be an isotropy subgroup of Γ satisfying

dim FixV (Σ) = 1, (3.1)

where FixV (Σ) is the fixed-point subspace of Σ with respect to V : that is, FixV (Σ) ≡ {x ∈ V |
σx = x for all σ ∈ Σ}. Then there exists a unique smooth solution branch to F = 0 such that the
isotropy subgroup of each solution is Σ.
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As we have noted, (2.1), (2.2) is ΓH -equivariant, where

ΓH = Sp × · · · × Sp
︸ ︷︷ ︸

nC

× SpI × · · · × SpI
︸ ︷︷ ︸

nCI

,

and Sn is the group of permutations on n objects. Essentially, this says that labels of the neurons
within each cluster can be freely permuted. In addition, the labels of the excitatory clusters and
the labels of the inhibitory clusters can be freely permuted, yielding symmetry groups isomorphic
to SnC

and SnCI
, respectively.

The origin, x = 0 is a fixed point for all values of g. As we increase g from 0, we will encounter
a sequence of bifurcation points, i.e. points (x0, g0) for which DF has a nontrivial kernel. At each
such point, we will identify the kernel V and the subgroups Σ for which a solution is guaranteed
by the Equivariant Branching Lemma.

4. Model simplification. We can simplify the model using the fact that all cells within each
excitatory cluster must be synchronized at a fixed point or periodic orbit. In the case where there
is a single excitatory cluster (nC = 1), if x1 and x2 are the activities of two excitatory cells, then a
straightforward calculation (see Lemma 3 from [4]) shows that

d

dt
|x1 − x2|2 ≤ −2|x1 − x2|2. (4.1)

The only way this can be true for a fixed point (for which d
dt |x1 − x2|2 = 0) or for a periodic orbit

(for which x1(t)− x2(t) = x1(t+ T )− x2(t+ T ) for some period T ) is if x1(t) = x2(t) for all t. If
nC > 1, and x1 and x2 are the activities of two cells in the same excitatory cluster, equation (4.1)
holds by the same argument as in [4], since both neurons receive the same incoming connections
with the same weights.

We are primarily interested in the case where there is a single cluster of inhibitory cells, i.e.
nCI

= 1. (We will briefly consider the case of multiple inhibitory clusters in section 7). If there
are nC excitatory clusters containing p cells each, and nI inhibitory cells (for N = pnC + nI total
cells), equation (2.1) reduces to the system of nC + nI equations

ẋEj = −xEj +
(p − 1)√

N
µEE tanh(gxEj ) +

1√
N

µEI

∑

k

tanh(gxIk) j = 1, . . . , nC

ẋIj = −xIj +
p√
N

µIE

∑

k

tanh(gxEk
) +

1√
N

µII

∑

k 6=j

tanh(gxIk) j = 1, . . . , nI ,
(4.2)

where xEj is the activity for the jth excitatory cluster, and xIj is activity for the jth inhibitory
cell. In matrix form, the equations (4.2) can be written

ẋ = F̃ (x, g) := −x+
1√
N

H̃ tanh(gx), (4.3)

where x = (xE1
, . . . , xEnC

, xI1 , . . . , xInI
)T , and H̃ is the (nC + nI)× (nC + nI) reduced matrix

H̃ =











(p− 1)µEEInC
µEI1nC×nI

pµIE1nI×nC
µIIKnI











. (4.4)
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The system of equations (4.3), (4.4) is the restriction of the original system (2.1), (2.2) with nCI
= 1

to the fixed-point subspace Fix(ΓC) corresponding to the subgroup

ΓC = Sp × · · · × Sp
︸ ︷︷ ︸

nC

×EnI

of ΓH , where EnI
is the trivial subgroup of SnI

consisting only of the identity permutation. The
reduced model (4.3), (4.4) is then equivariant under the subgroup

Γ = SnC
× SnI

(4.5)

of SnC+nI
. The special case of nC = 1 (a single excitatory cluster), for which Γ = S1 × SnI

, is
considered in section 5. We note that in this case, one of the symmetries is effectively lost, since the
activity of the lone excitatory cluster is represented by a single variable. The general case (nC > 1)
is considered in section 6. We will only consider the reduced system (4.3), (4.4) in section 5 and
section 6.

Next, we show that no stability information is lost by only studying the reduced system. Sup-
pose x∗ = (x∗E1

, . . . , x∗EnC
, x∗I1 , . . . , x

∗
InI

)T is a fixed point of (4.3). (We will discuss the existence of

such fixed points in section 5 and section 6). The linearization of (4.3) about x∗ is the matrix

DF̃ (x∗) =
g√
N

H̃(x∗)− InC+nI
, (4.6)

where

H̃(x∗) := H̃diag(sech2(gx∗)). (4.7)

The original system (2.1) has a corresponding fixed point x∗
0, in which each x∗Ej

in x
∗ is repeated

p times. The following proposition shows that to analyze the stability of the fixed point x∗
0 in the

full system (2.1), it suffices to determine the eigenvalues of the reduced matrix H̃(x∗), since the
additional eigenvalues of H(x∗

0) are negative, and thus will not affect stability.

Proposition 4.1. Let x∗ be a fixed point of (4.3) and x
∗
0 the corresponding fixed point of (2.1),

and let H(x∗
0) and H̃(x∗) be defined by (2.5) and (4.7). Then

(i) Every eigenvalue of H̃(x∗) is an eigenvalue of H(x∗
0).

(ii) H(x∗
0) has nC additional real, negative eigenvalues, each with multiplicity p− 1.

Proof. Part (i) follows immediately from the fact that (4.3) is a restriction of (2.1). For part (ii),
it can be verified directly that for j = 1, . . . , nC , H(x∗

0) has an eigenvalue at λ = −µEE sech2(xEj )
with multiplicity p − 1. For j = 1, for example, the p − 1 eigenvectors are v

1, . . . ,vp−1, where
vk1 = −1, vkk+1 = 1, and all other components are 0. Since µEE > 0, these eigenvalues are always
negative.

The dynamics of the full system can therefore be explained by the dynamics of the reduced
system, and, in particular, in terms of the eigenvalues of the reduced matrix H̃ (Figure 4.1).
Although these patterns will be explained in detail in the corresponding sections below, we point
out two crucial differences between the model with a single excitatory cluster (Figure 4.1, left)
and the model with multiple excitatory clusters (Figure 4.1, right). For the model with multiple
excitatory clusters, there is an additional positive, real eigenvalue λC , and the complex pair λ0+iω0

has negative real part.
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No clusters Excitatory clusters

Figure 4.1. Eigenvalue pattern of the matrix H̃ for a single excitatory and a single inhibitory cluster (left,
section 5), and multiple excitatory clusters and a single inhibitory cluster (right, section 6). The notation for the
eigenvalues in each network model is explained in the corresponding section below.

5. Single excitatory and inhibitory cluster. The simplest case (considered in [4]) involves a
single excitatory cluster (nC = 1 and p = nE) and a single inhibitory cluster, in which case the
matrix H̃ in (4.3) reduces to the (1 + nI)× (1 + nI) matrix

H̃ =











(nE − 1)µEE µEI11×nI

nEµIE1nI×1 µIIKnI











. (5.1)

We choose the connection weights so that the network is balanced ; that is, the excitatory and
inhibitory currents coming into each cell should approximately cancel [36]. To achieve this balance,
we set µEI = −αµEE and µII = −αµIE, where α = f

1−f . For simplicity, we also take µIE = µEE.

The spectrum of H̃ is now easy to compute (see [4], noting that the full matrix H is considered in
that work). The eigenvalues of H̃ (left panel of Figure 4.1) are

• λI := αµEE > 0 with multiplicity nI − 1.
• One complex pair of eigenvalues λ0 ± iω0, with

λ0 := µEE
α− 1

2
, ω0 := µEE

√
α+ 1

√

nE − α+ 1

4
.

It is straightforward to check that 0 < λ0 < λI . Since both of these are positive, there will be a
bifurcation of x = 0 involving each of these eigenvalues.

In the following sections, we will determine the bifurcations which occur as g is increased,
together with the structures which emerge at these bifurcation points. First, the origin loses
stability in a symmetric pitchfork bifurcation, after which point there is a branch of equilibria for
every possible division of the inhibitory cells into two groups. We will derive leading order formulas
for these branches, as well as show which of them are initially stable. As g is further increased,
there is a Hopf bifurcation on each of these branches, which gives rise to a limit cycle with the same
grouping pattern as the corresponding branch. Finally, at a critical value of g, these limit cycles
coalesce into a symmetric pitchfork bifurcation of limit cycles. After this point, there is a single
stable limit cycle in which there is one group of inhibitory cells and one group of excitatory cells.

7



5.1. Bifurcations of the origin. As the bifurcation parameter g is increased from 0, the eigen-
values λ∗

I(g) of DF (0) corresponding to λI cross the imaginary axis at

g = g0 :=

√
N

αµEE
. (5.2)

The origin x = 0 is a stable equilibrium for g < g0. At g = g0, the origin loses stability in a
symmetric pitchfork bifurcation, where nI − 1 eigenvalues cross the imaginary axis simultaneously
(see section 5.2 below). As g is further increased, the complex pair of eigenvalues λ∗

0(g)± iω∗
0(g) of

DF (0) crosses the imaginary axis at

g = gH :=
2
√
N

(α− 1)µEE
, (5.3)

at which point a Hopf bifurcation occurs, giving rise to a limit cycle (see section 5.6 below). The
frequency of this limit cycle is given by the imaginary part ω∗

0(g) at g = gH , which is

ω∗
0(gH) =

2

α− 1

√
α+ 1

√

fN − α+ 1

4
, (5.4)

where we used nE = fN . We note that since ω∗
0(gH) = O(

√
N), ω∗

0(gH) → ∞ as N → ∞.

5.2. Solutions after symmetric pitchfork bifurcation. The reader can readily check that the
right-hand side of (4.3), section 5 is Γ-equivariant, for Γ = S1 × SnI

. That is, we can permute
the labels on inhibitory cells without changing the equations. (The activity of the excitatory cells
have been collapsed into a single variable). At g = g0, nI − 1 eigenvalues pass through zero: the
corresponding eigenspace is the set of all zero-sum vectors with support in the inhibitory cells only,
i.e.

V ≡ ker(dF )0,g∗ = span {[0 vI ]} , vI ⊥ 1nI
,

which has dimension nI − 1. To check that Γ acts irreducibly on V , it is sufficient to show that the
subspace spanned by the orbit of a single vector v (defined as the set of all values γv, for γ ∈ Γ)
is full rank; this can be readily confirmed for vI =

[
1 −1 0 ... 0

]
, for example.

To determine what occurs at this pitchfork bifurcation point, we next find subgroups Σ of
Γ which satisfy the hypothesis of the Equivariant Branching Lemma. To do this, we break the
inhibitory cells up into precisely two clusters I1 and I2 of sizes nI1 and nI2 , where nI1 + nI2 = nI ,
and retain only permutations within each cluster. For each such decomposition, this describes a
subgroup

ΣI = S1 × SnI1
× SnI2

(5.5)

of Γ. Assuming that (without loss of generality) the I1 neurons have the indices 2, ..., nI1 + 1, ΣI

has the fixed-point subspace

FixV (ΣI) = span












0 1 · · · 1
︸ ︷︷ ︸

nI1

−nI1
nI2

· · · −nI1
nI2

︸ ︷︷ ︸
nI2













. (5.6)

Furthermore dimFixV (ΣI) = 1, because it can be described as the span of a single vector.
It follows from the Equivariant Branching Lemma that there is a branch of equilibria emerging

at the symmetric pitchfork bifurcation point g = g0 for all such subgroups ΣI , i.e. for every possible
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division of the inhibitory cells into exactly two clusters of size nI1 and nI2 , where nI1 + nI2 = nI .
We refer to these as I1/I2 branches. Each such branch may be characterized by the number

β =
nI1

nI2

, (5.7)

which gives the ratio of the cluster sizes. Without loss of generality, we may take nI1 ≥ nI2 , so
that β ≥ 1. The inhibitory cells within each of the two clusters are synchronized. The solution on
each I1/I2 branch is then given as (xE , xI1 , xI2), where we recall from section 4 that all excitatory
cells are synchronized. Due to the odd symmetry of (2.1), there is a corresponding I1/I2 branch for
each β with solution (−xE ,−xI1 ,−xI2). We will ignore this other branch for simplicity, although
we note that it is this odd symmetry which permits a pitchfork bifurcation to occur.

We briefly comment on divisions of the inhibitory cells into more than two clusters. As a specific
example, suppose the inhibitory cells are divided into three clusters of size nI1, nI2 , and nI3 , where
nI1 + nI2 + nI3 = nI . This decomposition describes a subgroup Σ3 = S1 × SnI1

× SnI2
× SnI3

of Γ.
The fixed-point subspace of Σ3 with respect to V is given by

span












0 1 · · · 1
︸ ︷︷ ︸

nI1

−nI1
nI2

· · · −nI1
nI2

︸ ︷︷ ︸
nI2

0 · · · 0
︸ ︷︷ ︸

nI3






,






0 1 · · · 1
︸ ︷︷ ︸

nI1

0 · · · 0
︸ ︷︷ ︸

nI2

−nI1
nI3

· · · −nI1
nI3

︸ ︷︷ ︸
nI3













,

which has dimension 2. Since dimFixV (Σ3) > 1, the Equivariant Branching Lemma does not
guarantee the existence of a branch of fixed points with this symmetry. In general, if the inhibitory
cells are divided into m > 2 clusters, the fixed-point subspace for the corresponding symmetry
group will have dimension m − 1 > 1. It is important to note that the Equivariant Branching
Lemma does not preclude the existence of such fixed points (see the discussion in [4, Section 4]).
Numerical experiments, however, suggest that all fixed points which are not on the primary I1/I2
branches are unstable (see section 5.5).

5.3. Solutions along I1/I2 branches. First, we derive leading order expressions for the equilib-
ria along the I1/I2 branches for g close to the bifurcation point g0. Fix β ≥ 1. To find (xE , xI1 , xI2)
along the I1/I2 branch corresponding to β, we reduce (4.2) to the 3-dimensional system





xE
xI1
xI2



 =
µEE√
N







(αnI − 1) −α β
β+1nI −α 1

β+1nI

αnI −α
(

β
β+1nI − 1

)

−α 1
β+1nI

αnI −α β
β+1nI −α

(
1

β+1nI − 1
)











tanh(gxE)
tanh(gxI1)
tanh(gxI2)



 , (5.8)

where xE is the activity of the synchronized excitatory cells, xI1 and xI2 are the activities of the two
synchronized inhibitory clusters, and we used nE = αnI . The system (5.8) is the restriction of (4.3)
to the fixed-point subspace for the subgroup S1× SnI1

× SnI2
of Γ. For any solution (xE , xI1 , xI2)

T

to (5.8), x = (xE , xI1 , . . . , xI1 , xI2 , . . . , xI2)
T is an equilibrium solution to (4.2), where xI1 and xI2

are repeated nI1 and nI2 times, respectively. We note that any solution (xE , xI1 , xI2) to (5.8) is
bounded for all g, since the matrix in (5.8) is constant, and | tanh y| ≤ 1 for all y.

The simplest case occurs when nI is even and β = 1, in which case nI1 = nI2 . On this branch,
xE = 0, and xI2 = −xI1 , i.e. there are two equally sized inhibitory populations with equal and
opposite activities, and there is no excitatory cell activity. Beginning with the single remaining
equation for xI1 , and utilizing the Taylor expansion for the tanh function, we show (see detailed

9



Figure 5.1. Approximations to the location of xI on I1/I2 fixed point branches. Left: Third order (5.9) and fifth
order (5.10) approximations to xI = xI1 on the β = 1 (i.e. nI1 = nI2) branch. Right: Third order approximation
(5.11) to xI1 on the β = 3 branch. Other parameters are: N = 20, α = 4, µEE = 0.7.

calculations in Appendix A) that the nonzero solution for xI is given, to leading order, by

xI =

√

3(g − g0)

g3
g ≥ g0. (5.9)

By keeping up to fifth-order terms in the Taylor expansion (see detailed calculations in Appendix A),
we can obtain the higher order approximation

xI =
1

2

√

5

g2
−
√

5g5(24g0 − 19g)

g5
g ≥ g0. (5.10)

Comparison between the third-order approximation (5.9), the fifth-order approximation (5.10), and
the numerical solution obtained by parameter continuation is shown in the left panel of Figure 5.1.

For β > 1, it is no longer true that xI2 = −xI1 . However, by making an appropriate ansatz and
proceeding as described in Appendix A, we obtain the following approximations for xE , xI1 , and
xI2 in terms of g, for g close to g0

xE = O
(

1

N2

)

, xI1 =

√

3(g − g0)

(1− β + β2)g3
+O

(
1

N2

)

, xI2 = −βxI1 +O
(

1

N2

)

g ≥ g0.

(5.11)

Note that this reduces to (5.9) when β = 1. In addition, we note that xI1 and xI2 have opposite
signs. This is, in fact, true for all g > g0, as shown in Appendix A. Comparison between this
approximation and the numerical solution obtained by numerical parameter continuation is shown
in the right panel of Figure 5.1.

5.4. Stability and bifurcations along I1/I2 branches. Now that we have obtained a leading
order formula for the fixed points on the I1/I2 branches for all valid inhibitory cell ratios β, we
will analyze their stability for g close to the bifurcation point g0. Choose any β ≥ 1, so that
nI1 = β

β+1nI and nI2 = 1
β+1nI , and let x = (xE , xI1 , xI2) be a solution to (5.8) for g > g0.

To examine the stability and bifurcations which occur along the I1/I2 branches, we look at the

10



Figure 5.2. Eigenvalue pattern of the connectivity matrix H(x∗) for fixed point x∗ on I1/I2 branch with β > 1.
The notation for the eigenvalues is explained in section 5.4.

linearization DF̃ (x∗), which is given by (4.6), where x
∗ = (xE , xI1 , . . . , xI1 , xI2 , . . . , xI2)

T , and xI1
and xI2 are repeated nI1 and nI2 times, respectively. As discussed above in section 4, stability will
depend on the eigenvalues of H̃(x∗). A cartoon showing the location of these eigenvalues is given
in Figure 5.2. In the process of our analysis, we will show that a Hopf bifurcation occurs along
each I1/I2 branch, and will find a leading order formula for its location.

To locate the eigenvalues of H̃(x∗), we first linearize the three-dimensional system (5.8) about
the fixed point x = (xE , xI1 , xI2) to get the Jacobian

J3(x) =
g√
N

H3(x)− I3 (5.12)

where

H3(x) = µEE







(αnI − 1) sech2(gxE) −α β
β+1nI sech

2(gxI1) −α 1
β+1nI sech

2(gxI2)

αnI sech
2(gxE) −α

(
β

β+1nI − 1
)

sech2(gxI1) −α 1
β+1nI sech

2(gxI2)

αnI sech
2(gxE) −α β

β+1nI sech
2(gxI1) −α

(
1

β+1nI − 1
)

sech2(gxI2)







(5.13)
and I3 is the 3 × 3 identity matrix. We have the following proposition relating the eigenvalues of
H3(x) and H̃(x∗).

Proposition 5.1. Let x = (xE , xI1 , xI2) be a solution of (5.8) and x
∗ the corresponding fixed

point of (4.3), and let H3(x) and H̃(x∗) be defined by (5.13) and (4.7). Then
(i) Every eigenvalue of H3(x) is an eigenvalue of H̃(x∗).
(ii) H̃(x∗) has the following additional eigenvalues:

• λI1 := µEEα sech2(gxI1) with multiplicity nI1 − 1.
• λI2 := µEEα sech2(gxI2) with multiplicity nI2 − 1.

Proof. Part (i) follows immediately from the fact that (5.8) is a restriction of (4.3). For part (ii),
if nI1 > 1, then it can be verified directly that H̃(x∗) has an eigenvalue λI1 = µEEα sech2(gxI1) with
multiplicity nI1 − 1. The corresponding eigenvectors are v

1, . . . ,vnI1
−1, where vk2 = −1, vkk+2 = 1,

and all other components are 0. If nI2 > 1, the eigenvalue λI2 can be similarly obtained.

We note that the eigenvalues λI1 and λI2 split off from λI at the pitchfork bifurcation point
g = g0; if x

∗ = 0, then λI1 = λI2 = λI . To determine the stability of x∗ for g close to g0, we must
compute the eigenvalues λ∗

I1
(g) and λ∗

I2
(g) of DF̃ (x∗) corresponding to λI1 and λI2 . We will find

(see Appendix B) that λ∗
I2
(g) is always negative, while λ∗

I1
(g) is negative for β < 2 and positive

otherwise. Therefore the fixed point is unstable for β ≥ 2 (see Figure 5.3).

11



Figure 5.3. Bifurcation diagram of all possible I1/I2 branches of equilibria for small N networks. Top row:
N = 20. Top left: xE vs g. Top right: xI1 (above horizontal axis) and xI2 (below horizontal axis) vs g. Bottom row:
N = 50. Bottom left: xE vs g. Bottom right: xI2 only vs g. Line format indicates stable (solid) vs. unstable (dashed)
fixed points. The symmetric pitchfork bifurcation at g = g0 is indicated with a filled circle. Hopf bifurcations are
indicated with filled squares. Further bifurcations along branches are not shown to avoid clutter. Other parameters
are α = 4, µEE = 0.7.

The remaining eigenvalues of DF̃ (x∗) are the eigenvalues of J3(x), given by (5.12). These
include one real eigenvalue and a complex pair (see Appendix B for computations). The real
eigenvalue is always negative, and the complex pair crosses the real axis at a Hopf bifurcation when
g = gH(β), where

gH(β) =

√
N

µEE

2− 5β + 2β2 + 3βnI

α(1 − 4β + β2)− (1− β + β2) + 3αβnI
+O

(
1

N3/2

)

. (5.14)

A plot of gH(β) versus N for various β is given in Figure 5.4. We note that a Hopf bifurcation for a
particular value of β will only occur in a real network if the ratio of inhibitory cells is valid for that
particular value of N (e.g. for β = 3, the total number of inhibitory cells must be a multiple of 4).
The leading order term of (5.14), as well as the order of the remainder term, agrees with results
from numerical parameter continuation (Figure 5.4). As N → ∞, which implies nI = fN → ∞,
the first terms in the numerator and denominator of (5.14) dominate, thus gH(β) → g0 as N → ∞
for all β (see Figure 5.4). Differentiating the leading order term in (5.14) with respect to β and
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Figure 5.4. Locations of important bifurcations as a function of N . Left: Log-log plot of the absolute error of

(5.14) vs N for β = 1, 3, and 4. The slope of each line is approximately -1.5, validating the error term O

(

N−3/2
)

.

Right: location of the symmetric pitchfork bifurcation g0 (dashed line), Hopf bifurcation at the origin gH (dash-dotted
line), and Hopf bifurcations on I1/I2 branches (5.14) for select β (solid lines, arranged from bottom to top in order
of increasing β) as a function of N . Other parameters are: α = 4, µEE = 0.7.

simplifying,
∂

∂β
gH(β) =

√
N

µEE

3(α + 1)(β2 − 1)(nI − 1)

[α(1− 4β + β2)− (1− β + β2) + 3αβnI ]
2 , (5.15)

which is 0 at β = 1 and positive for β > 1. As a consequence, gH(β) increases with β for β ≥ 1
(see Figure 5.4 for this ordering in β, as well as Figure 5.3).

5.5. Other branches of equilibria. The equilibria on the I1/I2 branches, whose existence is
guaranteed by the Equivariant Bifurcation Theorem and which were characterized in section 5.3,
are not the only branches of equilibria. As one example, we consider what occurs on the β = 1
branch for N = 20 (see top panel of Figure 5.3). As g is increased past the Hopf bifurcation,
the complex pair of eigenvalues λ0 ± iω0 collides on the positive real axis and becomes a real pair
of eigenvalues {λL

0 , λ
R
0 }, with λL

0 < λR
0 . As g is further increased, λL

0 moves to the left, and λR
0

moves to the right. When λL
0 passes through the origin (from right to left), a symmetry-breaking

bifurcation occurs (left branch point in Figure 5.5). On the secondary branch, which we will call
the asymmetric 2-2 branch, the excitatory activity xE 6= 0, and the inhibitory pair xI1 and xI2
no longer have equal and opposite activities. As g increases along this secondary branch, there is
another bifurcation (right branch point in Figure 5.5), which produces a branch of equilibria in
which the inhibitory cells are clustered in a 2-1-1 pattern. As N is increased, more complicated
secondary branching patters occur, and it is unlikely that these can be systematically located and
classified. That being said, numerical experiments performed on networks of varying N strongly
suggest that none of these secondary branches contain stable fixed points. Specifically, the only
stable fixed points which have been found by numerical spectral computation are those on the
primary I1/I2 branches; all other branches consist entirely of unstable equilibria. In addition,
all numerical timestepping experiments starting from random initial conditions have converged to
either fixed points on the primary I1/I2 branches or to periodic orbits (see section 5.6 below).

5.6. Periodic solutions. Limit cycles arise as the bifurcation parameter g passes through each
Hopf bifurcation point. First, we discuss the limit cycle which bifurcates from the origin at g = gH .
At g = gH , the complex pair of eigenvalues corresponding to λ0 ± iω0 crosses the imaginary axis.
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Figure 5.5. Further branches of equilibria from I1/I2 branch with β = 1 for N = 20, showing excitatory cell (left)
and inhibitory cell (right) activity. Line format indicates stable (solid) vs. unstable (dashed or dotted) fixed points.
Branch points are indicated with a filled circle. Hopf bifurcations are indicated with filled squares. Other parameters
are α = 4, µEE = 0.7.

The corresponding two-dimensional eigenspace is given by

V ≡ ker(DF )0,gH = span










1 0 · · · 0

︸ ︷︷ ︸
nI




 ,




0 1 · · · 1

︸ ︷︷ ︸
nI












,

which is fixed by Γ = S1 × SnI
itself. Since dimFixV (Γ) = dimV = 2, it follows from the

Equivariant Hopf theorem [25, Theorem 4.1] that there is a branch of small-amplitude, periodic
solutions emanating from this Hopf bifurcation point for which the isotropy subgroup is Γ, i.e. the
inhibitory neurons are all synchronized (see also [4, Section 3.2]). We recall that the excitatory
neurons are always synchronized in the reduced model (4.3) with nC = 1.

Numerical computation with AUTO [15] validates this result, and shows that this limit cycle
exists for all g > gH , suggesting that the Hopf bifurcation is supercritical. Within this limit cycle,
all inhibitory cells are synchronized. Since nI1 = nI and nI2 = 0, we will call this the β = ∞ limit
cycle (see Figure 5.6). The β = ∞ limit cycle is a periodic solution to the two-dimensional system

ẋ1 = f1(x1, x2) := −x1 +
µEE√
N

((nE − 1) tanh(gx1)− αnI tanh(gx2))

ẋ2 = f2(x1, x2) := −x2 +
µEE√
N

(nE tanh(gx1)− α(nI − 1) tanh(gx2)) ,
(5.16)

where x1 represents the synchronized excitatory cell activity, and x2 represents the synchronized
inhibitory cell activity. In this two-dimensional system, the origin loses stability in a Hopf bi-
furcation at g = gH (see Appendix C for details). We note that equation (5.16) is qualitatively
similar to the Wilson-Cowan model for an excitatory-inhibitory pair (see section 11.3.3 of [18])
in its “short-term memory” (STM) formulation [9]; both equations exhibit Hopf bifurcations and
limit cycle solutions. The key difference is the use of input currents as bifurcation parameters in
the Wilson-Cowan model as opposed to global coupling strength.

In the following proposition, we prove that the β = ∞ limit cycle exists for g > gH , which also
proves that the Hopf bifurcation is supercritical. The proof uses the Poincaré-Bendixson theorem,
and is deferred to Appendix C. We note that the proposition does not address stability of the limit
cycle.
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Figure 5.6. The β = ∞ limit cycle arising from a Hopf bifurcation at g = gH . There is a single excitatory
cluster with activity xE(t) and a single inhibitory cluster with activity xI(t). Parameters are: N = 20, g = 15, α = 4,
µEE = 0.7. The period of the limit cycle is 1.62.

Proposition 5.2. For g > gH , the system (2.1) has a limit cycle in which all excitatory cells are
synchronized, and all inhibitory cells are synchronized.

In addition to the β = ∞ limit cycle, periodic orbits arise on each I1/I2 branch as g increases
through the Hopf bifurcation point gH(β), which is given by (5.14). Once again, a complex pair of
eigenvalues crosses the imaginary axis. The corresponding two-dimensional eigenspace is given by

V ≡ ker(DF )x,gH = span










a1 0 · · · 0

︸ ︷︷ ︸
nI1

1 · · · 1
︸ ︷︷ ︸

nI2




 ,




a2 1 · · · 1

︸ ︷︷ ︸
nI1

0 · · · 0
︸ ︷︷ ︸

nI2












,

for some constants a1 and a2. When β = 1, this can be simplified to

V ≡ ker(DF )x,gH = span










1 0 · · · 0

︸ ︷︷ ︸
nI




 ,




0 1 · · · 1

︸ ︷︷ ︸
nI












,

This is a vector space of dimension 2, and it is fixed by the subgroup Σ = S1×SnI1
×SnI2

of Γ
(see [4, Section 3.3]). Since dimFixV (Σ) = dimV = 2, it follows from the Equivariant Hopf theorem
[25, Theorem 4.1] that there is a branch of small-amplitude, periodic solutions emanating from this
Hopf bifurcation point for which the isotropy subgroup is Σ, i.e. the inhibitory cells are split into
two clusters of sizes nI1 and nI2. This is the exact same symmetry as the I1/I2 branch from which
these limit cycles bifurcate. For that reason, we can classify these periodic orbits in terms of the
ratio β = nI1/nI2 . Results from numerical parameter continuation (Figure 5.7 and Figure 5.8)
indicate that this Hopf bifurcation is supercritical, and the limit cycles exist for g > gH(β).

A plot of the period of these limit cycles with increasing g is shown in Figure 5.7 for N = 20 (see
also [4, Fig. 2]) and Figure 5.8 for N = 50. There is a critical value g = g∗ where all of the limit
cycle branches meet (see dark band in bottom panel of Figure 5.7). For g > g∗, the only remaining
limit cycle is the β = ∞ limit cycle, which has become stable. The point g = g∗ is a symmetric
pitchfork bifurcation of limit cycles, which we can see by examining the Floquet multipliers of the
linearization about the β = ∞ limit cycle branch (see right panel of Figure 5.7). These Floquet
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Figure 5.7. Each I1/I2 Hopf bifurcation spawns a branch of limit cycles which connects to the β = ∞ cycle at
g = g∗. Top left: period of the limit cycle versus g. Stable limit cycles are indicated with solid lines. The symmetric
pitchfork of limit cycles is indicated with a filled circle. Hopf bifurcations are indicated with filled squares, which
correspond to the Hopf bifurcation points in Figure 5.3. Top right: Schematic of the Floquet eigenvalue pattern along
the β = ∞ branch. The numbers 1,2, and 3 identify three representative points along the β = ∞ curve in the top left
panel. Bottom: (xE, xI1) vs. g for three branches of fixed points (thick lines) and limit cycles (thin lines): β = 1
(gray), β = 3 (red), and β = ∞ (blue). Other symbols are: pitchfork bifurcation at g0 (filled circle), Hopf bifurcations
for β = 1, β = 3, and β = ∞ (filled squares), and pitchfork bifurcation of limit cycles (dark band) at g = g∗.
Parameters are: N = 20, α = 4, µEE = 0.7.

multipliers are computed using AUTO, and are all real. In addition to a single Floquet multiplier
at 1 which is always present, there is a Floquet multiplier ρE with multiplicity nE − 1, a Floquet
multiplier ρI with multiplicity nI − 1, and Floquet multiplier ρ1 with multiplicity 1. At g = g∗,
the Floquet multiplier ρI with multiplicity nI − 1 passes through 1. As g decreases though g∗, the
β = ∞ limit cycle loses stability and gives rise to limit cycles with symmetry corresponding to each
I1/I2 branch. This is analogous to the pitchfork bifurcation of the fixed point x = 0 at g = g0,
which loses stability when the eigenvalue λI with multiplicity nI − 1 passes through the origin.

5.7. Behavior of the I1/I2 branch for large g. We have characterized the three-cluster fixed
point solutions on the I1/I2 branches near the symmetric pitchfork bifurcation point at g = g0.
Next, we will show that these branches are unstable for sufficiently large g. Fix β = nI1/nI2 ,
and let x = (xE , xI1 , xI2) be a solution to (5.8) for g > g0; this solution depends on g. Recall
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Figure 5.8. Period of limit cycle and max xI2 versus g for periodic solutions arising from Hopf bifurcations.
Stable limit cycles are indicated with solid lines. The symmetric pitchfork of limit cycles is indicated with a filled
circle. Hopf bifurcations are indicated with filled squares. Parameters are: N = 50, α = 4, µEE = 0.7.

from section 5.3 that x is bounded for all g. Let x∗ be the corresponding fixed point of (4.3). To
determine the stability of x∗, we will look at the eigenvalues of DF̃ (x∗) for large g. The sum of
these eigenvalues is

Trace DF̃ (x∗) =
(nE − 1)µEE√

N
g sech2(gxE)− (nI + 1).

We will show that for sufficiently large g, Trace DF̃ (x∗) > 0, and thus at least one eigenvalue has
positive real part. To do this, we analyze the behavior of xE and sech(gxE) as g → ∞. First, we
consider the case when xE → 0. There are three possibilities for the behavior of sech(gxE), only
two of which can occur.
(i) xE → 0, and gxE → 0 (e.g. x ∼ g−β , for β > 1): then sech2(gxE) → 1, and so g sech2(gxE) →

∞.
(ii) xE → 0, but gxE → C, for C > 0 (e.g. x ∼ g−1): then g sech2(gxE) ∼ g sech2(C) → ∞.
(iii) xE → 0, but gxE → ∞ (e.g. x ∼ g−β , for 0 < β < 1). If xE ∼ g−β, then g sech2(gxE) →

0; this would seem to result in a negative trace as g → ∞. However, we will show this
cannot happen. Because sech2(gxE) → 0, it follows that tanh2(gxE) → 1, which implies
tanh(gxE) → 1. We use the first line from (5.8) to obtain a lower bound for xE as follows.
Since xI1 and xI2 have opposite signs for g > g0 (see the end of Appendix A), we can state
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that tanh(gxI1) ≤ 1 and tanh(gxI2) ≤ 0, and therefore that

xE =
µEE√
N

[

(αn1 − 1) tanh(gxE)− α
β

β + 1
nI tanh(gxI1)− α

1

β + 1
nI tanh(gxI2)

]

≥ µEE√
N

[

(αn1 − 1)− α
β

β + 1
nI

]

=
µEE√
N

[α(nI − nI1)− 1] ≥ µEE√
N

(α− 1) ,

since nI1 ≤ nI − 1. As long as we take α > 1 (which is typically the case), xE is bounded
away from 0 for all g > g0, thus contradicting our original assumption that xE → 0.

We have shown that if xE → 0, Trace DF̃ (x∗) > 0 for sufficiently large g, which implies that
DF̃ (x∗) always has an eigenvalue with positive real part.

The remaining possibility is that xE → x̂E 6= 0. In Appendix D, we show that this cannot
occur. Therefore, all (xE , xI1 , xI2) satisfy xE → 0 as g → ∞, and so all equilibria on the I1/I2
branches are unstable for sufficiently large g. We note that this does not say anything about the
stability of equilibria on any branches which may bifurcate from the I1/I2 branches. However, the
results of extensive numerical timestepping simulations suggest that there are no stable equilibria
for sufficiently large g.

6. Excitatory clusters, weight parameters balanced. We now allow the excitatory cells to be
grouped into nC clusters of size p, where p = ⌊Nf/nC⌋. We will take p > 1 to ensure that each
excitatory cluster contains more than one cell, and we will also assume nC ≥ α (e.g. nC ≥ 4 for the
standard value of α = 4). Since we are interested in the behavior of the system for large N and for
a large number of clusters (e.g. nC scales with

√
N), this is not a significant restriction. Cells will

be connected within, but not between, clusters. For simplicity, and relying on Proposition 4.1, we
will focus only on the reduced system (4.3). The right-hand side of (4.3) is now Γ-equivariant for
Γ = SnC

× SnI
, where nC > 1. That is, we can permute the labels of the excitatory clusters and

the labels of the inhibitory cells without changing the equation. We choose the weights so that the
network is balanced.

µEE = nCµ µIE = µ

µEI = −αµ µII = −α.

The expression for µEE compensates for the fact that each excitatory cell has fewer excitatory
connections. The eigenvalues of H̃ (right panel of Figure 4.1) are:

• λI := αµ > 0 with multiplicity nI − 1.
• λC := (p− 1)nCµ > 0, with multiplicity nC − 1.
• A complex conjugate pair of eigenvalues λ0 ± iω0, with

λ0 :=
1

2
µ(α− nC), ω0 :=

1

2
µ
√
α+ nC

√

nC(4p− 1)− α,

where we used the fact that αnI = nE = pnC .
Since λE < 0 and λ0 ≤ 0 (as a consequence of taking nC ≥ α), the corresponding eigenvalues
of DF (0) will always be negative, and thus will not affect the stability of the fixed point at 0.
The eigenvalues which determine stability of the origin are λI and λC . We note that since p > 1,
0 < λI < λC .

As in section 5, we will determine the bifurcations which occur as g is increased, together
with the structures which emerge at these bifurcation points. First, the origin loses stability in a
symmetric pitchfork bifurcation, after which point there is a branch of equilibria for every possible
division of the excitatory clusters into two groups. This is similar to what occurs in the unclustered

18



case, except the bifurcation involves the excitatory clusters instead of the inhibitory cells. As
before, we derive leading order formulas for these branches, and show which of them are initially
stable. As g is further increased, instead of a Hopf bifurcation, there is another symmetric pitchfork
bifurcation on each of these branches, in which the inhibitory cells split into two groups. For large
g, there is a collection of stable fixed points, which we can locate using the limiting behavior of the
system.

6.1. Bifurcations of the origin. As the bifurcation parameter g increases from 0, the first
bifurcation occurs when the set of nC − 1 eigenvalues λ∗

C(g) of DF̃ (0) corresponding to λC crosses
the imaginary axis at

g = gC :=

√
N

(p− 1)nCµ
. (6.1)

The corresponding eigenspace is the set of all zero-sum vectors with support in the excitatory
clusters only, i.e.

V ≡ ker(DF̃ )0,gC = span










vC 0 · · · 0

︸ ︷︷ ︸
nI












, vC ⊥ 1nC
,

which has dimension nC − 1. We can check that Γ acts irreducibly on V , similarly to section 5.2.
We then find subgroups Σ of Γ which satisfy the hypothesis of the Equivariant Branching Lemma
by breaking the excitatory clusters up into two clusters C1 and C2 of sizes nC1

and nC2
, where

nC1
+ nC2

= nC . For each such decomposition, this describes a subgroup

ΣC = SnC1
× SnC2

× SnI
(6.2)

of Γ. The subgroup ΣC has the fixed-point subspace

FixV (ΣC) = span












1 · · · 1
︸ ︷︷ ︸

nC1

−nC1

nC2

· · · −nC1

nC2
︸ ︷︷ ︸

nC2

0 · · · 0
︸ ︷︷ ︸

nI













, (6.3)

which has dimension 1. It follows from the Equivariant Branching Lemma that there is a branch of
equilibria emerging at the symmetric pitchfork bifurcation point g = gC for all such subgroups ΣC ,
i.e. for every possible division of the excitatory clusters into exactly two groups of size nC1

and nC2
.

All cells are synchronized within each excitatory cluster. Each such branch may be characterized
by the number

βC =
nC1

nC2

, (6.4)

which gives the ratio of the sizes of the two groups of excitatory clusters. Without loss of generality,
we may take nC1

≥ nC2
, so that βC ≥ 1. At the start of each C1/C2 branch, the inhibitory cells are

synchronized. This is the case since, near g = gC , no other eigenvalues have crossed through the
origin, thus no bifurcations involving the inhibitory cells have occurred. The solution on each C1/C2

branch is then given as (xE1
, xE2

, xI). Due to the odd symmetry of (2.1), there is a corresponding
C1/C2 branch for each βC with solution (−xE1

,−xE2
,−xI), which we will ignore for simplicity.

Similar to what is discussed in section 5.2, a division of the excitatory clusters into more than
two groups will lead to a fixed-point subspace of dimension 2 or greater, thus a branch with this
symmetry is not guaranteed to exist by the Equivariant Branching Lemma. Such branches may
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occur, but as with the unclustered case, numerical evidence strongly suggests that all of them are
unstable.

As g is further increased, the eigenvalue λ∗
I(g) with multiplicity nI − 1 crosses the imaginary

axis at g = g0, where g0 is defined by (5.2). A second symmetric pitchfork bifurcation occurs
at this point, this time involving the inhibitory cells. This is almost identical to what occurs in
the unclustered case (section 5.2). Briefly, the corresponding eigenspace is the set of all zero-sum
vectors with support in the inhibitory cells only, i.e.

V ≡ ker(DF̃ )0,g∗ = span










0 · · · 0
︸ ︷︷ ︸

nC

vI












, vI ⊥ 1nI
,

which has dimension nI − 1. We then break the inhibitory cells up into two groups I1 and I2 of
sizes nI1 and nI2 , where nI1 + nI2 = nI , which describes a subgroup ΣI = SnC

× SnI1
× SnI2

of Γ.
The fixed-point subspace of ΣI is then given by

FixV (ΣI) = span












0 · · · 0
︸ ︷︷ ︸

nC

1 · · · 1
︸ ︷︷ ︸

nI1

−nI1
nI2

· · · −nI1
nI2

︸ ︷︷ ︸
nI2













, (6.5)

which has dimension 1. As in (5.2), it follows from Equivariant Branching Lemma that there is an
I1/I2 branch of equilibria emerging at the symmetric pitchfork bifurcation point g = g0 for every
possible division of the inhibitory cells into exactly two groups of size nI1 and nI2 . An important
distinction from the previous section is that there will be no Hopf bifurcation of the origin, since
the complex conjugate pair of eigenvalues cannot cross the imaginary axis.

6.2. Solutions on C1/C2 branch. First, we derive leading order expressions for the solutions
along the C1/C2 branches for g close to gC . The simplest case occurs when nC is even and βC = 1,
in which case nC1

= nC2
. On this branch, xE2

= −xE1
, i.e. there are two equally sized groups of

excitatory clusters with equal and opposite activity, and all the inhibitory cells have synchronized
activity xI = 0. Taking xE1

= xE , xE2
= −xE , and xI = 0 in (4.2) and simplifying, we obtain the

single equation tanh(gxE) = gCxE. As in section 5, xE is given, to leading order, by

xE =

√

3(g − gC)

g3
g ≥ gC , (6.6)

for g close to gC . For βC > 1, we find the solution along each C1/C2 branch by reducing (2.1) to
the 3-dimensional system





xE1

xE2

xI



 =
µ√
N





(p− 1)nC 0 −pnC

0 (p − 1)nC −pnC

pnC
βC

βC+1 pnC
1

βC+1 −(pnC − α)









tanh(gxE1
)

tanh(gxE2
)

tanh(gxI)



 , (6.7)

where we used αnI = nE = pnC . The variables xE1
and xE2

are the activities of the two groups of
excitatory clusters, and xI is the activity of the inhibitory cells, which are synchronized since g is
close to gC . The system (6.7) is the restriction of (4.3) to the fixed-point subspace corresponding
to the subgroup SnC1

× SnC2
× SnI

of Γ. Following the same procedure as in section 5, we obtain
the following approximations for xE1

, xE2
, and xI

xE1
= ±

√

3(g − gC)

(1− βC + β2
C)g

3
+O

(
1

N2

)

, xE2
= −βCxE1

+O
(

1

N2

)

, xI = O
(

1

N2

)

g ≥ gC ,

(6.8)
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Figure 6.1. The eigenvalue pattern of the connectivity matrix H(x∗) for fixed points x
∗ on a C1/C2 branch with

βC > 1. The notation for the eigenvalues is explained below Proposition 6.1.

for g close to gC , which reduces to (6.6) when β = 1.

6.3. Stability and bifurcations along C1/C2 branch. We now analyze the stability of the
C1/C2 branches for g close to gC . Choose any βC ≥ 1, so that nC1

= βC
βC+1nC and nC2

=
1

βC+1nC . Let x = (xE1
, xE2

, xI) be a solution to (6.7). We look at the linearization DF̃ (x∗), where

x
∗ = (xE1

, . . . , xE1
, xE2

, . . . , xE2
, xI , . . . , xI)

T , where xE1
and xE2

are repeated nC1
and nC2

times,
respectively, and xI is repeated nI times. Stability will depend on the eigenvalues of H̃(x∗). A
cartoon showing the location of these eigenvalues is given in Figure 6.1.

We follow the same procedure as in section 5.4. First, we linearize the reduced system (6.7)
about (xE1

, xE2
, xI) to get the Jacobian

J3(x) =
g√
N

H3(x) − I3, (6.9)

where

H3(x) = µ





(p− 1)nC sech2(gxE1
) 0 −pnC sech2(gxI)

0 (p − 1)nC sech2(gxE2
) −pnC sech2(gxI)

pnC
βC

βC+1 sech
2(gxE1

) pnC
1

βC+1 sech
2(gxE2

) −(pnC − α) sech2(gxI)



 (6.10)

and I3 is the 3 × 3 identity matrix. We have the following proposition concerning the eigenvalues
of H3(x) and H̃(x∗). The proof is omitted since it is similar to that of Proposition 5.1.
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Figure 6.2. When the excitatory cells are clustered (nC > 1), the first nontrivial fixed points are those for which
the excitatory cells, rather than inhibitory cells, separate into two groups. Left: excitatory cell activity xE1

and xE2

on C1/C2 branches of equilibria of (2.1) with excitatory clustering for all possible values of βC . The symmetric
pitchfork bifurcations at g = gC and along the C1/C2 branches are indicated with filled circles. (To avoid clutter, the
I1/I2 branches after the symmetric pitchfork bifurcation on the C1/C2 branch are not shown). Right: I1/I2 branches
bifurcate from the C1/C2 branches ( to avoid clutter only xE1

is shown). Stable fixed points are indicated with solid
lines. Parameters are: N = 20, nC = 4, p = 4, nI = 4, α = 4, µEE = 0.7.

Proposition 6.1. Let x = (xE1
, xE2

, xI) be a solution to (6.7) and x
∗ the corresponding fixed

point of (4.3), and let H3(x) and H̃(x∗) be defined by (6.10) and (4.7). Then
(i) Every eigenvalue of H3(x) is an eigenvalue of H̃(x∗).
(ii) H̃(x∗) has the following additional eigenvalues:

• λC1
:= (p− 1)nCµ sech2(gxE1

) with multiplicity nC1
− 1.

• λC2
:= (p− 1)nCµ sech2(gxE2

) with multiplicity nC2
− 1.

• λI := αµ sech2(gxI) with multiplicity nI − 1.

We note that the eigenvalues λC1
and λC2

split off from λC at the pitchfork bifurcation point
g = gC ; if x

∗ = 0, then λC1
= λC2

= λC . To determine the stability of x∗ for g close to gC , we first
compute the eigenvalues of DF̃ (x∗) corresponding to λC1

, λC2
, and λI . We find (see Appendix E)

that the cluster-associated eigenvalue λ∗
C1
(g) is negative for 1 ≤ βC < 2 and positive for βC > 2;

λ∗
C2
(g) is negative for βC > 1/2; and λ∗

I(g) is negative for all βC for N sufficiently large. The
behavior of λ∗

C1
(g) implies that the C1/C2 branches are initially unstable for βC > 2 (see Figure 6.2

and Figure 6.3).
The remaining eigenvalues of DF̃ (x∗) are the eigenvalues of J3(x). Following the same proce-

dure as in section 5.4 (see Appendix E for details), we find that, since we are taking nC ≥ α, the
eigenvalues of J3(x) all have negative real part for g close to gC . Thus the C1/C2 branches are
initially stable for 1 ≤ βC ≤ 2 (see the top panel of Figure 6.2 as well as Figure 6.3).

As g is further increased from gC , there is a second symmetric pitchfork bifurcation on each
C1/C2 branch as the eigenvalue λ∗

I(g) of DF̃ (x∗) with multiplicity nI−1 crosses through the origin
(see bifurcation diagram in Figure 6.2 and Figure 6.3).

The behavior at this bifurcation is exactly the same as for the second symmetric pitchfork
bifurcation at the origin. The corresponding eigenspace V is the set of all zero-sum vectors with
support in the inhibitory cells only, which has dimension nI − 1. As above, we break the inhibitory
cells up into two groups I1 and I2 of sizes nI1 and nI2 , where nI1 + nI2 = nI . This describes a
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Figure 6.3. Bifurcation diagram of all possible C1/C2 branches, and selected C1/C2/I1/I2 branches, for a mod-
erate value of N . Top: C1/C2 branches of equilibria of (2.1) with excitatory clustering for all possible values of βC.
Top left: xE1

vs g. Top right: xI vs g, zoomed into a narrower range of g to show stability of C1/C2 branches near
g = gC . Symmetric pitchfork bifurcations at g = gC and along the C1/C2 branches are indicated with filled circle.
To avoid clutter, the C1/C2/I1/I2 branches are not shown. Bottom: xI and xE1

vs. g, for C1/C2/I1/I2 branches
bifurcating from the C1/C2 branches. The only I1/I2 branches shown here are the ones which are eventually stable,
which in this case are those with β = βC (see Table 6.1). Stable fixed points are indicated with solid lines, unstable
fixed points with dashed line. Unstable C1/C2 branches for βC = 4 and βC = 9 become stable at the points indicated
with the diamond. Parameters are: N = 100, nC = 10, p = 8, nI = 20, α = 4, µEE = 0.7.

subgroup ΣI = SnC1
× SnC2

× SnI1
× SnI2

of Γ, where we recall that nC1
and nC2

are fixed on this
C1/C2 branch. The fixed-point subspace of ΣI is then given by

FixV (ΣI) = span












0 · · · 0
︸ ︷︷ ︸

nC1

0 · · · 0
︸ ︷︷ ︸

nC2

1 · · · 1
︸ ︷︷ ︸

nI1

−nI1
nI2

· · · −nI1
nI2

︸ ︷︷ ︸
nI2













, (6.11)
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which has dimension 1. It follows from the Equivariant Branching Lemma that, on every C1/C2

branch, there is an I1/I2 branch of solutions for every possible division of the inhibitory cells into
exactly two clusters.

We can characterize these branches using the parameter β = nI1/nI2 , as we did in the previous
section. When βC = 1, xI = 0, and this bifurcation takes place at

gI =

√
N

αµ
. (6.12)

For βC > 1, this bifurcation takes place at g much greater than gC , thus the approximation (6.8) no
longer holds. To locate these bifurcations, we will examine the behavior of the system as g becomes
large. We note here that evidence from numerical parameter continuation suggests that there are
no Hopf bifurcations along the C1/C2 branches; furthermore, numerical timestepping experiments
suggest that there are no stable periodic orbits for any value of g. In addition, numerical experiments
strongly suggest that there are no stable equilibria on any secondary branches.

6.4. C1/C2 branches for large g. We look at the behavior of solutions on the C1/C2 branches as
g becomes large. This will depend on the ratio βC = nC1

/nC2
. When βC = 1, xE2

= −xE1
:= xE ,

and xI = 0 for all g ≥ gC . Numerical parameter continuation suggests that xE → x̂E > 0 as
g → ∞, which implies that tanh(gxE) → 1. It follows from the first row of (6.7) that

x̂E =
µ√
N

(p− 1)nC . (6.13)

For βC > 1, numerical parameter continuation suggests xI → 0 as g → ∞, but tanh(gxI) → ŷI 6= 0.
There are two patterns for the limiting behavior on the C1/C2 branches, which depend on whether
βC < β∗

C or βC > β∗
C , for a critical value

β∗
C =

(nCp− α)(2p − 1) + αp

nCp+ α(p − 1)
. (6.14)

(See Appendix F for a derivation of β∗
C). These are illustrated in Figure 6.4.

• Case 1: (1 < βC < β∗
C) xE1

→ x̂E1
> 0 and xE2

→ x̂E2
< 0.

• Case 2: (βC > β∗
C) xE1

→ 0 with tanh(gxE1
) → ŷE1

6= 0, and xE2
→ x̂E2

< 0.

As N → ∞, nCp = fN → ∞ as well. If both p and nC scale as
√
N , then the only significant terms

in the numerator and denominator of (6.14) are of order N or larger, in which case β∗
C → 2p − 1

as N → ∞.
In Appendix F, we derive formulas for xE1

, xE2
, and xI for both of these cases. We then use

these formulas to find the location of the symmetric pitchfork bifurcation points on the C1/C2

branches when βC > 1 and N is large. If we take both p and nC to scale as
√
N , we can assume

βC < β∗
C , as discussed above. At this bifurcation, the eigenvalue λ∗

I(g) of DF̃ (x∗) with multiplicity
nI − 1 crosses through 0. Using the identity sech2(gxI) = 1 − tanh2(gxI) → 1 − ŷ2I as g → ∞
together with (F.1), the symmetric pitchfork bifurcation on the C1/C2 branch is located, to leading
order, at

gI(βC) =

√
N

4αµ

(1 + βC)
2

βC
(6.15)

for N large. When βC = 1, this reduces to (6.12). See Figure 6.3 and the left panel of Figure 6.5 for
the location of the symmetric pitchfork bifurcations on the C1/C2 branches. Numerical simulation
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Figure 6.4. The saturation (g ≫ 1) behavior of fixed points on a C1/C2 branch depends on the clustering
parameter βC . Left: xE1

, xE2
, and xI vs g on C1/C2 branches for 1 < βC < β∗

C . Right: βC > β∗
C . Parameters

are: N = 50, nC = 10, p = 4, nI = 10, α = 4, µ = 0.7. Given these parameters β∗
C = 5.15385: here we illustrate

βC = 7/3 (left) and βC = 9 (right).

validates this formula, and suggests that the error term in (6.15) has order O(N−1/2) (Figure 6.5,
right panel). We note that for N large, gI(βC) is quadratic in βC , has a local minimum at βC = 1,
and is increasing for βC > 1. We can see in Figure 6.3 and Figure 6.5 that the location of the
symmetric bifurcation points gI(βC) increases with βC .

For sufficiently large N , each C1/C2 branch will be stable immediately preceding the pitchfork
bifurcation at gI(βC). To see this, we evaluate the remaining eigenvalues of DF̃ (x∗) when g =
gI(βC). As N → ∞, gI(βC) → ∞, thus sech(gI(βC)xEj ) → 0 for j = 1, 2. It follows that for
g = gI(βC), λCj → 0, thus λ∗

Cj
(g) → −1 for j = 1, 2. By the same argument, taking N → ∞ will

zero out the first two columns of (6.10) when g = gI(βC). Thus, in the limit N → ∞, H3(x
∗)

will have a pair of eigenvalues at 0 and an additional eigenvalue at −(pnC − α) sech2 gxI ≤ 0. The
corresponding eigenvalues of DF̃ (x∗) will be negative.

As a example, consider the N = 100 system shown in Figure 6.3. The C1/C2 branches for
βC = 7/3, 4, and 9 start unstable, but regain stability before the symmetric pitchfork bifurcation
points. This does not necessarily occur for small values of N (see Figure 6.2 for N = 20, where
this does not happen).

6.5. Stability of C1/C2/I1/I2 solutions for large g. After the symmetric pitchfork bifurcation
point on the C1/C2 branches, both the excitatory clusters and inhibitory cells have split into two
populations. We are interested in stable fixed points when g is large. In particular, we seek
fixed point branches in which the excitatory clusters are split into two populations with ratio
βC = nC1

/nC2
, and the inhibitory cells are also split into two populations with ratio β = nI1/nI2 .

This reduces (2.1) to the system of equations







xE1

xE2

xI1
xI2






=

µ√
N










(p − 1)nC 0 −α β
β+1nI −α 1

β+1nI

0 (p− 1)nC −α β
β+1nI −α 1

β+1nI

pnC
βC

βC+1 pnC
1

βC+1 −α
(

β
β+1nI − 1

)

−α 1
β+1nI

pnC
βC

βC+1 pnC
1

βC+1 −α β
β+1nI −α

(
1

β+1nI − 1
)
















tanh(gxE1
)

tanh(gxE2
)

tanh(gxI1)
tanh(gxI2)






,

(6.16)
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Figure 6.5. Location of the symmetric pitchfork bifurcation points on C1/C2 branches. Left: gI(βC) vs. N for
various βC . Right: semi-log plot of the absolute error of approximation (6.15) vs N for various βC . The slope of each
line is approximately -0.5 (validating the error term O(N−1/2)). Parameters are: nC = 10, α = 4, µ = 0.7.

which is the restriction of (4.3) to the fixed-point subspace corresponding to the subgroup SnC1
×

SnC2
× SnI1

× SnI2
of Γ. Parameter continuation suggests that as g → ∞, (xE1

, xE2
, xI1 , xI1) →

(x̂E1
, x̂E2

, x̂I1 , x̂I2), where x̂E1
, x̂I1 > 0 and x̂E2

, x̂I2 < 0. Such solutions exist for

2βnI − β − 1

2nI + β + 1
< βC <

2βnI + β + 1

2nI − β − 1
. (6.17)

for all valid β satisfying 1 ≤ β < 2p− 1. See Appendix G for detailed calculations.
For some small values of N , a list of all valid pairs of (β, βC ) which satisfy (6.17) is given in

Table 6.1. (A value of β or βC is valid for a particular N only if the ratio of inhibitory cells or
excitatory clusters is possible for that value of N). In the specific case where nC = nI , it follows
from (6.17) that

nI1 −
1

2
< nC1

< nI1 +
1

2
.

Since nC1
must be an integer, nC1

= nI1 , which implies βC = β.
The fixed point x

∗ corresponding to each of these (β, βC ) is eventually stable for sufficiently
large g, since as g → ∞, H(x∗) approaches the 0 matrix, thus the Jacobian DF (x∗) approaches
−I, which has a single eigenvalue of −1 with multiplicity N . The solutions corresponding to the
top row of Table 6.1 are shown in the bottom panel of Figure 6.2, and the solutions corresponding
to the bottom row are shown in the bottom panel of Figure 6.3; we can see from the figures that
the corresponding fixed points are all stable for sufficiently large g. Numerical experiments strongly
suggest that there are no stable equilibria for large g other than these.

6.6. Excitatory clusters with weight parameters unchanged. We briefly consider a system
with excitatory clusters, but in which we have not adjusted the excitatory weight strengths, i.e.
µEI = −αµEE, µII = −αµEE, and µIE = µEE. In this case, the two eigenvalues of H̃ with positive
real part are λI = αµEE and λC = (p − 1)µEE . If λC > λI , which occurs when nC < fN

α+1 , the
behavior is qualitatively the same as for the case balanced weight parameters discussed above. If
λC < λI , which occurs when nC > fN

α+1 , the order of the two symmetric pitchfork bifurcations
is reversed. As g is increased, the inhibitory cells bifurcate from the origin first, followed by the
excitatory clusters.
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N nI nC p (β, βC)

20 4 4 4 (1, 1), (3, 3)
25 5 5 4 (3/2, 3/2), (4, 4)
25 5 4 5 (4, 3)
35 7 7 4 (4/3, 4/3), (5/2, 5/2), (6, 6)
35 7 4 7 (5/2, 3)
50 10 10 4 (1, 1), (3/2, 3/2), (7/3, 7/3), (4, 4)
100 20 10 8 (1, 1), (3/2, 3/2), (7/3, 7/3), (4, 4), (9, 9)

Table 6.1

Valid pairs (β, βC) which satisfy (6.17), for selected values of N , nC and nI . (Note that α = 4 in all cases, which
determines nI and pnC).

6.7. Restored self-coupling. We can restore self-coupling of neurons with each excitatory clus-
ter by replacing the matrix (p − 1)µEEInC

in the upper left block of (4.4) with pµEEInC
. The

eigenvalues of H̃ are then given by:
• λI := αµ > 0 with multiplicity nI − 1
• λC := pnCµ > 0, with multiplicity nC − 1.
• A complex conjugate pair of eigenvalues λ0 ± iω0, with

λ0 :=
1

2
µα, ω0 :=

1

2
µ
√

α(4nCp− α),

The eigenvalue pattern is similar to that in the right panel of Figure 4.1, except the complex
conjugate pair λ0± iω0 has positive real part. As a consequence, there will be a Hopf bifurcation at
the origin at gH =

√
N/αµ. Parameter continuation with AUTO indicates that the resulting limit

cycle has all excitatory clusters synchronized and all inhibitory cells synchronized, and is unstable
for g > gH . In addition, timestepping simulations suggest that there are no stable limit cycles for
any value of g. The pattern of symmetric pitchfork bifurcations, first at the origin and then on
each C1/C2 branch, is the same as for the case with no self-coupling.

7. Inhibitory clusters. We will briefly consider the case where the inhibitory cells are clustered,
while the excitatory cells remain unclustered. Suppose the inhibitory cells are grouped into nCI

inhibitory clusters of size pI , so that nI = nCI
pI . We perform the same reduction as in section 4

to obtain the matrix H̃. Since there is a single cluster of excitatory cells, they will always be
synchronized. For the choice of weights µEI = −αµEE, µII = −αµEE, and µIE = µEE, the
eigenvalues of H̃ are:

• λI := αµEE > 0 with multiplicity (pI − 1)× nCI
= nI − nCI

.
• λCI

:= −(pI − 1)αµEE < 0, with multiplicity nCI
− 1.

• A complex conjugate pair of eigenvalues λ0 ± iω0, with

λ0 :=
1

2
µEE [α(1 + pI(nCI

− 1))− 1]

ω0 :=

√

a2
((

−3n2
CI

+ 2nCI
+ 1
)

p2I − 2(nCI
+ 1)pI + 1

)

− 2a(nCI
pI + pI − 1) + 1,

where we used the fact that nE = αnCI
pI .

This eigenvalue pattern is shown in Figure 7.1. The two eigenvalues with positive real part are λI

and λ0+ iω0, so these are the only eigenvalues which will cause bifurcations as g is varied. We note
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Figure 7.1. Eigenvalue pattern of the matrix H̃ for a single excitatory cluster and multiple inhibitory clusters.

that λ0 > λI , thus the first bifurcation which will occur at the origin is a Hopf bifurcation at

gH =
2
√
N

µEE [α(1 + pI(nCI
− 1)) − 1]

when the complex pair λ0 + iω0 crosses the real axis. The behavior at this bifurcation is identical
to that at the Hopf bifurcation at the origin in the unclustered case (section 5.6). Briefly, the
corresponding eigenspace to λ0 + iω0 is

V ≡ ker(DF )0,gH = span










1 0 · · · 0

︸ ︷︷ ︸
nI




 ,




0 1 · · · 1

︸ ︷︷ ︸
nI












,

which is fixed by Γ = S1 × SnI
. Since dimFixV (Γ) = dimV = 2, it follows from the Equivariant

Hopf theorem [25, Theorem 4.1] that there is a branch of limit cycles emanating from this Hopf
bifurcation point for which the isotropy subgroup is Γ, which implies that the inhibitory neurons
are all synchronized (we recall that the excitatory neurons are always synchronized).

We are interested in what occurs for large N and large nCI
. As an example, let nCI

scale
with

√
N by taking nCI

= pI =
√
nI =

√

(1− f)N . For this scaling, as N increases, the Hopf

bifurcation takes place at gH ≈ 2
fµEE

√
N
, and we also have ω0 ≈

√
3
2 fNµEE. This implies that

at g = gH , DF (0) has a complex conjugate pair of eigenvalues with real part of 0 and imaginary
part of approximately

√
3. See Figure 7.2 for an illustration of this limit cycle when N = 1600,

nCI
= 20, and g is slightly larger than gH . The frequency of the limit cycle is 1.792, which is less

than 5% away from
√
3. Thus, for large N , the frequency of the limit cycle emerging at the Hopf

bifurcation of the origin is asymptotically constant as N increases. This contrasts to the case where
the inhibitory and excitatory cells are unclustered, where the frequency of the limit cycle scales as√
N . Numerical timestepping experiments suggest that this limit cycle is stable for g > gH .

8. Discussion. In this paper, we analyze a family of clustered excitatory-inhibitory neural
networks, and, in particular, the underlying bifurcation structures that arise because of permutation
symmetries in the network. For the simplest case, an all-to-all connected network which excludes
self-connections, we extend the results in [4] to provide a more complete picture of the bifurcations
in the system, as well as estimates for the locations of the bifurcation points and the corresponding
branches of equilibria which emanate from these bifurcations. For g close to 0, the origin is a stable
equilibrium. As g is increased, the origin becomes unstable in a symmetric pitchfork bifurcation
at g = g0, at which a new branch of equilibria emerges for each possible division of the inhibitory
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Figure 7.2. Limit cycle arising from the Hopf bifurcation at origin for (2.1) with inhibitory cell clustering and
µII = −αµEE . Both the excitatory cell activity xE and inhibitory cell activity xI are synchronized. Notably, the
period does not increase with N . Left: xE and xI vs t. Right: xI vs xE. Parameters are: N = 1600, NCI

= 20,
pI = 20, α = 4, µEE = 0.7, g = 1.02gH . The period of the limit cycle is 1.792.

cells into two synchronized clusters of sizes nI1 and nI2 (the I1/I2 branches). We characterize each
I1/I2 branch by the ratio β = nI1/nI2 . We then derive a leading order estimate for the equilibria
on each I1/I2 branch for g close to g0 and show that, for large N , these branches are stable for
1 ≤ β < 2, but unstable otherwise (β ≥ 2). Furthermore, we show that the equilibria on the
I1/I2 branches are all unstable for sufficiently large g. Along each I1/I2 branch, a Hopf bifurcation
creates a branch of periodic orbits, wherein the inhibitory cells maintain their division into the
same two synchronized clusters; the frequency of these limit cycles increases with N . We use our
estimates for the I1/I2 branches to locate these Hopf bifurcations, to leading order, and show that
they approach g0 for large N . All these periodic orbit branches merge at a symmetric pitchfork
bifurcation of limit cycles, at some large value of the bifurcation parameter g = g∗; for g > g∗,
there is a single stable limit cycle for which the excitatory population and inhibitory population
are each synchronized. See the top figure in Figure 8.1 for a cartoon summary.

We next consider the case where the excitatory cells are broken into clusters of equal size.
The connection weights between excitation cells in the same cluster are normalized so that the
network is still approximately balanced. In this case, as g is increased from 0, the origin becomes
unstable in a symmetric pitchfork bifurcation point at g = gC . In contrast with the previous
case, this bifurcation involves the excitatory clusters instead of the inhibitory cells. For g > gC ,
there is a branch of solutions corresponding to each possible division of the excitatory clusters
into synchronized groups of sizes of sizes nC1

and nC2
(the C1/C2 branches). We characterize each

branch by the ratio βC = nC1
/nC2

. Near g = gC , each solution branch is stable for 1 ≤ βC < 2, and
is otherwise unstable. Along each C1/C2 branch, there is a further symmetric pitchfork bifurcation,
in which the inhibitory cells split into two clusters of sizes nI1 and nI2 (with ratio β = nI1/nI2),
yielding equilibria in which both the excitatory clusters and the inhibitory cells are split into two
groups (the C1/C2/I1/I2 branches). Unlike the previous case, there are no Hopf bifurcations along
these branches. For large g, the only branches that remain stable are those for which βC is close
to β, in the precise sense we describe in section 6.5; in other words, the excitatory clusters and the
inhibitory cells must break up in a similar way. See the bottom figure in Figure 8.1 for a cartoon
summary. Finally, we briefly consider a network in which the inhibitory cells are clustered, rather
than the excitatory cells. Here we find that, as in the case with all-to-all coupling, the origin loses
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Figure 8.1. Cartoon summary of fixed points, limit cycles, and bifurcations as g increases from 0 for all-to-all
connected network (top) and network with excitatory clustering (bottom).

stability in a Hopf bifurcation; however, in contrast to the all-to-all case, the frequency of the
resulting limit cycle does not increase with N .

8.1. Relationship to other work. The population-clustered systems we consider in section 5
are similar to a simple version of the Wilson–Cowan equations (reviewed in [18, 9]), which can
likewise be interpreted in terms of coupled neural populations. Other authors have derived and
analyzed similar systems for balanced networks as a mean-field limit from large networks: however,
recent examples differ from the current work because of the scaling of the deterministic part of
the connectivity matrix. We retain ”strong“ coupling as a function of system size (1/

√
N) as in

[36], vs. “weak” scaling (1/N) [26, 31, 39]. In [26], for example, connectivity matrices are chosen
with entries Jij ∼ N(J/N, σ2/N). As N → ∞, the mean connectivity (1/N) goes to zero faster
than the typical random deviation from the mean (1/

√
N); thus outgoing synaptic weights will no

longer be single-signed, in violation of Dale’s Law. One consequence of weak scaling seems to be
that oscillations are observed at the population but not necessary the cell level [22, 6]; in contrast,
the limit cycles we describe in section 5.6 are observed at both the cell and the population level.

In works that do use strong scaling, the coherent fluctuations that are observed require a perfect
orthogonality condition [14, 33] or an external forcing [32] to balance. Furthermore, the nonrandom
part of the connectivity matrix is low rank; this is not the case in the current work, in which some
examples are low rank but most are not. Contrasting the excitatory clustering with and without
self-coupling (section 6 and section 6.7), for example, we observe the same pattern of stable fixed
points although one is low rank and the other is not.

Other recent studies of balanced neural network models do not include a deterministic mean
connectivity matrix, but instead regulate correlations through the probability of small network
motifs, such as reciprocal connections [34] or common input/diverging motifs [29, 37, 12]. The
frequency of motifs can be shown to regulate cross-correlations [29], time scales [34], and dimen-
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sionality of the network response [37, 12]. This last observation is particularly interesting in light
of the many experimental studies documenting low-dimensional neural activity (reviewed in the
Introduction). A natural next question is to investigate networks which are partly structured (hav-
ing highly connected clusters as in the current studies) but partially random. A promising avenue
is to apply Hu et al.’s resumming theory to multi-population networks, to investigate whether the
low-dimensional structures we find in the current work manifest in a network of coupled Gaussian
processes, and as the network connections themselves becomes more random [29]. Another related
work [41] studies the clustered architecture we considered in section 6, but without structured
inhibition, and studies the persistence of fixed points as randomness is added to the connection
matrix.

8.2. Future directions. Future directions include better characterizing the periodic orbits
which arise from the Hopf bifurcations in the network with all-to-all coupling case. It may be
possible to determine their stability pattern, as well as to locate the bifurcation point at g = g∗.
Some assumptions about our network can be relaxed; for example the use of the tanh function is
not essential to any calculations that do not explicitly invoke odd symmetry, and could be replaced
by another saturating nonlinearity. Another direction includes exploring other network topologies,
such as unequal cluster sizes, spatial connectivity, or hierarchical clustering [38, 16].

Finally, the ultimate goal of these investigations must be to apply these insights to real net-
works, which will not be perfectly symmetric and which may be modeled by allowing a random
perturbation to the connection matrix (i.e. H → H + ǫA). The right-hand side of (2.1) is locally
Lipschitz continuous in R

N ; therefore hyperbolic fixed points and periodic orbits will remain when
the connectivity matrix is perturbed by a random matrix, i.e. G = H + ǫA for small ǫ. However,
the range of ǫ for which a hyperbolic structure persists is not known a priori. We conjecture that
the perturbed system will continue to exhibit fixed points and periodic orbits that are found in
the unperturbed system, even when the perturbations are large enough that the spectrum of the
connectivity matrix “masks” the underlying symmetry. In our previous study, we found that sta-
ble trajectories in the unperturbed all-to-all clustered system accurately predicted which solutions
would be observed in the perturbed system [4]. This highlights the importance of determining not
only existence but stability in the unperturbed system. We look forward to exploring this question
in future work.
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Appendix A. Solutions along I1/I2 branches: detailed calculations.

Here we derive leading order expressions for the equilibria along the I1/I2 branches for g close
to g0. We begin with the simplest case, which is when nI is even and β = 1. Taking xI1 = xI ,
xI2 = −xI , and xE = 0 in (5.8) and simplifying, we obtain the single equation ([4, Eq. 16])

−xI +
αµEE√

N
tanh(gxI) = 0,

which simplifies to
tanh(gxI)− g0xI = 0. (A.1)

Defining f(xI) := tanh(gxI) − g0xI , we note that f(0) = 0, f ′(0) = g − g0, and f(xI) → −∞ as
xI → ∞. When g > g0, f(xI) is initially increasing, thus it follows from the continuity of f and
the intermediate value theorem that (A.1) has a solution with xI > 0 for all g > g0. Furthermore,
xI → 1/g0 as g → ∞.

To obtain an approximation of this solution for g close to g0, we expand the LHS of (A.1) in
Taylor series about xI = 0 and g = g0 and simplify to get

(g − g0)xI −
(gxI)

3

3
+

2(gxI)
5

15
+O

(
x7I
)
= 0. (A.2)

We note that the remainder term in (g− g0) is transcendentally small in the sense of [27]. Keeping
up to cubic terms in xI , equation (A.2) simplifies to

xI

(

(g − g0)−
g3

3
x2I

)

= 0.

Solving the non-zero solution for xI results in the expression (5.9). We can obtain a higher-order
approximation by keeping up to fifth-order terms in (A.2) to get

xI

(

(g − g0)−
g3

3
x2I +

2g5

15
x4I

)

= 0,

which is xI multiplied by a quadratic in x2I . To find the nonzero solution for xI , we solve this
quadratic for x2I and take square roots, yielding (5.10).

For β > 1, as N → ∞, numerical continuation with the parameter continuation software
package AUTO [15] suggests that (5.8) has a solution of the form

xI2 = −βxI1 +O
(

1

N2

)

, xI1 = O
(

1

N

)

, xE = O
(

1

N2

)

(A.3)

for g close to g0. Subtracting the second and third equations in (5.8), we get

xI1 − xI2 =
α

µEE

√
N

(tanh(gxI1)− tanh(gxI2)) .

Substituting (A.3) as an ansatz, expanding the tanh terms in a Taylor series about xI1 = 0 to cubic
order, and simplifying, we obtain the formula given in (5.11).

Finally, we show that xI1 and xI2 have opposite signs for all g > g0. Since (5.8) is smooth in
(xE , xI1 , xI2) and g, the solutions xI1 and xI2 are smooth in g. For g close to g0, xI1 and xI2 have
opposite signs; if this is not the case for some g > g0, either xI1 or xI2 must pass through 0. We
will show that this cannot happen. Suppose xI1 = 0 for some g∗ > g0. Substituting this into (5.8)
and subtracting the second row from the first, we have xE = −µEE√

N
tanh(g∗xE), which is impossible
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unless xE = 0. If xE = 0, then xI2 = −µEE√
N
α(nI2 − 1) tanh(g∗xI2), which is again impossible unless

xI2 = 0. Thus xI1 = 0 implies (xE, xI1 , xI2) = 0. This would mean that the I1/I2 branch would
intersect the zero solution in another bifurcation point at g∗ > g0, which we know does not occur,
since we have found all bifurcation points of the origin. The case where xI2 = 0 for some g∗ > g0
is similar.

Appendix B. Stability and bifurcations along I1/I2 branches: detailed calculations.

To determine the stability of x∗ for g close to g0, we start by computing the eigenvalues of
DF̃ (x∗) corresponding to λI1 and λI2 . Substituting (5.11) for xI1 , using the Taylor series expansion
sech2 x = 1− x2 +O(x4), and simplifying, the eigenvalue λ∗

I1
(g) of DF̃ (x∗) is located at

λ∗
I1(g) =

g − g0
g

(

1− 3

1− β + β2

)

+O
(

1

N2

)

g > g0,

which is negative for 1 ≤ β < 2 and positive for β > 2. Similarly, the eigenvalue λ∗
I2
(g) of DF̃ (x∗)

corresponding to λI2 is located at

λ∗
I2(g) =

g − g0
g

(

1− 3β2

1− β + β2

)

+O
(

1

N2

)

g > g0,

which is negative for β > 1/2 and thus does not affect stability.
It remains to find leading order expressions for the eigenvalues of H3(x). When x = 0, the

matrix H3(0) has a single eigenvalue at λI and a complex conjugate pair of eigenvalues λ0 ± ω0,
where these are defined at the beginning of section 5. These do not depend on β. For x small but
nonzero, we use a perturbation method to approximate the eigenvalues of H3(x). We substitute
the expressions (A.3) into characteristic polynomial for H3(x), keeping only terms of up to order
1/N , so that the leading order expression only involves xI1 . We then use the Taylor expansion
sech2(gxI1) = 1− (gxI1)

2 +O(x4I1), keeping only terms up to quadratic order. For each eigenvalue
λ of H3(x), we use a power series ansatz

λ+ ǫx2I1 +O(xI1)
4. (B.1)

We substitute this ansatz into the characteristic polynomial for H3(x) and solve for ǫ by matching
the coefficients of x2I1 . (This computation, and the remaining computations in this section, were
performed with the aid of Wolfram Mathematica). Using this method for λ = λI , H3(x

∗) has a
real eigenvalue located at

λI = αµEE

(
1− (1− β + β2)g2x2I1

)
+O

(
1

N2

)

.

Substituting the estimate (5.11) for xI1 and simplifying, the eigenvalue λ∗
I(g) of J3(x) corresponding

to λI is located at

λ∗
I(g) =

αµEEg√
N

(

1− 3(g − g0)

g

)

− 1 = −2

(
g − g0
g0

)

+O
(

1

N2

)

g ≥ g0,

which is always negative, and thus does not affect stability.
Finally, we use this method to locate the eigenvalue of H3(x) corresponding to λ0 ± ω0. In

doing so, we will find a Hopf bifurcation on each I1/I2 branch. H3(x) has a complex conjugate pair
of eigenvalues, where the real part is given by

λ0(g, β) =
µEE

2

(
α− 1 + αβg2(nI − 1)x2I1

)
+O

(
1

N

)

. (B.2)
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We can get more accurate approximations for λ(g, β) by taking higher powers of xI1 in our power
series ansatz (B.1). For example, when β = 1, we can obtain the fourth-order approximation

λ0(g, 1) =
µEE

2

(

α− 1 + αg2(nI − 1)x2I1 −
2

3
αg4(nI − 1)x4I1

)

+O
(

1

N2

)

.

Similar fourth-order approximations can be obtained when β > 1, but the resulting coefficient
of x4I1 is significantly more complicated. Substituting (5.11) for xI1 and simplifying, J3(x) has a
complex conjugate pair of eigenvalues λ∗

0(g) ± iω∗
0(g), where

λ∗
0(g, β) =

µEEg

2
√
N

[

α− 1 + αβ(nI − 1)
3(g − g0)

(1 − β + β2)g

]

− 1 +O
(

1

N

)

. (B.3)

To locate the Hopf bifurcation on each I1/I2 branch, which occurs when the complex pair of
eigenvalues crosses the imaginary axis, we solve λ∗

0(g, β) = 0 for g, substitute g0 =
√
N/αµEE , and

simplify to obtain the expression in (5.14).

Appendix C. Proof of Proposition 5.2.

First, we show that that (5.16) has no fixed points other than the origin. To do this, we make
the change of variables (y1, y2) = (tanh(gx1), tanh(gx2)), and note that it is equivalent to show
that the system of equations

g1(y1, y2) := −1

g
tanh−1(y1) +

µEE√
N

((nE − 1)y1 − αnIy2) = 0

g2(y1, y2) := −1

g
tanh−1(y2) +

µEE√
N

(nEy1 − α(nI − 1)y2) = 0

(C.1)

has no solution other than (y1, y2) = (0, 0). The first equation g1(y1, y2) = 0 is satisfied when

y2 = y∗2(y1) :=
gµEE(nE − 1)y1 −

√
N tanh−1(y1)

αgµEEnI
. (C.2)

To show that (C.1) has no solutions other than the origin, we substitute (C.2) into g2(y1, y2) to get

g2(y1, y
∗
2(y1)) =

µEE(nE + nI − 1)y1

nI

√
N

+
nI − 1

gnI
tanh−1(y1)

+
1

g
tanh−1

(√
N tanh−1(y1)− gµEE(nE − 1)y1

αgµEEnI

)

.

(C.3)

We will show that g2(y1, y
∗
2(y1)) > 0 for y1 > 0. Since g2(y1, y

∗
2(y1)) is an odd function in y1,

this will imply that g2(y1, y
∗
2(y1)) < 0 for y1 < 0, from which the desired result will follow. Since

tanh−1 y1 ≥ y1 for y1 ≥ 0, it suffices to show that

h(y1) :=
µEE(nE + nI − 1)y1

nI

√
N

+
nI − 1

gnI
tanh−1(y1)

+
1

g
tanh−1

(√
N tanh−1(y1)− gµEE(nE − 1)y1

αgµEEnI

)

> 0

(C.4)
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for y1 > 0. Since h(0) = 0, we will show that h′(0) > 0 for y1 > 0. Computing the derivative with
the assistance of Mathematica,

h′(y1) =
(N − 1)µEE

(1− f)N3/2
+

1

g(1− y21)
− fµEEN(gµEE(fN − 1)−

√
N

f2g2µ2
EEN

2 − (
√
N + gµEE(1 − fN))2y21

≥ (N − 1)µEE

(1− f)N3/2
+

1

g(1− y21)
− 1

g

(

1−
(
fN−1
fN

)2
y21

)

≥ (N − 1)µEE

(1− f)N3/2
> 0.

We have therefore shown that (5.16) has no fixed points other than the origin.
The Linearization of (5.16) about the origin is the 2× 2 matrix

J =
gµEE√

N

[
nE − 1 −αnI

nE −α(nI − 1)

]

− I2,

which has a complex conjugate pair of eigenvalues g√
N
(λ0 ± iω0)− 1, where λ0 and ω0 are defined

in section 5. This pair crosses through the imaginary axis at g = gH , where gH is defined by (5.3),
leading to a Hopf bifurcation in the reduced system (5.16), and the origin is repelling for g > gH .
To show there is a limit cycle for all g > gH , we use the Poincaré-Bendixson theorem [11, Chapter
16]. For a trapping region, we draw a square around the origin with corners (−a,−a) and (a, a).
On the line x = a, for a large,

ẋ ≤ −a+
2nE√
N

= −a+ 2f
√
N,

which can be made negative by taking a sufficiently large. Similarly, we can take a sufficiently large
so that the vector field defined by (5.16) points inward at all points on the square (Figure C.1).
Since the origin is repelling for g > gH and is the only fixed point of the system, it follows from the
Poincaré-Bendixson theorem that there is a limit cycle surrounding the origin for g > gH . We note
that although the limit cycle from Proposition 5.2 is stable in the two-dimensional system (5.16),
the theorem says nothing about its stability in the full system (2.1).

Appendix D. Stability of the I1/I2 branch for large g: detailed calculations .

Here we prove our assertion, made in section 5.7, that xE → 0 as g → ∞ along any I1/I2
solution branch. Suppose, instead, that xE → x̂E 6= 0 as g → ∞. Without loss of generality,
we can take x̂E > 0, since by odd symmetry of (2.1), there will be a corresponding solution with
x̂E < 0. This implies that tanhxE → 1. There are four cases to consider:

• Case 1: xI1 → x̂I1 6= 0 and xI2 → x̂I2 6= 0.
• Case 2: xI1 → x̂I1 6= 0 and xI2 → 0.
• Case 3: xI1 → 0 and xI2 → x̂I2 6= 0.
• Case 4: xI1 → 0 and xI2 → 0.

The computations to follow were done with the assistance of Wolfram Mathematica. For Case
1, tanh(gxI1) → ±1 and tanh(gxI2) → ±1. We can then use (5.8) to solve for (x̂E , x̂I1 , x̂I2). The
signs of these solutions are all inconsistent, as we can see in Table D.1.

For Case 2, if tanh(gx̂I2) → 0, the solution (x̂E , x̂I1 , x̂I2) from (5.8) is inconsistent using the same
argument as in Case 1. The only remaining possibility is tanh(gx̂I2) → ŷI2 , where 0 < |ŷI2 | < 1. In
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Figure C.1. Slope fields for (5.16), with a small limit cycle visible in center. Slope field points inward on black
box, which is the trapping region for the Poincaré-Bendixson theorem. Parameters: N = 20, g = 5, α = 4, and
µEE = 0.7.

sgn (x̂E , x̂I1 , x̂I2)
√
N

µEE
x̂E

√
N

µEE
x̂I1

√
N

µEE
x̂I2

(1, 1, 1) −1 < 0 α α
(1,−1,−1) 2αnI − 1 α(2nI − 1) > 0 α(2nI − 1) > 0
(1, 1,−1) 2αnI2 − 1 α(2nI2 + 1) α(2nI2 − 1) > 0
(1,−1, 1) 2αnI1 − 1 α(2nI1 − 1) > 0 α(2nI1 + 1) > 0

Table D.1

Sign table showing that all solutions for nonzero (x̂E, x̂I1 , x̂I2) are inconsistent.

the limit g → ∞, (5.8) becomes





x̂E
x̂I1
0



 =
µEE√
N







(αnI − 1) −α β
β+1nI −α 1

β+1nI

αnI −α
(

β
β+1nI − 1

)

−α 1
β+1nI

αnI −α β
β+1nI −α

(
1

β+1nI − 1
)











1
±1
ŷI2



 .

The consistency condition (from the third row) can only be satisfied if ŷI2 = nI
nI−(β+1) > 1 (for

x̂I1 > 0) or ŷI2 =
nI(1+2β)
nI−(β+1) > 1 (for x̂I1 < 0), both of which are impossible. Case 3 is similar.

For Case 4, if tanh(gx̂I1) → 0 or tanh(gx̂I2) → 0, the solution (x̂E , x̂I1 , x̂I2) from (5.8) is
inconsistent using the same argument as in Case 1. The remaining possibility is tanh(gx̂I1) → ŷI1
and tanh(gx̂I2) → ŷI2 , where 0 < |ŷI1 |, |ŷI2 | < 1. In the limit g → ∞, (5.8) becomes





x̂E
0
0



 =
µEE√
N







(αnI − 1) −α β
β+1nI −α 1

β+1nI

αnI −α
(

β
β+1nI − 1

)

−α 1
β+1nI

αnI −α β
β+1nI −α

(
1

β+1nI − 1
)











1
ŷI1
ŷI2



 .

The consistency conditions (from the second and third rows) can only be satisfied if ŷI1 = ŷI2 =
nI

nI−1 > 1, which is impossible.

Appendix E. Stability and bifurcations along C1/C2 branch: detailed calculations.
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Following the procedure in section 5.4 and Appendix B, we substitute the expressions from
(6.8) into the the formulas for the eigenvalues in Proposition 6.1 and simplify to obtain leading
order expressions for the corresponding eigenvalues of DF̃ (x∗)

λ∗
C1
(g) =

g − gC
g

(

1− 3

1− βC + β2
C

)

λ∗
C2
(g) =

g − gC
g

(

1− 3β3
C

1− βC + β2
C

)

λ∗
I(g) =

αµg√
N

− 1.

(E.1)

The eigenvalue λ∗
C1
(g) is negative for 1 ≤ βC < 2 and positive for βC > 2; λ∗

C2
(g) is negative for

βC > 1/2; and λ∗
I(g) is negative for all βC for N sufficiently large.

It remains to find leading order expressions for the eigenvalues of H3(x), given by (6.10). When
x = 0, the matrix H3(0) has a single eigenvalue at λC and a complex conjugate pair of eigenvalues
λ0±iω0, where these are defined at the beginning of section 6. Using the same asymptotic procedure
as in section 5.4 and Appendix B, H3(x

∗) has a real eigenvalue corresponding to λC located at

λC(x
∗) = (p − 1)nCµ

(
1− (1− βC + β2

C)g
2x2E1

)
+O

(
1

N2

)

.

Substituting the estimate (6.8) for xE1
and simplifying, the eigenvalue λ∗

C(g) of J3(x
∗) correspond-

ing to λC is located, to leading order, at

λ∗
C(g) = −2

(
g − gC
gC

)

,

for g close to gC . Since this eigenvalue is always negative, it will not affect stability. Similarly,
H3(x) has a complex conjugate pair of eigenvalues λ0 + iω0, where the real part is given by

λ0(g, βC ) =
µ

2

[
(α − nC)− βCg

2nC(p− 1)x2E1

]

to leading order, for g close to gC . Since we are taking nC ≥ α, this is always negative for g close
to gC .

Appendix F. C1/C2 branches for large g: detailed calculations. Here we provide details of
the behavior of solutions on the C1/C2 branch as g becomes large. We claim there are two patterns
for the limiting behavior on the C1/C2 branches, which depend on whether βC < β∗

C or βC > β∗
C ,

for some critical value β∗
C , which we will determine below. These were illustrated in Figure 6.4.

• Case 1: (1 < βC < β∗
C) xE1

→ x̂E1
> 0 and xE2

→ x̂E2
< 0.

• Case 2: (βC > β∗
C) xE1

→ 0 with tanh(gxE1
) → ŷE1

6= 0, and xE2
→ x̂E2

< 0.
For Case 1, since tanh(gxE1

) → 1 and tanh(gxE2
) → −1, we can solve for ŷI using row 3 of (6.7)

to get

ŷI =
βC − 1

βC + 1

pnC

pnC − α
, (F.1)

from which it follows that

xI →
1

g
tanh−1

(
βC − 1

βC + 1

pnC

pnC − α

)

as g → ∞. (F.2)
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Using (F.1) with rows 1 and 2 of (6.7),

x̂E1
=

µ√
N

(

(p − 1)nC − βC − 1

βC + 1

p2n2
C

pnC − α

)

x̂E2
=

µ√
N

(

−(p− 1)nC − βC − 1

βC + 1

p2n2
C

pnC − α

)

,

(F.3)

which reduce to (6.13) when βC = 1. Since nCp = fN → ∞ as N → ∞, this simplifies to

xE1
→ µ√

N

(

(p − 1)nC − βC − 1

βC + 1
pnC

)

xE2
→ µ√

N

(

−(p− 1)nC − βC − 1

βC + 1
pnC

)

xI →
1

g
tanh−1

(
βC − 1

βC + 1

)

(F.4)

as g,N → ∞. For (F.3) to be valid, the consistency conditions x̂E1
> 0 and x̂E2

< 0 must be
satisfied. Since x̂E2

< 0 always holds, (F.3) is consistent as long as

(p− 1)nC − βC − 1

βC + 1

p2n2
C

pnC − α
> 0. (F.5)

Solving for βC , this results in the condition βC < β∗
C , where β∗

C is defined in 6.14.
For Case 2, we can solve for ŷE1

and ŷI using rows 2 and 3 of (6.7) to get

ŷE1
=

nCp
2

α(1 + βC)(p − 1) + nCp(1 + βC − p)

ŷI =
nCp(p− 1)

α(1 + βC)(p − 1) + nCp(1 + βC − p)
,

(F.6)

from which it follows that

xE1
→ 1

g
tanh−1

(
nCp

2

α(1 + βC)(p − 1) + nCp(1 + βC − p)

)

xE2
→ µ√

N

(

−(p− 1)nC − n2
Cp

2(p− 1)

α(1 + βC)(p− 1) + nCp(1 + βC − p)

)

xI →
1

g
tanh−1

(
nCp(p− 1)

α(1 + βC)(p − 1) + nCp(1 + βC − p)

)

.

(F.7)

as g → ∞. We note that for βC > β∗
C , we cannot take N → ∞ with nC held fixed, since for

sufficiently large N , we will always have βC < β∗
C .

Appendix G. Stable excitatory clusters for large g: detailed calculations. We begin
with the ansatz (suggested by numerical continuation) that as g → ∞, (xE1

, xE2
, xI1 , xI1) →

(x̂E1
, x̂E2

, x̂I1 , x̂I2), where x̂E1
, x̂I1 > 0 and x̂E2

, x̂I2 < 0. With these assumptions, equation (6.16)
reduces to

x̂E1
=

µ√
N

[

(p− 1)nC − α
β − 1

β + 1
nI

]

x̂E2
=

µ√
N

[

−(p− 1)nC − α
β − 1

β + 1
nI

]

x̂I1 =
µ√
N

[
βC − 1

βC + 1
pnC − α

(
β − 1

β + 1
nI − 1

)]

x̂I2 =
µ√
N

[
βC − 1

βC + 1
pnC − α

(
β − 1

β + 1
nI + 1

)]

,

(G.1)
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since tanh(gxE1
), tanh(gxI1) → 1 and tanh(gxE2

), tanh(gxI2) → −1 as g → ∞. Equation (G.1)
gives the limiting solutions (x̂E1

, x̂E2
, x̂I1 , x̂I1) as long as the consistency conditions x̂E1

, x̂I1 > 0
and x̂E2

, x̂I2 < 0 are satisfied. Since µ > 0, the consistency conditions reduce to

(p− 1)nC − α
β − 1

β + 1
nI > 0

−(p− 1)nC − α
β − 1

β + 1
nI < 0

βC − 1

βC + 1
pnC − α

(
β − 1

β + 1
nI − 1

)

> 0

βC − 1

βC + 1
pnC − α

(
β − 1

β + 1
nI + 1

)

< 0.

(G.2)

The first pair of inequalities in (G.2) is satisfied if and only if

∣
∣
∣
∣

β − 1

β + 1

∣
∣
∣
∣
<

(p− 1)nC

αnI
= 1− 1

p
,

where we used the fact that nCp = nE = αnI . Since we are taking β ≥ 1, this simplifies to
1 ≤ β < 2p. Similarly, the second pair of inequalities in (G.2) is satisfied if and only if

α

(
β − 1

β + 1
nI − 1

)

<
βC − 1

βC + 1
pnC < α

(
β − 1

β + 1
nI + 1

)

,

which simplifies to (6.17).
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