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Abstract

Coarse-graining techniques play a central role in reducing the complexity of stochastic models, and
are typically characterised by a mapping which projects the full state of the system onto a smaller set
of variables which captures the essential features of the system. Starting with a continuous-time Markov
chain, in this work we propose and analyse an effective dynamics, which approximates the dynamical in-
formation in the coarse-grained chain. Without assuming explicit scale-separation, we provide sufficient
conditions under which this effective dynamics stays close to the original system and provide quanti-
tative bounds on the approximation error. We also compare the effective dynamics and corresponding
error bounds to the averaging literature on Markov chains which involve explicit scale-separation. We
demonstrate our findings on an illustrative test example.
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1 Introduction

Modelling of complex systems often leads to stochastic models with a wide range of spatial and/or temporal
scales. Examples include molecular dynamics [AT17], chemical kinetics of biophysical systems [Kit01] and
climate modelling [Arn01], just to name a few. Coarse-graining is an umbrella term for techniques used to
approximate such large and complex systems by simpler and lower dimensional ones. Such an approximation
has obvious utility from a computational perspective since a simulation of the full system is often infeasible
due to the presence of multiple scales. These techniques are also important from a modelling and analytical
viewpoint, since quantities of interest are often described by a small class of variables in the system. In
most situations, the quantities of interest are the slow degrees of freedom that contain information about
the long-term dynamics, while the fast-scales are considered irrelevant when analysing long-term behaviour.

Various relevant phenomenon, such as Markov state models [HP18] in molecular dynamics, stochastic
chemical kinetics [Gil07] for a chemical-reaction system and agent-based models [CFL09] in social dynamics,
are modelled by jump processes. Coarse-graining of such models has received considerable attention from
practioners in recent years – for instance to perform a data-driven identification of the transition-rate matrix
for a reduced set of stable configurations in a molecular system [KW07, STSP+15] or to deduce subnetwork
dynamics from large-scale biochemical systems [BS17]. From a mathematical perspective, coarse-graining of
jump processes is limited to systems with explicit scale-separation, i.e. presence of fast and slow scales. In
this setup, as the ratio of fast to slow increases (typically characterised by a small parameter), the fast scales
equilibrate with respect to the slow ones and consequently some form of averaging allows one to obtain a
closed coarse-grained model for the slow variables [PS08, LL13, Zha16, HPST20, MS20, PR21].
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As evidenced by the references above, while coarse-graining of jump processes is extremely relevant from
a practical viewpoint, its mathematical analysis has been limited to systems with explicit scale-separation.
Inspired by the related ideas of conditional-expectation closures by Legoll and Lelièvre [LL10] for diffusion
processes in molecular dynamics and optimal-prediction closures by Chorin [Cho03], in this work we propose
a natural approximation for a coarse-grained jump process, called the effective dynamics (following the work
of [LL10]). The main aim of this work is to understand if and when this effective dynamics is indeed a
good lower-dimensional approximation of the full stochastic jump process. As a first systematic study of
effective dynamics for jump processes, in this article we will restrict ourselves to coarse-graining of linear
Markov jump processes on a finite state-space. Using entropy techniques and functional inequalities, in the
first part of the article we present quantitative error estimates on the coarse-graining error in the absence
of explicit scale-separation. In the second part of the article we analyse these estimates in the presence of
explicit scale-separation and provide illustrative numerical experiments.

1.1 Coarse-graining and effective dynamics

In this work we will focus on Markov jump processes with linear jump rates on a finite state space X with an
irreducible generator L ∈ R|X |×|X|. The law of this process t 7→ µt ∈ P(X ) solves the forward Kolmogorov
equation

∂tµ = LTµ,

µ|t=0 = µ0,
(1)

with initial data µ0 ∈ P(X ). Here P(X ) is the space of probability measures on X . Since L is a generator,
it satisfies L(x, x′) ≥ 0 for all x ̸= x′ in X , with

∑
x′∈X L(x, x′) = 0 for any x ∈ X . Since L is irreducible,

the evolution (1) admits a positive stationary measure ρ ∈ P+(X ), i.e. LT ρ = 0. Here P+(X ) is the space
of positive probability measure (i.e. with positive coordinates) on X . Throughout this article we will take
the time-marginal viewpoint by studying the forward Kolmogorov equations rather than working with the
underlying jump processes.

As stated above, this work is inspired by molecular dynamics and chemical kinetics, where the states in X
correspond to the stable configurations of a molecular system and species concentration respectively. In both
these settings it is often crucial to derive lower-dimensional approximations of the reference dynamics (1) so
as to either reduce the computational complexity of the system under consideration or to focus on certain
key features of the system, for instance the transition between two stable states [STSP+15] or a particular
subnetwork of reactions [BS17].

Such a lower-dimensional approximation is typically made possible by means of a so called coarse-graining
map

ξ : X → Y, x 7→ ξ(x) = y,

which characterises a projection onto a smaller subset of states, i.e. Y ⊆ X with |Y| ≤ |X |. Although often
there is no explicit scale-separation present, the reduced set of states encoded in y ∈ Y typically characterise
the ‘slow’ behaviour of the system. The central aim of this work is to propose and study a Markovian
ξ-projection of the dynamics (1). In the rest of the article we will use notation consistent with earlier works
on coarse-graining of Markov chains [HPST20] and diffusion processes [LL10]. One could also make use of
matrix notations (see Remark 2.3 for details), but we avoid it in this article.

Using the notation Λy = {x ∈ X : ξ(x) = y} for the level-sets of ξ, in what comes later (see Section 2.2),
we will show that the ξ-projection of (1), i.e. the evolution of µ̂t := ξ#µt ∈ P(Y) (push-forward of µt under
ξ) is given by

∂tµ̂t = L̂T
t µ̂t, (2)

with a time-dependent generator t 7→ L̂t ∈ R|Y|×|Y|

L̂t(y1, y2) :=
∑∑

x1∈Λy1
,x2∈Λy2

L(x1, x2)µt(x1|y1),
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where µt(·|y) ∈ P(Λy) is the conditional measure corresponding to µt (see (8) for precise definition). In what
follows, we will refer to (2) as the coarse-grained dynamics, as it exactly characterises the time-marginal
dynamics of the projected jump process. Intuitively, the generator L̂t is an average of the original generator
L over the level-sets of the coarse-graining map ξ with respect to the reference dynamics µt. Note that
the generator L̂t is time-dependent and requires information about µt (in the definition of the generator).
Therefore, even though (2) correctly captures the statistics of the projected process, it is as analytically and
computationally intractable as the original system (1). It should also be noted that while (2) is the evolution
of the time-marginals for the projected jump process, the projected process itself will not be Markovian.

Inspired by recent developments [LL10] in coarse-graining of diffusion processes in the context of molecular
dynamics, we propose the following linear effective dynamics

∂tη = NT η, (3)

with a time-independent generator N ∈ R|Y|×|Y|

N(y1, y2) :=
∑∑

x1∈Λy1
,x2∈Λy2

L(x1, x2)ρ(x1|y1), (4)

where ρ(·|y) ∈ P(Λy) is the conditional (stationary) measure corresponding to the stationary measure ρ for
the full dynamics (2). The intuition behind the construction of the effective dynamics is that in practice the
coarse-grained variables encode the slow features of the system and therefore it is natural to expect that the
dynamics on the level-sets (characterised by conditional dynamics µt(·|y)) will equilibrate considerably faster
than the full dynamics. Consequently, the level-set average with respect to µt(·|y) in the generator for the
coarse-grained dynamics can be approximated by an average with respect to the the stationary conditional
measure ρ(·|y). A crucial advantage of using the effective dynamics (3) over the coarse-grained dynamics (2)
is that the generator for the former is time-independent and therefore can be computed offline.

However, by construction the effective dynamics is only an approximation of the coarse-grained dynamics.
This leads to the natural question that will be discussed in this article:

Is the effective dynamics (3) a good approximation of the coarse-grained dynamics (2), and if so can the
error between the two be quantified?

1.2 Main results, novelty and outline of the article

The answer to the question stated above is indeed affirmative, in that we provide sufficient conditions under
which the effective dynamics stays close to the coarse-grained dynamics. We now briefly discuss these result.

Our first main result is Theorem 3.1, where for any t > 0 we prove an error bound of the form (also
see (22))

H (µ̂t|ηt) ≤ H (µ̂0|η0) + C, (5)

where H (µ̂t|ηt) is the relative entropy (see (9) for definition) of the coarse-grained dynamics with respect
to the effective dynamics at time t and C > 0 is a constant independent of t. Note that by the Csiszár-
Kullback-Pinsker (CKP) inequality (see (10)), this also translates into a bound in total-variation distance.
The key assumption to prove this error bound is that the conditional stationary measure ρ(·|y) ∈ P(Λy)
which appears in the generator N (4) for the effective dynamics satisfies a logarithmic-Sobolev inequality
(shortened to log-Sobolev here onwards). Intuitively, this assumption encodes the underlying idea that the
coarse-grained variables are the slow ones, and therefore the dynamics on the level sets of the coarse-graining
map will equilibrate quickly to the conditional stationary measure ρ(·|y) (see Remark 2.2, 3.5 for details). The
constant appearing in this log-Sobolev inequality is a key component in the error estimate and it turns out
that the size of the constant reflects how well the chosen coarse-graining map captures the scale-separation
in the problem. Therefore, our result also gives a tool to measure the quality of a chosen coarse-graining
map ξ. We refer to Section 4.4 for an example on how different choices of ξ effect the log-Sobolev constant.
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While (5) is a uniform (stability) bound that holds under fairly weak conditions and states that the
effective dynamics can at most be a constant distance (in total-variation metric) away from the coarse-
grained dynamics, it is completely unclear if it is a sharp bound. To analyse this, in Section 4 we look at
averaging problems for Markov chains which introduce an explicit scale-separation via a small parameter
ε > 0. The slow variable is the natural choice for the coarse-graining map in this setting. One key observation
is that, in general, the resulting effective dynamics depends on ε and is different from the classical averaged
dynamics which corresponds to the limit ε → 0. As a consequence, the classical averaging literature and
related techniques do not apply to the effective dynamics. In Theorem 4.4 we show that the ε-dependent
effective dynamics ηεt does converge to the averaged dynamics. The main result here is an ε-version of the
bound (5), which for a fixed ε > 0 and with same initial data µ̂ε

0 = ηε0 reads (see Theorem 4.5)

sup
t∈[0,T ]

H (µ̂ε
t |ηεt ) ≤ C(T )ε, (6)

where the finite constant C is independent of ε. The bound (6) is indeed good in that the error vanishes as
ε → 0, and is expected to be sharp as the suggested linear decay is in line with the numerical experiments
(see Section 5). Note that, as compared to the general estimate (5), in the multiscale setting the estimate
has poor long-time scaling due to the presence of T in the right-hand side of (6).

Novelty. A systematic analysis of coarse-graining and Markovian approximations in the absence of scale-
separation has been limited to diffusion processes [LL10, ZHS16, LLO17, LLS19, DLP+18, LZ19, LLS19,
HNS20]. This work provides first quantitative results on coarse-graining of jump processes in the absence
of scale-separation. To the best of our knowledge, effective dynamics of the type presented in this article
have not been considered for Markov chains and our quantitative results clearly indicate their efficacy in
approximating the coarse-grained variables. Ideas related to coarse-graining of Markov jump processes have
been studied under the term lumpability (see for instance [Buc94]). However, these results mainly try
to extract information on the full Markov chain from the reduced Markov chain without error and seem
unrelated to our results.

While averaging techniques for handling multiscale problems in Markov chains are well understood [PS08,
LL13, Zha16, HPST20, MS20, PR21], their connection to coarse-graining and effective dynamics is completely
new. In this article we explore these connections in detail and provide new insights into and error bounds
for averaging problems. Furthermore, our analysis predominantly exploits entropy techniques and func-
tional inequalities, which are traditionally used to study long-time behaviour of jump processes and not for
multiscale problems. A key outcome of our results in the multiscale setting is that the effective dynamics
converges to the averaged dynamics in a fairly general setting – such results only hold in a limited setting
for diffusions [HNS20].

Outline of the article. The remainder of this article is organised as follows. In Section 2 we introduce
notations, preliminaries and setup the main evolutions. Section 3 deals with general coarse-graining error
estimates and Section 4 with error estimates in the presence of explicit scale-separation in the system. In
Section 5 we illustrate our theoretical findings with numerical examples. We conclude with discussions on
various related issues in Section 6. Appendix A collects some crucial results on irreducible generators which
will be used throughout this article.

2 Setup and preliminaries

In Section 2.1 below we present some preliminaries and notations. In Section 2.2 we introduce the two main
equations that will be studied throughout the article, the coarse-grained and the effective dynamics, and
present some of their useful properties.
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2.1 Preliminaries and notation

We consider a continuous-time Markov chain on a finite state space X with irreducible generator L ∈ R|X |×|X|

and corresponding forward Kolmogorov equation

∂tµ = LTµ,

µ|t=0 = µ0,
(7)

where µ0 ∈ P(X ). We will use µt to denote the time slice of µ at time t. Since L is irreducible and X
is finite (which implies that L is positive recurrent), (7) admits a unique and positive stationary measure
ρ ∈ P+(X ), i.e. LT ρ = 0 (see for instance [Nor98, Theorem 3.5.2]).

We define the coarse-graining map
ξ : X → Y,

where Y is a finite set with |Y| ≤ |X |. For any y ∈ Y we use

Λy := {x ∈ X : ξ(x) = y},

for the y-level set of ξ. Any ν ∈ P(X ), can be decomposed into the corresponding marginal measure (or
marginal probability distribution) ξ#ν ∈ P(Y) and for any y ∈ Y the family of conditional measures (or
conditional probability distributions) ν(·|y) ∈ P(Λy) defined as

∀y ∈ Y : ξ#ν(y) :=
∑
x∈Λy

ν(x), ∀x ∈ Λy : ν(x|y) = ν(x)

ξ#ν(y)
, (8)

where the conditional measure ν(·|y) is defined ξ#ν-almost everywhere. In all the applications of this
decomposition in this article ξ#ν will be a positive probability measure and so the conditional measure will
be defined everywhere. Consequently, for any x ∈ Λy we can write ν(x) = ν(x|y)ξ#ν(y).

We now introduce some notation for vectors and matrix norms that will be used throughout this article.
We write ∥ρ∥R|Z| for the standard Euclidean norm of a vector ρ in R|Z|. For a probability measure ρ ∈ P(Z),
the total-variation norm is ∥ρ∥TV :=

∑
z∈Z |ρ(z)|. For a matrix A ∈ R|Z|×|Z|, we will use the Frobenius and

supremum norm respectively defined as (with n = |Z|)

∥A∥2R|Z|×|Z| := max
1≤i,j≤n

|Aij |2, ∥A∥∞ := max
1≤i≤n

n∑
j=1

|Aij |.

Next we introduce the relative entropy and Fisher information. For ν, ζ ∈ P(X ) we define the relative
entropy of ν with respect to ζ as

H (ν|ζ) :=


∑
x∈X

ν(x) log f(x), f =
dν

dζ
,

+∞, otherwise.

(9)

The Csiszár-Kullback-Pinsker (CKP) inequality connects the total-variation norm on P(X ) to the relative
entropy via

∀ν, ζ ∈ P(X ) : ∥ν − ζ∥TV ≤
√
2H (ν|ζ). (10)

For ν, ζ ∈ P(X ) and generator M ∈ R|X |×|X| we define the M -Fisher information of ν with respect to ζ as

RM (ν|ζ) :=
∑
x∈X

[
−
(
M log

ν

ζ

)
(x) +

ζ(x)

ν(x)

(
M

ν

ζ

)
(x)

]
ν(x) (11)

=
∑∑
x,x′∈X

[
−M(x, x′) log

(ν(x′)

ζ(x′)

)
+M(x, x′)

(ν(x′)ζ(x)

ν(x)ζ(x′)

)]
ν(x).

The following lemma states that the Fisher information is non-negative.
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Lemma 2.1. For any generator M ∈ R|X |×|X| and ν, ζ ∈ P+(X ), the M -Fisher information of ν with
respect to ζ is non-negative, i.e. RM (ν|ζ) ≥ 0.

Proof. Note that for any ν, ζ ∈ P+(X ) the Fisher information is a well-defined object. Since M is a generator
it satisfies

∑
x′∈X M(x, x′) = 0, and therefore we can rewrite the Fisher information as

RM (ν|ζ) =
∑∑
x,x′∈X

M(x, x′)ζ(x)ℓ(x)
[ℓ(x′)

ℓ(x)
− 1− log

(ℓ(x′)

ℓ(x)

)]
, ℓ =

ν

ζ
. (12)

The result then follows since for α ∈ (0,∞], α 7→ α− 1− logα is a non-negative function.

A straightforward calculations shows that ∂tH (µt|ρ) = −RL(µt|ρ) (see [BT06, Lemma 2.3]), where µt

solves (7) and ρ is the corresponding stationary measure, and therefore for any t ≥ 0 we have

H (µt|ρ) +
∫ T

0

RL(µt|ρ)dt = H (µ0|ρ), (13)

i.e. the relative entropy with respect to the stationary measure is a Lyapunov function for (7) since the Fisher
information is non-negative.

Next we introduce the log-Sobolev inequality which will play a key role in our main results. A probability
measure ζ ∈ P(X ) and a matrix M ∈ R|X |×|X| satisfy the log-Sobolev inequality with constant αLSI > 0 if

∀ν ∈ P(X ) : H (ν|ζ) ≤ 1

αLSI
RM (ν|ζ). (14)

Note, that in particular if |X | = 1 then (14) is trivially satisfied for all αLSI > 0.

Remark 2.2. We point out that (14) is also referred to as modified log-Sobolev inequality in the literature,
see e.g. [BT06, EM12, Zha16]. However, the log-Sobolev inequality defined in [BT06, Zha16] implies (14)
and therefore, assuming (14) is a weaker assumption. In particular, both versions have been considered in
the reversible and non-reversible setting and both quantify the convergence to equilibrium, see e.g. [BT06,
Theorem 2.4]. It should be noted that the log-Sobolev inequality holds for any irreducible Markov chain
(and its invariant measure) on a finite state space without assuming reversibility [SC97, Theorem 2.2.3]. In
this article we use (14) since it fits naturally in our setting.

In fact, assuming that the measure ζ ∈ P(X ) and generator M , with MT ζ = 0, satisfy the log-Sobolev
inequality (14) is equivalent to assuming that any solution to the forward Kolmogorov equation ∂tν = MT ν
converges exponentially to ζ in the following sense. Repeating the calculations above, we find ∂tH (νt|ζ) =
−RM (νt|ζ) and therefore (14) implies the exponential convergence

∀t ≥ 0 : H (νt|ζ) ≤ e−αLSItH (ν0|ζ).

Conversely, if this convergence holds for any initial data ν0 ∈ P(X ) we can write

∀t > 0 :
1

t

[
H (νt|ζ)− H (ν0|ζ)

]
≤ H (ν0|ζ)

(e−αLSIt − 1

t

)
.

Consequently, passing to the limit t → 0 and using ∂tH (νt|ζ)
∣∣
t=0

= −RM (ν0|η), we arrive at the log-Sobolev
inequality (14).

The preliminaries presented above (and the definitions for the coarse-grained and effective dynamics in
the next section) can also be written in matrix form since we are dealing with finite state space X . In the
following remark we briefly summarise these ideas (see [MS20] for details).

Remark 2.3. Given any probability measure ν ∈ P(X ) = {ν ∈ R|X | : νi ≥ 0,
∑

i νi = 1} and coarse-graining
map ξ : X → Y, the marginal measure satisfies

ν̂ = ξ#ν ⇐⇒ ν̂ = Mν

6



where ν̂ ∈ P(Y) = {ζ ∈ R|Y| : ζj ≥ 0,
∑

j ζj = 1} and M ∈ R|Y|×|X| is a matrix with Mji ∈ {0, 1} and∑|Y|
j=1 Mji = 1. The level sets Λy are sometimes referred to as clusters. The conditional measure ν(·|·) can

be expressed using the so-called reconstruction operator Rν ∈ R|X |×|Y|, defined as

Rν
ij =

νi
(Mν)j

,

with the relation ν(.|j) = Rν
.j .

2.2 Coarse-grained and effective dynamics

In this section we define the central dynamics studied in this article and state certain useful properties. The
following lemma characterises the evolution of ξ#µt on Y, which we call the coarse-grained dynamics.

Lemma 2.4. Let µ ∈ C1([0, T ];P(X )) be a solution of (7). Then µ̂ ∈ C1([0, T ];P(Y)) defined via µ̂t := ξ#µt

evolves according to
∂tµ̂t = L̂T

t µ̂t,

µ̂|t=0 = ξ#µ0,
(15)

where L̂ : [0, T ] → R|Y|×|Y| is given by

L̂t(y1, y2) :=
∑∑

x1∈Λy1
,x2∈Λy2

L(x1, x2)µt(x1|y1). (16)

Furthermore for any t, L̂t is a generator, i.e. L̂t(y1, y2) ≥ 0 for any y1 ̸= y2 and
∑

y2
L̂t(y1, y2) = 0.

Proof. For any y1 ∈ Y we find

∂tµ̂t(y1) =
∑

x1∈Λy1

∂tµt(x1) =
∑∑

x1∈Λy1 ,x2∈X
L(x2, x1)µt(x2) =

∑∑
x1∈Λy1 ,x2∈X

L(x2, x1)µ̂t(ξ(x2))µt(x2|ξ(x2))

=
∑
y2∈Y

µ̂t(y2)
∑∑

x1∈Λy1
,x2∈Λy2

L(x2, x1)µt(x2|y2) =
∑
y2∈Y

L̂t(y2, y1)µ̂t(y2),

where we use the explicit expression (8) for the marginal and conditional measure. By construction, for any
t ≥ 0 and y1 ̸= y2, L̂t(y1, y2) ≥ 0. Furthermore for any y1 ∈ Y,∑

y2∈Y
L̂t(y1, y2) =

∑
x2∈Λy1

( ∑∑
y2∈Y,x2∈Λy2

L(x1, x2)
)
µt(x1|y1) =

∑
x2∈Λy1

( ∑
x2∈X

L(x1, x2)
)
µt(x1|y1) = 0,

where the final equality follows since L is a generator.

We will make use of the so-called effective dynamics, which describes the evolution of η ∈ C1([0, T ];P(Y))

∂tη = NT η,

η|t=0 = η0,
(17)

where N ∈ R|Y|×|Y| is defined as

N(y1, y2) :=
∑∑

x1∈Λy1
,x2∈Λy2

L(x1, x2)ρ(x1|y1). (18)

Recall that ρ ∈ P(X ) is the stationary measure for the original dynamics (7) and for any y ∈ Y, ρ(·|y) is the
corresponding conditional stationary measure. Note that the effective dynamics is linear.

The following result states that the effective generator N is irreducible. Consequently, using standard
results (see for instance [HPST20, Appendix C]) the effective dynamics is a positive probability measure, i.e.
ηt ∈ P+(Y) for any t > 0.
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Lemma 2.5. The effective generator N defined in (16) is irreducible. Furthermore, for any t > 0, the
solutions to (15), (17) are strictly positive, i.e. µ̂t, ηt ∈ P+(Y).

Proof. The positivity of the solution µt to the coarse-grained dynamics is guaranteed by the positivity of µt

(since L is irreducible), the definition of the push-forward measure (8) and since Λy is non-empty for every
y ∈ Y.

We will now show that the effective generator N is irreducible, which by standard results (see for in-
stance [HPST20, Appendix C]) ensures that ηt ∈ P+(Y) for any t > 0. Fix y1, y2 ∈ Y. Since L is irreducible,
for any x1 ∈ Λy1

, x2 ∈ Λy2
, there exists a finite sequence (x̃α)α=0,...,n ∈ X with x̃0 = x1, x̃n = x2 such

that L(x̃α, x̃α+1) > 0 for any α ∈ {0, . . . , n − 1} (see [Nor98, Theorem 3.2.1]). Consider the sequence
(ỹα)α=0,...,m ∈ Y defined via ỹα = ξ(x̃α) such that any doubled points are removed and therefore m ≤ n.
Clearly ỹ0 = y1 and ỹm = y2. Therefore using the definition of N and α ∈ {0, . . . ,m− 1} we find

N(ỹα, ỹα+1) =
∑∑

x̂1∈Λỹα ,x̂2∈Λỹα+1

L(x̂1, x̂2)ρ(x̂1|ỹα) ≥ L(x̃α, x̃α+1)ρ(x̃α|ỹα) > 0,

where x̃α ∈ Λỹα , x̃α+1 ∈ Λỹα+1 by construction of (ỹα) and L(x̃α, x̃α+1) > 0 since x̃α ̸= x̃α+1. Furthermore
we have used ρ(x|y) > 0 for any (y, x) ∈ (Y,Λy), which follows since ρ > 0 (since L is irerducible) and
using the decomposition (8). Since y1, y2 ∈ Y are arbitrary, it follows that the effective generator N is
irreducible.

Note that a similar proof as above can be used to show that the coarse-grained generator L̂t is irreducible
for any t > 0. However this need not imply the positivity of µ̂t since the generator depends on time.

Since the effective generator N is irreducible and Y is finite (which implies that N is positive recurrent),
the effective dynamics admits a stationary measure. The following result states that the stationary measure
for the effective dynamics is ξ#ρ, where ρ ∈ P(X ) is the stationary measure of the original dynamics (7).
Furthermore, the coarse-grained dynamics and the effective dynamics coincide in the long-time limit, i.e. as
t → ∞, which is to be expected by the construction of these systems.

Proposition 2.6. Let µ̂t ηt solve (15),(17) respectively. The effective dynamics (17) admits ξ#ρ ∈ P(Y) as
a stationary measure. Furthermore,

∥µ̂t − ηt∥TV
t→∞−−−→ 0.

Proof. Using the definition of N and the definition of the conditional, marginal stationary measure (8), for
any y ∈ Y we find

(NT ξ#ρ)(y2) =
∑
y1∈Y

N(y1, y2)(ξ#ρ)(y1) =
∑
y1∈Y

( ∑∑
x1∈Λy1 ,x2∈Λy2

L(x1, x2)ρ(x1|y1)(ξ#ρ)(y1)
)

=
∑

x2∈Λy2

( ∑
x1∈X

L(x1, x2)ρ(x1)
)
= 0,

where the final equality follows since (LT ρ)(x) = 0 for any x ∈ X . Since µ̂t = ξ#µt and µt → ρ as t → ∞ it
follows that

∥µ̂t − ξ#ρ∥TV =
1

2

∑
y∈Y

|µ̂t(y)− ξ#ρ(y)| ≤
1

2

∑
y∈Y

∑
x∈Λy

|µt(x)− ρ(x)| t→∞−−−→ 0,

where the equality is a standard property of the total-variation metric, the inequality follows from the
definition of the marginal measure and the limit follows since X ,Y are finite. The final result then follows
by using the triangle inequality.
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3 General error estimates

We now state our main result, which provides error estimates comparing the coarse-grained dynamics (15)
and the effective dynamics (17) in relative entropy. By using the CKP inequality (10), this result also
provides estimates in the total-variation distance.

Theorem 3.1. For any y ∈ Y, let Ly ∈ R|Λy|×|Λy| be the restriction of L to Λy × Λy. Let µ̂, η ∈
C1([0,∞);P(Y)) be the solutions to the coarse-grained dynamics (15) and the effective dynamics (17) re-
spectively. Assume that the conditional stationary measure ρ(·|y) and Ly satisfies the log-Sobolev inequality
uniformly in y ∈ Y with constant αLSI (recall (14)), i.e.

∃αLSI > 0, ∀y ∈ Y, ∀ν ∈ P(Λy) : H
(
ν|ρ(·|y)

)
≤ 1

αLSI
RLy

(
ν|ρ(·|y)

)
, (19)

where RLy (·|·) is the Ly-Fisher information (see (11)).
Then, for any t > 0 the estimate

H (µ̂t|ηt) ≤ H (µ̂0|η0) +
C

√
αLSI

[
H (µ0|ρ)− H (µt|ρ)

] 1
2 , (20)

holds, where C = C(L,N, ρ) is independent of t > 0.
Additionally, for any fixed T < ∞ there exists a constant C̃ = C̃(L, |X |, T ) independent of the effective

generator N and the coarse-graining map ξ, such that the estimate

H (µ̂t|ηt) ≤ H (µ̂0|η0) +
C̃

√
αLSI

[
H (µ0|ρ)− H (µt|ρ)

] 1
2 , (21)

holds for any t ∈ [0, T ].

Remark 3.2. Under the additional assumption of strictly positive initial datum, i.e. there exists a constant
c0 > 0 such that µ̂0(y), η0(y) > c0 for all y ∈ Y, the scaling of the error estimate (21) in αLSI can be improved
to arrive at

sup
t∈[0,T ]

H (µ̂t|ηt) ≤ 2H (µ̂0|η0) +
C̃

αLSI
[H (µ0|ρ)− H (µT |ρ)] ,

where the constant C̃ now additionally depends on c0. For details we refer to Theorem 4.5 and its proof, in
particular estimates (52) and (54), as well as Remark 4.6. However it is unclear if such an improvement can
also be made in the case T = ∞.

We point out that since the constant C̃ in (21) is independent of the effective generator N and the coarse-
graining map ξ, the only part of the constant in the error estimate (21) that is dependent on the choice of ξ
is the log-Sobolev constant αLSI. Theorem 3.1 thereby lends itself to two important observations. First, the
quality of the coarse-graining map is characterised via the log-Sobolev constant. Second, while we have a
general error estimate for any coarse-graining map, the effective dynamics will be closer to the coarse-grained
dynamics for the choices of maps for which the log-Sobolev constant is large. This is clearly seen in the
simple toy-problem setting discussed in Section 4.4 where certain choices are clearly more reasonable than
others. Note that the constant C̃ depends on T and cannot be extended to T = ∞ with the current tools as
discussed in Remark 3.9.

Remark 3.3. Since the Fisher information RLy does not depend on the diagonal elements of Ly (see (12))
we may modify the diagonal elements of Ly such that the rows of Ly sum up to zero thereby making it a
generator.

Remark 3.4. To obtain a uniform αLSI in (19) it is sufficient to establish a log-Sobolev estimate

H (ν|ρ(·|y)) ≤ 1

αLSI(y)
RLy (ν|ρ(·|y)), ν ∈ P(Λy)

9



for every fixed y with a y-dependent constant αLSI(y). Then (19) is obtained by taking αLSI := infy∈Y αLSI(y).
Here the infinimum is always positive since Y is a finite state-space.

As pointed out below (14) if |Λy| = 1 for some y ∈ Y the inequality holds for all αLSI(y). Therefore, it
is reasonable to take the infimum above only over y such that the corresponding level set Λy contains more
than one element, i.e.

αLSI = inf{αLSI(y) : y ∈ Y, |Λy| > 1}.

Note that we may always assume that there exists at least one Λy with more than one element since the
only case where all level sets only have one element is the case X = Y. In this case the effective dynamics
and coarse-grained dynamics are the same and thus (20) holds trivially since the relative entropy H (µt|νt)
decays in time if the curves µ and ν are produced by the same generator, see [HPST20, Equation (4)].

Using (13) which implies that the relative entropy with respect to ρ is a Lyapunov function along the
solution of (7), and assuming that µ̂0 = η0, the relative-entropy estimate (20) can be simplified to

H (µ̂t|ηt) ≤
C

√
αLSI

(
H (µ0|ρ)

) 1
2 , (22)

which is a uniform time estimate since C does not depend on t.

Remark 3.5. The main assumption in Theorem 3.1 is that the conditional stationary measure satisfies the log-
Sobolev inequality. This assumption has a clear interpretation in the reversible setting where (Ly)T ρ(·|y) = 0
(see Section 4.3 with ε = 1) – following Remark 2.2 any dynamics driven by Ly converges exponentially fast
to the conditional stationary measure ρ(·|y). In this sense, the log-Sobolev constant corresponds to the
speed of equilibration on the level sets Λy, that is the larger αLSI the faster the conditional measure µt(·|y)
converges to the conditional stationary measure ρ(·|y) as t → ∞.

However, this interpretation is restricted to the reversible setting, since in general the conditional sta-
tionary measure need not be the stationary measure for Ly, i.e. (Ly)T ρ(·|y) ̸= 0. Therefore, the log-Sobolev
inequality is a technical assumption in the non-reversible setting. Similar issues and observations pertaining
to assuming that the conditional stationary measure satisfies the log-Sobolev inequality also arise in the
context of diffusion processes [HNS20, Remark 2.5]. For additional discussion see Section 6.

While we expect that the error between coarse-grained and effective dynamics should vanish as t → ∞
(recall Proposition 2.6), Theorem 3.1 and (22) only provide a uniform-in-time upper bound for the error in
relative entropy. Using the exponential convergence of the full dynamics (7) to the stationary measure we
can improve the long-time behaviour of the error estimate.

Corollary 3.6. Under the assumptions in Theorem 3.1, for any t ≥ 0 we have

∥µ̂t − ηt∥TV ≤ min
{
C1(t), C2e

−Dt
}
,

where D,C2 > 0 are independent of t and for a constant C > 0 independent of t

C1(t) :=
(
2H (µ̂0|η0) +

C
√
αLSI

[
H (µ0|ρ)− H (µt|ρ)

] 1
2

) 1
2

.

Proof. Using Theorem 3.1 and the CKP inequality it follows that

∥µ̂t − ηt∥TV ≤ C1(t). (23)

Since the original and effective generators are irreducible (recall Proposition 2.5), by Proposition A.2 there
exist constants C(µ0), C(η0), Dµ, Dη > 0 independent of time such that

∥µ̂t − ξ#ρ∥TV ≤ ∥µt − ρ∥TV ≤ C(µ0)e
−Dµt, ∥ηt − ξ#ρ∥TV ≤ C(η0)e

−Dηt.

Therefore using the triangle inequality we find

∥µ̂t − ηt∥TV ≤ max{C(µ0), C(η0)}e−tmin{Dµ,Dη} =: C2e
−Dt. (24)

The final result then follows by combining (23) and (24).
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Although the exponential bound C2e
−Dt in Corollary 3.6 provides a decaying estimate in time, it should

be smaller than C1(t) only at extremely long-times. This follows since C2e
−Dt encodes the convergence of

the full system (including the ‘slow’ coarse-grained variable) while C1 only encodes the behaviour of the
‘fast’ level-set dynamics characterised by the log-Sobolev constant.

To prove Theorem 3.1 we will make use of the following result which provides an explicit characterisation
of the error between µ̂t, ηt in relative entropy.

Lemma 3.7. The solutions µ̂, η ∈ C1([0,∞);P(Y)) to (15), (17) satisfy

H (µ̂t|ηt)− H (µ̂0|η0) +
∫ t

0

RN (µ̂s|ηs) ds =
∫ t

0

∑
y∈Y

log
( µ̂s(y)

ηs(y)

)(
∂tµ̂s −NT µ̂s

)
(y) ds, (25)

for any t > 0. Furthermore, for any t > 0 the term on the right hand side of (25) satisfies the upper bound∑
y∈Y

log
( µ̂t(y)

ηt(y)

)(
∂tµ̂t −Nµ̂t

)
(y) ≤ 2gt

∑
y∈Y

∥µt(·|y)− ρ(·|y)∥TV µ̂t(y), (26)

where ∥ · ∥TV is the total-variation norm and g : R≥0 → R is given by

gt := sup
x∈X

ft(x), ft(x1) :=
∑
x2∈X

L(x1, x2)
[
log

( µ̂t(ξ(x1))

ηt(ξ(x1))

)
− log

( µ̂t(ξ(x2))

ηt(ξ(x2))

)]
. (27)

Proof. Differentiating H (µ̂t|ηt) in time we find

∂tH (µ̂t|ηt)dt =
∑
y∈Y

[
∂tµ̂t(y) log

( µ̂t(y)

ηt(y)

)
− µ̂t(y)

ηt(y)
∂tηt(y)− ∂tµ̂t(y)

]
=

∑
y∈Y

log
( µ̂t(y)

ηt(y)

)(
∂tµ̂t −NT µ̂t

)
(y)−

∑
y∈Y

[ µ̂t(y)

ηt(y)
∂tηt(y)− log

( µ̂t(y)

ηt(y)

)
(NT µ̂t)(y)

]
=

∑
y∈Y

log
( µ̂t(y)

ηt(y)

)(
∂tµ̂t −NT µ̂t

)
(y)− RN (µ̂t|ηt),

where we have used
∑

y ∂tµ̂t(y) = 0 since µ̂t ∈ P(Y) to arrive at the second equality, and the definition of
the Fisher information (11) to arrive at the final equality. Equation (25) then follows by integrating this
equality in time over [0, t].

Using the evolution of the coarse-grained dynamics (15) we find∑
y1∈Y

log
( µ̂t(y1)

ηt(y1)

)(
∂tµ̂t −NT µ̂t

)
(y1) =

∑∑
y1,y2∈Y

(
L̂t(y1, y2)−N(y1, y2)

)
log

( µ̂t(y2)

ηt(y2)

)
µ̂t(y1)

=
∑∑
y1,y2∈Y

(
L̂t(y1, y2)−N(y1, y2)

)[
log

( µ̂t(y2)

ηt(y2)

)
− log

( µ̂t(y1)

ηt(y1)

)]
µ̂t(y1)

=
∑∑
y1,y2∈Y

∑∑
x1∈Λy1

,x2∈Λy2

L(x1, x2)
(
µt(x1|y1)− ρ(x1|y1)

)[
log

( µ̂t(y2)

ηt(y2)

)
− log

( µ̂t(y1)

ηt(y1)

)]
µ̂t(y1)

≤ gt
∑
y1∈Y

µ̂t(y1)
∑

x1∈Λy1

∣∣µt(x1|y1)− ρ(x1|y1)
∣∣ = 2gt

∑
y1∈Y

∥∥µt(·|y1)− ρ(·|y1)
∥∥
TV

µ̂t(y1),

where gt is defined in (27). Here the second equality follows since
∑

y2
L̂t(y1, y2) =

∑
y2

N(y1, y2) = 0, the
third equality follows from (16), (18). This concludes the proof of (26).

The following result provides an upper bound on the time integral of the error term gt derived in the
result above.
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Lemma 3.8. For any t > 0, t 7→ gt defined in (27) satisfies ∥g∥L2([0,t]) ≤ C, where C is independent of t.

Additionally, for any T < ∞ exists a C̃, which is independent of N and ξ, such that ∥g∥L2([0,t]) ≤ C̃ for all
t ∈ [0, T ].

Proof. We have the bound
gt ≤ 2∥L∥∞ sup

x∈X

∣∣log µ̂t(ξ(x))− log ηt(ξ(x))
∣∣ (28)

In what follows we prove the claimed result by providing upper bounds on
∫ δ

0
g2sds and

∫ t

δ
g2sds separately,

for some fixed δ ∈ (0, 1). We use this splitting since we estimate the short and long-time behaviour of gt
using different approaches.

We first estimate
∫ δ

0
g2sds. Using (28) we find∫ δ

0

g2s ds ≤ 8∥L∥2∞ sup
x∈X

[∫ δ

0

| log µ̂s(ξ(x))|2 ds+
∫ δ

0

| log ηs(ξ(x))|2 ds
]
. (29)

Since ηt ∈ P(Y) solves (17) with irreducible generator N , by Proposition A.1 there exists c1 > 0 and n1 ∈ N
independent of x ∈ X such that

∀s ∈ [0, δ], ∀x ∈ X : ηs(ξ(x)) ≥ c1s
n1 .

We can also obtain modified constants c̃1, ñ1 independent of N by applying Proposition A.3 instead of
Proposition A.1. Since ηs(ξ(x)) ≤ 1 and θ 7→ | log θ| is increasing as θ → 0, using the lower bound above it
follows that

| log ηs(ξ(x))| ≤ | log c1|+ n1| log s|,
and therefore we have the estimate∫ δ

0

| log ηs(ξ(x))|2 ds ≤ δ| log c1|2 + n2
1

∫ δ

0

| log s|2ds = δ| log c1|2 + n2
1δ
[
(log δ)2 − 2 log δ + 2

]
.

Since µ solves (7) with irreducible generator L, again by using Proposition A.1, there exists c2 > 0 and
n2 ∈ N independent of x ∈ X such that

∀s ∈ [0, δ], ∀x ∈ X : µs(x) ≥ c2s
n2 ,

and therefore for any x ∈ X and we have

µ̂s(ξ(x)) =
∑

x′∈Λξ(x)

µs(x
′) ≥ µs(x

′) ≥ c2s
n2 .

Repeating the same arguments as above we arrive at the bound∫ δ

0

| log µ̂s(ξ(x))|2 ds ≤ δ| log c2|2 +N2
2 δ

[
(log δ)2 − 2 log δ + 2

]
.

Substituting these bounds back into (29) we find
∫ δ

0
g2s ds ≤ C(c1, c2, n1, n2, δ). Similarly, using the modified

constants c̃1 and ñ1 we obtain a constant C̃, which is independent of N , such that
∫ δ

0
g2s ds ≤ C̃.

Next we estimate
∫ t

δ
g2sds. Once more using (28) we find∫ t

δ

g2s ds ≤ 8∥L∥2∞ sup
x∈X

[∫ t

δ

| log µ̂s(ξ(x))− log ξ#ρ(ξ(x))|2 ds+
∫ t

δ

| log ηs(ξ(x))− log ξ#ρ(ξ(x))|2 ds
]
. (30)

We first provide an estimate for the first term in the right hand side of (30). Since ρ ∈ P+(X ) and X is
finite, using cρ := minx∈X ρ(x) ∈ (0, 1) we find

∀x ∈ X : ξ#ρ(ξ(x)) =
∑

x∈Λξ(x)

ρ(x) ≥ |Λξ(x)|cρ ≥ cρ.

12



Since L is an irreducible generator, using Proposition A.2, there exists τ > δ such that for any s ≥ τ we
have ∥µs − ρ∥TV ≤ 1

2cρ, and consequently for any x ∈ X , s ≥ τ and x ∈ X we have the lower bound

µs(x) ≥
1

2
cρ ⇒ µ̂s(ξ(x)) ≥

1

2
cρ.

Finally, using Proposition A.1 there exists d ≥ 0 such that µ̂s(ξ(x)) ≥ d for any s ∈ [δ, τ ]. In summary, for any
x ∈ X and s ∈ [δ,∞), there exists ĉ ∈ (0, 1) defined as ĉ := min(cρ, cρ/2, d) such that µ̂s(ξ(x)), ξ#ρ(ξ(x)) ∈
[ĉ, 1]. Since θ 7→ log θ is Lipschitz continuous on [ĉ, 1] with constant ĉ−1, for any x ∈ X and s ∈ [δ,∞) we
find ∣∣log(µ̂s(ξ(x))

)
− log

(
ξ#ρ(ξ(x))

)∣∣ ≤ ĉ−1
∣∣µ̂s(ξ(x))− ξ#ρ(ξ(x))

∣∣ ≤ ĉ−1
∑

x∈Λξ(x)

∣∣µs(x)− ρ(x)
∣∣

≤ 2ĉ−1∥µs − ρ∥TV ≤ 2Ce−λs,

for some C, λ > 0, where we use Proposition A.2 to arrive at the final inequality. Therefore, the first term
in the right hand side of (30) admits the upper bound

sup
x∈X

∫ t

δ

| log µ̂s(ξ(x))− log ξ#ρ(ξ(x))|2 ds ≤ 4C2

∫ ∞

δ

e−2λs ds ≤ C,

where the constant on the right hand side of the final inequality is independent of t > 0. Since the the effective
dynamics ηt admits ξ#ρ as a stationary measure (see Proposition 2.6) and its generator is irreducible (see
Lemma 2.5), we can repeat the same arguments as above to arrive at a time-independent upper bound for
the second integral on the right-hand side of (30), i.e.

sup
x∈X

∫ t

δ

| log ηs(ξ(x))− log ξ#ρ(ξ(x))|2 ds ≤ C.

Substituting these upper bounds back into (30) we arrive at the claimed result.
To obtain a constant independent of N and ξ we fix T < ∞. Then Proposition A.3 gives a constant

d̃(δ, T ) such that ηs(ξ(x)) ≥ d̃. In particular, d̃ is independent of N and ξ. Additionally, since ξ#ρ(ξ(x)) ≥
minx∈X ρ(x) > 0 we can bound

sup
x∈X

∫ t

δ

|log(ηs(ξ(x))− log ξ#ρ(ξ(x))|2 ds ≤ sup
x∈X

∫ t

δ

| log ηs(ξ(x))|2 ds+ sup
x∈X

∫ t

δ

| log ξ#ρ(ξ(x))|2 ds

≤
(
| log(d̃)|2 +max

x∈X
| log(ρ(x))|2

)
(T − δ)

for all t ∈ [δ, T ]. The final bound is independent of N and ξ, which together with the modified short-time
bound proves the second part of the lemma.

Using the previous two auxiliary results we can now prove Theorem 3.1.

Proof of Theorem 3.1. Using Lemma 3.7, 3.8, applying Cauchy-Schwarz inequality in time and Jensen’s
inequality on Y we find

H (µ̂t|ηt) ≤ H (µ̂0|η0) + 2∥g∥L2(0,∞)

(∫ t

0

∑
y∈Y

∥µs(·|y)− ρ(·|y)∥2TVµ̂s(y) ds
) 1

2

, (31)

where we have dropped the Fisher information term in (25) as it is non-negative (see Lemma 2.1).
Using the CKP inequality (10) and the log-Sobolev inequality (14), the term inside the summation on

the right hand side can be bounded by

∥µt(·|y)− ρ(·|y)∥2TV ≤ 2H
(
µt(·|y)

∣∣ρ(·|y)) ≤ 2

αLSI
RLy

(
µt(·|y)

∣∣ρ(·|y)),
13



and therefore we arrive at the bound∑
y∈Y

∥µt(·|y)− ρ(·|y)∥2TVµ̂t(y) ≤
2

αLSI

∑
y∈Y

RLy

(
µt(·|y)

∣∣ρ(·|y))µ̂t(y)

=
2

αLSI

∑∑
y∈Y,x1,x2∈Λy

Ly(x1, x2)µt(x1|y)
[µt(x2|y)ρ(x1|y)
ρ(x2|y)µt(x1|y)

− 1− log
(µt(x2|y)ρ(x1|y)
ρ(x2|y)µt(x1|y)

)]
µ̂t(y)

=
2

αLSI

∑∑
y∈Y,x1,x2∈Λy

Ly(x1, x2)µt(x1)
[µt(x2)ρ(x1)

ρ(x2)µt(x1)
− 1− log

(µt(x2)ρ(x1)

ρ(x2)µt(x1)

)]
≤ 2

αLSI
RL(µt|ρ).

Here the first equality follows by using the alternate formulation (12) of the Fisher information and the
second equality follows since for any y ∈ Y and x ∈ Λy we have ρ(x) = ρ(x|y)ξ#ρ(y), µt(x) = µt(x|y)µ̂t(y).
The final inequality follows since Ly is the restriction of L to Λy by definition and θ 7→ θ − 1 − log θ is
non-negative for any θ > 0.

Substituting back into (31) and using (13) we find

H (µ̂t|ηt) ≤ H (µ̂0|η0) + 2∥g∥L2(0,∞)

√
2

αLSI

(∫ t

0

R(µs|ρ) ds
) 1

2

≤ H (µ̂0|η0) + 2∥g∥L2(0,∞)

√
2

αLSI

[
H (µ0|ρ)− H (µt|ρ)

] 1
2 ,

which is the required result.
Finally, for a fixed T < ∞ we can replace (31) by

H (µ̂t|ηt) ≤ H (µ̂0|η0) + 2∥g∥L2(0,T )

(∫ t

0

∑
y∈Y

∥µs(·|y)− ρ(·|y)∥2TVµ̂s(y) ds
) 1

2

and then use the alternative upper bound on the L2-norm of g provided by Lemma 3.8, which provides an
upper bound independent of N and ξ. Proceeding then as above yields the alternative error estimate (21)
for t ∈ [0, T ].

Remark 3.9. We finally outline the challenges in extending the estimate (21) to the case T = ∞. The key
part is to further improve the bound on ∥g∥L2(0,T ). To do this we require a bound on the the decay rate of
∥ηt−ξ#ρ∥TV, which does not depend on the effective generator N and the coarse-graining map ξ. Revisiting
the proof of Proposition A.2 this could for example be achieved by bounding the spectral gap of N from
below by a constant only depending on the full generator L. However, this remains an open question.

4 Estimates with explicit scale-separation

In the last section we considered error estimates comparing the coarse-grained and effective dynamics for
a given coarse-graining map. In this section we discuss the asymptotic behaviour of these estimates in the
presence of explicit scale-separation. Specifically, we will focus on averaging problems for Markov chains
(see for instance [PS08, LL13, HPST20]). In Section 4.1 we introduce these averaging problems and discuss
the behaviour of the effective dynamics in the limit of infinite scale-separation. In Section 4.2 we present
quantitative error estimates between the coarse-grained and effective dynamics and in Section 4.3 we focus
on the specific setting of reversible Markov chains. Finally, in Section 4.4 we discuss the scaling of the
log-Sobolev constant αLSI with respect to ε for different choices of ξ in a simple example.
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macro-state micro-state

Figure 1: Energy landscape with two macro-states.

4.1 Averaging problems for Markov chains and effective dynamics

Although multiscale Markov chains are fairly classical and arise in various contexts, we briefly motivate them
from the perspective of kinetic Monte-Carlo methods in molecular dynamics. Consider a particle moving
in a potential-energy landscape, which consists of small and large barriers as described in Figure 1. The
large energy barriers introduce a natural scale-separation since it is harder for the particle to jump across
them compared to the smaller barriers. More precisely we can model the behaviour of such a particle as
a Markov jump process on X = Y × Z where Y corresponds to the states separated by the large energy
barriers while Z is the part of the state space separated by small energy barriers. For simplicity, we assume
that there is only one large barrier, i.e. Y = {0, 1} and finitely many small barriers corresponding to each of
these large barriers, i.e. Z = {0, . . . , n − 1}. This intuitively means that the state space is divided up into
two macro-states, each of which contain n ∈ N easily accessible micro-states.

To make these ideas concrete, consider a family of forward Kolmogorov equations parameterised by ε > 0{
∂tµ

ε = (Lε)Tµε,

µε
t=0 = µ0,

(32)

on X = Y×Z with Y = {0, 1} and Z = {0, . . . , n−1}, generated by the family of generators (Qi, Di, Gi,1−i ∈
R|Z|×|Z| for i = 0, 1)

Lε =
1

ε
Q+G :=

1

ε

(
Q0 0
0 Q1

)
+

(
D0 G0,1

G1,0 D1

)
, (33)

i.e. with

Q((y, z), (y′, z′)) =

{
Qy(z, z

′) if y′ = y

0 otherwise
, G((y, z), (y′, z′)) =


Gy,y′(z, z′) if y′ ̸= y

Dy(z) if y′ = y and z′ = z

0 otherwise

,

for x = (y, z), x′ = (y′, z′) ∈ X satisfying

∀x ∈ X :
∑
x′∈X

Q(x, x′) = 0 =
∑
x′∈X

G(x, x′), (34)

and diagonal matrix Dy, y ∈ Y, which satisfies

∀z ∈ Z : Dy(z) := −
∑
z′∈Z

Gy,1−y(z, z
′). (35)
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We assume that Lε is irreducible, and therefore (32) admits a stationary solution ρε ∈ P+(X ). Additionally
we assume that Q0 and Q1 are irreducible generators as well. Consequently, the dynamics driven by Qi for
i = 0, 1 admits a stationary measure ρi ∈ P+(Z).

Now let us take a closer look at each of these components. The small parameter ε > 0 models the scale-
separation arising due to the difference in the heights of the barriers. The matrix Qy ∈ Rn×n encodes the
jumps between micro-states within the y-th macro-state. The matrix Gy,1−y ∈ Rn×n encodes the transition
from the y-th macro-state to (1 − y)-th macro-state. The summability condition (34) ensures that Lε is a
generator.

This setting is of coarse-graining type, in that, for 0 < ε ≪ 1 the dynamics in the macro-state equilibrates
and the limit is a jump process on Y. Consequently, the natural coarse-graining map in this setting is the
projection onto the slow-variable, i.e.

ξ : X → Y with ξ(x) = y, for any x = (y, z) ∈ X .

Remark 4.1. Since X = Y × Z and ξ is the projection onto the slow-variable, we simplify our notation by
identifying the conditional measures on the level sets Λy with probability measures on Z. In a slight abuse
of notation, we will often denote both measures by the same symbol whenever the meaning is clear from the
context. For instance, we write ρε(z|y) instead of ρε(x|y) where x = (y, z).

With the generator Lε and the coarse-graining map ξ, we can construct the corresponding coarse-grained
and the effective dynamics. For ε > 0, the coarse-grained dynamics t 7→ µ̂t ∈ P(Y) solves

∂tµ̂
ε
t =

(
L̂ε
t

)T
µ̂t, with L̂ε

t (y1, y2) :=
∑∑

x1∈Λy1
,x2∈Λy2

Lε(x1, x2)µ
ε
t (x1|y1), (36)

and the effective dynamics t 7→ ηt ∈ P(Y) solves

∂tη
ε
t =

(
Nε

)T
ηt, with Nε(y1, y2) :=

∑∑
x1∈Λy1

,x2∈Λy2

Lε(x1, x2)ρ
ε(x1|y1), (37)

where µε
t (·|y), ρε(·|y) ∈ P(Λy) are the conditional measures corresponding to µε

t , ρ
ε respectively (see (8) for

definition) and Λy = {y} × Z is the y-level set of ξ.
In what follows we will make use of the the limiting dynamics of (32) as ε → 0. Specifically, it can be

shown (see [HPST20, Section 3] for a proof) that the coarse-grained dynamics converges to the so-called
averaged dynamics.

Theorem 4.2 (Classical averaging). Define the limiting generator Lav ∈ R|Y|×|Y| as

Lav :=

(
−λ0 λ0

λ1 −λ1

)
, λy :=

∑∑
z1,z2∈Z

ρy(z1)Gy,1−y(z1, z2), (38)

where ρy is the stationary solution corresponding to Qy. The solution to the coarse-grained dynamics µ̂ε ∈
C1([0, T ];P(Y)) (see (36)) converges with respect to the uniform topology in time and strong topology on
P(Y) to µav ∈ C1([0, T ];P(Y)) which solves the averaged dynamics

∂tµ
av
t =

(
Lav

)T
µav
t . (39)

While here we have phrased the averaging result in terms of the forward Kolmogorov equations to
be consistent with rest of the article, these convergence results can be considerably generalised (see for
instance [PS08, Chapter 16] for pathwise convergence).

Note that in general, the effective dynamics (37) is different from the averaged dynamics, which is easily
seen for instance since the effective dynamics explicitly depends on ε, while the averaged dynamics does
not. This is due to a fundamental difference between the two approaches – classical averaging requires
that the fast dynamics characterised by Qy (32) has an stationary measure (for a fixed value of the slow
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variables), whereas the effective dynamics relies on the existence of an stationary measure for the full system
characterised by Lε (which depends on ε). However, in the restrictive setting of reversible Markov chains
the two dynamics coincide (see Section 4.3).

A natural question is to understand the behaviour of the effective dynamics as ε → 0 and how it compares
to the averaged dynamics. In Theorem 4.4 below we provide a quantitative error estimate between these
two. To prove this error estimate we will need the following result which characterises the behaviour of the
stationary measure ρε in the limit ε → 0 (see [HPST20, Lemma 3.3] for proof).

Lemma 4.3. Let ρε ∈ P+(X ) be a sequence of stationary measures corresponding to the generator Lε (33),
i.e. (Lε)T ρε = 0. Then there exists a positive probability measure ρ ∈ P+(X ) such that ρε → ρ as ε → 0.
Furthermore, the conditional stationary measures satisfies ρε(·|y) → ρy(·) as ε → 0, where ρy ∈ P(Z) satisfies
QT

y ρy = 0. Consequently, the marginal stationary measures converge to the limiting marginal stationary
measure, i.e. ξ#ρ

ε → ξ#ρ as ε → 0.

Theorem 4.4. For any T < ∞ and ε ∈ (0, ε0) there exists a constant C < ∞ independent of ε > 0 such
that

sup
t∈[0,T ]

∥ηεt − µav
t ∥TV ≤ C (∥ηε0 − µav

0 ∥TV + ε)

In particular, if ηε0 → µav
0 in P(Y) as ε → 0, then ηε → µav in C([0, T ];P(Y)) as ε → 0.

Proof. Using the equivalence of the total-variation norm and the Euclidean norm on a finite state space, we
have the estimate

∥ηε − µav∥C([0,T ];P(Y)) = sup
t∈[0,T ]

∥ηεt − µav
t ∥TV = sup

t∈[0,T ]

∥∥∥et(Nε)T ηεt=0 − et(L
av)T µav

t=0

∥∥∥
TV

≤ C
[
sup

t∈[0,T ]

∥∥∥(et(Nε)T − et(L
av)T

)
ηεt=0

∥∥∥
R|Y|

+ sup
t∈[0,T ]

∥∥∥et(Lav)T (ηεt=0 − µav
t=0)

∥∥∥
R|Y|

]
.
(40)

We now estimate both terms on the right-hand side separately. For the second term we find

sup
t∈[0,T ]

∥∥∥et(Lav)T (ηεt=0 − µav
t=0)

∥∥∥
R|Y|

≤
(

sup
t∈[0,T ]

∥et(L
av)T ∥R|Y|×|Y|

)
∥ηεt=0 − µav

t=0∥R|Y| ≤ C∥ηεt=0 − µav
t=0∥TV (41)

with a constant C = C(Lav, T ) independent of ε. For the first term we make use of the following matrix
inequality for M1,M2 ∈ R|Y|×|Y|

∥eM1+M2 − eM1∥R|Y|×|Y| ≤ ∥M1∥R|Y|×|Y|e∥M1∥R|Y|×|Y| e∥M2∥R|Y|×|Y| .

Choosing M1 = t(Lav)T and M2 = t((Nε)T − (Lav)T ) yields∥∥∥et(Nε)T − et(L
av)T

∥∥∥
R|Y|×|Y|

≤ |t|
∥∥(Nε)T − (Lav)T

∥∥
R|Y|×|Y| e

|t|∥(Lav)T ∥R|Y|×|Y| e|t|∥(N
ε)T−(Lav)T ∥R|Y|×|Y| . (42)

In what follows we will show that there exists a constant C independent of ε such that

∥(Nε)T − (Lav)T ∥R|Y|×|Y| ≤ Cε. (43)

Applying this bound to (42) and substituting along with (41) back into (40) we arrive at the required
quantitative result. Furthermore, if the initial data converges, the upper bound vanishes as ε → 0, which
proves the remaining part of the proposition.

In the remainder of this proof we show (43). Using Λy = {y} × Z, for any y1, y2 ∈ Y we can rewrite the
effective generator Nε as

Nε(y1, y2) =
1

ε

∑∑
z1,z2∈Z

Q((y1, z1), (y2, z2))ρ
ε(z1|y1) +

∑∑
z1,z2∈Z

G((y1, z1), (y2, z2))ρ
ε(z1|y1)
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Note that the first sum vanishes if y1 ̸= y2 since Q((y1, z1), (y2, z2)) = 0, and if y1 = y2 = y we have∑∑
z1,z2∈Z

Q((y, z1), (y, z2))ρ
ε(z1|y) =

∑
z1∈Z

ρε(z1|y)
∑
z2∈Z

Q((y, z1), (y, z2)) = 0. (44)

Here we have used
∑

z2∈Z Q((y, z1), (y, z2)) =
∑

x2∈X Q((y, z1), x2) = 0, which follows again since
Q((y1, z1), (y2, z2)) = 0 for y1 ̸= y2. Therefore for y ∈ Y we find

Nε(y, 1− y) =
∑∑
z1,z2∈Z

ρε(z1|y)Gy,1−y(z1, z2),

i.e. the explicit scale-separation parameter drops out from the effective generator due to the definition of ξ.
Note that the diagonal terms Nε(y, y) have a similar form as above due to the definition (35) of Dy. Using
the definition of the limiting generator Lav we obtain the estimate

∥(Nε)T − (Lav)T ∥R|Y|×|Y| ≤
√
|Z|∥G∥R|Z|×|Z| sup

y∈Y
∥ρε(·|y)− ρy(·)∥R|Z| (45)

and therefore we need to estimate ∥ρε(·|y)− ρy(·)∥R|Z| as ε → 0 uniformly in y ∈ Y.
Fix y ∈ Y. Since ρε is the stationary measure of (Lε)T , for any z ∈ Z we find

0 = ((Lε)T ρε)((y, z)) =
∑
x2∈X

Lε(x2, (y, z))ρ
ε(x2)

=
1

ε

∑
z2∈Z

Qy(z2, z)ρ
ε((y, z2)) +

∑
z2∈Z

G1−y,y(z2, z)ρ
ε((1− y, z2))−

∑
z2∈Z

Gy,1−y(z, z2)ρ
ε((y, z)), (46)

where the final negative term arises due to Dy (35) By Proposition 2.6, the stationary measure of the
effective dynamics (37) is given by ξ#ρ

ε. Lemma 4.3 states that ρε(·|y) → ρy(·) as ε → 0 where ρy is a
positive measure due to the irreducibility of Qy. Therefore, we can divide (46) by ξ#ρ

ε(y) and obtain

0 =
∑
z2∈Z

1

ε
Qy(z2, z)ρ

ε(z2|y) +
∑
z2∈Z

G1−y,y(z2, z)
ρε((1− y, z2))

ξ#ρε(y)
−

∑
z2∈Z

Gy,1−y(z, z2)
ρε((y, z))

ξ#ρε(y)

=:
1

ε
(QT

y ρ
ε(·|y))(z) + Iε(z; y),

where we use the definition of the conditional measure (8). We point out that since ξ#ρ
ε converges to a

positive measure, Iε(z; y) can be bounded independently of ε, y, z. Multiplying the equation above by ε
yields

QT
y ρ

ε(·|y) = −εIε(·; y). (47)

Note that 0 is an eigenvalue for Qy (as it admits ρy as a stationary measure) and the real parts of all the
eigenvalues of Qy lie in [−2ry, 0] due to the Gerschgorin’s circle theorem. Next, we define the non-negative
irreducible matrix Py := Qy +(maxz∈Z |Qy(z, z)|)I, where I is the identity matrix on R|Z|×|Z|. Clearly ry is
an eigenvalue of Py and the real parts of all the eigenvalues of Qy lie in [−ry, ry]. Thus ry is the spectral radius
of Py and by the Perron-Frobenius theorem ry is a simple eigenvalue of Py (with algebraic and geometric
multiplicity one), and therefore 0 is a simple eigenvalue for Qy, i.e. the eigenspace corresponding to 0 is
one-dimensional and spanned by ρy.

We define the spectral projection P̸=0 : R|Z| → R|Z| onto the non-zero eigenspaces of QT
y . Applying the

projection to (47) and using P̸=0Q
T
y = QT

y P ̸=0 we find

QT
y P ̸=0ρ

ε(·|y) = −εP ̸=0Iε(·; y).

Since QT
y is invertible on Ran(P̸=0), the range of P̸=0, we find

∥P ̸=0ρ
ε(·|y)∥R|Z| ≤ ε∥(QT

y )
−1P ̸=0∥R|Z|×|Z|∥Iε(·; y)∥R|Z| ≤ Cε,
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for some constant C independent of ε, y, z, where we have used a uniform lower bound on ξ#ρ
ε due to

Lemma 4.3. Next, exploiting that Ran(I − P ̸=0) = Span(ρy) we write

ρε(·|y)− ρy(·) = (I − P̸=0)ρ
ε(·|y)− ρy + P ̸=0ρ

ε(·|y) =: (ν(ε, y)− 1)ρy + P̸=0ρ
ε(·|y),

with ν(ε, y) ∈ R. Summing over all elements in Z, using
∑

z∈Z [ρ
ε(·|y) − ρy(·)] = 0 and ρy ∈ P(Z) then

yields

|ν(ε, y)− 1| =
∣∣∣∑
z∈Z

P̸=0ρ
ε(·|y)

∣∣∣ ≤ C∥P̸=0ρ
ε(·|y)∥R|Z| ≤ Cε.

This proves (using norm equivalence on R|Z|) that ∥ρε(·|y)−ρy∥TV ≤ Cε with a constant C > 0 independent
of ε and substituting into (45) we arrive at the required bound (43).

4.2 Error estimates for fixed ε > 0

In this section we provide quantitative error estimates comparing the coarse-grained (36) and effective dy-
namics (37) in the ε-dependent setting which mirrors the general result in Theorem 3.1. As in the general
setting, we assume a log-Sobolev inequality on the level sets of ξ. More precisely, we will assume that there
exists a ε0 > 0 and a constant αLSI > 0 such that for any ε ∈ (0, ε0), y ∈ Y and ν ∈ P(Z) we have the
estimate

H (ν|ρε(·|y)) ≤ 1

αLSI
RQy

(ν|ρε(·|y)). (LSIε)

We note that the uniformity of αLSI with respect to ε is essentially an assumption that the constant does
not blow up as ε → 0. However, since ρε(·|y) converges to ρy (stationary measure of Qy) as ε → 0 (see
Lemma 4.3) and both relative entropy and relative Fisher information are continuous in the finite setting,
the estimate (LSIε) reduces to the logarithmic Sobolev inequality as discussed for example in [BT06, Zha16]
and the references therein. See Section 4.4 for a detailed discussion on the log-Sobolev assumption in the
case of a reversible toy-problem.

We now state the main error estimate in the presence of explicit scale-separation.

Theorem 4.5. Let µ̂ε, ηε ∈ C1([0, T ];P(Y)) be the solutions to coarse-grained dynamics (36) and the effec-
tive dynamics (37) with initial data µ̂ε

0 and ηε0 respectively. Assume that

(A1) The initial data for coarse-grained and effective dynamics is positive, i.e. there exists c0 > 0 independent
of ε such that µ̂ε

0(y), η
ε
0(y) > c0 for any y ∈ Y. Furthermore, the initial data µε

0 converges in P(X )
and µ̂ε

0, η
ε
0 converge in P(Y) as ε → 0.

(A2) There exists ε0 > 0 and αLSI > 0 such that (LSIε) holds.

Then there exists C > 0 such that for any ε ∈ (0, ε0)

sup
t∈[0,T ]

H (µ̂ε
t |ηεt ) ≤ 2H (µ̂ε

0|ηε0) + C
εT

αLSI
[H (µε

0|ρε)− H (µε
T |ρε)] . (48)

If additionally there exists C0 < ∞ independent of ε such that for any ε ∈ (0, ε0) we have

H (µ̂ε
0|ηε0) ≤ C0ε, (49)

then there exists a constant D = D(T ) > 0 independent of ε and αLSI such that

sup
t∈[0,T ]

H (µ̂ε
t |ηεt ) ≤

(
2C0 +

D

αLSI

)
ε. (50)

In particular, the estimate (50) holds when µ̂ε
0 = ηε0.
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Proof. Repeating the arguments as in the proof of Lemma 3.7 and using the positivity of the Fisher infor-
mation (see Lemma 2.1) we arrive at

H (µ̂ε
t |ηεt )− H (µ̂ε

0|ηε0) ≤ 2

∫ t

0

gs

[∑
y∈Y

∥µε
s(·|y)− ρε(·|y)∥TV µ̂ε

s(y)
]
ds

≤ 2∥g∥L2((0,T ))

(∫ t

0

∑
y∈Y

∥µε
s(·|y)− ρε(·|y)∥2TVµ̂

ε
s(y) ds

) 1
2

, (51)

where gs is defined in (27) (now with the explicit dependence on ε) and the second inequality follows by
applying the Cauchy-Schwarz inequality in time.

We first prove that there exists an ε-independent constant C > 0 such that

∥g∥L2(0,T ) ≤ C
√
T sup

t∈[0,T ]

∥µ̂ε
t − ηεt ∥TV. (52)

Using ξ((y, z)) = y and the decomposition (33) of the generator, ft defined in (27) can be rewritten as

ft((z1, y1)) =
∑

(z2,y2)∈Z×Y

Lε((z1, y1), (z2, y2))
[
log

( µ̂ε
t (y1)

ηεt (y1)

)
− log

( µ̂ε
t (y2)

ηεt (y2)

)]
=

∑
z2∈Z

Gy1,1−y1
(z1, z2)

[
log

( µ̂ε
t (y1)

ηεt (y1)

)
− log

( µ̂ε
t (1− y1)

ηεt (1− y1)

)]
.

Therefore, gt = sup(y,z)∈Y×Z ft((y, z)) satisfies

gt ≤ 2
(
sup
y∈Y

∥Gy,1−y∥∞
)
sup
y∈Y

|log µ̂ε
t (y)− log ηεt (y)| . (53)

By Theorem 4.2, 4.4 and since µ̂ε
0, η

ε
0 have a limit in P(Y) as ε → 0, both µ̂ε and ηε converge uniformly in

time to solutions of the averaged dynamics (39) with positive initial data. Repeating the proof of Lemma 2.5
along with the positivity of ρy for every y ∈ Y (since Qy is irreducible), it follows that the generator
Lav of the averaged dynamics is irreducible. Therefore we can apply Proposition A.1 to obtain a uniform
and positive lower bound on any solution of (39) with positive initial data. Since the coarse-grained and
effective dynamics converge to the averaged dynamics, there exists a constant c0 > 0, which is independent
of ε ∈ (0, ε0) such that

inf
t∈[0,T ],y∈Y

µ̂ε
t (y) ≥ c0, and inf

t∈[0,T ],y∈Y
ηεt (y) ≥ c0.

Since the logarithm is uniformly Lipschitz continuous on [c0, 1] with constant c−1
0 we arrive at

sup
y∈Y

|log µ̂ε
t (y)− log ηεt (y)| ≤ c−1

0 ∥µ̂ε
t − ηεt ∥TV.

Inserting this into (53) and integrating over [0, t] (with t ∈ [0, T ]) leads to∫ t

0

g2s dt ≤ 4
(
sup
y∈Y

∥Gy,1−y∥∞
)2

c−2
0 T sup

s∈[0,T ]

∥µ̂ε
s − ηεs∥2TV.

This proves (52).
Now we provide an estimate for the integral term in the right hand side of (51). Using (LSIε) and the

linearity of RM in M we find

∥µε
t (·|y)− ρε(·|y)∥2TV ≤ 2H (µε

t (·|y)|ρε(·|y)) ≤
2

αLSI
RQy

(µε
t (·|y)|ρε(·|y)) =

2ε

αLSI
Rε−1Qy

(µε
t (·|y)|ρε(·|y)).
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Since (Lε)y = ε−1Qy is the restriction of Lε to the level set Λy = {y} × Z, repeating the arguments as in
the proof of Theorem 3.1 we arrive at∫ t

0

∑
y∈Y

∥µε
s(·|y)− ρε(·|y)∥2TVµ̂

ε
s(y) ds ≤

2ε

αLSI

∫ t

0

RLε(µε
s|ρε) =

2ε

αLSI

[
H (µε

0|ρε)− H (µε
t |ρε)

]
.

Substituting this bound along with (52) back into (51) we arrive at

H (µ̂ε
t |ηεt )− H (µ̂ε

0|ηε0) ≤ C

√
εT

αLSI
sup

t∈[0,T ]

∥µ̂ε
t − ηεt ∥TV [H (µε

0|ρε)− H (µε
t |ρε)]

1
2 . (54)

Using hε(t) := supt∈[0,T ] H (µ̂ε
t |ηεt ) along with the CKP inequality (10) in (54) we then find

hε(t) ≤ H (µ̂ε
0|ηε0) + C

√
2εT

αLSI

√
hε(t)

√
H (µε

0|ρε)− H (µε
T |ρε)

≤ H (µ̂ε
0|ηε0) + ε

C2T

2αLSI
[H (µε

0|ρε)− H (µε
T |ρε)] +

1

2
hε(t).

The first inequality follows since H (µε
t |ρε) is monotonically decreasing (recall (13)) and thus the supremum

of the entropy difference is attained at t = T . The second inequality then follows by applying the Young’s
inequality. This proves (48).

Finally, to obtain the improved error estimate (50) we plug the assumption (49) on the initial datum into
(48). The required estimate (50) then follows as H (µε

0|ρε) is bounded. This bound holds as H (µε
0|ρε) →

H (µ0|ρ) when ε → 0 since ρε → ρ (see Lemma 4.3) and the initial data µε
0 for the full system is assumed

to converge in P(X ).

Remark 4.6. When comparing the main error estimate in the general case (20) provided in Theorem 3.1 to
the error estimate obtained (48) in Theorem 4.5 in the case of explicit scale separation, one notices that the
scaling in αLSI is different. While the general estimate (20) scales with

√
αLSI

−1, the estimate (48) scales
with α−1

LSI. In particular, we also obtain a linear scaling in ε instead of a square root scaling which might be
expected from the general estimate.

The reason for this improvement lies in the different treatment of g in the proofs. In fact, this is the
main difference between the proofs of Theorem 3.1 and 4.5. In the general case we provide a non-specific
upper bound on the L2-norm of g in Lemma 3.8. In contrast, in the proof of Theorem 4.5, we show that
the L2-norm of g can be bounded from above by the TV-norm of µ̂ε − ηε, see (52). This improved control
then allows for an error estimate with better scaling in αLSI (and ε). However, to obtain (52) we use the
Lipschitz continuity of the logarithm away from zero and thus, the estimate is tied to the Assumption (A1)
of uniformly positive initial data.

We point out that it is still possible to obtain estimates of the form in Theorem 3.1 from (54) by
using that ∥µ̂ε

t − ηεt ∥TV is uniformly bounded in t since µ̂ε
s, η

ε
s converge as ε → 0 (recall Theorem 4.2 and

Theorem 4.4).

Theorem 4.5 requires that the initial data is positive. This restriction can be removed if the time interval
[0, T ] is replaced by [δ, T ] for some δ > 0 (see (63) in Appendix A for a similar discussion). In this setting, the
irreducibility of Nε and Lε implies that the solutions to the coarse-grained equation (36) and the effective
equation (37) are instantly positive independent of the initial conditions (see Lemma 2.5). Together with
H (µ̂ε

t |ρε) ≤ H (µ̂ε
0|ρε) for t ≥ 0 (see (13)) this leads to the following quantitative result.

Proposition 4.7. Let µ̂ε, ηε ∈ C1([0, T ];P(Y)) be the solutions to coarse-grained dynamics (36) and the
effective dynamics (37) with initial data µ̂ε

0 and ηε0 respectively. Assume that (A2) in Theorem 4.5 holds and
that the initial data µ̂ε

0, η
ε
0 converge in P(Y) as ε → 0. Then for any δ > 0 there exists a constant C > 0

independent of ε such that for any t ∈ [δ, T ] we have

H (µ̂ε
t |ηεt ) ≤ 2H (µ̂ε

δ|ηεδ) + C
2εT

αLSI
[H (µε

0|ρε)− H (µε
T |ρε)] .
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Note that the improved error estimate (50) in Theorem 4.5 cannot be applied straightforwardly on the
interval [δ, T ] since this would require H (µ̂ε

δ|ηεδ) ≤ C0ε. In general this cannot be guaranteed by the control
on the initial data alone.

Remark 4.8. We point out that the general error estimate derived in Theorem 3.1 does not require positivity
of the initial data, which is one of the main assumptions in Theorem 4.5. The assumption of positive initial
data is required to obtain an ε-independent bound (52) on gt in the proof of Theorem 4.5. Specifically, we
need to control the decay of µ̂ε

t to zero as t → 0 independently of ε to obtain an ε-independent bound on∫ δ

0
g2t dt, i.e. we require an estimate of the form µ̂ε

t (y) ≥ ctN for c > 0 and N ∈ N independent of ε. In the
proof of Theorem 3.1 this estimate is derived by applying Proposition A.1 to the full solution µt and then
using µ̂t = ξ#µt. However, proceeding like this in the ε-dependent case leads to a constant c ∼ e−1/ε since
maxx∈X −Lε(x, x) ∼ ε−1 as ε → 0.

Alternatively, we might use the fact that the solution to (36) can be written as

µ̂ε
t = exp

(∫ t

0

L̂ε
s ds

)
µ̂ε
0.

Using the definition of L̂ε
s and the definition of Lε (33) we obtain(∫ t

0

L̂ε
s ds

)
(y, 1− y) =

∑
z1,z2∈Z

Gy,1−y(z1, z2)

∫ t

0

µε
s(z1|y) ds

and thus it is sufficient to control the decay of
∫ t

0
µε
s(z|y) ds as t → 0 for small ε > 0. We point out, that by

using [HPST20, Lemma 3.2 & Lemma 3.4] it follows that µε
t (·|y) converges narrowly to ρy in the space of

measures on [0, T ] × Z, that is
∫ T

0
ftµ

ε
t (z|y) dt →

∫ T

0
ftρy(z) dt for all f ∈ C([0, T ];R) as ε → 0. However,

this type of convergence seems to be insufficient to control
∫ t

0
µε
s(z|y) ds well enough for our purposes.

Nevertheless, this hints that the restriction to positive initial data in Theorem 4.5 is purely technical. The
technical nature of this restriction is further fostered by the numerical experiments in Section 5, where
choosing non-negative initial data does not affect the convergence rate.

4.3 Error estimate for reversible processes

So far we have worked with general continuous-time Markov chains without making any assumption regarding
the reversibility of the underlying stochastic process. In this section, we work with reversible Markov chains,
i.e. chains that satisfy the detailed balance condition

ρ(x1)L(x1, x2) = ρ(x2)L(x2, x1), (55)

for any x1, x2 ∈ X , where L is an irreducible generator and ρ is the corresponding stationary measure.
The log-Sobolev inequality has been a central ingredient in our analysis so far, and it turns out that there
are natural sufficient conditions for this inequality to hold in the reversible setting (see for instance [FM16,
EF18]). In particular we can guarantee that this inequality holds for the reversible generator used in the
numerical experiments discussed in Section 5.

The reversible setting has two distinct features in the context of effective dynamics. First, the conditional
stationary measure is independent of ε (see Lemma 4.9 below) which makes the quantitative result consid-
erably simpler as the log-Sobolev inequality does not depend on ε. Second, the ε-independent conditional
stationary measure ρ(·|y) (recall Theorem 4.2 for definition) is the same as ρy(·) and therefore the averaged
and effective dynamics are the same (see Corollary 4.10). Consequently our techniques provide new error
estimates and insights into averaging problems.

Lemma 4.9. Let ρy ∈ P(Z) be the stationary measure of Qy for y ∈ Y. If Lε is reversible for any ε > 0, the
conditional stationary measure satisfies ρε(·|y) = ρy(·) for any ε > 0. Furthermore, the marginal stationary
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measure ξ#ρ
ε = π for any ε > 0, where π ∈ P(Y) solves

NTπ = 0 with N :=

(
−λ0 λ0

λ1 −λ1

)
, λy :=

∑∑
z1,z2∈Z

ρy(z1)Gy,1−y(z1, z2), (56)

i.e. π is the stationary measure corresponding to N . Consequently, the stationary measure corresponding to
Lε is ε-independent, i.e. (Lε)T ρ = 0 for any ε > 0 where ρ((y, z)) = πyρy(z).

Proof. Fix ε > 0 and let ρε be the stationary measure of Lε. Since Lε satisfies the detailed balance condition,
it is a self-adjoint operator in L2(X , ρε), i.e. for any f1, f2 ∈ L2(X , ρε) we have∑∑

x1,x2∈X
f1(x1)L

ε(x1, x2)f2(x2)ρ
ε(x1) =

∑∑
x1,x2∈X

f1(x1)L
ε(x2, x1)f2(x2)ρ

ε(x2).

Choosing f2 = δ(y1,z1) and f1 = χ{y1}×Z for any (y1, z1) ∈ X , where δx is the Dirac delta located at x ∈ X
and χA is the characteristic function of A ⊆ X , we arrive at∑

z2∈Z
Lε((y1, z1), (y1, z2))ρ

ε((y1, z1)) =
∑
z2∈Z

Lε((y1, z2), (y1, z1))ρ
ε((y1, z2))

⇐⇒
∑
z2∈Z

Qy1
(z1, z2)ξ#ρ

ε(y1)ρ
ε(z1|y1) =

∑
z2∈Z

Qy1
(z2, z1)ξ#ρ

ε(y1)ρ
ε(z2|y1),

where the Dy terms cancel from both sides. Since
∑

z2
Qy1

(z1, z2) = 0, the left-hand side of the second
equality above is zero. As ρε is a positive probability measure (it is the stationary measure of an irreducible
generator), ξ#ρ

ε(y1) > 0 for every y1 ∈ Y, and therefore QT
y1
ρε(·|y1) = 0. Consequently ρε(·|y) = ρy(·) for

any y ∈ Y since the irreducibility of Qy implies that it has a unique stationary measure.
Repeating the calculations as in (46) and ρε(·|y) = ρy(·) it follows that for any x = (y, z) ∈ X we find

0 =
(
(Lε)T ρε

)
(x) ⇐⇒ −λyξ#ρ

ε(y) + λ1−yξ#ρ
ε(1− y) = 0 ⇐⇒

(
−λ0 λ1

λ0 −λ1

)(
ξ#ρ

ε(0)
ξ#ρ

ε(1)

)
= 0,

where λy for y ∈ Y = {0, 1} are defined in (56), i.e. NT ξ#ρ
ε = 0 for every ε > 0. Since N is ε-independent

and admits a unique stationary measure, it follows that ξ#ρ
ε = π ∈ P(Y) where NTπ = 0.

A straightforward implication of Lemma 4.9 is that the effective and averaged dynamics are the same in
this setting.

Corollary 4.10. Assume that the original generator Lε is reversible for every ε > 0. Then the effective
dynamics t 7→ ηt ∈ P(Y) evolves according to the ε-independent generator N ∈ R|Y|×|Y| defined in (56), i.e.

∂tηt = NT ηt. (57)

In particular, the effective and averaged dynamics (38) have the same evolution.

The proof follows by explicitly rewriting the effective generator (37) as in the proof of Lemma 4.9.
Since the conditional stationary measure is ε-independent by Lemma 4.9, the log-Sobolev inequality

(LSIε) in the reversible setting is ε-independent and reads

H (ν|ρy) ≤
1

αLSI
RQy

(ν|ρy), (58)

for ν ∈ P(Z). We now state the analogue of Theorem 4.5 in the reversible setting.

Proposition 4.11. Let Lε be a reversible, irreducible generator of the form (33), and µ̂ε, η ∈ C1([0, T ];P(Y))
be the solutions to corresponding coarse-grained dynamics (36) and the effective dynamics (57) with initial
data µ̂ε

0 and η0 respectively. Assume that
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(B1) The initial data for coarse-grained and effective dynamics is positive, i.e. there exists c0 > 0 independent
of ε such that µ̂ε

0(y), η0(y) > c0 for any y ∈ Y. Furthermore the initial data µε
0, µ̂

ε
0 converge in

P(X ), P(Y) respectively as ε → 0.

(B2) For any y ∈ Y and ν ∈ P(Z), the family of conditional stationary measures ρy ∈ P(Y) satisfies (58).

Then there exists C > 0 such that for any t ∈ [0, T ] and ε ∈ (0, ε0)

sup
t∈[0,T ]

H (µ̂ε
t |ηt) ≤ 2H (µ̂ε

0|η0) + C
εT

αLSI
[H (µε

0|ρε)− H (µε
T |ρε)] .

If additionally there exists C0 < ∞ independent of ε such that for any ε ∈ (0, ε0) we have H (µ̂ε
0|η0) ≤ C0ε,

then there exists a constant D = D(T ) independent of ε and αLSI such that

sup
t∈[0,T ]

H (µ̂ε
t |ηt) ≤

(
2C0 +

D

αLSI

)
ε.

Note that in the estimates above both the effective dynamics and stationary measure are ε-independent.
In the remainder of this section we discuss sufficient conditions on the fast-generator Qy ∈ R|Z|×|Z| such

that the conditional stationary measure ρy satisfies the log-Sobolev inequality (58). First of all, note that
the reversibility of Lε implies the reversibility of Qy for all y ∈ Y since choosing x1 = (y, z1) and x2 = (y, z2)
in the detailed-balance condition (55) for Lε, using the form (33) of Lε and writing the stationary measure
as ρ((y, z)) = ξ#ρ(y)ρ

ε(z|y) (recall Lemma 4.9) yields

ξ#ρ(y)ρy(z1|y)Qy(z1, z2) = ξ#ρ
ε(y)ρε(z2|y)Qy(z2, z1).

Note that ξ#ρ(y) > 0 for all y ∈ Y as ρ is a positive probability measure and since z1, z2 ∈ Z are arbitrary it
follows that Qy is in detailed balance. Therefore we can apply the framework of [EM12, FM16, EF18], where
the validity of the estimate (58) is related to the entropic Ricci curvature of the triplet (Z, Qy, ρy) denoted
by Ric(Z, Qy, ρy) (see [EM12, Definition 1] and [EF18, Definition 2.1] for precise definition). In particular,
the following result holds.

Lemma 4.12. Let Qy be reversible and assume that Ric(Z, Qy, ρy) ≥ 0 for all y ∈ Y, then there exists an
αLSI > 0 such that the log-Sobolev inequality (58) holds.

Proof. We aim to apply [EF18, Theorem 6.1], which guarantees the existence of an αLSI > 0 if Ric(Z, Qy, ρy) ≥
0 and the diameter of (X , dW) is bounded. Here, dW is a distance on X defined in [EF18, Section 2.4] and
is bounded from above by dQy

, up to a constant, with

dQy
(z1, z2) = inf

{
n−1∑
i=1

1√
min(Qy(z̃i, z̃i+1), Qy(z̃i+1, z̃i))

}
,

where the infimum is taken over all sequences z̃1 = z1, z̃2, . . . , z̃n = z2 such that Qy(z̃i, z̃i+1) > 0 (see [EF18,
Lemma 2.3]). Note that this also implies Qy(z̃i+1, z̃i) > 0 by reversibility and since Qy is irreducible such
a sequence exists for all z1, z2 ∈ Z. Thus, the distance is well-defined. In particular, since Z is finite the
distance is also bounded, which proves the lemma.

We now apply the above theory to the examples studied in the numerical experiments Section 5. With
Z = {0, . . . , n− 1}, we set

Qy =



d r+ 0 · · · 0 r−
r− d r+ 0

0 r− d r+
...

...
. . .

. . .
. . . 0

0 r− d r+
r+ 0 · · · 0 r− d


∈ Rn×n (59)
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for y ∈ Y = {0, 1} with r+, r− > 0 and d = −(r+ + r−). Following [EM12, Example 5.6], we obtain a
mapping representation (G, τ) of Qy (see [EM12, Definition 5.2] for a definition) by defining G = {+,−}
with

+(z) = z + 1modn,

−(z) = z − 1modn

and τ(z,+) = r+ and τ(z,−) = r−. This satisfies [EM12, Proposition 5.4], which yields that Ric(Z, Qy, ρy) ≥
0 and thus, Lemma 4.12 and in particular Theorem 4.5 apply. For an explicit expression of the log-Sobolev
constant see [EF18, Theorem 6.1].

Remark 4.13. The example (59) is rather specific as it models a birth-death process with periodic boundary
conditions (i.e. the first and last states are connected) and constant birth- and death-rates. However, Lemma
4.12 also holds for a far more general class of classical birth-death processes without periodic boundary
conditions which have state-dependent birth- and death-rates under mild assumptions on the rates. For the
corresponding result we refer to [Mie13, Theorem 5.1]. Note that the geodesic λQ-convexity provided in
[Mie13] implies a non-negative Ricci curvature bound if λQ ≥ 0. Moreover, it turns out that the assumptions
of Lemma 4.12 are also satisfied for a large class of other examples [EM12, FM16], which includes a random
walk on the discrete hypercube and the full graph {0, 1}n as well as the birth-death processes on a countable
state space.

4.4 Different choices for coarse-graining maps

We conclude this section, by discussing how different choices of coarse-graining maps ξ can lead to vastly
different scaling behavior of the corresponding log-Sobolev constant. In view of the error estimates provided
by our main Theorems 3.1 and 4.5 this shows that the choice of coarse-graining map has to reflect the
slow-fast structure of the problem in order to obtain a good error bound.

For ε > 0 we consider the process generated by

Lε =


−ε−1 ε−1 0 0
ε−1 −(1 + ε−1) 1 0
0 1 −(1 + ε−1) ε−1

0 0 ε−1 −ε−1


which models a process on a four-state state-space X = {0, 1, 2, 3}, where only neighbouring states are
communicating and additionally, the jump rates alternate between 1 and ε−1. The graph of the process and
the corresponding energy landscape are depicted in Figure 2. This generator is irreducible and reversible
with the corresponding stationary measure ρ(x) = 1/4 for x ∈ X (uniform measure) for every ε > 0.

Note that Lε can be written as

Lε =
1

ε


−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 −1

+


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0


and therefore is of the form (33) discussed in this multiscale section. Hence the first (and natural) choice for
ξ is to group the states {0, 1} and {2, 3} together, which can for example be achieved by

ξ(x) =
⌊x
2

⌋
,

where ⌊·⌋ denotes rounding down to the next integer. This choice corresponds to grouping together states
that can easily access each other. For this choice Y = {0, 1} with Λ0 = {0, 1} and Λ1 = {2, 3}. Using Ly for
the restriction of Lε to the level set Λy × Λy, we find

L0 = L1 =
1

ε

(
−1 1
1 −1

)
=

1

ε
Q.
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0 1 2 3
ε−1 1 ε−1

Figure 2: Graph of a birth-death process on a state space X = {0, 1, 2, 3} where the jump rates alternate
between ε−1 and 1. Above the graph is the plot of an energy landscape, which could generate such a process
(also see Figure 1). Since the birth-death process considered here is reversible, this relation can be made
precise [Ber11, AMP+12]. In particular, the energy barrier between states 1 and 2 is much higher than the
barrier between 0 and 1, and 2 and 3 respectively. Note that a lower energy barrier corresponds to a faster
jump rate ε−1.

Utilizing Remark 3.3 we have chosen the diagonal elements of Ly such that the rows sum up to zero. Applying
Remark 4.13 to the generator Q and using the linearity of the Fisher information RM with respect to M
implies the existence of αLSI > 0 which satisfies

H (ν|ρ(·|y)) ≤ ε

αLSI
Rε−1Q(ν|ρ(·|y)). (60)

Therefore the log-Sobolev constant scales like ε−1 and consequently the error H (µ̂ε
t |ηt) decays at least like

ε in accordance to Theorem 4.5.
Alternatively, we can group the states together like {0}, {1, 2} and {3}. This can for example be achieved

by the coarse-graining map

ξ(x) =
⌈x
2

⌉
,

where ⌈·⌉ denotes rounding up to the next integer. This choice yields Y = {0, 1, 2} and Λ0 = {0}, Λ1 = {1, 2}
and Λ2 = {3}. Since Λ1 is the only level set with more than one element, it is sufficient to obtain a log-Sobolev
inequality (recall Remark 3.4)

H (ν|ρ(·|1)) ≤ 1

αLSI
RL1(ν|ρ(·|1)), L1 =

(
−1 1
1 −1

)
.

Again according to Remark 4.13 such an αLSI exists. In fact, since L1 = Q we obtain the same αLSI as in
(60). Applying Theorem 3.1 then gives an error estimate with a constant which is independent of ε and in
particular does not decay to zero as ε → 0. Hence, although our theory gives an error estimate for this choice
of ξ we obtain no decay for ε → 0, which reflects that ξ does not properly account for the scale separation
present in the problem.

Finally, we may also choose ξ with level sets {0, 2} and {1, 3}. In this case we find that the restricted
generator is the zero matrix Q̃ = 0 on both level sets. In particular, the restricted generator is not irreducible.
Using the definition of the Fisher information (11) we find that RQ̃(ν1|ν2) ≡ 0. Since the relative entropy
H (ν1|ν2) is strictly positive if ν1 ̸= ν2 the log-Sobolev inequality

H (ν|ρ(·|y)) ≤ 1

αLSI
RQ̃(ν|ρ(·|y)) = 0

cannot hold for any αLSI > 0. Hence we obtain no error estimate from our theory.

Remark 4.14. (i) The last example seems to suggest that irreducibility of the restricted generator Ly to the
level sets Λy × Λy is a necessary assumption for our theory to work. We point out that all relevant objects,
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such as coarse-grained and effective dynamics, are properly defined even if Ly is not irreducible. The only
requirement is the irreducibility of the full generator L to obtain the existence of a full stationary measure.
However, as the above example shows, the log-Sobolev inequality might fail without the irreducibility of Ly.
Additionally, we remark that, although not strictly necessary, assuming the irreducibility of the Ly in the
ε-dependent setting of Section 4.1 leads to a more refined analysis.

(ii) Note that the list of coarse-graining maps discussed above is not exhaustive. However, a similar
analysis is possible for other possible ξ and we expect that the presented cases are representative of the
entire class. In particular, it shows that there are ‘good’ and ‘bad’ choices for the coarse-graining map ξ and
that their quality is reflected in our error estimates.

(iii) We restricted the example to a state space with four states for illustrative purposes. However, it is
straightforward to generalise the calculations to a birth-death process with alternating birth/death-rates on
a general finite state space.

5 Numerical experiments

In this section we numerically investigate the optimality of the theoretical convergence rate established
in the previous sections (see Theorem 4.5, Proposition 4.11) on a simple illustrative example of a finite-
state space birth-death process. As opposed to the theoretical results, throughout this section we will work
with ε-independent initial data for the full, coarse-grained and effective dynamics. Furthermore, we will
choose the same initial data for both the coarse-grained and effective dynamics since in practice the effective
dynamics is supposed to be an approximation for the coarse-grained dynamics. A simple consequence is
that H (µ̂0|η0) = 0 and therefore the additional assumptions (49) on the initial data in Theorem 4.5 for the
convergence rate (50) is automatically satisfied.

We now describe our test example. Choose Y = {0, 1} and Z = {0, . . . , n− 1} for some n ∈ N and let Lε

be an irreducible generator of the form (33) with Q0 = Q1 given in (59) and

G0,1(z1, z2) = G1,0(z1, z2) =

{
1, if (z1, z2) = (n− 1, 0) or (z1, z2) = (0, n− 1),

0, otherwise.

In the context of Figure 1, this particular choice of G states that a particle can move to a different macro-
state only if it is located at the end of the current macro-state. The stationary measure corresponding to
Lε is is the uniform distribution on X , i.e. ρε(x) = ρ(x) = 1

2n for all x ∈ Y ×Z, and the stationary measure
on the level sets ρy ∈ Λy satisfies ρy(z) =

1
n for all z ∈ Λy = Z. Furthermore, it is easily checked that the

generator Lε is reversible and consequently the effective dynamics is independent of ε (see Corollary 4.10).
Recall from the discussion at the end of the previous Section 4.3 that the conditional stationary measures
ρy satisfies the log-Sobolev inequality (58). Therefore assuming that the initial data is positive, Proposition
4.11 yields (we choose αLSI to be a part of the constant here)

sup
t∈[0,T ]

H (µ̂ε
t |ηt) ≤ Cε.

Numerical implementation. We now provide details regarding the numerical implementation. Through-
out the experiments we fix an end-time T ∈ (0,∞), a finite set E of possible values for the scale-separation
parameter ε, the number of micro-states in a macro-state n = |Z| and an initial probability measure
µ0 ∈ P(Y × Z) for the full dynamics (which need not be positive as will be discussed below).

To calculate the coarse-grained dynamics (36) numerically we first compute the solution to the full
system (32) and then extract the trajectory of the projected variable using the map ξ : Y × Z → Y with
ξ((y, z)) = y. To compute the effective dynamics (37) we first compute the effective generator N (56) and
then numerically solve the system (57) of ordinary differential equations. With these solutions (µ̂ε)ε∈E and
η we then can compute maxt∈[0,T ] H (µ̂ε

t |ηt) for all ε ∈ E .
In the following remarks we comment on two issues pertaining to the choice of initial data and the

measure used to quantify the error between the coarse-grained and effective dynamics.
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Remark 5.1 (Choice of initial data). We briefly discuss the choice of the initial measure µ0 for the full
dynamics. To remove the influence of the initial data from the results, it seems reasonable to generate a
large number of initial data randomly from the uniform distribution on (0, 1) (which is normalised to obtain
a probability measure), calculate the corresponding trajectories and then average the resulting convergence
rates. However, this leads to issues since the solutions to the coarse-grained and effective dynamics are fairly
close (see explanation below) and the resulting distance in relative entropy is quite small. Consequently, in
most instances, the system has already converged (up to numerical error) and it’s not possible to capture
the convergence profile. Furthermore, this issue becomes worse if the system-size increases, while we expect
that the opposite should be the case.

To give an explanation for this phenomenon, we recall that both the coarse-grained dynamics µε and
the effective dynamics ηε converge to the same stationary measure ξ#ρ (see Proposition 2.6). Furthermore,
ξ#ρ(y) =

1
2 for all y ∈ Y. In our numerical setting, the initial data for both the coarse-grained and effective

dynamics is ξ#µ0. However if n ∈ N is sufficiently large (and thus the system-size is large) one expects that

ξ#µ0(y) =
∑
z∈Z

µ0((y, z)) ≈
1

2

with high probability due to the law of large numbers. Hence the initial data is already close to the stationary
state of both dynamics and therefore the corresponding solutions stay close as well. This also explains why
the issue is more visible if the size of the system (i.e. |Z| = n) is increased .

To solve this issue, we choose initial data which has most of its mass at only a small number of states
(small in comparison to the system size).

Remark 5.2 (Measuring pointwise or uniform decay in time). We point out that measuring the uniform
decay of the relative-entropy distance in time, i.e. maxt∈[0,T ] H (µ̂ε

t |ηεt ), is crucial to obtain a result which is
comparable to the theoretical result. In particular, considering the pointwise decay in time, i.e. H (µ̂ε

T |ηεT )
for a fixed T , we typically find a quadratic decay in ε as opposed to the theoretically predicted linear decay.
The reason behind this discrepancy is that the uniform decay is significantly slower than the pointwise decay
as the equilibration on the level sets speeds up as ε → 0. In particular, this implies that the time at which
the maximum of t 7→ H (µ̂ε

t |ηεt ) is attained decreases as ε → 0 (see Figure 3), and consequently the pointwise
error decays considerably faster.

Numerical results. We choose E = {100, 10−1, 10−2, 10−3, 10−4}, T = 20 and n = 10. We distinguish three
different scenarios based on different choices for the birth and death rates in the generator Qy (recall (59))
and the initial data µ0 for the full dynamics:

(S1) Set r+ = r− = 1 in Qy and µ0 =
(
13
10 + n

5

)−1 (
δ(0,0) +

3
10δ(1,0) +

1
10

)
.

(S2) Set r+ = 1 and r− = 1
10 and µ0 =

(
13
10 + n

5

)−1 (
δ(0,0) +

3
10δ(1,0) +

1
10

)
.

(S3) Set r+ = r− = 1 in Qy and µ0 = 13
10

(
δ(0,0) +

3
10δ(1,0)

)
.

Here δ(y,z) ∈ P(Y×Z) is defined by δ(y,z)(ỹ, z̃) = 1 if (y, z) = (ỹ, z̃) and zero otherwise. Both (S1)–(S2) have
positive initial data (although with different proportion of mass in the macro-states), with the key difference
being in the birth and death rates. Specifically, within a macro-state (S1) has an unbiased movement (i.e.
symmetric Qy), while in (S2) the movement is biased to the right. In (S3), we choose an initial data which is
concentrated only on two points in the entire state-space and therefore violates the the positivity assumption
on the initial data in our theoretical results (see Proposition 4.11).

Figure 3 plots the pointwise-error profile in scenario (S1) for varying ε and clearly exhibits the behaviour
discussed in Remark 5.2, i.e. smaller values for ε lead to increased mixing within the macro-states thereby
leading to faster convergence of the coarse-grained to the (ε-independent) effective dynamics. Note that the
error profiles start at zero since the same initial-data is chosen for the coarse-grained and effective dynamics.
Similar behaviour is exhibited for the other scenarios as well.

Figure 4 plots maxt∈[0,T ] H (µ̂ε
t |ηεt ) as a function of ε. In all the three scenarios we observe that this

error decays to zero as ε → 0, with a rate roughly equal to one. This is in line with our theoretical results
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Figure 3: Plot of t 7→ H (µ̂ε
t |ηt) in scenario (S1) for

ε = 100, 10−1, 10−2. As ε decreases the maximum of
H (µ̂ε

t |ηt) as well the time at which this maximum is
attained decreases.
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Figure 4: Log-log plot of maxt∈[0,T ] H (µ̂ε
t |ηt) for

(S1)–(S3). The linear function ε 7→ ε is plotted for
comparison.

in Theorem 4.5 (in particular (50)), from which we expect a linear decay of error as ε → 0. Finally observe
that the convergence in scenario (S3), which does not satisfy the assumption of positive initial data in
Theorem 4.5, decays at the same rate as (S1)–(S2). This provides further credence to Remark 4.8, wherein
we state that the requirement of positive initial data is a purely technical assumption (in that we require it
for the proof of the estimate) and we expect that the theoretical result should hold without this requirement.

6 Conclusion and discussion

In this article we provide a systematic first study of coarse-graining for linear continuous-time Markov
chains on a finite state space. Inspired by related ideas for diffusions, we propose an effective dynamics
which approximates the coarse-grained dynamics. Using entropy techniques and functional inequalities we
provide a quantitative estimate on the coarse-graining error. We analyse the effective dynamics in the setup
of multiscale averaging problems and provide modified error estimates.

We now comment on some related issues.
Interpreting the log-Sobolev assumption. The assumption that the conditional stationary measure

ρ(·|y) ∈ P(Λy) satisfies the log-Sobolev inequality is the central ingredient used to prove the quantitative
estimates in this article. This assumption becomes especially explicit in the reversible setting (see Sec-
tion 4.3), where the conditional stationary measure is the stationary solution corresponding to the dynamics
within a macro-state, i.e. QT

y ρ(·|y) = 0, and consequently any dynamics evolving according to the generator
Qy converges exponentially fast to ρ(·|y) (recall Remark 2.2). Note that this exponential convergence does
not imply that the conditional measure corresponding to the reference dynamics µt(·|y) ∈ P(Λy) converges
exponentially fast to ρ(·|y) since ∂tµt(·|y) ̸= QT

y µt(·|y) even in the reversible setting. However, from the
very construction of effective dynamics we expect that the dynamics on the level-sets given by µt(·|y) should
converge considerably faster to ρ(·|y) as compared to the convergence of the full dynamics µt to ρ (which
is also exponential in our finite state-space setting). Therefore, even though this log-Sobolev assumption
is crucial to proving the error estimates, it is completely unclear as to how it connects to the underlying
dynamics on the level-sets.

Comparison to diffusion processes. As discussed in the introduction, effective dynamics have
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been studied for diffusion processes. In this setting with affine ξ and identity diffusion, where the coarse-
grained and effective dynamics µ̂t, ηt solve Fokker-Planck equations, the quantitative estimates are of the
type (see [DLP+18, Theorem 2.15] for details)

H (µ̂t|ηt) ≤ H (µ̂0|η0) +
C

α2
LSI

[
H (µ0|ρ)− H (µt|ρ)

]
.

Note that these estimates hold for t > 0 and have better scaling in terms of the log-Sobolev constant. This
is due to the fact that in the diffusion setting, the log-Sobolev inequality implies the Talagrand inequality
which can be used to considerably improve the quantitative bounds. This also leads to a linear scaling in ε in
the presence of scale-separation [HNS20, Section 3.2] (similar to linear scaling for well-prepared intial datum
in Theorem 4.5). However the Talagrand inequality fails in the setting of Markov jump processes (see [Hil17,
Lemma 8.1.7] for a detailed discussion) and therefore the techniques used in this work differ from the diffusion
setting. Another crucial difference is that, while the effective dynamics converges to the averaged dynamics
in fair generality for jump processes (recall Theorem 4.4), so far similar results for diffusions only hold in the
restrictive setting of linear diffusions where the explicit solution for the effective dynamics is known [HNS20,
Section 3.3].

Issues with relative entropy. Recall that one of the main difficulties in proving an error estimate is
to bound gt (see (27)) sufficiently well. In the general case without explicit scale separation we provide such
a bound in Lemma 3.8. However, in the ε-dependent case we can only obtain a bound after assuming that
the initial data is positive (see (A1)). It is useful to point out that similar issues have also appeared in the
construction of the FIR inequality on discrete state spaces in [HPST20, Proposition 2.11]. In fact, it turns
out that the classical FIR inequality using the standard Fisher information (11) fails in the discrete setting if
the assumption of positive initial data is dropped. Although, as outlined in Remark 4.8, we expect that error
estimates can also be obtained without the restriction to positive initial data and that this assumption is
only necessary for technical reasons. However, this comparison indicates that there might be an underlying
common problem with using relative entropy and the classical Fisher information in the discrete setting since
this leads to a logarithmic structure, which cannot be removed as in the continuous setting due to the lack of
a chain rule. This logarithmic structure naturally creates issues when the measures tend to zero somewhere
in the domain.

General setting. We now discuss the various possible generalisations of the setting considered in this
article. In Section 4 we limited ourselves, for simplicity, to the case of two macro-states, i.e. |Y| = 2, each of
which had the same number of micro-states n = |Z|. Our multiscale results easily generalise to the case with
more than two macro-states, each with a different (but finite) number of macro-states, i.e. Y is an arbitrary
finite set and X = ∪y∈Y{y} × Zy.

Throughout this article we restrict ourselves to finite state-space X . While the construction of the
coarse-grained and effective dynamics straightforwardly generalises to the setting of countable state-space,
the quantitative estimates do not since the various constants involved explicitly depend on the dimensions of
X ,Y,Z. We expect quantitative estimates with appropriate modifications (which involve suitable norms) to
hold for countable state space, since similar results also exist for diffusion processes on unbounded state-space
Rd. This is left to future work.

This article is restricted to the setting of jump processes with linear jump rates. A crucial open ques-
tion deals with coarse-graining of jump processes with nonlinear jump rates, for instance chemical-reaction
networks which are important to model biochemical systems. The construction of effective dynamics as
proposed in this work does not straightforwardly generalise to this setting since there is no simple way to
build a natural closure for the projected process due to the state-dependent jump rates.

Discrete-time Markov chains. While in this article we have focussed on continuous-time Markov
chains, discrete-time Markov chains are often employed in practice. We conjecture that our results naturally
generalise to discrete-time Markov chains. Given a transition matrix P for a discrete-time Markov chain,
the evolution of the corresponding probability distribution is given by µn = Pµn−1 for n ≥ 1. Therefore,

µn = Pnµ0, for a given initial distribution µ0. Hence, if we replace the semigroup etL
T

in our theory with
Pn we expect to obtain similar results. In particular, following the proof of Lemma 2.4, the coarse-grained
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variable satisfies µ̂n = P̂ (n− 1)µ̂n−1 with

P̂ (n)(y1, y2) =
∑∑

x1∈Λy1 ,x2∈Λy2

P (x1, x2)µn(x2|y2),

for y1, y2 ∈ Y. Similarly, we define the effective transition matrix by

Peff(y1, y2) =
∑∑

x1∈Λy1
,x2∈Λy2

P (x1, x2)ρ(x2|y2),

where y1, y2 ∈ Y and ρ is the stationary measure. We point out that to guarantee the existence and
uniqueness of a stationary measure in the discrete-time setting it is necessary to additionally assume that
the Markov chain is aperiodic.
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A Properties of irreducible continuous-time Markov chains

In this section we state two general results for irreducible Markov jump processes. Throughout this section
M ∈ R|Z|×|Z| is an irreducible generator on a finite space Z and ζ0 ∈ P(Z). Let ζ ∈ C1([0, T ];P(Z)) be the
solution to the forward Kolmogorov equation

∂tζ = MT ζ,

ζ|t=0 = ζ0.
(61)

Furthermore, let ρ ∈ P+(X ) be the stationary measure for (61), i.e. MT ρ = 0
The following result provides a lower bound for the solution of the forward Kolmogorov equation (61) for

short and intermediate times. For long times, i.e. for t → ∞, we obtain a lower bound from the convergence
to the stationary measure in Proposition A.2 and since the stationary measure has full support.

Proposition A.1. The solution ζ ∈ C1([0,∞);P(Z)) to the forward Kolmogorov equation (61) satisfies the
following bounds:

1. For any δ ∈ (0, 1) and t ∈ [0, δ], there exists c = c(δ) > 0 and N ∈ N independent of z ∈ Z such that

∀z ∈ Z : ζt(z) ≥ c(δ)tN . (62)

2. For any 0 < δ < τ < ∞ and t ∈ [δ, τ ], there exists c = c(δ, τ) > 0 independent of z ∈ Z such that

∀z ∈ Z : ζt(z) ≥ c(δ, τ). (63)

If ζ0(z) > 0 for all z ∈ Z, the estimate (63) also holds for δ = 0.

Proof. Since M is a irreducible generator on a finite space Z, using ν := supz∈Z |M(z, z)| we can define
a P ∈ R|Z|×|Z| with non-negative entries via M = P − νI, where I is the identity matrix. Furthermore

we have ζt = etM
T

ζ0, with etM
T

= et(P
T−νI) = e−νtetP

T

= e−νt
∑

n≥0
tn(PT )n

n! . Since M is irreducible for
any z, z′ ∈ Z with z ̸= z′, there exists a finite sequence z0, z1 . . . , zN ∈ Z containing no doubled points
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with z0 = z′, zN = z and M(zn, zn+1) > 0. Since none of the points in the sequence repeat it follows that
P (zi, zi+1) = M(zi, zi+1) > 0 and therefore we find

(PT )N (z, z′) =
∑

α1,...,αN−1∈Z
PT (z′, α1)P

T (α1, α2) . . . P
T (αN−1, z)

≥ PT (z′, zN−1)P
T (zN−1, zN−2) . . . P

T (z1, z)

= P (z, z1)P (z1, z2) . . . P (zN−1, z
′) > 0.

(64)

In the case z = z′ we choose another z̃ ∈ Z with z̃ ̸= z. Again since M is irreducible there exists a finite
sequence ẑ0, ẑ1, . . . , ẑN̂ ∈ Z containing no doubled points with ẑ0 = z and ẑN = z̃ and M(ẑn, ẑn+1) > 0.
Similarly there exists a finite sequence ž0, . . . , žN̂ ∈ Z containing no doubled points with ž0 = z̃ and žŇ = z
and M(žn, žn+1) > 0. Concatenating the two sequences yields a sequence z0, . . . , zN with no successive
double point such that z0 = zN = z and M(zn, zn+1) > 0. Thus we can proceed as in the case z ̸= z′ and
obtain (PT )N (z, z) > 0. Consequently, since P has non-negative components, we find

etP
T

(z, z′) =
∑
n≥0

tn(PT (z, z′))n

n!
≥ tN (PT (z, z′))N

N !
> 0.

Since ζ0 ∈ P(Z), there exists y ∈ Z with ζ0(y) ≥ 1/|Z|, and for any z ∈ Z we find

ζt(z) =
∑
z′∈Z

etM
T

(z, z′)ζ0(z
′) ≥ etM

T

(z, y)ζ0(y) = e−νtetP
T

(z, y)
1

|Z|
=

( 1

|Z|
N !(PT (z, y))Ne−νt

)
tN . (65)

Note that in this bound N depends on the choice of z, i.e. N = N(z).
For δ ∈ (0, 1] and t ∈ [0, δ], (65) leads to the uniform bound

ζt(z) ≥ c(δ)t(minz N(z)), c(δ) :=
1

(maxz N(z))!

(
min
z

PT (z, y)
)minz N(z)

e−νδζ0(y),

which is the claimed estimate (62). For δ ∈ (0, 1], δ < τ < ∞ and t ∈ [δ, τ ], we have the bound

ζt(z) ≥ c(δ, τ), c(δ, τ) :=
1

(maxz N(z))!

(
min
z

PT (z, y)
)minz N(z)

e−ντζ0(y)δ
(minz N(z)).

and with 1 < δ < τ < ∞, t ∈ [δ, τ ] we have the bound

ζt(z) ≥ c(δ, τ), c(δ, τ) :=
1

(maxz N(z))!

(
min
z

PT (z, y)
)minz N(z)

e−ντζ0(y).

This is the claimed estimate (63).
Finally, assume that ζ0(z) > 0 for all z ∈ Z. Rewriting ∂tζ = MT ζ in time-integrated form, for any

t ∈ [0, T ] and z ∈ Z we find

ζt(z) = ζ0(z) +

∫ t

0

MT ζs ds ≥ ζ0(z) +

∫ t

0

M(z, z)ζs(z)ds = ζ0(z)−
∑

z′∈Z,z′ ̸=z

∫ t

0

M(z, z′)ζs(z)ds

≥ ζ0(z)− t
∑

z′∈Z,z′ ̸=z

M(z, z′) ≥ ζ0(z)− c̃t, (66)

where the first inequality follows since M(z, z′) ≥ 0 for z ̸= z′, the second equality follows by definition
of a generator, the second inequality follows since 0 ≤ ζs(z) ≤ 1, and the final inequality follows by using
c̃ := maxz∈Z

∑
z′ ̸=z M(z, z′) which is a positive constant as

∑
z′ ̸=z M(z, z′) > 0 for any z ∈ Z due to the

irreducibility of M . Consequently, there exists a small enough δ̃ > 0 such that for any t ∈ [0, δ̃] and z ∈ Z
we have ζ0(z) > c̃t. Using (66) it follows that ζt(z) > c for any t ∈ [0, δ̃] and z ∈ Z. Combining this with
(63) completes the proof of the proposition.
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The following result discusses the exponential convergence to the stationary measure in total-variation
distance. Part of this argument is provided by Maksim Maydanskiy [May].

Proposition A.2. Let ζ ∈ C1([0, T ];P(Z)) be the solution to the forward Kolmogorov equation (61) and
ρ ∈ P+(Z) the corresponding stationary measure. Then there exist constants C(ζ0), D > 0 independent of
time, such that ∥∥ζt − ρ

∥∥
TV

≤ C(ζ0) e
−Dt,

where ∥ · ∥TV is the total-variation norm.

Proof. Since M is a generator, using Gerschgorin’s circle theorem yields that the real part of its spectrum
is non-positive, i.e.

Re(σ(M)) ≤ 0.

Furthermore, applying the Perron-Frobenius theorem as in the proof of Theorem 4.4 yields that λ = 0 is a
simple eigenvalue and all other eigenvalues have strictly negative real part. Therefore, MT also has a simple
eigenvalue zero and the remaining eigenvalues have negative real part. Additionally, since ρ is the unique
stationary measure the eigenspace corresponding to the zero eigenvalue is spanned by ρ.

Using P0 as the projection onto the zero eigenspace of LT we obtain

etM
T

= [(I − P0) + P0]e
tMT

[(I − P0) + P0] = (I − P0)e
tMT

(I − P0) + P0e
tMT

P0,

where we have used P0(I − P0) = (I − P0)P0 = 0 and that the projections commute with the semigroup

etM
T

. Furthermore, we note that P0e
tMT

P0 = P0 since MTP0 = 0. Hence, using ζt = etM
T

ζ0 for initial
data ζ0 ∈ P (Z) we find

∥ζt − ρ∥TV ≤
∥∥(I − P0)e

tMT

(I − P0)ζ0
∥∥
TV

+ ∥P0ζ0 − ρ∥TV . (67)

Since (I − P0) is a spectral projection onto the eigenspaces corresponding to the eigenvalues with strictly
negative real part there exists a D > 0 such that∥∥(I − P0)e

tMT

(I − P0)ζ0
∥∥
TV

≤ C(ζ0)e
−Dt.

Following [May], we now argue that P0ζ0 = ρ for any ζ0 ∈ P(Z), which concludes the proof by substi-
tuting the inequality above into (67). Since MT is a finite-dimensional matrix, we can write ζ0 as a linear
combination of the (generalized) eigenvectors of MT , i.e.

ζ0 = cρ+

|Z|−1∑
i=1

ciρi, (68)

where coefficients c, ci ∈ R and ρi (i ∈ {1, . . . , |Z| − 1}) are the generalized eigenvectors corresponding to
the eigenvalues of MT with strictly negative real part. Since M is a generator, the left eigenvector of MT

corresponding to the eigenvalue zero is given by 1 = (1, . . . , 1). In particular, this yields 1ρi = 0 since

0 = 10 = 1(MT − λiI)
nρi = (−λi)

n1ρi,

where we used that ρi is the generalized eigenvector corresponding to the eigenvalue λi ̸= 0 and 1MT = 0.
Since ζ0, ρ ∈ P(Z), using (68) we obtain

1 = 1ζ0 = 1
(
cρ+

|Z|−1∑
i=1

ciρi

)
= c1ρ = c.

This proves P0ζ0 = cρ = ρ.
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We now discuss the constants in Propositions A.1 in more detail if M = N , where N is the generator
of the effective dynamics, see (17). It turns out that we can obtain constants, which do not depend on N ,
but only on the full generator L. In particular, the constants are thus independent of the choice of the
coarse-graining map ξ : X 7→ Y.

Proposition A.3. Let N be the generator of the effective dynamics defined in (18) and let η ∈ C1([0,∞);P(Y))
be the solution of the corresponding forward Kolmogorov equation (17) with initial data η0 ∈ P(Y). Then
the following estimates hold:

1. For any δ ∈ (0, 1) exists c = c(δ, L, |X |) > 0 independent of N such that

∀y ∈ Y and t ∈ [0, δ] : ηt(y) ≥ ct|X |. (69)

2. For any 0 < δ < τ < ∞ exists c = c(δ, τ, L, |X |) > 0 independent of N such that

∀y ∈ Y and t ∈ [δ, τ ] : ηt(y) ≥ c. (70)

If η0(y) > 0 for all y ∈ Y, the estimate (70) also holds for δ = 0.

Proof. We first prove the estimates (69) and (70) by adapting the proof of Proposition A.1. For that we
note that

νN := sup
y∈Y

|N(y, y)| = sup
y∈Y

∣∣∣ ∑∑
x1,x2∈Λy

L(x1, x2)ρ(x1|y)
∣∣∣ ≤ ∑

x∈X
|L(x, x)| =: ν̄,

where we used that ρ(x1|y) ≤ 1. Moreover, let y1 ̸= y2 such that N(y1, y2) > 0. Then it holds that

N(y1, y2) =
∑∑

x1∈Λy1
,x2∈Λy2

L(x1, x2)ρ(x1|y1) ≥ inf
(x1,x2)∈p(L)

L(x1, x2)ρ(x1) > 0.

where p(L) := {(x1, x2) : L(x1, x2) > 0} is the positivity set of L. Here, we used that x1 ̸= x2 since y1 ̸= y2
which gives L(x1, x2) ≥ 0 and ρ(x1|y1) ≥ ρ(x1) which follows by definition of the conditional measure, see
(8). Finally, we also used that p(L) ∩ (Λy1

× Λy2
) ̸= ∅ since N(y1, y2) > 0.

Next, define P = N + ν̄I. Since νN ≤ ν̄ the matrix P ∈ R|Y|×|Y| has only non-negative entries. With
this we can write

etN
T

= et(P
T−ν̄I) = e−ν̄tetP

T

= e−tν̄
∑
n≥0

tn(PT )n

n!
.

The generator N is irreducible by Lemma 2.5 and hence, for any y, y′ ∈ Y with y ̸= y′ exists a finite
sequence y0, y1, . . . , ym ∈ Y containing no doubled points with y0 = y, ym = y′ and N(yn, yn+1) > 0 for all
n = 0, . . .m− 1. Then, we find using N(yn, yn+1) = P (yn, yn+1) since yn ̸= yn+1 that

(PT )m(y, y′) ≥ P (y, y1)P (y1, y2) · · ·P (ym−1, y
′) ≥

(
inf

(x1,x2)∈p(L)
L(x1, x2)ρ(x1)

)m

≥ c

with

c :=


(

inf
(x1,x2)∈p(L)

L(x1, x2)ρ(x1)

)|X |

, if inf
(x1,x2)∈p(L)

L(x1, x2)ρ(x1) < 1,

inf
(x1,x2)∈p(L)

L(x1, x2)ρ(x1), if inf
(x1,x2)∈p(L)

L(x1, x2)ρ(x1) ≥ 1,
.

Here, we use that 1 ≤ m ≤ |Y| ≤ |X | for all y1, y2 ∈ Y since the sequence contains no double points. For the
case z = z′ we note that one obtains a sequence with similar properties of length at most 2|Y| by following
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the construction in the proof of Proposition A.1. Consequently, since P has only non-negative components,
we find

etP
T

(y, y′) ≥ tm(PT )m(y, y′)

m!
≥ tmc

|X |!

Since η0 ∈ P(Y) there exists at least one y′ ∈ Y such that η0(y
′) ≥ 1/|Y| ≥ 1/|X | and for any y ∈ Y holds

that

ηt(y) ≥
c

(|X |!)|X |
e−ν̄ttm.

Note that the constant c only depends on L and |X |. Following the proof of Proposition A.1 with this
improved estimate gives the desired result.
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